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FOREWORD

This document is the final report for the work performed for NASA's George C. Marshall

Space Flight Center under Contract NAS8-36401, "Space Station Thermal Storage/Refrigeration

System Research and Development." The contract was awarded in May 1985 for an initial

period of performance of two years and nine months. Subsequent contract modifications

extended the period of performance to 1 March 1993. This report reviews all the technical tasks

performed by Lockheed Missiles & Space Co., Inc., during this period. The NASA Contracting

Officer's Technical Representative (COTR) at the rime of award of the contract was Mr. J. W.

Owen, EP44. Subsequently, Mr. J. B. McConnell became the COTR for this work.

The people at Lockheed-Huntsville who contributed to this program are William G. Dean

(Program Manager ), Zain Karu, Jeff E. McCracken, Billie Joe Osmer, Dave Petrie, Gene Sims,

Sydne Anderson, and Erik West.
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SUMMARY

During the contract, the following tasks were accomplished.

1. A -20 °F passive thermal storage food freezer was designed, analyzed, fabricated, tested,

and delivered to NASA. This freezer consisted of an inner container supported by low

heat leak struts inside an outer container and insulated with MLI. Special strut designs

were developed. The unit was instrumented and tested extensively. The design goal was

to maintain the food in a frozen state for 90 days. Test results showed the final design

was good for approximately 48 days.

The results of this task are presented herein on pages 12 through 16 and in Appendix A.

These efforts resulted in obtaining the following patent:

U.S. Patent No. 4, 821,914, 18 April 1989, "Low Temperature Storage

Container for Transporting Perishables to Space Station," issued to

J. Owen (NASA) and W.G. Dean (Lockheed).

A -70 °C (-94 °F) bio-sample freezer was designed, analyzed, tested, and delivered to

NASA. This design consisted of a "two halves" concept which was based on the use of

either an onboard spacecraft vacuum subsystem or a vent directly to space to maintain the

vacuum level of 10 .4 Torr or less on the MLI insulation. A minimum volume design was

developed which used epoxy glass honeycomb ends to eliminate the need for domes

usually found in vacuum/MLI designs. The "two halves" concept resulted in each half

being 22.9 cm (9 in.) O.D. by 30.5 cm (12 in.) outside length with a 17.8 cm (7 in.) I.D.

by 26.7 cm (10.5 in.) inner container. A special diaphragm was designed to minimize the

heat leak from outer to inner container while maintaining the required internal MLI

vacuum space environment.

Numerous tests of this freezer were performed down to a temperature of -188 °C

(-370 °F) and indicated a heat leak of approximately 3 W at that internal temperature

level. The analysis of this freezer is documented in Ref 3. Test results are presented on

pages 17 through 37 and in Appendices A and B.

A vapor compression cycle refrigerator for operation in zero-g was designed, analyzed,

tested, and delivered to NASA. This refrigerator used a dual loop design for redundancy

with two compressors, two evaporators, and two condensors. It utilized "double

containment" in that all freon carrying components were installed inside a sealed, self-

contained compartment. The design operating conditions for this refrigerator were

• Cooling load 250 W

• Condenser operating temperature 32 °C

• Evaporator operating temperatures -29 °C (-20 °F) and 2 °C (35 °F).

Both condenser and evaporator designs were based on centrifugal phase separation. This

design used a commercially available diaphragm compressor and refrigerant 502. This
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refrigerator was tested down to a temperature of -24 °C (-11 °F), where problems were

encountered with the overheating of the compressor/motor, precluding further testing.

Results of this task are presented in paragraph 2.2.4.2.2, pages 69 through 108.

4. A production model Stifling refrigeration unit was obtained and tested extensively over a

range of temperatures to determine its performance outside its design range, i.e., at higher

temperatures. Results indicated that the unit met the cooling capacity specified by the

manufacturer at the specified design temperature of-196 °C (-320 °F). It also continued

to operate and produce cooling up to approximately -80 °C (-112 °F).

Results of this task are presented in Ref 14.

5. A study and review were performed to determine the applicability of various compressor

concepts to zero-g operation. Various types of reciprocating, rotary, and continuous flow

compressors were reviewed and evaluated based on liquid carryover, tolerance to

lubricaton, efficiency, maintenance, and typical flow rate, i.e., size. These results are

presented in Appendix E.

6. Several getter pump concepts were designed, fabricated, and tested for potential use in

maintaining low pressures in the MLI insulation space. These results are discussed in

paragraph 2.1.3.

7. A Spacecraft Refrigeration Development study was performed by SRS Technologies

under a subcontract as a part of this total effort. This subcontract consisted of the

following subtasks:

• Definition of design requirements

• Assessment of feasible cycles

• Definition of cryogenic refrigeration requirements

• Assessment of heat pump applications.

The results of this work flowed into the subsequent design, fabrication, and testing during

the remainder of the contract period.

8. A fluid loop test bed flow control valve controller was modified, assembled, and tested.

The original controller was used on the Skylab/ATM thermal control system to control

radiator bypass flow. It had a fixed temperature setpoint. The controller was modified so

that a range of temperature setpoints could be selected. This unit was delivered to NASA

as a part of the NASA/MSFC thermal/fluid loop test bed which was assembled under a

separate contract (see Ref 8). The controller work and tests are described in paragraph

2.2.4.1.

xi
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Section 1. INTRODUCTION

Space Station thermal loading conditions represent an order of magnitude increase over current

and previous spacecraft such as (1) Skylab, (2) Apollo, (3) Pegasus III, (4) Lunar Rover Vehicle,

and (5) Lockheed TRIDENT missiles. Thermal storage units (TSUs) were successfully used on

these, as well as many applications for ground based solar energy storage applications. It is

desirable to store thermal energy during peak loading conditions as an alternative to providing

increased radiator surface area which adds to the weight of the system. Basically, TSUs store heat

by melting a phase change material (PCM) such as a paraffin. The physical property data for the

PCMs used in the design of these TSUs is well defined in the literature. Design techniques are

generally well established for the TSUs. However, the Space Station provides a new challenge in

the application of these data and techniques because of three factors: (1) the large size of the TSU

required, (2) the integration of the TSU for the Space Station thermal management concept with its

diverse opportunities for storage application, and (3) the TSU's interface with a two-phase

(liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage

research and development task was to design, fabricate, and test a demonstration unit. One test

article was to be a passive thermal storage unit capable of storing frozen food at -20 °F for a

minimum of 90 days. A second unit was to be capable of storing frozen biological samples at

-94 °F, again for a minimum of 90 days. The articles developed were compatible with shuttle

mission conditions, including safety and handling by astronauts. Further, storage rack concepts

were presented so that these units can be integrated into Space Station logistics module storage

racks.

The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature

requirements is well known. A large radiator area penalty is incurred if low temperatures are

accommodated via a single centralized radiator system. As per the scope of work of this task, the

applicability of refrigeration system tailored to meet the specialized requirements of storage of food

and biological samples was investigated. The issues addressed were the anticipated power

consumption and feasible designs and cycles for meeting specific storage requirements.

Furthcr,development issues were assessed related to the operation of vapor compression systems

in micro-gravity addressing separation of vapor and liquid phases (via capillary systems).

1
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Section 2. TECHNICAL DISCUSSION

The task was kicked off by defining requirements for both thermal storage and refrigeration

units for the Space Station common module and the logistics module. Storage for the frozen and

refrigerated food supplies and experiment specimens must be provided in the logistics module

during prelaunch, launch, on-orbit prior to linkup with Space Station, on-orbit attached to the

station, and during reentry and landing. A novel idea was proposed in which NH 3 is encapsulated

in small metal capsules, and MSFC concurred that this concept was worth-investigation. In the

capsules, the liquid volume of NH3, as it evaporates, would raise the vapor pressure and saturation

temperature, resulting in variable temperature "sink" or thermal storage concept. This concept had

its drawbacks: manufacturing the capsules, developing a method for charging the capsules, and

determining the amount the capsules should be charged.

As the Space Station work progressed, preliminary thermal requirements for the logistics and

habitation modules, the materials lab module, and the life sciences lab module were formulated

and converted to thermal storage volumes at required temperatures. Cooling loads for the

habitation module are relatively low because the food stored in the habitation refrigeration system

will be maintained at the required low temperatures by the logistic module refrigeration system,

prior to transfer to the habitation module. The cooling loads in the life sciences lab module will be

high because of the large number of biological samples to be frozen and stored and because of the

low temperatures required. To obtain a more accurate estimate of the cooling loads in the life

sciences lab, the rate at which biological samples are stored needs to be determined from an

experiment manifest. It is important that a baseline experiment manifest be developed to identify

experiments requiring refrigeration for each 90-day period. As of now, the logistics module

presents the greatest challenge for designing refrigeration systems to meet all cooling

requirements. Refrigeration systems must be designed to cover the entire spectrum of mission

phases from prelaunch through return and landing. The logistics module must maintain food

temperatures until the food is transferred to the habitation module, and must also provide a means

of returning to Earth the frozen life sciences biological samples in a -94 °F freezer.

2.1 THERMAL STORAGE DEVELOPMENT

The concept of thermal storage for the -20 °F frozen food for the logistics module food/freezer

and for the -94 °F biological sample storage requirement of the life sciences module was

conceived as a super insulated container with a PCM liner. The container would have a double

wall vacuum jacketed shell with multilayer insulation (MLI) and "getter" materials inside. Also,

the PCM liner would have imbedded within the PCM itself (or in good thermal contact with it) a

refrigerant coil for charging the capacitor, i.e., freezing the PCM.

Conceptually, this thermal storage unit would be used as follows. While on the launch pad the

unit would be connected to GSE to keep it charged. Before liftoff the GSE would be disconnected

and the PCM would hold the required temperature through launch, orbit, and docking of the

2
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logistics module with the Space Station. After docking, the unit would be connected to an on-

board refrigeration system for the mission duration and for recharging the PCM for the return trip.

Alternately, the -94 °F unit and conceivably even the -20 °F and +35 °F requirements could be met

by providing enough PCM mass for the entire 90-day mission.

Unknowns in the design of this type unit included the effect of opening of the container lid and

the number of times the container lid would typically be opened per mission. Estimates were

made of these factors. Also, it may be desirable to vent the container inside storage volume

overboard after each use to minimize PCM melting. Another facet of thi'g concept is to use an

ammonia boiler as a heat sink rather than a liquid/solid PCM such as lithium chloride. Figures 1

and 2 illustrate these thermal storage concepts.

The -94 °F biological sample freezer was the subject of an indepth analysis. The biological

samples are to be stored at -94 °F, and a total storage capacity of 3.6 ft 3 is required. A passive

thermal storage container has advantages over an active vapor compression system because it

requires no electrical power and uses no toxic refrigerant. In view of the available storage volume,

such as the arrangement/size of the racks inside the module, three storage containers of 1.2 ft 3 each

in internal volume were selected to yield the required 3.6 ft 3. The passive thermal storage system

selected uses composite materials, multilayer insulation, and a PCM. The PCM must provide an

effective thermal barrier at -94 °F for the frozen bio-samples and have a large enough heat of

fusion to absorb all heat leaks into the storage container for the required mission duration of 90

days. The PCM chosen for this purpose is a 30 percent solution of lithium chloride and water,

which melts at -95 °F and has heat fusion of 109 Btu/lbm. Its density is 73.4 lbm/ft 3 - slightly

higher than water.

The PCM in the selected system is surrounded by 160 layers of MLI in an encapsulated

composite material jacket lined with a stainless steel foil and evacuated to obtain a high vacuum on

the order of 10-5 torr. The PCM container is supported on the inside by standoffs that go through

the MLI blankets. With this basic concept, several configurations were thermally modeled and

analyzed, leading to a final concept which consisted of two identical freezer halves joined together

at the center with a seal to prevent cryo pumping of air. A preliminary structural analysis on this

configuration showed that it would be acceptable. Work on building the test article was started to

prove the concept of the passive freezer. Problems such as achieving a high vacuum and

maintaining it for long periods due to leaks in joints/sealants, material outgassing, etc., and other

problems such as MLI layup were encountered.

Computer analysis of the thermal storage freezer concept was started concurrently by first

thermally modeling the container without the lid. This was performed to see if the 1 in. jacket of

LiC1 PCM would last for 90 days. A 3 in. jacket around the PCM was provided to contain 160

layers of double aluminized Mylar multilayer insulation. The modified MLI jacket was considered

to be evacuated to a high level of vacuum, 10 -5 torr or better. MLI effective conductivity and layer

density were obtain from Ref 1. The walls of the PCM and MLI jackets were modeled as

0.060 in. thick phenolic glass to minimize heat conduction to the PCM. The internal container was

10 in. in diameter by 26.4 in. long to render a storage volume of 1.2 ft 3.
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A partial cross section of the container as modeled is shown in Figure 3 with the node number

designations for the different components and their dimensions. Analysis was performed using

SINDA (Ref 2) with and without the phenolic standoffs shown in this concept.

It is well known that phenolic resin outgasses in a vacuum environment. Therefore, to sustain

a high vacuum in the MLI jacket to obtain minimum effective conductivity as measured in the

work of Ref 1, and as modeled, the phenolic walls inside the vacuum area were lined with a

metallic foil. Initially, a 3-mil thick foil was modeled on the phenolic glass. This was performed

by effectively changing the conductivity of phenolic to include the conductance provided by 0.003

in. thick stainless steel. The results directed that the liner thickness be reduced to 0.0005 in., which
was acceptable for heat transfer reduction.

The next task was to design and analyze the lid for the containers. Merely providing a plug

type cover to the container did not prove thermally acceptable. The problem was providing a

sufficient length for the heat path to the PCM in the lid. Manufacturing difficulties, PCM charging,
and structural integrity of the lid/container also needed to be considered.

Since the storage container bottom itself is thermally acceptable and structurally feasible, it was

conceived that the lid could be made identically; in other words, the freezer could be made in two

identical halves joined by a common flange with an O-ring type seal. This freezer half was

analyzed with appropriate dimensions as shown in the sketch of Figure 4. The freezer half with

these dimensions was fh'st checked structurally, then thermally. Structural changes included use of

0.25 in. thick honeycomb sandwich panel with 0.25 in cells of 0.004 in. thick phenolic material

walls and 0.020 in. thick face sheets of G-10 epoxy glass. This panel is used at the top and bottom

of the container for strength required to hold the vacuum inside the MLI jacket. The bottom

standoffs are replaced with a 10 in. diameter by 0.030 wall by 3 in. high phenolic glass cylinder

lined with 0.0005 in. stainless steel foil to carry the g-loads of the inner PCM jacket and PCM
material.

The analytical effort as described above is documented in detail in Ref 3. It was concluded

from this work that the -94 °F passive bio-sample storage concept was marginally feasible for the

90-day mission. It was assumed that the units could be fabricated to meet the idealized thermal

conductances and MLI effective conductivities. This proved to be correct in the manufacture and

test phases of the food freezer unit described below.

The superinsulated container/thermal storage concept was considered for the -20 °F frozen

food requirements for the logistics module. The

The superinsulated container/thermal storage concept was considered for the -20 °F frozen

food requirements for the logistics module. The earlier concept shown in Figure 2 was replaced

with the concept shown in Figure 5 since the cylindrical shape is much better structurally for

containing the double wall vacuum jacket than the flat wall conventional freezer concept. Detailed

thermal models were made; results were promising, except for the neck plug heat leak which

required very thin walls made from low conductivity materials such as phenolic glass. Structural

analysis revealed a problem of buckling of these thin walls for the required 10 in. diameter. To
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Components and Their Nodal Breakdown as Modeled
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meet the conflicting requirements for thin walls thermally and thick walls structurally, a capsule

was conceived with two mirror image halves, shown in Figure 6. In this concept, the entire

internal volume is evacuated (including the MLI space) rather than having a separate MLI with a

double wall vacuum jacket as in the original design. The joint between the two capsule halves has

an O-ring seal. This design, although preliminary when first conceived, required improvements in

the areas of MLI closeouts at the joint where the tank halves came together; closeouts at the

hemispherical ends; MLI penetrations for the support wires and instrumentation cables; and

weight. However, the design formed the basis for manufacturing and testing the thermal storage
demonstration unit.

The purposes of the thermal storage demonstration unit are (1) to check out some of the

practical aspects of the design, such as strut wire attachment and MLI layup and (2) to verify the

thermal model of the -20 °F thermal storage unit. This test unit was designed with a PCM
container (CaC1 and water for a melt temperature of -20 °F) to simulate the frozen food volume

and dimensions. The mass of PCM was calculated to yield a test time (i.e., melt time) of the order

of one week to expedite testing. The PCM container was mounted inside a wire "basket"

supported by 0.030 in diameter strut wires mentioned earlier.

Operation of this thermal storage unit design is now changed from the original design
operation because there is no separate neck plug that can be taken out, food removed, and then the

neck plug replaced. In the new design, once the capsule is opened by the Space Station astronaut,

all the food should be removed and placed in the refrigerator since after the vacuum is lost on the

container MLI, the insulation ceases to be effective and any remaining food starts to thaw. This

mode of operation seems to be acceptable. Each capsule is being designed for about 100 pounds

of frozen food. This could be compared to going "shopping" in the logistics module, opening a

single capsule from the freezer area, and then taking this frozen food, at approximately -20 °F,

back to the habitation module for temporary storage in the +35 °F refrigerator until the food is
consumed.

The efforts that followed soon afterward were concentrated on making the demonstration units

for the -20 °F food freezer thermal storage and the -94 °F bio-samples thermal storage. As with

any hardware development program, this program had its share of problems. These were resolved

when encountered in the process of development to achieve the final goal. All events that

occurred, steps taken to improve on the design, and efforts spent to alleviate problems were
categorically described in the monthly progress reports and discussed firsthand with the COTR.

The practical aspects of the design of the -20 °F thermal storage unit were several. These were

the strut wire attachment techniques, layup of MLI layers, cutout and "goring" of MLI near ends of

the inner basket, penetrations through MLI for the support wires, instrumentation feed-throughs

for penetrating the tank wall, outgassing of materials inside the tank, use of proper netting

materials between MLI layers, getter materials, and, very importantly, maintaining an ideal

vacuum for proper MLI function. The impact on the design and desired results in each of these

areas and the alternatives and solutions proposed and tried, as the development and testing of the

thermal storage unit progressed, were documented and reported on a regular monthly basis.

Photographs describing pertinent changes to the design and showing test and laboratory setups
were included in these regular reports.
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In the area of -94 °F bio-sample thermal storage demonstration unit, efforts were directed

towards the design, manufacture, and test of thermally and structurally acceptable honeycomb

panels mounted on top of each half of the tank. This area is thermally critical since it is the shortest

length of heat leak path. Efforts were also spent in the area of achieving proper joint/closeout of

the two halves, lining and bonding the fiberglass wall with a thin stainless steel sheet to prevent

outgassing, and creating a vacuum vessel of fiberglass approximately 10 in. diameter x 30 in. long

for testing outgassing rates and permeability effects.

Thermal and structural design, manufacturing techniques and difficulties, use of materials,

achievement of required vacuum qualities, and interfaces with relevant organizations were areas of

concern in the fabrication and test of the demonstration thermal storage unit. An excerpt from the

June 1987 Progress Report, LMSC-HEC PR D066068, is included in Appendix A to provide

background information and illustrate the fabrication activities that took place toward development

and test of the thermal storage units.

2.1.1 Demonstration Unit for -20 °F Food Freezer

As discussed in the progress report excerpt included in Appendix A, the test results showed

that MLI performance was at first considerably below that expected and used in the analysis. The

continuous winding of the double aluminized Mylar and dacron netting, the slitting of this MLI for

penetration of the strut wires, and the "goring" and taping of the MLI at the tank ends were not

ideal. These factors may have caused some "thermal shorting" between MLI layers, and the slits

allowed radiation heat leaks.

After discussing this problem with NASA-MSFC personnel (Dave Clark and Joe Lawrence), it

was decided to change the MLI design/fabrication procedure. In the new design, the MLI was

applied in sub-blankets of 10 layers each. Each individual layer within the sub-blankets was held

together using 1/2 in. lengths of double back (or adhesive transfer) tape (3M-Y966). These sub-

blankets were then applied to the cylinder with 2 in. overlaps. The joints were staggered around

the circumference. Each strut wire was threaded through the sub-blankets as they were assembled.

The test article inner basket (tank) shape was changed from a flat end to a hemispherical dome

to better represent the flight hardware shape/design. The new ends were made by forming heavy

aluminum foil over a 9 1/2 in. hemispherical mandrel. The cylindrical part of each basket was

shortened so that it would still fit inside the same outer test tank.

The MLI which covers the dome is now continuous with the cylindrical side sub-blankets,

thereby eliminating the joint between the dome and cylinder MLI. The dome MLI is then formed

by cutting pie-shaped sections out, leaving "gores." These gores are then butt-jointed to form the

hemispherical shape. The tip ends of the gores are sewn together across the tip of the dome to hold

them in place. The joints are then taped over with reflective tape for closeout. The butt joints in

the gores are alternated from one sub-blanket to another so that consecutive joints do not fall on top

of each other. The gores are purposely sewn and taped to prevent thermal shorting between layers.
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Drawings for each of the 16 individual sub-blankets were made on the Lockheed CADAM system.

