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Preface

This report presents a methodology for managing failure risk cost-effectively and
evaluating flight readiness of such aerospace systems as launch vehicles and
planetary spacecraft. The methodology was developed by the Jet Propulsion
Laboratory (JPL) under NASA RTOP 553-02-01 sponsored by the Office of Space
Flight (OSF), NASA Headquarters. This work was performed as a part of the Cer-
tification Process Assessment task initiated by OSF due to concern about criteria

for certifying flight readiness of the Space Shuttle propulsion system. The
methodology is not only applicable to flight readiness evaluation, but also to

design definition and to the identification of risk control measures during the
design, development, or operational phases of a project.

An early phase of this work included an extensive review of certification and

failure risk assessment approaches used by the aerospace industry and govern-
ment agencies. Based on the findings of this review, 1 further work was focused on

defining, developing, and demonstrating an improved technical approach for
failure risk assessment that can incorporate information from both test experience
and analytical modeling to obtain a quantitative failure risk estimate. This ap-
proach, called Probabilistic Failure Assessment (PFA), is of particular value when

information relevant to failure prediction, including test experience and knowledge
of parameters used in analytical modeling of failure phenomena, is expensive or dif-
ficult to acquire. Under such constraints, a quantitative evaluation of failure risk
based on the information available from both analytical modeling and operating ex-
perience is needed to make effective risk management decisions that utilize finan-
cial resources efficiently.

The PFA methodology is applicable to failure modes that can be characterized

by analytical or empirical modeling of failure phenomena, including those of struc-
tural, electro-optical, propulsion, power, and thermal control systems, and is espe-
cially useful when models or information used in analysis are uncertain or

approximate. PFA can be applied at any time in the design, development, or
operational phases of a program to quantitatively estimate failure risk based on the
information available at the time of the risk assessment and can be used to

evaluate and rank alternative measures to control risk, thereby enabling the more
effective allocation of limited financial resources.

1 See [14] of Section 1.0 references.
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Abstract

An improved methodology for quantitatively evaluating failure risk of spaceflight
systems to assess flight readiness and identify risk control measures is presented.
This methodology, called Probabilistic Failure Assessment (PFA), combines operat-
ing experience from tests and flights with analytical modeling of failure phenomena
to estimate failure risk. The PFA methodology is of particular value when informa-
tion on which to base an assessment of failure risk, including test experience and
knowledge of parameters used in analytical modeling, is expensive or difficult to ac-
quire.

The PFA methodology is a prescribed statistical structure in which analytical
models that characterize failure phenomena are used conjointly with uncertainties

about analysis parameters and/or modeling accuracy to estimate failure probability
distributions for specific failure modes. These distributions can then be modified,
by means of statistical procedures of the PFA methodology, to reflect any test or
flight experience. State-of-the-art analytical models currently employed for design,
failure prediction, or performance analysis are used in this methodology.

The PFA methodology can be applied at any time in the design, development, or
operational phases of a program to quantitatively estimate failure risk based on the
information available at the time failure risk is assessed. Sensitivity analyses con-
ducted as a part of PFA can be used to evaluate and rank such alternative

measures to control risk as design changes, testing, or inspections, thereby ena-
bling limited program resources to be allocated more effectively.

PFA is generally applicable to failure modes that can be characterized by analyti-
cal or empirical models of failure phenomena and is especially valuable when
models or information used in analysis are uncertain or approximate. Such failure
modes include, but are not limited to, fatigue, flaw propagation, erosion, malfunc-
tions of mechanical or electrical systems, and shortfalls with respect to perfor-
mance or life goals for thermal control, electro-optical, power, or propulsion
systems.

It is often not feasible to acquire enough test experience to establish high
reliability at high confidence for spaceflight systems. Moreover, the results of con-
ventionally performed analytical modeling of failure modes can be subject to
serious misinterpretation when uncertain or approximate information is used to es-
tablish analysis parameters and calibrate the accuracy of analysis models. Under
these conditions, a quantitative evaluation of failure risk based on the information
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available from both test or flight experience and analytical modeling is needed to
make effective risk management decisions.

This report discusses the rationale for the statistical approach taken in the PFA
methodology, describes the PFA methodology, and presents examples of its ap-
plication to structural failure modes. The engineering models and computer
software used in fatigue crack growth and fatigue crack initiation applications are
thoroughly documented.
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Section 1.1

Information Available for
Flight Readiness Assessment

Critical failures of such aerospace flight systems as launch vehicles or planetary
spacecraft must be established as highly unlikely for the system to be considered
flight worthy. At any time in the design, development, or operation of flight sys-
tems, the information sources for an assessment of flight readiness or failure risk
during service are: (1) experience from tests and flights and (2) analytical model-
ing. It is rarely feasible to establish high reliability at high confidence by testing
only for systems, major subsystems, and many components. Moreover, failure

prediction by conventional, deterministic methods of analytical modeling can be-
come arbitrary and subject to misinterpretation when information used to establish

parameter values and to evaluate the accuracy of engineering models is uncertain
or approximate, as discussed in [1] and [2].

For many failure modes of aerospace flight systems, direct experience is sparse
and expensive or infeasible to acquire, and demonstrably conservative determinis-
tic analyses results in unacceptable designs or service limits. Deterministic
analysis is performed typically using conservative analysis methods along with con-
servative estimates of such parameters as loads and materials capability. When
parameters or models are significantly uncertain, consistently conservative deter-
ministic analysis often does not yield practicable designs or service limits, and the
failure risk implied by less conservative deterministic analysis is not known. Under
these conditions, an assessment of failure risk that quantitatively incorporates avail-
able information from both analytical modeling and test/flight experience enables
more effective risk management decisions to be made. Risk management in the
design, development, and operational phases of a project can be improved by

using a risk assessment approach that can incorporate information quantitatively
from both test/flight experience and analytical modeling.

In the failure risk assessment approach presented in this report, analytical model-
ing and test/flight experience are used in a statistical structure in which uncertain-

ties about failure prediction are quantitatively treated. Using this approach,
probabilistic analysis to characterize failure risk can be performed with the informa-
tion available at any time in the design, development, qualification/certification, or
operational phases of a project to obtain a quantitative measure of failure risk that
is warranted by what is known about a failure mode. Failure modes that can be

described by analytical models of the failure phenomena, even when such models

i-
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are uncertain or approximate, can be analyzed probabilistically using the approach
presented here.

The value of test experience in establishing low failure probability with high con-
fidence for flight configuration systems is limited when testing is halted before
failures occur. Failures during testing are often avoided because they can result in

the loss of costly hardware and damage to expensive test facilities. The availability
of failure experience for flight hardware is further diminished because failure

modes discovered during development testing are corrected by design changes
which are intended to render their occurrence highly unlikely during subsequent
mission operation. Consequently, test experience for aerospace systems typically
does not include failure data for flight configuration systems, but instead consists
of tests which are suspended before failures occur, i.e., "zero-failure" tests.

When the data from tests or flights consists of some number of trials with no
failures, as is often the case for aerospace systems, the data is a weak information

source for reliability demonstration or failure risk assessment. Demonstrating high
reliability is equivalent to making statements about the left-hand tail of a failure dis-

tribution. Nonfailure test data typically provides very conservative bounding infor-
mation about location and variability of the failure distribution. However,

information about the failure distribution from analytical modeling can be extremely
informative about the distribution's location. Using the approach presented here
and in [1], the inclusion of analytical modeling allows an improved description of
the failure distribution, even with the variability implied by uncertainty in analytical
modeling due to sparse information. The exclusive use of zero-failure data to es-

tablish very low failure risk with high confidence requires an extremely extensive

data set that is typically not feasible to acquire, as discussed in [1] and [5].

Failures can be categorized as the consequence of a specific event or as the

result of accumulated damage. Erosion, fatigue cracking, degradation, and flaw
propagation are examples of damage accumulation failure modes wherein failure

is a result of the cumulation of aging effects produced by repeated exposure to

operating conditions or by environmental parameters which vary cyclically. In con-
trast, event consequent failure modes are those in which failure is independent of
the extent of previous exposure to operating conditions; instead, failure is a conse-

quence of an event such as applied stress exceeding ultimate strength.

Failure prediction for event consequent failure modes is usually much less uncer-
tain than for damage accumulation failure modes, in part because variability of

event consequent failure distributions is often much smaller than that of damage
accumulation failure distributions. It may be feasible to conduct testing programs
to establish low failure probability with high confidence by testing only for event
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consequent failure modes, while such testing is essentially infeasible for damage
accumulation failure modes [5].

Probabilistic analyses can yield particularly useful results for a subset of the criti-
cal failure modes identified by means of Failure Modes and Effects Analysis
(FMEA) or other screening procedures. The probabilistic approach to failure risk

assessment presented in this report provides the capability to more effectively or-
ganize and interpret the information available to characterize the likelihood of

failures during the service life of aerospace systems and to identify additional infor-
mation that may be needed to control failure risk.
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Section 1.2

Probabilistic Failure Risk Assessment

1,2.1 Risk Quantification Approach

Information from analytical modeling can be combined with information from
test/flight experience to estimate failure risk quantitatively using a statistical
framework based on Bayes' Rule, as shown in Figure 1.2-1. This approach should
be applied individually to those failure modes identified for analysis. Analytical model-
ing is used to characterize conditions under which a specific failure mode may be ex-
pected to occur, e.g., excessive pressure difference or accumulated time in service,

and it provides the information to establish the prior failure risk distribution of Figure
1.2-1. This prior distribution can be modified to reflect available success/failure data
in a Bayesian statistical analysis, as discussed in [1], [3], and [6].

Analytical modeling to predict failure is based on available knowledge of the
failure phenomenon and of such governing parameters as loads and material
properties. Information about governing parameters can be derived from measure-
ments taken during tests or flights, from analyses to characterize parameter
values, from applicable experience with similar systems, or from laboratory tests.
Measurements of physical parameters used in analytical modeling, e.g., tempera-
tures and loads, can be a strong information source in failure risk assessment.

As shown in Figure 1.2-1, test/flight experience consists of physical parameter in-
formation and success/failure data. Information about physical parameters is incor-

ANALYTICAL
MODELING

PRIOR FAILURE
RISK DISTRIBUTION

BAYESIAN
STATISTICAL -_

ANALYSIS

FAILURE RISK
DISTRIBUTION

PARAMETER
INFORMATION

SUCCESS/FAILURE
DATA

TEST/FLIGHT EXPERIENCE

Figure 1.2-1 Information Sources for Failure Risk Assessment
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porated into the analytical modeling and is reflected in the prior failure risk distribu-
tion. Success/failure data can be acquired from development testing, certification
testing, or flight operation. The failure risk distribution resulting from the combina-
tion of the prior distribution and the success/failure data is the description of failure
risk which is warranted by the information available. As additional information
regarding governing physical parameters becomes available it can be incor-
porated into the analytical modeling to obtain a revised prior failure risk distribu-

tion. Additional information in the form of success/failure data can be processed
by the Bayesian statistical algorithm to update the prior failure risk distribution
using the procedure given in [1].

When the success/failure data for flight configuration hardware consists of some
number of trials with no failures, as often occurs for damage accumulation failure
modes, this data is usually a weak information source for failure risk assessment.

In these cases, the failure risk distribution will be predominantly determined by the
prior failure risk distribution of Figure 1.2-1.

1.2.2 The Probablllstlc Failure Assessment Methodology

Figure 1.2-2 shows a stochastic structure for quantitatively estimating failure risk
based on the available information about specific failure modes identified in a
screening procedure such as a FMEA. This stochastic structure is an implementa-
tion of the statistical framework described above and is referred to as the Prob-

abilistic Failure Assessment (PFA) methodology. The approach and structure of

the PFA methodology are generally applicable to failure modes for which quantita-
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Figure 1.2-2 The Probabilistic Failure Assessment Methodology

1-8



tive analytical models can be employed to characterize a failure phenomenon and
is particularly valuable when the analysis is uncertain or approximate.

The PFA methodology shown in Figure 1.2-2 consists of three major steps:
probabilistic failure modeling, a Bayesian statistical analysis to consider suc-

cess/faUure data, and a mission analysis in which the failure probability distribu-
tions for a number of relevant failure modes can be aggregated. Probabilistic
failure modeling and the Bayesian statistical analysis are performed for each failure

mode identified for analysis. The features of the PFA methodology that are essen-
tial to evaluate failure risk meaningfully are: (1) inclusion of information from both
analytical modeling and available operating experience; (2) analytical modeling of
failure phenomena based on engineering analysis and/or physics; (3) repre-
sentation of the uncertainty about analytical models and governing parameters, in-
cluding uncertainty due to both intrinsic variation and sparseness or vagueness of
information; and (4) consideration of failure risk over the service life.

State-of-the-art analysis models employed in design and in performance or life
prediction are used in the PFA methodology. Within the PFA structure, uncertain-
ties due to sparse information about values of analysis parameters and uncertain-
ties about the accuracy of the analysis models are quantitatively treated. For
example, in addition to the intrinsic variability of materials fatigue life, the uncertain-
ty resulting from basing a model of fatigue life on limited information was treated in

the stochastic materials fatigue life characterization model discussed in [1].

The probabUistic failure modeling element of the PFA methodology is shown in
greater detail in Figure 1.2-3. Here, uncertainties in analysis parameters and
models for the failure mode being analyzed are used in conjunction with the quan-
titative model of the failure phenomenon to predict failure probabilistically. Failure
models are directly derived from deterministic analyses of failure modes which ex-
press failure parameters, such as burst pressure or fatigue life, as a function of
governing parameters or drivers. For fatigue failure modes, the drivers include
dimensions, loads, materials behavior, modeling accuracy, and environmental
parameters such as local temperatures.

For many failure modes of concern, the failure model of Figure 1.2-3 is complex
and involves the use of several analysis procedures, including finite element struc-
tural models. State-of-the-art models and procedures used by the aerospace com-
munity for design analysis and to predict performance or service life have evolved

through extensive experience. These models and procedures often are comprised
of a series of steps, each of which may be complex. The PFA methodology can ac-

commodate generally accepted analysis models in current use. The accuracy of
each model and procedure should be probabilistically characterized and treated as
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Figure 1.2-3 The Probabilistic Failure Modeling Procedure

a driver. Probabilistic descriptions of model accuracy are based on experience in
using the models and, when available, on tests conducted specifically to evaluate
model accuracy.

By calculating failure risk from an analysis based on the specification of failure
models and drivers and which incorporates the associated uncertainties, the PFA
methodology permits the quantitative assessment of failure risk even when failure
data applicable to flight configuration hardware does not exist.

1.2.3 Driver Characterization

A driver for which uncertainty is to be considered must be characterized by a
probability distribution over the range of values it can assume. That distribution ex-

presses uncertainty regarding specific driver values within the range of possible
values. A driver probability distribution must represent both intrinsic variability of
the driver and uncertainty due to limited information on which to base the driver
characterization.
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Stochastic drivers are responsible for the probabilistic character of the PFA
methodology. The need to represent a driver stochastically derives from two fun-
damental sources: intrinsic variability and specification error. Specification error
can be due to engineering model accuracy and due to vague or sparse informa-
tion about physical parameters.

For some stochastic drivers, it may not be possible to distinguish between intrin-
sic variation and variation due to specification error. In those cases, a stochastic
driver is characterized by the compounded effect of both sources of variation
without attempting to model each source separately. An example of this is the
characterization of the stress concentration factor presented in [1] and [7]. Uncer-
tainty in the stress concentration factor results from geometric variability induced
by the manufacturing process and from an imperfect translation of geometric
variability into stress concentration factor uncertainty.

Stochastic drivers are characterized by using the information that exists at the
time of analysis. If driver information is sparse, the probabilistic characterization of
such a driver must reflect that sparseness. If extensive experimental measure-
ments have been performed for a driver, its nominal value and characterization of
its variability can be inferred directly from empirical data. However, if little or no
directly applicable empirical data is available, analysis to characterize a driver or ex-
perience with similar or related systems must be used.

The information on which driver uncertainty characterization is based can in-
clude measurements, related experience, and analysis conducted to bound or
characterize the driver. All sources of driver uncertainty must be considered to ap-
propriately represent risk due to limited information, and driver distributions must
meet the criterion of not overstating the available information. Drivers are fun-
damental in the sense that they are observable parameters for which additional in-
formation regarding their values can be obtained if necessary. Such parameters
include temperatures, loads, materials behavior, and statements about model ac-
curacy. If uncertainty due to lack of information about a driver is found to make a
significant contribution to failure risk, then the desirability of acquiring additional
driver information should be evaluated.

Consider the example of a finite element analysis to characterize stresses.
Material properties and loads are possible sources of intrinsic variation. The finite

element model itself is a source of specification error in the computation of stres-
ses since the model will not match the hardware precisely. In many cases, loads
and material properties are sources of specification error, in addition to having in-
trinsic variability. There are cases where engineers know that a certain load varies
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very little from flight to flight or part to part, but they may know the load magnitude
only with a large uncertainty, say within a factor of two to four.

Some general guidelines for characterizing stochastic drivers have emerged
from case studies conducted to date [1], [3], [7], [8], and [9]. Information about
drivers is typically provided by engineers experienced in the characterization of a
particular driver. All sources of uncertainty must be considered, and the informa-
tion used must be traceable and documented. For drivers which have physical
bounds, such as controlled dimensions or loads with physical upper limits, the
Beta distribution parameterized with location, shape, and scale parameters has
been successfully used [1]. If only bounds are known, a Uniform distribution is ap-
propriate. For a driver such as turbopump speed whose variation can be thought
of as due to the combined influence of a large number of small independent ef-
fects, the Normal distribution can be used. Also, past experience in characterizing
a particular driver such as a material property may suggest the use of a particular
distribution, for example, Weibull, Normal, or Lognormal.

The sparseness of the information typically available for characterizing a stochas-
tic driver, the existence of significant specification error, and the manner in which
driver uncertainty is often described have led to the use of a hyperparametric struc-
ture for driver distributions. For example, to characterize stress concentration fac-

tor uncertainty in a fatigue analysis application example given in [1], information
from engineering analysis was used in establishing upper and lower bounds on
the value for the stress concentration factor. In order to capture the fact that the
most likely value of the stress concentration factor was not known with certainty, a
Beta distribution with a Uniform distribution on the location parameter was used.
This Uniform distribution is the hyperdistribution associated with the stress con-
centration factor uncertainty, and its parameters are the associated hyper-
parameters. This driver distribution is given in Figure 3-18 of [1].

1.2.4 Computational Methods

Monte Carlo simulation has been used as the principal computational method in
the probabilistic failure modeling step of Figure 1.2-2. Monte Carlo simulation is a

general method for probabilistic analysis that can be used with failure models of
any complexity. Continually increasing computer power due to improving
hardware and software is steadily expanding the practical application of such com-
putationally intensive methods as Monte Carlo simulation. Efficient Monte Carlo
techniques can be used to reduce the number of simulation trials for those
problems where computational time would be an issue if direct Monte Carlo simula-
tion were used.
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Alternative computational methods, for example, FORM/SORM, [10] and [11],
and MVFO/AMVFO, [12] and [13], may fail to give accurate results for problems in
which significantly nonlinear models are employed and driver uncertainty is large.
These computational methods can be used in probabilistic analyses which employ
well-behaved failure models, particularly if the failure criterion is expressed explicitly
in a closed form equation as opposed to a complex multistep algorithm. A com-
parison of FORM/SORM with direct Monte Carlo simulation for a flaw propagation
example is given in [14].

Certain analysis methods sometimes employed in failure models, such as finite-
element structural models, may appear to be too computationally intensive for
practical use in a Monte Carlo simulation. However, they can be represented as
response surfaces over the range of variation of significant parameters. Response
surface methods are discussed in References 2, 3, 4, 5, 6, and 7 of Section 3. The

uncertainties of analytical modeling procedures and of the response surface repre-
sentation must be treated as drivers if significant. Computational methods are dis-
cussed further in [1] and [3].

1 -13





Section 1.3

Implementing the PFA Methodology

Application of the PFA methodology to a subset of failure modes selected by
FMEA or other screening procedures will identify those failure modes whose risk of

occurrence is unacceptable. Options for corrective action that could be taken to

control risk are shown in Figure 1.3-1. The PFA methodology produces a risk as-

sessment that is commensurate with the available information. Unacceptable risk

could be reduced by acquiring additional information to reduce the uncertainty of
dominant drivers or by changing the design so that the available information is suffi-
cient.

By conducting sensitivity analyses for selected failure modes with the PFA

methodology, the sources of unacceptable failure risk can be identified in terms of

the responsible drivers, and corrective action can be delineated. Design changes,
improvements in manufacturing processes, additional characterization of loads

and environments, validation of analytical models, improved characterization of

materials behavior, and additional testing are among the options for corrective ac-
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tion that can be quantitatively evaluated by PFA sensitivity analyses. The PFA
methodology can be employed to identify risk sources and corrective actions
during the design, development, and operational phases of a program, thereby
enabling limited financial resources to be allocated more effectively to control
failure risk.

The failure models required for meaningful probabilistic analysis must be
developed in concert with a valid interpretation of relevant experience. Adjudging
failure probabilities, even with the most sophisticated methods, does not imply that
the origins, mechanisms, and consequences of known failure modes are under-
stood and have been properly treated nor that unexpected test observations and
indications of unanticipated failure modes have been pursued until they are under-
stood. An understanding of the causes and mechanisms by which failures occur
is the foundation on which valid failure models must be based.

The PFA methodology can be employed in the design and development process
to avoid the compounding of design conservatisms and margins that unnecessari-
ly increase cost or weight when conventional design approaches are used. In ad-
dition, PFA enables the definition of test and analysis programs focussed on
acquiring information about the most important cost, weight, or risk drivers. PFA is
of particular value in the design and development of systems or components when
uncertainties exist about important governing parameters or when design conser-
vatism and redundancy used in the past must be reduced to meet more stringent
cost or weight requirements.

The implementation of the PFA methodology in development programs would
enable the consistent, risk-based definition of design parameters and of flight readi-
ness evaluation criteria. PFA provides the capability to evaluate failure risk based
on available information and to identify options to control unacceptable risk when
relevant information is sparse and expensive or difficult to acquire. In particular,
the PFA methodology provides a means for avoiding excessive conservatism in
systems design and for more effectively allocating limited financial resources to
control failure risk of lower weight and/or lower cost designs.
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Section 1.4

Report Organization

This report consists of two volumes in which an improved methodology for as-
sessing the risk of occurrence of specific failure modes of spaceflight systems is
presented. Volume I presents examples of the application of the PFA methodology
to crack growth, HCF, and LCF failure modes. Volume II consists of the documen-

tation of the computer software for implementing the methodology in the applica-

tion examples, including user's guides, code execution examples, and listings of
computer programs.

This report and [1] together provide thorough and comprehensive documenta-

tion of the technical approach, methods and procedures of analysis, and computer
software used in applying the PFA methodology to structural fatigue failure modes.
This report presents applications of the PFA methodology to fatigue crack growth
failure of a heat exchanger coil, fatigue crack growth failure of a diffusion bonded

plate heat exchanger, low cycle fatigue failure of a turbine blade, and high cycle
fatigue failure of a turbine blade.

The analysis methods used in crack growth modeling and crack growth applica-
tion examples are presented in Section 2 of this report. In Sections 3 and 4, the
LCF failure model and the HCF failure model for turbine blades are described and

an application example for the LCF model is given. No application example for tur-
bine blade HCF is presented, because collaborative work with Pratt and Whitney
was halted due to ATD program funding constraints. The computer software used
to implement the application examples is documented in Sections 5, 6, and 7 of
Volume I1.

The statistical methods used in applying the PFA methodology to fatigue failure
modes, including the methods used to stochastically represent materials fatigue
life are presented in Section 2.1 of [1]. The computer software used to implement
these statistical methods is documented in Sections 4, 6, and 7 of [1].

An index of topics covered in this report is presented in Tables 1.4-1 and 1.4-2.

The report sections wherein a particular topic is discussed are given in these
Tables. Report sections which discuss the topics generically or with respect to an
application example are listed separately. These Tables enable all the report sec-
tions in which a particular topic is discussed to be located readily.
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Table 1.4-1 Index of Topics Contained in the Report

Topic Generic
Crack

Heat

Exchanger
Co_l

2.5
Analysis Procedures - 2.B

- 2.3Application Examples

Bayesian Updating

Computational Methods

Crack Growth Calculations

Damage Modeling
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ATD-HPFTP

ATD-HPOTP

CT

EXHEX

FAA

FE

FMEA

FORM/SORM

FR

HCF

HEX

HPOTP

JPL

JSC

LCF

MC

MSFC

MVFO/AMVFO

NASA

PFA

PFM

PSD

RMS

RV

SIF

SIN

SSME

TMF

USAF

Appendix 1.A

List of Acronyms

Alternate Turbopump Development Program- High Pressure Fuel Turbopump

Alternate Turbopump Development Program- High Pressure Oxidizer
Turbopump

Compact Tension

External Heat Exchanger

Federal Aviation Administration

Finite Element

Failure Modes and Effects Analysis

First Order Reliability Method/Second Order Reliability Method

Frequency Response

High Cycle Fatigue

Heat Exchanger

High Pressure Oxidizer Turbopump

Jet Propulsion Laboratory

Johnson Space Center

Low Cycle Fatigue

Monte Carlo

Marshall Space Right Center

Mean Value First Order/Advanced Mean Value First Order

National Aeronautics and Space Administration

Probabilistic Failure Assessment

Probabilistic Failure Model

Power Spectral Density

Root Mean Square

Random Vibration

Stress Intensity Factor

Stress/Life or Strain/Life

Space Shuttle Main Engine

Thermal-Mechanical Fatigue

United States Air Force
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Section 2.1

Introduction

The crack growth failure model presented in this report probabilistically com-

putes the life of a cracked structure subjected to cyclic loading. For certain struc-

tural components of spaceflight systems, loads due to vibration, temperature

gradients, aerodynamic effects, and pressure difference combine to cause crack

growth which can result in structural failure. Typically, crack growth at a single criti-
cal location will determine the life of a component.

The approach to modeling crack growth failure taken in this work is illustrated in

Section 2.2. In this approach, Monte Carlo (MC) simulation is employed to estab-

lish a distribution of failure lives, as described in Section 2.2.1. A major element in

this approach is the transformation of loads and other parameters, such as

geometry and material properties, to synthesize a principal stress history. The
details of load characterization and stress analysis are given in Section 2.2.2. A

description of the stochastic crack growth model is found in Section 2.2.3, which is

followed by a description of the crack growth calculations. A schematic diagram of
the crack growth modeling approach is given in Figure 2.1-1.

The probabilistic crack growth model presented in this report is generic in na-
ture, and it was used in crack growth analyses of two Space Shuttle Main Engine

(SSME) components - the HPOTP Heat Exchanger (HEX) Coil and the proposed

ENVIRONMENT AND LOADS STRUCTURAL PROPERTIES

SYNTHESIZE STRESS TIME HISTORIES

1
IDENTIFY CYCLES

1
CHARACTERIZE MATERIALS

CRACK GROWTH RATE BEHAVIOR

1
CALCULATE CRACK GROWTH

1
ESTIMATE LIFE

DRIVER UNCERTAINTIES

Figure 2.1-1 Crack Growth Failure Modeling Approach
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External Heat Exchanger (EXHEX). Descriptions of these two applications of the
probabilistic crack growth model are given in Sections 2.3 and 2.4, respectively. In
each of these sections, a description of the component and the crack growth data
is given. This is followed by the rationale for probabilistic characterization of crack

growth model parameters, i.e., the drivers; and finally, analysis procedures and
results are presented.

The procedure for conducting an analysis with the probabilistic crack growth
model is described in Section 2.5. The results for the intermediate steps of the
probabilistic crack growth analysis of the HEX coil are given in Appendix 2.B.
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Section 2.2

Crack Growth Methodology

2.2.1 Simulation Structure

The Monte Carlo simulation structure used in this work allows the use of a com-
prehensive crack growth model and places no restrictions on the formulation of

the model nor on the types of probability distributions that may be employed to
describe the significant parameters. The MC simulation procedure is easy to under-
stand and implement, especially when a deterministic crack growth algorithm is al-
ready in place [1]. Other computational methods have been proposed, in which
the fatigue crack growth failure is formulated in terms of limit states and the prob-
ability of failure is estimated by first-order and second-order reliability methods
called FORM and SORM [2]. For the FORM and SORM computational algorithms it
is desirable to have the limit state in closed form so that the gradients on the limit
state surface can be calculated analytically. This places restrictions on the type of
crack growth rate models and on all other parameters that one may desire to char-
acterize stochastically. A more detailed description of MC simulation is given in [1],
and an evaluation of the alternative computational methods is given in [3]. A com-
parison of the MC simulation and FORM/SORM computational methods in terms of
accuracy and efficiency for the HEX coil is given in [4].

The structure of the MC simulation for crack growth failure analysis is given in
Figure 2.2-1 (descriptions of the symbols in the figure are given in Appendix 2.A).
The number of simulation trials N is user specified. The required simulation size is
a function of the failure probability at which a life estimate is desired and the

precision required. For the crack growth applications, simulations of 10,000 trials
were used for characterizing reliability and simulations of 1000 trials were used for
marginal analyses to assess the importance of individual input parameters. The

simulation generates a set of failure lives. In order to assess failure probability, the
left-hand tail of the simulated distribution of failures is represented in an analytical
form which allows for the use of Bayesian updating in order to combine simulation
results with operating experience, as described in [1].

A deterministic crack growth failure model is embedded within the simulation

structure, as shown in Figure 2.2-1. The failure model expresses the crack growth
life as a function of drivers which may be either deterministic or stochastic. The

drivers consist of geometry, loads, environmental parameters, material properties,
and parameters which account for uncertainties in these driver specifications. Un-
certainty about the analysis is formally included by means of model accuracy fac-

tors, which are also treated as drivers. Uncertainty in a driver is characterized by a
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Figure 2.2-1
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' FOR C,m,n,p,&q

CRACK GROWTHI

RATE DATA I

Crack Growth Failure Simulation Structure

probability distribution over the range of values the driver can assume. The driver
distributions are specified to account for both intrinsic variability and uncertain

knowledge or limited information, as discussed in Section 1.2.4 of [1]. For the
crack growth applications, Uniform, Normal, and Beta distributions were used to
characterize the drivers.

2.2.2 Load Characterization and Stress Analysis

In the applications presented here, vibration loads are primarily responsible for
crack growth which can result in structural failure. Rocketdyne has characterized

the vibration environment of the SSME by power spectral density (PSD) envelopes
for different vibration zones, as discussed in Section 2.2.1.2 of [1]. In the proce-

dures employed by Rocketdyne and NASA/MSFC, data for characterizing the
SSME vibration environment are obtained from engine hot fire tests. The accelera-
tion PSDs are processed to derive design envelopes which are a part of the cur-
rent R5 vibration load criteria [5]. A detailed description of the loads analysis is
given in Section 2.2.1.2 of [1].

