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ABSTRACT

A new micromechanical theory is presented for the response of heterogeneous metal matrix
composites subjected to thermal gradients. In contrast to existing micromechanical theories that
utilize classical homogenization schemes in the course of calculating microscopic and macroscopic
field quantities, in the present approach the actual microstructural details are explicitly coupled with
the macrostructure of the composite. Examples are offered that illustrate limitations of the classical
homogenization approach in predicting the response of thin-walled metal matrix composites with
large-diameter fibers when subjected to thermal gradients. These examples include composites with
a finite number of fibers in the thickness direction that may be uniformly or nonuniformly spaced,
thus admitting so-called functionally gradient composites. The results illustrate that the classical
approach of decoupling micromechanical and macro-mechanical analyses in the presence of a finite
number of large-diameter fibers, finite dimensions of the composite, and temperature gradient may
produce excessively conservative estimates for macroscopic field quantities, while both underesti-
mating and overestimating the local fluctuations of the microscopic quantities in different regions
of the composite. Also demonstrated is the usefulness of the present approachin generating favorable
stress distributions in the presence of thermal gradients by appropriately tailoring the internal
microstructural details of the composite. :

NOMENCLATURE
u;(S), T;(S) -~ displacement and traction components on the surface S of a composite
e?j, G?j - average values of strains and stresses in a composite subjected to

homogeneous boundary conditions

€;j, Ojj - average values of strains and stresses in a representative volume element
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strains and stresses at the point x; in a composite

elements of the effective stiffness tensor of a composite

indices used to identify the cell (p.q,r)

indices used to identify the subcell (afy)

dimensions of the subcell (apy) in the p —th unit cell

volume of the subcell (xBy)

local subcell coordinates

coefﬁc_ients of heat conductivity of the material in the subcell (a.py)
temperature field in the subcell (afy)

temperature at the center of the subcell (a.8Y)

coefficients in the temperature expansion within the subcell (aBY)
components of the heat flux vector in the subcell (afy)

average values of the subcell heat flux component qf“m’) when
[ =m = n =0; higher-order heat fluxes for other values of /,m,n

surface integrals of subcell interfacial heat fluxes
displacement components in the subcell (afy)
x displacement component at the center of the subcell (afBY)

coefficients associated with the linear terms in the second-order expansion
of the subcell displacement u{F?

coefficients associated with the linear terms in the first-order expansion of
the subcell displacement u§*?

coefficients associated with the linear terms in the first-order expansion of
the subcell displacement u$*%?

coefficients associated with the quadratic term x{®2 in the second-order
expansion of the subcell displacement uﬁ“ﬂ"’)



vihy -- coefficients associated with the quadratic term P2 in the second-order
expansion of the subcell displacement uf%

WS“BY) - coefficients associated with the quadratic term x§"% in the second-order
expansion of the subcell displacement ul®r

ef}’ﬁ") — local strain components in the subcell (aBY)
GS}IW -  local stress components in the subcell (a.BY)
cf%&’) - elements of the stiffness tensor of the material in the subcell (fy)
j
I’f}’w - elements of the thermal tensor of the material in the subcell (afy)
(products of the stiffness tensor and the thermal expansion coefficients)
S Sx l,YrZz,n) - average values of the subcell stress components cf}’ﬂﬂ when
[ = m = n =0; higher-order stress components for other values of /,m,n
. . (o)
I S‘}%I)0,0) ' - surface integrals of the subcell interfacial stresses cﬁ‘}m atx, =+d@12
. . . —B
J 53‘?8),, 0) -- surface integrals of the subcell interfacial stresses c&‘}‘ﬂw at )c2B =thg/2
M
K50, - surface integrals of the subcell interfacial stresses G&‘]’-‘BY) at x3Y =+/./2,

1.0 INTRODUCTION

The past thirty years have seen tremendous growth in the development and use of compo-
site materials. The applications range from sporting and recreational accessories to advanced
aerospace structural and engine components. Historically, composite materials have been classi-
fied into different categories based on the geometry and distribution of the reinforcement phase
and the type of the matrix phase. For example, polymeric matrix (PMC), metal matrix (MMC),
intermetallic matrix (IMC), and ceramic matrix (CMC) composites are four classes of compo-
sites based on the type of matrix used to contain the reinforcement phase. The reinforcement
phase can be finite-length or continuous, oriented or random, thereby providing further classifi-
cation into short-fiber, orented or random composites, and unidirectional (continuous and
oriented) composites. ' I R '

Typically, the reinforcement phase in the various classes of composite materials is distri-
buted in a statistically or macroscopically uniform fashion such that the resulting two-phase
material is macroscopically homogeneous with properties that do not vary spatially. Numerous
micromechanical approaches have been developed during the :past thirty years, as discussed by



Aboudi (1991), to calculate the average (often called effective or macroscopic) properties of
such composites given the geometry, distribution and properties of the individual phases. The
micromechanical analysis makes it possible to replace the heterogeneous microstructure of the
composite with an equivalent homogeneous continuum characterized by a set of effective elastic
properties that subsequently can be used in more complicated structural analyses. The effective
elastic properties are defined as the constitutive parameters that relate volume averages of the
stress and strain components under so-called homogeneous boundary conditions, specified either
in terms of surface displacements or prescribed surface tractions.

The central assumption in applying the various well-established micromechanical tech-
niques is the existence of a definable representative volume element (RVE) at each point within
the heterogeneous continuum and the ability to apply homogeneous boundary conditions to such
an element. This amounts to decoupling the local and global analyses by evaluating the effective
material properties at a given point based only on the local states of stress and deformation at
that point which are assumed to be known a priori. Such decoupling is based on the assumption
of the applicability of a principle sometimes referred to in the literature as the principle of local
action (Malvern, 1969). The decoupling of local and global analyses clearly limits the range of
applicability of the classical homogenization approach to composites with very fine microstruc-
tures (i.e., inclusion dimensions) with respect to the overall dimensions of the composite, and
imposes constraints on the severity of deformation gradients that can be admitted. Composites
with fine microstructures include unidirectional composites reinforced with small-diameter
fibers such as graphite and carbon, for instance. Alternatively, in composites containing rela-
tively large-diameter fibers with respect to the thickness of a single ply, such as B/Al or SiC/Tj,
the applicability and reliability of the traditional microscopic approach based on the concept of
an RVE and the classical homogenization treatment is suspect, and remains to be established due
to potential coupling between the microstructure and the global response. This is illustrated in
Figure 1 for situations involving thermal gradients, and will be discussed in more detail in the
following section.

Recently, a new concept involving tailoring of the internal microstructure of the composite
to achieve certain required response characteristics to given input parameters has taken root.
This idea has been pursued vigorously by Japanese researchers (cf. Yamanouchi et al., 1990)
who have coined the term functionally gradient materials to describe this newly emerging
class of composites. The idea involves spatially grading the properties of the material by using
variable spacings between individual inclusions, as well as by using inclusions with different
properties, sizes and shapes. Such an approach offers a number of advantages over the more
traditional methods of changing the compliance of composite structural elements by varying the



lamination sequence or dropping plies to reduce the cross-sectional geometry, for instance.
Grading or tailoring the internal microstructure of a composite material or a structural com-
ponent allows the designer to truly integrate both the material and structural considerations into
the final design and final product. This brings the entire structural design process to the material
level in the purest sense, thereby increasing the number of possible material configurations for
specific design applications.

Composite materials with tailored microstructures are ideal candidates for applications
involving severe thermal gradients, ranging from thermal structures in advanced aircraft and
aerospace engines to circuit boards. For instance, a direct consequence of the temperature gra-
dient across the thickness of a structural component (such as a combustor liner or airfoil) is the
tendency to bend in the out-of-plane direction. This tendency will be present irrespective of
whether a homogeneous or heterogeneous material is considered. However, by judiciously
tailoring the microstructure of a heterogeneous material, the thermal bending moment can be
reduced, if not eliminated, consequently decreasing the severity of warping.

The potential benefits that may be derived from composites with tailored microstructures
have lead to increased activities in the areas of processing, and materials science, of these
materials. These activities, however, are handicapped by the lack of appropriate computational
strategies for the response of functionally graded materials that explicitly couple the hetero-
geneous microstructure of the material with the global analysis. As implied by the foregoing
brief discussion on the limits of applicability of the classical homogenization approach, and
further elaborated upon in the following section, traditional micromechanical schemes currently
used in analyzing functionally graded materials, that is those which implicitly assume the
existence of an RVE and the validity of the principle of local state, suffer from theoretical
shortcomings and cannot be used with confidence. As a result, 2 new analytical approach is
presented (that explicitly couples the heterogeneous microstructure of the material with the glo-
bal analysis) in order to respond to the current need to analyze behavior of composites with
tailored microstructures (e.g. functionally graded, large-diameter reinforcement) in the presence
of thermal gradients. In particular, the problem considered herein is a composite plate with a fin-
ite thickness H extending to infinity in the x;—x3 plane and subjected to a temperature gradient,
see Figure 2. The composite is reinforced by periodic arrays of fibers in the direction of the x;
axis or the x3 axis (Figure 2a), or both (Figure 2b). In the direction of the x; axis, hereafter
called the functionally gradient (FG) direction, the fiber spacing between adjacent arrays may
vary. The reinforcing fibers can be either continuous or finite-length. Further, each array of
fibers can admit different thermoelastic properties. Consequently, the model admits a variety of
tailored microstructural configurations whose response to the applied thermal gradient can be



investigated (including unidirectional and bi-directional arrays with uniform or variable fiber
spacings in the FG direction, as well as multi-phase arrays). These configurations can include
functionally graded materials consisting of metallic and ceramic phases that produce continu-
ously changing properties for applications involving severe thermal gradients. In such applica-
tions, metallic-rich regions are placed in the vicinity of the surface exposed to lower tempera-
tures whereas those regions exposed to elevated temperatures are ceramic-rich.

" In addition, the present formulation makes it possible to test the applicability of the various
homogenization schemes when predicting the response of composites with large-diameter fibers
subjected to thermal gradients, i.e., when each ply consists of a single row of fibers in the thick-
ness direction. Hence, the fundamental question of how many fibers (or plies) are required in the
thickness direction for classical homogenization schemes to be valid in the presence of thermal
gradients can therefore be finally answered using the present aﬁpfoach.

This question is the first to be addressed in the APPLICATIONS section by presenting
inplane force and moment resultants in a composite with finite thickness reinforced with uni-
directional SiC fibers, produced by the imposed temperature gradient, as a function of the
number of uniformly spaced fibers in the FG direction for a fixed fiber volume fraction. These
results are normalized by the continuum approach predictions obtained by first generating the
effective thermoelastic properties of the individual rows of fibers using a suitable homogeniza-
tion scheme and subsequently employing these effective properties in the thermal boundary-
value problem of an equivalent homogeneous composite. Similarly, a bi-directionally reinforced
composite with uniformly spaced fibers in both inplane directions is considered and the various
quantities of interest compared with those obtained using the corresponding homogenized confi-
guration. Finally, examples illustrating the effect of linearly, quadratically and cubically varying
fiber spacing in the FG direction are compared to the uniformly spaced configuration, and the
advantages of using functionally graded composites with regard to reducing inplane force and
moment resultants are discussed.