These were then cut out and used as full scale patterns for cutting the MLI.

The redesigned MLI fabrication/assembly was installed inside the test article and testing began.

Several tests were conducted with a sufficiently low pressure of -10 -4 torr for good MLI

performance. The MLI performance is determined by assuming that the hand calculated thermal

conductances/heat leaks for the strut wires and copper instrumentation wires are correct. This was

a reasonable assumption since their lengths, diameters, and properties are well defined. These

calculated heat leaks were then subtracted from the total heat leak, yielding the net heat leak through

the MLI. When this MLI heat leak was compared to that calculated using the idealized data from

Ref 1, we found that our MLI performance was lower by a factor of 8.4 to 9.7. However, the data

of Ref 1 were taken with a "guarded tank" approach and without any joints or penetrations in the

MLI.

A calculation was made, using results of these tests to date, to estimate the flight performance

of this concept for food storage. Using the inner tank dimensions and the measured MLI/strut wire

heat leaks, a 48-day storage time capability was calculated. Hence, an improvement in overall

performance by a factor of approximately 2 was needed to get through the typical 90-day Space

Station mission plus prelaunch stay time.

In order to make this improvement, further changes in the MLI design were made by removing

the middle joint and bellyband and wrapping the entire tank except the top dome. The gores for

this dome were to be left loose until after the food was loaded; then these gores were to be sewn

and taped after closing the dome/lid. A design for an upgraded storage demonstration unit was

started. A new inner tank was made to replace the existing "baskets" and aluminum foil domes.

Figure 7 shows a reduced copy of the preliminary shop drawing for this inner tank. This tank was

designed to accommodate the new "one-piece" MLI blanket concept. It has one dome welded

permanently in place. The other dome is attached to the cylindrical part of the tank with threads

and has an O-ring seal.

Figure 8 shows the modification made to the outer tank. The changes allowed the outer tank to

be opened at one end rather that at the middle to accommodate the new one-piece MLI blanket

concept. Two new flanges with an O-ring seal were added. Two new larger instrumentation feed-

through ports were also added. Receptacles were added to the sides of the tank for the new

fiberglass support strut design, shown in Figure 9. This strut is installed through the MLI as

follows. As each individual blanket is applied to the inner tank, a cloth "sock" is threaded through

the blanket at the proper position along the diagonal path of the strut. After all blankets are in place

and the inner tank/blankets are placed inside the outer tank, the strut is threaded through the inside

of the sock to its position on the surface of the inner tank. It is then threaded into its fitting. Next,

the sock is removed, leaving the strut end exposed through the outer tank wall. Finally, the outer

strut end position/tensioner is put in place with its O-ring seal.
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2.1.2 Demonstration Unit for -94 °F Bio-Sample Freezer

The following design goals/requirements were established for the final freezer design to be

delivered to MSFC.

• Minimize heat leaks.

• Design for operation in orbit only (i.e., this is not a logistics function design).

• Design for utilization of Space Station on-board vacuum utility system (i.e., there is no

requirement to send the unit back to Earth for repumping of the MLI insulation/vacuum

jacket volume).

• Assume that the unit can be provided internal cooling either by (1) an active refrigeration

unit such as a Stirling Unit, (2) a PCM canister which is precooled before being inserted

inside this freezer, or (3) a porous matrix f'flled with a cryogen before being installed inside

this freezer.

Two sizes of freezer outside diameter were studied, 15 in. and 9 in., both with a 7 in. inside

container/cold space. Honeycomb panel bottom plates were analyzed for both cases. It was

decided that the 9 in. cylinder would be large enough. This allows an approximately 1 in. space

for the MLI. The results of the analysis for the 15 in. and the 9 in. cylinder design were presented

in the February 1990 monthly progress report. As a result of these analyses, face sheet

thicknesses of 0.040 in. and a core depth of 0.50 in. were selected. This selection provided a

deflection of 0.0579 in. of the honeycomb, which was acceptable.

A stress analysis was also conducted to determine the cylinder wall thickness requirements for

the 9 in. diameter cylinder design. This analysis resulted in a 0.075 in. thick wall for a 12 in. long

cylinder made of G-10 epoxy glass material.

A new concept was developed for the overall freezer configuration. This concept consisted of

two cylindrical parts which were mated end-to-end. Each cylinder was 12 in. long with 9 in. O.D.

To minimize volume, these cylinders had honeycomb bottom plates. The honeycomb bottom

plates used thin wall face sheets consisting of 0.040 in. epoxy glass with a 0.001 in. thick stainless

steel liner to prevent vacuum leaks and outgassing. A diaphragm closed out the annular space

between the inner and outer cylinders. This diaphragm disk was made extremely thin in order to

reduce the heat leak from the outer cylinder to the inner cylinder. This diaphragm is not strong

enough to withstand a full one atmosphere pressure difference. This limitation was overcome in

our design by pulling a vacuum between the two mated-cylinder top ends before evacuating the

MLI insulation space. This vacuum between the cylinders pulled the two diaphragms tightly

together and produced no net stress on them. Then the MLI space was evacuated, and the pressure

difference across each diaphragm was zero.

Heat leak calculations were made for the 15 in. diameter design, with the following results:
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• MLI = 0.17 W

• Donut (diaphragm) = 0.20W

Total = 0.37 W

This design condition was near optimum because the MLI and other heat leaks were equal.

The progress report excerpt in Appendix A includes discussion of various aspects of

developing the demonstration unit. These topics include tooling, fabricating, machining, testing,

and venting honeycomb samples, bonding techniques, method needed for closeouts, joint designs,

etching of stainless steel liner sheets, etc. Success was shown in the area of bonding the 0.0005

stainless steel liner to the composite material cylinders. A typical part, shown in Figure 10, was

later load-tested.

Two inner cylinder and two outer cylinder bottom panels were fabricated. These four parts are

shown in Figure 11, with the honeycomb core and outer rings bonded to the bottom face sheets.

The inner cylinder bottom panels are approximately 7 in. in diameter and the outer cylinder bottom

panels are 9 in. in diameter. The core is 0.5 in. thick, Hexcell HR H-10/F35-(5)-3.5. This core has

a density of 3.5 lb/ft 3, a cell wall thickness of 0.005 in., a cell size of 0.375 in., a compressive

strength of 350 psi, a shear strength of 150 psi, and a compressive modulus of 24 ksi. The HR H-

10 designates the material composition, which is a Nomex Aramid fiber reinforced with phenolic

resin. The face sheets of honeycomb panel skins are 0.040 in. thick and made from Hexell

fiberglass Prepreg with 1581 glass fabric and F155 epoxy resin.

Figure 12 shows the same four panels after insertion of the paste type adhesive (Hysol 960)

which bonds the core to the outer ring. This bond is required in order to carry the shear load from

the core into the support ring. The load is then carried from the ring into the bottom end of the

freezer cylinder outer wall.

Figure 13 shows the two inner cylinders and the two outer cylinders under construction. In

Figure 13, the two outer cylinders have been lined with a 0.001 in. thick stainless steel foil. This

foil is required to make the composite (i.e., epoxy glass) material impervious and to eliminate

outgassing, which would destroy the vacuum in the vacuum jacketed insulation space. One of the

inner cylinders has been covered with the first layers of MLI.

Figure 14 shows these same cylinders after the honeycomb bottom plates have been placed on

one of the outer cylinders and both of the inner cylinders. The honeycomb cells' imprint can be

seen through the bottom stainless steel face sheet of the honeycomb panel.
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Figure 10. Epoxy�Glass Cylinder with 0.010 in. Thick Neck and 0.005 in. Stainless

Steel Liner for Use in -94 °F Thermal Storage Unit

Figure 11. Inner and Outer Cylinder Honeycomb Bottom Panel in the Process of

Fabrication for Bio-Sample Freezer
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Figure 12. Inner and Outer Cylinder Honeycomb Bottom Panels for Bio-Sample

Freezer after Insertion of Adhesive to Bond Core to Outer Rings

Figure 13. Two Inner Cylinders and Two Outer Cylinders during Fabrication
Process
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Figure 14. Two Inner Cylinders and Two Outer Cylinders Showing Honeycomb
Bottom Panels in Place

Figure 15 shows one of the outer cylinders ready for bonding in place of the NW-25 flange

vacuum connection and its reinforcing doubler. The brown covering material seen on the outside

of this cylinder is a protective teflon cover used to protect the stainless steel outer liner.

Figure 16 shows one of the outer cylinders after the NW-25 flange vacuum connection has

been bonded in place. Figure 17 shows one of the outer cylinders after bonding in place of the

aluminum reinforcing ring. This ring is required to beef up the joint between the thin outer

cylinder wall (0.070 in.) and the thin (0.010 in.) annular diaphragm closeout sheet between the

inner and outer cylinders.

Figure 18 shows the leak test in progress on one of the inner cylinders. These cylinders were

pressurized to 16 psig with helium gas and leak checked with a helium detector. No leaks were

found in either cylinder. Figure 19 shows the leak test in progress on one of the outer cylinders.

In this test a vacuum was drawn on the inside of the cylinders, and helium gas was sprayed around

the outside of the cylinder. The inside space was connected to a helium leak detector for the tests.

No leaks were found even on the instrument's lowest scale, i.e., 10 -9 SCC per second.

Figure 20 shows an additional leak test which was performed on the outer cylinders. In this

test a plastic film "hood" was placed over the end of the cylinder. This hood was then filled with

helium gas while a vacuum was drawn on the internal volume. This is a more severe test since the

helium is maintained around the outside of the joint for an extended period of time. Again, no

leaks were detected in either cylinder, even on the leak detector's lowest scale, 10 -9 SCC per

second.
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Figure 15. Outer Cylinder Ready for Bonding in Place of NW-25 Flange Vacuum

Connection

Figure 16. Outer Cylinder after Bonding in Place of the NW-25 Flange Vacuum
Connection
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Figure 17. Outer Cylinder Showing Aluminum Reinforcing Ring Bonded in Place

Figure 18. Leak Test Being Performed on Inner Cylinder
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i

Figure 19. Leak Test in Progress for Outer Cylinder

I

t-

Figure 20. Leak Test in Progress for Outer Cylinder with Plastic Film Hood Filled
with Helium
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It is noted that the pressure loading on both the inner and outer cylinder tests was in the same

direction as in these cylinders when they are assembled into the freezer. That is, the inner cylinder

was under a burst-pressure load, while the outer cylinder was under a crushing-pressure load.

A problem was encountered in the procedure for cleaning these completed parts. We cleaned

them with 111 trichloroethane, then a stainless steel polishing compound, then detergent and

water, and then we rinsed with running tap water. Normally this should provide a good oil-free

surface. However, these parts would not pass the "water-break free" test. Later it was discovered

that the paper towels used to dry these parts apparently changed the surface chemistry enough to

cause the water to break. After several analytical tests, it was decided that the parts were indeed

oil-free and clean enough for this application. (The parts have to be as clean as possible in order to

not outgas and destroy the internal vacuum.)

A method was developed for wrapping the MLI around the inner cylinder without having any

joint at the junction between the flat cylindrical end and the round outer cylindrical barrel section.

Layup of the MLI on both inner cylinders was completed. This MLI consisted of 30 layers of

double aluminized mylar and 30 layers of dacron netting. The mylar was perforated with 0.062 in.

holes, with 0.5 in. between holes in rows which were 0.25 in. apart. The netting mesh size was

approximately 0.070 x 0.070 in. square with openings. Silk thread was used to hold some of the

layers in place. A minimum of aluminized tape was also used (3-M Scotch Brand No.

YR84373624579).

Figure 21 shows a photo of the MLI during fabrication. A layer of netting can be seen on the

outside in this view. Figure 22 shows the MLI after being trimmed at the bottom. Figure 23

shows the top end of a completed MLI layup. Figure 24 shows the completed MLI at the open end

of the cylinder. Figure 25 shows a closeup of the completed MLI with a total thickness of 0.6 in.

for the 30 layers, for an average thickness per layer of 0.020 in.

After the MLI layup was completed, the inner cylinders with MLI were bonded to the 0.010 in.

thick annular closeout skins. Figure 26 shows this step in progress. The outer cylinders were

then bonded in place over the MLI/inner cylinder and onto the annular closeout skins. This

completed the fabrication of the two cylindrical halves of the freezer.

Next a vacuum seal was designed and fabricated to close out the joint between the two halves.

This consisted of a 2 1/2 in. wide by 0.050 in. thick natural rubber band with a butt joint. The butt

joint was made using "super glue." An NW-25 vacuum flange connection was placed through a

1 in. hole in the center of this band. This design was tested and found to provide a seal with an

acceptable leak rate.

The final assembly of the bio-sample freezer was completed. Parts were leak checked and no

leaks were found. The vacuum pumping station was set up and checked out. The flex hoses,

valves, connections, etc., were all taken to MSFC for cleaning with Freon 113

(trichlorotrifluoroethane) in their cleanroom area. Heaters were attached to the hoses and they were

baked out under vacuum. The entire system was then leak checked. The residual gas analyzer

(RGA) unit was installed and checked out for use in monitoring the freezer MLI space gas

constituents during and after pumpdown.
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Figure 21. MLI Being Laid up onto the Inner Cylinders of Bio-sample Freezer

Figure 22. Bio-sample Freezer Inner Cylinder with MLI After Bottom was Trimmed
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Figure 23. Top End of MLl Applied to Inner Cylinder of Bio-sample Freezer

Figure 24. Open End of Inner Cylinder of Bio-sample Freezer after MLI was
Trimmed
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Figure 25. Completed MLI Showing Thickness of O.6 in. for 30 Layers on Bio-

sample Freezer Inner Cylinder

Figure 26. Bio-sample Freezer Inner Cylinder with MLI in the Process of Being
Bonded to the Annular Closeout
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The next step was to set up the freezer for testing. The data system, consisting of the 60-

channel Acurex Autocalc and a PC, was hooked up and checked out. Two aluminum cold

block/heat sinks were machined and instrumented. They were both 6 in. in diameter and 1 in.

thick; one weighed 1465 g and the other weighed 1390 g. They were instrumented with 0.003 in.

diameter Chromel/Alumel thermocouples. These thermocouples were bonded on with Furane

1210 epoxy. Therrnocouples were also installed on the two inside cylinders of the bio-sample

freezer. The heat sinks were installed inside the freezer inner cylinder for testing. They were

chilled down with LN2, and then the temperature was allowed to rise due to the heat leaking

through the MLI. The temperature rise rate was used together with the thermal mass of the heat

sinks to compute the net heat leak rate of the freezer. The bio-sample freezer and test setup are

shown in Figures 27 through 30.

The first preliminary test was run on 23 May 1990. In this test, the temperature was taken

down only to about 0 °F. As a safety precaution, we did not want to go below this value during

this checkout run. The insides of the two halves of the freezer were chilled down separately using

LN2 boiloff. The two halves were then joined with the natural rubber seal, and the internal space

was evacuated using a mechanical vacuum pump. The MLI volumes of both halves were then

evacuated using the turbomolecular vacuum pumping station. The temperature rise of the heat

sinks was recorded and plotted. The resul.ting slope was used to calculate the heat leak into the

bio-sample freezer. Preliminary tests were also run on 25 May and 29 May 1990.

During these checkout tests it was found that the freezer needed about one hour of cold soak

time before starting the steady state temperature slope evaluation. This period was needed for the

mass of the MLI to get cold. During one of these tests, frost formed on the mating ends of the

inner cylinder/outer cylinder diaphragm closeout. When the halves were mated, they stuck

together. This did not allow proper evacuation of the inner space when the mechanical pump was

turned on. However, this was not known because there was no pressure measurement on the

inner space. When the turbopump was turned on to evacuate the MLI space, the resulting AP

cracked one of the freezer bond joints. This was repaired and testing was resumed. A GN2 purge

bag was designed and used to prevent this frost buildup. GN2 purge bags were also used over the

NW-25 flange pumping ports during chilldown to prevent aspiration or cryopumping of

atmospheric air and water vapor into the MLI space.

The procedure for chilldown was later changed. The two halves of the freezer were chilled

simultaneously with LN2 boiloff using a "tee" nozzle arrangement. The halves were mounted on

two separate cradles so that they could be moved together or apart without disconnecting from the

turbovacuum pumping station hoses. The minimum MLI vacuum space pressure obtained to date

with this test setup and procedure is approximately 2 x 10 -4 torr.
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Figure 2Z Completed Bio-sample Freezer Halves and Heat Sin-ks�Cold Blocks

Ready for Testing
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Figure 29. Turbomolecular Vacuum Pumping Station
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Figure 30. Bio-sample Freezer and Turbopumping Station During Test
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Figures 31 through 33 show typical temperatures obtained from the preliminary tests. Testing

was continued with gradual lowering of the heat sink temperature to -240 °F. This was the

practical lower limit for the present configuration because of difficulties with the rubber band center

joint seal and frost problems at the joint. The rubber band became so brittle that we were unable to

move it onto the joint in any reasonable time without thawing it out with a heat gun, even though it

was located outside the GN2/LN2 purge bag. During this thawing time, the exposed freezer ends

frosted up considerably, causing difficulty in mating the two halves. Again, the purge bag was

being used, but it had to be removed while the rubber band seal was being put into place. Also,

the rubber band cracked on some occasions due to its brittleness, causing it to leak.

After proceeding to this point in the testing (i.e., -240 °F), it was decided to temporarily

suspend testing and modify the test configuration in order to get to lower temperatures. Two fill

and vent access ports were added through the MLI. The instrumentation leads were replaced and

vacuum sealed where they penetrated the walls of the freezer. The fill line configuration was

modified. The rubber band center seal was replaced with the O-ring. This was done so that the

freezer could be chilled down after being joined together at the center joint.

When testing was resumed, we were able to reach a low temperature of -370 °F inside the

freezer. This was attained as a result of two factors: (1) we modified the biofreezer test

configuration/design, and (2) with this modified design we were able to get liquid nitrogen into the

inner cylinder and then subcool it by lowering the vapor pressure over the liquid. This caused the

temperature to drop below the melting point and freeze the nitrogen. (The boiling point of nitrogen

is -320.4 °F at 1 atmosphere pressure; the melting point of nitrogen is -346.0 °F. When the vapor

pressure is reduced to 1 mm Hg, the solid temperature drops to -375.0 °F.) The various hardware

changes are enumerated and pictorially depicted in the August 1990 monthly progress report, an

excerpt from which is presented in Appendix B.

Beginning during the August 1990 reporting period and continuing through January 1991,

twenty-eight tests were performed at low sink temperatures starting at -310 °F and gradually

dropping to -370 °F. Tests included chilldown runs in preparation for subsequent testing. Some

minor problems were encountered and resolved along the way. Heat leak calculations were

performed using data from tests that did not exhibit apparent problems. The results from these

tests, heat leak evaluations, and descriptions of problems encountered and their solutions are

included in Appendix B as excerpts from reports detailing monthly progress from August 1990

through January 1991 for this contract.

One typical bio-sample freezer test was observed by NASA-MSFC personnel at the Lockheed-

Huntsville lab facility on 28 November 1990.
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Figure 31. Temperature vs Time for Bio-sample Freezer Test on 23 May 1990 (Thermocouples 1

through 4 are on heat sinks; 5 and 6 are on inner cylinder wall. Lag in T5 is apparently

due to not allowing enough time for all parts to come to equilibrium before start of test.)
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Figure 32. Temperature vs Time for Bio-sample Freezer Test on 25 May 1990 (Thermocouples 1

through 4 are on heat sinks; 5 and 6 are on inner cylinder wall. Lag in T5 is apparently

due to not allowing enough time for all parts to come to equilibrium before start of test.)
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Figure 33. Temperature vs Time for Bio-sample Freezer Test on 29 May 1990 (Thermocouples 1

through 4 are on heat sinks; 5 and 6 are on inner cylinder wall. Lag in T5 is apparently

due to not allowing enough time for all parts to come to equilibrium before start of test.)
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2.1.3 Getter Pump Testing

For MLI to perform efficiently, its pressure must be maintained below about 10 -4 Torr. Any

outgassing from MLI materials or container surfaces will increase this pressure. Every effort must

be made to reduce outgassing through cleaning and vacuum bakeout. However, it is impossible to

reduce the outgassing rate to absolute zero. Therefore, over a period of time the pressure inside the

MLI space will gradually rise, thus increasing the effective thermal conductivity of the MLI and the

heat leak rate. To overcome this problem, we developed and tested several getter pump concepts.

Figure 34 shows a photograph of the first pump tested. This pump was activated by raising

the heater jacket to 750 °F for a period of time which should have been adequate for activation;

however, pump performance was limited. The pumping speed was small - barely measurable.

This was attributed mostly to the pump configuration. Also, the flow to the pump was restricted

by a 90 deg vacuum valve in series with the pump.

A new pump was designed and tested. A 6 in. pump mouth was used instead of the original

1 1/2 in. size. The pump valve was eliminated and the outlet of the pump mouth was coupled

directly to the vacuum tank/food storage unit. The getter pump was then connected directly to the

turbomolecular vacuum pump. The shutoff valve was next, followed by the mechanical vacuum

roughing pump. This configuration did not allow the getter pump to be turned on and off as in the

previous design. Therefore, the testing was performed by comparing the "with and without" getter

pump operation. First the vacuum tank pressure due to outgassing of the MLI was monitored.