The static and dynamic analyses to determine forces at various locations in the
structure, as performed by Rocketdyne using FE models, are described in Section
2.2.1.2 of [1]. Modal dynamic analysis procedures were used to perform random
vibration (RV) and frequency response (FR) analyses. The first step prior to modal
analyses requires the extraction of the eigenvalues of the system. The FE results
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at the location of interest were used by JPL in the probabilistic crack growth
analysis.

In the procedure used by JPL, the design envelope loads (i.e., Rocketdyne's
design values which are conservative) were adjusted to estimate nominal loads.
Scale factors used to adjust the load distribution were based on such information

as coefficients of variation and coverage factors of the raw PSD sample popula-
tion. If strain gage measurements were available, the mean of the scale factor was
further adjusted to reflect the acquisition of this additional information. A detailed

discussion on the load factors is given in Section 2.1.3.2 of [1].

2.2.2.1 Stress Analyses for the HEX Coil

The commercial software package STARDYNE [6] was used by Rocketdyne to
analyze the HEX Coil, shown in Figure 2.3-2, represented by line finite elements
(e.g., beams, pipes). This approach provides accurate estimates of beam-end

forces, which were extracted at a node close to the location of interest. The beam

bending and cylindrical pressure vessel equations were employed to derive the

stresses. The beam force-to-stress mapping is described in Section 2.2.1.3 of [1].
These beam-end forces were used as input to the probabilistic crack growth duct
analysis programs developed by JPL.

In the JPL probabilistic crack growth program, stresses at the location of interest

in a duct are calculated using the beam-end forces derived from the FE analyses,
thermal gradient, and internal and external pressures. Figure 2.2-2 describes the

geometry and the nomenclature for a duct. The stress equations for an elbow

duct, based on the ASME pressure vessel code [7], were used in the JPL program
and are given in Section 2.2.1.3 of [1]. The equations given below are a special

case of the elbow duct equations for a straight pipe. Only the expression for the

longitudinal stress is given below, since its magnitude for the HEX coil application

is much larger than the other stress components. This allows the maximum prin-

cipal stress in the duct, which governs crack growth, to be assumed equal to the
longitudinal stress. The longitudinal (axial) stress in the duct is:

ax = Ko_F + COS _ + sin _ --_ + (Pi _ Ri2- PO) Ro 2 _ Ri 2 + OTH
(2-1)

in which the thermal stresses at the inside and outside wall are:

O'TH
I 2Ri2R°2 I

AT a E R 2 Ro

Ro 1-(Ro2_Ri2) In --_ii
2(1 - v) In -_..i

(2-2)
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Vz

plane X - Y _ Mz

P

Figure 2.2-2 Geometry of Duct

A positive AT will result in tension in the outer wall and compression in the inner
wall.

The notation for the above equations is as follows:

Pi, Po = internal, external pressures

R = radius where the stress is to be found

Ri, R o = internal, external radii

P = axial force along axis x

My, M z = moments about axes y and z

KOFF = stress concentration factor due to weld offset

AT = temperature difference across wall Tin - Tout

E = Young's modulus

a = thermal coefficient of expansion

v = Poisson's ratio

_, =

A =

angle between z-axis and critical location on the circumference

cross-sectional area

I = cross-sectional moment of inertia

The factor Ko_ is the stress concentration due to weld offset. The relation used

to estimate the stress concentration factor is given in Section 2.2.1.3 of [1] as
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in which ,;Lo,,Fis the weld offset accuracy factor and Fk is a stress reduction factor

which is based on the radius to wall thickness ratio R/t. A piecewise linear Fk vs.

R/t curve was used to obtain Fk for a given value of R/t. This Fk vs. R/t curve is
given in Section 3.A.2.3 of [1].

2.2.2.2 Stress Analyses for the EXHEX

The stress analyses for the EXHEX, shown in Figure 2.4-2, were performed by
Aerojet using the commercial software package ANSYS [8]. A two-dimensional
plane strain FE model was used for static stress analysis and a three-dimensional

FE model with iso-parametric brick elements was used for the dynamic analysis.
To enable the assignment of support accelerations, the eigenvalue analysis which

preceded the modal random vibration and frequency response analysis was per-
formed with a large mass assigned to the bracket attachment nodes. The material
properties for the solid or "land" areas and porous or "channel" areas in the core

were assigned in the FE model via a "solidity factor" [9].

(2-3)

2.2.2.3 Stress Summation

The stresses due to static and dynamic load sources are combined to derive the

history a(t) for the axial stress component ax for the HEX coil and the vertical stress
component az for the EXHEX as follows

NLOAD

o(t) = "_ST }LSTstr OST -F _ '_Di '_DYNstr GDi(t) (2-4)

i=1

= accuracy factor on the static load source

= static stress analysis accuracy factor

= stress due to static loads

= accuracy factor on the ith dynamic load source

= dynamic stress analysis accuracy factor

= time history for stress due to/th dynamic load source

= total number of dynamic load sources

in which

_lST

"_STstr

Osm

"_DYNstr

aoi(t)

NLOAD

The static stresses for the HEX coil and EXHEX are due to pressures and tempera-
tures. The HEX coil has secondary static loads from misalignment, gimbal displace-
ment, fluid momentum, and acceleration loads. Those static loads and the non-

vibration component of the aerodynamic loads are specified as concentrated
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nodal forces P, My, Mz, etc., for the stress calculation. The primary dynamic load
sources for both components are due to random vibration and superimposed
sinusoidal forces. The HEX coil also has a vibrating component of the
aerodynamic load.

An efficient form of the calculation given by Equation 2-4 was implemented for
summing the stresses from dynamic loads. First, reference time histories were
derived for each dynamic load source. The reference histories due to a random
load were generated for a standard deviation of unity. The sinusoidal reference
time histories were generated with an amplitude of unity. The reference histories

were generated in a separate computer program [1] and used as input for the
probabilistic crack growth program. The non-time varying stress amplitudes

were used to scale the reference histories. For the HEX coil the _ are the lon-

gitudinal stresses derived from Equation 2-1 using the root mean square (RMS)
values and maximum amplitudes of the beam-end forces obtained from the RV
and FR analyses, respectively. For the EXHEX the _ are the RMS values and

amplitudes of the az stresses obtained from the RV and FR analyses. The im-
plementation of Equation 2-4 may be written as

NLOAD

O(t) = '_'ST '_'STstr GST + _ _'Di Jl"DYNstr _ oi(t)

i=1

(2-5)

in which ai(t ) is the reference time history for the tth dynamic load source.

For the HEX coil, Rocketdyne performed separate RV and FR analyses by apply-
ing the excitation along each global direction x, y, and z. Thus, the total stress
response is the summation from responses in each direction. The dynamic stres-
ses in Equation 2-5 for the three directions are given by

(2-6)

The reference time histories for the different load sources in a given direction were

generated by assuming that they were fully correlated. However, across the three
directions x, y, and z, the histories were assumed to be uncorrelated.

For the EXHEX only the response along global direction z was considered.
Thus, an additional step for summing the stresses from the three input directions
was not needed.

2-10



2.2.3 Stochastic Crack Growth Model

The generalized Fcrman model [10] was chosen as the basis for the stochastic
crack growth rate model. The Forman equation is

da _ C(1-R) rn AK n [ AK - Z_I_KTH]P (2-7)

dN [ (1-R)Kc -zMK ]q

in which da/dN is the crack growth rate, AK is the stress intensity factor range,

Z_KTH iS the threshold stress intensity factor range, Kc is the critical stress intensity
factor, R is the stress ratio, and C, n, m, p, and q are the model parameters. The

generalized Forman equation was chosen as the starting point because it captures
the crack growth behavior in all of the growth rate regimes and, as will be shown
below, it can be directly extended to a stochastic crack growth rate model.

Unlike crack initiation data, fatigue crack growth rate data above 10 -7 in./cycle
and below 10 -3 in./cycle do not exhibit a large amount of life variation. This can be

seen by examining the extensive data sets of [11] and [12] in which, for the same
initial crack size, the ratio between the shortest and longest life is typically much
less than two. This variation in the mid-rate region is small compared to the life
variation that may occur due to uncertainty in other material properties such as
Z_KTH, stresses, initial crack geometry, etc. Many empirical da/dN vs. AK plots

found in the literature seem to suggest that crack growth rate data scatter is large
but this is an artifact of data gathering and data reduction. However, this localized
growth rate scatter is not significant, as may be seen by comparing the low
variability in lives to the much higher scatter in growth rates derived for the same

data in [11] and [12]. The generalized Forman model can be easily employed to
model variability of crack growth rate in the mid-rate region by stochastically vary-
ing C in Equation 2-7, although for the reasons outlined above it was deemed un-
necessary.

In contrast to the crack growth in the mid-rate region, the uncertainties in the

high- and low-growth rate regions can be significant. This uncertainty is due to
both intrinsic growth rate variability and lack of information in these reqions, and it
may be represented as uncertainty of the stress intensity range values which are
asymptotes to the crack growth rate curve at its upper and lower ends. The uncer-
tainty in the asymptotes is readily captured by using two stochastic scale
parameters _KT, and ;tK_.The first one modifies the nominal value of the lower

asymptote _KTH and the second parameter shifts the upper asymptote (1 - R) Kc.
Thus, the stochastic crack growth rate equation is given by
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__ = 1.0

,/ i" ii I

IKT H = 0 1_ .t:__

I I

Figure 2.2-3 Description of the Stochastic Crack Growth

Equation in Log-Log Space

da C(1 -R) rn Z_K n [ Z_K - ,a,KrH Z_KTH ]P

dN [ (1-R) Kc - ]q
(2-8)

The uncertainty in IK_ and IK= may be characterized by probability distributions, or

they may be treated parametrically as was done in the analyses of the HEX coil
and EXHEX. Figure 2.2-3 shows the effect of perturbing IK_ and IK_ in the growth

rate Equation 2-8. If there is uncertainty due to sparseness of data, or if the
material test conditions do not closely represent the component operating environ-
ment, some of the other equation parameters may also be modeled stochastically.
For the EXHEX, crack growth rate data was only available for a single stress ratio
R, and it was not possible to estimate the parameter m which drives the stress-

ratio effects in the mid-rate region using a least squares fit of Equation 2-7. In this
case, the uncertainty in m was captured by describing m stochastically, based on
values observed for similar materials.

As shown in Figure 2.2-1, the mean crack growth rate equation, which is an
input to the crack growth model, is typically determined by performing a regres-
sion on crack growth data. The parameters C, m, n, p, and q are estimated by a
least squares fit of the growth rate Equation 2-7, as follows:
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InC + m In(1 - R) + n InAKi

+ p In[ AKi - AKTH ] -- q In[ (1 - R)Ko - z_Kj] (2-9)

in which Ko and z_kKTH are specified exogenously. The information available to estab-

lish Ko and _,KTe is application dependent. For the HEX coil, where threshold crack

growth rate data were available at several values of R, the following threshold
model [10] was used.

_(_TH >-- (1-CoR) d Z_KTHo (2"10)

where the inequality is a consequence of requiring that Z_KTH be a "threshold" in

the sense that all AK data points used to determine the threshold must be greater

than the estimated threshold. The parameters d and C Ocan be estimated by a non-
linear least squares fit of the threshold model, as follows:

InAKTH = d In(1-CoR) + Inz3,KTHo (2-11)

T,,va.ueo, ,,ti,..,-.ateOE ](1 - CoR) d to satisfy the inequality.

A similar model could be used to characterize KO. However, for the HEX coil and
EXHEX, KOwas modeled as a fixed parameter since the z_K values for these ap-

plications were in the threshold region and life was not sensitive to the value of KO.

2.2.4 Crack Growth Calculations

The software developed for performing crack growth analysis synthesizes a
stress history due to dynamic load sources and uses a linear elastic fracture

mechanics formulation. The stress cycles were obtained by performing a cycle
count on the composite stress time history. The rainflow cycle counting method
described in Section 2.2.1.4 of [1] was used. The information from the cycle count-,
ing was assigned to a stress level vs. number of cycles table. One hundred stress
level ranges were used for the table.

The load interaction in growth calculations was accounted for using the general-
ized Willenborg [13] retardation model. In this model the minimum and maximum

stress intensity factors (SlF) are reduced based on the sizes of the plastic zones
due to an overload and the current load. That is,
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(2-12)

Kmin.eff = Kmi n - Kre d

in which the SIF reduction is

Krnax.req - Kma x (2-13)

RSO- 1

RSO is a parameter of the generalized Willenborg model and Kmax.req is the SIF re-
quired to extend the current plastic zone boundary to the overload boundary and it
is given by

ao + rDo - ai
Kr, ax.mq = ay 7

(2-14)

in which OF is the yield stress, ao
at overload cycle, respectively, and ai is crack length at the current cycle. _, is a

geometry factor that is for plane strain and _ for plane stress. The plastic

zone size is given by

y K2=x

rp- ay

and rpo are the crack length and plastic zone size

(2-1s)

In the calculation of the effective K values, if Kmin.eff < 0 then Kmin.eff = 0. The ef-

fective SIF range and stress ratio due to retardation that is used for growth calcula-

tion are given by

= Km x.. - Km,n.. (2-16)

Kmin.eff

R eff -

A single typical value of RSO = 2.3 was used since crack growth retardation ef-

fects were not significant for the HEX coil and EXHEX. If retardation is significant

the empirical parameter RSO may be characterized stochastically to model the un-
certainty.

Since the traditional cycle-by-cycle crack growth life calculation is computational-

ly intensive, an extremely fast yet accurate block-by-block approach first intro-
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duced by Brussat [14] is used here. A block is a repeatable segment of the applied
loads. For the HEX coil and the EXHEX, the loading blocks were the aggregated
reference time histories of one-second duration. A duration of one second was suf-

ficient to represent the probabilistic characteristics of the applied loads. In the

block approach, a block growth rate, da/dB, is calculated at distinct crack lengths,
starting from the initial crack length ai to the final length af, by summing the crack

growth rates, da/dN, from Equation 2-8 that correspond to _Kef f and Re# for each
stress level in the load block, as follows:

dB - _-, ni
i=1

(2-17)

in which n i is the number of cycles at the fth stress level.

Although the crack length is held constant and the ratio of the stress intensity
factor to stress is computed only once at every crack segment, the retardation
parameters are changed appropriately for the cycles in each stress level of the

loading. The life is computed by numerically integrating the inverted rate per block
between the initial and final crack length. The life in seconds is

af

L = ,a.gro T
a

i

(2-1s)

in which Zgro is the uncertainty in the growth calculation and T is the length of a

load block in seconds. This calculation is performed as a summation over unequal-
ly divided NCR L crack lengths, as follows:

L = ,,t.gro T
j=l J

(2-19)

Comparisons were made between lives predicted using the block approach and
the cycle by cycle approach. The block rates were calculated at unequally incre-

mented crack lengths from the initial crack length a i to the final crack length af. By
using small crack length increments at the start and larger increments near the

end, only twenty-five crack lengths were required to keep the life estimates, by the
block approach and by the cycle-by-cycle approach, to within a few percent.

For block growth calculation in two directions, a and c, the crack length incre-
ment in the c direction AC is determined using the information that Ac/Aa =
(dc/dB/da/dB), given the increment in the a direction Aa. A flowchart for the

crack growth calculations is given in Figure 2.2-4.
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Section 2.3

Heat Exchanger Coil Case Study

2.3.1 Component Description

The heat exchanger is a coil pack installed in the oxidizer side of the hot gas
manifold and is shown in Figure 2.3-1. It converts liquid oxygen tapped from the
discharge of the high pressure oxygen turbopurnp (HPOTP) to gaseous oxygen
for the vehicle oxygen tank and the POGO accumulator pressurization system. The
cross flow of the hot turbine exhaust gases from the HPOTP provides the heat
energy required to gasify the oxygen. The coil pack consists of a helically wound
small tube approximately 30 inches long (primary tube) in series with two larger
tubes, each approximately 300 inches long (secondary tubes). The tubes are
macle of 316L CRES stainless steel. The critical location is at weld 3 on the small

tube outlet near the bifurcation joint, as shown in Figure 2.3-2. Analyses by Rocket-
dyne showed that weld 3 stresses control the life for the HEX coil. Failure was at-

tainment of a through-the-thickness crack in the tube wall. A HCF failure analysis
for the HEX coil is presented in [1].

Figure 2.3-1 HPOTP Heat Exchanger
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Figure 2.3-2 Detail of the HPOTP Heat Exchanger Coil Near
Weld 3

The standard stress intensity factor solution given in NASA/FLAGRO [10] for a
semi-elliptic crack in a finite width plate subject to axial and bending stresses was
employed to calculate _ for the heat exchanger tube. The use of the finite width

plate solution for the duct is schematically shown in Figure 2.3-3. The temperature

difference across the wall of the tube (cold inside and hot outside) induces sig-
nificant thermal stresses over the thickness, whose variation across tube thickness

is similar to that of bending stresses. Umited finite element analyses were per-
formed to evaluate the approximations involved in using the finite width solution

and in modeling the thermal stress as an applied bending load. Standard stress in-

tensity factor solutions for cylinders with radial cracks, subjected to bending stres-

ses over the thickness, are not available. The SlF expressions used in the analysis
are given in Appendix 2.D.1.

2.3.1.1 Crack Growth Rate Data

Crack growth rate data [15] were available for welded 316L at stress ratios of R

= 0.16, 0.7, and 0.9. The low growth rate data were used to fit the model given by
Equation 2-10, which resulted in the following values for threshold stress intensity

range model parameters: AKTHo = 4.03 ksi ivq-_., C o = 1.07, and d = 0.163. The

entire crack growth data set was employed to derive the parameters of the general-

ized Forman model which is given by Equation 2-7. This gave the following model

parameters: C = 1.139 x 10 -9, n = 1.900, m = 0.856, p = 0.478, and q = 0.988.

The mean growth rate curves for three stress ratios are given in Figure 2.3-4..
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2.3.2 Driver Description

A description of guidelines for driver characterization in a probabilistic failure
analysis is given in [1], [3] and [16]. From among the load, dimension, and en-
vironment parameters that were used for the HEX coil stress analysis, a total of
nineteen drivers were identified. Included were five drivers, which accounts for ac-
curacy of the analysis model. The relative importance of uncertainty in these

drivers was studied via a sensitivity analysis described later. The drivers for the
HEX coil crack growth analysis, their distributions, and parameters are given in
Table 2.3-1. The drivers unique to the crack growth analysis of the heat exchanger
are discussed below, and the remaining drivers are discussed in Section 3.2.2 of
[1].

In general, the drivers may be uncorrelated or correlated, and the correlation
structure may be specified explicitly or implicitly. For many drivers, there are physi-
cal reasons why they are uncorrelated. In the HEX coil analysis, all the drivers ex-
cept the flow conditions (wall temperatures and internal pressure) are
uncorrelated. The correlation in the flow conditions was implicitly specified in the
driver transformation by requiring the inner and outer wall temperatures and inter-
nal pressure to increase and decrease according to the governing physics.

The initial crack shape aspect ratio a/c was modeled using a Uniform distribu-
tion with end points of 0.2 and 1.0. The crack geometry was then defined by treat-
ing initial crack length, aj, parametrically. The analysis was run with the value of a i
fixed at 0.001 in., 0.0025 in., 0.005 in., and 0.0075 in. The crack shape distribution
was based on an assessment of the crack aspect ratios that could result from the
manufacturing process used for the weld joint.

The parameters '_'KTHand ;LK_were also treated parametrically. From preliminary

analysis it was determined that growth would be primarily in the threshold region.
Thus, the location of the threshold, i.e., the uncertainty factor ;LK_, governed crack

growth. The tube wall thickness is nominally 0.0125 in., which leads to the concern
that "short crack" behavior may be relevant to this case. Short crack growth rate
curves have been observed not to have definite thresholds [17]. If a threshold
exists, it is a conservative assumption for the linear segment of the curve in the
mid-rate region to be extrapolated down into the threshold region. Fixing ,_.Km = 0

in Equation 2-8 accomplishes this, as shown in Figure 2.2-3. Due to lack of any in-
formation on short crack behavior of welded 316L, a value of _.KTH = 0 was

employed to bound the failure probability. Analyses were also performed with
values of _'KTHat 0.1, 0.2, etc., to study the impact of the threshold location. Since

growth was in the low rate region, the driver ZK_was not relevant, and its value was

arbitrarily fixed at unity.
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Table 2.3-1 Description of Drivers Used in the HEX Coil Analysis

DRIVER DISTRIBUTION

Initial crack size ai, in.

Initial crack shape a/c

Threshold stress intensity factor range
accuracy factor ,_KTH

Fracture toughness accuracy factor _Kc

Random load adjustment factor
_.DRANDOM

Sinusoidal load adjustment factor
_DSINUSO/DAL

Fixed

Uniform

Fixed

Fixed

'Normal ]

,k=2.0
C = 0.15|

Normal

k=2.0

C = 0.20

RANGE

.0010 to .0075

.2 to 1.0

0.0 to 1.0

0.0 to 1.0

Aerodynamic load factor_AERODY N Uniform .5 to 1.5

Aerostatic load factor }tAEROsT Uniform .8 to 1.2

Inner wall temperature Ti (°R)

Outer wall temperature To (°R)

Internal pressure Pi, ksi

Inner diameter Di, in.

Wall thickness t, in.

Dynamic stress analysis accuracy factor

2tDYNstr

Static stress analysis accuracy factor

ASTstr

Stress intensity factor calculation
accuracy factor _sif

Growth calculation accuracy factor 2tgro

Neuber's rule accuracy factor _neu

Normal _, a 2)

,/_ ~ Uniform (486, 666)

a ~ Uniform (29, 56.5)

Normal (.u,o =)

u ~ Uniform (799, 908)

o ~ Uniform (48, 49.5)

Normal _, a =)

/v "" U (3.808, 4.177)
o"-- .069

Beta (p,8)

p --.5

e ~ Uniform (.5, 20)

Beta (p,8)

p = .27

8 ~ Uniform (.5, 20)

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform
Weld offset stress concentration accuracy
factor,_OFF

.1885 to .1915

.0113 to .0157

.8 to 1.2

.9 to 1.1

.9 to 1.1

In V2 to In 1.75

.6 to 1.4

.8 to 1.2
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The stress intensity factor calculation accuracy factor _s/f accounts for the error
in the standard stress intensity factor solution and the uncertainty associated with
employing a finite width plate solution for a crack in a cylinder. A Uniform distribu-
tion was used for _.sifwith a range of 0.9 to 1.1. These values are based on the

reported error for the stress intensity factor expressions and the level of approxima-

tion estimated for this application. The growth calculation accuracy factor _'oro ac-
counts for uncertainties in the block-by-block growth calculation and in

transformation of a variable amplitude stress history to a constant amplitude stress
vs. number of cycles table using rainflow counting. Evidence in the literature indi-
cates that factors of two between the calculated crack growth life and tests are ap-
propriate. Since crack propagation is the result of a number of multiplicative
events, the distribution on hero was specified in log space. A Uniform distribution

was used with the lower bound set at In(1/2). In order for the mean value of _,gro to
be 1.0, the upper bound was set at In(1.75).

2.3.3 Analysis

The program PROCRK was employed for probabilistic crack growth analysis of
the HEX coil. MC simulations were usecl to derive the failure life distribution. Static

and dynamic analyses to determine beam-end forces were conducted by Rocket-
dyne on 3-D finite element models. The static analyses took account of the loads
due to misalignment, gimbaling, acceleration, and fluid momentum. Static beam-
end forces were obtained at a node closest to the critical location from these

analyses. Similarly, the RV analyses provided the RMS beam-end forces and the

expected frequencies, and the FR analyses gave the beam-end force amplitudes
at the critical location. The beam-end forces from the static and dynamic analyses
were used in the crack growth failure analysis performed at JPL. Before perform-
ing failure analyses, preliminary analyses were made to identify the worst circum-
ferential location and to choose a suitable load history length and a random
number seed for the stochastic reference time histories.

In general, the worst circumferential location on a pipe does not necessarily lie
on the bending axes since multi-axial moments can cause the highest stresses to
occur anywhere around the circumference of the pipe. Thus, the worst location
was identified by computing single fatigue life values (i.e., a deterministic run with
nominal values) for different circumferential positions on the duct. This involved

repeating the analyses and varying angle _ in Equation 2-1. The critical circum-
ferential angle corresponds to the analysis with minimum life.

The stochastic reference histories are generated for a given length (in seconds)
of load history. The suitable length for a specific problem is determined by calculat-
ing single fatigue lives, each time increasing history lengths, until the change in the
lives becomes negligible. The histories are generated using a random number
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stream as described in Section 2.1.4 of [1]. Since finite length histories are
employed to keep computational costs down, the occurrence of peaks in the his-
tories will vary with different random number streams. The random number stream

is based on the random number seed input for the analysis. The suitable random
number seed is selected by generating reference time-histories for 21 seeds and
calculating a single fatigue life for each history. The chosen seed is the one that

gave the median life from among the 21 lives calculated. The details of the analysis
are given in Appendix 2.B.

2.3.4 Results

The results of the failure simulation are given in Figures 2.3-5, 2.3-6, and 2.3-7.

Input and output files for the analysis are given in Appendix 2.C.1. The graphs in
Figures 2.3-5 and 2.3-6 present the left-hand tail of the failure distribution for dif-

ferent values of drivers that were treated parametrically. The ordinate of these

graphs is the failure probability. The abscissa is the life in seconds for crack growth
through the thickness of the HEX Coil. The life at 1/1000 failure probability (some-
times denoted by B.1) is usually of interest. The graph in Figure 2.3-7 illustrates the
effects of the crack growth threshold and initial crack size on B. 1 life.

The life estimates in Figures 2.3-5 and 2.3-6 are for a conservative crack growth
threshold, modeled by setting iK,,, = 0. The results in Figure 2.3-5 are given for an
initial crack size a i = 0.005 in. The left curve labeled "all driver variation" is for a

simulation where all the drivers were allowed to vary except a i, IK,_, and IK_. The
"nominal" value shown on the graph is for an analysis with all the drivers fixed at
their nominal or most likely values. Measures of the relative importance of in-
dividual drivers are given in the upper left corner in Figure 2.3-5. These were ob-

tained by finding marginal effects of driver uncertainties on B1 lives using several
sensitivity runs, where one driver was allowed to vary while the rest were held at
their nominal values. The crack shape and the growth calculation accuracy are the
most important drivers with a 90% contribution to decrease in life. The right-hand
curve in Figure 2.3-5 shows the shift to the left due to the variation in the crack

shape and growth calculation accuracy. It was also determined that dynamic loads
variation, weld offset accuracy, stress calculation accuracy, and stress intensity fac-
tor calculation accuracy are moderately important drivers. Neuber's rule accuracy
and inner diameter are not important drivers.

The impact of initial crack size ai on life is shown in Figure 2.3-6. The B.1 life at
95% assurance decreases from 1.5 x 105 seconds to about 2.5 x 104 seconds
when the initial crack size increases from 0.001 in. to 0.0075 in.

For this application, uncertainty due to incomplete knowledge and limited infor-

mation concerning the accurate characterization of analysis models and physical
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driver parameters have a much larger impact on what we can say about failure risk
than does any intrinsic parameter variability. For the HEX Coil, the information avail-
able was insufficient to meaningfully characterize initial crack size and threshold
stress intensity factor for "short cracks". Consequently these important drivers
were treated parametrically in order to show their impact on crack growth life and
to better define information that is needed to reduce failure risk. A tradeoff be-

tween knowledge of initial crack size and knowledge of short crack threshold
stress intensity factor, conditioned on the uncertainties in other drivers, can be in-
ferred from the results shown in Figure 2.3-7.

It can be seen from Figure 2.3-7 that, for a conservative "short crack" threshold

('_'KrH ---- 0) assumption, inspection techniques that can detect 0.005 in. initial cracks
with high reliability are required to achieve a life of about 3 x 104 seconds. On the

other hand, if more representative crack growth data can be generated that can

reliably establish a nonzero growth threshold (IK,,, > 0), then the requirements on
the inspection may be relaxed while achieving the same B.1 life. A summary of the
probabilistic crack growth model and the HEX coil analysis and results may be
found in [18].
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Section 2.4

External Heat Exchanger Case Study

2.4.1 Component Description

The Block II design of the proposed external heat exchanger, shown in Figure
2.4-1, consisted of an inner core of about 300 zirconium copper (ZrCu) platelets
and two stainless steel end plates. The ZrCu core contained about 450 channels

per fuel or oxidizer circuit. The arrangement of the channels in a portion of the core
is shown in Figure 2.4-2. The critical location was taken to be at the channel

corners at mid height of the core based on the highest stress under steady state
conditions. Failure was propagation of the crack to the adjacent channel.

The crack configuration used for the analysis was a crack in a finite width plate
subject to tension [19] shown in Figure 2.4-3. The initial size of the crack is taken
as the width of the channel of interest. The width W used for SlF calculation is
taken as the width of the adjacent land area and the channel width. The SlF ex-

pressions for this crack configuration are given in Appendix 2.D.2.

2.4.1.1 Crack Growth Rate Data

Crack growth rate data was not available for bonded ZrCu material. Limited
C10100 copper crack growth data [20] available from NASA/JSC was used as
proxy for the ZrCu crack growth data. This crack growth data for R = 0.2 was

employed for the regression to derive the parameters C and n of the generalized
Forman model, which is given by Equation 2-7. Since growth data was not avail-
able for different R values, m could not be derived by fitting this data, and m was

set to - 2.0 based on values observed for similar materials. Also, due to sparsity
of data, the other Forman constants were set to p = 0 and q = 0 for performing
the regression. The regression gave the model parameters: C = 3.273 x 10 -9 and
n = 4.148. The value of m was treated as a stochastic driver as described in the
next section. The copper crack growth data did not extend into the threshold

region and reliable threshold region data could not be found for copper or its al-
loys. Hence, a conservative zero threshold was used in the analysis as described
below. The C10100 data employed and the mean growth rate curve for R = 0.2
stress ratio is given in Figure 2.4-4.

2.4.2 Driver Description

A total of ten drivers were identified for the EXHEX analysis. The drivers for the
EXHEX crack growth analysis, their distributions, and parameters are given in
Table 2.4-1. The drivers unique to the crack growth analysis of the EXHEX are dis-
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Figure 2.4-1 Proposed External Heat Exchanger Block II Design
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Figure 2.4-2 Arrangement of the Channels in the EXHEX
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Table 2.4-1 Driver Distributions for EXHEX

DRIVER DISTRIBUTION RANGE

Initial crack size ai. in. Uniform 0.009 to 0.011

Width W, in. Uniform 0.054 to 0.066

Threshold stress intensity factor range accuracy
factor,lKn.t Fixed 0.0 to 1.0

Critical stress intensity factor accuracy factor _Kc Fixed 0.0 to 1.0

Random load adjustment factor,_DRANDOM

Sinusoidal load adjustment factor '_DSINUSOIDAL

t Normal '
k=2.0
C = 0.15

Normal
k=2.0
C = 0.20

Dynamic stress analysis accuracy factor _DYNs_ Uniform .8 to 1.2

Stress intensity factor calculation accuracy factor
,ts/f Uniform .9 to 1.10

Growth calculation accuracy factor Jtgro Uniform In 1/2to In 1.75

Crack growth coefficient m variation Uniform - 1.5 to - 2.5

cussed below, and the remaining drivers are discussed in Section 2.3.2 above and
Section 3.2.2 of [1].