2.0 APPLICABILITY OF THE CLASSICAL HOMOGENIZATION SCHEMES

The various micromechanical approaches used to calculate effective properties of compo-
sites include use of simple Reuss and Voigt hypotheses, self-consistent schemes and their gen-
“eralizations, differential schemes, the Mori-Tanaka method, concentric cylinder models, bound-
ing techniques and approximate or numerical analyses of periodic arrays of inclusions or fibers
in the surrounding matrix phase. A discussion of these various approaches has recently been
given by Aboudi (1991). As stated in the preceding section, the central assumption in applying
these well-established techniques is the existence of an RVE and the ability to apply



homogeneous boundary conditions to such an element. These homogeneous boundary conditions
can be specified either in terms of surface displacements

1(S) = €5x; M
or in terms of prescribed surface tractions
Ti(S) = ohin; )

where n; is the unit outward normal vector on the boundary surface S of the composite, x; are the
Cartesian coordinates of the surface, eg- and G?j are constants, and repeated index implies sum-
mation. For an inhomogeneous medium the constants e?j and 0'% are the volume averaged strains
and stresses under the prescribed boundary conditions given by equations (1) and (2), respec-
tively. This is a consequence of the following relations

_ 1 1,1

eij = ——);E,-j(xk)dV = Vlz(u,‘n}- + ltjn,')ds (3)
5. = dV = 11 T, T;x;)dS

G,'j = _‘J;c,-j(xk) = 7!5( ,'Xj + jx;) (4)

where V is the volume enclosed by the surface S. The above relations hold provided that: the dis-
placements ¥; are continuous; the tractions T; are continuous at all interfaces of the heterogene-
ous medium; and body forces vanish. Under the above conditions, the effective elastic moduli
Cijkl are defined as

G;; = Ciju€u )]

In practice, the average strains and stresses that result from the application of homogeneous
boundary conditions are calculated for an RVE whose macroscopic behavior is indistinguishable
from the behavior of the composite-at-large. By applying the homogeneous boundary conditions
to the bounding surface of the RVE, which are the same as the boundary conditions applied to
the entire composite, its average behavior can be calculated. This average behavior, in turn,
defines the composite’s macroscopic properties. To qualify as an RVE, the volume of the



element used to calculate average composite behavior must meet two criteria. First, it must be
sufficiently small with respect to the dimensions of the composite-at-large in order to be con-
sidered a material point in the equivalent homogeneous continuum (i.e. # <« H, see Figure 1).
Second, it must be sufficiently large with respect to the inclusion phase (i.e. d <« h, see Figure 1)
so that to the first order the elastic strain energy induced by both sets of homogeneous boundary
conditions is the same, making the effective elastic properties in equation (5) independent of the
manner in which boundary conditions are applied (Hill, 1963). In the case of periodic fiber
arrays, the repeating unit cell is interpreted as the RVE provided that the homogeneous boundary
conditions are replaced by either symmetry conditions on the deformation of the unit cell or
periodic boundary conditions, depending on the type of loading.

Clearly, the range of applicability of the aforementioned approaches is limited to compo-
sites reinforced by fibers with very small diameters such as graphite or carbon fibers. In such
composites, a typical RVE contains a sufficiently large number of fibers while occupying a very
small volume of the entire composite, allowing one to disregard boundary-layer effects near the
bounding surfaces of the RVE upon application of either type of homogeneous boundary condi-
tions. As a result, even in the presence of highly inhomogeneous deformation gradients within
the composite-at-large, the field quantities within the RVE will not vary significantly, thereby
permitting the definition of a material property at a point in the equivalent homogeneous contin-
uum. In contrast, in composites with relatively large-diameter fibers with respect to the thickness
of a single ply, the variation of the quantities of interest within the RVE (assuming that it can be
defined) invalidates the basic assumptions on which the concept of effective properties is based.
These local variations of the field quantities within the RVE may give rise to unexpected
phenomena rooted in the local-global coupling which is neglected in the traditional
micromechanical homogenization schemes. For instance, different thermal conductivities of the
individual phases together with their directional arrangement may produce thermal gradients in
the individual phases which are quite different from the thermal gradients in the homogeneous
composite with equivalent effective properties subjected to identical boundary conditions (Fig-
ure 1). This, in turn, may alter the local conductivity characteristics and produce unexpected
effects such as localized "hot spots" for instance. The size of the RVE in relation to the thickness
of the composite and the temperature gradient obviously will play an important role in the above
scenario.

The preceding discussion raises questions about the applicability of the traditional micros-
copic approach based on the concept of an RVE in the presence of large thermal gradients and
coarse or spatially variable microstructure. In light of this discussion, the current practice of
decoupling the local response from the global response by calculating pointwise effective



thermoelastic properties of functionally graded materials without regard to whether the actual
microstructure admits the presence of an RVE, and subsequently using these properties in the
global analysis of the heterogeneous material, remains to be justified. These issues were dis-
cussed qualitatively as early as 1974 by Pagano (1974) with regard to mechanical loading of
macroscopically homogeneous composites. No further work in this area appears to have been
published in the open literature since then. In order to resolve these issues, a model is required
that explicitly couples the microstructural and macrostructural analyses. The model presented in
the following section is a step in this direction for applications involving composites with uni-
formly or nonuniformly spaced, large-diameter fibers subjected to through-the-thickness thermal
gradients.

3.0 ANALYTICAL MODEL

The heterogeneous composite shown in Figure 2 can be constructed using the basic build-
ing block or repeating unit cell given in Figure 3. This unit cell consists of eight subcells desig-
nated by the triplet (ofy). Each index «, B, ¥ takes on the values 1 or 2 which indicate the rela-
tive position of the given subcell along the xy, x> and x3 axis, respectively. The dimensions of
the unit cell along the x, and x3 axes, hj, hy, and [y, {5, are fixed for the given configuration
since these are the periodic directions, whereas the dimensions along the x; axis or the FG
direction, d’, d¥’, can vary from unit cell to unit cell. The dimensions of the subcells within a
given cell along the FG direction are designated with a running index p which identifies the cell
number. We note that p remains constant in the x,-x3 plane. For the other two directions, x, and
x3, the corresponding indices g and r are introduced. Thus a given cell is designated by the tri-
plet (p,q,r) forp =1, 2, ..., M, where M is the number of fibers in the thickness or FG direction,
and an infinite range of ¢ and r due to the periodicity of the composite in the x and x3 direc-
tions. The material occupying each subcell within the unit cell can be represented by a different
set of thermoelastic parameters, allowing considerations of multi-phase media as well as bi-
directionally reinforced configurations. It is important to note that the repeating unit cell in the
present framework is not taken to be the RVE whose effective properties can be obtained
through homogenization as explained below. Rather, the RVE comprises an entire column of
such cells spanning the thickness of the plate. Thus the principle of local action cannot be
applied to an individual cell, requiring the response of each cell to be explicitly coupled to the
response of the entire column of cells in the FG direction. This is what is meant by the statement
that the present approach explicitly couples the microstructural details with the global analysis.

The thermal boundary-value problem outlined in the foregoing is solved in two steps. In the
first step, the temperature distribution in the heterogeneous composite is determined by solving



the heat equation under steady-state conditions in each sub-region or cell of the composite. Since
the composite is periodic in the x,-x3 plane, it is sufficient to determine the distribution of tem-
peratures in a single row of cells spanning the FG dimensions only, provided that appropriate
continuity and compatibility conditions are satisfied. These conditions ensure that the given cell
is indeed indistinguishable from the adjacent cells in the x;-x3 plane. Given the temperature dis-
tribution in the entire volume occupying the composite, internal displacements, strains and
stresses are subsequently generated by solving the equilibrium equations in each sub-region of
the composite subject to appropriate continuity and boundary conditions. As in the case of the
thermal problem, only a single row of cells is considered due to periodic nature of the composite
in the x,-x3 plane.

The analytical technique for the above problem is a derivative of the approach developed
by the first author in the treatment of the effective response of doubly and triply periodic compo-
sites, referred to as the method of cells (Aboudi, 1991) and most recently the generalized
method of cells (Paley and Aboudi, 1992; Aboudi and Pindera, 1992). In the original formula-
tion of the method of cells, a continously-reinforced, unidirectional fibrous composite is
modeled as a doubly-periodic array of fibers embedded in a matrix phase. The periodic character
of the assemblage allows one to identify a repeating unit cell that can be used as a building block
to construct the entire composite. The properties of this repeating unit cell are thus representative
of the properties of the entire assemblage. The unit cell consists of a single fiber subcell sur-
rounded by three matrix subcells. Hence the name method of cells. The rectangular geometry of
the repeating unit cell allows one to obtain an approximate, closed-form solution for the stresses
and strains in the individual subcells given some macroscopically homogeneous state of strain or
stress applied to the composite. The solution is obtained by approximating the displacement field
in each of the subcells in terms of the displacement of the center of the subcell and a linear
expansion in the local coordinates X (a), x (B), x ® centered at the subcell’s mid-point. The coeffi-
cients or microvariables associated with the linear terms in the expansion, and the unknown dis-
placements at the subcell centers are obtained by satisfying continuity of tractions and diplace-
ments in an average sense between individual subcells of a given cell, and between adjacent
cells. In addition, a connectivity condition is imposed on subcell center displacements of a
given cell with respect to the corresponding subcell center displacements in adjacent cells, that
provides the necessary expressions for homogenized strains in terms of the displacement gra-
dients of the subcell mid-points. The approximate solution to the given boundary-value problem,
in turn, is used to determine macroscopic (average) or effective properties of the composite. In
the generalized method of cells, the repeating unit cell is subdivided into an arbitrary number of
subcells which makes it possible to include multiple phases and additional geometric detail in
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modeling the repeating unit cell. The procedure for analyzing local stress and strain fields in this
case, however, is the same as that used in the original method of cells (i.e., by approximating
local subcell displacements using linear expansions in terms of local coordinates in the indivi-
dual subcells).

Conversely, in the present analysis a higher-order theory is required in order to capture
the local effects created by the thermal gradient, the microstructure of the composite, and the
finite dimension in the FG direction. Accordingly, in the thermal problem the temperature field
in each subcell of a repeating unit cell is approximated using a quadratic expansion in local
coordinates along the three coordinate directions associated with the given subcell. In the solu-
tion for the local strains and stresses, the displacement field in the FG direction in each subcell
is also approximated using a quadratic expansion in local coordinates within the subcell. The
displacement field in the x; and x3 directions, however, is still approximated using a linear
expansion in local coordinates to reflect the periodic character of the composite’s microstructure
in the x,-x3 plane.

The unknown coefficients associated with the linear and quadratic local coordinates in both
the thermal problem and the solution for internal strains and stresses are obtained by satisfying
continuity of displacements and tractions and boundary conditions in an average sense along
similar lines as those employed in the original and generalized method of cells. A fundamental
difference, however, between the present solution and the previous treatments lies in the fact that
the considered composite contains elements of both material and structural effects which cannot
be treated (i.e., decoupled) using the classical homogenization schemes. Accordingly, the con-
nectivity conditions (which provide expressions for the homogenized strains in terms of the sub-
cell mid-point displacement gradients) are not imposed in the FG direction in solving the given
boundary-value problem since it is not possible to define homogenized strains in this direction
using classical micromechanical concepts. This is due to the absence of homogeneous boundary
conditions that hold for both the repeating unit cell and the composite-at-large, as well as the
finite dimension of the composite in the FG direction. These features set the present model apart
from the classical micromechanical approaches currently employed by researchers working in
the area of functionally gradient materials.

An outline of this new analytical approach for both the thermal and mechanical problem
that summarizes the governing equations for the determination of the temperature and displace-
ment fields in the individual subcells will now be given. A detailed derivation of these equations
is presented in the Appendix so as not to obscure the basic concepts by the involved algebraic
manipulations necessary to generate the governing equations.
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3.1 Thermal Analysis: Problem Formulation

Suppose that the composite material occupies the region 0 <x; <H, lxz| < oo, lx31 <o,
Let the composite be subjected to the temperature T on the top surface (x; =0) and to Tp on
the bottom surface (x; = H). Also, let M denote the number of cells in the interval 0 <x; < H,

M
ie.M=H/Y d¥ + d¥)). Forp =2, ..., M-1 the cells are internal, whereas for p =1 and
p=l
p = M they are boundary cells.

3.1.1 Heat Conduction Equation

For a steady-state situation, the heat flux field in the material occupying the subcell (af}y)
_ () 1 ) 1
of the p—th cell, in the region defined by Ix(la) I < %dg’). Ix; I'< ‘2"15, 1x3" 1 < '2‘17’ must

satisfy the equation:

31978 + 9,V + 3345 =0 6)

_ _M
where 9y = %", 3, = IR, 33 = /s

this subcell are derived from the temperature field according to:

. The components of the heat flux vector qS“BV) in

7 gloPD = _p(eB, @Y (1 =1,2, 3; no sum) Q)

where kf“ﬂy) are the coefficients of heat conductivity of the material in the subcell (afy), and no
summation is implied by repeated Greek letters in the above and henceforth.