Then the getter pump was activated and the pumping action observed. Figure 35 shows the getter

pump under test.

Figure 34. Original Getter Pump Tested for Food Thermal Storage Unit (This pump

proved to be too small for this application.)
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Figure 35. Setup for Testing Getter Pump Attached to the Thermal Food Storage
Demonstration Unit
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Three tests of this new getter pump were made. Figures 36 through 41 show the results.

Some difficulty was encountered in activating the getter material. Activation normally requires a

temperature of approximately 750 °F for 10 minutes. This getter pump temperature was difficult

to obtain without exceeding the turbo-pump top flange allowable temperature of 250 °F. Figure

36 shows the results of the initial attempt to achieve the activation temperature. Figure 37 shows

the resulting getter pump test results after activation of the getter at these temperatures. Figures 38

and 39 show results of the second test. Figures 40 and 41 present results of the third test. As

seen, each test showed improvement in the getter pump performance.

Additional efforts were made at developing a getter pump. The quantities of getter material

were not sufficient to hold the pressure at an acceptable level. The following quantifies of materials
were used:

• Activated charcoal 77.5 g

• 13X Mole Sieve 1(30 g

• 4A Mole Sieve 100 g

• 3A Mole Sieve 100 g.

These materials were placed inside the food storage demonstration unit and the pressure

pumped down to 3 x 10 .6 torr. The tank was then valved off and the getter test started. The results

are shown in Figure 42, where pressure rise versus time is plotted. As is evident in this figure, the

getter's performance was not sufficient to hold the pressure at a low level. This indicates that these

getters are not very efficient at room temperature. The adsorption data for nitrogen and carbon

dioxide for 13X Mole Sieve, 4A Mole Sieve, and activated charcoal obtained from Union Carbide,

manufacturer of Mole Sieve materials, show a marked decrease in adsorption with pressure, as

expected. Temperature has a significant effect on the performance of these materials. Our

application at near room temperature made the gettering more difficult.

We also contacted a manufacturer of commercial getter pumps. These pumps are applicable to

certain vacuum container designs but have the problem of requiring an activation temperature of

either 400 or 750 °C, depending on the type of pellet used. These high temperatures are not

compatible with our MLI temperature limits. The pumps would have to be activated "offline,"

valved off, and then transferred to our container for use. Quoted pumping speeds for one of these

pumps were as follows:

• 500 I_/s at 400 °C and 3 x 10.6 torr for CO2

• 250 L/s at 400 °C and 3 x 10 -6 torr for N2.

No pumping speeds were quoted for 25 °C, which is our desired operating temperature. A

power of 300 W is required to keep the pump operating at 400 °C. The sorption capacity of this

pump is quoted at 280 torr-L before reactivation is required. This would give us a time of
280 tort - L

= 108 days
300 x 10 .7 torr - L/s

before reactivation for an assumed throughput of 300 x 10 -7 torr - L/s, which is approximately

what was experienced on the food storage demonstration unit.
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2.2 REFRIGERATION SYSTEMS DEVELOPMENT

The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature

dictates separating heat sources based on temperature requirements. For example, a large Space

Station may require 80 percent of the total load to be rejected at 70 °F (294 K), 15 percent at 30 °F

(272 K), and the remaining 5 percent at -10 °F (250 K) or lower. It is not practical to penalize the

radiator cost and weight to provide for the lowest temperature for the total cooling load. A viable

alternative would be to group load and temperature requirements and provide radiator systems for

each group and/or provide mechanical or other refrigeration methods to remove the heat at low

temperatures and reject heat at a high temperature compatible with more efficient radiator rejection

temperatures. The need for this alternative method prompted the refrigeration system development

study as described herein.

The refrigeration systems development task was divided into several subtasks:

1. Definition of design requirements

2. Assessment of feasible cycles

3. Def'mition of cryogenic requirements

4. Assessment of heat pump applications

5. Definition of flight test requirements and development of implementation plans

6. Design and fabrication of prototype hardware

7. Testing of components.

All of these subtasks formed thebasis of the overall effort under refrigeration systems development

and are covered in the following sections. The first four subtasks were subcontracted to SRS

Technologies, Huntsville, Alabama, and are discussed as follows. These results are also

documented in Ref 7.

2.2.1 Design Requirements

The efforts in the area of refrigeration were started by establishing the requirements. Contacts

were made, data bases such as "Langley Space Station Data Base" documentation were screened

for requirements definition, and meetings were held with MSFC and Boeing personnel. This

served as a starting point for collecting refrigeration/freezer requirements and cooling loads for the

Space Station.

During the performance of this task, the emphasis was on updating the refrigeration

requirements and providing more comprehensive estimates of cooling loads required. Cooling

loads for the habitation module are relatively low because the food stored in the habitation

refrigeration system will be maintained at the required low temperatures by the logistic module

refrigeration system, prior to transfer to the habitation module. The cooling loads in the life

sciences lab module will be high because of the larger number of biological samples to be frozen

and stored and because of the low temperatures required. To obtain a more accurate estimate of the

cooling loads in the life sciences lab, the rate at which biological samples are stored needs to be
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determined from an experiment manifest. It is important that a baseline experiment manifest be

developed to identify experiments requiring refrigeration for each 90-day period.

The logistics module presented the greatest challenge for designing refrigeration systems to

meet all cooling requirements. Refrigeration systems must be designed to cover the entire

spectrum of mission phases from prelaunch through return and landing. The logistics module

must maintain food temperatures until the food is transferred to the habitation module, and must

also provide a means of returning to Earth the frozen life sciences biological samples in a -94 °F

freezer.

The refrigeration requirements for the habitation module include a refrigerator and a freezer for

the storage of a 14-day supply of food in the galley area. According to the Space Station Reference

Configuration document (Ref 4), the refrigerator and freezer will be restocked every 14 days from

food stored in the logistics module refrigerator and freezer. There is no requirement to refrigerate

or freeze thawed food in the habitation module because the food is already frozen or chilled when

transferred from the logistics module.

To estimate the cooling loads for the refrigerator and freezer in the habitation module, the

assumptions in Figure 43 were made. The internal volume required for refrigerated and frozen

food was estimated based on average food weights and average usage rates. The habitation freezer

needed 6 ft 3 internal volume, while the habitation refrigerator only required 2 ft 3. The maximum

thickness of insulation was used to allow room for accessories and the required internal volume

and still stay within the total volume of 12 ft 3. From these calculations, it was decided to use 3 in.

thick insulation for estimating the heat leaks. Figure 44 contains a breakdown of the individual

heat loads for the habitation module refrigeration system.

The refrigeration requirements for the logistics module include a refrigerator and a freezer. The

refrigerator and freezer are used for transporting refrigerated and frozen food and medicine to the

Space Station, storing food during the 90-day mission, and for returning frozen and refrigerated

items to Earth. The logistics module freezer must have the capability to match the -94 °F

temperature requirement of the life sciences lab freezer to be able to return lab samples to Earth.

Another requirement of the logistics module is to be able to maintain proper temperatures through

all phases of the logistics module operation. The different phases for which the logistics module

must maintain refrigeration are prelaunch, launch, on-orbit, docking, docked configuration,

retrieval, on-orbit, landing, and post-landing.

The refrigerator in the logistics module has a total volume of 20 ft 3. Using assumptions in

Figure 43, an internal volume was estimated as 13 ft 3. The logistics module freezer has a total

volume of 60 ft 3 and an estimated internal volume of 34 ft 3. Using the estimated internal volumes,

cooling loads for the logistics module refrigerator and freezer were calculated. Even though the

logistics module will be stocked with prefrozen and prechilled food during the prelaunch phase, an

additional food load was estimated to design for the possibility of freezing or refrigerating room

temperature food. The additional food load for the refrigerator is based on cooling 25 pounds of

food with 80 percent water content in six hours. For the freezer, the additional food load is based

on freezing 250 lb of food with 80 percent water content in 24 hours. These loads will not

normally be imposed on the refrigeration system and thus only serve in defining a design point.
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• Thermal Conductance = 0.0162 Btu/hr-F-ft

• Average Food Weight = 30.08 ib/ft 3 (Frozen)

29.76 Ib/ft 3 (Refrigerated)

• Average Usage Rate

Number of Crew = 6

= 1.88 Ib/man/day (Frozen)

0.62 Ib/man/day (Refrigerated)

Thickness of Insulation = 3 in.

Safety Factor of 1.5 is Assumed for Heat Leak Through Walls

70 Percent Air Exchange When Door Is Opened

Water Content in Food is 80 Percent

Figure 43. Assumptions for Coofing Load Calculations

HABITATION MODULE COOLING LOAD (WATTS)

HEAT LEAK
THROUGH WALLS

FAN LOAD

DOOR OPENING

FOOD LOAD

TOTAL LOAD

REFRIGERATOR

+35°F

13.4

0.5

0.3

0.0

14.2

FREEZER

-20°F

64.7

1.75

4.9

0.0

71.35

Figure 44. Detailed Analysis of Cooling Loads in the Habitation Module Refrigeration System
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Another consideration in determining the refrigeration requirements of the logistics module is

the possibility of needing to preserve a deceased crew member. Although the death of a crew

member might set a refrigeration requirement, it was not used to drive the requirements.

The cooling loads for the -94 °F freezer only include the heat leak through the walls and a fan.

Figure 45 contains an analysis of the cooling loads for the logistics module refrigeration system.

The -94 °F requirement precludes using the -20 °F freezer to store biological samples as the food is

transferred to the habitation module. A relaxation of the biological requirements to -20 °F would

allow utilization of otherwise unused space.

The refrigeration requirements for the life sciences lab module include a variable temperature

refrigerator, a -94 °F freezer, and a -319 °F freezer. The variable temperature refrigerator must be

able to operate in a range from -7.6 to +50 °F. The purpose of the variable temperature refrigerator

is to be able to cool blood, body fluids, and fluids intended for injection as well as have the

capability to house small animals and incubate amphibian zygotes. A usable volume of 2.5 ft 3 and

a cooling load of approximately 200 W for the variable temperature refrigerator are given in Ref 5.

LOGISTICS MODULE COOLING LOADS (WATTS)

HEAT LEAK

THROUGH WALLS

FAN LOAD

REFRIGERATOR

35°F

52.4

2.3

FREEZER

-2O°F

199.4

16.7

DOOR OPENING

FOOD LOAD

BIOLOGICAL LOAD

TOTAL LOAD

2.1

39.1

95.9

14.3

455.5

685.90

FREEZER
-94°F

85.4

2.2

3.9

0.0

91.5

Figure 45. Detailed Summary of Cooling Loads for the Logistics Module
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The -94 °F freezer is intended for the freezing and long term storage and preservation of

biological samples such as blood, tissue, and whole rats. Bone samples, tissue samples, and even

some whole rats will be prefrozen in the -319 °F freezer prior to storage in the -94 °F freezer.

Since all experiments in Ref 5 will not be done at the same time, a proposed timeline of

experiments for the first year of operation was obtained from Ref 6. The cooling loads for the

-94 °F and the -319 °F freezers were estimated based on the experiments to be done in the first year

of operation of the Space Station. From Ref 5, experiments (A) BLla, (A) MLla, and (W) CV2

were used to determine cooling requirements. The cooling loads calculated were based on a

freezing time of 24 hours. Dr. John Hilchey (MSFC) indicated that an increased cooling rate may

be required, and suggested contacting Dr. Adrian Mandel (ARC) for specific requirements.

According to Dr. Mandel, the cooling rate should be adequate, provided the freezer is chilled to

-94 °F prior to insertion of the samples. If a faster cooling time is required, the cooling loads will

go up proportionally.

The -319 °F cryogenic freezer in the Life Sciences Lab is for quick freezing biological samples

before the samples deteriorate. Biological samples will be stored in the -94 °F freezer after freezing

in the -319 °F freezer. To calculate the cooling requirements for the -319 °F freezer, the same

experiments were considered as with the -94 °F freezer. With a cryogenic freezer, it is more

important to know the total cooling required than the cooling rate because the total cooling sets the

requirement for the amount of coolant (i.e., LN2) needed. Figure 46 gives a detailed summary of

the cooling requirements for the life sciences lab module.

LIFE SCIENCES LAB

HEAT LEAK
THROUGH WALLS

FAN LOAD

DOOR OPENING

BIOLOGICAL LOAD

TOTAL LOAD

REFRIGERATOR
-7.6, +50°F

33.1 watts

4.1 watts

1.9 watts

160.9 watts

200.0 watts

FREEZER
-94°F

85.4 watts

3.4 watts

3.9 watts

47.30 watts

140.0 watts

1034 watt-hr

1034 watt-hr

FREEZER
-319°F

Figure 46. Detailed Summa_. of Cooling Loads for the Life Sciences Lab Module
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The refrigeration requirements for the materials lab module consist of a refrigerator and a

freezer for storing biological samples such as protein solutions. The operating temperature of the

freezer will be -20 °F and the temperature of the refrigerator will be 35 °F. To calculate cooling

loads for the refrigerator and freezer, a coefficient of performance of 2.0 was assumed. From

approximations for peak power obtained from Ref 6, the cooling loads were calculated. It is

estimated that the freezer will require approximately 250 W of cooling power and the refrigerator

will require 150 W of cooling power.

2.2.2 Definition of Cryogenic Requirements

Under this subtask, several candidate fluids for a low temperature radiator system to meet

Space Station low temperature refrigeration requirements were evaluated. The following criteria

were used to assess the candidate fluids:

• Ratio of fluid properties that determine the pumping power to heat transfer capability

• Density

• Vapor pressure

• Stability

• Inermess

• Toxicity.

While not extensive, this initial evaluation addresses some of the more promising fluids.

Additional evaluation may be necessary as a low temperature radiator system becomes better

defined and/or additional candidate fluids are identified. The above criteria were fully investigated

and the analysis and the recommendations for Coolanol and fluorinert fluids are documented in

SRS Technologies' report of Ref 7.

2.2.3 Assessment of Feasible Cycles

Ten refrigeration cycles have been considered to assess the feasibility of meeting refrigeration

requirements in the Space Station. These cycles are

• Absorption

• Claude

• Low temperature radiator

• Stirling

• Vapor compression

• Adsorption

• Joule-Thomson

• Reversed Brayton

• Thermoelectric

• Vuilleumier.
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Detailed performance evaluations and trades were conducted for the most promising candidates:

thermoelectric, vapor compression, Stirling, and low temperature radiator systems. Less detailed

evaluation of the other systems was adequate to eliminate them as candidates. Considerable effort

was made to define the best configuration for each of the two prime candidates: vapor

compression and low temperature radiator systems. This effort included investigation of candidate

coolant and working fluids in terms of their performance and potential toxicity characteristics. For

the vapor compression systems, various combinations of cascading and/or combining the cycles

were investigated. An evaluation procedure to determine the relative performance of different

systems was developed. This was used as an initial screening technique to narrow the list of

candidates. The candidate refrigeration systems were initially evaluated on the basis of weight

penalties associated with the combined radiator and power requirements. This screening procedure

narrowed the choice between the low temperature radiators and the vapor compression systems.

Further detailed trades and evaluations resulted in the recommendation of vapor compression as

the best approach for meeting the Space Station low temperature requirements. This

recommendation was strongly driven by the ability of the vapor compression systems to utilize the

shuttle heat transport loop during the logistic module launch, rendezvous, and docking phases,

thus not requiring thermal capicitance during these times. The various trade studies performed for

the refrigeration cycles are described in Ref 7.

An evaluation and comparison of refrigerants for the vapor compression cycle was performed.

Candidate refrigerants were evaluated to select the most promising working fluid for a Space

Station vapor compression refrigeration cycle. Ten representative refrigerants were initially

evaluated based on an evaporator temperature of -40 °F and condenser temperature of 50 °F. For a

cold space temperature of-20 °F this allows 20 °F for interface heat exchanger delta temperatures.

For these conditions, the interfacing Space Station cabin coolant loop was assumed to be 35 °F,

providing a 15 °F delta temperature for an interfacing heat exchanger. These temperature

differences can probably be reduced, but they should be realistic for comparison of refrigerant

characteristics. Single and cascade cycles were also compared for selected refrigerants, and the

effects of condenser temperature on cycle performance were evaluated. A computer program was

developed to rapidly evaluate various parameters and their effects on cycle efficiency.

The work done to evaluate several refrigerants and compare single and cascade cycle analysis

of a vapor compression refrigeration system using selected refrigerants is described in Ref 7 and in

an excerpt from the November 1985 monthly progress report presented in Appendix C.

2.2.4 Design and Fabrication of Prototype Hardware and Component Testing

Under these subtasks, a laboratory effort was undertaken to integrate a flow controller mixing

valve into an existing thermal/fluid loop test bed, and an investigation was begun for a refrigeration

demonstration unit to be tested.
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2.2.4.1 Application of Flow Controller Mixing Valve

The flow controller mixing valve would be to mix the flows from the radiator and the radiator

bypass in proper proportions to obtain a given coolant temperature as it enters the part of the loop

where heat is to be picked up. In June 1987, we received from MSFC a flow controller mixing

valve along with the following surplus Skylab hardware items:

• One Coolanol pump package

• One Coolanol pump package power supply

• Four coldplates

• One mixing valve controller.

The purpose was to incorporate and test the flow controller mixing valve on an existing thermal

control fluid loop test bed built under a separate NASA-MSFC Contract NAS8-36199 (Ref 8).

The original controller was used on the Skylab/ATM and had only one temperature set point (at

50.5 °F). After the controller and mixing valves were set up and checked on the bench, a control

circuit was designed and assembled which allowed dialing a range of temperature set points from

-20 to +100 °F. This system was then installed in the test bed and tested.

The purpose of the coldplates was for adding an additional 1500 W of heat to the test bed

Coolanol loop so that this part of the loop could be operated independently from the water loop if

desired. Foil heaters were sized and installed on the coldplates.

The new Coolanol pump was added in parallel with the existing identical pump in order to

increase the flowrate needed for testing of an ammonia heat pipe radiator built by LTV. The

surplused pump had to be disassembled and all O-rings replaced for it to function properly. New

flow meter bearings were also required. Also, a printed circuit board for the Autocalc was made

up to convert Vrms to Vdc for measuring the power input to the 1500 W heaters.

As testing with the mixing valve on the test bed progressed, the Skylab flight unit controller

was found to have a very large time constant, which allowed the temperature to drift gradually

toward the set point. Also the RTD being used for the temperature measurements and control

feedback had a different ohm/degree characteristic because it had to span a large range of

temperatures. The circuits were modified to correct for these problems. Figures 47 and 48 show

the test bed under operation. Figures 49 through 55 are typical test results showing the "mixed"

temperature drift. Figure 56 shows the results of a typical plot after the problem was corrected. It

can be seen that the controller is holding the outlet temperature over a wide range of input values.

Figure 57 shows the set point versus temperature calibration for this controller.
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Figure 47. Thermal Control Test Bed with Temperature Controller Installed
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Figure 48. Data System and Control Panel for Thermal Control Test Bed
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Thermal Control Test Bed Data (See "Notes" box for test conditions.)
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Figure 51. Temperatures, Flow Rates, and Controller Set Points vs Time for the

Thermal Control Test Bed Data (See "Notes" box for test conditions.)

57

LOCKHEED-HUNTSVILLE



110

In

120 I i I t . I

r

/

I00

90_

_Z4
V

80-

70

[.-I

S

v

0

,--t

60_

5O

4O

0.6

0.5

0.2

0.1

• %

:' ///
s _In

7

4 ,:t"

_j Out .*_"I

""'"" I/' Mixing Valve

/" .,:

/ / I.
p

"'# _,/

q

I I

Note:

Test TBED-OOSY

• Full voltage.

Time (min)

t I I t I I t

I0 20 30 40 50 60 70

Set Point

! ! I I

LMSC-HSV TR P037989
26 Feb 1993

Flow

"b

! ! !
0

.,4

0

0..,

tn
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2.2.4.2 Refrigeration Demonstration Units Testing

Efforts in the area of design, fabrication, and testing of refrigeration systems protoype flight

hardware were directed towards two types of systems: the vapor compression and the Stifling

cycle refrigerator/freezer units.

2.2.4.2.1 Stirling Cycle Refrigeration Unit Investigation and Testing

These types of units are commonly used in IR detector applications. They have been used

frequently on Army tanks and flown on numerous military satellites as well as on the Space

Shuttle. A vast literature review was conducted to get an insight into the Stifling cycles units.

References 9 through 12 are examples of the type of literature reviewed. A set of curves

comparing Stifling, vapor compression, Claude and Joule-Thomson cycles was found in Ref 13.

These curves are shown in Figure 58. The "efficiency" presented in this figure is the ratio of

indicated cycle coefficient of performance (COP) to the Carnot COP and shows clearly that the

Phillips-Stifling process has superior efficiencies at extremely low temperatures. Findings of this

nature provided a greater resolve in the Stirling cycle refrigeration system investigation.