The initial crack, aj, was assumed to be the size of the channel with a nominal
value of 0.010 in. The uncertainty in the initial crack size was assumed to be a
Uniform distribution with a range of 0.009 in. to 0.011 in. which results from a likely
manufacturing tolerance of 10%. The width W for the SlF solution is the distance

between the middle of the areas on both sides of the channel, as shown in Figure
2.4-3, with a nominal value of 0.060 in. Similar to the initial crack size, the uncer-

tainty was assumed to be 10%, and the width was Uniformly distributed in the
range of 0.054 in. to 0.066 in.

The parameters _,KrH, and ZK=were treated parametrically, similar to their treat-

ment in the HEX coil analysis described in Section 2.3.2. Since no reliable data on
the crack growth threshold was available, it is a conservative assumption for the
linear segment of the curve in the mid-rate region to be extrapolated down into the
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threshold region. Fixing ,_Kr, = 0 in Equation 2-8 accomplishes this, as shown in

Figure 2.2-3. Also, since growth was not in the high rate region, the driver _K_was
not relevant, and its value was arbitrarily fixed at unity.

Since copper crack growth data was not available for different stress ratios R,
the Forman constant m could not be derived from the least squares fit of Equation
2.7. The nominal value of m was assumed to be - 2.0 and was used for the least
squares fitting of the Forman constants C and n. The uncertainty in m was as-
sumed to Uniformly vary between - 1.5 and - 2.5.

2.4.3 Analysis

The probabilistic crack growth analysis of the EXHEX was performed using the
program PROCRK. Static and dynamic analyses to determine the stresses were

conducted by Aerojet using ANSYS. The static analyses were performed on a
plane strain FE model and the loads were due to internal pressure and tempera-
ture. The dynamic analyses were performed on an FE model with isoparametric
solid elements consisting of approximately 400 nodes. The dynamic model
employed a solidity factor [8] to assign properties to solid regions and channeled
regions of the ZrCu core. The inverse of the solidity factor was used to recover the
stresses from the analysis within these regions. The stochastic reference histories

were generated for a given length (in seconds) of load history using a random
number stream as described in Section 2.1.4 of [1].

2.4.4 Results

The results of the failure simulation are given in Figure 2.4-5. The input and out-
put files for the analysis are given in Appendix 2.C.2. The graphs in Figure 2.4-5
present the left-hand tail of the failure distribution for different values of drivers that

were treated parametrically. The ordinate of these graphs is the failure probability.
The abscissa is the life in seconds for the crack to grow the width of the land area
in the EXHEX core.

The life estimates in Figures 2.4-5 are for a conservative crack growth threshold,
modeled by setting hEr,, = 0. The left-hand curve labeled "all driver variation" is for

a simulation where all the drivers were allowed to vary except _.K,,,and ;LK_.The
"nominal" value shown on the graph is for an analysis with all the drivers fixed at

their nominal or most likely values. Measures of the relative importance of in-
dividual drivers are given in the upper left corner in Figure 2.4-5. These were ob-

tained by finding marginal effects of driver uncertainties on B1 lives. The dynamic

loads variation, Forman parameter m variation, and growth calculation accuracy
are, together, the most important drivers with a 93% contribution to decrease in
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life. The right curve in Figure 2.4-5 shows the shift to the left due to the variation in
these three important drivers.

This is a preliminary analysis of the EXHEX and it was performed with proxy cop-

per C10100 material data for ZrCu, a conservative SIF solution for a crack at a
channel corner, and under the assumption that the steady state conditions were
critical and that the dynamic loads controlled the life of the component.
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Section 2.5

Analysis Procedure

2.5.1 Introduction

The procedure for conducting a probabilistic analysis of the crack growth failure
mode is outlined here. The relevant statistical and engineering theory is given in
Section 2.1 of [1] and Section 2.2 of this document, respectively.

The overall procedure is schematically described in Figure 2.5-1. Since the pro-
cedure for fatigue failure mode analyses described in Section 2.3 of [1] is similar to

that for the crack growth failure mode, only the materials characterization step that
differs from the fatigue analyses procedure will be described here. A detailed
description of driver characterization, preliminary deterministic analysis, driver
transformation, probabilistic failure model formulation, time history definition, sig-
nificant parameter identification, probability of failure curve parameter estimation,
driver sensitivity analysis, Bayesian updating, and probability of failure curve stand-
ardization is given in Section 2.3 of [1].

The driver characterization and preliminary deterministic analysis steps are car-
ried out in parallel. This information is then utilized in the driver transformation step.
For fatigue and crack growth failure modes, the driver transformation is the map-
ping of the applied loads to stress or strain at the critical location. The key step in
the procedure is the formulation of the probabilistic failure model. This step incor-
porates the driver transformation, stress history, materials characterization, and the
damage accumulation model in a stochastic simulation structure. The materials
characterization is described in Section 2.5.2.

Once the probabilistic model is in place, a set of abbreviated probabilistic
analyses is often employed to identify and eliminate non-life controlling parameters
(e.g., insignificant load components). This step is optional and it was employed in
the EXHEX analysis to identify the significant load components. The next step in
the procedure is a simulation consisting of 10,000 trials. This is followed by the
driver sensitivity analysis, the inclusion of operating experience by Bayesian updat-
ing, and the standardization of the probability of failure curve to a desired as-
surance level.

2.5.2 Materials Characterization

Materials characterization is the process of using the information available to pro-
vide a probabilistic representation of material properties. For the crack growth ap-
plications, the materials characterization model described in Section 2.2.3 has
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DRIVER CHARACTERIZATION

• GATHER INFORMATION AVAILABLE FOR EACH DRIVER
INCLUDING EXPERIMENTAL DATA AND BOUNDS
FOR DRIVERS BASED ON SUCH ANALYSES AS
THERMAL, FLUID DYNAMIC, ETC.

• ASSESS UNCERTAINTY OF THE DRIVERS
• ASSIGN PROBABILITY DISTRIBUTIONS TO THE DRIVERS

PRELIMINARY DETERMINISTIC ANALYSIS

• IDENTIFY LIFE CONTROLLING LOCATION(S)
• IDENTIFY SIGNIFICANT DRIVERS
• DEFINE EFFECT OF DRIVERS ON STRESS OR STRAIN

USING ANALYTICAL AND EMPIRICAL MODELS

DRIVER TRANSFORMATION

• BASED ON THE MECHANICS OF THE
FAILURE PHENOMENON, FORMULATE
EQUATIONS/PROCEDURES THAT RELATE
THE DRIVERS TO STRESS OR STRAIN

MATERIALS CHARACTERIZATION

• OBTAIN CRACK GROWTH
RATE DATA

• EVALUATE THE NEED FOR
AND ESTABUSH A THRESH-
OLD GROWTH OR UN-
STABLE GROWTH MODEL

1
PROBABILISTIC FAILURE MODEL

FORMULATION

• INCORPORATE ELEMENTS OF THE
FAILURE MODEL IN A STOCHASTIC
SIMULATION STRUCTURE

• DRIVER CHARACTERIZATION
• DRIVER TRANSFORMATION
• MATERIALS CHARACTERIZATION
• TIME HISTORY DEFINITION

TIME HISTORY DEFINmON

• GENERATE TIME HISTORIES
FOR STRESS OR STRAIN

• MECHANICAL
• THERMAL

!
SIGNIFICANT PARAMETER IDENTIRCATION

• SYSTEMATICALLY EUMINATE PARAMETERS, E.G., LOAD COM-
PONENTS, THAT HAVE NEGLIGIBLE IMPACT ON THE FAILURE
PARAMETER BY PERFORMING SIMPLIFIED ANALYSES

/ \
PROBABILrTY OF FAILURE CURVE PARAMETER ESTIMATION

• ESTIMATE A CONSERVATIVE BOUND FOR PARAMETER

• GIVEN _, PERFORM NONLINEAR REGRESSION TO
ESTIMATE a AND 8

1

BAYESIAN UPDATING

• USE BAYES' RULE TO UPDATE PROBABILITY OF
FAILURE CURVE BY INCLUDING OPERATING EX-
PERIENCE

DRIVER SENSITIVITY ANALYSIS

• PERFORM SIMULATION FIXING THE DRIVERS AT
NOMINAL VALUES

• PERFORM SIMULATIONS ALLOWING VARIATION IN
EACH DRIVER ONE AT A TIME

• RANK ORDER THE DRIVERS ACCORDING TO THEIR
SIGNIFICANCE

PROBABILITY OF FAILURE CURVE STANDARDIZATION

• GIVEN A DESIRED ASSURANCE LEVEL, ESTIMATE A
CONSTANT ASSURANCE LEVEL PROBABILITY OF
FAILURE CURVE

Figure 2.5-1 Overall Procedure for Crack Growth Failure Mode
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been used. The generalized Forman equation, given by Equation 2-7, was used to

characterize mean crack growth behavior in the two applications described in Sec-

tions 2.3 and 2.4. A least squares fit is performed to derive the Forman constants

from crack growth data for the component material. The first step is to seek crack
growth rate test data generated under conditions that are the same or similar to

the application. Since loading for the component will not be constant amplitude
loading, it is desirable to have the crack growth data for different stress ratios R.

Some preliminary calculations may be performed to determine if growth for the ap-

plication is predominantly in the low-rate (threshold), mid-rate, or high-rate (un-

stable growth) region of crack growth for the specific material. It is then important

to ensure that crack growth data is available for the region of interest. If the region

of interest is the low-rate or the high-rate region, empirical relationships may be es-

tablished to model the variation of the material properties _t,KTH and K c which
define the asymptotes in the Forman equation. For example, if the threshold crack

growth rate region is important, a _TH VS. R model may be established using
crack growth rate data in the threshold region in order to define the lower

asymptote (i.e., the growth/no-growth boundary in crack growth calculations).

Such a model is given by Equation 2-10 and it was used for the HEX coil applica-
tion.
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Appendix 2.A

List of Symbols

a

A

C

C

cla
dN

da
dB

E

F

Fk

I

K

KOFF

L

m

M

n

N

NCRL

NLOAD

half crack length or crack depth for surface flaw; ai = initial crack size; af = final crack
size; ao = crack size at overload; z_a = crack length increment

cross-sectional area of duct

half crack length for surface flaw; ci = initial crack size; Ac = crack length increment

generalized Forman equation parameter

cycle crack growth rate

block crack growth rate

Young's modulus

stress intensity factor (SIF) coefficient for modifying stress; Fo = SIF coefficient for ten-
sile stress; F2 = SIF coefficient for bending stress

stress reduction factor to calculate the weld offset stress concentration factor

cross-sectional moment of inertia of duct

stress intensity factor; Kc = critical SIF; Kma x = maximum SIF; Kmax.eff = maximum ef-

fective SIF after retardation; Kmax.re q = SIF required to extend the current plastic zone
boundary; Kmin = minimum SIF; Kmin.et/ = minimum effective SIF after retardation;
Kred = reduction in SIF at current load due to size of plastic zone

stress concentration due to weld offset

crack growth life in seconds

generalized Forman equation parameter

moment; Mx = moment about x-axis; Mv = moment about y-axis; Mz = moment about
z-axis

generalized Forman equation parameter

number of simulation trials

number of crack lengths

total number of dynamic load sources
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P

P

P

rp

q

R

R

RSO

S

T

T

t

V

W

Wo ,F

¢z

AT

I

,,t

.1,'

generalized Forman equation parameter

pressure; Pl = internal pressure;Po = external pressure

axial force along x-axis

plastic zone size in retardation; rpo = plastic zone size at overload

generalized Forman equation parameter

radius; Ri = internal duct radius; Rm = mean duct radius; Ro = external duct radius

stress ratio = Kmin / Kmax;Reff = effective stress ratio after retardation

Willenborg retardation model parameter

stress; So = tensile stress;S2 = bending stress

length of reference time history in seconds

temperature; Tin = temperature at the duct inner wall; Tout - temperature at the duct
outer wall

wall thickness of duct

shear force; Vy = shear along y direction; Vz = shear along z direction

plate width

decimal equivalent percentage weld offset for duct

thermal coefficient of expansion

stress intensity factor range (Kmax - Kmin); Z_K'eff = effective SIF range after retarda-
tion; AKTH = threshold SIF range; &KTHo = threshold SIF range at R = 0

temperature difference across duct wall (Tin- Tout)

geometry factor for plastic zone size used in retardation

cross-sectional moment of inertia of duct

accuracy or uncertainty factor; '_AERODYN = aerodynamic load factor; _AEROST =

aerostatic load factor; _lDi = accuracy factor on the/th dynamic load source; _lDYNstr=

dynamic stress analysis accuracy; _tgro = growth calculation accuracy factor; _K,, --
critical stress intensity factor accuracy; _tKn_ -- threshold stress intensity factor range
accuracy; _'neu = Neuber's rule accuracy factor; _'OFF ---- weld offset accuracy factor for
duct; '_sif = stress intensity factor calculation accuracy; Jl.ST = accuracy factor on the

static load source; '_STstr= static stress analysis accuracy

Poisson's ratio
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<7

Q

angle between z-axis and critical location on the circumference of the tube

stress; a(t) = principal stress history; ODi(t) = time history due to/th dynamic load
source; _ -- non-time varying stress amplitude; _ = non-time varying stress

amplitude due to load in the x direction; _ = non-time varying stress amplitude due
to load in the y direction; _ = non-time varying stress amplitude due to load in the z
direction; G_t) = reference time history for/th load source; aix(t ) = reference time his-

tory for/th x-direction load source; %,(t) = reference time history for/th y-direction
load source; %(t) = reference time history for/th z-direction load source; <>MEAN=
mean stress; oST = stress due to static loads; aTH = thermal stress; ax = longitudinal
or axial stress; oy = yield stress; ¢rz = stress along the z direction
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Appendix 2.B

Details of Probabilistic Failure Analysis

2.B.1 Introduction

The details of Probabilistic Failure Assessment (PFA) application for the HPOTP

Heat Exchanger Coil crack growth analysis are given here. Each step of the proce-

dure, including intermediate calculations and results, is presented. The general pro-

cedure for the PFA methodology is given in Section 2.5 of this document and

Section 2.3 of [1].

2.B.2 Selecting the Component, Failure Mode, and Critical
Location

The HEX coil is a critical component since a leak in the coil carrying liquid

oxygen can cause the liquid oxygen to mix with the hydrogen outside and cause
loss of the system. The failure mode and critical location for this study were based

on the deterministic analyses that had been performed for the HEX coil by Rocket-

dyne. Since the HEX coil was already in operation at the time of this study, deter-

ministic stress analyses were available for the component. These deterministic

analyses indicated that the stresses at the small tube outlet weld would govern

crack growth life. Thus, it was deemed appropriate to apply the PFA methodology

to evaluate its crack growth failure risk.

2.B.3 Preliminary Deterministic Analysis

The stress, thermal, and fluid flow deterministic analyses performed by Rocket-

dyne were used for formulating the driver transformation and to identify and char-

acterize driver distributions for the PFA. The Rocketdyne stress analyses included
random vibration and frequency response dynamic analyses.

The radius of bend for the coil was relatively large as compared with its cross-

sectional dimensions. This allowed the tube to be considered as a straight pipe for

the stress analysis. As described in Section 2.2.2.1, the beam-end forces close to

weld 3 were extracted from FE analyses conducted by Rocketdyne on a beam
model of the HEX coil. The node and element numbers for the beam model are

shown in Figure 2.B-1. The beam-end forces at node 27 are given in Table 2.B-1.

The aerodynamic loads on the coil due to flow past it were provided by Rocket-

dyne as the maximum static and dynamic stress values. The aerodynamic beam-

end forces given in Table 2.B-la were estimated from the stresses by assuming

the coil to be a simple beam.
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HEX COIL
INLET

"_6 8 "/_ 45, 46

C) Finite Element Number

• Node Number

Figure 2.B-1 Finite Element Discretization of HPOTP Heat

Exchanger Coil-Forces Extracted from Node 27
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Table 2.B-1 HPOTP Heat Exchanger Coil Beam-End Forces
Near Weld 3

(a) BEAM-END FORCES FROM AERO LOADS

STATIC

DYNAMIC

1780 Hz

P (Ib)

0.000

0.000

Mx (in.-Ib)

0.000

0.000

My (in.-Ib)

- 0.072

0.000

Mz (in.qb)

0.000

0.072

Vy 0b)

0.000

0.000

Vz (Ib)

0.000

0.000

(b) BEAM-END FORCES FROM RANDOM VIBRATION ANALYSES

X-DIR

RMS VALUE

FREQUENCY (Hz)

Y-DIR

RMS VALUE

FREQUENCY (Hz)

Z-DIR

RMS VALUE

FREQUENCY (Hz)

P

0.857

236

0.621

84O

0.041

1404

Mx

0.001

634

0.004

8OO

0.014

1018

My

0.004

424

0.009

275

0.050

1224

Mz

0.141

386

0.355

32O

0.007

1336

vy

0.259

740

0.627

1040

0.049

1392

v_

0.019

358

0.016

1011

0.643

1394

(c) BEAM-END FORCES FROM FREQUENCY RESPONSE ANALYSES

FREQUENCY(Hz)

5OO

6OO

1000

1500

1800

2000

P

0.270

0.070

0.126

0.077

0.024

0.074

Mx

0.003

0.002

0.003

0.003

0.0003

0.0009

My

0.010

0.005

0.007

0.019

0.0002

0.003

Mz

0.205

0.015

0.024

0.019

0.003

0.009

vv

0.348

0.035

0.127

0.144

0.035

0.099

Vz

0.052

0.038

0.035

0.307

0.0007

0.077
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The R5vibration environment [4] was employed for the RV and FR STARDYNE
analyses performed by Rocketdyne. The HEX coil was primarily excited by the R5
zone G vibration environment. Analyses were performed for excitations applied
along the X, Y,and Z directions. The RMSbeam-end forces and the corresponding
force velocities were extracted at node 27 from the RVanalysis output. The RMS
force magnitudes given in Table 2.B-lb are the averages of the RMSvalues from
element numbers 25 and 26 on both sides of node 27.The expected frequency for
each force component was calculated using the corresponding force velocity. The
beam-end force amplitudes were extracted for node 27 from th_ analyses out-
put. The forces given in Table2.B-lc are the sum of the amplitudes from X, Y,and
Z direction FR analyses.

For the HEX coil, a deterministic module, which was a variation of the module
embedded in the simulation loops, was used to test the driver transformation and
scan the circumference of the duct to find the worst stress position. The analysis
for location of the worst stress position on the circumference was run with single
cycle time histories -the amplitude of the random reference histories was three,
and the amplitude for each sinusoidal reference history was one. Table 2.B-2
gives the outcome of the deterministic analysis for finding the critical location at the
circumferential angle of 85 = in the HEX coil.

2.B.4 Driver Characterization

The list of drivers for the HEX coil, their distributions, and ranges are given in
Table 2.3-1. The rationale for assigning the distributions for these drivers was
presented in Section 2.3.2. The information used to describe some of these dis-
tributions and the specification of the distribution parameters are given here.

2.B.4.1 Weld Offset
Weld offset measurements were available from ten coils at weld 3. Table 3-9 of

[1] gives the serial numbers of the coils and the weld offsets in inches. This data
was considered inadequate to assign a probability distribution and hence the weld
offset was treated parametrically. The average percentage weld offset from the
measurements of 6% was used here.

2.B.4.2 Wall Temperature and Internal Pressure

The ranges of temperatures and internal pressure obtained from an engine
balance model were provided by Rocketdyne. These were the nominal, or mean,
values of the temperatures and pressure for minimum and maximum flow condi-

tions and they are given in Table 3-10 in [1]. For the PFA, the temperatures and
pressure were characterized with hyperparametric Normal distributions. That is,
the mean and standard deviation of the Normal distributions themselves were char-

acterized by Uniform distributions whose endpoints correspond to the driver
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Table 2.B-2
Scanning Circumference for Critical Angle Causing
Minimum Life

ANGLE (deg)

0

4O

6O

70

75

80

85

90

100

120

160

200

240

280

320

LIFE (secs)

1.1195 x 104

9.3847 x 102

5.7924 x 102

5.1228 x 102

4.9427 x 102

4.8477 x 102

4.8318 x 102

4.8941 x 102

5.2740 x 102

7.6050 x 102

6.2194 x 103

8.0868 x 103

1.1815 x 103

1.042 x 103

5.1179 x 103

values given in Table 3-10 of [1] for the minimum and maximum flow conditions.

The variations of the temperatures and pressure were correlated such that they as-
sumed values that corresponded to the same flow condition; the correlation was
specified implicitly in the PROCRK program.

2.B.4.3 Weld Offset Stress Concentration Accuracy Factors

The weld offset stress concentration is given by Equation 2-3, and the Fk factor

in this equation was determined using finite element stress analyses of detailed
models of the weld region as described in Section 3.A.2.3 of [1]. The Fk factors

were determined to be functions of the radius to thickness ratio R/t. The offset

stress concentration accuracy factor,a.oFF accounts for the uncertainty in the Fk vs.

R/t curve and it is characterized by a Uniform distribution with end points of 0.9
and 1.1.
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2.B.5 Materials Characterization

As described in Section 2.3.1.1 crack growth data was available for welded 316L
at stress ratios of R = 0.16, 0.7, and 0.9. The data was generated from tests on
Compact Tension (CT) specimens with a thickness of 0.340 in., a width of 1.750
in., and a starter notch of 0.435 in., and hence the validity of the data was in ques-
tion, for use in the HEX coil with "short cracks" in a tube with only 0.0125 in.

nominal wall thickness, especially in the threshold growth region of the data.

The crack growth rate data generated at 400°F was used for the HEX coil ap-
plication. Decreasing K-gradient tests were used to obtain the low growth rate data
and increasing K-gradient tests were used to generate data in the higher growth
rate region. The crack growth rate data points are given in the input file CRKDAT in
Section 2.C.1. The low growth rate data were used to fit the model given by Equa-
tion 2-10, which resulted in the following values for threshold stress intensity range
model parameters: _I(THo = 4.03 ksi ave., Co = 1.07, and d = 0.163. The entire

crack growth data set was employed to derive the parameters of the generalized
Forman model which is given by Equation 2-7. This gave the following model
parameters: C = 1.139 x 10 -9, n = 1.900, m = 0.856, p = 0.478, and q = 0.988.
The mean growth rate curves for three stress ratios are given in Figure 2.3-4.

2.B.6 Time History Definition

The time histories were generated as described in Section 2.1.4 of [1]. The fre-
quencies f of the random and sinusoidal load components for the HEX coil are
given in Table 2.B-1. If the highest frequency among the significant load com-
ponents is frnax, then the number of points that will be generated is given by

N. fmax"T, where T is the length of the history in seconds and N is the number of
points within a single cycle of the highest frequency history. The length and the in-
itiating random number seed for the reference time histories were decided based
on the lives calculated with 21 random number seeds and lengths of T = 1.0, 2.0,
3.0, 4.0 seconds. The lives were calculated with nominal driver values and are
given, for each value of T, in Table 2.B-3. The desired random number seed and
history length are those which correspond to the life near the median life and the
shortest value of T for which the calculated life is close to those for higher values of
7". From Table 2. B-3 the chosen seed was 1475 and the optimum length was 1.0
sec.

2.B.7 Probability of Failure Curve Parameter Estimation

The steps required to carry out the probability of failure curve parameter estima-
tion for this HEX example are given in Figure 2.B-2. This procedure was used to
obtain the results discussed in Section 2.3.4. Only the calculations for the 0.005

in. initial crack size will be presented in this section.
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Table 2.B-3 Lives for Different Random Number Seeds and

History Lengths

SEED

175

275

375

475

T=I

1,7238 x 105

1.7536 x 105

1.6713 x 105

1,6684 x 105

T=2

1.7468 x 105

1.7285 x 105

1.6331 x 105

1.6644 x 10s

T=3

1.7593 x 105

T=4

1.7688 x 105

1.7182 x 105 1.7244 x 105

1.8392 x 105 1.6361 x 10s

1.6564 x 105

575 1.6270 x 105 1.6420 x 105 1.6490 x 105

675 1.6480 x 105 1.6656 x 105 1.6364 x 105

775 1.6946 x 105 1.6702 x 105 1.6599 x 105

1.6930 x 105

1.6629 x 105

1.6589 x 105

1.6830 x 105

1.6421 x 105

1.6414 x 105

1.6528 x 10s

875 1.6901 x 105

975 1.6583 x 105

1075 1.6557 x 105

1.6737 x 105 1.6796 x 105

1.6597 x 105 1.6563 x 105

1.6896 x 105 1.7147 x 105

1175 1.6993 x 105 1.6993 x 105 1.6748 x 105

1275 1.6736 x 105 1.6514 x 105 1.6697 x 105

1375 1.6779 x 105 1.6535 x 105 1.8392 x 105

1475

1575

1675

1775

1875

1975

2075

1.6605 x 105

1.6336 x 10s

1.6711 x 105

1.6262 x 105

1.6588 x 105

1.6853 x 10s

1.6205 x 105

1.6383 x 105

1.7516 x 105

1.6740 x 105

1.6124 x 105

1.8345 x 105

1.6243 x 105

1.6226 x 105

1.6443 x 105

1.7050 x 105

1.6523 x 105

1.6828 x 105

1.6793 x 105

1.6578 x 105

1.6276 x 105

1.6566 x 105

1.6728 x 105

1.6491 x 105

1.7257 x 105

1.6497 x 105

1.6745 x 105

1.6862 x 1052175

1.6.960 x 105

1.6586 x 105

1.7193 x 105

1.7160 x 105 1.7140 x 105

1.6683 x 105 1.6478 x 105

The parameters of the prior distribution are estimated by determining a value for
fl, then estimating a and e for fixed ft. The first step in the procedure is to plot the

failure simulation results contained in file LOWLIF for the "all drivers" run. That plot
is shown in Figure 2.3-5. Since the all drivers run is nonlinear, the alternative proce-

dure described in Section 2.3.9 of [1] was used. This run is called the "capability"
run and was carried out by allowing variation in the crack shape, inner diameter,
wall thickness, and offset accuracy factor. The other drivers were held at their
nominal values.
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1 Plot the failure simulation results contained in file LOWLIF in log-log space for both the
=all driver" and "capability" runs.

2 Since the curve for the capability run from probability of .002 to .005, that is, point 20
to point 50 of file LOWLIF, is approximately linear, it can be used to estimate'8.

3 Create file BFITD to indicate the indices of the LOWUF data to be used In the,8
estimation. See Section 6.4.3.1 of [1] for a detailed description of the contents of
file BFITD.

4 Run program BFIT. The pertinent methodology is discussed in Section 2.1.1 of [1]; the
program description and flowcharts are presented in Section 4.2.2 of [1]; the user's
guide for running this program is given in Sections 6.4.1-6.4.6 of [1]; and the code
structure and listing are provided in Section 7.4.1 of [1]. BFIT has two input files,
LOWUF and BFITD, and two output files, BFITO and IOUTPR0

5 Obtain,8 estimate from output files BFITO and IOUTPR. Program BFIT has provided
the estimate of 10.98.

6 In order for <zand 8 to be uniquely determined, it is only necessary to consider the
range .002 to .01, that is, point 20 to point t00 inclusive,of file LOWMF (for the all
driver run), for the estimated curve to be nonlinear in log-log space. Create file
PARAMS to indicate the indices of the LOWLIF data to be used inthe a, 8 estima-
tion, the initial values for <zand 0, and any scaling factors required. See Section
6.4.9.1 of [1] for a detailed description of the contents of file PARAMS.

7 Run program ABTFIT. The pertinent methodology is discussed in Section 2.1.1 of [1];
the program description and flowcharts are presented in Section 4.2.3 of [1]; the
user's guide for running this program is given in Sections 6.4.7-6.4.12 of [1]; and
the code structure and listing are provided in Section 7.4.2 of [1]. ABTFIT has two
input files, LOWLIF and PARAMS, and three output files, ABTOUT, BAYESD and
IOUTPR.

8 Obtain <z,8 estimates from output files ABTOUT and BAYESD. Program ABTFIT has
provided the values 2.68 x 105° for 0 and 4.022 x 10 -3 for <z.

9 Calculate assurance based on estimates of <z,,6,0. The assurance calculation is
performed by program LZERO. The pertinent methodology is discussed in Section
2.1.1 of [1]; the program description and flowcharts are presented in Section 4.2.4
of [1]; the user's guide for running this program is given in Sections 6.4.13-6.4.18
of [1]; and the code structure and listing are provided in Section 7.4.3 of [1].

Figure 2.B-2 Steps of the Probability of Failure Curve Parameter
Estimation
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The `8 estimate is based on an approximate linear portion of the left-hand tail

(.002 to .005 on the ordinate) for this example. This probability range corresponds

to simulated lives with index numbers 20 through 50, inclusive, in file LOWLIE A

value for # is estimated by program BFIT. The pertinent methodology is discussed

in Section 2.1.1 of [1], the program description and flowcharts are presented in

• Section 4.2.2 of [1], the user's guide for running this program is given in Sections

6.4.1 through 6.4.6 of [1], and the code structure and listing are provided in Sec-

tion 7.4.1 of [1]. Program BFIT has provided the estimate`8 --'10.98 for this ex-
ample.

The a and 0 estimate must be based on the all driver run in order to fit amodel

which is nonlinear in log-log space. It is only necessary to consider points with
probability in the range .002 to .01. a, 0 are estimated by program ABTFIT. The

pertinent methodology is discussed in Section 2.1.1 of [1], the program descrip-
tion and flowcharts are presented in Section 4.2.3 of [1], the user's guide for run-

ning this program is given in Section 6.4.7 through 6.4.12 of [1], and the code

structure and listing are provided in Section 7.4.2 of [1].

PARAMS requires initial values 1 for a and 0 that were obtained as follows:

B. 12 = 3.0076 x 104
B1 = 4.8558 x 104

LSCALE 3 = (1 /3.0076x104 ) --3x10 -5

00 = N._ 1 = (3.0076 X 104) 10.9787 ---- 1.4623 x 1049

XGUESS(2) = a o = - In .999 / In 2 = .0014434

10.9787
= .323

Program ABTFIT has provided the estimates 0 = 2.6759 x 105o and a = 4.0227 x

10--". Table 2.B-4 gives the a, ,8, and 0 values which define the left-hand tail of the

1 The calculation of initial values is illustrated in Section 6.4.11 of [1].

2 B-lives were obtained from file LOWLIF. A B-life is the value of the failure parameter
(e.g., failure time) at a failure probability specified as a pereeat: e.g., B.1 is the failure
time at a probability of .001 or .1%.