Given the relation between the heat flux and temperature, a temperature distribution that
satisfies the heat conduction equation is sought subject to the continuity and boundary conditions
given below.

3.1.2 Heat Flux Continuity Conditions

The continuity of the heat flux vector q©PY at the interfaces separating adjacent subcells
within the repeating unit cell (p,g,r) is fulfilled by imposing the relations

(p!q'r) @’qu)
g 10 _apn = g 15— apn (8a)
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®.q.7) .9

g0 1 = a8 10 nan (8b)
@.q.r) i
qgaﬁl) | Do = qgaBZ) | 2 =n (8¢c)

In addition to the above continuity conditions within the p —th cell, the heat flux continuity at the
interfaces between neighboring cells must be ensured. The conditions that ensure this are given

by

(p-{-].,q‘r) (pvq’r)

QSIBY) | f(x” —dpn = quﬁv) | J?<12> —dPn2 (9a)
P.q+1.r) @.q.r)

g5 | D n = (o2 | D (9b)
P.q.r+1) ®.q.7)

qgaBI) |f;1) enn = qgaBZ) If(32) =10 (S¢c)

3.1.3 Thermal Continuity Conditions

The thermal continuity conditions at the interfaces separating adjacent subcells within the
representative cell (p,q,7) are given by relations similar to the corresponding heat flux continuity
conditions, i.e., equations (8a) - (8c), '

®.q.7) @.q.r)

T | 0 _ g = TP |0 _apro (102)
(pqur) (p.q.r)

T | f(21) ch2 = T©27) | 252) —hyn2 (10b)
.q.r) P.q.r)

T(@Bl) li(;) _nn = TERD |00 (10c)

while the thermal continuity at the interfaces between neighboring cells is ensured, as in the case
of the heat flux field, by requiring that

13



(p+l.q.r) ».q.7)

TUBY | 0 _ oy = T |0 _ o (11a)
(p.q+L.r) @.9.7)

T [, o= TO [0, (11b)
(p.g.r+1) ®.q.r)

T©@BD) |f§1)=_11/2 = 7B |;‘32’=12,2 (11¢)

3.1.4 Boundary Conditions

The final set of conditions that the solution for the temperature field must satisfy are the
boundary conditions at the top and bottom surfaces. The temperature in the cell p =1 at the top
surface must equal the applied temperature T, whereas in the cell p = M at the bottom surface
the temperature must be 7g. That is,

(L.q.7)

1
7Y | =Ty, ;‘1)=_%dgn (12)
M.q.r) 2
7B | =Ty, 7D = %d&m 13)

3.2 Thermal Analysis: Solution

The temperature distribution in the subcell (afy) of the p —th cell, measured with respect to

a reference temperature Tp, is denoted by T we approxunate this temperature field by a

@ _B®
second order expansion in the local coordinates x x 1 X2 ,andX; x3 as follows:

2
T @BV = T&“BY) + f(la)TiaﬁY) (33(1‘1)2 )TgiBY) 3—(B) B SR o G
2
—(3’?) i R L (14)

where T{™Y), which is the temperature at the center of the subcell, and Ty (i=1,..,4) are
unknown coefficients which are determined from conditions that will be outlined subsequently.
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Henceforth, for notational simplicity and in view of the fact that the composite material is
periodic in the x,-x3 plane, the designation (p,q.r) for the p—th cell will be replaced by ()
whenever appropriate in this section and in the corresponding section dealing with solution to
the mechanical problem.

Given the five unknown quantities associated with each subcell (i.e., TORD ., TPy and
eight subcells within each unit cell, 40M unknown quantities must be determined for a compo-
site with M rows of fibers in the FG direction. These unknown quantities are determined by first
satisfying the heat conduction equation, as well as the first and second moment of this equation
in each subcell. This is carried out in a volumetric sense for each subcell in view of the tempera-
ture field approximation given by equation (14). For this reason both first and second moments
must be considered. Subsequently, continuity of heat flux and temperature is imposed in an aver-
age sense at the interfaces separating adjacent subcells, as well as neighboring cells. Fulfillment
of these field equations and continuity conditions, in conjunction with the imposed thermal
boundary conditions at the top and bottom surfaces of the composite, provide the necessary 40M
equations for the 40M unknown coefficients in the temperature field expansion. We begin the
outline of the sequence of steps to generate the required 40M equations by first considering an
arbitrary p —th cell in the interior of the composite material (i.e. p =2, ... , M—1). This will pro-
duce 40(M -2) equations. The additional equations are obtained by considering the boundary
cells (i.e. p = 1 and M). For these cells, most of the preceding relations will also hold, with the
exception of some of the interfacial continuity conditions between adjacent cells. These condi-
tions are replaced by the specified boundary conditions.

3.2.1 Heat Conduction Equations

In the course of satisfying the steady-state heat equation in a volumetric sense, it is con-
venient to define the following flux quantities:

d92 hpi2 142
1 ¢ ® M

® ) (o)
of = | [ @G G el dx & as)
o vEhy —a® 2 kg2 ~iy2

where I, m, n=0, 1, or 2with/ +m+n <2, and "&l‘{) = d((f)hg I is the volume of the subcell
(ofy) in the p—th cell. For [=m=n =0, QE‘{&RO) is the average value of the heat flux com-
ponentvqf“ﬁ*) in the subcell, whereas for other values of (/,m,n) equation (15) defines higher-
order heat fluxes. These flux quantities can be evaluated explicitly in terms of the coefficients
Tf“BY) by performing the required volume integration using equations (7) and (14) in equation
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(15). This yields the following non-vanishing zeroth-order and first-order heat fluxes in terms of
the unknown coefficients appearing in the temperature field expansion:

088 o) = —k{BNTPY (16)

080 = aﬂv)d(szgan) an
]- Q) QL

05800y =~ #5 BY 3T (18)

0 g((lg‘g = _% kgaBY) 13 TS“BV) (19)

Satisfaction of the zeroth, first and second moment of the steady-state heat equation results
in the following eight (8) relationships among the first-order heat fluxes Q{5 B, in the different
subcells (oY) of the p—th cell, after some involved algebraic manipulations (see the Appendix):

0B o) /a2 + O58Y o) /hp + 0581y /13 17 =0 (20)

where the triplet (afY) assumes all permutations of the integers 1 and 2.

3.2.2 Heat Flux Continuity Equations

The continuity of heat fluxes at the subcell interfaces, as well as between individual cells,
associated with the x; (FG) direction, equations (8a) and (9a) imposed in an average sense, is
ensured by the following relations:

[ 120880 o,/ + 120988, 1y/15 19 + 6 i{) [QFBN oy /hf + O5ER.1)/15 107+

e-D

3;) [ 058N oy /hE + QSRR + o7 ?,) [0ffto | - 0ffho 1=0 o1

and
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0ffto | =1ofMBo | +30fRo ! +3(058 0k + OSERY/LIT -

3901 09N o) + 05881 1071 22)

while the equations that ensure heat flux continuity at the subcell interfaces associated with the
x, and x 3 directions, equations (8b) and (8c) are given by

[0S o) /h1 + 056 R 0)/h2 19 =0 (23)
[OSBY /11 + 0S8R 1y/1219 =0 (24)

We note that equations (9b) and (9c) are identically satisfied by the chosen temperature field
representation due to the periodicity of the composite in the x,-x3 plane.

Equations (21) - (24) provide us with sixteen (16) additional relations among the zeroth-
order and first-order heat fluxes. These relations, together with equation (20), can be expressed
in terms of the unknown coefficients T{**¥ (i = 1, ..., 4) by making use of equations (16) - (19),
providing a total of twenty-four (24) of the required forty (40) equations necessary for the deter-
mination of these coefficients in the p —th cell.

3.3.3 Thermal Continuity Equations

An additional set of sixteen (16) equations necessary to determine the unknown coefficients
in the temperature field expansion is subsequently generated by the thermal continuity condi-
tions imposed on an average basis at each subcell and cell interface. Imposing the thermal con-
tinuity at each subcell interface, equations (10a) through (10c), we obtain the following condi-
tions for the p —th cell:

1 2 (2
[ TgﬁY) + d&l?)TslﬁY? + %d&”)zTgﬂ") ](P) = TgBY) — dEP)T?BY) + _ng’) T& By) ](P) 25)
1
[ Tgal'y) + i—h%TS“”) ](P) = TS.'X.Z‘Y) + Zh%Tg;on) ](p) 26)

1
(768D + LATERD 10 = 768D + 2 BTEPN0 N

17



The continuity of temperature between neighboring cells in the FG direction, equation (11a), on
the other hand, yields

1 1 2
[TE)IBY) — _%.d?’*‘l)TilBY) + %d?“ﬂ]‘&lm’) 1@+D = Tgﬂv) + —z'd?)TSZBY) + .ng’ﬁrg ﬁ?)](v) 28)

We note that the continuity of temperature between neighboring cells in the x; and x3-
directions, equations (11b) and (11c), is automatically satisfied by the chosen temperature field
representation which reflects the periodic character of the composite in these directions.

3.3.4 Governing Equations for the Unknown Coefficients in the Temperature Expansion

The equilibrium equations, equation (20), together with the heat flux and thermal continuity
equations, equations (21) - (24) and equations (25) - (28), respectively, form altogether 40 linear
algebraic equations which govern the 40 field variables T (i =0, ..., 4) in the eight subcells
(aBy) of an interior cell p; p =2, ... , M-1. For the boundary cells p = 1 and p =M, a different
treatment must be applied. For p = 1, the governing equations, equations (20), and (23) - (28),
are operative. Relations (21) - (22), on the other hand, which follow from the continuity of heat
flux between a given cell and the preceding one are not applicable. They are replaced by the
condition that the heat flux at the interface between subcell (1By) and (2Py) of the cell p=1is
continuous, as well as the applied temperature relation at the surface x; = 0. For the cell p=M,
the previous equations are applicable except equations (28) which are obviously not operative.
These equations are replaced by the specific temperature applied at the surface x| = H.

The governing equations at the interior and boundary cells form a system of 40M linear
algebraic equations in the unknown coefficients T’ faﬁY) P i=0,..,40By=12;p=1,..,M).
Their solution determines the temperature distribution within the FG composite subjected to the
boundary conditions (12) and (13). The final form of this system of equations is symbolically
represented below

kT =t 29)

where the structural thermal conductivity matrix X contains information on the geometry and
thermal conductivities of the individual subcells (By) in the M cells spanning the thickness of
the FG plate, the thermal coefficient vector T contains the unknown coefficients that describe
the thermal field in each subcell, ie., T = (T8, ..., Ti#? ) where T},“BY) =
(T, T1,T2, T3, T4 ),(,“BY), and the thermal force vector ¢t = (77,0, ... , 0, Tg) contains
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information on the boundary conditions.

3.3 Mechanical Analysis: Problem Formulation

Given the temperature distribution generated by the applied surface temperatures T and Tp
obtained in the preceding section, we now proceed to determine the resulting displacement and
stress fields. This is carried out for uniform normal (i.e., no shearing) mechanical loading
applied to the surfaces of the composite.