A production model Stifling unit was obtained on loan from Magnavox Electro-Optical

Systems of Mahwah, New Jersey, for evaluation and testing. It was set up in our lab and a

demonstration of this unit under test was given to NASA-MSFC personnel. Figure 59 shows a

photo of the unit under test.

The Magnavox Model MX-7043-10 1 W Linear Stifling unit under test is driven by a unique

"voice-coil" (i.e., moving coil or opposed to moving magnet) linear drive motor. It operates on 50

Hz ac power. The motor drive operates at 50 Hz in phase with the input frequency. Its output can

be varied by reducing the input voltage while holding the input frequency constant. These type

motors are very efficient, reportedly up to 80 percent as compared to about 35 percent for common

rotating electric motors. This linear "voice coil" or moving coil gets its name from the design used

to drive typical home stereo speakers. This design also has the advantage of inducing very small

side loads onto the driver (compressor) piston. This contributes to the reduced wear and long life

of these units. We know of one Magnavox Stifling unit that Lockheed operated in orbit for over

9,000 hours.

Testing of the Stirling refrigeration unit was continued through approximately five months.

During the period improvements were made to the test setup. The power module originally used to

measure heater input power was replaced with a more accurate method of measurement. This

method involved measuring the heater power by the voltage drop across a 50 ohm precision power

resistor mounted on a heat sink to maintain its temperature and eliminate resistance variation due to

temperature. This voltage was then used to calculate the current through the cold head heater

(which is in series with the externally mounted precision resistor). The voltage across the cold

head heater was also measured. The heater voltage and current were then used to determine the

heater power independently of the heater resistance. This new method eliminated the unknown

effects of varying resistance of the cold head heater with temperature, which can be significant at

cryogenic temperatures.
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\

Figure 59. Magnavox Stirling Cycle Refrigeration Unit Under Test at Lockheed-

Huntsville (This unit produces I W of refrigeration at 77 K and

approximately 7 W at 200 K with 55 W input power.)
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A problem was encountered in bonding the cold head heater to the Stirling cold head end.

Initially a thermally conductive epoxy was used to ensure good thermal contact between the cold

head and the heater. However, the severe thermal gradient between the cold head and the heater

caused this epoxy to debond, and the heater overheated. We proceeded to design and fabricate a

copper heater/cold head adapter. This adapter has a hole in which the heater/resistor is bonded in

place using "torr seal" epoxy. The adapter also had a through hole for the thermocouple, which

was added to help secure the thermocouple to the cold head and prevent debonding at cryogenic

temperatures. Figure 60 shows the drawing of this copper adapter. This adapter was then soft-

soldered to the Stifling cold head using low temperature solder (244 °F) to prevent damage to the

cold head and to ensure good thermal contact.

The instrumentation was also improved. The original RTD was replaced with a

Chromel/Constantan thermocoupled with 0.005 in. diameter wire. This was done to replace the

RTD copper leads with materials of lower thermal conductivity. Copper conductivity increases

dramatically at cryogenic temperatures--by a factor of about 8 over room temperature values. This

reduction is needed to reduce the "parasitic" heat load to the cold head in addition to the input heater

power. Also, the heater leads were changed from copper to 0.010 in. diameter Constantan wire.

We continued testing of the Magnavox Model MX-7043-10 Stirling refrigeration unit. Tests

were run at a constant input power of 70 W. The unit was turned on, allowed to cool down to

about -200 °C, and then power was added to the cold head heater in steps of 0.5 W. The

temperature was allowed to reach equilibrium between each step change of heater input power.

m
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Stirling Cold Head Heater Adapter
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Net refrigeration produced at each temperature level was calculated by making corrections for

the following terms: (1) power loss in the small diameter wires that feed the cold head heater;

(2) heat gain to the cold bead by conduction through the lead wires both to the thermocouple and to

the cold head heater; and (3) heat gain to the cold head due to radiation from the vacuum container

walls to the cold head. Heat gain by convection was assumed to be negligible because we held a

vacuum of about 1 x 10 -4 torr around the cold head during testing. Conduction down the cold

head body to its flange was not considered because this is a parasitic heat loss inherent in the

design and has nothing to do with the instrumentation/testing.

We ran several tests by increasing the power in steps. We were interested in finding the

maximum operating temperatures for this unit. This was found when the cold head temperature

reached about -60 °C with a power input of 10.5 W and a net refrigeration of about 7.8 W. At this

point, the unit started to "knock" and the temperature had to be lowered.

As testing continued, improvements were constantly made. (1) The Chromel/Constantan

thermocouple was replaced with Medtherm Model No. PRT-100-60-10830 RTD with 0.003 in.

diameter Constantan lead wires with polyamide enamel insulation. (The thermocouple lead wires

were uninsulated, which made it difficult to prevent shorting of the wires inside the vacuum

chamber.) (2) The inside of the vacuum chamber and the outside of the cold head were both taped

with a highly reflective (E = 0.03 to 0.06) tape. This was done to reduce the radiation from the

walls to the cold head which contributes to the cold head heat load and has to be calculated. This

calculation introduced an unknown into the net refrigeration term. (3) A new resistor and resistor

adapter were used with shorter lead wires.

New test results tend to confirm the previous testing done before the test setup improvements

were made. The performance was somewhat below that expected from the data previously

received from Magnavox. Tests were all conducted with the Stirling unit expander base bolted to

an aluminum heat sink. Some tests were repeated using an acively cooled coldplate clamped to the

expander base. This was done to see if the performance would improve. The coldplate was

cooled using a methanol/water solution circulated through a cooling cart with an active refrigeration

unit. The net result of this effort was that the base cooling did not significantly improve the unit's

performance.

As discussed above, several tests were performed on the Stirling refrigeration unit. A

comprehensive report describing (1) the test unit, (2) test setups and interfaces, (3)

instrumentations for temperature, power, and vacuum, and (4) observations and test results, was

prepared (Ref 14). The report covers the undesirable effects of external heat gain by conduction

through wires, radiation heat gain on the cold head surface, and power losses in heater lead wires.
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Some of the typical results were compared to the ideal (Carnot) efficiency. Figure 61 shows a

plot of Carnot COP versus cold head temperature for three tests. The Carnot COP was calculated

for each individual test point on each of these curves for its particular test condition, using the

relationship

Tc
COP Carnot - TH - TC

where

TC = cold head temperature

TH = expander base temperature.

Figure 62 shows plots of net refrigeration produced versus cold head temperature for four test

conditions. Figure 63 shows the measured COP versus cold head temperature for three tests.

Figure 64 compares measured COP and Camot COP versus cold head temperature. From this it

can be seen that the Magnavox unit reaches a maximum of about 9 percent of Carnot efficiency at

about -140 °C. It is also seen that the performance is better at 55 W than at either 70 W or at 50

W. This is consistent with Magnavox's literature. The Model MX-7043-10 is quoted as being a

"55 W input" unit, and that is the power that they recommend for operation. It does indeed seem

to be optimized at 55 W.

All results of this testing are presented in Ref 14.

2.2.4.2.2 Vapor Compression Cycle Refrigeration Demonstration Unit Activities

A vapor compression refrigerator/freezer unit was flown on an early Shuttle flight (STS-4),

and later it was qualified for Space Lab flights. This unit was a modified, commercially available

unit made by Amfridge Co. of Elkhart, Indiana. The description, tests, flight results, etc. for this

unit were obtained from Refs 15 through 20. After studying this unit, it was decided to purchase

one for our evaluation and test. An investigation of zero-g effects on vapor compression unit

operation, condensation, evaporation, etc., was also performed. Some of the references used are

listed in Appendix D, "Bibliography."

The Amfridge vapor compression (Freon) diaphragm-type compressor unit was set up in the

lab and checked out for proper operation. This commercially available unit was later disassembled

to examine its construction, valves, lubrication, etc. Figures 65 through 69 show photos of the

disassembled unit. The STS flight units were similar but with upgrades to the diaphragm

compressor unit technology. A "delta CDR" on this unit was held at JSC in which technology

was discussed related to reducing leak rates, various diaphragm materials tested, and modifications

to cam bearings, along with many other details such as double containment and effects of

refrigerant charge weight on system performance.
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Figure 65.

Condensor

Disasseml, led Diaphragm Compressor/or Vapor Compression Unit
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Figure 66. Inside View o/Diaphragm Compressor Head-Vapor Compression Unit

Figure 67. Diaphragm and O-Ring from Vapor Compression Unit
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Figure 68. Intake and Exhaust (Reed) Valves from Vapor Compression Unit

Plate

Figure 69.

Lubricating
Grease

Cam Bearing from Vapor Compression Unit (Diaphragm Compressor)
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As work progressed under this subtask, certain backup refrigerator/freezer compressor concept

subtasks were identified and added as a contract modification towards the overall efort. These

subtasks are listed below.

1. Def'me design requirements for refrigeration system.

2. Research various compression systems relative to zero-g.

3. Def'me lubrication concepts and proof of concept.

4. Design system relative to refrigerant phase separation in zero-g.

5. Complete preliminary design of a unit with component testing.

In order to begin testing with the lab demonstration unit, a commercially made cabinet (Figure

70) with an internal volume of approximately 5 ft 3 and a heat leak no greater than 100 W was

purchased. It was constructed of stainless steel and could be modified to demonstrate operation in

zero-g condition by installing a diaphragm freon compressor and an evaporator and condenser

designed to operate at zero-g conditions. The diaphragm compressor was selected because it

requires no oil in contact with the freon refrigerant; hence, no liquid/vapor separation device is

required. Also, this compressor could operate at any orientation. The compressor required a

maximum input of about 420 W. A schematic and functional block diagram are shown in Figures

71 and 72, respectively.

Analyses were performed to support the modified design. From Ref 19 it is shown that a

vapor Reynolds number of at least 3,000 is required (at a quality of 0.2) for the evaporator and a

vapor Reynolds number of greater than 15,000 is required for the condenser to operate properly in

zero-g conditions. The Froud number, which is the ratio of momentum forces to gravity forces,

needs to be large. These inputs were used to size the evaporator and condenser tubing diameters

and lengths.

An analysis was also performed to determine which refrigerant to use in this application. The

performances of R-12 and R-502 were calculated and compared. Three design operating points

were analyzed for each refrigerant. These operating points are as follows:

1. Evaporator temperature = -20 °F

- 90OFCondenser temperature

2. Evaporator temperature

Condenser temperature

3. Evaporator temperature

Condenser temperature

= 20 OF

=90 OF

= 35 OF

=90°F

A cooling load of 250 W (854 Btu/hr), a compressor efficiency of 50 percent, and 10 ° of

superheat were assumed in all cases. All freon state properties were calculated for all locations in

the loop as well as coefficients of performance (COPs) and the mass flow rates.
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Figure 70. Insulated Cabinet to be Used for Zero-g Refrigeration Demonstration Unit
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Figure 71. Schematic for Zero-g Vapor Compression Cycle Refrigeration Demonstration Unit
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Figure 72. Functional Block Diagram for Zero-g Vapor Compression Cycle

Refrigeration Demonstration Unit

The refrigeration COP is def'med as

= Heat Adsorbed
COP REFP,aO Compressor Work

Also shown for reference purposes is the heat pump COP, defined as

Heat Rejected + Compressor Work

Compressor Work
COP H.P. =

The compressor efficiency is def'med as

CE = Ideal Energy to Compress

Actual Energy to Compress

and commonly called the adiabatic efficiency.

The COP is not necessarily linear with compressor efficiency because the Cp is not constant

with temperature; hence, the enthalpy versus temperature curve is not linear.
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Both compressor shaft input power and motor input power were also calculated. A motor

efficiency of 70 percent was assumed. This motor efficiency is typical of small electric motors;

however, special "high energy efficiency" motors, such as brushless DC or special AC squirrel

cage motors, may achieve 80 to 82 percent efficiency.

Results for each case are shown in Tables 1 through 6. A summary of results is shown in

Table 7. From these results it appears that R-12 is better from a performance standpoint. Its COPs

are higher, and it operates at lower evaporator and condenser pressures. However, its mass flow

rate is lower, which will affect the Reynolds number in the evaporator/condenser, which needs to

be kept high. The evaporator Reynolds number needs to be at least 3,000 (at a quality of 0.2) and

the condenser Reynolds number needs to be at least 15,000 for proper zero-g operation.

Table 1. Ref-n'gerarion Cycle for R-I2 with Evaporator Temp. = -20 °F, Condenser Temp.= 90 °F

REFR[GER_TION CYCLE CC:NgEN_ER [VAp]_A':F

:NL{ T OLrTLE: I 'r....N_._ = :=UT=:" . N. :.

TE_FEE_TiJRE ideg,:! 21_,i5 q:',_C -2C.00 -::.]C -::.C::

...... , ..... ......... ]_..c

EN'RC'PY (R_u/kt.m-_e,.. = ......._! _3 1_Q:n ,:. ,'._' " :_': - ....:"' :',.-_i

Table 2.
Refrigeration Cycle for R-12 with Evaporator Temp. = 20 °F, Condenser Temp.= 90 °F

:NLF_" r.T.=T :NL"T C7" -° "'_.["

.... • ....... :.::: :.:L:

[N'_L=_,_ [ETU,'_bml q;..! c ._ "" ."..'_ T; _. _: :,:

EN'ROF_ CE.t'_,'ib_......_,..r :: ._.[, - ,-=.-= .-......::. _-.....== { :-
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Table 3. Refrigeration Cycle for R-12 with Evaporator Temp. = 35 °F, Condenser Temp.= 90 °F

REFRIGERATION C_CLE (ONDEN$EF EvI_O_ATO;

INLET e'_rrL_T :NLET--'_ OUTLET :_LET

VOLUME !cu.ft/Ibm] _._2 ._12a£ 3.!5 0,_3 C _:_

ENT_ALPY [gtai'Ibm! _6,!7 1g.77 2= 22 iC,.;_ f:.=_

ENT_OF* [Btuilbm-deg. Fi 0.18!I _.05_3 0.,357= O.:::Z S.::;_

CYCLE ;ER;O_MA_,CE L:::AC,AND ?OkrR REQL"REK:'N'!

T

:OM_RESSOR EFFiC,ENC'Y {%} : ._n. r,._....._.NG _'.'ADi_:_, _i = ;C_

DEGREE5 E:PFEReEAT (_eg.F: : I0 HEATINiG LOAD Bt,J..r.r : i.'l

RrcRIGERA'TON C.O. _ : _ 9_ "= :a_-: ;.... '. - MAS5 :LOW RATE (i_,_,.r:r, : .....

Table 4. Refrigeration Cycle for R-502 with Evaporator Temp. = -20 °F, Condenser Temp. = 90 °F

REFRI,;ERA'!C'N _],CLE [ON[,EN_E_ Ev_::._A':;

r , -- . .
_N.: ..":'..:" :N.ET ....-: :" N,!"

TE_'FEEATURE !_eg.-: i:_-.._ _S.'_"/' -: ]. C,c, - :. "_. -1-.::

'_$LJME ::c'...f.,i:_ "__. - .:'1_:.: 2._: ,_.,:"- :.::

EN'HAL _, i_'L_,'l:m_-_ , i','_ .-_. _,_.-: ,:_._'_. ":.... _ -- 1_

ENTR}?Y r r"t.._,'l_,m-geg. F = C.L:O_ [,. : r::_ ". -':_5_. :.L'L: :.. ":_:.

C'£LE :EFrCRMAN':E LC,A[AN'[' :CW:EE _E ZRE'[ST!

OF PO0_ Qu._:i.l'rY
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Table 5. Refrigeration Cycle for R-502 with Evaporator Temp. = 20 °F, Condenser Temp.= 90 OF

REFR:GERATION CYCLE CONE,ENteR EVAFORAT_

........ ,,,,_ BSi_I ,:0MPFES$C'_

"NLE = OUTLE- :NLE' OdTLET !NLE"

TEMFERATURE [_eg.F' !52.5_ QC.':'C 20.C'C, LE.OD ZO C":'

v.. _ u. ,'Zbm b 0.25 ::_: ......

rNTHALF_ [Btu_1_m I Q9.2: 3_.TO .... r;._ _:.:,;

ENTROPY (Btu.'lb_-deg. Fi ].!_6_ C.07:7 C.0705 ].it_ ,2.1_2_2

CYCLE PERFOFMANCE :OAZ, AN) FOkEF REL;JIRE_ENT_

COMPRESSOR EFFICIENCY !_! = 50

DEGREES SUPERHEAT deg. Fi = 10

RE;RSGERAT!ON C.O.P.= 2._

_E_" _UM? C.O.:.: _._

rnm r ,- AD _..... _N..,LO r='u,'r,: =

YEt-TIN,',....._ CA.r '_*,,/_r;.,: :

N,;._:;_SW RATE '_,

::T?

Table 6. Refrigeration Cycle for R-502 with Evaporator Temp. =

REFRIC,E_AT_.ON CYCLE crjNDEN_;F E_

ANALYE 1:. R502 ! Z.i" ._. !"1_ p.__._

INLE" CL'T.E" iN_ET

35 °F, Condenser Temp. = 90 °F

A_!:,F,AT:F

C.-_E "

T_MP=;ATURE__ r'deg.= ,'3s.._,z= c.,......m,- TZ.]C !_ '-'C' 45.:=':

vOL r,: . _,,:.,_ c ; :.m:l ,: 2_ C. '=_ r, _a : _

EN';:F'Y ;a'u_ibm-._=;.Fj C..ifi,a " ;_- _-;_ ," :,':. -, '_:

,]C,:;ESti:'; E==ICZENCY %: : EC'

DEGF2ES _UPEEHEAT <deg. F! : 1C

_EFR:._ERAT:ON C.:.;.= ].:7

;EA: F'I.rM= 1.0 _.: C 6T

:L[_ LN'. :C_".. _ _'r,:.TF':M_%T c

::M:FE_OF FJ.E; ,, : .:"
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Table 7. Comparison of Performance and Design Parameters for Refrigerants R-12 and R-502

Case

Evaporator Temperature = -20 *F

Condenser Temperature = 900F

Evaporator Pressure (psia)

Condenser Pressure (psia)

Mass Flow Rate (ibm/hr)

Compressor Power (W)

Motor Input Power (W)

C.O.P. Based on Compressor Power

C.O.P. Based on Motor Input Power

Evaporator Temperature = +20 *F

Condenser Temperature = 90 *F

Evaporator Pressure (psia)

Condenser Pressure (psia)

Mass Flow Rate (Ibm/hr)

Compressor Power (W)

Motor Input Power (W)

C.O.P. Based on Compressor Power

C.O.P. Based on Motor Input Power

Evaporator Temperature = +35 *F

Condenser Temperature = 90 *F

Evaporator Pressure (psia)

Condenser Pressure (psia)

Mass Flow Rate (Ibm/hr)

Compressor Power (W)

Motor Input Power (W)

C.O.P. Based on Compressor Power

C.O.P. Based on Motor Input Power

R-12

15.27

114.49

17.89

163.4

233.4

1.53

1.06

35.74

114.49

16.38

86.2

123.1

2.90

1.96

47.26

114.49

15.89

63.6

90.8

3.93

2.74

R-502

30.01

202.06

20.12

179.8

256.8

1.39

0.96

67.16

202.06

18.18

93.3

233.3

2.68

1.86

87.52

202.06

17.58

68.1

97.3
3.67

2.56

Using the condenser inlet conditions for the worst case (i.e., -20 °F evaporator) and the

corresponding mass flow rate of 17.9 lbm/hr for R-12, and a minimum required Reynolds

number of 15,000, a maximum condenser tube ID of 0.42 in. was calculated. Assuming a 0.25-

in. diameter tube ID yields a Reynolds number of 25,300, which allows a good margin.

Therefore, 0.25 was chosen as the condenser tubing ID.

Using the evaporator outlet conditions (at -20 °F) and the vapor mass flow rate of 3.18 (i.e.,

15.9 with a quality of 0.2), and a minimum Reynolds number of 3,000, a maximum tubing ID of
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0.0187 was calculated. If a tubing ID of 0.015 is used, a Reynolds number of 3,740 is obtained,

which gives a reasonable margin.

A design effort was undertaken to integrate the compressor and the cabinet. Plans included

locating the compressor under the cabinet with the evaporator and its fan located in the bottom

(floor) of the cabinet. The fin areas required and the fan CFM to transfer the heat from the

evaporator directly into the air inside the cabinet were determined. The evaporator tubing was

bonded directly to the bottom side of the finned bottom plate. No evaporator (freon) tubing

penetrated the cabinet walls. Heat was transferred by conduction from the fins/plate into the

evaporator tubing. The compressor, evaporator, and condensor were doubly contained in an

enclosure at the bottom of the unit where an access panel was provided for repairs, installation, etc.

The condensor was water-cooled and the motor and compressor were air-cooled by a fan (see
Figures 71 and 72).

As work continued on the sizing and design of the freon evaporator and the zero-g condensor,

the design concept was changed. Initially, as discussed above, the concept was to use a small

diameter, long length, high Reynolds number design. In this design concept it was necessary to

ensure highly turbulent flow in zero-g to maintain contact between the liquid freon and the inner

walls of the tubing. The objective was to prevent vapor lock where a layer of vapor forms on the

inner walls of the tube, thus isolating the liquid stream from the tube walls and reducing the heat

transfer rate. The problem with this high Reynolds number concept is the high pressure drop.