3 Life scaling factor is described in Section 6.4.9 of [1].

4 Calculation of initial guesses is described in Section 6.4.11 of [1].
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Table 2.B-4 Probability of Failure Curve Parameter Estimates
for Different Initial Crack Sizes

P
o_

8

_o for 95% Assurance

Inital Crack Size ai, in.

0.001 in. 0.0025 in. 0.005 in. 0.0075 in.

10.8485

6.3531 x 10 -3

1.9279 x 1055

9.1242 x 10 .-60

11.0476

5.3007 x 10-3

2.2648 x 1053

1.5619 x 10-58

10.9787

4.0227 x 10-3

2.6759 x 1050

6.1037 x 10 -57

4.20336

6.8452 x 10-3

7.5838 x 1017

4.1468 x 10 -22

probability-life distribution for initial crack sizes of 0.001 in., 0.0025 in., 0.005 in.,
and 0.0075 in.

2.B.8 Driver Sensitivity Analysis

As described in Section 2.3.10 of [1], a set of simulations was executed to ob-
tain the driver sensitivities. The first simulation was the nominal run in which all the

drivers were fixed at their nominal or most likely values. Figure 2.3-5 shows the
output of the nominal simulation for the HEX with a 0.005 in. initial crack size. The

next simulation was the "all driver" variation run, which was performed by allowing
all the drivers to vary. Figure 2.3-5 shows the output of the all-driver run for the
HEX with a 0.005 in. initial crack size.

Finally, the driver sensitivities were derived using simulations for which each
driver was allowed to vary one at a time while all the other drivers were held at their

nominal values. Some related drivers, such as the flow parameters (inner and
outer wall temperatures and internal pressure), must vary together for driver sen-
sitivity analysis. The output from these simulations along with the results from the
aforementioned all-driver variation and nominal runs allows the drivers to be rank

ordered and allows their relative importance to be characterized. The impact of
the drivers was calculated based on the failure lives at the .01 probability level,
given in Table 2.B-5, for the all-driver, nominal, and driver sensitivity runs.

To calculate the relative importance of a driver, the change in life from the
nominal analysis due to driver variation was first calculated as a percentage of the
shift due to the all-driver variation, for each driver. The largest shift was caused by
variation in the crack shape, which is therefore the most important driver. The rela-
tive importance was derived by normalizing the percentage shifts due to variation
of each driver with the percentage shift due to variation of the most important
driver, in this case the crack shape. Table 2.B-5 gives the percentage shift in lives
and the relative importance for each driver.
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Table 2.B-5 Driver Sensitivity Analysis for 0.005 in. Initial Crack
Size

DRIVER

VARIATION

IN ANALYSIS

NOMINAL

ALL DRIVERS

a/c

_gro

_DRANDOM + '_DSINUSOIDAL

_OFF

"_DYNstr+ _STstr

_sif

_AEROsT + _AERODYN

Ti+ To+ Pi
t

_'neu

Di

B1 LIFE

(seconds)

2.2035 x 10`5

4.8558 x 104

9.8132 x 104

1.1161 x 105

1.4930 x 105

1.6354 x 105

1.7330 x 105

1.7588 x 105

1.7849 x 105

1.9324 x 105

1.9472 x 105

2.1482 x 105

2.1773 x 105

SHIFT FROM
NOMINAL

VALUE

1.71792 x 105

1.22218 x 105

1.0874 x 105

7.1050 x 104

5.6810 x 104

4.7050 x 104

4.4470 x 104

4.1860 x 104

2.7110 x 104

2.5630 x 104

5.530 x 103

2.620 x 103

% SHIFT FROM

ALL DRIVERS
CURVE

71.1

63.3

41.4

33.1

27.4

25.9

24.4

15.8

14.9

3.2

1.5

RELATIVE

IMPORTANCE

100

89

58

47

39

36

34

22

21

5

2

2.B.9 Probability of Failure Curve Standardization

In order to standardize the results, the probability of failure vs. life curves were

generated for a given assurance level of 95% by using the program LZERO. The

pertinent methodology is discussed in Section 2.1.1 of [1], the program descrip-

tion and flowcharts are presented in Section 4.2.4 of [1], the user's guide for run-
ning this program is given in Sections 6.4.13 through 6.4.18 of [1], and the code

structure and listing are provided in Section 7.4.3 of [1]. The values Of Zo for 0.001

in., 0.0025 in., 0.005 in., and 0.0075 in. initial crack sizes are given in Table 2.B-4.

Given Zo and the bounding value of,8, the assurance curve may be defined as

described in Section 2.3.12 of [1]. The 95% assurance curves for the four initial

crack sizes are given in Figure 2.3-6.
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Appendix 2.C

Input And Output Files

2.C,1 HPOTP Heat Exchanger Coil Analysis Files

Selected input and output files for the HPOTP heat exchanger coil =all driver"

analysis are given here. The analysis program PROCRK requires the input file
CRKDAT along with the force history files. Annotated examples of the data file for-

mat for CRKDAT are given in Figure 6.1-1. The input file CRKDAT is given below.

Section 6.1.3.1 contains a description of the input variables and a user's guide for
running PROCRK.

The output files from a PROCRK run are CRKRES, LOWLIE and IOUTPR. The

CRKRES and LOWLIF from an "all drivers" analysis of the HEX coil are given
below. The CRKRES file contains an echo of the input data, output from the crack
growth model regression, and the B-lives. The LOWLIF file contains the lowest

100 (1% of total simulated) crack growth failure lives for the HEX coil; these failure
lives are plotted in Figure 2.3-5.

Input File - CRKDAT

1

1

675

0

1

i0000

1

1

5

0.0001

0.06

0.00

1.00

0.1885

0.0113

0.200

0.005

2.00

2.00

486.

799.

3808.

0.0005 0.001 0.005 0.01

0.06 0.00 0.00 0.0 0.0

0.00 0.00 0.00 0.0 0.0

0.1915 0.50 0.50

0.0157 0.27273 0.27273

1.000 0.50 0.50 0.0

0.005 0.00 0.00 0.0

2.00 0.15 1.00

2.00 0.20 1.00

666. 29. 56.5

908. 49.5 48.

4177. 69. 69.

0.5

0.5

0.0

0.0

20.

20.
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0.80 1.20

O.5O 1.50

0.80 1.20

0.90 1.10

0.80 1.20

0.60 1.40

0.00 0.00

1.00 1.00

0.90 1.10

-0.6931 0.557

16

0.00 0.00

'XP' 1 0.856685

'YP' 1 0.620780

'ZP' 1 0.041151

'XM2' 1 0.00

'¥M2' 1 0.00

'ZM2' 1 0.00

'XM3' 1 0.00

'YM3' 1 0.00

' ZM3' 1 0.00

'SIN1' 2 0.269884

'SIN2' 2 0.069594

'SIN3' 2 0.125976

' SIN4' 2 0 . 076991

'SIN5' 2 0.023680

'SIN6' 2 0.074108

'AERO' 3 0.00

3640.

2

85.

2.30

1.0

0.0

20000

29000000. 8.8E-06

0.235 2.00

0.300 4.80

0.350 7.20

0.400 9.60

0.450 12.50

0.500 15.80

0.550 20.00

0.580 24.00

0.600 30.00

0.600 200.00

6

21.95 0.001

55.77 0.002

144.85 0.005

-0. 07214

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.003040

0.001740

0.003210

0.003310

0.000325

0.000946

0.00

0.30

0.00

0.00

0.00

0.00

0.004000

0.009390

0.050300

0.00

0.00

0.00

0.009640

0.005010

0.007200

0.019400

0.000179

0.003270

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.141020

0.355475

0.007480

0.205000

0.014900

0.024200

0.018700

0.002890

0.009340

0.07179

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.348000

0.034800

0.127000

0.144000

0.034700

0.099100

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.05160

0.03790

0.03500

0.30700

0.00069

0.07690

0.00
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322.73 0.010

1945.90 0.050

50688.0 0.660

'400F 316L WELDED, FROM

27000 80.0 8 4

4.0317 1.070 0.16327

39 0.90

2.446E-I0 2.53

5.568E-I0 2.56

I.I15E-9 2.61

2.913E-9 2.66

4.460E-9 2.64

9.765E-9 2.70

1.224E-8 2.76

1.452E-8 2.82

2.146E-8 2.88

3.468E-8 2.94

5.660E-8 3.00

6.879E-8 3.06

7.226E-8 3.12

6.625E-8 3.18

5.230E-8 3.24

4.720E-8 3.30

4.886E-8 3.37

4.904E-8 3.44

4.827E-8 3.51

5.806E-8 3.58

6.929E-8 3.65

6.903E-8 3.73

6.752E-8 3.80

6.674E-8 3.87

6.513E-8 3.96

8.996E-8 4.09

1.277E-7 4.23

1.398E-7 4.41

1.382E-7 4.58

1.694E-7 4.78

1.894E-7 4.95

1.887E-7 5.16

2.305E-7 5.36

2.984E-7 5.57

4.530E-7 5.80

7.381E-7 6.02

1.267E-6 6.31

2.514E-6 6.60

8.049E-6 7.19

38 0.90

9.183E-10 2.56

1.374E-9 2.60

2.950E-9 2.62

Rkd'
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1.006E-8 2.66

1.138E-8 2.69

1.183E-8 2.72

1.247E-8 2.75

2. 835E-9 2.59

6.084E-9 2.65

1.530E-8 2.74

3.362E-8 2.82

6.708E-8 2.91

8.473E-8 3.00

7.658E-8 3.08

6.251E-8 3.16

5.100E-8 3.24

4.408E-8 3.33

4.807E-8 3.43

5.838E-8 3.53

5.787E-8 3.63

5.679E-8 3.74

6.307E-8 3.84

7.220E-8 3.95

8.042E-8 4.07

8.202E-8 4.18

7.896E-8 4.30

7.440E-8 4.42

7.603E-8 4.54

9.028E-8 4.67

1.019E-7 4.80

1.133E-7 4.94

1.378E-7 5.08

1.533E-7 5.22

1.543E-7 5.36

1.629E-7 5.51

1.734E-7 5.66

1.727E-7 5.81

2.321E-7 5.99

64 0.70

2.330E-9 3.46

9.799E-9 3.50

2.562E-8 3.57

3.132E-8 3.64

3.112E-8 3.72

3.319E-8 3.79

3.333E-8 3.87

3.621E-8 3.95

4.207E-8 4.05

4.017E-8 4.11

3.923E-8 4.21

4.155E-8 4.28

4.497E-8 4.38

5.670E-8 4.47
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6.300E-8 4.56

6.466E-8 4.65

6.798E-8 4.75

7. I03E-8 4.85

7.335E-8 4.95

7. 690E-8 5.05

8.277E-8 5.16

8.703E-8 5.26

8.951E-8 5.37

9. 151E-8 5.49

8. 674E-8 5.61

8. 323E-8 5.73

9.206E-8 5.85

i. 040E-7 5.97

1.501E-8 3.49

2. 321E-8 3.66

4.565E-8 3.83

7. 893E-8 4.00

7. 586E-8 4.18

7. 386E-8 4.36

8.960E-8 4.53

9.996E-8 4.72

1. 064E-7 4.92

1.216E-7 5.13

1.300E-7 5.36

1. 517E-7 5.61

1. 698E-7 5.84

1. 559E-7 6.10

1.607E-7 6.36

1.732E-7 6.62

1. 903E-7 6.91

2. 152E-7 7.20

2. 560E-7 7.52

2.930E-7 7.84

3. 197E-7 8.18

3. 833E-7 8.53

4. 219E-7 8.89

4. 190E-7 9.27

4.288E-7 9.66

4.699E-7 10.07

5. 430E-7 10.49

6. 424E-7 10.95

7. 510E-7 11.41

9.050E-7 11.92

i. 027E-6 12.41

1. 088E-6 12.94

1.268E-6 13.49

1.351E-6 14.04

1.389E-6 14.65

i. 530E-6 15.25
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70 0.70

9.676E-I0 3.45

4.535E-9 3.48

1.616E-8 3.56

2.225E-8 3.63

2.960E-8 3.70

3.208E-8 3.77

3.158E-8 3.85

3.917E-8 3.93

4.525E-8 4.01

4.366E-8 4.09

4.370E-8 4.17

4.884E-8 4.26

5.192E-8 4.35

5.530E-8 4.44

6.224E-8 4.53

6.708E-8 4.62

7.141E-8 4.71

7.335E-8 4.81

7.289E-8 4.91

7.304E-8 5.02

7.340E-8 5.12

7.039E-8 5.22

7.575E-8 5.34

8.416E-8 5.44

8.978E-8 5.56

9.889E-8 5.68

9.942E-8 5.80

9.637E-8 5.92

4.661E-9 3.58

9.538E-9 3.68

2.469E-8 3.80

3.830E-8 3.95

7.246E-8 4.12

1.180E-7 4.32

1.387E-7 4.49

1.224E-7 4.70

1.162E-7 4.88

1.419E-7 5.08

1.631E-7 5.28

1.492E-7 5.51

1.539E-7 5.74

1.585E-7 5.98

1.562E-7 6.24

1.645E-7 6.50

1.839E-7 6.77

1.783E-7 7.03

2.089E-7 7.35

2.881E-7 7.64

3.497E-7 7.99
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3.640E-7 8.32

2.936E-7 8.65

2.630E-7 9.00

2.949E-7 9.37

3.418E-7 9.75

3.848E-7 10.15

4.242E-7 10.57

4.819E-7 ii.01

5.694E-7 11.45

6.968E-7 11.91

8.182E-7 12.38

8.980E-7 12.87

1.019E-6 13.37

1.1lIE-6 13.89

1.201E-6 14.45

1.380E-6 15.00

1.553E-6 15.60

1.804E-6 16.22

2.205E-6 16.82

2.790E-6 17.49

3.901E-6 18.17

66 0.16

1.775E-7 9.10

1.857E-7 9.29

1.847E-7 9.50

1.955E-7 9.70

1.969E-7 9.91

2. 072E-7 i0.13

2. 199E-7 i0.34

2.241E-7 10.57

2.454E-7 10.79

2.534E-7 11.03

2.423E-7 11.27

2.382E-7 11.52

2.543E-7 11.78

2.776E-7 12.03

3.073E-7 12.30

3.535E-7 12.55

4.050E-7 12.83

4.535E-7 13.10

4.697E-7 13.37

5.007E-7 13.68

5.355E-7 13.96

5.107E-7 14.25

5.483E-7 14.58

6.766E-7 14.88

7.369E-7 15.20

7.901E-7 15.54

8.893E-7 15.85

9.689E-7 16.20
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1.058E-6 16.53

1.163E-6 16.88

1.464E-6 17.25

1.752E-6 17.59

2.008E-6 18.00

2. 116E-6 18.35

2.003E-6 18.76

2 .246E-6 19.15

2.650E-6 19.56

3.047E-6 19.98

3.698E-6 20.40

4. 175E-6 20.83

4.238E-6 21.24

4.486E-6 21.71

4.876E-6 22.15

5. 194E-6 22.63

5.679E-6 23.11

6.518E-6 23.58

7.327E-6 24.07

8.302E-6 24.57

8.308E-6 25.07

8.564E-6 25.59

9. 132E-6 26.11

9.010E-6 26.65

9.687E-6 27.33

1. 085E-5 28.18

1 .172E-5 29 .18

1.293E-5 30.40

1.493E-5 31.61

1.649E-5 32.96

1.773E-5 34.26

1.935E-5 35.67

2. 178E-5 37.08

2.335E-5 38.56

2.616E-5 40.12

2.863E-5 41.71

2.963E-5 43.34

3.304E-5 45.07

42 0.16

2 .122E-8 3.99

3.204E-8 4.08

3. 169E-8 4.17

3.095E-8 4.27

3.366E-8 4.36

4.457E-8 4.47

4.677E-8 4.56

4.259E-8 4.67

4.540E-8 4.77

4.413E-8 4.88

4.354E-8 4.99
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4. 579E-8 5. i0

4. 958E-8 5.22

5. 564E-8 5.34

5.773E-8 5.45

6. 046E-8 5.58

6. 388E-8 5.70

6.303E-8 5.84

6.063E-8 5.96

5. 612E-8 6.10

5. 512E-8 6.23

8. 505E-8 6.37

6.466E-8 6.52

5. 077E-8 6.67

7. 039E-8 6.82

7. 186E-8 6.97

7.511E-8 7.13

8. 152E-8 7.28

8.613E-8 7.44

9.279E-8 7.61

9.644E-8 7.78

9. 540E-8 7.95

1 .021E-7 8 .14

1. 152E-7 8.32

1.224E-7 8.50

3.212E-8 4.35

5.321E-8 4.55

9.616E-8 4.74

1. 433E-7 4.97

1.611E-7 5.18

1.701E-7 5.41

1. 944E-7 5.63

92 0.16

2.462E-9 3.94

8.454E-9 4.00

i. 084E-8 4.07

1. 024E-8 4.15

i. 092E-8 4.23

1.201E-8 4.31

1.283E-8 4.38

i. 738E-8 4.47

2.292E-8 4.55

2.511E-8 4.63

2.747E-8 4.72

3. 153E-8 4.80

3. 652E-8 4.89

3. 924E-8 4.98

4 . 126E-8 5.07

4. 061E-8 5.16

3.903E-8 5.26

4.231E-8 5.35
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5.293E-8

6. 007E-8

6. 032E-8

6.260E-8

6. 590E-8

7.010E-8

7.227E-8

7.489E-8

7. 383E-8

6. 902E-8

7.069E-8

7. 956E-8

8.426E-8

7.979E-8

7. 867E-8

8. 313E-8

8.994E-8

9. 403E-8

9.391E-8

9.783E-8

1. 056E-7

1. 032E-7

9. 733E-8

9. 633E-8

9.990E-8

1. 079E-7

i. 155E-7

1.210E-8

1. 574E-8

3.055E-8

6. 529E-8

8. 832E-8

9. 955E-8

1.046E-7

i. 013E-7

1. 023E-7

i. 117E-7

i .247E-7

1.361E-7

1. 468E-7

1.528E-7

1.576E-7

1. 634E-7

1.753E-7

1. 882E-7

1.996E-7

2. 158E-7

2.252E-7

2. 455E-7

2. 742E-7

5.45

5.55

5.65

5.75

5.85

5.96

6.07

6.18

6.29

6.41

6.52

6.64

6.76

6.88

7.00

7.13

7.25

7.38

7.52

7.65

7.79

7.93

8.08

8.22

8.37

8.52

8.67

4.40

4.57

4.77

4.99

5.22

5.45

5.68

5.92

6.17

6.43

6.71

7.00

7.32

7.63

7.95

8.29

8.65

9.02

9.42

9.82

10.24

10.68

11.13
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3.017E-7 11.60

3. 563E-7 12.10

4. 273E-7 12.60

4.916E-7 13.14

5.613E-7 13.69

6.961E-7 14.30

8.600E-7 14.89

9.727E-7 15.52

1.227E-6 16.18

1.573E-6 16.85

1.903E-6 17.57

2. 538E-6 18.32

3. 363E-6 19.09

3. 763E-6 19.82

4.324E-6 20.66

4. 842E-6 21.47

5. 167E-6 22.37

5. 859E-6 23.30

7.262E-6 24.27

8. 478E-6 25.23

9. 053E-6 26.30

9. 442E-6 27.35

I. 046E-5 28.49

i. 122E-5 29.67

79 0.16

I. 825E-9 4.48

1.241E-8 4.57

i. 910E-8 4.68

2. 544w-8 4.78

3. 081E-8 4.89

3.331E-8 5.00

3.428E-8 5.11

3.632E-8 5.23

3. 502E-8 5.34

3.939E-8 5.47

4. 942E-8 5.59

5.201E-8 5.71

5. 026E-8 5.84

4. 848E-8 5.97

5. 131E-8 6.10

5.305E-8 6.25

5. 463E-8 6.39

5.491E-8 6.54

5.579E-8 6.68

6.352E-8 6.83

6.847E-8 6.98

7.381E-8 7.13

7.999E-8 7.29

7. 965E-8 7.46

8.777E-8 7.63
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9.269E-8 7.80

8.880E-8 7.97

1.041E-7 8.16

1.114E-7 8.33

1.041E-7 8.52

1.378E-8 4.88

4.458E-8 5.04

9.903E-8 5.26

1.491E-7 5.46

1.834E-7 5.65

2.372E-7 5.85

2.564E-7 6.04

2.222E-7 6.23

1.866E-7 6.44

1.689E-7 6.64

1.586E-7 6.84

1.652E-7 7.08

1.784E-7 7.31

1.804E-7 7.56

2.080E-7 7.82

2.556E-7 8.10

2.301E-7 8.37

2.013E-7 8.66

2.438E-7 8.97

2.570E-7 9.25

2.482E-7 9.61

2.568E-7 9.90

2.900E-7 10.26

3.551E-7 10.60

3.587E-7 10.96

3.928E-7 11.34

4.457E-7 11.71

4.539E-7 12.11

5.313E-7 12.53

6.756E-7 12.94

7.735E-7 13.38

8.485E-7 13.83

9.304E-7 14.31

1.030E-6 14.81

1.202E-6 15.31

1.572E-6 15.85

1.965E-6 16.39

2.112E-6 16.94

2.491E-6 17.50

3.067E-6 18.07

3.326E-6 18.62

3.515E-6 19.26

3.877E-6 19.86

4.332E-6 20.52

5.239E-6 21.23
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6.519E-6 21.98

7.768E-6 22.68

8.908E-6 23.43

9.110E-6 24.21

Output File - CRKRES

Copyright (C) 1991, california Institute of Technology. U.S. Government

Sponsorship under NASA Contract NAS7-918 is acknowledged.

P R O C R K

INPUT DATA

LIFE DRIVERS

WELD OFFSET (%)

INNER DIAMETER

WALL THICKNESS

CRACK SHAPE A/C

CRACK SIZE A

B(0.06, 0.06)

B(0.00, 0.00)

TEST = 1.00

B(0.1885,

B(0.0113,

B(0.2000,

B(0.0050,

PARAMETERS

RHO THETA

(0.00000, 0.00000) ( 0.0, 0.0)

(0.00000, 0.00000) ( 0.0, 0.0)

LAMBDA RANDOM

LAMBDA SINE

0.1915) (0.50000, 0.50000) ( 0.5, 20.0)

0.0157) (0.27273, 0.27273) ( 0.5, 20.0)

1.0000) (0.50000, 0.50000) ( 0.0, 0.0)

0.0050) (0.00000, 0.00000) ( 0.0, 0.0)

k: U(2.00000, 2.00000)

COEFFICIENT OF VARIATION: 0.150

STRAIN GAGE FACTOR: 1.0000000

INNER TEMPERATURE

OUTER TEMPERATURE

INNER PRESSURE

k: U(2.00000, 2.00000)

COEFFICIENT OF VARIATION: 0.200

STRAIN GAGE FACTOR: 1.0000000

NORMAL: MU( 486.0, 666.0) SIGMA( 29.0, 56.5)

NORMAL: MU( 799.0, 908.0) SIGMA( 49.5, 48.0)

NORMAL: MU(3808.0, 4177.0) SIGMA( 69.0, 69.0)
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WELD OFFSET K FAC

DYN AERO LOAD FAC

STAT AERO LOAD FAC

AERO STR ANAL FAC

DYN STR ANAL FAC

NEUBERS RULE

LAMBDA Kth

LAMBDA KC

K CALC FAC

GROWTH CALC FAC

U( 0.80000,

U( 0.50000,

U( 0.80000,

U( 0.90000,

U( 0.80000,

U( 0.60000,

U( 0.00000,

U( 1.00000,

U( 0.90000,

U(-0.69310,

1.20000)

1.50000)

1.20000)

1.10000)

1.20000)

1.40000)

0.00000)

1.00000)

1.10000)

0.55700)

LOADS INPUT

P LOADS T LOADS M2 LOADS M3 LOADS V2 LOADS V3 LOADS

STATIC AERO

0.000000 0.000E+00 -.721E-01 0.000E+00 0.000E+00 0.000E+00
XP

0.856685 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

YP

0.620780 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
ZP

0.041151 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

XM2

0.000000 0.000E+00 0.400E-02 0.000E+00 0.000E+00 0.000E+00

YM2

0.000000 0.000E+00 0.939E-02 0.000E+00 0.000E+00 0.000E+00

ZM2

0.000000 0.000E+00 0.503E-01 0.000E+00 0.000E+00 0.000E+00

XM3

0.000000 0.000E+00 0.000E+00 0.141E+00 0.000E+00 0.000E+00
YM3

0.000000 0.000E+00 0.000E+00 0.355E+00 0.000E+00 0.000E+00
ZM3

0.000000 0.000E+00 0.000E+00 0.748E-02 0.000E+00 0.000E+00
SIN1

2 - 66



0.269884 0.304E-02 0.964E-02 0.205E+00 0.348E+00 0.516E-01
SIN2

0.069594 0.174E-02 0.501E-02 0.149E-01 0.348E-01 0.379E-01
SIN3

0.125976 0.321E-02 0.720E-02 0.242E-01 0.127E+00 0.350E-01
SIN4

0.076991 0.331E-02 0.194E-01 0.187E-01 0.144E+00 0.307E+00
SIN5

0.023680 0.325E-03 0.179E-03 0.289E-02 0.347E-01 0.690E-03
SIN6

0.074108 0.946E-03 0.327E-02 0.934E-02 0.991E-01 0.769E-01
AERO

0.000000 0.000E+00 0.000E+00 0.718E-01 0.000E+00 0.000E+00

MISCELLANEOUS INPUT

EXTERNAL PRESSURE

ANALYSIS LOCATION

ANGLE THETA (DEGREES)

WILLENBORG OVERLOAD FACTOR

STRESS-TIME HISTORY PERIOD

STRESS-TIME HISTORY NOISE FILTER

NUMBER OF TIME-VARYING LOADS

NUMBER OF POINTS IN HISTORIES

3640.

2

85.0

0. 23000E+01

1.00000

0.0

16

20000

ELASTIC MODULUS

COEFF OF THERMAL EXPANSION

POISSONS RATIO

0.290E+08

0.87999997E-05

0.300

Fk

Fk VS. Rt CURVE INPUT

Rt
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0.23 2.00

0.30 4.80

0.35 7.20

0.40 9.60

0.45 12.50

0.50 15.80

0.55 20.00

0.58 24.00

0.60 30.00

0.60 200.00

STRESS-STRAIN CURVE INPUT

MAXIMUM NUMBER OF SEGMENTS

STRESS-STRAIN PRODUCT STRAIN VALUES

21.95 0.00100

55.77 0.00200

144.85 0.00500

322.73 0.01000

1945.90 0.05000

50688.00 0.66000

MATERIAL INPUT

DESCRIPTION: 400F 316L WELDED, FROM Rkd
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YIELD STRENGTH

CRITICAL S I F

NUMBER OF DIVISIONS

REGRESSION OPTION

27000.

80.