3.3.1 Equations of Equilibrium

The stress field in the subcell (afy) of the p—th cell generated by the given temperature
field must satisfy the equilibrium equations

21037 + 2,085 + 230557 =0, j=1,2.3 e

where the operator d; has been defined previously. The components of the stress tensor, assum-
ing that the material occupying the subcell (afBy) of the p—rh cell is orthotropic, are related to the
strain components through the familiar generalized Hooke’s law:

where cfﬁ?” are the elements of the stiffness tensor and the elements I‘S}IBY) of the so-called ther-
mal tensor are the products of the stiffness tensor and the thermal expansion coefficients. The
components of the strain tensor in the individual subcells are, in turn, obtained from the strain-
displacement relations

(aPY = _;_(a,.u;aﬂw +9u™®y, i, j=1,2,3 (32)

Given the relation between the stresses and displacement gradients obtained from equations (31)
and (32), a displacement field is sought that satisfies the three equilibrium equations together
with the continuity and boundary conditions that follow.
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3.3.2 Traction Continuity Conditions

The continuity of tractions at the interfaces separating adjacent subcells within the repeat-
ing unit cell (p,q,r) is fulfilled by requiring that

ear) ®q.r)

ofifY |20 _apn =oPP 120 _apn (33a)
9.1 p.9.7)

ot | 0y p =057 |32 = ny (33b)
P.q.7) .q.7)

65?61) ! ;;" =n4n= g?BZ) l f?’ =—1312 (33¢c)

In addition to the above continuity conditions within the p—th cell, the traction continuity at the
interfaces between neighboring cells must be ensured. These conditions are fulfilled by requiring
that

p+1.9.r) @.q.7)

(B0 |50 _pwp=of 152 upr (342)
(p.g+1,r) (.q.r)

o |0 n =05 1P 20 (34b)
P.qr+1) (p.q.1)

o@D |0y =052 150 =i (340)

3.3.3 Displacement Continuity Conditions

At the interfaces of the subcells within the repeating unit cell (p,q,r) the displacements
u = (uy, u,, u3) must be continuous,

P.q.r) @.a.n)

w0 | 0 _ o = u® |0 _eop (353)
@.q.r) @.q.rP

u @ | 5(21) = @29 | Eg) ——hy2 (35b)
®..r) @.q.r)

@B | 5(3]) = u(@B2) | ;‘32) =ty (35¢)

while the continuity of displacements between neighboring cells is ensured by requiring that
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(p+L.q.r) ®.q7)

u@D | 0 _ o= u® | @ _pp (36a)
@.q+L,r) ®.q.r)

D | oy = 2@ | ® s (36b)
©.gr+1) ®.q.r)

1 (@B | 2(31) 2= u©BD | )_EgZ) — 1,2 . (36¢)

3.3.4 Boundary Conditions

The final set of conditions that the solution for the displacement field must satisfy are the
boundary conditions at the top and bottom surfaces. The normal stress in the cell p =1 at the top
surface must equal the normal stress f(t),

(L.g.r)

ol =50, %) =—-;—d‘1” 37)

with f(t) describing the temporal variation of this loading, whereas in the cell p = M at the bot-
tom surface the condition that the surface x; = H is rigidly clamped (say) is imposed

M.q.r)

2
W =0, T ==df (38)

1
2
For other types of boundary conditions, equation (38) should be modified accordingly.

3.4 Mechanical Analysis: Solution

Due to symmetry considerations, the displacement field in the subcell (aﬁyg) of the Y)—th
cell is approximated by a second-order expansion in the local coordinates )_c(la), X, ,and X3 as
follows:

{02 1 .,—B)2 1
R J—C<1°‘>¢5aay>+_;_(3xl°‘) _%dg))z)ugasv) + (% _Zhﬁ)vﬁ‘fﬁ?)

+2aw” - Wi
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WD 7Py B0 (39)

w0 =35 yiesr

where wS“BY), which are the displacements at the center of the subcell, and Uy, VR,
WEBY @B B and v must be determined from conditions similar to those employed
in the thermal problem. In this case, there are 56M unknown quantities. The determination of
these quantities parallels that of the thermal problem. Here, the heat conduction equation is
replaced by the three equilibrium equations, and the continuity of tractions and displacements at
the various interfaces replaces the continuity of heat fluxes and temperature. Finally, the boun-
dary conditions involve the appropriate mechanical quantities. As in the thermal problem, we
start with the internal cells and subsequently modify the governing equations to accommodate
the boundary cells p =1 and M.

3.4.1 Equations of Equilibrium

In the course of satisfying the equilibrium equations in a volumetric sense, it is convenient
to define the following stress quantities:

@
d912 hpr2 142 ., B @ B

m
SEHhmy = o | GO GOy Gy ol D d (g
o véaby) _du)/2—h|3/2 ~ly2

For / =m =n =0, equation (40) provides average stresses in the subcell, whereas for other
values of (I,m,n) higher-order stresses are obtained which are needed to describe the governing
field equations of the higher-order continuum. These stress quantities can be evaluated expli-
citly in terms of the unknown coefficients UeBn oY, w8 by performing the
required volume integration using equations (31), (32) and (39) in equation (40). This yields the
following non-vanishing zeroth-order and first-order stress components in terms of the unknown
coefficients in the displacement field expansion:

S0y = PGP + PPy B + (VY PPP - TPOTERY @1)
55%0.0) = (3B o @BV 4 (3PY x B 4 Py B _ T BTy “2)
S§%%.0) = (4B oY 4 CSGBN 2 B 4 BV 8D — PN TR @3)
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S(u( 0.0y = i. gaﬂv)dou)z Uﬁ“ﬁ’” D d(p)2 rSaBy)TSaB}-) "
1
S0 = chﬂw R3VAZeY .
S8 = < EPEWI (46)

Satisfaction of the equilibrium equations results in the following eight (8) relations among
the volume-averaged first-order stresses S;; (o 7) n) in the different subcells (ofy) of the p—th cell,
after lengthy algebraic manipulations (see the Apendlx).

[ SE0P0,0/d%? + S 1.0 1§ +SP0,1) /17 187 =0 St

where, as in the case of equation (20), the triplet (fy) assumes all permutations of the integers 1
and 2.

3.4.2 Traction Continuity Equations

The continuity of tractions at the subcell interfaces, as well as between individual cells,
associated with the x; (FG) direction, equations (33a) and (34a) imposed in an average sense, is
ensured by the following relations:

dy’
[ 12585010 /0F + 12580,y /53 190 + 6;@—[ SH1.0/h% + STGony/iy 19+

dg’- @) 28y) -1
SP) [ S 288)1 0)/h5 +S$3p$0 1)/17 ](p D + = ?) s )0 0) | _Ssl(g,O,O) I ] = 0(48)
®) ()] -1
5511%?0.0) | = ’;‘5521%?0,0) | *2‘55 "8 0,0) l +3d9[ 5322?3?1,0) Ihg + 5%’%?0,1)/1% 1 -
3dP D[ SPD, 0y/hF + SHo1y 7107V (49)

while the equations that ensure traction continuity between individual subcells associated with
the x, and x 3 directions, equations (33b) and (33c), are given by
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[S%P1.0)/h1 +S5D10/h2 190 =0 (50)

[ S0,/ + S 1219 =0 (51)
3] o ®)

5%5180.0 | =5 52(3,)0,0) I (52)
@ ) @)

Sg%‘(aol,)o,n | = 5&%‘(30,)0,1) I (3)

We note that equations (34b) and (34c) are identically satisfied by the chosen displacement field
representation due to the periodic character of the composite material in the x;-x3 plane.

Equations (48) - (53) provide us with twenty-four (24) additional relations among the
zeroth-order and first-order stresses. These relations, together with equation (47), can be
expressed in terms of the unknown coefficients UPeR, ., o0, v by making use of
equations (41) - (46), providing a total of thirty-two (32) of the required fifty-six (56) equations
necessary for the determination of these coefficients in the p —th cell.

3.4.3 Displacement Continuity Equations

The additional twenty-four (24) relations necessary to determine the unknown coefficients
in the displacement field expansion are subsequently obtained by imposing displacement con-
tinuity conditions on an average basis at each subcell and cell interface. The continuity of dis-
placements at each subcell interface of the p —th cell, equations (35a) through (35¢), is satsfied
by the following conditions:

1 1 1 2,08y 1)
[ w{iP? + %d({v)q,slbv) + Zd% U§BD @) = [ (B - Edgo)q,gzﬁw + Zdng BY) 58

1
[ w®D + % RVER 10 = [wf?) + n3VE2D 1@ (55)
® ®
x| = o | (56)
1
[w{PD + %I%WY‘B” 100 = (wiB? + - BWEED 10 (57)
® ®)
Ly L =y ] (58)



while the continuity of displacements between neighboring cells in the FG direction, equation
(36a), requires that

1 1
(w{BP - %dywﬂ)q,glﬁv) + _‘11_d<{>+1)2 U0 1E+D = BV 4 _Z_dg) o7 + Zd;pz UPPI® o)

The displacement continuity between neighboring cells in the x and x 3-directions, equa-
tions (36b) and (36¢), is automatically satisfied by the chosen displacement field representation
which reflects the periodic character of the composite in these directions.

3.4.4 Governing Equations for the Unknown Coefficients in the Displacement Expansion

The equilibrium equations, equation (47), together with the traction and displacement con-
tinuity equations, equations (48) - (53) and equations (54) - (59), respectively, form altogether
56 equations in the 56 unknowns wﬁ“BY), ¢(1°‘57), Uﬁaﬁ“{), VﬁaBY), W&aﬂv), x&aﬂy), WSGBY)’ which
govern the equilibrium of a subcell (aBy) within the p—th cell in the interior. As in the thermal
problem, a different treatment must be adopted for the boundary cells p=1 and p =M. For
p =1, equations (47), (50) - (53), and the displacement continuity relations, equations (54)
through (59), are operative, whereas equations (48) and (49), which follow from the continuity
of tractions between a given cell and the preceeding one, are not applicable. These eight equa-
tions must be replaced by the conditions of continuity of tractions at the interior interfaces of the
cell p =1 and by the applied normal stress at x; =0, equation (37). For the cell p = M, the previ-
ously derived governing equations are operative except for the four relations given by equations
(59) which are obviously not applicable. These are replaced by the condition that the surface
x = H is rigidly clamped, equation (38). Consequently, the governing equations at both interior
and boundary cells form a system of S6M linear algebraic equations in the field variables of the
cells along 0 <x; <H. The final form of this system of equations is symbolically represented
below

KU=f (60)

where the structural stiffness matrix K contains information on the geometry and thermo-
mechanical properties of the individual subcells (apy) in the M cells spanning the thickness of
the FG plate, the displacement coefficient vector U contains the unknown coefficients that
describe the displacement field in each subcell, ie., U = (U ﬂ“l), .y Uﬁzz) ) where U,(,aﬁY) =
(Wi, 01, U, Vi, Wi, X2, V3 )f,“m, and the mechanical force vector f = (f(£),0, ... , 0)
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contains information on the boundary conditions.

4.0 APPLICATIONS

The approach outlined in the foregoing is employed to investigate the response of thin-
walled composites subjected to a thermal gradient in the through—the-thickness direction, i.e., in
the FG direction. The investigated composites are reinforced with continuous SiC fibers embed-
ded in a titanium aluminide matrix, with the fiber volume fraction, vy, equal to 0.4. The tempera-
ture T at the top surface of the composite (x; =0) is 0°C while the temperature Tp at the bot-
tom surface (x; = H) is 500°C. The composite is constrained from deforming due to the applied
thermal loading by imposing zero displacement at the bottom surface. At the top surface, the
normal traction component is required to vanish (i.e., 611 =0).

The properties of the fiber and matrix phases are provided in Table 1. We note that these
properties are assumed to be independent of temperature. Although this may be a reasonably
good approximation for the SiC fiber, the titanium matrix properties will change with tempera-
ture in the range of the imposed thermal gradient across the plate’s thickness. This temperature
dependence will also be accompanied by viscoplastic effects that are not considered herein.
These effects will be considered in a follow-up communication. In view of the lack of accurate
knowledge of the thermal conductivity for the SiC fiber, four values of the fiber’s thermal con-
ductivity were employed in generating the results. These values resulted in fiber-to-matrix con-
ductivity ratios, K,, / Ky, of 50, 25, 5 and 2.2, providing additional insight into the effect of the
conductivity mismatch on the resulting temperature and stress fields.