The revised concept used a spiral-wrapped tubing design and R-502 refrigerant. In this design,

liquid is forced to remain in contact with the tube walls by centrifugal force. If the liquid velocity

is kept high enough to produce a tangential acceleration equal to or greater than one g, then the

standard Earth-based heat transfer calculation techniques can be applied directly to the zero-g
design.

The zero-g condenser design for the vapor compression refrigerator/freezer demonstration unit

was also based on use of centrifugal flow pattern to maintain contact between the freon and the

inner tubing walls. Here the freon and water tubes were wrapped side by side around a copper

cylinder 7 1/4 in. in diameter and 4 1/3 in. long.

An analysis was performed to determine the details of this design. The groundrules for this
analysis were as follows:

Evaporator temperature = -30 °F

Condenser temperature = 60 °F

Heat load at -30 °F = 650 Btu/hr (190 W)

Condenser cooling water inlet temp. = 50 °F

Refrigerant = R - 502.

The freon loop was divided into two circuits. This provides redundancy for increased

reliability. The diaphragm compressor purchased earlier has two separate cylinders and pistons

which make it readily adaptable to this two loop design. The total freon flow rate for both loops is
13 lb/hr.
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The following detailed results were obtained from the analysis:

• Evaporator tube length: 24 ft (each loop)

• Evaporator freon tube o.d. = 1/4 in.

• Evaporator freon tube wall thickness = 0.035 in.

• Evaporator freon tube material = copper

• Evaporator water tube length = 24 ft (each loop)

• Evaporator water tube o.d. = 1/4 in.

• Evaporator water tube wall thickness = 0.035 in.

• Evaporator water tube material = copper

• Condenser freon tube length = 12 ft (each loop)

• Condenser freon tube o.d. = 1/4 in.

• Condenser freon tube wall thickness = 0.035 in.

• Condenser freon tube material = copper

• Condenser water tube length = 12 ft (each loop)

• Condenser water tube o.d. = 1/4 in.

• Condenser water tube wall thickness = 0.035 in.

• Condenser water tube material = copper

• Compressor outlet temperature = 161.4 °F

• Compressor outlet pressure = 131.1 psi

• Condenser outlet temperature = 60 °F

• Condenser outlet pressure - 130.1 psi

• Evaporator inlet temperature = -30 °F

• Evaporator inlet temperature = 23.9 psi

• Evaporator outlet temperature = -21.6 °F

• Evaporator outlet pressure = 21.6 psi

• Evaporator inlet quality = 0.326

• Evaporator outlet quality = 1.0

• Degrees of superheat = 10 °F

• Evaporator fin spacing = 4 per inch

• Evaporator fin height = 0.5 in.

• Evaporator fin material = copper

• Evaporator projected area = 15 x 15 in.

• Condenser tube bundle diameter = 7 1/4 in.

• Condenser tube bundle length = 4 1/2 in.
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It was also decided to cool the compressor and motor within the double containment

compartment using the existing compressor/motor fan. The air moved by this fan was in turn

cooled by an existing fm tube heat exchanger that came with the diaphragm compressor unit shown

in photos of Figures 73 and 74.

Fabrication was begun on the zero-g condenser and evaporator. Figure 75 shows the

condenser coil wrapped around and partially bonded to the 1/4 in. thick aluminum cylinder. Figure

76 shows this same condenser as it is being taken out of the vacuum bag used during a partial

bonding. Figures 77 and 78 show the condenser after final bonding. Figure 79 shows the

condenser during the process of adding BX-402 foam insulation, and Figure 80 shows the

completed condenser with insulation, ready for installation in the refrigeration unit. Figure 81

shows the condenser and compressor being fit-checked in the refrigeration unit.

The evaporator construction is illustrated starting with Figure 82, which shows the copper

coils. Two parallel coils are being used, one for each freon loop. The evaporator coil is being

bonded to the fin plate in Figure 83. Figure 84 shows the evaporator coil partially bonded to the fin

plate with the outer seal spacers welded in place around the outer edges. The evaporator fan is

shown in Figure 85, and Figure 86 shows the evaporator fin plate, coil, and fin after further

assembly.

The next step was to assemble all of these hardware components of the zero-g vapor

compression refrigerator/freezer demonstration unit and prepare it for testing. Figure 87 shows

the schematic for the unit. As seen from this figure, there are two separate, independent freon

loops driven by two separate compressors. This arrangement provides redundancy in the design.

These two compressors are diametrically opposed and are driven by a single 12 Vdc electric motor.

There is a single cooling water loop which cools the compressor compartment air, which is in turn

blown over the compressors and motor. Heat is transferred from the internal freezer air to the two

freon loops in the evaporator via fins and a squirrel cage blower inside the freezer. The evaporator

shown in Figure 82 is designed with a flat spiral loop to provide operation in zero-g conditions,

i.e., centrifugal force provides the acceleration level to replace gravity effects. The evaporator

tubes are mounted in the bottom of the freezer, and a second level of containment is provided by a

seal between the evaporator plate and the bottom/inside of the freezer. Any freon leak in the

evaporator tubing or fittings would be vented into the sealed compressor compartment below the
cold box volume.

Heat is transferred from the freon into the cooling water in the condenser. This condenser is

constructed with a helical loop design in order to perform in zero-g, with centrifugal force

providing the acceleration level to replace gravity effects (see Figure 75). The second level of

containment for any leaks from the condenser, compressor, or other freon lines is also within the

sealed compressor compartment underneath the cold box.
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Figure 73. Diaphragm Compressor to be Used in the Zero-g Vapor Compression Cycle
Demonstration Unit (with Existing Condenser and Shroud in Place)

Figure 74. Diaphragm Compressor to be Used in the Zero-g Vapor Compression Cycle

Demonstration Unit (after Removal of Condenser Shroud)
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Figure 75. Zero-g Vapor Compressor Freezer Demonstration Unit Condenser During
Construction, Before Preliminary Bonding

Figure 76.

i_!_ ¸

Zero-g Vapor Compressor Freezer Demonstration Unit Condenser During
Construction, After Preliminary Bonding
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Figure 77. Zero-g Vapor Compressor Freezer Demonstration Unit Condenser During
Construction, Before Final Bonding

#

Figure 78. Zero-g Vapor Compressor Freezer Demonstration Unit Condenser During
Construction, After Final Bonding
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Figure 79. Zero-g Vapor Compressor Freezer Demonstration Unit Condenser During
Construction, BX-402 Foam Being Added

Figure 80. Zero-g Vapor Compressor Freezer Demonstration Unit Condenser, Construction
Completed

89

LOCKHEED-HUNTSVILLE



BLACK AND V';--,'i:-

LMSC-HSV TR P037989
26 Feb 1993

Figure 81. Zero-g Vapor Compressor Freezer Demonstration Unit Condenser,

Installed in Refrigeration Unit

Figure 82. Zero-g Vapor Compressor Freezer Demonstration Unit Evaporator Under
Construction, Double Coil
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Figure 83. Zero-g Vapor Compressor Freezer Demonstration Unit Evaporator Under
Construction, Preliminary Bonding

Figure 84. Zero-g Vapor Compressor Freezer Demonstration Unit Evaporator Under
Construction, Bonded to Evaporator Fins
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Figure 85. Zero-g Vapor Compressor Freezer Demonstration Unit Evaporator Blower

Figure 86. Zero-g Vapor Compressor Freezer Demonstration Unit Evaporator with
Blower Installed
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Notes:

1. T1 - T14 Fluids Temps
2. T15, T16 Inside Freezer Walls
3. T17, T18 Outside Freezer Walls
4. T19 Ambient Air
5. VS1, VS2 Schrader Valves

6. P1, P2 Pressures, Range 0 to 100 psia

7. P3, P4 Pressures Range 0 to 200 psia
8. VE1, VE2 Expansion Valves, Variable
9. T20, T21 Compressor Temps
10. T22 Motor Temp
11. T23 Evaporator Fin Temp
12. T24, T25 Water In/out Temps

Figure 87. Schematic for Zero-g Vapor Compression Refrigeration/Freezer Demonstration Unit

The compressors, condenser, evaporator, and two freon loops were connected and leaks

checked with GHe and R-502 refrigerant at 100 psia and 150 psia, respectively. Leaks were

repaired, and the system was evacuated on a vacuum pump and charged with R-502. Water lines

were completed and connected to a portable water chiller lab unit.

Instrumentation was installed consisting of 24 chromel alumel thermocouples and 4 pressure

transducers as shown in Figure 87. The 120 Vac to 12 Vdc power supply converter was installed

on the back/outside of the freezer cold box. A cover/guard for the internal squirrel cage blower

was designed and fabricated. Installation of on-off switches for the fan and compressor motors

was completed. A used commercial refrigerator thermostat was obtained for use in controlling the
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internal temperature level. The two expansion valves, depicted in the circuit diagram of Figure 87,

are variable flow coefficient valves (tapered stem metering valves) to allow variation of the flow

rates and pressure drops. This permits control of the evaporator pressure level and evaporator

operating temperature, and balancing of the operation of the two separate loops. Figures 88

through 91 show photos of the zero-g vapor compression refrigerator/freezer unit during the

assembly process.

This unit was tested and achieved an evaporator temperature as low as - 11 °F. Problems were

encountered with the motor/compressor which did not allow completion of all planned testing.

The motor/compressor could only be run for a limited length of time due to overheating of the

motor and cutoff by a built-in temperature limiting thermostat.

Progress was made toward the solution of the double contaminant problem for this type

design. Data were found that show that activated charcoal will absorb significant amounts of

refrigerant Freon 12, even at room temperatures. No data were found for other refrigerants, but

there is no reason to suspect that they would not also be absorbed. This absorption means that the

double contaminant volume can be kept purged of leaking Freon and will not have to be designed

to withstand a significant pressure buildup, allowing an important weight reduction. Figure 92

shows that approximately 38 grams of Freon 12 can be absorbed onto each 100 grams of charcoal

at 70 °F and 1.0 psia partial pressure. Therefore, 2 or 3 pounds of charcoal should solve this

problem very easily, assuming a Freon capacity of 344 to 517 gms.

Under the compressor concepts subtask to research various compression systems relative to

zero-g, a small commercial typical freon compressor was purchased and disassembled. The

puspose of this disassembly was to look at the method used for lubricating the moving parts and

wear surfaces. In this design the motor and compressor unit are made integrally. The motor

armature is permanently heat shrunk onto the end of the crankshaft. The motor/compressor

assembly is mounted on vibration isolation springs inside a hermetically sealed (brazed or welded)

heavy sheet metal case. The bottom of this metal case forms an oil sump. The end of the

crankshaft extends below the oil level. As the motor/crankshaft spins, a "slinger" centrifugal

device sends oil up through the oil chamber inside the crankshaft. This oil then exits at each of the

main beating/bushings and the rod bearing, and flows through the chambers inside the piston rod,

the wrist pin and bearing, and the holes around the circumference of the piston. The oil also exits

at the upper end of the crankshaft and flows down, by gravity, over the upper main bearing and

rod bearing outer surfaces.

Figure 93 shows the bottom view of this unit. The centrifugal oil slinger is shown at the
bottom end of the crankshaft.

Figure 94 shows the top view of this unit. Note the hole in the upper end of the crankshaft

where oil exits and flows down by gravity over the main bearing. Oil also exits the oil chamber

inside the crankshaft via a hole in the side of the crankshaft where it runs inside the main bearing.

Figure 95 shows the crankshaft with the oil exit holes for the rod bearing and the two main

bearings and with the spiral oil groove on the outside surface of the crankshaft.

The "slinger" is a "Vee" shaped clip of sheet metal, about 1/2 in. along the sides, 1 in. long,
and 0.030 in. thick. This is installed inside a 1/2 in. diameter steel tube which is necked down to

3/8 in. on the end that sits below the oil surface.

94

LOCKHEED-HUNTSVILLE



-- LMSC-HSV TR P037989
26 Feb 1993

Figure 88. Front View of the Compressor Compartment for the Zero-g, Vapor Compression
Refrigerator�Freezer Demonstration Unit under Construction

II

Figure 89. Rear View of the Compressor Compartment for the Zero-g, Vapor Compression
Refrigerator�Freezer Demonstration Unit under Construction
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Figure 90. Front View of the Entire Zero-g, Vapor Compressor Unit
Refrigerator�Freezer under Construction

Figure 91. Rear View of the Entire Zero-g, Vapor Compressor Unit
Refrigerator�Freezer under Construction
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Figure 92. Absorption Isotherm for Freon 12 onto Activated Charcoal (Barnebey and Sutcliffe
Corp., Columbus, OH)
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Figure 93. Bottom View of Typical Reciprocating Freon Compressor Body (Scale = in.)
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Figure 94. Top View of Typical Reciprocating Freon Compressor (Scale = in.)
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Figure 95. Typical Freon Compressor Crankshaft with the Motor Armature and Oil

Slinger Removed (Scale = in.)

Figure 96 shows the centrifugal oil slinger which fits on the bottom of the crankshaft. The oil

flows up from this unit into the oil chambers inside the crankshaft and bearings.

This compressor uses reed-type valves. These valves are not oiled directly by the

slinger/pump device, but by the entrainment of oil by the freon as it passes through the cylinder.

This method indicates that the reed valves need no oil for friction/wear, but only for sealing

purposes.

Figure 97 shows the reed valve body, compressor head, crankshaft, piston, and rod. Oil flows

up through a hole in the center of the rod to lubricate the side walls of the piston and cylinder.

The oil is not separated from the freon in this design. The oil is freely entrained in the flow

throughout the system, and is returned to the bottom of the sump by gravity only.

Under the compressor concepts subtask to define lubrication concepts for the compressor and

proof of concept, Refs 21 and 22 were obtained from the NASA COTR. These documents

provided valuable information on the lubrication methods used on large commercial reciprocating

type freon compressors. These units use an oil pump for maintaining lubrication. However, Refs

21 and 22 do not provide any information on lubrication of other type compressors such as

centrifugal or scroll type. An investigation was made to identify the manufacturer of various types

of compressors.
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Figure 96. Centrifugal Oil Slinger Removed from the Lower End of the Crankshaft (Scale = in. )

Crankshaft

Body

Oil Slinger
Oil Groove in Installed Inside
Side of Pist, Lower End of

Crankshaft
Piston

Oil Exit Hole in
Side of Piston

Valve Body

Oil Chamber

Top of Rod
Bearing

.4- Lower Rod

Bearing presser
Head

Reed Type Exhaust
Valve (Intake Valve
on Back Side)

Figure 97. Crankshaft, Piston, Rod, Rod Bearings, Compressor Head, and Valve

Body (Scale = in.)
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A list as provided in the monthly progress report (Ref 23) of March 1990 was compiled for

compressor manufacturers, their addresses and phone numbers, and the types of compressors they

built. These manufacturers were contacted to obtain information pertinent to compressor design

and lubrication methods and to learn in particular how these methods might be adapted to operation

in microgravity. A search was also performed on the following types of compressor designs: (1)

rotary, (2) scroll, (3) bellows, (4) diaphragm and (5) rolling piston.

Information on operating principles and lubrication methods was obtained for the following

types of compressors:

• Reciprocating Piston

• Reciprocating Diaphragm

• Rotary Sliding Vane

• Rotary Liquid Piston

• Rotary Lobe (Roots)

• Rotary Helical Screw

• Centrifugal

• Axial.

Each of the above types of compressors was described in detail in the February 1991 monthly

progress report. An excerpt from this report pertaining to this subject is presented in Appendix E.

A task was instigated to look into an oil-free compressor design. A bearing design software

package was obtained from one vendor to help select oil-free, self-lubricated bearings, wear rings

and seals. A meeting was held with Mr. Fred Dolan, EH 11, MSFC, to discuss the self-lubricating

bearing concept and to obtain test results of MSFC sponsored work at Battelle.

The objective of the oil-free compressor design was to eliminate the need for the liquid oil

normally used as the lubricant in ground based, one-g design. In these designs, gravity returns the

oil to the compressor sump where it is picked up by a centrifugal oil pump and forced through the

bearings and around the piston to reduce friction, heat, and wear. The oil also serves to cool the

internal parts and motor of the compressor. Elimination of the liquid oil lubrication would simplify

a zero-g design because no phase separator (liquid oil from gaseous freon) would be required. It

would also eliminate possible compressor damage or failure if liquid oil collected on top of the

piston. Since the liquid is uncompressible, the compressor would either lock up or fail on

attempted restart. This is a common problem even in ground based compressors if the system is

overcharged with refrigerant.

The concept used in this preliminary design of an oil-free freon compressor is to modify an

existing oil lubricated commercial compressor. The compressor chosen was a Tecumseh Model

No. AE 121AL-014, TB1589CK, 183776, AE 3414A, 1 phase, 115 V, 60 Hz. This compressor

was purchased and disassembled. The parts were found to have the following dimensions:
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• Bore Diameter = 0.8665 in.

• Bore Length = 1.3 in.

• Bore Finish = 8

• Piston Stroke = 0.48 in.

• Piston Diameter = 0.8661 in.

• Piston Length = 0.853 in.

• Crank Diameter at Rod bearing = 0.6243 in.

• Crank Diameter at Main beating = 0.751 in.

• Wrist Pin Diameter = 0.275 in.

• Piston Wall Thickness = 0.10 in.

The first step in the preliminary design was to look at the piston to cylinder wall seal. The

existing compressor did not have oil or compression rings, but made the seal with pumped oil that

came up through the connecting rod and wrist pin and oil grooves in the outside surface of the

piston. Two concepts were investigated for modifying the existing design. The first was to use

two self-lubricating lip seals and a heavy wear ring. The lip seals are spring-loaded and contact is

maintained between the seal and the inner cylinder wall by "u-shaped" spring clips. As the seal

wears, the clearance is taken up by the spring pushing the seal out to a larger diamter. The wear

ring is designed to take up the side loads transmitted to the piston walls through the connecting

rod. This concept is shown in Figures 98 and 99. These type seals are available from various

sources, including EGC Corporation, Houston, TX, and Furon Corporation, Los Alamitos, CA.

Typical materials used are "Alloy 50-F" from EGC, and "Fluorology E- 1" from Furon (Ref 24).

A second design concept is illustrated in Figure 100. Here the two lip seals are replaced with

heavier spring-loaded rings. This choice turned out to be a better design for this application

because it is more rugged and provides longer life.

The second step in this preliminary design was to select replacement bearings for the

connecting rod, crankshaft main bushings, and the wrist pin bearing. The rod bearing was the

most critical from a life/loading standpoint. The PV (pressure, sliding velocity) product was

initially calculated to be abut 44,000 Psi - ft/min. Two materials were considered (Refs 25, 26 and

27) to meet this requirement: Garlock DU self-lubricating bearing material and (2) Garlock DX

prelubricated bearing material. The DU material, shown in Figure 101, consists of a PTFE-lead

overlay at the surface with a porous bronze inner structure for optimum heat dissipation plus a

reservoir of PTFE-lead. This material has a steel backing for structural rigidity. The surface layer

provides a transfer film which coats the mating surface. The PTFE-lead then continues to migrate

from the porous bronze to the surface as required. The DX prelubricated material, shown in

Figure 102, consists of an acetal resin layer overlay on a porous bronze inner structure and a steel

backing. This material is designed to retain minute quantities of a grease lubricant at the surface

and provide long life where only a trace amount of lubricant is allowed.
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Figure 98. Design Detail for Lap Seal (or Spring Energized Seal) and Wear Ring

Concept (EGC Corp., Houston, TX)
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Figure 99. Detail Dimensions for Spring Energized Lip Seal Design (EGC Corp.,

Houston, TX)
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Figure 101. Photomicrograph of DU Self-Lubricating Bearing Material Cross-

Section (Garlock Bearing Co., Thorofare, N J)
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Figure 102. Photomicrograph of DX Prelubricated Bearing Material (Garlock

Bearing Co., Thorofare, NJ)
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The allowable PV product for both of these materials is approximately 100,000 psi - ft/min,

which would give a good margin over our initially calculated value of 44,000. However, we later

discovered that the commercial compressor which we were modifying had an rpm value of 3600

rather than the 1750 originally assumed. This pushed the PV product to 90,500, which was too

near the limit of 100,000. We therefore had to look for a higher performance material.

We next investigated the DuPont material "VESPEL" (Refs 28 and 29). This material is

actually a series of materials consisting of polyimide resin in conjunction with various fillers such

as graphite, MoS2, PTFE and fibers of glass and carbon. These materials have an allowable PV

limit of up to 300,000 and were through to be good candidates for this application. However,

when the life of these bearings was calculated for our high speed requirements (3600 rpm), it

turned out to be less then 100 hours.

The next step was to go to sealed needle/roller bearings (Ref 30). The selected bearings have

inward facing lips to help keep the lubricating grease inside the bearings for longer periods of time.