8

4

THRESHOLD MODEL DESCRIPTION

DKTHO = 0.40317E+01

CO = 0.I0700E+01

d = 0.16327E+00

STRESS RATIO R = 0.90

da/dN DELK

0.24460E-09 0.25300E+01

0.55680E-09 0.25600E+01

0.11150E-08 0.26100E+01

0.29130E-08 0.26600E+01

0.44600E-08 0.26400E+01

0.97650E-08 0.27000E+01

0.12240E-07 0.27600E+01

0.14520E-07 0.28200E+01

0.21460E-07 0.28800E+01

0.34680E-07 0.29400E+01

0.56600E-07 0.30000E+01

0.68790E-07 0.30600E+01

0.72260E-07 0.31200E+01

0.66250E-07 0.31800E+01

0.52300E-07 0.32400E+01

0.47200E-07 0.33000E+01

0.48860E-07 0.33700E+01

0.49040E-07 0.34400E+01

0.48270E-07 0.35100E+01

0.58060E-07 0.35800E+01

0.69290E-07 0.36500E+01

0.69030E-07 0.37300E+01

0.67520E-07 0.38000E+01

0.66740E-07 0.38700E+01

0.65130E-07 0.39600E+01

0.89960E-07 0.40900E+01

0.12770E-06 0.42300E+01

0.13980E-06 0.44100E+01

0.13820E-06 0.45800E+01

0.16940E-06 0.47800E+01
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0.18940E-06

0.18870E-06

0.23050E-06

0.29840E-06

0.45300E-06

0.73810E-06

0.12670E-05

0.25140E-05

0.80490E-05

0.49500E+01

0.51600E+01

0.53600E+01

0.55700E+01

0.58000E+01

0.60200E+01

0.63100E+01

0.66000E+01

0.71900E+01

STRESS RATIO R = 0.90

da/dN DELK

0.91830E-09 0.25600E+01

0.13740E-08 0.26000E+01

0.29500E-08 0.26200E+01

0.10060E-07 0.26600E+01

0.11380E-07 0.26900E+01

0.11830E-07 0.27200E+01

0.12470E-07 0.27500E+01

0.28350E-08 0.25900E+01

0.60840E-08 0.26500E+01

0.15300E-07 0.27400E+01

0.33620E-07 0.28200E+01

0.67080E-07 0.29100E+01

0.84730E-07 0.30000E+01

0.76580E-07 0.30800E+01

0.62510E-07 0.31600E+01

0.51000E-07 0.32400E+01

0.44080E-07 0.33300E+01

0.48070E-07 0.34300E+01

0.58380E-07 0.35300E+01

0.57870E-07 0.36300E+01

0.56790E-07 0.37400E+01

0.63070E-07 0.38400E+01

0.72200E-07 0.39500E+01

0.80420E-07 0.40700E+01

0.82020E-07 0.41800E+01

0.78960E-07 0.43000E+01

0.74400E-07 0.44200E+01

0.76030E-07 0.45400E+01

0.90280E-07 0.46700E+01

0.10190E-06 0.48000E+01

0.11330E-06 0.49400E+01

0.13780E-06 0.50800E+01

0.15330E-06 0.52200E+01

0.15430E-06 0.53600E+01

0.16290E-06 0.55100E+01

0.17340E-06 0.56600E+01
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0.17270E-06 0.58100E+01

0.23210E-06 0.59900E+01

STRESS RATIO R = 0.70

da/dN DELK

0.23300E-08 0.34600E+01

0.97990E-08 0.35000E+01

0.25620E-07 0.35700E+01

0.31320E-07 0.36400E+01

0.31120E-07 0.37200E+01

0.33190E-07 0.37900E+01

0.33330E-07 0.38700E+01

0.36210E-07 0.39500E+01

0.42070E-07 0.40500E+01

0.40170E-07 0.41100E+01

0.39230E-07 0.42100E+01

0.41550E-07 0.42800E+01

0.44970E-07 0.43800E+01

0.56700E-07 0.44700E+01

0.63000E-07 0.45600E+01

0.64660E-07 0.46500E+01

0.67980E-07 0.47500E+01

0.71030E-07 0.48500E+01

0.73350E-07 0.49500E+01

0.76900E-07 0.50500E+01

0.82770E-07 0.51600E+01

0.87030E-07 0.52600E+01

0.89510E-07 0.53700E+01

0.91510E-07 0.54900E+01

0.86740E-07 0.56100E+01

0.83230E-07 0.57300E+01

0.92060E-07 0.58500E+01

0.10400E-06 0.59700E+01

0.15010E-07 0.34900E+01

0.23210E-07 0.36600E+01

0.45650E-07 0.38300E+01

0.78930E-07 0.40000E+01

0.75860E-07 0.41800E+01

0.73860E-07 0.43600E+01

0.89600E-07 0.45300E+01

0.99960E-07 0.47200E+01

0.I0640E-06 0.49200E+01

0.12160E-06 0.51300E+01

0.13000E-06 0.53600E+01

0.15170E-06 0.56100E+01

0.16980E-06 0.58400E+01

0.15590E-06 0.61000E+01

0.16070E-06 0.63600E+01
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0.17320E-06 0

0.19030E-06 0

0.21520E-06 0

0.25600E-06 0

0.29300E-06 0

0.31970E-06 0

0.38330E-06 0

0. 42190E-06 0

0. 41900E-06 0

0 •42880E-06 0

0.46990E-06 0

0.54300E-06 0

0.64240E-06 0

0.75100E-06 0

0.90500E-06 0

0.10270E-05 0

0.10880E-05 0

0.12680E-05 0

0.13510E-05 0

0.13890E-05 0

0.15300E-05 0

.66200E+01

.69100E+01

.72000E+01

.75200E+01

.78400E+01

.81800E+01

.85300E+01

.88900E+01

.92700E+01

.96600E+01

.10070E+02

.10490E+02

.10950E+02

.11410E+02

.11920E+02

.12410E+02

.12940E+02

.13490E+02

.14040E+02

.14650E+02

.15250E+02

STRESS RATIO R

da/dN

0.96760E-09 0

0.45350E-08 0

0.16160E-07 0

0.22250E-07 0

0.29600E-07 0

0.32080E-07 0

0.31580E-07 0

0.39170E-07 0

0.45250E-07 0

0.43660E-07 0

0.43700E-07 0

0.48840E-07 0

0.51920E-07 0

0.55300E-07 0

0.62240E-07 0

0.67080E-07 0

0.71410E-07 0

0.73350E-07 0

0.72890E-07 0

0.73040E-07 0

0.73400E-07 0

0.70390E-07 0

0.75750E-07 0

0.84160E-07 0

0.70

DELK

.34500E+01

.34800E+01

.35600E+01

.36300E+01

.37000E+01

.37700E+01

.38500E+01

.39300E+01

.40100E+01

.40900E+01

.41700E+01

.42600E+01

.43500E+01

.44400E+01

.45300E+01

.46200E+01

.47100E+01

.48100E+01

.49100E+01

.50200E+01

.51200E+01

.52200E+01

.53400E+01

.54400E+01
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0.89780E-07 0.55600E+01

0.98890E-07 0.56800E+01

0.99420E-07 0.58000E+01

0.96370E-07 0.59200E+01

0.46610E-08 0.35800E+01

0.95380E-08 0.36800E+01

0.24690E-07 0.38000E+01

0.38300E-07 0.39500E+01

0.72460E-07 0.41200E+01

0.11800E-06 0.43200E+01

0.13870E-06 0.44900E+01

0.12240E-06 0.47000E+01

0.11620E-06 0.48800E+01

0.14190E-06 0.50800E+01

0.16310E-06 0.52800E+01

0.14920E-06 0.55100E+01

0.15390E-06 0.57400E+01

0.15850E-06 0.59800E+01

0.15620E-06 0.62400E+01

0.16450E-06 0.65000E+01

0.18390E-06 0.67700E+01

0.17830E-06 0.70300E+01

0.20890E-06 0.73500E+01

0.28810E-06 0.76400E+01

0.34970E-06 0.79900E+01

0.36400E-06 0.83200E+01

0.29360E-06 0.86500E+01

0.26300E-06 0.90000E+01

0.29490E-06 0.93700E+01

0.34180E-06 0.97500E+01

0.38480E-06 0.10150E+02

0.42420E-06 0.10570E+02

0.48190E-06 0.11010E+02

0.56940E-06 0.11450E+02

0.69680E-06 0.11910E+02

0.81820E-06 0.12380E+02

0.89800E-06 0.12870E+02

0.10190E-05 0.13370E+02

0.11110E-05 0.13890E+02

0.12010E-05 0.14450E+02

0.13800E-05 0.15000E+02

0.15530E-05 0.15600E+02

0.18040E-05 0.16220E+02

0.22050E-05 0.16820E+02

0.27900E-05 0.17490E+02

0.39010E-05 0.18170E+02

STRESS RATIO R = 0.16
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da/dN

0.17750E-06

0.18570E-06

0.18470E-06

0.19550E-06

0.19690E-06

0.20720E-06

0.21990E-06

0.22410E-06

0.24540E-06

0.25340E-06

0.24230E-06

0.23820E-06

0.25430E-06

0.27760E-06

0.30730E-06

0.35350E-06

0.40500E-06

0.45350E-06

0.46970E-06

0. 50070E-06

0. 53550E-06

0.51070E-06

0.54830E-06

0.67660E-06

0.73690E-06

0.79010E-06

0.88930E-06

0.96890E-06

0.10580E-05

0.11630E-05

0.14640E-05

0.17520E-05

0.20080E-05

0.21160E-05

0.20030E-05

0.22460E-05

0.26500E-05

0.30470E-05

0.36980E-05

0.41750E-05

0.42380E-05

0.44860E-05

0.48760E-05

0.51940E-05

0.56790E-05

0.65180E-05

0.73270E-05

0.83020E-05

0.83080E-05

DELK

0.91000E+01

0.92900E+01

0.95000E+01

0.97000E+01

0.99100E+01

0.10130E+02

0.10340E+02

0.10570E+02

0.10790E+02

0.11030E+02

0.11270E+02

0.11520E+02

0.11780E+02

0.12030E+02

0.12300E+02

0.12550E+02

0.12830E+02

0.13100E+02

0.13370E+02

0.13680E+02

0.13960E+02

0.14250E+02

0.14580E+02

0.14880E+02

0.15200E+02

0.15540E+02

0.15850E+02

0.16200E+02

0.16530E+02

0.16880E+02

0.17250E+02

0.17590E+02

0.18000E+02

0.18350E+02

0.18760E+02

0.19150E+02

0.19560E+02

0.19980E+02

0.20400E+02

0.20830E+02

0.21240E+02

0.21710E+02

0.22150E+02

0.22630E+02

0.23110E+02

0.23580E+02

0.24070E+02

0.24570E+02

0.25070E+02
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0.85640E-05 0.25590E+02

0.91320E-05 0.26110E+02

0.90100E-05 0.26650E+02

0.96870E-05 0.27330E+02

0.10850E-04 0.28180E+02

0.11720E-04 0.29180E+02

0.12930E-04 0.30400E+02

0.14930E-04 0.31610E+02

0.16490E-04 0.32960E+02

0.17730E-04 0.34260E+02

0.19350E-04 0.35670E+02

0.21780E-04 0.37080E+02

0.23350E-04 0.38560E+02

0.26160E-04 0.40120E+02

0.28630E-04 0.41710E+02

0.29630E-04 0.43340E+02

0.33040E-04 0.45070E+02

STRESS RATIO R = 0.16

da/dN DELK

0.21220E-07 0.39900E+01

0.32040E-07 0.40800E+01

0.31690E-07 0.41700E+01

0.30950E-07 0.42700E+01

0.33660E-07 0.43600E+01

0.44570E-07 0.44700E+01

0.46770E-07 0.45600E+01

0.42590E-07 0.46700E+01

0.45400E-07 0.47700E+01

0.44130E-07 0.48800E+01

0.43540E-07 0.49900E+01

0.45790E-07 0.51000E+01

0.49580E-07 0.52200E+01

0.55640E-07 0.53400E+01

0.57730E-07 0.54500E+01

0.60460E-07 0.55800E+01

0.63880E-07 0.57000E+01

0.63030E-07 0.58400E+01

0.60630E-07 0.59600E+01

0.56120E-07 0.61000E+01

0.55120E-07 0.62300E+01

0.85050E-07 0.63700E+01

0.64660E-07 0.65200E+01

0.50770E-07 0.66700E+01

0.70390E-07 0.68200E+01

0.71860E-07 0.69700E+01

0.75110E-07 0.71300E+01

0.81520E-07 0.72800E+01
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0. 86130E-07

0.92790E-07

0. 96440E-07

0.95400E-07

0. I0210E-06

0. 11520E-06

0. 12240E-06

0.32120E-07

0. 53210E-07

0.96160E-07

0. 14330E-06

0.16110E-06

0.17010E-06

0. 19440E-06

0.74400E+01

0.76100E+01

0.77800E+01

0.79500E+01

0.81400E+01

0.83200E+01

0.85000E+01

0.43500E+01

0.45500E+01

0.47400E+01

0.49700E+01

0.51800E+01

0.54100E+01

0.56300E+01

STRESS RATIO R = 0.16

da/dN DELK
0.24620E-08 0.39400E+01

0.84540E-08 0.40000E+01

0.10840E-07 0.40700E+01

0.I0240E-07 0.41500E+01

0.10920E-07 0.42300E+01

0.12010E-07 0.43100E+01

0.12830E-07 0.43800E+01

0.17380E-07 0.44700E+01

0.22920E-07 0.45500E+01

0.25110E-07 0.46300E+01

0.27470E-07 0.47200E+01

0.31530E-07 0.48000E+01

0.36520E-07 0.48900E+01

0.39240E-07 0.49800E+01

0.41260E-07 0.50700E+01

0.40610E-07 0.51600E+01

0.39030E-07 0.52600E+01

0.42310E-07 0.53500E+01

0.52930E-07 0.54500E+01

0.60070E-07 0.55500E+01

0.60320E-07 0.56500E+01

0.62600E-07 0.57500E+01

0.65900E-07 0.58500E+01

0.70100E-07 0.59600E+01

0.72270E-07 0.60700E+01

0.74890E-07 0.61800E+01

0.73830E-07 0.62900E+01

0.69020E-07 0.64100E+01

0.70690E-07 0.65200E+01

0.79560E-07 0.66400E+01

0.84260E-07 0.67600E+01
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0.79790E-07

0.78670E-07

0.83130E-07

0.89940E-07

0.94030E-07

0.93910E-07

0.97830E-07

0.I0560E-06

0.I0320E-06

0.97330E-07

0.96330E-07

0.99900E-07

0.I0790E-06

0.I1550E-06

0.12100E-07

0.15740E-07

0.30550E-07

0.65290E-07

0.88320E-07

0.99550E-07

0.10460E-06

0.I0130E-06

0.I0230E-06

0.II170E-06

0.12470E-06

0.13610E-06

0.14680E-06

0.15280E-06

0.15760E-06

0.16340E-06

0.17530E-06

0.18820E-06

0.19960E-06

0.21580E-06

0.22520E-06

0.24550E-06

0.27420E-06

0.30170E-06

0.35630E-06

0.42730E-06

0.49160E-06

0.56130E-06

0.69610E-06

0.86000E-06

0.97270E-06

0.12270E-05

0.15730E-05

0.19030E-05

0.25380E-05

0.33630E-05

0.68800E+01

0.70000E+01

0.71300E+01

0.72500E+01

0.73800E+01

0.75200E+01

0.76500E+01

0.77900E+01

0.79300E+01

0.80800E+01

0.82200E+01

0.83700E+01

0.85200E+01

0.86700E+01

0.44000E+01

0.45700E+01

0.47700E+01

0.49900E+01

0.52200E+01

0.54500E+01

0.56800E+01

0.59200E+01

0.61700E+01

0.64300E+01

0.67100E+01

0.70000E+01

0.73200E+01

0.76300E+01

0.79500E+01

0.82900E+01

0.86500E+01

0.90200E+01

0.94200E+01

0.98200E+01

0.10240E+02

0.I0680E+02

0.11130E+02

0.11600E+02

0.12100E+02

0.12600E+02

0.13140E+02

0.13690E+02

0.14300E+02

0.14890E+02

0.15520E+02

0.16180E+02

0.16850E+02

0.17570E+02

0.18320E+02

0.19090E+02
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0. 37630E-05

0. 43240E-05

0. 48420E-05

0. 51670E-05

0. 58590E-05

0.72620E-05

0. 84780E-05

0.90530E-05

0. 94420E-05

0. 10460E-04

0. 11220E-04

0.19820E+02

0.20660E+02

0.21470E+02

0.22370E+02

0.23300E+02

0.24270E+02

0.25230E+02

0.26300E+02

0.27350E+02

0.28490E+02

0.29670E+02

STRESS RATIO R = 0.16

da/dN DELK

0.18250E-08 0.44800E+01

0.12410E-07 0.45700E+01

0.19100E-07 0.46800E+01

0.25440E-07 0.47800E+01

0.30810E-07 0.48900E+01

0.33310E-07 0.50000E+01

0.34280E-07 0.51100E+01

0.36320E-07 0.52300E+01

0.35020E-07 0.53400E+01

0.39390E-07 0.54700E+01

0.49420E-07 0.55900E+01

0.52010E-07 0.57100E+01

0.50260E-07 0.58400E+01

0.48480E-07 0.59700E+01

0.51310E-07 0.61000E+01

0.53050E-07 0.62500E+01

0.54630E-07 0.63900E+01

0.54910E-07 0.65400E+01

0.55790E-07 0.66800E+01

0.63520E-07 0.68300E+01

0.68470E-07 0.69800E+01

0.73810E-07 0.71300E+01

0.79990E-07 0.72900E+01

0.79650E-07 0.74600E+01

0.87770E-07 0.76300E+01

0.92690E-07 0.78000E+01

0.88800E-07 0.79700E+01

0.10410E-06 0.81600E+01

0.11140E-06 0.83300E+01

0.10410E-06 0.85200E+01

0.13780E-07 0.48800E+01

0.44580E-07 0.50400E+01

0.99030E-07 0.52600E+01

0.14910E-06 0.54600E+01
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0.18340E-06

0.23720E-06

0.25640E-06

0.22220E-06

0.18660E-06

0.16890E-06

0.15860E-06

0.16520E-06

0.17840E-06

0.18040E-06

0.20800E-06

0.25560E-06

0.23010E-06

0.20130E-06

0.24380E-06

0.25700E-06

0.24820E-06

0.25680E-06

0.29000E-06

0.35510E-06

0.35870E-06

0.39280E-06

0.44570E-06

0.45390E-06

0.53130E-06

0.67560E-06

0.77350E-06

0.84850E-06

0.93040E-06

0.10300E-05

0.12020E-05

0.15720E-05

0.19650E-05

0.21120E-05

0.24910E-05

0.30670E-05

0.33260E-05

0.35150E-05

0.38770E-05

0.43320E-05

0.52390E-05

0.65190E-05

0.77680E-05

0.89080E-05

0.91100E-05

0.56500E+01

0.58500E+01

0.60400E+01

0.62300E+01

0.64400E+01

0.66400E+01

0.68400E+01

0.70800E+01

0.73100E+01

0.75600E+01

0.78200E+01

0.81000E+01

0.83700E+01

0.86600E+01

0.89700E+01

0.92500E+01

0.96100E+01

0.99000E+01

0.10260E+02

0.10600E+02

0.I0960E+02

0.11340E+02

0.11710E+02

0.12110E+02

0.12530E+02

0.12940E+02

0.13380E+02

0.13830E+02

0.14310E+02

0.14810E+02

0.15310E+02

0.15850E+02

0.16390E+02

0.16940E+02

0.17500E+02

0.18070E+02

0.18620E+02

0.19260E+02

0.19860E+02

0.20520E+02

0.21230E+02

0.21980E+02

0.22680E+02

0.23430E+02

0.24210E+02

REGRESSION OUTCOME
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c n m p q

0.I1389E-06 0.19004E+01 0.85600E+00 0.47840E+00 0.98810E+00

SIMULATION OUTPUT

SHORTEST 1% OF CRACK GROWTH LIVES

LIFE

0.19183E+05

0.20971E+05

0.23759E+05

0.24608E+05

0.26555E+05

0.26641E+05

0.27098E+05

0.27890E+05

0.28998E+05

0.30076E+05

0.31128E+05

0.33111E+05

0.33171E+05

0.33438E+05

0.33778E+05

0.34019E+05

0.34121E+05

0.34778E+05

0.34943E+05

0.35060E+05

0.35349E+05

0.35541E+05

0.37142E+05

0.37452E+05

0.38176E+05

0.38687E+05

0.38835E+05

0.38872E+05

0.38938E+05

0.39074E+05

0.39150E+05

0.39524E+05

0.39617E+05

0.39716E+05

0.39998E+05
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0.40049E+05

0.40437E+05

0.40473E+05

0.40644E+05

0.40769E+05

0.40923E+05

0.41291E+05

0.41370E+05

0.41825E+05

0.41925E+05

0.42378E+05

0.42553E+05

0.42693E+05

0.43034E+05

0.43133E+05

0.43394E+05

0.43452E+05

0.43558E+05

0.43626E+05

0.44096E+05

0.44256E+05

0.44349E+05

0.44381E+05

0.44391E+05

0.44500E+05

0.44558E+05

0.44759E+05

0.44866E+05

0.44968E+05

0.45066E+05

0.45143E+05

0.45158E+05

0.45166E+05

0.45188E+05

0.45195E+05

0.45199E+05

0.45275E+05

0.45407E+05

0.45410E+05

0.45568E+05

0.45628E+05

0.45664E+05

0.45705E+05

0.46036E+05

0.46159E+05

0.46195E+05

0.46266E+05

0.46293E+05

0.46779E+05

0.46971E+05
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0.47009E+05

0.47140E+05

0.47283E+05

0.47370E+05

0.47467E+05

0.47512E+05

0.47529E+05

0.47759E+05

0.47957E+05

0.47975E+05

0.47995E+05

0.48217E+05

0.48220E+05

0.48476E+05

0.48558E+05

B LIVES : EMPIRICAL

0.00010 0.19183E+05

0.00050 0.26555E+05

0.00100 0.30076E+05

0.00500 0.43133E+05

0.01000 0.48558E+05

Output File - LOWLIF

1 0.100000E-03 19183.2

2 0.200000E-03 20971.3

3 0.300000E-03 23758.6

4 0.400000E-03 24607.5

5 0.500000E-03 26555.1

6 0.600000E-03 26640.7

7 0.700000E-03 27097.7

8 0.800000E-03 27890.2

9 0.900000E-03 28997.5

10 0.100000E-02 30076.2

11 0.110000E-02 31128.4

12 0.120000E-02 33111.2

13 0.130000E-02 33171.4

14 0.140000E-02 33437.7

15 0.150000E-02 33777.9

16 0.160000E-02 34018.9

17 0.170000E-02 34120.8

18 0.180000E-02 34777.9

19 0.190000E-02 34942.5

20 0.200000E-02 35060.3

21 0.210000E-02 35348.7
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22 0.220000E-02

23 0.230000E-02

24 0.240000E-02

25 0.250000E-02

26 0.260000E-02

27 0.270000E-02

28 0.280000E-02

29 0.290000E-02

30 0.300000E-02

31 0.310000E-02

32 0.320000E-02

33 0.330000E-02

34 0.340000E-02

35 0.350000E-02

36 0.360000E-02

37 0.370000E-02

38 0.380000E-02

39 0.390000E-02

40 0.400000E-02

41 0.410000E-02

42 0.420000E-02

43 0.430000E-02

44 0.440000E-02

45 0.450000E-02

46 0.460000E-02

47 0.470000E-02

48 0.480000E-02

49 0.490000E-02

50 0.500000E-02

51 0.510000E-02

52 0.520000E-02

53 0.530000E-02

54 0.540000E-02

55 0.550000E-02

56 0.560000E-02

57 0.570000E-02

58 0.580000E-02

59 0.590000E-02

60 0.600000E-02

61 0.610000E-02

62 0.620000E-02

63 0.630000E-02

64 0.640000E-02

65 0.650000E-02

66 0.660000E-02

67 0.670000E-02

68 0.680000E-02

69 0.690000E-02

70 0.700000E-02

71 0.710000E-02

35540.7

37142.4

37451.9

38176.5

38686.7

38834.7

38871.9

38938.4

39074.2

39150.0

39524.2

39616.8

39716.2

39997.7

40048.5

40437.4

40473.2

40643.9

40769.4

40922.6

41291.4

41370.2

41825.2

41925.0

42377.6

42552.7

42692.7

43034.4

43133.0

43393.5

43451.6

43557.6

43625.8

44095.9

44255.9

44348.8

44381.0

44391.1

44499.6

44558.1

44759.4

44865.7

44968.0

45066.3

45143.3

45158.1

45166.4

45187.6

45194.6

45199.2
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72 0.720000E-02 45274.9

73 0.730000E-02 45407.1

74 0.740000E-02 45410.5

75 0.750000E-02 45568.3

76 0.760000E-02 45628.0

77 0.770000E-02 45664.2

78 0.780000E-02 45705.1

79 0.790000E-02 46036.0

80 0.800000E-02 46159.3

81 0.810000E-02 46195.2

82 0.820000E-02 46265.9

83 0.830000E-02 46293.2

84 0.840000E-02 46779.5

85 0.850000E-02 46970.6

86 0.860000E-02 47008.6

87 0.870000E-02 47140.0

88 0.880000E-02 47282.5

89 0.890000E-02 47370.0

90 0.900000E-02 47467.3

91 0.910000E-02 47511.6

92 0.920000E-02 47529.3

93 0.930000E-02 47759.1

94 0.940000E-02 47956.6

95 0.950000E-02 47974.9

96 0.960000E-02 47995.4

97 0.970000E-02 48216.7

98 0.980000E-02 48219.6

99 0.990000E-02 48476.1

100 0.100000E-01 48558.2

2.C.2 External Heat Exchanger Analysis Files

Selected input and output files for the external heat exchanger "all driver"
analysis are given here. The analysis program PROCRK requires the input file
CRKDAT along with the stress history files. Annotated examples of the data file for-
mat for CRKDAT are given in Figure 6.1-2. The input file CRKDAT is given below.
Section 6.1.3.1 contains a description of the input variables and a user's guide for

running PROCRK.

The output files from a PROCRK run are CRKRES, LOWLIF, and IOUTPR. The
CRKRES and LOWLIF from an "all drivers" analysis of the HEX coil are given
below. The CRKRES file contains an echo of the input data, output from the crack
growth model regression, and the B-lives. The LOWLIF file contains the lowest
100 (1% of total simulated) crack growth failure lives for the EXHEX coil; these
failure lives are plotted in Figure 2.4-5.
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Input File - CRKDAT

2

2

675

0

1

10000

1

0

5

0.0001

0.0005

0.001

0.005

0.01

0.060 0.060 0.50 0.50 0.0

0.010 0.010 0.50 0.50 0.0

2.00 2.00 0.150 1.0

2.00 2.00 0.200 1.0

1.00 1.00

1.00 1.00

0.00 0.00

1.00 1.00

1.00 1.00

-0.69310 0.5570

-1.50 -2.50

2

0.00 0.00 5280.0 0.00 0.00

'NBSZ' 1 0.00 0.00 552.34

'SIN2' 2 0.00 0.00 495.86

2.30

1.00

50.

6001

'CI0100 COPPER FROM NASA/JSC'

6100.0 100.0 1 3

2.2642 -2.6912 -0.55288

-2.000 0.00 0.00

8 0.20

5.017E-8 3.037

5.900E-8 3.191

9.798E-8 3.607

1.127E-7 3.649

2.397E-7 4.223

4.069E-7 4.864

5.334E-7 5.473

8.762E-7 6.109

0.0

0.0

0.00

0.00

0.00

0.00

0.00

0.00

0.00
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Output File - CRKRES

Copyright (C) 1991, california Institute of Technology. U.S. Government

Sponsorship under NASA Contract NAS7-918 is acknowledged.

DRIVERS

P R O C R K

INPUT DATA

PARAMETER DISTRIBUTIONS

RHO THETA

CHANNEL WIDTH Be(0.0600, 0.0600) U(0.50000, 0.50000) U( 0.0,

CRACK SIZE A Be(0.0100, 0.0100) U(0.50000, 0.50000) U( 0.0,

ZJUCBDA RANDOM

LAMBDA SINE

STAT STRANAL FAC

DYN STRANAL FAC

LAMBDA Kth

LAMBDA Kc

K CALC FAC

GROWTH CALC FAC

GROWTH COEFF m

k: U(2.00000, 2.00000)

COEFFICIENT OF VARIATION: 0.150

STRAIN GAGE FACTOR: 1.0000000

k: u(2.00000, 2.00000)

COEFFICIENT OF VARIATION: 0.200

STRAIN GAGE FACTOR: 1.0000000

U( 1.00000, 1.00000)

U( 1.00000, 1.00000)

U( 0.00000, 0.00000)

U( 1.00000, 1.00000)

U( 1.00000, 1.00000)

U(-0.69310, 0.55700)

U(-1.50000, -2.50000)

0.0)

0.0)

STRESS INPUT
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SX SY SZ SXY SXZ SYZ

STATIC

0.000000 0.000E+00 0.528E+04 0.000E+00 0.000E+00 0.000E+00

NBSZ

0.000000 0.000E+00 0.552E+03 0.000E+00 0.000E+00 0.000E+00

SIN2

0.000000 0.000E+00 0.496E+03 0.000E+00 0.000E+00 0.000E+00

MISCELLANEOUS INPUT

WILLENBORG OVERLOAD FACTOR

STRESS-TIME HISTORY PERIOD

STRESS-TIME HISTORY NOISE FILTER

NUMBER OF TIME-VARYING LOADS

NUMBER OF POINTS IN HISTORIES

0.23000E+01

1.00000

50.0

2

6001

MATERIAL INPUT

DESCRIPTION:

YIELD STRENGTH

CRITICAL S I F

NUMBER OF DIVISIONS

REGRESSION OPTION

C10100 COPPER FROM NASA/JSC

6100.

I00.

1

3

THRESHOLD MODEL DESCRIPTION

DKTHo = 0.22642E+01

Co = -0.26912E+01

d = -0.55288E+00
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STRESS RATIO R = 0.20

da/dN

0.50170E-07

0.59000E-07

0.97980E-07

0.11270E-06

0.23970E-06

0.40690E-06

0.53340E-06

0.87620E-06

DELK

0.30370E+01

0.31910E+01

0.36070E+01

0.36490E+01

0.42230E+01

0.48640E+01

0.54730E+01

0.61090E+01

REGRESSION OUTCOME

C n m p q

0.32734E-09 0. 41482E+01 -0.20000E+01 0. 00000E+00 0. 00000E+00

SIMULATION OUTPUT

SHORTEST 1% OF CRACK GROWTH LIVES

LIFE

0.17902E+05

0.19741E+05

0.20040E+05

0.20227E+05

0.20390E+05

0.21376E+05

0.22207E+05

0.22722E+05

0.22725E+05

0.22967E+05

0.23185E+05

0.23605E+05

0.23905E+05

0.24108E+05

0.24163E+05

0.24266E+05

0.24825E+05

0.24850E+05

0.25085E+05
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0.25413E+05

0.25440E+05

0.25667E+05

0.25853E+05

0.25861E+05

0.25961E+05

0.26033E+05

0.26224E+05

0.26345E+05

0.26500E+05

0.26649E+05

0.26662E+05

0.26672E+05

0.26720E+05

0.26809E+05

0.26823E+05

0.26851E+05

0.27022E+05

0.27159E+05

0.27299E+05

0.27389E+05

0.27520E+05

0.27622E+05

0.27659E+05

0.27682E+05

0.27892E+05

0.27898E+05

0.28000E+05

0.28005E+05

0.28066E+05

0.28335E+05

0.28449E+05

0.28458E+05

0.28542E+05

0.28589E+05

0.28760E+05

0.28952E+05

0.28963E+05

0.28988E+05

0.29029E+05

0.29076E+05

0.29098E+05

0.29256E+05

0.29539E+05

0.29556E+05

0.29728E+05

0.29840E+05

0.29842E+05

0.29846E+05

0.29920E+05
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0.29942E+05

0.30006E+05

0.30073E+05

0.30247E+05

0.30266E+05

0.30276E+05

0.30346E+05

0.30440E+05

0.30525E+05

0.30534E+05

0.30535E+05

0.30597E+05

0.30599E+05

0.30722E+05

0.30785E+05

0.30799E+05

0.30893E+05

0.30943E+05

0.30954E+05

0.30974E+05

0.30981E+05

0.31024E+05

0.31025E+05

0.31040E+05

0.31075E+05

0.31204E+05

0.31234E+05

0.31367E+05

0.31412E+05

0.31455E+05

0.31457E+05

B LIVES : EMPIRICAL

0.00010 0.17902E+05

0.00050 0.20390E+05

0.00100 0.22967E+05

0.00500 0.28335E+05

0.01000 0.31457E+05

Output File - LOWLIF

1 0.100000E-03

2 0.200000E-03

3 0.300000E-03

4 0.400000E-03

5 0.500000E-03

17901.8

19741.3

20040.5

20227.0

20390.3
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6 0.600000E-03

7 0.700000E-03

8 0.800000E-03

9 0.900000E-03

10 0.100000E-02

11 0.110000E-02

12 0.120000E-02

13 0.130000E-02

14 0.140000E-02

15 0.150000E-02

16 0.160000E-02

17 0.170000E-02

18 0.180000E-02

19 0.190000E-02

20 0.200000E-02

21 0.210000E-02

22 0.220000E-02

23 0.230000E-02

24 0.240000E-02

25 0.250000E-02

26 0.260000E-02

27 0.270000E-02

28 0.280000E-02

29 0.290000E-02

30 0.300000E-02

31 0.310000E-02

32 0.320000E-02

33 0.330000E-02

34 0.340000E-02

35 0.350000E-02

36 0.360000E-02

37 0.370000E-02

38 0.380000E-02

39 0.390000E-02

40 0.400000E-02

41 0.410000E-02

42 0.420000E-02

43 0.430000E-02

44 0.440000E-02

45 0.450000E-02

46 0.460000E-02

47 0.470000E-02

48 0.480000E-02

49 0.490000E-02

50 0.500000E-02

51 0.510000E-02

52 0.520000E-02

53 0.530000E-02

54 0.540000E-02

55 0.550000E-02

21375.8

22207.1

22722.3

22724.7

22967.1

23185.4

23605.3

23904.8

24107.7

24163.3

24265.5

24824.6

24850.0

25085.3

25413.0

25439.8

25667.3

25853.3

25861.1

25961.1

26032.6

26224.4

26344.8

26500.2

26649.0

26661.6

26672.3

26720.2

26808.7

26823.0

26850.5

27022.4

27159.1

27299.1

27389.2

27520.2

27621.5

27659.3

27681.7

27891.6

27897.7

28000.4

28005.3

28065.8

28335.3

28449.3

28458.3

28541.7

28588.5

28760.0
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56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

0.560000E-02

0.570000E-02

0.580000E-02

0.590000E-02

0.600000E-02

0.610000E-02

0.620000E-02

0.630000E-02

0.640000E-02

0.650000E-02

0.660000E-02

0.670000E-02

0.680000E-02

0.690000E-02

0.700000E-02

0.710000E-02

0.720000E-02

0.730000E-02

0.740000E-02

0.750000E-02

0.760000E-02

0.770000E-02

0.780000E-02

0.790000E-02

0.800000E-02

0.810000E-02

0.820000E-02

0.830000E-02

0.840000E-02

0.850000E-02

0.860000E-02

0.870000E-02

0.880000E-02

0.890000E-02

0.900000E-02

0.910000E-02

0.920000E-02

0.930000E-02

0.940000E-02

0.950000E-02

0.960000E-02

0.970000E-02

0.980000E-02

0.990000E-02

0.100000E-01

28952.0

28963.0

28988.1

29028.8

29075.6

29098.5

29256.1

29538.9

29555.9

29727.7

29840.5

29842.3

29846.2

29919.5

29942.2

30006.3

30073.4

30246.5

30265.8

30275.7

30345.5

30439.9

30524.5

30534.1

30535.1

30597.4

30598.6

30721.7

30784.5

30799.0

30893.1

30942.7

30954.0

30974.4

30980.9

31024.2

31025.3

31039.9

31074.9

31204.1

31233.6

31367.4

31412.4

31455.1

31457.0
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Appendix 2.D

Stress Intensity Factor Expressions

2.D.1 HEX Coil Crack Configuration

The surface flaw in a finite width plate given as solution SC01 in NASA/FLAGRO

[9] was used for the HEX coil problem and the SIF expressions are given below.