As a first step, unidirectional composites with fibers uniformly spaced in the thickness
direction and oriented in the x3 direction are considered. Results for temperature distributions,
stresses and inplane force and moment resultants generated with the present approach that expli-
citly couples local micromechanical and global structural effects are compared with predictions
based on the continuum and a "primitive" micromechanics approaches in which local and global
effects are decoupled. The continuum results are obtained by first generating the effective pro-
perties of the individual rows of fibers along the x, coordinate, or "plies”, using the generalized
method of cells without regard to whether a representative volume exists or not. That is, these
effective properties are generated on the premise that no coupling exists between local and glo-
bal responses. This is the standard approach currently employed by researchers working in the

area of rmcromechamcs These effecnve propertles, glven in Table 2 are subsequently used in

the thermal boundary-value problem of an  equivalent homogeneous comp051te subjected to the
specified thermal loading. With the knowledge of the continuum or macroscoplc thermal fields,
the stresses in the individual phases of a repeating unit cell are then calculated by applying an
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average temperature over a given cell, treating it as an RVE within the framework of the gen-
eralized method of cells. In addition, bi-directionally reinforced composites with uniform fiber
spacing in the FG direction are also considered, with fibers oriented along the x3 axis in some
layers and along the x, axis in others. Again, comparison with the results of the continuum
approach is given, using cross-ply laminates subjected to the imposed thermal gradient. The
solution to the thermal boundary-value problem of unidirectional and bi-directional laminates
based on the continuum approach is briefly outlined in Section 4.1. We note that the continuum
approach yields results that, for the considered geometry and applied boundary conditions, are
identical to those that would be obtained using the classical lamination theory (cf. Christensen
(1979)). Thus, we employ the familiar terminology used in the classical lamination theory in
developing the pertinent solution based on the continuum approach in Section 4.1.

Finally, application to functionally graded composites (or those with a tailored mesostruc-
ture) is illustrated by considering unidirectional composites with nonuniformly spaced fibers in
the FG direction. Only continuous fiber configurations are considered with fibers oriented along
the x5 coordinate. Data generated for linear, quadratic and cubic variation in the fiber spacing is
compared with results obtained for configurations with uniformly spaced fibers occupying the
same total volume of the composite.

4.1 Continuum Approach (Classical Lamination Approach)

Consider a laminate composed of M plies subjected to a thermal gradient by the imposition
of the temperature Ty on the top surface and Tp on the bottom surface, Figure 4. The total thick-
ness of the laminate is H with #; representing the thickness of individual plies. Let ho =— H/2
designate the coordinate of the top surface of the first ply measured from the mid-plane of the
laminate denoted by z = 0. The top surface of the i—th ply is thus given by h; = h;_; +1; for
i=1,2,., M. The solution of the Laplace’s equation for the given geometry subjected to the
specified boundary conditions yields a linear temperature distribution in each ply. Letting
T, = Tr, the temperature at the interfaces of the laminate can be shown to be given by:

T =T, +AT;, i=1,2, -+, M 61)
where
4 Ir-Tp
boK %”:i (62)
j=1%j
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We note that in our case, k; are the effective transverse conductivities k7 of the i—th ply calcu-
lated using the method of cells (see Table 2) and t; = 199 um.

Given the temperature distribution throughout the laminate, the inplane stress distributions
in the i —th lamina in the absence of mid-plane strains and curvatures (which is the situation here
for the specified boundary constraints) are simply calculated in the following manner:

oy =0 “af), T@) (63)

where O ® and afi_y) are the transformed reduced stiffness matrix and the thermal expansion
coefficient vector, respectively, of the i —¢h ply referred to the laminate coordinate system x —y.

The resulting inplane force and moment resultants can be obtained by multiplying by -1 the
so-called thermal inplane force and moment resultants defined as follows:

+H/2_

NT= [ Qau T (z)dz (64)
=H2
+H/2_

MT= [ Qo yT(z)zdz (65)
-H72

where the préviously defined Q and ;) are piecewise uniform throughout the laminate, and
the superscript (i) that associates these quantities with the i —zh ply has been omitted for obvious
reasons. Substitution of the linear temperature variation into equations (64) and (65) and per-
forming the necessary integration yields the following explicit expressions for NT and M7 in
terms of the previously defined quantities:

M_gy o AT, AT,
NT = ZQ(‘)a&—y)[Ti(hi —hi_1)+ %_t ~(h} = ki) = —t.' (hioChi = hi-D1] (66
h i i

i=1

M _ - AT; 1 AT,‘
T (OJNe 1 2 _ 32 1240 3 43 y_ 20, 2 _p2
M ='§Q agx—y)['i_Ti(hi ht—l)+ 3 t; (hz hx—l) 5 t; hl—l(hl hl—l )] (67)

4.2 Response of Composites with Uniform Mesostructure

Here, the response of unidirectional and bi-directional composites with uniformly spaced
fibers is investigated. The results are useful in answering the fundamental question of the



validity of the classical homogenization scheme in the presence of thermal gradients and finite
boundary effects. Just as importantly, the results give useful estimates on the number of fibers
that are required in the thickness direction to produce data that can be reliably generated with the
standard homogenization approach wherein the micromechanics and macromechanics analyses
are decoupled (which clearly is less expensive than the present scheme).

4.2.1 Unidirectional Composites

Consider the response of a continuously-reinforced unidirectional composite having a fixed
thickness of 199 pm with fibers oriented in the x3 direction. This thickness is based on a single
ply of a SiC/Ti composite with 40% fiber volume and a fiber diameter of 142 pum. The thermal
conductivity of the SiC fiber is taken to be fifty (50) times that of the matrix, which provides the
greatest mismatch between the fiber and matrix thermal conductivities herein considered. The
effect of varying the thermal conductivity mismatch on the thermal and stress fields, and the
resulting force and moment resultants, will be investigated in Section 4.2.2. The objective in this
section is to determine the number of fibers in the thickness direction that are required for the
results to approach those obtained using the standard homogenization procedure.

To this end, we consider configurations with M number of fibers, where
M=1,2,3,5,8, 12, 16, and 20. The volume of fibers occupying the total volume of the com-
posite, i.e., the fiber volume fraction, is fixed at 0.40 for all the considered cases. Since the
thickness of the composite is held constant, the size of the fibers must decrease when the number
of fibers, M, is increased. However, since the problem is linear, the above is equivalent to
increasing the number of fibers in the thickness direction by adding more layers in this direc-
tion, and thus increasing the thickness of the plate. For this reason the various distributions in the
thickness direction are given as a function of the normalized coordinate x ;/M.

The results generated for such a large number of configurations provide a comprehensive
library that can be used in future work to verify the applicability of various schemes in analyzing
the thermal response of composites with tailored or coarse microstructures. The results also pro-
vide a continuous spectrum whose limiting behavior can be used as a basis for verification of the
developed scheme. A more quantitative verification of the developed model based on the finite-
element analysis of a finite thickness composite plate with a finite number of through-the-
thickness fibers will be provide elsewhere. Further, these results demonstrate the power of the
developed analytical model, in that a researcher can efficiently generate results by merely chang-
ing a few lines in the input data file of a computer code each time a new configuration is investi-
gated.
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First, temperature distributions are presented for six of the eight investigated configura-
tions, namely M =1, 3, 5, 8, 16, and 20. Figure 5 illustrates the temperature distributions in the
representative cross-section (RCS) along the x; direction that includes both matrix and fiber
phases (see Figure 2), whereas in Figure 6 the temperature distributions for a RCS containing
matrix phase material are shown. Included in the figures are the linear distributions (denoted by
dashed lines) obtained from the homogenized thermal boundary-value problem based on the
lamination theory (i.e., continuum) equations. In the RCS containing both phases, the tempera-
ture profiles exhibit "staircase” patterns, charactarized by jumps or discontinuities between the
fiber and matrix phases indicated by connected vertical lines. The temperature gradient in the
fiber phase is much smaller than the gradient in the matrix phase since the thermal conductivity
of the SiC fiber is much higher (fifty times) than that of the Ti-Al matrix (see Table 1). The
staircase patterns intersect the linear distributions at M + 1 locations, as the step size decreases
with increasing number of fibers (M) in the thickness direction. Alternatively, the temperature
profiles in the RCS containing only matrix do not exhibit such a staircase pattern. These profiles
exhibit smoother deviations from the linear distributions. It is clear that the temperature profiles
generated using the standard homogenization approach, although conservative, exhibit substan-
tial deviations from those of the present theory for M <8 for the RCS containing both phases,
with smaller differences observed in the RCS containing matrix only.

Figures 7 and 8 illustrate the corresponding normal stress profiles, 023 and G33, in the RCS
containing both fiber and matrix phases, whereas Figures 9 and 10 present the stress profiles in
the matrix only RCS. As in the preceding cases, the linear normal stress distributions in the two
directions generated with the standard homogenization approach (denoted by dashed lines) are
included for comparison. Also presented are the results obtained using the primitive
micromechanics approach discussed earlier. We first compare the predictions of the present
theory with those of the standard homogenization approach and then with those of the primitive
micromechanics approach.

The stress profiles generated with the present model are radically different from the profiles
obtained with the standard homogenization approach for small values of M for both RCS’s. In
the case of the RCS containing both phases (see Figures 7 and 8), the stress profiles exhibit
characteristic patterns, with substantially smaller gradients in the fiber phase than in the matrix
phase, as suggested by the corresponding temperature profiles in Figure 5. When M is small, the
stress profiles predicted by the present model are lower, i.e., conservative, than those obtained
using the standard homogenization approach. As M increases, the normal swress distributions
begin to oscillate around the linear or "mean” distribution predicted by the standard homogeniza-
tion analysis. A clear pattern of oscillations emerges when M is about 5. As M increases beyond
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5, the oscillations take on a characteristic pattern, forming a "fan" whose envelope grows with
increasing distance from the top surface along the x axis, with the actual gradients in the fiber
and matrix phases being preserved. The stress magnitudes in the fiber phase are now greater that
the mean distribution, and thus non-conservative, whereas in the matrix phase they are lower and
consequently conservative. These oscillations are a direct result of the mismatch in the Young’s
moduli of the fiber and matrix phases. It is interesting to note that the envelope of the normal
stress Gy, grows at a significantly smaller rate with x; than the envelope of the normal stress
033. This is clearly rooted in the microstructure of the composite which has preferred orientation
along the x3 axis. In other words, the normal stress carried by the individual fibers in the x3
direction, that is required to maintain the composite flat in the presence of the thermal gradient,
is significantly greater than the stress carried by the fibers in the X direction. This is due to the
fibers being continuous along the x3 coordinate and discontinuous along the x, coordinate. In
contrast, the differences in the normal stress distributions in the x; and x3 directions predicted
by the continuum calculations are significantly smaller than the differences predicted by the
present model. Clearly, the continuum approach is insensitive to the actual microstructure of the
material in the presence of large fiber diameter, finite boundaries, and thermal gradient.

In the case of the matrix only RCS (see Figures 9 and 10), a clear pattern for both normal
stress distributions also emerges when M is about 5. In this case however, the situation is
reversed, with the normal stress Gy, exhibiting greater oscillations than 633. Further, while the
average behavior of the normal stress Gz, tends to the distribution predicted by the continuum
approach, the average behavior of 633 is below that of the linear distribution obtained from the
continuum theory. The oscillations observed in the G;; stress profiles are nonconservative in the
matrix subcell adjacent to a fiber subcell in the x; —x3 plane, and conservative in the matrix
subcell adjacent to another matrix subcell in the same plane, as required by the continuity of
tractions between adjacent cells. In contrast, the oscillations observed in the G33 stress profiles
are conservative everywhere.

The results generated using the primitive micromechanics approach included in Figures 7
through 10 for M = 1, 3, 5 and 8 exhibit "square” stair-case patterns, characterized by piece-wise
uniform (no gradients) stresses in the fiber and matrix phases. The piece-wise uniform stress
field is a direct consequence of applying an average temperature obtained from the continuum
analysis over the unit cell, and subsequently treating it as an RVE in generating the microscopic
stresses. For the considered cases, this approach is seen to always overestimate the stresses in the
fiber phase, with the deviations from the present FG theory decreasing with increasing M. When
M = 16 (not shown), the differences are quite small. In contrast, the matrix stresses are underes-
timated in some regions, and consequently non-conservative, while in others they are
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overestimated. This is due to the stress gradients observed in the matrix phase that are predicted
by the present theory, which cannot be reproduced locally with the primitive micromechanics
approach. These differences depend on the considered stress component and the characteristic
cross-section. As in the preceding case, the differences between the two micromechanical
approaches in the matrix phase diminish with increasing M. For small values of M, these differ-
ences are significant and may be important in matrix-dominated failure modes. It is reassuring
that the actual character, or pattern, of the stress field is captured by the primitive micromechan-
ics approach for M as low as 3.