The bearing finally selected was an INA brand bearing number SCE89PP sealed-shell needle

bearing with a dynamic load capability of 1150 lb. The fatigue life of this bearing in this

application was calculated to be 19 years by the manufacturer's method shown in Figure 103 (Ref

27). This calculation, of course, is based only on load consideration and assumes that the lubricant

could be retained for that period of time, or that the bearing could be relubricated from time to

time.

In conclusion, no self-lubricating or prelubricated bearing materials were found that would

meet the high speed requirements of this design. However, a sealed standard roller type bearing

meets the requirement quite readily and is recommended.

Another useful reference for designing PTFE seals which is worth noting here is identified in

Ref 31.
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TECHNICAL DATALOAD CAPACITY AND LIFE

1.0 LOAD CAPACITY AND LIFE

The dynamic and static load capacities C and C O lisled in thls

calalog are based on standard R 281 ol the Inlernalionat Slandards

Organization (ISO) These capacilies are also in accordance with

AFBMA and ANSI Slandards

1000o0-
lOOOO

60000

_00oo

¢00oo-

30000-

1.1 DYNAMIC CAPACITY C AND FATIGUE LIFE I h

The dynamic load carrying capacity C is used Io calculate the

theoretical fatigue life of a bearing This so called B-tO lile

reached by 90oil ol all bearings provided proper mounlin 9

lubricalion and cleanliness. The Iollowing diagram is a graphic

lepresentalion of the empilicelly eslablished lile formula:

Lh=,6.,_;_ orLb=--.-,
Lh - B-IO fife Ihls].

C e, Cae = effective radial or axial dynamic capacity Ilbs] . se_

Section 2. page 43,

P, Pa = equivalenl radial or axial load Ilbsl see Section 3

page 44,

Ce Cae
The diagram can be used Io find either L h or ....

P Pa

EXAMPLE OF

CALCULATION:

C e = 17401bs

P :, 415 Ibs

n = g00 _pm

L h = "_ hfs

For Ce = 4 2.

P

and n = 900 rpm

Lh = 2200 hfs

Ftgure 103. Needle Bearing Fatigue Life Nomogram (INA Bearing Co., Fort Mill,

SC)
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APPENDIX A

Summary of the Work in Progress on the Design and Fabrication

of the -20 °F Food Freezer and the -94 °F Bio-Sample Freezer

(Excerpt from the June 1987 Monthly Progress Report, LMSC-HEC PR D066068)

A-]
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PR_OEDCN_ PAC_E E_t.ANB. NOT FILMED

Preliminary Demonstration Unit for -20 F Thermal Storage (Background): Work

was performed on the design and fabrication of a preliminary thermal storage
demonstration and test unit. The purposes of this unit are: (I) to check out

some of the practical aspects of the design such as strut wire attacb_ment and

PILl layup, and (2) to verify the thermal model of the -20 F thermal storage

unit. A mild steel cylindrical tank with dome ends (15-in. diameter x 39-in.

long) was purchased and modified for this test unit. It was leak checked,

then cut in half and flanges welded in place to form an outer container.

O-ring grooves were cut and polished in the flanges. Some 16 cable attaching

brackets were designed, fabricated, and welded inside each of the two halves

of the tank. Pumping ports and pressure measurement ports (ion gauge) were

added. The tank was reassembled and leak checked again. Instrumentation

(RTDs) were obtained and installed. Extremely small (40 gauge) wire was used

to make these measurements in order to reduce the heat leak. Instrumentation

feed-throughs for penetrating the tank wall have now been made up and leak

checked. This test unit will have a tank with a PCM material inside to

simulate the frozen food container volume and dimensions. The mass of PCM

will be adjusted to yield a test time (i.e., melt time) of the order of one

week to expedite testing. The PCM container will be mounted inside a wire

"basket" supported by the 0.030-in. diameter strut wires mentioned earlier.

Photos of this unit and test were shown in previous progress reports. The

wire strut concept was used to mount the basket inside the pressure vessel and

found to be quite rigid - even better than expected.
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The following additional efforts were expended on the design, fabrication/

build up of the -20 F demonstration unit.

• The 15-in. tank was cleaned, chrome plated inside, and painted

outside.

• A getter pump was designed and fabricated. Getter materials have

been researched and ordered and will be screened for our application.

No final selection of getter material has been made.

• Racks for mounting and fabricating the MLI for the test article were

made.

• Various methods were pursued for putting holes at a shallow angle

through the MLI blankets for the diagonal strut/wires.

• Our vacuum lab ion pump, titanium sublimation pumP, and Vacsorb

roughing pumps were refurbished and put back into operation. The

pumping rate capability was significantly improved.

• Feed-through ports and getter pump ports were added to the tank.

• The 0.030-in. diameter stranded steel wire was sent out for cleaning.

This wire consists of 20 separate wires twisted together. There was

some noticeable shop oil or lube on these wires when purchased from

the vendor. An effort was made to clean these by going through three

cycles of electro-cleaning plus nitric acid washing. However, this

did not fully remove the oil/lube. Further examination indicated

that this might be a silicone which is known to be very difficult to

remove. The wire was then _ut through a four-day vacuum bakeout at

400 F and approximately i0- torr.
• Efforts were made to develop a satisfactory method to put holes in

the MLI blankets at a shallow (approximately I0 deg) angle for the

diagonal strut wires. Various methods were tried, including: (i)

small (a few thousandths of an inch) diameter drill bits at high

speed; (2) burning through with a laser; (3) various Xacto blade con-

figurations; (4) diamond tipped drill bits; (5) hypodermic needles,

rotating and non-rotating; (6) beveled steel tubing with a "burr" at

90 deg to nip the Mylar and start a hole; (7) a O.020-in. blade on
the end of a solid rod, etc. None of these methods proved to be

fully satisfactory. It was decided to slit the MLI all the way

through and insert the wire rather than put them through discrete

holes. The MLI must be vented with slits anyway because it is not

perforated. We elected not to have it perforated when purchased

rather than risk the possibility of contamination with oil or other

hydrocarbons during the punching process as has happened in the

past. Any oil inside our vacuum jacket would be disastrous for this

application where it is necessary to turn off the pump and hold the

vacuum for 90 days.

• The PCM was changed from 25 percent CaCI solution to N-decane wax

because it gives a more distinct melting point and about the same

temperature, i.e. -27 F versus -20 F.
• The MLI basket and PCM tanks were sent out for cleaning, then instru-

mented. MLI application was completed on the baskets. At the ends

of the basket, the MLI was "gored and taped" and folded down rather

than making 160 separate circular end disks and mating the joint with

the side wall MLI layers.

LOCKHEED-HUNTSVILLE ENGINEERING CENTER



Page 7
LMSC-HEC PR D066068

15 June 1987

• The 160 layers of MLI were wrapped at about 50 layers per inch on the

side walls for a total thickness of approximately three inches. The

end/dome area had more layers due to "tucking." Here, there are

approximately 200 layers with a thickness of approximately 4.5 or 5

in. We are quite pleased with the way the ends turned out.

• Additional research was put into getter material selection; still no

final selection has been made. We plan to test several of these when

the tank test gets under way.

• Additional research was put into the cleaning and final surface

treatment of the inner walls of vacuum vessels and their effects on

outgassing quantities and products.

• An attempt was made to calculate the outgassing quantities and pro-

ducts for our system. For example it appears that the largest quantity

for the first pumpdown will be water vapor from the MLI, a total of

approximately 2 grams. The Mylar also outgasses considerable amounts

of N2 and C02.

• Additional getter materials were ordered and delivered, and the molecu-

lar sieve trap was baked out.
• The two PCM tank baskets were installed inside each of the two outer

container walls using the 0.030-in. strut wires. The PCM tanks were

charged with PCM and installed inside their baskets/containers. In-

strumentation was completed, and test was begun on 23 December 1986.

Dry ice was used to cool down before vacuum pumping was begun.

• The MLI cavity was pumped during the Christmas holidays, but problems

were encountered. The pressure fell to 60 microns, then rose to

approximately i00 microns and never went any lower. The container was

opened, and some liquid water was found inside. This was apparently

left over from the frost that had accumulated in the dry ice before

installation in the inner container. Apparently, since the MLI did not

reach the pressure level required to become effective, the heat leak

was such that after the dry ice evaporated the temperature rose to

above 32 F and the frost turned to liquid. With this liquid water

present, pumping speed was too slow for the pressure to drop below i00
microns. We assume that the 60-micron value was reached while the

water was still frozen on the dry ice.

• The tank then was dried out and a second pumpdown (at room tempera-

ture) was started. During this pumpdown the pressure dropped to the

i0 -s torr range, but we were not able to maintain this low pressure.

Therefore, a bakeout of the system was planned.

• This bakeout of the 160 layers of MLI proved to be somewhat difficult.

For example, problems were encountered on the third pumpdown as follows:

The pressure in the tank dropped into the 10 -4 range but after a

period of time, it began to rise again. This was determined to be due

to the drop off in the pumping speed of our titanium sublimation pumps.

This is a characteristic of this type pump. As the element thicknesses

wear down with usage, their resistance increases, the power consumption

rate drops and the pumping speed is an exponential function of power.

These elements were replaced for the next pumpdown but their practical

useful life is only about 8 to i0 hours. Also, in order to decrease

the cleanup/outgassing time for the HLI, we added heaters to the outer

tank surface and ran it at 250 to 300 F to expedite the process.
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• Also, a larger roughing pump was obtained GFE from MSFC to speed up the

process, and larger sublimation pumps have been requested.

• The Varian Vacuum Company technical representative was contacted; he

agreed to bring in a new 200 liter/sec turbomolecular turbine demon-

stration pump for our evaluation in this application. This pump is

capable of pumping the entire range from atmospheric pressure to below

our required 10 -6 torr range.

• Additional efforts were made to expedite the bakeout/cleanup process.

For example, the tank-to-vacuum pump connections were reconfigured with

larger fittings, etc. in order to reduce the molecular flow con-

ductance.

• The Acurex Autocalc and IBM PC-XT were hooked up to the pressure and

temperature instrumentation to expedite data acquisition/reduction.

The data can now be plotted immediately using Lotus 123 software.

• A report has been written on the thermal analysis of this unit and is

in the review cycle.

• An unfortunate problem occurred which resulted in contamination of the

MLI. The larger (21 cfm) mechanical roughing pump which was obtained

GFE from NASA-MSFC was being used to evacuate the tank during a bakeout/

cleanup pumpdown when the power failure occurred on Sunday, 15 February,

at 9 p.m. Because this pump did not have an "anti-suckback" valve, it

allowed oil to be pulled back into the test tank/MLl when the pump

ceased working. Accordin_ to the manufacturer of this pump oil, its
vapor pressure is 2 x i0 -_ torr at room temperature. Therefore, we

cannot expect to get our tank pressure below this level without a

complete cleanup of the oil inside and/or replacement of the MLI.

• Shortly after this contamination problem occurred we were able to obtain

on loan a turbomolecular demonstration pump for a limited time from the

Varian Vacuum Company. Rather than lose the opportunity to try this

pump for our application, we decided to use it to pump on the tank even

with the oil and contaminants inside. This pump proved to be quite

helpful to this effort and we plan to purchase a similar, but larger,

pump of this type. This procurement is expected to take about 45 days,

so we should have the new pump in operation by mid-April or early May

1987. The demonstration pump is a 200 liter/sec capacity, while the

pump being purchased is 300 liter/sec. The 200 liter/sec pump has

consistently held the tank pressure in the low i0 -s range with the

oil inside as expected.

• We plan to go ahead and take some preliminary thermal performance data

with this tank "as is" while holding the pressure with the pump running

continuously. This may or may not be successful depending on the

effect of the oil on the PILl effective emissivity/performance.

Depending on the results, this tank will be refurbished or continued in

use "as is." We will, of course, not be able to do any "gettering"

tests with this particular tank until the hydrocarbons are removed.

• The IBM PC-XT computer and Acurex Autocalc unit have been used

extensively to record, reduce, and plot test data. This is a great

help in speeding up our testing. Calibration runs were made on both

the ion gauge and thermocouple gauge pressure measurement instruments

to use in these data reductions so that the PC-XT will now record both

pressures and temperatures. Macros were written to sort, reduce, and

plot the tank temperature data automatically.
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• Since the Varian demonstration turbopumpwasavailable and the tank was
assembledand instrumented, a decision wasmadeto go ahead and makea
preliminary "dry run" test of the storage unit, even with the oil-
contaminated multilayer insulation. A six-day test was madefrom 19
March 1987 through 24 March 1987. Results in the form of temperature
plots are shownin Figs. II through 14. Figures Ii and 12 show typical
outer tank wall temperatures. These values oscillated approximately _3
F each day with the daily air temperature fluctuations in the test lab
area. These oscillation are not considered to be detrimental to our
overall test results. Figure 13 shows three internal temperatures.
Temperatures T 120 and T 121 are on one of the aluminum "baskets" which
support the PCMtanks. Temperature T 127 is on one of the PCMtanks.
Figure 14 superimposes external and internal temperatures. Gapsin the
data are due to the times whenno data were being taken because the IBM
PC-XTcomputer was being used to reduce data taken up until that time.
Data were generated for most of the test duration at 10-minute inter-
vals. The internal PCMtank and basket temperatures in Figs. 13 and 14
have not been corrected for the additional resistance in the leads
caused by the use of approximately 6 in. of super small (40 gauge,
0.003-in. diameter) wire. This was used to reduce the thermal heat
short across the MLI. This causes a temperature error of approximately
-4.5 F. That is, the values are approximately 4.5 F too high as
presented. The outer tank wall temperatures do not have this problem
because they used ordinary size lead wires.

The internal PCMtanks and baskets were initially cooled downwell
below the planned thermal storage design temperature of -20 F. This
was done purposely because it was not knownhow much the temperature
would rise before the internal pressure could be reduced to the MLI
operating value of 10.4 torr. As it turned out, the -65 F tempera-
ture was lower than required. Nevertheless, useful heat leak data
were obtained.

A cursory analysis of these test conditions was made, and hand calcu-
lated heat leak rates are shown in Table I.

These calculated heat leak rates were comparedwith the measuredvalues
as follows. Knowing the MCpof the internal tanks and baskets and
the average temperature rise rate the average measuredheat leak rate
was calculated to be 2.98 Btu/hr or 0.87 W. This is considerably
higher than the calculated value. This, of course, was attributed to
the M_LIbeing contaminated by the oil vapor from the vacuumpumpas
discussed in the March progress report.

If it is assumedthat the heat leak calculated for the strut wires and
the instrumentation leads are correct, then the effective thermal con-
ductivity of the MLI would be 4.6 x 10-4 rather than the 1.4 x i0 -s
value expected from the literature and used in our original design.
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• A new 300 liter/sec tubomolecular pumpwas purchased and put into oper-
ation. Newlarger tank fittings are being madeto accommodatethe new
pump.

• An MLI "bellyband" was designed and fabricated to use to close out the
MLI joint between the two halves of our demonstration test unit.

• A review of our concepts and results to data was given to the NASA-MSFC
CORand Boeing Space Station people on 17 March 1987 and to the SRS
subcontractor people on 18 March 1987.

• The MLI which was contaminated with vacuumpumpoil was discarded. The
baskets and PCMbaskets were cleaned. NewMLI was madeusing 160 layers
of double aluminized Mylar and 160 layers of Dacron netting. The MLI
thickness is approximately i-5/8-in, thick whereas the previously used
MLI wasapproximately 2 to 2-1/2 in. thick. All instrumentation was
refurbished and improved.

• A new 300 liters/sec turbomolecular pumpwas purchased. The tank
pumpingport was openedup to an 8-in. diameter flange to fit the new,
larger pump. A MLI "bellyband" was designed and fabricated to close
out the gaps between the two tank halves. The refurbished tank without
MLI was pumpeddownwith the new pumpand leak checked. The tank
pressure reached i x 10-4 torr in approximately 5 minutes and i x
i0 -s in approximately 20 minutes on the first pumpdown. The MLI,
baskets, PCMtanks and bellyband were then installed and a vacuum
bakeout at a temperature of approximately 200 F was begun on 23 April.
This bakeout is still in progress and is expected to take at least two
weeks. The pressure is presently in the 10-6 torr range. Once the
bakeout is completed, the PCMtanks will be chilled down, and a thermal
test will be conducted.

• Workwas resumedon getter material selection. The Varian Vacuum
Companywas contacted and they supplied information on getter materials
which they are using in their vacuumsystems. Also, in connection with
this getter selection, the need was established for a Residual Gas
Analyzer (RGA). This instrument is essentially a mass spectrometer and
will be used to identify the gases present in our vacuumjacket volume
due to outgassing of MLI, tank walls, O-rings, instrumentation, air
leaks, residual gases, cleaning solvents, etc. Oncethese molecules
are identified, the getter selection should be considerably simplified.
The availability and capability of various RGAmodels were investigated.
Various manufacturers were contacted and their literature reviewed.
Requirements and capabilities were discussed with MSFCTest Lab
personnel, and we looked at someof their present equipment. A
specification was written for our RGArequirements. (Weare going for
a simple basic version RGArather than the "Cadillac" version, and
expect it to meet our present needs.) Weare now in the process of
purchasing this RGA,and expect delivery around 15 May 1987.

• A new cold cathode pressure gage and controller were purchased and
installed on the tank. This gives us a continuous pressure monitoring
capability from i x 10-3 torr to i0 -_ torr, which we did not have
previously with the combination of thermocouple and ion gages.

• An investigation was madeof the effect of the power dissipated by the
RTDsinside our inner tank. Since our predicted heat leak is so small
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(on the order of 0.13 W) we were concerned about the RTDpower
effecting the data. However, this was found to be negligible, on the
order of i0 milli Watts per RTD. Wehave 12 internal RTDs.

• Other ideas were investigated to improve the instrumentation such as
use of Constantan rather than copper ead wires across the MLI space.
Constantan has a thermal conductivity of approximately 9 Btu/ft-hr-F as
comparedto approximately 220 for copper. Another consideration was to
use 1000-ohmRTDsrather than i00 ohmso that the small lead wire
resistance would be insignificant in comparison to the RTDresistance.
However, these lO00-ohmunits are not compatible with the Acurex
Autocalc data system we are using. Another concern is the effect of
the rosin solder flux outgassing. This effect is still unkownat the
present time. Someeffort was also put into the design of a flight
weight valve design. Since the pumping port is quite large (8-in.
diameter) any off-the-shelf vacuumvalue would be quite heavy. Weare
designing a value body which would be removable after placing a
diaphram closeout over the pumping port. This diaphram may also be
combinedwith the getter pump.

• A report was published on the preliminary thermal analysis of this
concept (Ref. i). Photos of the reconfigured demonstration unit tank
are shownin Figs. 15 through 19.

Effort on the -95 F Bio-Samples Thermal Storage Unit (Background): During

previous performance periods, the following accomplishments were made on the

-95 F unit:

• A report has been written on the thermal analyses of this unit, and is

in publication.
• We obtained access to the MSFC Materials Lab Data Base for materials

properties.
• A 10-in. diameter by 3-ft long aluminum tooling mandrel was made for

holding the fiberglass cylinders during machining.

• Several fiberglass cylinders and miscellaneous parts were machined.

• A supply of Hexcell prepreg fiberglass material was obtained and used

to make several honeycomb samples.

• Honeycomb samples were tested and results analyzed. These samples are

adequate structurally, but additional efforts are needed to reduce
their thermal conductance. Various bonding techniques are being

tried. Methods for closing out the honeycomb edges and bonding these

to the fiberglass cylinders were developed. These problems and efforts

have been discussed with various MSFC M&P people. They have been very

helpful.
• Efforts were made to bond the O.0005-in. stainless steel foil to the

fiberglass without much success.
• Several honeycomb panels were made up and tested structurally. Two

different test methods were used as shown in the January progress

report. The first method which consisted of a "4 point" loading

arrangement using a hydraulic press. This method was later abandoned
in favor of a direct vacuum application method. This latter method

simply applies a vacuum to a sample over a 4-in. by 8-in. area. The 4

in. is the same span as the honeycomb in our thermal storage unit
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design. The 8-in. length was chosen as adequate to minimize end
effects. Deflections were measured as a function of applied vacuum (or

delta-pressure) across the panel and compared to analytical results.

The agreement was reasonably good.

• Another analytical tradeoff was made on honeycomb using face sheet

thickness, core depth, core wall thickness, and thermal conductance as

parameters. As a result of this, it was decided to increase the core

depth from 0.125 in. to 0.50 in. with 0.002 cell wall thickness, and to

reduce the face sheet thickness from 0.020 in. to 0.010 in. This gives

a stronger panel with less thermal conductance. The 0.50-in. core was

ordered from Hexcell. We made the fiberglass face sheets in-house. A

report will be written documenting this trade study.