The SIF is given by

K = [SoF o + S2F2]

in which S Oand S2 are the applied tensile and bending stresses, respectively, and

Fo and F 2 are their corresponding SlF coefficients given below. The SlF expres-

sions are given for any point along the elliptic boundary of the surface flaw. Angle

_p determines the point on the flaw boundary. The coefficients for SlF at the vertex

in the depth or "a direction" and at the vertex in the length or "c direction" are

derived by setting _p = 0° and _p = 90 °, respectively.

F o = Mogf_,fwf x

F2 = HcF o

in which

M o=M 1 +M2 v2+M3 v4

f_p= [(XCOS_p)2 + sin2_] TM for x < 1

= ICOS2 _p + (X-1 sin _p)211/4

fw = Vsec [(_zc/w)v_]

forx > 1

fx = [1 + 1.464x1651-1/2forx_<1

1 + 1.464 x -1'65] -1/2= for x > 1

H c = H 1 + (H 2 - H 1) sin p p
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The variables in the above equations are given in terms of three non-dimensional-
ized geometry variables v, w, and x where

v=alt

w=a/W

x=a/c

in which a is the crack depth, c is half the crack length, t is the plate thickness, and

W is the plate width. The variables are given for two ranges of the crack aspect
ratio as follows:

Fora/c <_ 1:

M 1 = 1.13 - O.09x

M 2 = -0.54 + 0.89 / (0.2 + x)

M 3 = 0.5 - 1 / (0.65 + x) + 14 (1 - x) 24

g= +o3sv
P = 0.2 +x + O.6v

H 1 = 1 - 0.34 v - O. 11 xv

H 2 - 1 - (1.22 -t- 0.12x) v -I- (0.55 - 1.05X 0"75 -{- 0.47x 1.5) V2

Fora/c > 1"

M 1 = (1 + 0.04/x) X -1/2

M 2 = 0.2 x -4

M 3 = -0.11 x -4

p = 0.2 +x -1 + 0.6v
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H,= _+ _- 0.04-0.4_/x)v+ (0.SS- _.93x-°" + 1.3ax-'') v_

H_=1+(-2.11 +0.Z7/x)v+ (0._S-0.72x-°"+0.14x-'_) v_

2.D.2 EXHEX Crack Configuration

The crack configuration used for the EXHEX analysis was a crack in a finite
width plate subject to tension [19]. The SlF is given by

K=SoFo_-_

in which SOis the applied tensile stress, and Fo is the corresponding SlF coeffi-
cients as follows:

in which W is the width of the plate and a is half the crack length.
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Probabilistic Modeling of
Turbine Blade

Low Cycle Fatigue Life
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Section 3.1

Introduction

A Low Cycle Fatigue (LCF) failure model calculates the crack initiation life of a
structure subjected to a small number of high amplitude load cycles. As shown in
Figure 3.1-1, the information used in the LCF failure model presented here includes
values of such drivers as environmental parameters, loads, material properties,
and structural parameters and uncertainties about driver values and engineering
model accuracy. The available information about drivers, including their uncertain-
ties, is used to synthesize stress or strain histories. Individual cycles of the stress
or strain histories are identified and characterized by a value of equivalent stress or
strain range that accounts for the mean and extrema of each cycle. The materials
characterization model establishes a value of fatigue life for the equivalent stress or

strain range of each cycle. The fatigue life for a stress or strain history is com-
puted from the accumulated damage due to a sequence of individual cycles.

The application of the Probabilistic Failure Assessment Methodology to LCF life
prediction for the ATD-High Pressure Fuel Turbopump (HPFTP) first stage turbine
blades is presented in the following. Figure 3.1-2 shows the low cycle fatigue life
calculation procedure in more detail. The major elements of the life calculation pro-
cedure are driver selection, driver transformation, rainflow cycle counting for multi-

ENVIRONMENT AND LOADS STRUCTURAL PROPERTIES DRIVER UNCERTAINTIES

SYNTHESIZE STRESS OR STRAIN HISTORIES

1
IDENTIFY CYCLES

1
CHARACTERIZE MATERIALS

FATIGUE UFE BEHAVIOR

1
CALCULATE DAMAGE

1
ESTIMATE FATIGUE LIFE

Figure 3.1-1 Low Cycle Fatigue Failure Modeling Approach
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t SELECT DRIVERS ]

DRIVER ITRANSFORMATION

1
COMPOSITE

HISTORY FOR PERIOD T

1
RAINFLOW CYCLE 1COUNT IF NEEDED

1
TABLE OF VALUES OF

TOTAL STRAIN RANGE (_/)
OR

REFERENCE STRESS (SRj),j = 1..... J

I MATERIALS MODEL 1

1
TABLEOF CYCLESTOFAILURE,

Nj,j= _..... J

1
CALCULATE DAMAGE

FOR PERIOD T
J

o,= T.N;'
j--1

LIFE = T / D T
MODELING ACCURACY

STRESS OR STRAIN
HISTORIES FOR EACH
LOAD FOR PERIOD T

MODEUNG ACCURACY

SAVE SMALLEST 1% OF LIVES

Figure 3.1-2 Calculation Procedure Used in the Low Cycle Fatigue
Model
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pie cycle histories, the materials model, and the damage accumulation algorithm
which is used for multiple cycle histories. In the driver transformation, stress or
strain is defined as a function of such drivers as rotational speed and gas tempera-

ture.

The driver transformation can be performed in two ways. A rigorous structural

analysis can be incorporated within the low cycle fatigue model, or the driver trans-
formation can be accomplished by a parametric representation of the rigorous

structural analysis, i.e., by a response surface. The latter approach was chosen
because response surface methods gave accurate answers and were computa-
tionally efficient. A parametric representation of the structural analysis is obtained
by performing a sensitivity analysis using structural finite element models. The
results of the sensitivity analysis are then represented by a response surface which
characterizes stress or strain as a function of relevant drivers. Relevant drivers are

those which engineering knowledge suggests ought to be important and which, by
means of a measure of goodness-of-fit, are confirmed to be sufficient to explain ob-
served variation. For our applications, quadratic response surfaces have been
adequate to provide an accurate representation of the observed variation.

Factors to account for uncertainties about driver values and modeling accuracy

are inserted as appropriate at the steps of the life calculation procedure of Figure
3.1-2. When multiple cycle histories are analyzed, rainflow cycle counting is used
to identify individual cycles. The fatigue life corresponding to each cycle is

provided by the materials model. The failure time for multiple cycles is obtained
from the damage accumulation calculation by using Miner's Rule. Details on
rainflow cycle counting, the materials characterization model, and the damage ac-
cumulation algorithm can be found in [1], Sections 2.2.1.4, 2.1.2, and 2.2.1.4,

respectively.

The ATD-HPFTP Turbine Blade low cycle fatigue model is described below. The

engineering analysis and driver transformation are presented, followed by a discus-
sion of the implementation of the failure simulation. The development of this model
and its application to the ATD-HPFTP first stage turbine blades was a collaborative
effort between Pratt & Whitney and JPL.
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Section 3.2

Turbine Blade LCF Analysis

3.2.1 Component Description

The ATD-HPFTP Turbine Blades are hollow single-crystal castings. Figure 3.2-1
shows the axial cross section of the ATD-HPFTP turbine with its monolithic disk

and both stages of turbine blades. The first stage turbine has fifty blades. The tur-
bine is driven by high temperature, high pressure steam (H20) and gaseous

hydrogen (H2).

3.2.2 Modeling Approach

The LCF analysis for the first stage turbine blades was performed at the location
identified in Pratt & Whitney's design analysis as having the largest local total strain
range and as the controlling location for LCF crack initiation life. This critical loca-
tion is on the airfoil suction face just above the fillet where the blade airfoil attaches
to the platform, and the fact that there are fifty such locations is taken into account
in the failure simulation. The position of the critical location is shown in Figure
3.2-2.

The strains in the blade at the critical location are produced by mechanical and
thermal strains. The mechanical strain is due to centrifugal effects caused by

blade pull due to the mass of the blade itself. The thermal strain is primarily due to
the thermal gradients in the foil attachment region during start-up and shutdown
transients.

The test specimens of the blade material were subjected to stress controlled
cyclic loading (frequency = 20 Hz) with a stress ratio R of -1.0 in fatigue testing at
Pratt & Whitney. The fatigue tests were performed in 5000 psig hydrogen at room
temperature. The test specimens were smooth and in the [001] or radial orienta-
tion. Details of the materials characterization model can be found in Section 2.1.2

of [1].

3.2.3 Mission Strain History for the Blade

A representative strain-time history for the blade is shown in Figure 3.2-3. The
start-up and shutdown transients dominate the mission duty because, according
to preliminary analysis, the minor throttle-down cycle contributes negligible

damage. Since the history has multiple cycles, rainflow cycle counting and Miner's
rule were used to calculate damage. The history typically reduces to two cycles:

(t2, t6) and (t3, t4). In the failure simulation to be described in Section 3.2.9, the
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2nd STAGE BLADE

2nd STAGE STATOR
1st STAGE BLADE

1st STAGE STATOR

• TURBINE
DISK

Figure 3.2-1 Axial Cross Section of the ATD-HPFTP Turbine

Showing the Monolithic Disk and Both Stages of
Blades

A A

CRITICAL LOCATION

Figure 3.2-2 ATD-HPFTP First Stage Turbine Blade
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i=6

i=5

TOTAL STRAIN, _T
i=3

BEGIN END
DECEL DECEL

Figure 3.2-3

i=4
i=2

Illustration of the Strain-Time History for the ATD Blade

value of total strain corresponding to each ti, i = 1, ..., 6 is treated as a random
variable according to the calculation procedures given in the following.

3.2.4 Driver Transformation

Within the strain range predicted by preliminary deterministic analysis for the criti-
cal location, the single crystal material behaves with negligible inelasticity. The
total elastic strain at the critical location can be written as the sum of mechanical,

thermal, and bending components

_T(ti) = _.B(ti) + EM(ti) + ETH(ti), i = 1, ..., 6 (3-1)

where ET(ti) is the total strain at ti; _M(ti) is the mechanical strain at t i due to blade

pull; ETH(ti) is the thermal strain at ti due to the thermal gradient; and EB(ti) is the
strain due to gas bending and blade tilt at ti. _B contributes negligibly to damage
because the strain due to gas bending is negated by the strain due to tilt bending;

consequently, EB(ti), i = 1, ..., 6 is zero in this analysis.

The thermal strain ETH(ti) due tO thermal gradient was found to be primarily de-

pendent on the gas flow conditions during the start and shutdown transients.

During the start transient shown in Figure 3.2-3, the flow conditions can be
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TEMPERATURE

("R)

950 --

m

i
.2 td

TIME

(sec)

Figure 3.2-4 Schematic of Temperature Profile During Shutdown

described in terms of the gas temperature Tgasand gas film coefficient hgas. Sen-
sitivity analyses 1 were performed for nine different temperature and film coefficient

combinations which covered their ranges of uncertainty. A flow model was used to
establish boundary conditions for a MARC model to obtain the total strain for each
flow condition, then the mechanical strain 2 was subtracted to obtain the values for

the thermal strains. The nominal thermal strain _THnom(tl) was represented by the
following quadratic response surface model [2-7]

T. 2ETHn°m(tl) = fA(Tg as' hg as) + eA = ao + al Tgas + a2 hgas + a3 gas (3-2)

+ a 4 hgas 2 + a 5 Tgas hgas + e A

where the coefficients a0 through a5 were determined by the procedure given in
Section 3.4.2, and eA is an additive modeling uncertainty characterizing the good-

ness of fit for the response surface. The MARC finite element (FE) analysis was
performed at a nominal rotor speed oJo of 38,482 rpm for which the nominal

mechanical strain EMnom was 0.295%. The values obtained for the response sur-

face coefficients are a 0 = 7.27 x 10-3, a 1 = 6.74 x 10-5, a2 = - 5.91 x 10-5, a 3 =
- 3.53 x 10-8, a 4 = 1.08 x 10-8, a s = - 2.74 x 10-8, and eA is a driver discussed in
Section 3.3.1.

In thcanalyses, performed at Pratt & Whitney, a 2-D model was used at nominal or base
conamons ano a 1-D model was used for the eight perturbation combinations. See
Section 3.4.2 for more details.

The mechanical strain at t1 is negligible because the rotor speed is only 225 rpm.
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During the shutdown transient shown in Figure 3.2-4, the gas flow conditions

can be described in terms of the slope m of the gas temperature versus time curve
during deceleration and the gas temperature at the beginning of the shutdown tran-

sient Ts. The nominal thermal strain during shutdown was characterized by a 1-D

analysis performed by Pratt & Whitney with a set of values of m and Ts which

covered their ranges of uncertainty, then a quadratic response surface [2-7] was fit
to the thermal strain results

ETHnom(t6) = fol(m, Ts) + eO = dlo + dll Ts + d12 m + d13 Ts2 (3-3)

+ d14 m 2 + d15 Ts m + e o

where eD is an additive modeling uncertainty characterizing the goodness of fit for
the response surface. 3 The values of the response surface coefficients obtained

by the procedure given in Section 3.4.2 are dl0 __- 0.13, dll = 2.27 x 10 4, d12 =
- 5.93 x 10 -5, d13 = O, d14 = O, dis = 4.72 x 10 , and e o is a driver discussed in
Section 3.3.1.

The uncertainty factor for the coefficient of thermal expansion _= and the uncer-

tainty factor for thermal strain analysis _.TH may be combined with the response sur-

face functions given by Equations 3-2 and 3-3 to obtain the total thermal strain at

ti, i= l .... ,6

ETH(ti) = 2a _TH_e ETHnom(ti), i = 2, 3, 4 (start transient)

(34)

_'TH(tS) = _'a _'T" ETHnom(tS)

_'T.('6) = _'a }LTH ['DI( m, Ts) + eD]

where

_a

_'TH

fA(')

(steady state)

(shutdown transient)

= coefficient of thermal expansion variation factor

= thermal strain analysis accuracy factor

= response surface for the nominal thermal strain at t1, ETHnom(tl)

3 See Section 3.4.2 for more details.
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hgas

Tgas

eA

J'G

_.on,(t;)

fro(')

m

T,

= gas film coefficient at t1

= gas temperature (°R) at t1

= response surface accuracy for t1

= thermal strain uncertainty factor due to gas temperature variation during
start

= nominal thermal strain at ti, i = 2 ..... 5

= response surface for the nominal thermal strain at ts, eTHnom(ts)

= deceleration slope at shutdown (°R/sec)

= gas temperature at start of deceleration (°R)

eD = response surface accuracy for t6

The mechanical strain clue to blade pull eM(ti) can be expressed analytically as a

function of rotor speed and blade mass. This allows the strain EMfor the start and
shutdown transients and steady state to be adjusted for rotor speed and uncertain-
ty in blade mass, as follows:

EM(ti) = _'P_'MACMS(ti) EMnom,i = 1 .... ,6 (3-s)

where CMs(ti) = (m(tt)lmo) 2, i = 1, ..., 6 is the speed variability correction factor
at ti and

Jp = deviation in blade pull load due to uncertainty in blade mass

_'MA = mechanical strain analysis accuracy factor

m(ti) = actual rotor speed at ti, i = 1..... 6

wo = nominal rotor speed

eMnom = nominal mechanical strain at rotor speed mo

Preliminary sensitivity analyses 4 showed that rotor speed during the start tran-
sient is not a significant driver. However, during the shutdown transient, the

mechanical strain clue to rotation contributes significantly to total strain ET(t6). Fig-

ure 3.2-4 illustrates how the time td was obtained in order to calculate r_(t6). An
analysis of available SSME test data by Pratt & Whitney indicated that the decelera-
tion slope begins approximately 0.2 seconds after throttle-down and that blade

thermal strain is not significantly affected after the gas temperature drops below
950°R. Consequently, td is taken as the time at which gas temperature drops

below 950°R. In the blade LCF model, the deceleration slope m and gas tempera-

4 See Section 3.4.2 for more details.
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ture Ts are independently specified and can be either fixed parameters or random

variables. Given values of m and Ts, td can be found from

td = fD2(m, Ts) = 0.20 + (Ts - 950)/m (3-6)

An analysis of engine test data indicated that the rotor speed at time ts may be ex-

pressed in terms of td by

re(t6) = fD3(td) = d31 + d32 tel (3-7)

where d31 = 30,523 and d32 = 21,846 are coefficients from the data analysis.

The nominal thermal strain history and the corresponding nominal rotor speed
history for the turbine blade critical location are Summarized in Table 3.2-1 for ti,

i - 1, ..., 6. The steady state rotor speed ¢o(t5) is characterized by a Normal dis-
tribution and is discussed in Section 3.3.1.

3.2.5 Mean Strain Effects

This LCF analysis was conducted using the stress formulation of the stochastic
fatigue life model which is based on an equivalent zero-mean strain. This materials
fatigue life model is described in Section 2.1.2.1 of [1]. The strain cycles from
rainflow counting were adjusted to the equivalent zero-mean strain amplitudes to
be compatible with this fatigue life model. The equivalent zero-mean strain range
given by the Walker relation [8] was used in this analysis and is

=( Ae lw-1
AEEQ _2e,_= ) At

(3-8)

Table 3.2-1 Nominal History for the ATD-HPFTP First Stage
Turbine Blade

¢THnom(ti)

(%)

fA(hgas, "/'gas) + eA
-0.196921

O.146025

-0.200128

0.007393

fDl(m, Ts) + eo

_(ti)
(rpm)
225.8

3025.1

6138.8

8309.0

oa(t5)
los(to)

3-13



where en,ax is the maximum or peak strain, bE is the strain range, and w is the char-
acteristic Walker exponent for the material. A value of .5 for w was used for the
blade material PWA 1480.

3.2.6 Damage Calculations

The finite life approach employing a strain time was used. A key step in damage
calculations is identification of the number of strain cycles in the strain time history
and their extreme values. A cycle counting method called the rainflow technique
has been implemented. Rainflow cycle counting is discussed in detail in [1], Sec-
tion 2.2.1.4 and Appendix 2.A.

Failure is considered to be due to damage accumulation from a finite number of

cycles. Damage accumulation is performed using Miner's rule, given by Equation
2-91 of [1]. Thermal-mechanical fatigue effects could be considered by the factor

_'TMF, which is a multiplier on the life L as given by Equation 2-91 of [1]. ZTMFwas
not used in the analysis presented here.

3.2.7 Alternative Characterizations of the ATD Blade LCF
Materials Model

The approach to modeling materials fatigue life probabilistically that was used in
the LCF analysis presented here is described in detail in [1]. The stress formula-
tion of the materials model described in [1] was used for the ATD turbine blade
LCF analysis because the blade material exhibits elastic behavior in the strain
range encountered in this application. In the following Sections 3.2.7.1 and
3.2.7.2, the procedure used in [1] to establish materials model parameters is
reviewed, then an alternative procedure called "bootstrapping" is described. Both
of these procedures were applied in the turbine blade LCF analysis and results for
both procedures are given in Section 3.3.

3.2.7.1 Parameter Uncertainty

The ATD blade LCF analysis utilizes a simple multiplicative stress/life materials
model of the form

N = A s-mE
(3-9)

Variation in material life is modeled by a multiplicative Weibull variate, E, which has
its distributional parameters constrained so that the median value of _ is 1.

What we require is to characterize the materials model used to compute fatigue
failure by using operating environment materials data to impute possible values of
A, m, and the parameters of the Weibull variate.
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The current procedure for characterizing uncertainty in materials model

parameters may require constraints due to some possible parameter values lying

outside ranges of plausibility.

If we let A = K m and E = pm, the regression equation

__ (3-10)InS=InK- 1 InN+lnp
m

can be derived from Equation 3-9. The properties of the Weibull distribution are
used to standardize the regression equation, i.e., adjust the constant term so that

the disturbance term has expected value zero.

1 InN+(Inp-Inr/o+y//_o)In S = (In K + In _/o - Y //_o) -
(3-11)

where y = Euler's constant and p ,,, W(rlo, flo). This adjusted disturbance term

has variance _2 / 6/32. The regression equation

InN = InA - m In S + In (3-12)

derived from Equation 3-9 is equivalent to the standardized form

In N = (In A + m In r/o - my //_o) - m In S + (In e - m In r/o + m y //_o) (3-13)

with E ,-, W (r/o,/3o / m).

Equations 3-11 and 3-13 are used together to provide the point and interval es-
timates used to characterize the materials model.

The least squares residuals from Equation 3-11 can be used to construct an in-

terval estimate of VVar(In S / N) which is approximately C, the coefficient of varia-

tion of fatigue strength. Since values of C have been computed for many samples

of a material, that calculation provides an intuitive basis for evaluating the
reasonableness of the characterization of materials properties.

The most common form of exogenous information that can be used is an upper
bound on the coefficient of variation of fatigue strength, which can be imputed

from the aforementioned past experience. In our procedure, that constraint is

translated algebraically into a constraint on m which modifies the interval estimate

for m derived from least squares estimation of Equation 3-13.
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In the foregoing characterization of material properties, the simulation procedure
illustrated in Figure 3.2-5 is as follows:

For each simulation iteration, draw from a distribution on m (e.g., continuous
Uniform) assigned over the credibility range established by an interval estimate
for m and any constraints.

• Conditional on the value of m selected, consider Equation 3-11 rewritten as

(In S + 1 In N) = (In K + In r/o - y/,80) + (In p - In r/o + y/,8o)m
(,3-14)

,8o is then determined from the variance estimate based on least squares residuals
from Equation 3-14; r/o is determined from,8 o and the constraint that the median

value of _p (equivalently, E) is one; and, finally K is determined from the least
squares estimate of the constant term in Equation 3-14, together with the values
of,80 and r/o.

Recall that A = K m and e = (pro. Thus, within each iteration of the simulation,

this procedure defines the materials model, N = A S-me, which is used to compute
fatigue failure. Across iterations it captures both intrinsic variation as well as uncer-
tainty in the values of A, m, and the parameters of the Weibull variate.

A simpler, less conservative procedure is to use bootstrapping to represent un-
certainty in A, m, and the Weibull variate parameters and use the least squares pro-
cedure, within each simulation iteration, as illustrated in Figure 3.2-6, to impute
specific values for those parameters for each iteration.

Using Equation 3-13, least squares produces a unique m value; ,80 is determined

from m and the variance estimate based on least squares residuals; r/o is deter-

mined from ,80 and the constraint that the median value of e is one; and, finally, A is
determined from the least squares estimate of the constant term in Equation 3-13,
together with the values of m, ,80, and _/o.

Within each iteration of the simulation, this procedure defines the materials

model, N = A s-mr, which is used to compute fatigue failure. Across iterations it

captures both intrinsic variation as well as uncertainty in the values of A, m, and
the parameters of the Weibull variate.

3.2.7.2 A Procedure for Bootstrapping the Impact of Limited Stress/Ufe Data
Under the operating environment, the materials characterization data set avail-

able for the ATD blade LCF failure mode is too small to permit bootstrapping as a
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Figure 3.2-7 Plot of Eight Specimen Failure Points

useful substitute for a parametric stochastic characterization of intrinsic material

failure uncertainty.

However, bootstrapping can be very useful for the purpose of characterizing
parameter specification error in the materials model, which is a source of uncertain-
ty that it is especially important to model when the relevant materials data base is

small. Due to the algebraic properties of the materials model we use, Algorithm 3
in [9] is suggested.

For example, consider an ATD blade LCF stress/life materials model linear in log
space and suppose we have 8 specimen failure points available, as illustrated in
Figure 3.2-7.

Our model is of the form N = A s-mE with MED[ _ I S ] = 1. The following

bootstrap procedure can be used to characterize uncertainty in the values of A and
m in the materials model.

Step 1- Construct the residual vector in log space e = (e 1, ..., es) corresponding to
the estimated regression equation

A A

In N i = a - m In Si + e i
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Step 2: For a given covariate (S) value, S7, draw from e, obtaining e °, and find a

pseudo-sample value of Ni, N7, from

^ ^InN7 = a - m ln S_ + e ° 8
8-2

Execute this for the covariate values in the original data set. Thus, 3 pseudo-
values of N are generated at the highest value of S, etc. This procedure results in
a pseudo-data set

E(N;, o1) , (/_;, O"1), (N;, al), (N*4,a2), (N_, a3) , (N_, a3), (N-_, a4), (N_, a4) ]

Step 3: For a simulation iteration, use the pseudo-data set to characterize intrinsic

materials variation by estimating a materials model of the form N = A s-mE
with MED[ E I S ] = 1 and use that estimate to compute component failure.

Step 4: For each additional simulation iteration, repeat Steps 2 and 3.

The effect of Steps 1-4 is to characterize uncertainty in A and m implied by the ex-
isting data under the model specification and homogeneity assumption implied by
the materials model. Intrinsic materials variation is modeled in Step 3, where a
realization of E, derived from the estimated distribution on _, is executed in order to
compute component failure.

Suppose, instead of Weibull variation, that material life variation is modeled by a

multiplicative Lognormal variate, _, with its distributional parameters constrained so
that the median value of E is 1. The only impact on the analysis will be that Equa-

tions 3-10 and 3-12 do not need to be adjusted since the median constraint implies
that In _pand In c both have zero mean. VAR (In cp) = a 2 and VAR (In E) = m 2 a '_

when _p ~ A (0, a 2) and E ,,, A (0, m 2 a 2).

3.2.7.3 Spatial Symmetry Effects

For the assumptions of either Weibull or Lognormal material variation, the effect
of N-part symmetry of a component on failure can be derived. For the ATD blade

LCF analysis, simulated failure will occur at the location having the smallest of N
simulated disturbance terms corresponding to Equation 3-13 (Weibull) or 3-12
(Lognormal).

In the case of Weibull materials variation, the solution is analytical. From Equa-
tion 3-13 and the Weibull assumption, the distribution function of the disturbance
term
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V = In e - m In r/o + mT//_o

can be shown to be

ex0{
Letting X = min (V),

N

Fx(x )= 1 - Pr (X > x)

N

=1-]--[ Pr (V_> x)
i=1

Given a simulated value of Fx(x ), the solution of this equation for x provides the
desired smallest disturbance term, indicative of the worst materials curve.

In the case of Lognormal materials variation, the solution involves standard

numerical approximations for inverting a Normal distribution function. From Equa-
tion 3-12 and the Lognormal assumption, the distribution function of the distur-
bance term V = In e is N (0, o 2). Thus,

F,(x)=1- (v>x)]"

=1- Pr(Z>xlo

where Z ,-, N (0, 1). The algorithm given in 26.2.23 of [10] has been used to pro-

vide the desired value of the smallest disturbance term, given a simulated value of
F,(x).

3.2.8 Modeling Multiple Critical Locations

The fact that only one blade is modeled by the engineering analysis while there
are fifty identical blades in the first stage must be considered. The procedure for
modeling LCF failure in this case is discussed in [1], Section 2.1.6 and is used in
the turbine blade LCF model.
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3.2.9 Probabilistic Failure Model Implementation

The Probabilistic Failure Model (PFM) for turbine blade low cycle fatigue failure
generates a distribution of failure times that results from the probabilistic charac-

terization of drivers. As shown in Figure 3.2-8, the PFM for the blade consists of
the materials model, the LCF failure simulation, the structure for selection of

drivers, and the procedure for characterizing the simulated failures as a Bayesian
prior failure distribution for the purpose of allowing the impact of any available
blade success/failure data to be included in the characterization of the blade failure
distribution. Since the current analysis is for a candidate blade, no test data is
available to use Bayesian updating.

In the PFM shown in Figure 3.2-8, hgas, Tgas, m, and ZG are characterized by
Beta distributions; w(ts), Ts, eA, and e o are characterized by Normal distributions;
and eB, Zp, ,a.MA,Za, ZTH,_'darn,and ]tTM i are characterized by Uniform distributions.

The materials model provides a family of stochastic curves relating fatigue life to
strain. In the outer loop, to be executed N times, the Beta distributions are

selected for hgas, "/'gas,m, and ZG; the values of ZMAand ZTH are drawn; and the
materials model parameters are established. Then, in the inner loop, to be carried

out n times, values of _B, ZP, w(ts), _,=,hgas, Tgas,m, Ze, Ts, eA, eo, Jl"dam, and Jl,TMF

are drawn from their respective distributions.

Since there are fifty blades on the disk, the appropriate realization of the stochas-
tic strain-life curve to use in computing component life for each inner loop iteration
will be that corresponding to the minimum of f#ty selections of the materials model
parameter, p. See [1], Section 2.1.6 for further explanation. Since a blade LCF life
is calculated for each inner loop iteration, a total of Nn simulated failure times will

be calculated. The blade results presented in Section 3.3.4 were obtained using
N = 20,000. Since the failure probabilities of interest are of the order 10-3, only the
smallest one percent of these failure times is saved and used to calculate the

Bayesian Prior Distribution parameters a, fl, 0. The procedure for calculating a,/_,
and 0 is discussed in [1], Section 2.1.1.