Finally, Figures 11 and 12 illustrate the normalized inplane force and moment resultants in
the x, and x3 directions, respectively, as a function of the number of fibers, M, in the thickness
direction, that result from the normal stress distributions presented in Figures 7 - 10. Normaliza-
tion is carried out with respect to the corresponding continuum model predictions. The inplane
force resultants N, and N3 shown in Figure 11 exhibit virtually identical behavior as a function
of M, and asymptotically approach the predictions of the continuum model from below for
increasing values of M. The continuum results thus provide a conservative estimate of the
actual inplane resultant forces that are required to maintain the various composite configurations
in place, for the applied loading and boundary conditions. A major conclusion obtained from
these figures is that the continuum approach significantly overpredicts the magnitudes of the
inplane force resultants for M less than about 10. Consequently, any design based on these quan-
tities should be safe, albeit inefficient. In contrast to the identical asymptotic behavior exhibited
by the inplane force resultants, the inplane moment resultants M, and M3 presented in Figures

the continuum results faster than M 3. In both cases, the asymptotic behavior is faster than for the
inplane force resultants. A major conclusion once again is that the continuum model over-
predicts the magnitudes of the moment resultants for M less than about 8. However, as in the
preceding case, the predictions are conservative.

4.2.2 Effect of the Thermal Conductivity Mismatch

In this section, we investigate the effect of varying the thermal conductivity of the SiC fiber
on the thermal and stress fields, as well as the force and moment resultants. Figure 13 illustrates
the temperature and normal stress distributions in a unidirectional composite with three
through-the-thickness SiC fibers having different thermal conductivities that yield y / K, ratios
of 25, 5 and 2.2. The profiles are given in the RCS containing both phases. As observed in the
temperature distributions presented in Figure 13a, the effect of decreasing the fiber thermal con-
ductivity is to increase the temperature gradient in the fiber which, in turn, results in a smaller
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temperature gradient in the matrix. The higher temperature gradients in the fiber due to the lower
thermal conductivities, generate higher normal stress gradients in the fiber and correspondingly
lower stress gradients in the matrix. In summary, lowering the mismatch in the thermal conduc-
tivities of the fiber and matrix phases tends to smooth out the staircase pattern observed in the
temperature distributions, and decreases the differences in the gradients of the normal stress dis-
tributions. One important difference should be noted in the two types of distributions. While the
temperature distribution will tend to a linear distribution with decreasing mismatch in the fiber
and matrix thermal conductivities, the corresponding normal stress distributions, because they
are also governed by the mismatch in the mechanical properties, will retain not only distinct gra-
dients in the fiber and matrix regions, but also the characteristic jumps or discontinuities across
the interfaces.

Temperature and normal stress profiles were also generated for a unidirectional composite
with twenty through-the-thickness fibers for the three fiber conductivities. In this case, the fine
microstructure produced temperature distributions whose macroscopic behavior was essentially
identical, with the differences due to the differences in the thermal conductivities only changing
the local gradients rather than the global character. The global behavior for these cases was the
same as that observed in Figures 5f, 7f and 8f generated for Xy / X,,, ratio of fifty.

The inplane force and moment resultants for the considered composite configurations with
three and twenty fibers in the thickness direction are presented in Table 3 for the three ratios of
thermal conductivities. The inplane force and moment resultants for s/ K, ratio of fifty
employed in generating Figures 5 through 12 are included for comparison. The resultants have
been normalized with respect to the corresponding inplane force and moment resultants gen-
erated with the continuum approach. In this case, the effective or macroscopic thermal conduc-
tivity of the composite decreases from 16.2 to 10.7 (W / m-°C) as the thermal conductivity ratio
Ks/ K,, decreases from 50 to 2.2. However, since only unidirectionally-reinforced composite
materials are considered, the inplane force and moment resultants remain the same, as dictated
by the solution of the Laplace’s equation for the temperature distribution in a homogeneous strip
subjected to the given steady-state temperatures on the top and bottom surfaces. The inplane
force resultants N, and N3 generated by the imposed temperature gradient were 0.87x10° N/m
and 0.95x10° N/m, respectively, while the inplane moment resultants M, and M3 were 2.88 N
and 3.16 N. As observed in the table, and intuitively expected, the effect of decreasing the ther-
mal conductivity mismatch is to decrease the discrepancy between the inplane force resultants
predicted by the FG theory and the continuum approach for both configurations. When the
Kr/ Ky ratio decreases from 50 to 2.2, the difference between the FG and continuum predictions
decreases from approximately 20% to 8% for the three-ply (M=3) configuration, whereas for the
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twenty-ply (M=20) configuration the comresponding percentage differences are on the order of
3% and 1%. An opposite trend is observed for the inplane moment resultants where decreasing
the thermal conductivity mismatch produces a greater discrepancy between the two approaches.
The increase in the discrepancy with decreasing X, / Xy ratio is relatively small for both confi-
gurations, namely 2% and less than 1% for the three-ply and twenty-ply configurations, respec-
tively. For both sets of inplane resultants, very little difference is seen in the results for the
s/ Kp ratios of 50 and 25, indicating existence of a saturation limit beyond a certain Ky / Ky,
ratio.

4.2.3 Bi-directional Composites

Consider next the response of a continuously-reinforced bi-directional composite with
fibers oriented in both the x5 and x, directions. The composite is constructed by starting with a
ply having fibers oriented in the x5 direction, followed by a ply with fibers along the x, direc-
tion, which in the terminology of the lamination theory is called an alternating 90°/0° laminate.
This sequence is repeated as many times as desired. The thickness of each ply in this case is 199
um with the fiber volume fraction of 0.40 as before. Since now the ply thickness is kept constant
but the number of alternating 90° and 0° plies is allowed to increase, the total composite thick-
ness increases. However, since the problem is linear, this arrangement is equivalent to keeping
the ply thickness constant but decreasing the fiber diameter while maintaining a constant fiber
volume fraction. Therefore, although the various distributions in the thickness direction are now
given as a function of the coordinate x, they can be directly compared with those of the uni-
directional configurations. As before, the objective is to determine the number of fibers in the
thickness direction that are required for the results to approach those obtained using the standard
homogenization procedure. In view of the extensive results and the well-established trends for
the unidirectional configurations presented in the foregoing, we limit the discussion to bi-
directional configurations containing 8 and 20 rows of fibers.

As before, the temperature distributions for the two configurations are illustrated first in
Figure 14. These distributions are in the RCS containing both fiber and matrix phases. Clearly,
the distributions exhibit the same characteristic staircase pattern seen previously in the unidirec-
tional configurations, with the step size decreasing with increasing M. As expected, the tempera-
ture distributions predicted by the continuum approach are the same as those for the unidirec-
tional cases because the transverse conductivity in the x; direction is the same for both the 0°
and 90° configurations. The temperature distributions obtained using the present approach are
also the same as those obtained for the unidirectional configurations. This is a somewhat unex-
pected result in view of the different conductivities of the fiber and matrix phases, and the
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different microstructural details in the x; direction observed in the unidirectional and bi-
directional configurations. It is not clear at this time why the present model predicts identical
temperature distributions for the two different microstructural configurations.

The normal stress distributions 63, and ©33, in the RCS containing both phases, are
presented in Figures 15 and 16, respectively. Due to the presence of alternating 0° and 90°
layers, the envelopes of these distributions grow with increasing distance along the x direction
at approximately the same rate. This is in contrast with the normal distributions observed in the
unidirectional configurations where the G33 stress component grew faster than the Gy, stress
component. We note that although the normal stresses in the fiber phase increased monotoni-
cally along the x; axis in the unidirectional configurations, this is not the case for the bi-
directional configurations. In fact, here the normal stresses increase at two different rates
depending on whether the fiber associated with the 90° or 0° layer is considered. Consequently,
the pattern that is observed for the RCS in the bi-directional configurations is bi-modal, thereby
giving the appearance of nonuniformity for M = 8. Alternatively, when M = 20, the full pattern
emerges from which the growth of the two normal stresses (G2, and G33) at two different rates
can be easily discerned. The distribution of the normal stresses predicted by the present model
follows the results of the continuum model in an average sense. Comparison with the predictions
obtained using the primitive micromechanics approach will be presented elsewhere.

Figures 17 and 18 show the inplane force and moment resultants obtained from the normal
stress distributions presented in Figures 15 and 16. As in the case of unidirecﬁonal configura-
tions, these quantities have been normalized with respect to the continuum predictions and plot-
ted as a function of the number of layers, M, in the thickness direction. The trends observed for
the behavior of the inplane force and moment resultants for the bi-directional configurations
generally follow the same pattern as in the preceding cases. However, a characteristic difference
in the behavior of the inplane moment resultants is observed. Whereas for the unidirectional con-
figurations, the inplane moment resultants approached the lamination theory predictions in a uni-
formly asymptotic manner, the asymptotic behavior for the bi-directional configurations is not
uniform. This is particularly true for small values of M where the initially rapid increase of M
and M is followed by a pattern of alternating slow and rapid growth rates, resembling a stair-
case pattern.

4.3 Response of Composites with Tailored Mesostructure

In the final set of examples, we investigate the response of unidirectional composites with
nonuniformly spaced fibers to thermal gradients. Three fiber spacing variations in the FG direc-
tion are considered, namely linear, quadratic and cubic. The total thickness of the composite is
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kept fixed and the total fiber volume fraction of the composite is 0.40 as in the preceding uni-
directional composites with uniformly spaced fibers. The p—th cell dimension, D,, in the FG
direction which determines the fiber spacing for the three variations was obtained from the fol-
lowing formulas:

linear fiber spacing

D,=A(p-1)+B (68)
quadratic fiber spacing

D,=A(p-1+B (69)
cubic fiber spacing

D,=A(p-1P+B (70)

where p =1, 2,..., M, B is a pre-assigned constant, and A governs the rate of increase of the cell
FG dimension. Let M be the number of fibers in the FG composite as before. The total thickness

M
of the composite, H = ¥ Dy, is then calculated from the following formulas:
p=1
linear fiber spacing
2 —
H=a¥ . M) +uB a1
quadratic fiber spacing
M 2
H =A[—6—(M + DM +1)-M*“]1+MB (72)
cubic fiber spacing
2302
H=a MM 4514 B (73)

4
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The following results have been generated for the case when M = 10, B =199 wm and
H =20B. Given these values, one can determine A directly, and since the total fiber volume frac-
tion in the FG composite is given by:

Md¥?

I H + ko) 79

the parameters df’ = hy and d§ = hy =D — df" are determined for all values of p.

The temperature distributions for the three nonuniform configurations, as well as the uni-
formly spaced reference configuration, are illustrated in Figure 19. Clearly, in all nonuniformly
spaced cases the temperature profiles are below that generated with uniformly spaced fibers. The
linear fiber spacing variation produced the smallest deviation from the temperature profile
obtained with uniformly spaced fibers, followed by the quadratic and then cubic fiber spacing
variations. The above results are consistent with the observation that decreasing the fiber spacing
close to the top surface increases the effective or "average” thermal conductivity in that region,
thus lowering the temperature profile.

The associated normal stress distributions Gy, and 633 produced by the resulting tempera-
ture distributions are given in Figures 20 and 21. These stress distributions are explicitly com-
pared with the distribution obtained for the configuration with uniformly spaced fibers. As
expected, those configurations that have been tailored to give lower temperature distributions
necessarily produce lower stress distributions when compared to the stress distribution in the
presence of uniform fiber spacing. Consequently, the greatest reduction in the normal stress dis-
tributions occurs for the cubic fiber spacing variation, followed by the quadratic and linear varia-
tions. 7

The resulting inplane force and moment resultants for the three fiber spacing configurations
are illustrated in Figure 22 in bar chart form. The actual magnitudes have been normalized by
the corresponding quantities obtained for the uniformly spaced fiber configuration. The results,
as expected given Figures 20 and 21, indicate that the greatest reductions in the presence of
nonuniformly spaced fiber configurations occur for the cubic variation, followed by the qua-
dratic and linear. Of the two sets of resultants, the inplane force resultants exhibit the greatest
relative reductions.