• A technique was developed for making the joint between the "doughnut"

honeycomb top and the inner and outer cylinder fiberglass walls. We

screened several candidate honeycomb edge closeout materials, and one

was selected which will make the closeout and the joint/bond to the

cylinder walls simulataneously. A "trial-part" joint was made up and

was tested with a one atmosphere pressure load (full vacuum) without

joint failure.
• Various methods were investigated and experimented with for bonding the

honeycomb core to the face sheets. The objective here is to obtain an

adequate structural bond with minimum thermal conductance along the face

sheet direction. The normal method to make the bond is with a film

adhesive. The fabricated and tested panels using two types of film

adhesives and both are acceptable structurally. However, they increase

the face sheet thickness, hence conductance significantly. For example,

the Normco 329 film adhesive increased the face sheet thickness from

0.020 in. to approximately 0.036 in. i.e., nearly doubling the conduc-

tance. Other bonding methods were tried, such as dipping the core in

wet resin and then transferring the core to the face sheet and curing

it out. This was not very successful because we were unable to main-

tain a uniform amount of resin onto the core ends. Another method was

tried, i.e., placing the film adhesive over the open end core and

melting it into place with a heat gun. This has not been successful to

date. Another method to be tried again consists of laying up the face

sheet prepreg (i.e., B-stage) directly onto the core and curing out in

place.

• The problem of bonding the O.0005-in. stainless steel foil to the fiber-

glass was pursued with partial success. We still need to work out an

acceptable method for etching the steel before bonding. It is very

smooth when received from the mill.

• Work was continued on the documentation of the Thermal Analysis/Design

Iteration for this unit.

• A "vacuum vessel" of fiberglass approximately 10-in. diameter x 30-in.

long was made up for testing to determine the outgassing rates, and

permeability effect. It has not been tested yet.

• A meeting was held with the Hexcell Honeycomb Company technical repre-

sentative concerning some of our problems. He was quite helpful.

• Several additional honeycomb panels were fabricated and tested. These

included both 0.25-in. and the new Hexcell 0.5-in. depth core. Face
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sheets of 0.010-in. and 0.020-in. thicknesses were used. Three dif-
ferent core-to-face sheet bonding methodswere tried. Also the methods
of venting the core cells to the vacuumside of the panel were tried.
(The cells must be evacuated to prevent natural convection heat transfer
while not at zero-g and conductive heat transfer by any trapped air in
the cells while the unit is operating in orbit.) The air conductivity
and cross-sectional area product is large comparedto that of the
honeycombpanel values.

• Analytical methods were programmed on the VAX for predicting deflections

and stresses in the honeycomb panels. Calculated values were compared

with measured values. Thermal conductance value calculations were also

added to the program. Figure 5 shows a typical honeycomb test sample

with 0.040-in. size vent holes drilled in the bottom face sheet. (Note

the separation of the bond between the face sheet and the inner 0.0005-

in. stainless steel liner around each vent hole.) This sample failed

before reaching full vacuum load due to weakening of the face sheet

with the vent holes. Because of this failure it was decided to make a

similar panel with a different fabrication technique. The original

panel was made by laying up both face sheets onto the core, curing out

the adhesive, and then drilling the vent holes. Since these holes were

drilled "blind," some of the cell walls were damaged. The second panel

was made by bonding only one face sheet, then drilling the vent holes

from the open core cells, then bonding on the second face sheet. This

second panel was tested with slightly better results. However, it

still failed at less than a full vacuum load.

• Another venting method was also tried. Here, each of the core cell

walls were "snipped" with a pair of shears for a distance of about

0.125 in. This was to allow the cells to "breathe" between rows. A

single vent hole was then provided to allow evacuation of the cells

during the test. This sample also failed before reaching full vacuum

due to reduction of the core shear strength.

• Hexcell was contacted to determine if they manufacture a vented cell

core of this material. They agreed to send us a sample with "vent

slits" provided in each node. However, this is not normal practice for

them and they do not have any strength data for this product. We will

have to do our own testing for these values.

• Testing was begun to measure the thermal conductance of candidate

honeycomb panel designs. A test setup was fabricated, and preliminary

results were obtained (see Fig. 6). However, results to date have not

been satisfactory, apparently because the pressure in our tank was not

low enough for the MLI to be effective. This is still being

investigated.
• A test was made of the method which was used to make the honeycomb

closeout and joint to the two (inner/outer) cylinders. This concept

worked quite well. The joint failed at 39 psid giving us a margin of

39/14.7 = 2.65. This test setup is shown in Fig. 7. Pretest sample

photos are shown on Figs. 8 and 9, and a post-test photo is shown in

Fig. i0.

• The possibility of using a unidirectional tape prepreg for fabrication

of the inner cylinder was investigated. This type material has the

advantage of having a thermal conductivity value in one direction which
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is approximately 70 percent less than the normal bi-directional type
materials. This is because the reinforcing fibers are "combed" out in
one direction before being saturated with the epoxy resin. Since the
reinforcing materials have a significantly higher conductivity than the
resin, the composite has a highly directional conductivity value. In
our case we would orient the fibers in the circumferential direction so
that the conductivity value would be high in this direction and low in
the length direction (i.e., down the cylinder) which is the direction
in which we want to minimize the heat leak. Hexcell has agreed to
supply a free sample of this type material for our evaluation. This is
expected at our facility on about 6 April 1987.

• Since we have not been able to purchase off-the-shelf cylinders at the
thickness we require (0.030 in.) we have started fabricating these
in-house. Somefour items have been madeto date with varying suc-
cess. The prepreg tends to wrinkle during the cure cycle causing weak
spots in the finished unit. Weare continuing to work this problem.

• Honeycombsamples were fabricated using a new concept which would form
the vent holes in the face sheets while they are being cured. This
would eliminate the post-cure drilling which breaks the reinforcing
fibers and reduces the strength of the material. This new concept
would form the holes around "pins" in the tooling, hopefully allowing
the fibers to be continuous around the individual holes. A tooling
board was madeup with pins (approximately 0.030-in. diameter) cor-
responding to each core all location, and a honeycombsample panel was
laid up and cured. This first try was only marginally successful.
The fibers did not properly orient around the pins and damage
occurred. This venting problem is still being pursued.

• The search for a "cell-edge" adhesive continued, so that the full area
film adhesive would not have to be used thereby increasing the face
sheet thickness/conductance. Data and literature were received from
American CyanamidCorporation on one of their products which looks
promising. They have agreed to furnish a free sample of this for our
evaluation.

• Our layup procedures, techniques, bagging materials, etc, were re-
viewed by the Airtech Technical Representative at Lockheed-Huntsville.
This meeting was quite helpful.

• The thermal conductance test tank is being refurbished and refitted for
the new turbomolecular pump. An O-ring seal lid is being added to
allow us to get downto lower pressures and better performance of the
MLI.

Efforts on Fabrication of -95 F Bio-Sample Thermal Storage Demonstration Unit

(This Performance Period): Only a minimum of effort was expended on the -95 F

unit during this performance period because we were concentrating on getting

the -20 F unit test. The American Cyanamid cell edge adhesive was received and

will be tried soon. We are still awaiting the delivery of the unidirectional

tape prepeg and vented epoxy glass honeycomb core from Hexcell. Other vacuum

bagging materials and shrink tapes were ordered to improve our layup

procedures/ results. Some G-IO (epoxy glass) cylinders were received for the

purpose of making a smaller diameter bio-sample mockup/model.
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Workon the -95 F unit will resumeduring the June performance period now that
wehave the -20 F unit under test.

Preliminary Demonstration Unit for -20 F (Food) Storage Unit (This Performance

Period): The -20 F thermal storage (food) demonstration unit test was begun

and is still in progress. Figures 20, 21, and 22 present preliminary plots of

the results to date. The inside aluminum PCM tanks and wire-supported baskets

were initially chilled down to below -70 F using LNz. The test tank is now

mounted in a vertical position as shown in Fig. 19. This allowed the LN2 to

fall into the bottom half of the tank thus causing it to be at a lower tempera-

ture than the top half. However, as the test progressed these temperatures

came together. The temperatures were allowed to rise through the -20 F design

point, and the rise rate at that temperature was used to calculate the heat

leak into the task. The measured temperature rise rate was approximately

0.193 F/hr at -20 F. This yields a heat-leak rate of 2.3 Btu/hr or 0.67 W with

an MCp value of 12 Btu/F. Table I presents hand calculated heat-leak values

for the configuration of this test. As Table i shows, the total heat leak is

calculated to be only 0.122 W. This is a factor of 5.5 or less than that

presently being measured. We feel that this discrepancy is in the MLI con-

ductance. From Table i it is seen that the strut wire Q is 0.054 W, and the

copper instrumentation wire Q is 0.034 W. The length, diameters, and thermal
conductivities of these are all well known. This indicates that the MLI con-

ductance of the test article must be higher than that used in the analysis.

The conductivity value we used was taken from Ref. 2 as i._ x i0 -s Btu/ftZ-hr-F.

This was the lowest value presented in Ref. 2, and is for 160 layers which is

the number of layers in our test article. After further consideration of this

problem it appears that the most likely source of discrepancy is in the method

used to form the MLI around the basket ends (inside the tank ends/domes). The

cylinders were wrapped by winding continu- ously and a length of MLI was left

hanging over the end. This length was then "gored" by cutting out "pie-shaped"

section. These MLI layers were laid or folded down into place and taped down.

It is possible that these layers were pulled down too tightly before taping,

thus compressing the layers and thermally "shorting" the blanket. This is

further complicated by the MLI shrinkage at low temperatures.

To avoid this potential problem, we plan to disassemble the tank and recon-

figure the MLI design. The "gored and taped" ends will be replaced with

blankets made of individual disks/layers laid up in the direction perpendicu-

lar to the tank longitudinal axis. Hopefully this will bring the measured

results closer to the theoretical values.

The turbopump was left on during the duration of this test to ensure proper

pressure levels and worked well. The pressures were in the I0 -_ tort range

for most of the test.
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Table 1 BAND CALCULATED HEAT LEAK RATES FOR -20 F STORAGE

UNIT TESTS OF 27 MAY 1987 THROUGH 8 JUNE 1987

Heat Leak

Source

Stainless Steel

Strut Wires

Multilayer
Insulation

(l.5-in. Thick)

Copper Instru-
mentation Wires

(24 Wires)

Totals

Conductance

(Btu/hr-F)

19.5 x i0 -4

12.2 x I0 -4

12.24 x i0 -4

AT

(F)

75-(-2o)

75-(-20)

75-(-20)

Q
(Btu/hr)

.185

.116

.116

.417

Q
(watts)

.054

.034

.034

.122

Percent

of Total

44

28

28

i00
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Fig. 5 HoneycombPanel Samplewith Vented Cell Face
Sheets, 0.5-in. Core Depth, O.OlO Face Sheets
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Instrumentat
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Honeycomb Sample
Test Article

(Wrapped in MLI)

Vacuum

Test

Tank

Fig. 6 Thermal Conductance Test Article

Being Placed into Test Tank
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Fig. 7 Setup for Testing BetweenHoneycomband
Inner and Outer Cylinders Joint

Fig. 8 Pretest Photograph of Joint Test Sample
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Fig. 9 Pretest Photograph of Joint Test Sample

Fig. 10 Post-Test Photograph of Joint Test Sample

(Failure Occurred at 39 psia)



LMSC-HECPR D066068

aJ

_J

80

79

78

77

76

75

74

73

72

71

70

69 ! I

0 20

[] TII6

tTll7

_> TlI8

A Tl19 r
u

¥

i I I I

40 60 80 i00 120 140

Time (hours)

Fig. ii Typical Outer Wall Temperatures vs Time for -20 F Thermal

Storage Unit Test (Tests: 18 Mar 87 Through 24 Mar 87)

LOCKHEED-HUNTSVILLE ENGINEERING ?ENTER



LMSC-HEC PR D066068

78

77

76

-- -.'""__., T_--,ER'M,AL, ,--:.T__ _-)"-'A'-'c,.. , ,,',j,T _ATA

OT126
! t T128

OT]29

A TI30

_Z4

OJ

dJ
rO

F_

75

74

73

72

71

70

0 20 40 60 80 I00 120 140

Time (hours)

Fig. 12 Typical Outer Wall Temperature vs Time for -20 F Thermal

(Food) Storage Unit Test (Tests: 18 Mar 87 Through 24 Mar 87)

LOCKHEED-HUNTSVILLE ENGINEERING CENTER



LMSC-HECPRD066068

V

o)

-I0

-2O

-30

-40

-50

-6O

-70

•_,-_E- T_F__.RMAL qTORAG£ UNIT '"_TA

+ TI20

<>T121

/% T127

0 20 40 60 80 i00 120

Time (hours)

!

140

Fig. 13 Temperature vs Time for Three Internal Temperature

Measurements for -20 F Thermal (Food) Storage Unit Test

(Tests: 18 Mar 87 Through 24 Mar 87)

lOCKHEED-HUNTSViLLE ENGINEERING CENTER



LMSC-HECPRD066068

V

o)

80

20F THERMAL ¢T,", -c-- _ _ R,&(,.:;_ UI",II T DATA

30

20

10

0

-i0

-20

-30

-40

-50

-60

-70

70

60

5O

4O

m

[] TI16

+ T120

OT121
A T127

1 I !

0 20 40 60 80 100

Time (hours)

I T

120 140

Fig. 14 External and Internal Temperatures Superimposed,

for -20 F Thermal (Food) Storage Unit Test

(Tests: 18 Mar 87 Through 2& Mar 87)

O(

LOCKHEED-HUNTSVILLE ENGINEERING CENTER



LMSC-HECPRD066068

Fig. 15 Inner Bracket from -20 F Demonstration Unit
Wrappedwith NewMLI
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Fig. 16 Lower Tank Half Attached to Turbomolecular

Vacuum Pump (-20 F Demonstration Unit)
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Fig. 17 Two Tank Halves Being Assembled for -20 F Demonstration Unit
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Fig. _8 Closeup of Two Tank Halves During Assembly

Showing MLI Bellyband/Closeout
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Fig. ]9 Minus 20 F Demonstration Unit Tank Under VacuumBakeout
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APPENDIX B

Biofreezer Test Configuration/Design Updates and Results of Testing at Lower

Temperatures

(Excerpts from August 1990 through January 1991 Monthly Progress Reports)

B-1
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Excerpt from August 1990 Monthly Progress Report LMSC-HSV PR F312333
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PROGRESS DURING THE CURRENT REPORTING PERIOD

Testing of Biosample Freezer
_'_.D_I_; _'r_'s_: _'._.:'_t< !¢;'_ _t-t',_ED

A breakthrough was made during this reporting period. As mentioned in last

month's progress report, the lowest temperature obtainable at that time was

approximately -240 °F. However, we have now been able to reach a temperature

of approximately -370 °F. This was attained as a result of two factors: (i)

we modified the Biofreezer test configuration/design, and (2) with this

modified design we were able to get liquid nitrogen into the inner cylinder

and then subcool it by lowering the vapor pressure over the liquid. This

caused the temperature to drop below the melting point and freeze the nitrogen.

(The boiling point of nitrogen is -320.4 °F at I atmosphere pressure and its

melting point is -346.0 °F. When the vapor pressure is reduced to i mm Hg,

the solid temperature drops to -375.0 °F.)

In order to achieve testing at these lower temperatures, the following changes

were made to the Biosample Freezer:

I. The rubber band center joint seal was replaced with two mating rings

and an O-ring.

2. New aluminum joint seals were made for the joint between the diaphragm

and the inner cylinder and bonded in place (see Figure I).

3. New 0.001 in. thick titanium seals were made and bonded in place at

the joint between the outer cylinder and the diaphragm (see Figure 2).

A fill tube and a vent tube were made and installed through the MLI.

This entailed making a 3/8 in. hole through the MLI and the inner and

outer cylinders. The fill/vent tubes were made of 0.010 in. thick

epoxy-glass and lined inside and outside with 0.001 in. thick titanium

foil (see Figure 3). These tubes were then bonded to a support base

and NW-25 flange vacuum connection (see Figures 4 and 5). This

assembly was the tested by chilling with LN2 to check the integrity

of the design (see Figure 6). Then it was leak tested under full

vacuum load while inlnersed in LNz (see Figure 7). This assembly was

then bonded in place through the freezer walls with the RTD leads

alongside the tube. This provided a minimum heat-leak penetration

through the MLI insulation, which would withstand the vacuum pressure

loads (see Figures 8 and 9). The entire freezer assembly was then

leak tested with helium gas.

, The aluminum heat sinks were modified so that they would be stable,

i.e., not roll around, or fall over, inside the inner cylinder without

being bonded. Two wire-wound platinum RTDs were bonded to each heat

sink, with 0.003 in. diameter constantan leads. These were 3-wire

configurations to eliminate the effects of the high lead wire

resistance. The small diameter is needed in order to minimize heat

leaks. Note: the minimum temperature that can be measured with these
RTDs is -328 °F.
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Oneannular thin film foil heater was bonded to each heat sink. These
were for future use in calibrating the heat capacity of the heat sinks
at low (= 320 °F) temperatures, since satisfactory test values have
not been found in the literature (see Figure i0).

1 A Mylar blanket was made up and installed in the lower part of the

inner cylinder to avoid having LN2 impinge directly on the thin wall

of the inner cylinder.

. Three 0.005 in. diameter Chromel/Alumel thermocouples were made up and

installed inside the inner cylinder. These were for the purpose of

directly measuring the temperature of the LN2/SNz. They were first

installed on top of the Mylar blanket and later moved under the
blanket.

. The entire freezer was mounted on a set of lab balances in order to

measure the rate of change in weight, i.e., LN2 boiloff rate, during

a given test.

Testing was continued as these changes were being added. Figures ii, 12, and

13 show the Biosample Freezer being filled with LN2, after being charged

with LN2, and after beginning of pumpdown, respectively.

Table 1 sun_r_rizes the tests run to date.

Figures 14 through 45 show preliminary results from these latest tests. For

most of the tests, the data are shown for varying time spans starting at the

beginning of the test and proceeding to longer and longer times as the test

progresses. This is done so that the data in the early part of the test is

readable. If only the total time plots were shown, the initial transient

temperature details would not be readable.

Figure 25, which shows some of the data from the initial times of the test on

8/2/90, is used to illustrate what is happening during this early transient

time. The first phase of the test is the chilldown phase with the temperature

dropping from -280 °F to the liquid nitrogen temperature of -320 °F. This

temperature levels out while additional LN2 is being added. Then the next

phase starts when the freezer is sealed off and the vapor pressure is lowered

using two vacuum pumps. This causes the temperature tc drop below -320 °F and

then below -328 °F which is the lower limit of the RTDs being used. (The

thermocouples had not yet been added when this test was conducted.) The RTDs

go off scale until about 0.8 hours when they start to warm up above -328 °F

again. The temperature then increases to about -320 °F where it remains

nearly constant for a period of "steady-state" testing while the heat leak is
determined from LN2 boiloff rates.
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Table i. SUMMARY OF TESTS RUN TO DATE ON BIOSAMPLE FREEZER

Test
Date

5/23/90

5/25/90

5/29/90

6/11/90

6/15/90

6/22/90

6/25/90

6/28/90

6/29/90

7/25/90

7/27/90

7/30/90

7/31/90

8/1/90

8/2/90

8/7/90

8/8/90

Heat Sink Temp. at

•Start of Test (OF)

-2

-6

4

-52

-60

-100

-150

-200

-240

Miminum Pressure

Obtained (torr)

1 x 10-3

5 x 10-5

6x 10-4

2 x 10-5

1 x 10-5

1 x 10"5

4x 10-5

7x 10-5

3x 10-5

Room temperamrepump-down _ check O-ringse_

-310 **

<-328 **

<-328 **

Test Duration

(hr)

5

5

27

46

64

66

46

24

48

68

22

23

Data not reduced due to problem with cryopumping air into MLI space

< -328 ** 96

<-328 (-340)* ** 24

< -238 (-370)* ** 44

* Temperatures in LN2/SN 2.

** Data not yet reduced.
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Figure I. New Aluminum Joint Seals for Inner Cylinder for Diaphragm Joint

Figure 2. New 0.001 in. Thick Titanium Seals for Outer Cylinder

to Diaphragm Joint
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Figure 3. Typical Fill/Vent Tube (0.010 in. Epoxy-Glass with 0.001 in.
Titanium Foil Inside and Outside) 3/8 in. Diameter

Figure 4. Typical Fill/Vent NW-25Flange VacuumConnection
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Figure 5. Partially AssembledFill/Vent Tubes

Figure 6. LNz Test of Fill/Vent Tubebefore Installation
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Figure 7. Vacuum Leak Test of Fill/Vent Tube while immersed in LN2

Figure 8. Typical Fill/Vent Tube View after Installation Inside

of Freezer Inner Cylinder
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Figure 9. Typical Fill/Vent Tube View after Installation

with RTD Lead Wires in Place

Figure i0. Annular Foil Heater Installed on Aluminum Heat Sink
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Figure Ii. Biosample Freezer Being Filled with LN2 Before Start of Test

Figure 12. Biosample Freezer after Being Charged with LNz
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Figure 13. Biosample Freezer at Startup of Test
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BIOSAMPLE FREEZER TEST 7/27/90
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Figure 14. Temperature vs Time for 4 RTDs on Heat Sinks

during Biosample Freezer Test on 7/27/90
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Figure 37. Temperature vs Time for 3 RTDs on Heat Sinks and 3 Thermo-
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LOCKHEED-HUNTSVILLE



Page 40

LMSC-HSV PR F312333

15 August 1990

w
rh

n-
D

w
0.