The double-loop structure allows the user to improve computing efficiency for
large sample sizes. The simulation may be run in a single loop rather than a
double loop by specifying a value of 1 for n. It was found that for driver variation
used in the blade analysis with N = 200 and n = 100, the left-hand tail distribution
of simulated failures was essentially the same as for a single-loop simulation with
N = 20,000 and n = 1. The blade results presented in Section 3.3.4 were ob-
tained using N = 20,000 and n = 1.

The driver transformation and the fatigue life calculation used in the blade LCF
failure simulation are shown in Figure 3.2-9. The driver transformation, shown in
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Table 3.2-2 Driver Distributions and Influences for

ATD-HPFTP First Stage Turbine Blade LCF

t3 t4 t5 t6

X X X X

X X X X

X X X X

X

X X X X

X X X X

X

X

X X

X X

X X

X

X

X

X

X

LIFE

eD

_'darn X

_TMF X

DISTRIBUTION

Uniform

Uniform

Uniform

Normal

Uniform

Uniform

Beta

Beta

Beta

_G X X Beta

-is X Normal

eA Normal

X Normal

Uniform

Uniform

Equation 3-1, is performed in several steps. First, the thermal stress during ac-
celeration is calculated using the acceleration model of Equation 3-2. Next, the
deceleration model calculations are performed, Equations 3-3, 3-6, and 3-7, the
deceleration slope, thermal strain, and rotor speed are obtained. The total
mechanical and total thermal strain-time histories are calculated using Equations

3-5 and 3-4, respectively. Then, the composite strain-time history is obtained by
combining the thermal and mechanical strains according to Equation 3-1. Finally,
the rainflow cycle counting and damage accumulation is performed. The predicted
failure time is then obtained using the randomly selected S/N curve from the
materials characterization model.

The probability distributions characterizing driver uncertainty in the blade PFM

are summarized in Table 3.2-2. The values of hgas, Tgas, m, and h e are charac-
terized by Beta distributions with the capability for assigning Uniform distributions
on the hyperparameters, p and 8. In the blade simulation, p and e were fixed at

specific values, so no hyperdistributions were used. Steady-state turbopump
speed _(ts), deceleration starting temperature Ts, and the additive model accuracy
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factors eA and e o are considered to be Normally distributed with fixed mean and

variance. The bending strain EB and the factors _p, _MA, _a, _TH,_dam, and _TMF
are represented by Uniform distributions with fixed end points. The specific dis-
tributions for all drivers are discussed in Section 3.3.1. Table 3.2-2 also gives the
time ti, i = 1 .... ,6 at which each driver influences the driver transformation.
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Section 3.3

Turbine Blade Case Study

3.3.1 Driver Description

The list of drivers used in the blade LCF analysis, their distributions, and
parameters are given in Table 3.3-1. This list includes six drivers which account for

accuracy of the analysis.

Beta distributions were used to characterize the gas film coefficient during ac-

celeration, hgas, the gas temperature during acceleration, "[gas, h e, the uncertainty
about start transient thermal strain extrema for time ti, i -- 2, 3, 4, and the decelera-

tion slope, m. However, the parameters of the distribution were set such that m
does not vary in the blade LCF analysis. A Beta distribution can be parameterized
as Beta(a, b, p, 8) where a and b are the lower and upper bounds, respectively, of
the range of the random variate, p is a location parameter, and 8 is a shape

parameter. See [1], Section 2.1.3.1, for a more detailed description of this
parameterization of the Beta distribution. Choosing 8 = 0 in the Beta distribution is
equivalent to assigning a Uniform distribution between a and b.

The gas film coefficient during acceleration is expected to vary over the range

676 Btu/ft2.hr to 2730 Btu/ft2.hr. The bounds are based on Pratt & Whitney's en-
gineering analyses of the heat transfer phenomena during the start transient. The

lower bound is the nonaugmented hgas without turbulence. The upper bound is

the augmented hgas with turbulence during the start transient.

The gas temperature during acceleration "[gas is bounded by a scatter band of
___600° about the nominal value. The nominal value of 1382°R is based on test

data. The uncertainty for the start transient thermal strain extrema ;Le for time ti,
i = 2, 3, 4 was assessed to be __.50%, based on the gas temperature sensitivity of

the acceleration model response surface for thermal strain.

A meaningful measurement of the true deceleration slope must be based on
data from fast response temperature probes. At the time this analysis was per-
formed, only a limited amount of data from fast response temperature probes was
available. This data consisted of temperature histories from six to ten functioning
probes taken during two engine tests. The probes were arranged circumferentially
in the preburner ahead of the turbine. The issue arises as to whether the probe-to-
probe variation represents true circumferential variation or measurement error of
the fast response probes. In the absence of information about the shutdown-to-
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Table 3.3-1 Driver Distributionsfor ATD-HPFTP First Stage
Turbine Blade LCF

DRIVER

Hot gas film coefficient during acceleration, hg_

Hot gas temperature during acceleration, Tgas

,le, the uncertainty for start transient thermal strain
extrema for ti, i = 2, 3, 4

Deceleration slope, m

Rotor speed at steady state, o_(t5)

Acceleration response surface accuracy factor, eA

Deceleration response surface accuracy factor, eD

Gas temperature at start of deceleration, Ts

Bending strain. _B

Variation in blade pull due to variation in blade
mass, ,lp

Mechanical strain analysis accuracy factor, _t_

Variation in coefficient of thermal expansion, ha

Thermal strain analysis accuracy factor,,tTH

Damage accumulation model accuracy factor, _dam

Thermal-mechanical fatigue accuracy factor, _TMF

DISTRIBUTION

Beta(676, 2730, 0.5, 0)

Beta(782, 1982, 0.5, 0)

NOMINAL

1703

1382

Beta(0.5, 1.5, 0.5, 0) 1.0

Beta(2730, 2730, 0.5, 0) 2730

Normal (37592, 5072 ) 37592

Normal(0, 0.022/ 0

Normal(0, 0.0032/ 0

Normal (1640, 40.672) 1640

Uniform(0, 0) 0

Uniform(0.96, 1.04)

Uniform(0.8, 1.2)

Uniform(0.975, 1.025)

Uniform(0.7, 1.3)

1.0

1.0

1.0

1.0

Unarm(In 1, In 1) In 1

Uniform(In 1, In 1) In 1

shutdown and engine-to-engine variability of the deceleration slope, its value was
fixed at 2730 °R/sec, which bounds the steepest slope observed in the available
data.

The steady state rotor speed o_(ts) is distributed according to a Normal distribu-

tion about the nominal rotor speed of 37,592 rpm with a standard deviation of 507

rpm. This characterization is based on an analytical turbopump performance
model.
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The acceleration response surface accuracy factor, eA, and the deceleration

response surface accuracy factor, eo, are additive modeling uncertainties and are
Normally distributed about a nominal value of 0. The standard deviation charac-
terizes the goodness of fit of each function or response surface. The standard

deviations for eA and e o are .02 and .003, respectively.

The gas temperature at the start of deceleration, Ts, is distributed according to a
Normal distribution about the nominal temperature of 1640°R with a standard devia-
tion of 40.6"PR. This characterization is based on test data.

The bending strain, EB, accounts for strain due to gas bending and blade tilt
bending. However, in the design being analyzed here, the tilt bending strain of the
blade was adjusted to counteract the gas bending strain so that the net strain at
full power is negligible. Hence, the nominal _B is zero and no variability was
modeled.

The factor _.p accounts for the variation in blade pull due to variation in blade

mass resulting from the allowed manufacturing tolerance in blade mass. The
tolerance in blade mass is _4%. _p was characterized by a Uniform distribution

over the range (.96, 1.04).

The mechanical strain analysis accuracy factor _MA accounts for uncertainty of
the finite element (FE) analysis. A review of FE literature and discussions with

stress analysts who have compared analysis and tests indicate that a correct FE
strain analysis would calculate strains to within 20% of the true value. Thus _MA

was represented as a Uniform distribution over the range (.80, 1.20).

The factor _.,, accounts for variability of the coefficient of thermal expansion. The
measured variability in c_for PWA 1480 is +_2.5%. 4= was represented by a

Uniform distribution over the range (.975, 1.025).

The thermal strain analysis accuracy factor Jl,TH accounts for uncertainty of the

blade thermal analysis, which includes modeling accuracy, and variabilities of
blade wall thickness, thermal conductivity, and specific heat. Discussions with

designers and analysts indicate that the thermal analysis predicts strains to within
30% of the true value. '_'TH was represented by a Uniform distribution over the

range (.70, 1.30).

Damage accumulation inaccuracies are not significant in this analysis because
damage is due to only two cycles, wherein the larger cycle causes virtually all the
damage. The damage accumulation accuracy factor _.d_,_is a multiplier on life.
Since inaccuracy is not significant in this case, the value of the accuracy factor is 1
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Figure 3.3-1 PWA 1480 Fatigue Data

in linear space. The life computation is performed in logarithmic space; hence,
;I.dam was fixed at In(l). This is accomplished by setting the upper and lower

bounds of the Uniform distribution for Zdam at zero.

The thermal-mechanical fatigue accuracy factor Jl.TMF accounts for fatigue life
prediction errors due to inadequate modeling of thermal-mechanical interactions.
The thermal-mechanical fatigue accuracy factor is a multiplier on life. Since the

S/N data used for the blade being analyzed was for a constant temperature, but
believed to be a lower bound on life and therefore conservative, the value of the ac-

curacy factor is 1 in linear space. The life computation is performed in logarithmic
space; hence '_'TMF was fixed at In(l). This is accomplished by setting the upper
and lower bounds of the Uniform distribution for _TMF at zero.

3.3.2 Materials Characterization

The ATD-HPFTP turbine blades are made of the single crystal material PWA 1480.
In tests performed by Pratt & Whitney, eight test specimens of this material were
subjected to stress controlled cyclic loading at 20 Hz at a stress ratio of R = -1.0

in the [001] crystal orientation. The fatigue tests were performed in 5000 psig
hydrogen at room temperature [11]. The eight fatigue life data points are shown in

Figure 3.3-1. Since the blade material essentially behaves elastically in this applica-
tion, stress values were linearly transformed to equivalent strain range values.
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3.3.3 Analysis

The program BLDLCF implements the LCF failure model, the driver information,
and the materials characterization models presented in the preceeding discussion,

and it was used to perform the LCF analysis of the ATD-HPFTP first stage turbine
blade. The blade materials variation was modeled using alternative Weibull and
Lognormal distributions and with the parametric and bootstrapping materials
models described in Section 3.2.7.

The overall description of program BLDLCF is given in Section 5.2. The user's
manual for BLDLCF, including the description of the input variables, is given in Sec-
tion 6.2. A source listing of BLDLCF is given in Section 7.2.

3.3.4 Results

The results of the failure simulations for the blade are given in Figure 3.3-2. The
graph presents the left-hand tail of the failure distribution derived from the simula-

tions. The ordinate of this graph is failure probability, and the abscissa is life of the
blade to LCF failure. Ufe is taken as the worst of 50 blades and is given in mis-
sions. A mission is taken as one start transient and one shutdown transient as

was shown in Figure 3.2-3.
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Figure 3.3-2 Impact of Materials Variation on Failure Life
Distribution
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Figure 3.3-2 shows blade LCF life at 95% assurance. The meaning of a 95% as-
surance curve is that the failure probability at a given failure life will lie with .95 prob-
ability below that curve. The left-hand curve is for Weibull materials variation. The

B.1 lifes at 95% assurance is 24 missions. The right-hand curve is for Lognormal
materials variation and the B.1 life at 95% assurance is 2431 missions.

Figures 3.3-3 and 3.3-4 show the output of failure simulations conducted to as-
sess the sensitivity of the turbine blade failure life distribution to the drivers. The

curves of Figures 3.3-3 and 3.3-4 represent the direct output of the Monte Carlo
simulation. Figure 3.3-3 is the failure simulation using Weibull materials variation
and Figure 3.3-4 is the failure simulation using Lognormal materials variation. The
right-most curve labeled "nominal" in both figures is for a simulation which in-

cluded intrinsic materials variation only (see [1], Section 2.1.2.1); all the other
drivers were fixed at their nominal or most likely values. The left-most curve in

each figure is the "all driver variation" curve. The input and output files from the
"all driver" analysis for Weibull materials variation are given in Section 3.B. A

measure of the relative importance of individual drivers is given in the upper left
corner in both figures. These were obtained by finding the marginal effects of
driver uncertainties on B. 1 lives by using several sensitivity runs, where one driver
was allowed to vary while the rest were held at their nominal values. The S/N

model parameters and thermal analysis accuracy Jl.TH were the most significant
drivers in this analysis with a combined 92°£ contribution to the decrease from
nominal B. 1 life for Weibull materials variation and a combined 93% contribution to
the decrease from nominal B.1 life for Lognormal materials variation. The middle
curve in both figures shows the shift to the left due to variation only in the S/N
model parameters and thermal analysis accuracy. Variations in all other
parameters are not important drivers.

Figure 3.3-5 can be used to demonstrate the effect of alternative materials

models on estimated failure probability curves. Both curves are for "all driver varia-
tion," Weibull materials variation, and 95% assurance. The left-most curve is for a

failure simulation using the parametric model of [1], Section 2.1.2, and the right-
most curve is for a bootstrap model of materials variation. Table 3.3-2 summarizes

the B.1 lives from Figure 3.3-5 for Weibull materials variation and gives the B.1 lives
for Lognormal materials variation which are not plotted in Figure 3.3-5. It
demonstrates the need for ascertaining the appropriate statistical model for
materials variability.

5 A B-life is the value of accumulated operatingtime to failure at a failure probability
specified as a percent; e.g., B.I is the failuretime at a probabilityof 0.001 or 0.1%.
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Table 3.3-2 B. 1 Life (missions) at 95% Assurance for All Driver
Variation

Parametric Bootstrappin,q

•Weibull I 24 91 ILognormal 2431 2543

Acquisition of additional materials data will reduce S/N model parameters uncer-
tainty. A more accurate specification of the thermal analysis will reduce thermal

analysis accuracy factor uncertainty. Additional materials data or exogenous
evidence is required to choose between Weibull and Lognormal materials variation

or discover some other appropriate statistical model for materials variability.
Bootstrapping should be used to account for S/N model parameter uncertainty
since it is less conservative than the parametric method and an adequate
bootstrapping database is available.
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Section 3.4

Analysis Procedure

The procedure used in carrying out the Probabilistic Failure Assessment (PFA)

for low cycle fatigue failure of the ATD-HPFTP first stage turbine blade is given in

detail in the following. Each step of the procedure, including intermediate calcula-

tions and results, is presented. The general procedure for applying the PFA

methodology is given in Section 2.3 of [1].

3.4.1 Selecting the Component, Failure Mode, and Critical
Location

The failure mode and critical location for the turbine blade were identified by

deterministic analyses performed during the design process. Consistently conser-

vative deterministic LCF analyses did not yield an acceptable service life estimate;

consequently, it was deemed appropriate to apply the PFA methodology to
evaluate LCF failure risk.

3.4.2 Preliminary Deterministic Analysis

The strain, thermal, and fluid flow analyses performed by Pratt & Whitney were

used to identify drivers and in formulating the driver transformation for the PFA.

These analyses included the following steps:

1 Establish thermal boundary conditions for the turbine blade during start and shutdown

transients using thermal and fluid flow models.

2 Use "blade pull" model to obtain the mechanical strain due to rotor speed and blade
mass.

3 Perform 2-D MARC FE analysis with nominal thermal boundary conditions during ac-

celeration to obtain total strain due to thermal gradients and mechanical loads.

4 Perform eight 1-D MARC FE analyses perturbing the gas temperature and film coeffi-

cient to characterize sensitivity of blade thermal strain.

5 Subtract the mechanical strain of (2) from the 9 total strains of (3) and (4) to obtain a

matrix of 9 thermal strains as a function of gas temperature and gas film coefficient.
The matrix is shown in Table 3.4-1.

6 Fit the results of (5) to a response surface [2-7] using RSREG. 6 This response surface

characterizes the thermal strain during acceleration and is given by Equation 3-2.

6 Routine RSREG fits the parameters of a quadratic response surface, and is described in
Chapter 37 of [12].
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Table 3.4-1 Matrix of Thermal Strains as a Function of Gas

Film Coefficient and Gas Temperature During
Acceleration

Tgas (R)

e p/'l
676

hgas

1703

-.0788O0 0

1382 -.0427 -.0954 -. 1421

2000 -.0673 -. 1577 -.2381

2730

-.1039

Table 3.4-2 Values of Thermal Strain for Varying Values of

Temperature and Slope During Deceleration

m

(°R/sec)

1368

1700

2730

3700

4700

eTH
(%)

.2039

.2345

.301

.3452

.3759

ta
(sec)

.727

.657

.504

.423

.377

oJ

(rpm)

19,429

19,782

21,345.1

23,146.3

23,957.3

9

Characterize the temperature profile during shutdown using SSME engine test data to

obtain gas temperature prior to the shutdown transient and slope CR/sec) of gas
temperature versus time curve.

Perform 1-D analyses to obtain sensitivity of thermal strain to gas temperature and
slope.

Fit the results of (8) to a response surface [2-7] using RSREG. This response surface

characterizes the thermal strain during deceleration. The results of (8) are shown
in Table 3.4-2 and characterized by Equations 3-3, 3-6, and 3-7.

3.4.3 Driver Characterization

The list of drivers for the turbine blades, their distributions, and ranges are given
in Table 3.3-1. The rationale for assigning the distributions for these drivers was
presented in Section 3.3.1.

3.4.4 Materials Characterization

As described in Section 3.3.2, PWA 1480 S/N material data was used for the tur-

bine blades. The data is given in Table 3.4-3 and is shown in Figure 3.3-1. A
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Table 3.4-3 PWA 1480 S/N Data

STRAIN

S (psi)

.89

.89

.67

.67

.56

.56

.56

.39

LIFE

N (cycles)

6,800

15,000

27,000

43,200

139,300

545,200

147,000

4,344,800

Table 3.4-4 Summary of Materials Characterization Study of
PWA 1480 Data

95% Confidence Interval

Point Estimates

Posterior Credibility Range
Lower bound

Upper bound

Coefficient of Variation C

0.054, 0.186

0.084

Slope Parameter m

Is, ,9 /

5.15
9.56

single data region, see [1] Section 2.1.2.1, was used since a single, linear In(S) ver-
sus In(N) curve represents the fatigue life data in the life ranges of interest.

Program MATCHR, see [1] Section 4.1, was used to define statistical

parameters of the fatigue life data shown in Figure 3.3-1. Table 3.4-4 shows the

95% confidence intervals for the coefficient of variation C and the slope m that
were obtained from MATCHR for the PWA 1480 data. 7 Point estimates for C and m
are also given in the table. These point and interval estimates of C and m are con-

sistent with expectations for this material, so no exogenously defined constraints
on C and m were applied.

7 See Equations 2-24 and 2-26 of [1].
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3.4.5 Time History Definition

The time history used for the turbine blades is described in Section 3.2.3 and
shown in Figure 3.2-3.

3.4.6 Probability of Failure Curve Parameter Estimation

The steps required to carry out the probability of failure curve parameter estima-

tion for this blade example are given in Figure 3.4-1 This procedure was used to
obtain the results discussed in Section 3.3.4.

The parameters of the prior distribution are estimated by determining a value for
#, then estimated a and 8 for fixed ft. The first step in the procedure is to plot the

failure simulation results contained in file LOWLIF for the "all drivers" run. That plot
is shown in Figure 3.3-3.

The,8 estimate is based on an approximate linear portion of the left-hand tail

(.001 to .01 on the ordinate) for this example. This probability range corresponds
to simulated lives with index numbers 20 through 200, inclusive, in file LOWME A
value for,8 is estimated by program BFIT. The pertinent methodology is discussed

in [1], Section 2.1.1, the program description and flowcharts are presented in [1],
Section 4.2.2, the user's guide for running this program is given in [1], Sections
6.4.1 through 6.4.6, and the code structure and listing are provided in [1], Section
7.4.1. Program BFIT has provided the estimate # = 1.582 for this example.

The a and e estimate must be based on an extension of the data used to es-

timate,8 in order to fit a model which is nonlinear in log-log space. It is only neces-
sary to consider points with probability in the range .001 to .01. a, 8 are estimated

by the program ABTFIT. The pertinent methodology is discussed in [1], Section
2.1.1, the program description and flowcharts are presented in [1 ], Section 4.2.3,

the user's guide for running this program is given in [1], Sections 6.4.7 through
6.4.12, and the code structure and listing are provided in [1], Section 7.4.2.
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1 Plot the failure simulation results contained in file LOWLIF in log-log space. That plot
is shown in Figure 3.3-3.

2 Since the curve in Figure 3.3-3 from probability of .001 to .01, that is, point 20 to point
200 of file LOWLIE is approximately linear, it can be used to estimate '8.

3 Create file BFITD to indicate the indices of the LOWLIF data to be used in the'8
estimation. See [1], Section 6.4.3.1 for a detailed description of the contents of
file BFITD.

4 Run program BFIT. The pertinent methodology is discussed in [1], Section 2.1.1;
the program description and flowcharts are presented in [1], Section 4.2.2; the
user's guide for running this program is given in [1], Sections 6.4.1-6.4.6; and the
code structure and listing are provided in [1], Section 7.4.1. BFIT has two input
files, LOWLIF and BFITD, and two output files, BFITO and IOUTPR.

5 Obtain ,8 estimate from output files BFITO and IOUTPR. Program BFIT has provided
the estimate of 1.582.

6 In order for a and e to be uniquely determined, it is only necessary to consider the
range .001 to .01, that is, point 20 to point 200 Inclusive, of file LOWLIF,for the es-
timated curve to be nonlinear in log-log space. Create file PARAMS to indicate the
indices of the LOWLIF data to be used inthe a, 8 estimation, the initialvalues for a
and e, and any scaling factors required. See [1], Section 6.4.9.1 for a detailed
description of the contents of file PARAMS.

7 Run program ABTFIT. The pertinent methodology is discussed in [1], Section 2.1.1;
the program description and flowcharts are presented in [1], Section 4.2.3; the
user's guide for running this program is given in [1], Sections 6.4.7-6.4.12; and the
code structure and listing are provided in [1], Section 7.4.2. ABTFIT has two input
files, LOWLIF and PARAMS, and three output files, ABTOUT, BAYESD and IOUTPR.

8 Obtain a, e estimates from output files ABTOUT and BAYESD. Program ABTFIT has
provided the values 1.411 x 10" for e and .1666 for a.

9 Calculate assurance based on estimates of a, ,8,e. The assurance calculation is
performed by program LZERO. The pertinent methodology is discussed in [1],
Section 2.1.1; the program description and flowcharts are presented in [1],
Section 4.2.4; the user's guide for running this program is given in [1], Sections
6.4.13-6.4.18; and the code structure and listing are provided in [1], Section 7.4.3.

Figure 3.4-1 Steps of the Probability of Failure Curve Parameter
Estimation
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PARAMS requires initial values 8 for a and e that were obtained as follows:

B. 19 = 69.3627

B1 = 314.683

LSCALE 1°= (1/314.683)_-.01

eo = N._001 = (69.3627) 1"5816 = 816.4

XGUESS(2) = a o = - In .999 / In 2 = .0014434

= .5607

Program ABTFIT has provided the estimates 8 = 1.411 x 10 s and a = .1666.

3.4.7 Driver Sensitivity Analysis

As described in Section 2.3.10 of [1], a set of simulations was executed to ob-

tain the driver sensitivities. The first simulation was the nominal run, which in-

cluded intrinsic materials variation only (see [1], Section 2.1.2.1); all the other

drivers were fixed at their nominal or most likely values. Figure 3.3-3 shows the

output of the nominal simulation for the turbine blades. The next analysis was the

"all driver" variation analysis, which was performed allowing all the drivers to vary.
Figure 3.3-3 shows the output of the all-driver run for the turbine blades.

Finally, the driver sensitivities were derived using simulations for which each

driver (together with intrinsic material variation) was allowed to vary one at time

while all the other drivers were held at their nominal values. The output from these
simulations along with the results from the aforementioned all-driver variation and

nominal runs allow the drivers to be rank ordered and allow their relative impor-
tance to be characterized. The impact of the drivers was calculated based on the

failure lives at the .01 probability level, given in Table 3.4-5, for the all-driver,
nominal, and driver sensitivity runs for Weibull materials variation.

8 The calculation of initial values is illustrated in [1], Section 6.4.11.

9 _3e_liv_ were obta!ned from file LOWLIF. A B-life is the value of the failure parameter
.g., auure ume) at a za_lure probability specified as a percent: e.g., B.1 is the failure

time at a probability of .001 or .1%.

10 Life scaling factor is described in [1], Section 6.4.9.

11 Calculation of initial guesses is described in [1], Section 6.4.11.
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Table 3.4-5 Driver Sensitivity Analysis for the Turbine Blade for
Weibull Materials Variation

Driver Variation B.1 Life Shift From % Shift From All Relative

in Analysis (missions) Nominal Curve Drivers Curve Importance

Nominal

All Drivers

S/N Model Parameters

514

69

229

_TH

_e

_MA

eD

_a

_p

hgas

Tgas

eA

258

453

456

492

503

508

511

514

514

514

514

445

285

256

62

58

22

11

6

3

0

0

0

0

64

58

13,9

13.0

4.9

2.5

1.3

.7

0

0

0

0

100

9O

21.8

20.4

7.7

3.9

2.1

1.1

0

0

0

0

To calculate the relative importance of a driver, the change in life from the

nominal analysis due to driver variation was first calculated as a percentage of the

shift due to the all driver variation, for each driver. The largest shift was caused by

variation in S/N model parameters, which is therefore the most important driver.

The relative importance was derived by normalizing the percentage shifts due to

variation of each driver with the percentage shift due to variation of the most impor-

tant driver, in this case S/N model parameters. Table 3.4-5 gives the percentage
shift in lives and relative importance for each driver.

3.4.8 Probability of Failure Curve Standardization

In order to standardize the results, the probability of failure vs. life curves were

generated for a given assurance level of 95% using the program LZERO. The per-
tinent methodology is discussed in [1], Section 2.1.1, the program description and

flowcharts are presented in [1], Section 4.2.4, the user's guide for running this pro-

gram is given in [1], Sections 6.4.13 through 6.4.18, ancl the cocle structure and

listing are provided in [1], Section 7.4.3. The value of ;Lo for the turbine blades for

Weibull materials variation was 6.359 x 10 -s. Given Zo ancl the bounding value of/_,

the assurance curve may be defined as described in Section 2.3.12 of [1]. The

95% assurance curve for the turbine blades is given in Figure 3.3-2.
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Appendix 3.A

List of Symbols

a

a

A

b

b

Be(.)

C, Co

CMs

e

eA

eD

E

tA

to2

Io3

F(.)

hgas

Io

Jo

Kj

Beta distribution range parameter

Uniform distribution range parameter

estimated S/N curve location parameter

statistical assurance that reliabilityis at least as large as stated

S/N curve location parameter

Beta distribution range parameter

Uniform distribution range parameter

Beta distribution function

coefficient of variation of fatigue strength

speed variability correction factor

residual; e = residual vector in log space; e°= bootstrapped residual

response surface accuracy for t1

response surface accuracy for t6

Young's modulus

response surface for the nominal thermal strain at t 1

response surface for the nominal thermal strain at t6

response surface for the deceleration duration time

response surface for the rotor speed at t6

cumulative probability distribution function

hot gas film coefficient at start-up

credibility range for coefficient of variation of fatigue strength

credibility range for an S/N curve shape parameter

$/N curve location parameter
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m

MED(. )

n

N

N

N

N,

Nj

N_ i+ l

N(.)

R, Ro

R

R

S

Sx2,S/

S/N

s;

ti

T

"/'gas

u(.)

VAR( .)

w

deceleration slope at shutdown

S/N curve shape parameter

median value

inner loop simulation trials

degrees of freedom parameter

outer loop simulationtrials

fatigue life

fatigue life value for generated pseudo S/N data

size of the/th materials fatigue test data set

S/N curve life boundaries

Normal distribution function

component reliability

number of life regions used to represent an S/N curve

stress ratio = ami n / Omax; strain ratio = ¢rnin / ernax

stress or total strain range

sample variance

sample covariance

stress/life or strain/life

stress or strain value for generated pseudo S/N data

time

deceleration duration time

length of reference time history in missions

hot gas temperature at start-up

hot gas temperature at start of deceleration

Uniform distribution function

Variance value

characteristic Walker exponent for a given material
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w(.)

X

Y

Y

At

e

r/o

8

8

_" _o

A(.)

_u

p

P

o"

(7 2

Weibull distribution function

In (stress) or In (strain)

In (life)

Gamma distribution parameter

thermal coefficient of expansion

Weibull distribution shape parameter

Euler's constant, .577...

strain range; _¢EQ = equivalent strain range

strain; ¢B = strain due to gas bending and blade tilt; t M = mechanical strain due to

blade pull; tm_ = maximum strain; _Mnom = nominal mechanical strain at rotor speed
OJo; t'T = total strain; _'TH = thermal strain due to thermal gradient; _THnom ---- nominal
thermal strain

materials intrinsicvariability

Weibull distribution scale parameter

Gamma distribution parameter

Beta distribution parameter

accuracy or uncertainty factor; '_darn = damage accumulation accuracy factor; '_e =
thermal strain uncertainty factor due to gas temperature variation during start-up; '_MA
= mechanical strain analysis accuracy factor; _p = deviation in blade pull load due to
uncertainty in blade mass; _'TMF = thermal-mechanical fatigue accuracy factor; _'TH=
thermal strain analysis accuracy factor; _a = coefficient of thermal expansion variation
factor

Weibull distribution parameter

Lognormal distribution function

Lognormal distribution parameter

Normal distribution parameter

3.14159265...

Beta distribution parameter

stress

Lognormal distribution parameter
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a 2

2co 

(J)

Normal distribution parameter

materials intrinsic variability

Chi-square distribution function

rotor speed; o_o --- nominal rotor speed

3 - 46



Appendix 3.B

Input And Output Files

Selected input and output files for the ATD-HPFTP first stage turbine blade "all

driver" analysis for Weibull materials variation are given here. The analysis pro-
gram BLDLCF requires two input files BLDLCD and RELATD. Annotated examples
of the data file format for BLDLCD and RELATD input files are given in Figures
6.2-1 and 6.2-2. Related material data was not used for this component and hence

the RELATD file was empty. The input file BLDLCD is given below. Section 6.2.3
contains a description of the input variables and a user's guide for running BLDLCF.