The last example discussed herein addresses the effect of reversing the temperature gra-
dient on the temperature and stress distributions in the presence of nonuniformly spaced fibers.
Again, the three configurations, i.c., linear, quadratic and cubic fiber spacings, discussed
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previously are considered, however now the top surface (x; = 0) is exposed to the elevated tem-
perature of 500°C and the bottom surface (x; = H) is maintained at 0°C. In practical terms for
instance, this situation may arise in aircraft applications involving frictional heating of the wing
skin during flight which, in turn, requires active internal cooling, causing the given temperature
gradient. In light of the preceding results, only the results for the cubic fiber spacing case are
presented. '

The temperature distribution for the cubic fiber spacing variation and reference uniform
spacing is presented in Figure 23a. In contrast with the preceding case, the temperature distribu-
tion is now higher than the distribution generated with uniformly spaced fibers, as one would
expect since the ceramic rich zone corresponds to the elevated temperature zone. In fact, the
temperature distribution with the reversed thermal gradient is the mirror image of the distribu-
tion with the original thermal gradient. The results presented in Figure 23a suggest that the mag-
nitudes of the normal stress distributions 6, and 633 will now be greater than the corresponding
magnitudes obtained for uniformly spaced fibers. This is indeed the case as seen in Figures 23b
and 23c. Clearly, these normal stress distributions will generate inplane stress and moment resul-
tants that will be higher than the resultants obtained from the uniformly spaced fiber configura-
tion. Therefore, in order to reduce these quantities with respect to the reference quantities in the
presence of uniform fiber spacing, the reversal of the thermal gradient should be accompanied
by the reversal of the fiber spacing gradient.

5.0 CONCLUSIONS

A new approach has been presented for analyzing the response of thin-walled, metal matrix
composites subjected to a thermal gradient, with a finite number of large-diameter fibers uni-
formly or nonuniformly spaced in the thickness direction. In this approach, the microstructural
and macrostructural details are explicitly coupled when solving the thermomechanical
boundary-value problem. This is in stark contrast to the standard micromechanical schemes,
based on the classical homogenization procedures, which treat the local (micromechanics) and
global (macromechanics) problems separately. Coupling of the local and global analyses allows
one to rationally analyze the response of metal matrix composites such as SiC/TiAl that contain
relatively few through-the-thickness fibers, as well as so-called functionally gradient composites
with continuously changing properties due to nonuniform fiber spacing or the presence of
several phases. In such composites, it is difficult, if not impossible, to define the representative
volume element (RVE) used in the traditional micromechanical analyses.

The numerical examples presented herein indicate that the standard homogenization pro-
cedure based on the premise of an RVE yields inaccurate results for thin-walled composites with
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a small number of large-diameter fibers in the thickness direction. In particular, the inplane force
and moment resultants obtained using the standard homogenization approach, that are necessary
to maintain the composite flat in the presence of a through-the-thickness thermal gradient, are
significantly overpredicted (i.e., conservative) for fewer than about 10 fibers when the mismatch
in the thermal conductivities of the fiber and matrix phases is large. For a larger number of
through-the-thickness fibers, the results of the present theory asymptotically approach the results
of the standard homogenization scheme. The local stresses, on the other hand, only converge to
the classical homogenized stresses in an average sense with increasing number of through-the-
thickness fibers, and can exhibit large non-conservative local fluctuations depending on the
microstructural details of the composite and the mismatch in the thermal and mechanical proper-
ties. An estimate of the local stresses can be obtained from the continuum approach by applying
an average temperature over a given volume containing both the fiber and matrix phases, and
solving the associated micromechanics problem, treating the given volume as an RVE. Such an
approach, herein called "primitive” micromechanics approach, must be employed with caution
since it may underestimate the local stresses in the presence of stress gradients at the
micromechanical level. The accuracy of this approach increases with increasing number of
through-the-thickness fibers, and may be acceptable when the number of fibers is greater than
10. For small number of through-the-thickness fibers, on the other hand, the present theory is
more suitable. These observations suggest that the use of the effective modulus concept must be
approached with caution when analyzing the thermal response of composites with relatively few,
large-diameter fibers in the thickness direction in the presence of thermal gradients.

The results obtained for composites with tailored mesostructures, i.e. nonuniformly spaced
fibers in the through-the-thickness direction, and large mismatch in both thermal and mechanical
properties, indicate that it is possible to reduce the temperature distribution, and thus obtain
more favorable stress distributions, by appropriately grading the microstructure of the compo-
site. This, in turn, reduces the inplane force and moment resultants, necessary to maintain the
composite flat in the presence of a thermal gradient, with respect to the corresponding quantities
that arise in composites with uniformly spaced fibers. The manner in which the microstructure of
the composite is graded must take into account the sign of the thermal gradient. Consequently,
tailoring of microstructure appears to be useful in those applications where the sign of the ther-
mal gradient is preserved.

The results presented point to the potential usefulness of the developed theoretical frame-
work for analyzing the response of advanced composites with tailored microstructures to thermal
gradients in the presence of elastic phases with temperature-independent properties. In the
future, the approach will be extended to include inelastic effects as well as temperature-
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dependent response of the constituent phases exhibited by advanced metal matrix composites at
elevated temperatures. Finally, the full potential of the presented method as a design tool for
functionally graded or tailored composites can only be realized, however, when it is combined
with an appropriate optimization approach (cf. Saravanos and Chamis, 1992; Saravanos and
Pereira, 1992). This too will be addressed in future work.
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8.0 APPENDIX

8.1 Thermal Analysis

8.1.1 Heat Conduction Equations

o
Let us multiply equation (6) by (— X ) (_(23) )" (x3

I +m + n <2. Integrating the resulting equation by parts and using the temperature expansion

Y*, where [, m, n=0, 1, or 2 with

given in equation (14), the following set of equations is obtained:

L%Bo + L%&RO} + Loy =0 (A1)

LBy - 01880 =0 (A2)

a7 (1880, + L5880 + 3158801 - 201080 =0 %)
—I%hg [LEBRo) + LS8R0y + LS8R0 1-205800) =0 (Ad)
le-.zg (LB, + LBV 0y +3LEEV.0) 1- 205681 =0 (A5)

where in the above equations Qf‘{f,’,',)‘,,) has been defined previously (see equation (15)), and is
reproduced below for convenience,
d&12 hpi2 142

OV @y iy &

Qs%}?;{z).n) =

v&hy _dg[> 12 ~hpi2 -2

with "8357) = d((f)hg Iy representing the volume of the subcell (afy) in the p —th cell, and

h5/2 17/2 (P
1 d&p) n+l Clﬁ’Y) (3) ('Y)
L0 = (5" [ ~1y"*qf (-—)]dfz & (a6
&(n,&,O) v?&b\()( > ) ~h£0_1£2 4§ (A6)
a2 12 @
n — 7 oy __ k.
L%@‘O) (_) dé[)/z—ljfz [qufm( )+ 1 g5 Y( )]dfl dx3 (A7)
- Y
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de 2 hgn2 / @

= _1_ ﬁ. n O!B‘Y)(_Y)_,_(_l)nﬂ SGB'Y) (_1_7)]‘5(‘ dx.
Lgﬁ,g,n) = V%(p,by) ( ) ) _dg)/z _h£/2 [qg ) q 2 1 2 (A8)

®) h !
where 7 = 0 or 1, and g{® (i-d;—), g5 (iTﬁ)’ g (i%) denote the interfacial fluxes at

_ _B 1 G 1
x(la) i‘:lz‘d(é’), X2 5

= =+—ha, =+—1[,, respectively.
2h§x3 27rpc:vey

Equations (A1) through (AS5) provide relations between the zeroth-order and first order heat
fluxes Qf“}?,}f,), n) and the interfacial fluxes LS?,B,}',) ny- Explicit expressions for the interfacial fluxes
Lf%m n) given solely in terms of QS?P,T,) n) are obtained through the following sequence of mani-
pulations, noting that equation (A2) already provides a direct relation between QS%&RO) and
Lﬁ%&‘g,o). First, substituting equation (A1) into equations (A4) and (A5), respectively, gives the
following direct expressions for LS%&RO) and L&?&RO).

Li3LE8R o = 205800 (A9
%If,L%?&Ro) =205%88.1 (A10)

Then upon substitution of equations (A9) and (A10) into equation (A1) we obtain the following
expression for LS‘%&RO).

LEBRo) = -120580.0)/hF + 0588 1»/) (Al1)

Equations (A9) through (A11) will be used to reduce the heat conduction and heat flux con-
tinuity equations to expressions involving only the heat flux quantities QEC(‘P,}? ny- These can sub-
sequently be expressed in terms of the fundamental unknown coefficients TPV appearing in
the temperature expansion given by equations (14), using equations (16) through (19).

" 8.1.2 Heat Flux Continuity Equations

The heat flux continuity conditions (8) - (9) are imposed on an average basis at each subcell
and cell interface. Prior to imposing these continuity conditions, let us define intermediate quan-
tities £¢'PY and g{1PY as follows:
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F18 = g9 1.0 o - o™ 150 - (A1)

gi!P? = q{'Pv lfﬁ”:d&"’/z + g™ I§(11)=_d?)/2 (A13)

These quantities will simplify the algebra associated with application of the heat flux continuity
requirement on an average basis in the FG direction. Then substituting equations (8a) and (9a)
into the above definitons we have,

®) ®) ?-1)

A = g8 |0 ey - PP LD (Al4)
®) ®) - @D

G| = g0 10y + g | 5@ —agvr2 (A15)

Adding and subtracting equal quantities to and from equations (A14) and (A15) it can easily be
verified that

®)
2f€1ﬁ7) | = [_f?BY) +g&23Y)](P) - mzﬁfY) +g3257)](1’-1) (A16)

®)
2g§1!37) | = [_AZﬁY) +g§2ﬁY)](P) + [ +g&257)](1?-1) (A17)

Then using equations (A16) and (A17) in equation (A6), we obtain the following heat flux con-
tinuity conditions for the FG direction:

®) 1o _
dPL | =L - 2L - Lifho + 547 PLiEh0 1" (a1y)

2 5 1 Dy -
Lo | =108o - TaPLE8R01 + Lo + 52 VLI At

The heat flux continuity conditions in the remaining two directions are obtained using equations
(8b) and (8¢) in equations (A7) and (A8), repectively. From equations (8b) and (A7) we have



®) . ®)
h1 L5580, | =-nL58R0) l (A20)

while from equations (8c) and (A8)

) o @
11L58 80, | =-1,L5830) | * (A21)

We note that equations (9b) and (9¢) are identically satisfied for a material that is periodic in the
x5 and x 3 directions by the chosen temperature field representation.

Equations (A9) through (A11), together with equation (A2), will be employed in reducing
the heat flux continuity conditions (A18) through (A21) to expressions involving only the
volume-averaged zeroth-order and first-order heat flux quantities QS%P,"I,) n)-

8.1.3 Reduction of Heat Conduction and Heat Flux Continuity Equations

Substituting equation (A1) into (A3), and using equations (A9) and (A10), reduces the
volume-averaged heat conduction equations to a set of 8 equations given by equation (20) on
page 16.

[ QPR oy /d2? + QSN oy i + O5ER /17 19 =0 - (20)

Using the expression for LS%&RO) given by equation (A11), and the expression for LS%ERO)
given by equation (A2), in the continuity relations (A18) and (A19), we obtain equations (21)
and (22) on page 16 and 17.

d )
[ 1208580 o,/h} + 120588,1)/13 19 + 6d—§;[ 0S8N o) /h3 + Q8B /13 17+

i . o oty L — © | -1
6—d—?’)_[ Q&(BR.O) Ih§ + QS(B',Y&D/L,] + -;Y,—) [ QS(E:Y&O) - Qﬁ(&%p) 1=0 @

and
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(p-1

offlo | = %‘Qsz(g,y&n) o+ %Qﬁgﬁm | +3dP (0% o) /k3 + OS8R 1y /131 -

3P0 08N ) + 05881 177 (22)

Finally, combining equations (A9) and (A20), as well as equations (A10) and (A21), gives
equations (23) and (24) on page 17.

[QS3Y o/ + Q58N 0)/h2 197 =0 23)
(0588 /1 +05%%1,/1, 19 =0 (24)

As indicated previously, equations (20) through (24) are easily expressed in terms of the
fundamental unknown coefficients Tf“w) using equations (16) through (19).

8.1.4 Thermal Continuity Equations

As in the case of the heat flux field, the thermal continuity conditions (10) - (11) are
imposed on an average basis at each subcell and cell interface. Thus substituting equation (14)
into equations (10a) - (10c), respectively, we obtain at each subcell interface the following con-
ditions:

By 1 1 2-287) 1(p)
[ T61 ) + d&”)T 515*) + l dY’)ZT QBY) 19 =1 TSZBV) - dff)l 8257) + T dg’) T& fn @ 25)
1
[ Tﬁam + i—h%J galy) 1©) =1 8(127) + Zh%Tgam 1© (26)

1
[TEBD 4 % ATEBD 10 = [ 7D 4 Z,ngxBZ) 1@ on

Furthermore, substituting equation (14) into equation (11a) to ensure continuity of temperature
between neighboring cells in the FG direction, we obtain the condition

1 1 onre
[TEBY - %dsfnmﬁwv) + %dyzmzrgsv) 1P+ = [ TR 4 Edg»);rgzav) + 74_d&v) T$8Y %08



The remaining two conditions (11b) and (11c) are identically satisfied for a functionally graded
material in the x | -direction that is periodic in the x, and x 3-directions.

8.2 Mechanical Analysis

8.2.1 Equations of Equilibrium

)] .
Let us multiply equation (30) by (f(l x éﬁ) Y* (3 )", where again [, m, n=0, 1, 0r2

with / +m +n <2. Integrating the resulting equations by parts, and using the displacement
expansions (39), we obtain the equations of equilibrium in the subcell region (aBy) in the form:

15%%.0) +J§1‘(330 0) + Ko.0) =0 (A22)

1%, — 8800y =0 (A23)

152%3)1 0) - S5% 0.0 =0 (A24)

K§3 d0.1) —553 d0.0) =0 (A25)

31{%8.0) +I5%8%00.0) + K510 0.0) — 245 %0.0)/d$? =0 (A26)
1590y + 3151'(3 Po.0) + K5 ?30 0) -245302‘(5&)1,0)/’1% =0 (A27)
15900, +J§1 0,0) + 3K510%0,0) —245%?&)0,1)/13 =0 (A28)

where S( 7) .y has been defined previously (see equation (40)), and is reproduced below for
convenience,

@
d@r2 kg2 1y2 ® ®

) \n
1 Gy @y Gy o e 45

(apy) =
Sij 8,m,n) V%EY) —dé’/Z _h£/2 -Iy2

fori, j =1, 2, and 3, with v&}, =d$ hply, and

hplz 17/2

18000 =55 Laoy [ | [ci“ﬂ”(—d“’)m 1)"*o &“W(——d"’))]dfz Py (A29)
?’fxy) ~hgl2 ~1y2
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aon 12
1 1 apy) L n+l (B L @ 0
B = ———(=hp)" - - : hg)ldr, dx
157?&,:,0)-‘)9&%(2"&3) _dg [ 5P (Shp)+ (D oV (-l 3 (A30)

Yp —y2
a2 hp2 1 1 @ _®
1 1 n afy) 2 —1y*+! OB (= dx
ey o1 (L, [o§PP(S-1y) + (1 oSFPP (- pldx, dx2 A31
o vy 27 —dai)/Z—h‘Lz R o2 3D

1 1 . .
and where Gﬁ‘}‘ﬁy)(i%dg’)), G&?M)(i?h B)» cg‘}ﬁ”)(iily), stand for the interfacial stresses at

37(1a) = i—;—d(ﬁ'z’), f(zﬁ) = i%hp,fgy) = i%‘l‘y, respectively.
Equations (A22) through (A28) provide relations between the zeroth-order and first order,

volume-averaged stresses Sf}’fm,n) and the interfacial tractions 1&?%1)0,0), J&‘}?&),,, 0y and

K S‘}‘?&’O_n). Direct "one-to-one" relations are obtained through the following sequence of manipu-
lations, noting that equations (A23) through (A25) already provide direct relations between
Sﬁ%&)o‘o) and I{$tP0 0, S&%%&)o,o) and J51 0y S g%%&o‘o) and K S%‘%J)O 1y- First, substituting equa-
tion (A22) into equations (A27) and (A28), respectively, gives direct expressions for J&Of?&)o,o)
and K$0%0,0)-

-é'hﬁf 0.0 =28 5.0y (A32)

1
<hK 0.0 = 25801 (A33)

Then, upon substitution of equations (A32) and (A33) into equation (A22), we have the follow-
ing expression for 1§} o.0):

16800.0y =—12(S58P1 0 /13 + S50, /13 (A34)

Equations (A32) through (A34) will be used to reduce the equilibrium equations and traction
continuity equations to expressions involving only the zeroth-order and first-order, volume-
averaged stress quantities S f}’ 1?',),,,,,). These can subsequently be expressed in terms of the funda-
mental unknown coefficients w{*, U, 4 0P, x#Y, and wi*PD appearing

in the displacement field expansion given by equations (39), using equations (41) through (46).



8.2.2 Traction Continuity Conditions

The traction continuity conditions, equations (33) - (34), are imposed on an average basis at
the subcell and cell interfaces. These conditions imply existence of certain relationships between
the surface integrals of the interfacial traction components defined by equations (A29) - (A31).
To assist in establishing these relations, let us define two new quantities F,(}BY) and GS}BY) as fol-

lows

F{BY = G0 |10y — I oy, (A35)

GUPY = oI |0 i + 0P |30 - _aprra (A36)

Substituting equations (33a) and (34a) into the above definitions, we obtain, respectively:

®) -1

” 2y | e

P | = o | 0 __app - off" |52 =ag-012 (A37)
@) @) ) -1

G | = ot 10y + offV I5D s (A38)

By addition and subtraction of equal quantities to and from equations (A34) and (A35) it can
easily be verified that

@)
2}:’51137) - [_F(12IBY) + GNP — [FSZI&Y) + GﬁﬂY)](P—l) (A39)

®)
2G (Y | =[G - FE® + (G + FEfe-D (A40)

Then employing equations (A36) and (A37) in equation (A29) with j = 1, we obtain the
corresponding relations:

®)
1 1 - _
dP1E00 | =00 - Ed?)fﬁ%?o,oﬂ(p) ~uFoo + ’2“187 DIfRe01®™P (a4

@)
1 1 1 -1y, -1
{00 | = %Uﬁ%o,m - zdgp)l(lzl%?o,m 1+ ny o) + —2_d87 DIEon 1 (ad2)
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Similarly, using equations (33b) and (A30) we have

@) ()
1 SGoo | =150 | (Ad3)
®) ’ ®)
IS =180 | (A44)
and from equations (33c) and (A31) we obtain
@) s @)
LK 501‘%6,)0.0) I =1k gof?o,)o,m l (A45)
®) ) @)
K g%%ol)o 1) | =k 5%?0,)0, 1) l (A46)

We note that the other two traction continuity conditions, equations (34b) and (34c), are
identically satisfied for the present case of an applied normal mechanical loading in the x-
direction.

As a result of the above manipulations, 24 relations, given by equations (A41) through
(A46), arise from the traction continuity conditions between subcells and between neighboring
cells. These equations, in conjunction with equations (A22) through (A26), and equations (A32)
through (A34), will be employed in reducing the equilibrium and traction continuity equations to

expressions involving only volume-averaged zeroth-order and first-order stresses S f]“ ,7,2, n)-

8.2.3 Reduction of Equilibrium and Traction Continuity Equations

Substituting equation (A22) into equation (A26) and using equations (A32) and (A33),
reduces the volume-averaged equilibrium equations to a set of 8 equations given by equation
(47) on page 23, reproduced below for convenience.

[ S138P0.0)/d%? + SEP1 0y /Hh + 580,113 107 =0 “7)

Combining the expressions for 15(31[?{{)0,0) and I{% 3,)0,0), provided by equations (A23) and
(A34), and the continuity relations (A41) - (A42), respectively, we obtain the following eight
equations
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d )
[125%8%1.0)/h5 + 12588 %0.1y/15 1€ + 6}%[5322%?1,0)/"% +SB0.1y/13 19 +

@) -1
dP- 2 _
g;,,) [S 253)1 0)/hB +Si3ﬁ801)”7 ](p - + — &p) & 600) | "SSI%?O,O) ! ]—0(48)
and
(P) ()] -1
SERYo 0) = —;‘5521%?0,0) | %‘5(1 20,0 I +3d9 [ SE¥1.0) Ih§ + S(IZJB(&OJ)”\Z']@) -
3dP D[ SB 1.0 /8% + SE0.1 /7107 (49)

Continuing, if we substitute equation (A32) into equation (A43) directly, and equation (A33)
into equation (A45), we obtain, respectively:

[S%P10/h1 + S5 10/h2 197 =0 ' (50)
[ S /1 +S5Eb.1/12 197 =0 (51)

Finally combining equations (A24) and (A44), and equations (A25) and (A46), yields, respec-

tively,
®) w @)
S 52(8 0,0) | =5 52(3,)0,0) I (52)
@) @)
S0 | =550 | (53)

As indicated previously, equations (47) through (53) are easily expressed in terms of the funda-
mental unknown coefficients w{*f?, U{*?, VD wiek, oBD, x B0, and w§? using equa-
tions (41) through (46).

8.2.4 Displacement Continuity Conditions

The displacement continuity conditions, i.e. equations (35) - (36), are now imposed on an
average basis at the interfaces. This is accomplished by first substituting equation (39) into
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equation (35a),

1 1 2
[ witP? + %d@q,glﬂv) + %d% UBY 100 = [ W - _2_d§p)¢gzav) + Zd% PRI o

then into equation (35b)
1
[ wi® 4 %hgvgazw 10) = [ w(®2D 4 Z,,%Vgazw 1) (55)
® ®)
paf0 ] = xS (56)
followed by equation (35¢)
1
[w(BD + ji—li’WS“B“ 10 = [ wieB? + Z' B 10) -
®) ®)
Ly | =y PP | (58)

and finally into equation (36a)

1 1 2
[wiiBy — %dﬁpm OB + %dywm UBY 1E+D = [ (2P0 4 Edgf),pgzaw + ng)z U @B 1920,

The other two displacement continuity relations (36b) and (36¢) are identically satisfied for
the present case of normal loading applied in the x;-direction. Consequently, equations (54) -
(59) provide 24 relations which must be imposed to guarantee the continuity of the displace-
ments between the subcells and between neighboring cells.

52



Table 1. Material properties of SCS6 SiC fiber and titanium matrix.

Material EGPa) v a(l0%m/m/°C) ¥ (W/m-°C)
SiC fiber 4140 03 4.9 400.0, 200.0, 40.0, 17.6
Ti-Al matrix 1000 0.3 9.6 8.0

E and v denote the Young’s modulus and Poisson’s ratio, respectively, o is the coefficient of
thermal expansion, and x is the thermal conductivity.

Table 2. Material properties of the SCS6 SiC/Ti composite (v = 0.40).

E,(GPa) vi Er(GPa) Gj (GPa)

226.0 0.30 167.0 60.9

ol (108 m/m/°C) oF 10°m/m/°C) k4 (W/m-°C) xr (W / m-°C)

6.15 7.90 164.80 16.20

Subindices A and T denote axial and transverse quantities, respectively.
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Table 3. Normalized inplane force and moment resultants for different k¢ / x,,, ratios.

KplKm No/NEM Ny /NP My i ME™M My M5
M =3

50.0 0.7954 0.7895 0.9444 0.9209

25.0 0.8046 0.8000 0.9409 0.9177

5.0 0.8621 0.8631 0.9271 0.9019

2.2 0.9195 0.9158 0.9201 0.8924
M =20

50.0 0.9655 0.9684 0.9930 0.9873

25.0 0.9655 0.9684 0.9930 0.9873

5.0 0.9770 0.9789 0.9896 0.9842

22 0.9885 0.9895 0.9896 0.9842
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Figure 4 - Laminate geometry.
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Figure 14 - Through-the-thickness temperature distribution in a bi-directional composite with
uniformly spaced fibers in the cross-section containing both phases.
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Figure 18 - Inplane moment resultants in a bi-directional composite with uniformly spaced
fibers in the thickness direction (normalized with respect to the continuum theory prediction).
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