The output files from a BLDLCF run are BLDLCO, LOWLIF, DUMP, RELATO, and
IOUTPR. The BLDLCO, LOWLIF, and DUMP files are given below for the Weibull
materials variation failure simulation. The BLDLCO file contains an echo of the

input data, output from the S/N material model, and the B-lives. The LOWLIF file
contains the lowest 200 (1% of total simulated) fatigue failure lives for the blade;
the failure lives are plotted in Figure 3.3-3. The DUMP file contains the results of
the materials characterization calculations, including estimated values of the S/N

curve parameters.

Input File - BLDLCD

675

0

1

20000

5O

2

0

0

1

i0

0.001 0.002 0.003 0.004

676. 2730. 0.50 0.50

782. 1982. 0.50 0.50

2730. 2730. 0.50 0.50

0.5 1.5 0.50 0.50

5 37592. 507.

0.0 0.020

1640.0 40.67

0.0 0.003

0.00 0.00

0.96 1.04

0.80 1.20

0.005 0.006

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.007 0.008 0.009 0.010

3 - 47



0.975

0.70

0.00

0.00

0.295

38482.

1.0

0.0

6

0.50

i. 025

1.30

0.00

0.00

0.00727362 0.000067442 -0.000059109

-3.52929E-08 1.07611E-08 -2.74419E-08

-0.132623 0.000227427

0.20 950.0

30523.07 -21846.15

225.8 0.0

3025.1 -0.196921

6138.8 0.146025

8309.0 -0.200128

0.0 0.007393

'RT, PWA 1480, 001 DIRECTION'

1.54 1.57 1 8

8 -1.0 1

-0.000059290 0.00 0.00

0.89 6800.

0.89 15000.

0.67 27000.

0.67 43200.

0.56 139300.

0.56 545200.

0.56 147000.

0.39 4344800.

0.00

1 0

1.0E+36

0.00

0 0.000 0.000

4.71714E-08

Output File - BLDLCO

copyright (c) 1990, California Institute of Technology. U.S.

Sponsorship under NASA Contract NAS7-918 is acknowledged.

Government

INPUT DATA

DRIVERS PARAMETER DISTRIBUTIONS
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Hgas

Tgas (deg R)

DECEL SLOPE

Tgas UNCERT.

Be( 676., 2730.)

Be( 782., 1982.)

Be(2730., 2730.)

Be( 0.50, 1.50)

RHO

U(0.50000, 0.50000)

U(0.50000, 0.50000)

U(0. 50000, 0.50000)

U(0.50000, 0.50000)

THETA

U( 0.0, 0.0)

U( 0.0, 0.0)

U( 0.0, 0.0)

U( 0.0, 0.0)

ROTOR SPEED VARIATION (rpm) AT TIME T5

Faccel MODELING ERROR

STARTING DECEL TEMPERATURE (deg R)

Fdecel MODELING ERROR

N( MEAN, STD. DEV.)

N( 37592.0, 507.0)

N( 0.0, 0.2000E-01)

N( 1640.00, 40.67)

N( 0.0, 0.3000E-02)

STRAIN DUE TO GAS BENDING (%)

LAMBDA BLADE PULL

MECHANICAL ANALYSIS FACTOR

COEFFICIENT OF THERMAL EXPANSION FACTOR

THERMAL ANALYSIS FACTOR

U( 0.00000, 0.00000)

U( 0.96000, 1.04000)

U( 0.80000, 1.20000)

U( 0.97500, 1.02500)

U( 0.70000, 1.30000)

DAMAGE MODEL ACCURACY

TMFMODEL ACCURACY

U(in 1.00000, in 1.00000)

U(in 1.00000, in 1.00000)

OTHER STRAIN HISTORY INPUT

NOMINAL MECHANICAL STRAIN (%)

NOMINAL ROTOR SPEED (rpm)

STRAIN-TIME HISTORY PERIOD (missions)

STRAIN-TIME HISTORY NOISE FILTER (%)

0.2950

38482.

1.00

0.00000
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NUMBER OF POINTS IN HISTORIES

WALKER EXPONENT

6

0.50

COEFFICIENTS OF ACCELERATION AND DECELERATION FUNCTIONS

THERMAL STRAIN AT STARTUP (%):

Faccel(Tgas, Hgas) = 0.727362E-02 + 0.674420E-04 * Tgas +

-0.591090E-04 * Hgas + -0.352929E-07 * Tgas ** 2 +

0.107611E-07 * Hgas**2 + -0.274419E-07 * Tgas * Hgas

THERMAL STRAIN AT SHUTDOWN (%):

Fdecell(m, Tstart) = -0.132623E+00 + 0.227427E-03 * Tstart +

-0.592900E-04 * m + 0.000000E+00 * Tstart ** 2 +

0.000000E+00 * m ** 2 + 0.471714E-07 * Tstart * m

TIME AT SHUTDOWN (sec):

Fdecel2(m, Tstart) = 0.200000E+00 + (Tstart -

ROTOR SPEED AT SHUTDOWN (rpm):

Fdecel3(t) = 0.305231E+05 + -0.218462E+05 * t

0.950000E+03 ) / m

STRAIN HISTORY INFORMATION

ROTOR SPEED THERMAL STRAIN

rpm (%)

225.8 0.000000

3025.1 -0.196921

6138.8 0.146025

8309.0 -0.200128

0.0 0.007393

MATERIAL INPUT

DESCRIPTION: RT, PWA 1480, 001 DIRECTION

YIELD STRENGTH 0.15400E+01
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ULTIMATE STRENGTH

NUMBER OF POINTS

0.15700E+01

8

ORIGINAL S/N STRESS

STRESS LIFE RATIO REGION

0.89000E+00 6800. -I.00 1

0.89000E+00 15000. -i.00 1

0.67000E+00 27000. -1.00 1

0.67000E+00 43200. -1.00 1

0.56000E+00 139300. -1.00 1

0.56000E+00 545200. -1.00 I

0.56000E+00 147000. -1.00 1

0.39000E+00 4344800. -1.00 1

TRANSFORMED S/N

STRESS LIFE

0.89000E+00 6800.

0.89000E+00 15000.

0.67000E+00 27000.

0.67000E+00 43200.

0.56000E+00 139300.

0.56000E+00 545200.

0.56000E+00 147000.

0.39000E+00 4344800.

THERE IS 1 REGION(S) WITH DATA

AND 0 REGION(S) TO THE RIGHT WITHOUT DATA

THE UPPER BOUND(S) OF THE REGION(S) ARE (CYCLES}:

0.I00E+37

EXOGENOUS INFORMATION

CONSTRAINT ON COEFFICIENT OF VARIATION, C:

EXPLICIT CONSTRAINT ON m FOR EACH REGION:

REGION # OF POINTS LOWER BOUND

1 0 0.0000

0.0000

UPPER BOUND

0.0000

WEIBULL VARIATION

B LIVES : EMPIRICAL

0.00100 0.693627E+02

0.00200 0.I04496E+03

0.00300 0.141498E+03

0.00400 0.171753E+03

0.00500 0.203323E+03
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0.00600 0.223266E+03

0.00700 0.244718E+03

0.00800 0.266518E+03

0.00900 0.286573E+03

0.01000 0.314683E+03

0.50000 0.900345E+04

Output File - LOWLIF

1 0.500000E-04 11.4674

2 0.100000E-03 20.5764

3 0.150000E-03 20.9020

4 0.200000E-03 23.3439

5 0.250000E-03 28.7136

6 0.300000E-03 33.3230

7 0.350000E-03 35.4286

8 0.400000E-03 37.5925

9 0.450000E-03 45.9977

10 0.500000E-03 50.0363

11 0.550000E-03 50.1602

12 0.600000E-03 50.6590

13 0.650000E-03 54.5432

14 0.700000E-03 54.9887

15 0.750000E-03 56.3990

16 0.800000E-03 57.8591

17 0.850000E-03 62.6331

18 0.900000E-03 65.5875

19 0.950000E-03 68.4943

20 0.100000E-02 69.3627

21 0.105000E-02 73.8416

22 0.110000E-02 74.9508

23 0.115000E-02 75.4585

24 0.120000E-02 78.1945

25 0.125000E-02 82.3033

26 0.130000E-02 84.9180

27 0.135000E-02 85.5436

28 0.140000E-02 87.7353

29 0.145000E-02 88.8890

30 0.150000E-02 93.2934

31 0.155000E-02 93.3853

32 0.160000E-02 96.0268

33 0.165000E-02 96.0511

34 0.170000E-02 96.3106

35 0.175000E-02 98.0476

36 0.180000E-02 99.5991

37 0.185000E-02 101.824

38 0.190000E-02 102.286

39 0.195000E-02 103.012

40 0.200000E-02 104.496
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41 0.205000E-02

42 0.210000E-02

43 0.215000E-02

44 0.220000E-02

45 0.225000E-02

46 0.230000E-02

47 0.235000E-02

48 0.240000E-02

49 0.245000E-02

50 0.250000E-02

51 0.255000E-02

52 0.260000E-02

53 0.265000E-02

54 0.270000E-02

55 0.275000E-02

56 0.280000E-02

57 0.285000E-02

58 0.290000E-02

59 0.295000E-02

60 0.300000E-02

61 0.305000E-02

62 0.310000E-02

63 0.315000E-02

64 0.320000E-02

65 0.325000E-02

66 0.330000E-02

67 0.335000E-02

68 0.340000E-02

69 0.345000E-02

70 0.350000E-02

71 0.355000E-02

72 0.360000E-02

73 0.365000E-02

74 0.370000E-02

75 0.375000E-02

76 0.380000E-02

77 0.385000E-02

78 0.390000E-02

79 0.395000E-02

80 0.400000E-02

81 0.405000E-02

82 0.410000E-02

83 0. 415000E-02

84 0.420000E-02

85 0.425000E-02

86 0.430000E-02

87 0.435000E-02

88 0.440000E-02

89 0.445000E-02

90 0.450000E-02

104.946

106.325

110.003

111.212

111.670

113.510

113.610

114.501

116.168

119.642

121.653

126.945

129.652

132.441

132.713

132.853

134.850

136.655

136.710

141.498

146.554

146.987

147.589

154.347

156.143

158.882

159.672

160.197

161.686

164.602

165.648

165.831

165.867

167.298

167.348

169.175

169.208

169.766

169.787

171.753

175.717

176.525

180.021

180.784

181.151

182.652

182.757

183.970

184.185

185.089
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91 0.455000E-02

92 0.460000E-02

93 0.465000E-02

94 0.470000E-02

95 0.475000E-02

96 0.480000E-02

97 0.485000E-02

98 0.490000E-02

99 0.495000E-02

100 0.500000E-02

101 0.505000E-02

102 0.510000E-02

103 0.515000E-02

104 0.520000E-02

105 0.525000E-02

106 0.530000E-02

107 0.535000E-02

108 0.540000E-02

109 0.545000E-02

110 0.550000E-02

111 0.555000E-02

112 0.560000E-02

113 0.565000E-02

114 0.570000E-02

115 0.575000E-02

116 0.580000E-02

117 0.585000E-02

118 0.590000E-02

119 0.595000E-02

120 0.600000E-02

121 0.605000E-02

122 0.610000E-02

123 0.615000E-02

124 0.620000E-02

125 0.625000E-02

126 0.630000E-02

127 0.635000E-02

128 0.640000E-02

129 0.645000E-02

130 0.650000E-02

131 0.655000E-02

132 0.660000E-02

133 0.665000E-02

134 0.670000E-02

135 0.675000E-02

136 0.680000E-02

137 0.685000E-02

138 0.690000E-02

139 0.695000E-02

140 0.700000E-02

186.951

187.950

188.068

191.095

193.211

199.758

200.120

200.299

200.820

203.323

204.715

206.620

208.139

208.957

209.029

209.388

209.562

211.436

212.186

213.019

213.384

215.517

216.541

217.368

219.029

219.229

220.573

221.352

223.254

223.266

224.214

224.821

224.941

225.630

230.432

230.894

232.867

233.193

235.233

235.455

235.684

237.135

239.252

240.345

241.842

242.162

242.815

244.131

244.176

244.718
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141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

0.705000E-02

0.710000E-02

0.715000E-02

0.720000E-02

0.725000E-02

0.730000E-02

0.735000E-02

0.740000E-02

0.745000E-02

0.750000E-02

0.755000E-02

0.760000E-02

0.765000E-02

0.770000E-02

0.775000E-02

0.780000E-02

0.785000E-02

0.790000E-02

0.795000E-02

0.800000E-02

0.805000E-02

0.810000E-02

0.815000E-02

0.820000E-02

0.825000E-02

0.830000E-02

0.835000E-02

0.840000E-02

0.845000E-02

0.850000E-02

0.855000E-02

0.860000E-02

0.865000E-02

0.870000E-02

0.875000E-02

0.880000E-02

0.885000E-02

0.890000E-02

0.895000E-02

0.900000E-02

0.905000E-02

0.910000E-02

0.915000E-02

0.920000E-02

0.925000E-02

0.930000E-02

0.935000E-02

0.940000E-02

0.945000E-02

0.950000E-02

245.149

248.546

251.099

251.607

251.614

252.298

253.937

255.248

259.308

259.677

260.639

261.692

262.321

263.077

263.105

263.857

265.718

265.802

266.451

266.518

266.648

268.302

268.492

268.948

268.991

269.684

272.396

272.490

273.289

273.440

273.690

275.113

277.709

278.107

279.670

283.247

283.595

284.003

285.168

286.573

289.375

294.471

294.922

296.875

297.684

299.328

299.942

301.087

303.201

303.504
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191 0.955000E-02 304.032

192 0.960000E-02 305.626

193 0.965000E-02 306.731

194 0.970000E-02 308.299

195 0.975000E-02 308.348

196 0.980000E-02 309.762

197 0.985000E-02 312.676

198 0.990000E-02 314.043

199 0.995000E-02 314.101

200 0.100000E-01 314.683

Output File - DUMP

copyright (c) 1990, California Institute of Technology. U.S. Government

sponsorship under NASA Contract NAS7-918 is acknowledged.

RESULTS OF INFORMATION AGGREGATION CALCULATIONS

95% CONFIDENCE INTERVALS ON C AND m FOR EACH REGION

REGION: 1 Io = ( 0.054422790, 0.185977300)

Jo = ( 5.152009000, 9.564463000)

POINT ESTIMATES OF C AND m FOR EACH REGION

REGION E(C) E(m)

1 0.084455910 7.358236

POSTERIOR CREDIBILITY RANGE ON m FOR EACH REGION

REGION LOWER BOUND UPPER BOUND

1 5.1520 9.5645

PARAMETER VALUES FOR MEDIAN S/N CURVE
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NUMBER OF REGIONS:

REGION m

1 7.35824

1 E(BETAo) = 15.7104 E(k) = 1.0909

K LIFE BOUND STRESS BOUND

0.30172E+01 0.100E+37 0.00000E+00
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4.0 Probabilistic Modeling of
Turbine Blade

High Cycle Fatigue Failure
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Section 4.1

Introduction

A High Cycle Fatigue (HCF) failure model calculates the crack initiation life of a

structure subjected to a large number of low amplitude load cycles. As shown in
Figure 4.1-1, the information used in the HCF failure model presented here in-

cludes values of such drivers as environmental parameters, loads, material proper-

ties, structural parameters, and uncertainties about driver values and engineering

model accuracy. The available information about drivers, including their uncertain-
ties, is used to synthesize stress histories. Individual cycles of stress histories are
characterized by a value of equivalent stress that accounts for the mean and ex-

trema of each cycle. The materials characterization model establishes a value of

fatigue life for the equivalent stress of each cycle. The fatigue life for a stress his-

tory is computed from the accumulated damage due to a sequence of individual
cycles.

The application of the Probabilistic Failure Assessment methodology to HCF
failure of the first and third stage turbine blades of the ATD-High Pressure Oxidizer

Turbo Pump (HPOTP) is described in the following. The turbine blade fatigue
analysis and implementation of the failure simulation model are discussed in detail.

In this model, the stress history consists of constant amplitude stress cycles; con-

ENVIRONMENT AND LOADS STRUCTURAL PROPERTIES DRIVER UNCERTAINTIES

SYNTHESIZE STRESS OR STRAIN HISTORIES

1
IDENTIFY CYCLES

1
CHARACTERIZE MATERIALS

FATIGUE LIFE BEHAVIOR

1
CALCULATE DAMAGE

1
ESTIMATE FATIGUE LIFE

Figure 4.1-1 High Cycle Fatigue Failure Modeling Approach
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sequently, a cycle counting procedure, such as that given in Section 2.2.1.4 of [1]
is not needed.

The development of the turbine blade HCF model was a collaborative effort be-
tween Pratt & Whitney and JPL. The Pratt & Whitney portion of this effort was
funded as a part of the Alternate Turbopump Development Program. This col-
laborative effort to develop the turbine blade HCF model was stopped short of

completion due to unavailability of required funding for Pratt & Whitney. The status
of the model at the time work was suspended is presented in the following. A

major portion of the unfinished work was to develop a nonparametri¢ statistical pro-
cedure to be used in characterizing turbine blade vibratory stress. This procedure
was to have been used in the vibratory stress model discussed in Section 4.2.3 of

the following. Since uncertainty of blade vibratory stress was not represented in
the HCF model, no results are presented.
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Section 4.2

Turbine Blade HCF Methodology

4.2.1 Component Description

The ATD-HPOTP Turbine Blades are hollow single-crystal castings. The first and
third stages each have fifty-four blades. The turbine is driven by high temperature,
high pressure steam (H20) and gaseous hydrogen (H2).

HCF analysis of a turbine blade was performed at the location identified in
design analysis performed by Pratt & Whitney as having the highest local stress.
The stress at this location controls HCF crack initiation life. For both the first and

third stage turbine blades, this critical location is on the blade airfoil pressure face
near the fillet where the blade airfoil attaches to the platform. The fact that there
are fifty-four such locations is taken into account in the failure simulation.

The stresses in the blade which produce high cycle fatigue damage at the critical
location are due to time-varying aerodynamic forces. The aerodynamic forces on
the blade result from work being extracted from the fluid stream by the blade. The
average aerodynamic force on the blades produces the turbine output torque,

while the time-varying component of the aerodynamic force causes HCF damage.

4.2.2 Modeling Approach

Figure 4.2-1, shows the life calculation procedure used in the turbine blade HCF
model. The major elements of the life calculation procedure are driver selection,
driver transformation, zero mean stress transformation, the materials model, and the
transformation of the number of cycles to failure Nf to the life L in seconds. In the
driver transformation, stress is defined as a function of the drivers. The driver trans-
formation consists of a mean stress model and a vibratory stress model, as
described in Section 4.2.3. In the driver transformation algorithm the variation of

stress with respect to the drivers over appropriate ranges of driver values is repre-
sented. Uncertainties about driver values and modeling accuracy are considered at
the step of the life calculation procedure where they are relevant. The fatigue life cor-
responding to the equivalent stress amplitude is provided by the materials model.

The high cycle fatigue life of the turbine blade material was stochastically characterized
using the materials fatigue life model discussed in detail in Section 2.1.2.1 of [1]. The
data used in the materials fatigue life model consisted of tests to failure of eight
specimens. The test specimens of the blade material were subjected to stress controlled

cyclic loading (frequency = 20 Hz) with a stress ratio R of-1.0 in fatigue testing at Pratt
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SELECT DRIVERS I

DRIVER TRANSFORMATION

1
aMAX,R

1
ZERO MEAN STRESS

TRANSFORMATION VIA
WALKER RELATION

(_)°"GEO= OMAx

I MODEL
ACCURACY

MODEL
,e,.,-.--,-

ACCURACY

GEQ

MATERIALS FATIGUE
UFE MODEL

1
CYCLES TO FAILURE Nf

1
CALCULATE UFE

L=NN

1
SAVE SMALLEST 1%

OF LIVES

I

NUMBER OF
STATORS Ns &
ROTOR SPEED o_

Figure 4.2-1 Calculation Procedure for the Turbine Blade HCF Model
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& Whitney. The fatigue tests were performed in 5000 psig hydrogen at room tempera-
ture. The test specimens were smooth and in the [001] or radial orientalJon. Details on

the materials characterization model can be found in Section 2.1.2 of [1].

4.2.3 Driver Transformation

The driver transformation step of the calculation procedure of Figure 4.2-1 is

shown in detail in Figure 4.2-2. In the driver transformation, the parameters that af-

fect HCF life, i.e., the drivers, are usecl to compute the blade vibratory stress. The

driver transformation procedure mirrors the engineering design analysis performed
by Pratt & Whitney. In this approach the time-varying, or vibratory, stress in the tur-

bine blade is expressed as a function of the mean stress at the blade root _ due
to the torque produced by the turbine.

As shown in Figure 4.2-2, the parameters rH and z3J_used in the blade root mean

stress model are characterized as a function of the turbopump speed _. These

characterizations are based on results of Pratt & Whitney's turbopump perfor-
mance balance computer code.

From a consideration of the mechanical work that the turbine extracts from the

gas stream, it may be shown that the average force on a blade that produces the
turbine output torque is

Noting that the bending moment at the blade root is M r = F(Ravg - Rroot) and that
the stress at the blade root due to bending is or = M r C I Imin, we see that

m c/ /= ..... R °°t (4-1)
aBR oJNb/m n 1- Ravg

where

rn

_b

Ravg

NO

Rroot

C

= fluid mass flow rate

= enthalpy change across a turbine stage

= average turbine blade radius relative to shaft center

= number of turbine blades

= turbine blade root radius relative to shaft center

= minimum moment of inertia of turbine blade cross section

= distance from turbine blade neutral axis
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MODEL 1
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Ravg, C, Imin)

1
RATIO OF DAMPED VIBRATORY STRESS TO
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UNDAMPED BLADE ROOT
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/

1
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GMI N = OMEAN -- GAl. T

R = GMIN/GMA X

GMAX , R

Figure 4.2-2 Structure of the Driver Transformation for the Turbine
Blade HCF Model
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Equation 4-1 is the basis of the blade root mean stress model shown in Figure
4.2-2.

In the engineering design analysis procedure used by Pratt & Whitney, the alter-

nating stress at the blade root is empirically characterized as a function of o--_.
This empirical characterization has been developed from tests of turbines with in-
strumented blades. In these tests, measurements of the peak undamped vibratory
stress auo were taken on several turbines which operate with different values of

oB'-"_ due to their differing designs. In some cases, operating conditions for a

specific turbine were changed to produce a change in o-"_.

A correlation between auo and _ was established by regression analysis. Had

development of the blade HCF model continued, nonparametric statistical

methods would have been applied to represent uncertainty in aUD warranted by
the test data. The undamped vibratory stress model shown in Figure 4.2-2 would
have incorporated the nonparametric statistical analysis. As an alternative to the

use of nonparametric statistical methods, procedures similar to those used in the
characterization of materials fatigue life as given in Section 2.1.2 of [1] could be ap-
plied. The uncertainty of aUD would have been treated in the stochastic vibratory
stress model.

In the damper effectiveness model shown in Figure 4.2-2, the ratio of damped
blade vibratory stress to undamped blade vibratory stress o o / auo is expressed as

a function of the centrifugal force produced by the blade damper. This damping
ratio characterization is based on the results of finite element model analysis in
which damper stiffness is simulated as a spring and a sinusoidal forcing function is
used. Damper effectiveness predictions have been verified by measurements on
damped blades.

Damper effectiveness predictions are uncertain due to inaccuracies in modeling
the damping phenomenon and because the parameters which govern damper ef-
fectiveness are uncertain. Such parameters include coefficient of friction and blade
dimensions. When work on the blade HCF model was suspended, nominal
damper effectiveness predictions were available, and limited studies of the sen-

sitivities of damper effectiveness to governing parameters had been initiated.
These sensitivity studies and other information regarding damper model accuracy
would have been the basis for characterizing the accuracy of the damper effective-
ness model represented by the factor _o.

Time-varying fluid dynamic forces on a blade are assumed to be of constant
amplitude with a mean stress equal to the blade root mean stress
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m

OMEAN = OBR (4-2)

and an alternating stress given by the damped vibratory stress

P/GAL.T = GUD OUD "

The maximum and minimum of the cycle are then

(4-3)

OMA X = OMEAN + (1AL T (4-4)

OMI N -" OMEAN -- OAL T. (4-5)

Finally, the stress ratio is defined as

R = GMIN / OMAX. (4-6)

4.2.4 Mean Stress Effects

The blade HCF model incorporates the stress formulation of the stochastic
materials fatigue life model, which is based on an equivalent zero-mean stress and
which is described in Section 2.1.2.1 of [1]. The stress amplitude from the driver
transformation must be adjusted to the equivalent zero-mean stress amplitude to
be compatible with this fatigue life model. The equivalent zero-mean stress
amplitude given by the Walker relation [2] is

"aEO = aMAx
(4-7)

in which m w is the characteristic Walker exponent for the material.

4.2.5 Modeling Multiple Critical Locations

The fact that only one blade is modeled by engineering analysis while there are
fifty-four identical blades in each of the first and third stages must be considered.
The procedure for modeling HCF failure in this case is discussed in Section 2.1.6
of [1] and is used in the turbine blade HCF model.

4.2.6 Probabilistic Failure Model Implementation

The ProbabUistic Failure Model (PFM) for turbine blade HCF failure generates a
distribution of failure times that results from the probabilistic characterization of

drivers. As shown in Figure 4.2-3, the PFM model for the blade consists of the
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• PROBABILISTIC CHARACTERIZATION
OF DRIVER UNCERTAINTIES

• PARAMETRIC SENSITIVITIES
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1
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OF VALUES FOR

oJ, Rroot' Ravg'
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1 1
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1
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i
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1
CALCULATE BAYESIAN PRIOR DISTRIBUTION PARAMETERS
a, ,8, 8 FOR ACCUMULATED FAILURES TIMES

Figure 4.2-3 Structure of the Turbine Blade HCF Probabilistic Failure
Model
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materials model, the HCF failure simulation, the structure for selection of drivers,

and the procedure for characterizing the simulated failures as a Bayesian prior
failure distribution for the purpose of allowing the impact of any available blade suc-
cess/failure data to be included in the characterization of the blade failure distribu-

tion. Since the current analysis is for a candidate blade, no test data is available to
use Bayesian updating.

In the PFM model shown in Figure 4.2-3, as, Rroot, Ravg, C, and rd are charac-
terized by Normal distributions, and ZB, ZO, and m w are characterized by Uniform

distributions. The materials model provides a family of stochastic curves relating
fatigue life to stress. In the iteration loop, to be executed N times, the materials

model parameters are established. Then, values of (_, Rroot, Ravg, C, rd, ZB, _'B, and
m w are drawn from their respective distributions.

Since there are fifty-four blades on the disk, the appropriate realization of the
stochastic stress-life curve to use in computing component life for each iteration
will be that corresponding to the minimum of fifty-four selections of the materials
model parameter, _p. See [1], Section 2.1.6 for further explanation. Since a blade
HCF life is calculated for each iteration, a total of N simulated failure times will be
calculated. If model development had continued, the blade results would have
been obtained using N = 20,000. Since the failure probabilities of interest are of
the order .001, only the smallest one percent of failure times needs to be saved
and used to calculate the Bayesian Prior Distribution parameters a, ,8, 8. The pro-
cedure for calculating a, ,8, and 8 is discussed in [1], Section 2.1.1.

The HCF failure simulation used in the blade PFM is shown in Figure 4.2-4. The
failure simulation is performed in several steps. First, the driver transformation is
performed. The driver transformation provides the maximum of the constant
amplitude stress cycle aMAx and the stress ratio R. Next, the Walker relation of

Equation 4-7 is used to transform aMAx and R to an equivalent zero mean stress

amplitude aEO. The predicted failure time Nf in cycles is then obtained using the
randomly selected S/N curve from the materials characterization model. Finally,
the life L in seconds is calculated.

The driver transformation used in the blade HCF failure simulation is shown in

Figure 4.2-2. The driver transformation is performed in several steps. First, the
flow rate rh and enthalpy change _ are calculated based on the performance

characterization model. Next, the blade root mean stress _ calculation is per-

formed, using Equation 4-1. The undamped blade vibratory stress auo is found as
a function of a----_. Then, the damper effectiveness model is used to obtain the ratio

of damped vibratory stress to undamped vibratory stress ao/Ouo. Finally, the mean
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Figure 4.2-4 Turbine Blade HCF Failure Simulation Used in the

ProbabUistic Failure Model
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and alternating stresses are calculated and used to find the maximum and mini-
mum stresses and the stress ratio.
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Appendix 4.A

List of Symbols

8

a

A

b

b

Be(.)

C, Co

C

E

F(.)

Im,n

Io

Jo

L

in

md

mr

M,

m w

MED(. )

Beta distribution range parameter

Uniform distribution range parameter

statistical assurance that reliability is at least as large as stated

S/N curve location parameter

Beta distribution range parameter

Uniform distribution range parameter

Beta distribution function

coefficient of variation of fatigue strength

distance from turbine blade neutral axis

Young's modulus

cumulative probability distribution function

average force on a blade that produces the turbine outlet torque

minimum moment of inertia of turbine blade cross section

credibility range for coefficient of variation of fatigue strength

credibility range for an S/N curve shape parameter

S/N curve location parameter

fatigue life in seconds

fluid mass flow rate

damper mass

S/N curve shape parameter

bending moment at the blade root

characteristic Walker exponent for a given material

median value
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n

N

N

Nb

Nt

N,

N_/, i+ 1

N(.)

ru

R, Ro

R

R

R,,g

Rroot

S

Sx',S/

SIN

U(.)

VAR(.)

W(.)

X

Y

P,Po

Y

inner loop simulation trials

degrees of freedom parameter

outer loop simulation trials

number of turbine blades

fatigue life in cycles

size of thejth materials fatigue test data set

number of stators

S/N curve life boundaries

Normal distribution function

damper radius

component reliability

number of life regions used to represent an S/N curve

stress ratio = GMIN / OMAX

average turbine blade radius relative to shaft center

turbine blade root radius relative to shaft center

stress

sample variance

sample covariance

stress/life

Uniform distribution function

Variance value

Weibull distribution function

In (stress)

In (fife)

Gamma distribution parameter

Weibull distribution shape parameter

Euler's constant, .577...
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Ah

r/o

0

0

,,l

_, Ao

/l

P

o

cr 2

x2(.)

o.)

enthalpy change across a turbine stage

materials intrinsicvariability

Weibull distribution scale parameter

Gamma distribution parameter

Beta distribution parameter

accuracy or uncertainty factor; ,lB = turbopump performance balance model accuracy
factor; _'D = damper effectiveness model accuracy factor

Weibull distribution parameter

Normal distribution parameter

3.14159265...

Beta distribution parameter

stress;oALT = alternating stress;_ = blade root mean stress; GD = damped blade
vibratory stress; aEO = equivalent zero mean stress; oMAx = maximum stress; GMEAN
= mean stress; oM/N = minimum stress; or = stress at the blade root due to bending;
aUD = undamped blade root vibratory stress

Normal distribution parameter

materials intrinsicvariability

Chi-square distribution function

rotor speed
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