BIOSAMPLE FREEZER TEST 8/08/90

--40

--60

--80

--100

--120

--I40

--I60

--I80

--200

--220

--240

--280

--300 i l_

--,.320

--34.0

--360

--..380

m

TC1 -P

2 4

TIME, HRS.
TC2 0 TC3 A TR1 X TR2 V TP-,3

Figure 40. Temperature vs Time for 3 RTDs on Heat Sinks and 3 Thermo-

couples Inside Freezer on Mylar Blanket during Initial
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Figure 42. Temperature vs Time for 3 RTDs on Heat Sinks and 3 Thermo-

couples Inside Freezer on Mylar Blanket during Initial
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20 Hours of Biosample Freezer Test on 8/8/90

LOCKHEED-HUNTSVILLE



Page 44
LMSC-HSVPRF312333
15 August 1990

LO
E3

n-
m

o-
LU
O.

BIOSAMPLE FREEZER TEST 8,/08/90

--260

--300

--360

--380
I II

0 4 8 12 16 20 24 28

TC1
TIME, HRS.

i- TC2 0 TC.3 A "I-R1 X TR2 V TR.3
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LMSC-HSV PR F312346

__ _. 15 September 1990

PROGRESS DURING THE CURRENT REPORTING PERIOD _(4l'_ b_:_F_L_O

Testing of Biosample Freezer

Table i shows a summary of the tests run to date. The last four runs were

made since the last progress report was submitted. Two of these tests were

for chilldown purposes in preparation for testing on the following days. The

other two tests provided useful data. For the test of 8/15/90, the actual

heat leak into the inner space of the freezer was determined from the measured

temperature rise rate of the aluminum heat sinks, and from the measured

solid/liquid nitrogen (i.e., "slush") boiloff rate. The boiloff rate was

determined by periodically measuring the weight of the freezer with its
contents.

The results were as follows:

Qs_z = 2.63 W

QAL AT = 0.438 W

Total = 3.068 W

The heat leak was calculated from each source as follows:

Watts % of Total

Thermocouple Wires

RTD Lead Wires

Diaphragm (Stainless Steel Liner)

Diaphragm (Epoxy Glass)

Fill and Vent Tubes

MLI

.03 i.i

.006 0.2

2.22 79.4

0.364 13.0

0.063 2.2

0.112 4.0

Total 2.795 99.9

This yields a ratio of measured to calculated heat leak of

3.068 = I.I0

2.795

or a 10% difference. This is probably coincidential. Neither the calcula-

tions nor the measurement is really expected to be within 10%.
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After the test of 8/15/90, a leak was discovered in the inner cylinder-to-vent
tube joint on one of the Biosample Freezer halves. This was repaired before
the next test. Also, the aluminum heat sinks and RTDswere removed. The
inner cylinder was reinstrumented with 12 chromel/alumel thermocouples as
shownin Figure I. Also a chromel/alumel thermocouple material vacuum
feedthrough was madeup and installed. The pressure gage for the inner
cylinder was movedfrom the vacuumpumping line to the vent port in order to
get a more applicable pressure measurement.

Results of the 8/15/90 test are shownin Figures 2 through 12. These plots
are shownon progressing time scales so that the temperatures are readable
early during the test period.

It is noted that thermocouple 2 rises more rapidly than the others because it
is not immersedin the "slush" Nz but is on top of a mylar layers which were

placed inside the freezer to prevent LN2 from splashing directly on the

walls when it enters the freezer from the fill tube. This was done to help

reduce or prevent damage due to high temperature gradients. (Also note that

the thermocouple locations of Figure I do not apply to the test of 8/15/90.

These locations apply to the next test only, i.e., 9/7/90). The measurement

"TR2" on Figures 2 through 9 is an RTD on one of the heat sinks.

Figure I0 is interesting in that it shows the rise in MLI space pressure at

about 14 hours due to release of gas products trapped on the inner cylinder

surface during cryopumping. As the "slush" Nz inside the cylinder boils

away, the inner surface warms up and releases these trapped products. Figure

ii shows the pressure over the "slush" Nz gradually dropping during a period

between 5 and 20 hours as the "slush" is pumped away as vapor. Figure 12

shows the weight loss with time which was used to deduce the heat leak rate.

Figures 13 through 25 show the results of the test of 9/7/90. Again the

temperature plots are shown progressing with time. See Figure i for the 12

thrermocouple locations inside the freezer.

Figure 24 shows the "MLI space" pressure. This pressure did not follow the

same pattern of release of cryopumped products as the test of 8/15/90. This

may have been due to an insufficient pre-chilldown time. This test will be

rerun to see if we can repeat the results of 8/15/90. Also, the measured heat

leak was higher on this test, as seen on Figure 25. The weight loss rate was

67.6 g/hr for a heat leak of 3.87 W, which is another reason for repeating
this test.

As seen from the analysis results presented earlier, the predominent heat leak

is the diaphragm stainless steel liner. We plan to attempt a test without

this liner, thus significantly reducing the heat leak.
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Test
Date

5/23/90

5/25/9O

5/29/90

6/11/90

6/15/90

6/22/90

6/25/90

6/28/90

6/29/90

7/25/90

7/27/90

7/30/90

7/31/90

8/1/90

8/2/90

8/7/90

8/8/90

8/14/90

8/15/90

9/6/90

9/7/90

Table i. SUMMARY OF TESTS RUN TO DATE

Page 6

LMSC-HSV PR F312346

15 September 1990

ON BIOSAMPLE FREEZER

Heat Sink or "Slush" N2

Temp. at Start of Test (°F)

-2

-6

4

-52

-60

-100

-150

-200

Miminum Pressure

Obtained (torr)

1 x 10 -3

5x 10 -5

6x 10 -4

2x 10-5

1 x 10 -5

1 x 10 -5

4 x 10 -5

7x 10 -5

-240 3 x 10 -5

Room temperature pump-down to check Olring seal

-310 **

< -328 **

< -328 **

Data not reduced due to problem with cryopumping air into MLI space

< -328 **

<-328 (-340)* **

<-238 (-370)* **

Chilldown test in preparation for test on 8/15/90

-345 9 x 10 -6

Chilldown test in preparation for test on 9/7/90

-370 [ 8 x 10 -6
I

Test Duration

(hr)

5

5

27

46

64

66

46

24

48

68

22

23

96

24

44

30

72

* Temperatures in "slush" N 2.

** Data not yet reduced.
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Figure I. Biosample Freezer Thermocouple Location for Tests

Beginning on 9/14/90
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Figure 2. Biosample Freezer Temperatures versus Time for First 0.5 Hours

of Test on 8/15/90
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Figure 3. Biosample Freezer Temperatures versus Time for First 1.0 Hour

of Test on 8/15/90
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Figure 4. Biosample Freezer Temperatures versus Time for First 2.0 Hours
of Test on 8/15/90
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Figure 5. Biosample Freezer Temperatures versus Time for First A.0 Hours

of Test on 8/15/90
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Figure 6. Biosample Freezer Temperatures versus Time for First I0 Hours
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Figure 7. Biosample Freezer Temperatures versus Time for First 16 Hours

of Test on 8/15/90
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Figure 8. Biosample Freezer Temperatures versus Time for First 30 Hours
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Figure 9. Biosample Freezer Temperatures versus Time for Entire Test

Time on 8/15/90
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Figure i0. Biosample Freezer Pressure Inside of MLI Space versus Time

for Test on 8/15/90
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Figure ii. Biosample Freezer Pressure Gage Output in Volts for Inner

Cylinder for Test on 8/15/90
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Figure 12. Biosample Freezer Weight Loss versus Time for Test on 8/15/90
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Figure 13. Biosample Freezer Temperatures versus Time for First _ Hours

of Test on 9/7/90 (TC 1-6)
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Figure 14. Biosample Freezer Temperatures versus Time for First i0 Hours

of Test on 9/7/90 (TC 1-6)
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Figure 15. Biosample Freezer Temperatures versus Time for First 16 Hours

of Test on 9/7/90 (TC 1-6)
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Figure 16. Biosample Freezer Temperatures versus Time for First 29 Hours

of Test on 9/7/90 (TC 1-6)
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Figure 17. Biosample Freezer Temperatures versus Time for Entire Test Time

on 9/7/90 (TC 1-6)
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Figure 18. Biosample Freezer Temperatures versus Time for First 4 Hours of

Test on 9/7/90 (TC 7-12)
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Figure 19. Biosample Freezer Temperatures versus Time for First I0 Hours of

Test on 9/7/90 (TC 7-12)
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Figure 20. Biosample Freezer Temperatures versus Time for First 16 Hours of

Test on 9/7/90 (TC 7-12)
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Figure 21. Biosample Freezer Temperatures versus Time for First 29 Hours of

Test on 9/7/90 (TC 7-12)
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Figure 22. Biosample Freezer Temperatures versus Time for First 60 Hours of

Test on 9/7/90 (TC 7-12)
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Figure 23. Biosample Freezer Temperatures versus Time for Entire Test Time

on 9/7/90 (TC 7-12)
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PROGRESS DURING THE CURRENT REPORTING PERIOD

Page 3

LMSC-HSV PR F312367

15 October 1990

Testing of Biosample Freezer

Table 1 shows a summary of tests run to date on the Biosample Freezer. Two

tests were made since the last progress report. The purpose of the test of

9/20/90 was to chill down the entire system in preparation for the next test

on the following day. The purpose of the test on 9/21/90 was to repeat the

test of 9/7/90, since the heat leak on 9/7/90 was higher than that measured

during the test of 8/15/90. On 9/21/90 the Mylar blanket inside the inner

cylinder was removed to see if that would effect the results.

Figures 1 through 15 show results of the 9/21/90 test. Figure 16 shows the

thermocouple locations for this test.

Figures 1 through 6 are for temperatures from thermocouples 1 through 6, and

Figures 7 through 12 are for temperatures from thermocouples 7 through 12.

These plots are shown in increasing time steps as the test progresses so that

the values early in the test can be read. As seen from these plots, there is

a large temperature gradient inside the freezer. This is because some of the

thermocouples are immersed in the Nz slush (e.g., 5, 6, II, and 12) while

others are near the diaphragm which is the major source of heat leak (e.g., I,

2, 7, and 8).

Figures 13 and 14 show pressure measurements for the inner cylinder and MLI

space respectively. The MLI space pressure is higher on this test than on the

9/7/90 test. This difference was due to a minute leak in the diaphragm-to-

outer-cylinder joint. This leak also caused the inner cylinder pressure to

follow the same profile as the pressure in the MLI space, i.e., Figure 13

compared to Figure I_. The two peaks in Figures 13 and i_ are apparently due

to release of trapped gases from the inner cylinder surface when the

temperature rises enough to stop cryopumping.

Figure 15 shows the freezer weight decrease with time. From the slope of this

line, the "slush Nz" boiloff rate is determined and used to calculate the

heat leak. For the 9/21/90 test the heat leak was calculated to be 4.11 W as

compared to 3.87 W for the 9/7/90 test. This gives a ratio of

a.ll = 1.06

3.87

or a 6% increase.

After completion of the test on 9/21/90 the Biosample Freezer was disassembled.

The existing diaphragm with the 0.001 in. thick stainless steel liner was
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removedand replaced with an upgraded design. This new diaphragm design
consists of a 0.010 in. thick epoxy glass sheet with a 1/4 mil thick double
aluminized Mylar liner bonded in place with EA-1210 adhesive. New titanium
seals and aluminum inner cylinder diaphragm joint rings were madeand bonded
in place. This new configuration is now being leak checked and prepared for
testing. This testing should resume shortly. Since the stainless steel
diaphragm liner is the major heat leak source, the next test results are
expected to have a significantly reduced heat leak.

Figure 17 shows the LNz fill process during the 9/21/90 test. Figure 18
shows the freezer after removal of the diaphragm, exposing the MLI space,
during the upgrading of the unit. Figure 19 shows a sheet of the new
diaphragm material before cutting out the diaphragm annular shape.
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I. SUMMARY OF TESTS RUN TO DATE ON BIOSAMPLE FREEZER

Test
Date

5/23/90

5/25/90

5/29/90

6/11/90

6/15/90

6/22/90

6/25/90

6/28/90

6/29/90

7/25/90

7/27/90

7/30/90

7/31/90

8/1/90

8/2/90

8/'7/90

8/8/90

8/14/90

8/15/90

9/6/90

9/7/90

9/20/90

9/27/90

Heat Sink or "Slush" N2

Temp. at Start of Test (°F)

-2

-6

4

-52

-60

-100

-150

-200

Miminum Pressure

Obtained (torr)

1 x 10-3

5x 10 -5

6x10- 4

2 x 10-5

1 x 10-5

1 x 10-5

4x 10-5

7x 10-5

-240 3 x 10=5

Room temperature pump-down to check O-ring seal

-310 **

< -328 **

< -328 **

Data not reduced due to problem with cryopumping air into MLI space

< -328 **

< -328 (-340)* **

< -238 (-370)* **

Chilldown test in preparation for test on 8/15/90

-345* ] 9 x 10-6

Chilldown test in preparation for test on 9/7/90

-370* I 8 x 10-6

Chilldown test in preparation for test on 9/21/90

I 12 10 -6X

Test Duration

(hr)

5

5

27

46

64

66

46

24

48

68

22

23

96

24

44

30

72

71

* Temperatures in "slush" N2.

** Data not yet reduced.
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15 October 1990

Figure 17. Biosample Freezer Being Charged with LNz at Beginning of Test

on 9/21/90

Figure 18. Biosample Freezer During Process of Replacing Stainless Steel

Lined Diaphragm with Aluminized Mylar Lined Diaphragm

LOCKHEED-HUNTSVILLE



Page 16
LMSC-HSVPRF312367
15 October 1990

.... r-, )_.8LAC_, _ _ ,.,

Figure 19. Diaphragm Material (Epoxy-Glass with 1/4 mil Double Aluminized

Mylar Liner)
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LOCKHEED-HUNTSVILLE



Page 3

LMSC-HSV PR F312387

_(_O_ P_(71_" • 15 November 1990

" ,eZA;V_. i',_O;-p&tW_O
PROGRESS DURING THE CURRENT REPORTING PERIOD

Testing of Biosample Freezer

Table 1 shows a summary of tests run to date on the Biosample Freezer. During

this reporting period problems were encountered with the Biosample freezer

testing. Three tests were attempted, and all had to be terminated due to

vacuum leaks. Leaks were found in the new diaphragm, in the outer

ring-to-outer epoxy glass cylinder, and in the fill tube to inner cylinder

joint. Apparently these leaks have developed due to thermal cycling to

extremely low temperatures. These have all now been repaired, and testing is

expected to resume shortly.
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Table I. SUMMARY OF TESTS RUN TO DATE ON BIOSAMPLE FREEZER

F312387

1990

Test

Date

5123/90

5/25/90

5/29/90

6/11/90

6/15/90

6/22/90

6/25/90

6/28/90

6/29/90

7/25/90

7/27/90

7/30/90

7/31/90

8/1/90

8/2/90

8/7/9O

8/8/90

8/14/90

8/15/9O

9/6/90

9/7/90

9/20/90

9/21/90

10/2/90

10/29/90

10/30/90
L

,k

Heat Sink or "Slush" N2

Temp. at Start of Test (°F)

Minimum Pressure

Obtained (torr)

-2

-6

4

-52

-60

-100

-150

-200

-240

Room temperature pump-down to check O-ring

-310

< -328

< -328

1 x 10 -3

5x 10 -5

6x 10 -4

2x 10 -5

1 x 10 -5

1 xl0 -5

4x 10 -5

7x 10 -5

3x 10 -5

seal

Test Duration

(hr)

5

5

27

46

64

66

46

24

48

68

22

23

Data not reduced due to problem with cryopumping air into MLI space

< -328 ** 96

< -328 (-340)* "* 24

< -328 (-370)* ** 44

Chilldown test in preparation for test on 8/15/90

* I 9 x 10 -6 3 0°345

m

Chilldown test in preparation for test on 9/7/90

I 8 x 10 -6 72-370 °

Chilldown test in preparation for test on 9/21/90

I 12 x 10 -6 71_370 '1"

I

Chilldown test (Terminated due to leak; could not get MLI space pressure down.)

Chilldown test (Terminated due to leak; could not get MLI space pressure down.)

Chilldown test (Terminated due to leak; could not get MLI space pressure down.)

Temperatures in "slush" N 2.

Dam not yet reduced.

LOCKHEED-HUNTSVILLE



LMSC-HSV TR P037989
26 Feb 1993

Excerpt from December 1990 Monthly Progress Report LMSC-HSV PR F312401
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LMSC-HSV PR F312401

15 December 1990

PROGRESS DURING THE CURRENT REPORTING PERIOD

Testing of Biosample Freezer

The problems with vacuum leaks have been solved, and eight successful tests

were conducted during this reporting period. The Biosample freezer perform-

ance has been considerably improved by changing the diaphragm liner from .001

in. thick stainless steel to .00025 in. thick double aluminized mylar. This

was as expected per discussion in several previous months' progress reports.

The heat leak was reduced from about 3.8 watts to approximately 1.5 watts.

Table 1 presents a summary of tests run to date. Table 2 presents a summary

of the heat leaks before and after the diaphragm liner redesign.

Figures I through 5 show weight loss results for the tests run in November.

The next monthly progress report will present temperature and pressure data

from these tests.
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15 December 1990

TO DATE ON BIOSAMPLE FREEZER (I of 2)

Test

Date

5/23/90

5/25/90

5/29/90

6/11/90

6/15/90

6/22/90

6/25/90

6/28/90

6/29/90

7/25/90

7/27/90

7/30/90

7/31/90

8/1/90

8/2/90

8/7/90

8/8/90

8/14/90

8/15/90

9/6/90

9/7/90

9/20/90

9/21/90

10/2/90

10/29/90

10/30/90

Heat Sink or "Slush" N2

Temp. at Start of Test (°F)

-2

-6

4

-52

-60

-100

-150

-200

-240

Minimum Pressure

Obtained (torr)

1 xl0 -3

5x 10 -5

6x 10 -4

2x 10 -5

1 xl0 -5

1 xl0 °5

4x 10 -5

7x 10 -5

3x 10 -5

Test Duration

(hr)

5

5

27

46

64

66

46

24

48

Room temperature pump-down to check O-ring seal

-310 ** 68

< -328 ** 22

< -328 ** 23

Data not reduced due to problem with cryopumping air into MLI space

< -328 **

< -328 (-340)* ! **

< -328 (-370)* [
*t

Chilldown test in preparation for test on 8/15/90

-345* [ 9 x 10 °6

Chilldown test in preparation for test on 9/7/90

-370" ! 8 x 10 -6 i

Chilldown test in preparation for test on 9/21/90

-370* I 12 x

m

10-6 71

Chilldown test (Terminated due to leak; could not get MLI space pressure down.)

Chilldown test (Terminated due to leak; could not get MLI space pressure down.)

Chilldown test (Terminated due to leak; could not get MLI space pressure down.)

96

24

44

3O

72

* Temperatures in "slush" N 2.

** Data not yet reduced.
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Table I. SUMMARYOFTESTSRUNTODATEONBIOSAMPLEFREEZER(2 of 2)

Test

Date

11/1/90

11/2/90

11/6/90

11/14/90

11/15/90

11/19/90

11/21/90

11/26/90

11/28/90

11/30/90

12/4/90

12/7/90

Heat Sink or "Slush" N2

Temp. at Start of Test (°F)

Room Temperature

-350*

Chilldown after leak repair

Chilldown after leak repair

-370*

-360* (Repeat of test on 11/15/90)

(Freezer in upright position) -370*

(Freezer in upright position) -370*

(Freezer in upright position) -370*

(Test observed by NASA personnel)

(Freezer in upright position) -370*

(Freezer in upright position) -370*

(Freezer in upright position) -370*

Minimum Pressure

Obtained (torr)

5x 10 .6

5x 10-5 to 1 x 10 -4

(leak)

6x 10 -6

(2 to 5) x 10 -6

4x 10 -6

(3 to 5) x 10 -6

(1 to 5) x 10 -6

(1 to 6) x 10 -6

(1 to 5) x 10 -6

(1 to 6) x 10 -6

(1 to 6) x 10 -6

Test Duration

(hr)

Pressure checkout only

2 (MLI space pressure

started leaking)

18

92

2O

98

52

59

91

71

92

* Temperatures in "slush" N 2.

** Data not yet reduced.
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Test Date

917190

9/21/90

iii15190

11/19/90

11/21/90

II126190

ii128190

11/30/90

Table 2 BEAT LEAKS SUMMARY

Heat Leak

(Watts)

3.07

4.11

1.68

1.95

i.ii

i.03

1.05

1.23

Remarks

.001 in. S.S. Diaphragm Liner

(Freezer Horizontal)

.001 in. S.S. Diaphragm Liner

(Freezer Horizontal)

.00025 in. Double Aluminized Mylar

Diaphragm Liner (Freezer Horizontal)

.00025 in. Double Aluminized Mylar

Diaphragm Liner (Freezer Horizontal)

.00025 in. Double Aluminized Mylar

Diaphragm Liner (Freezer Upright)

.00025 in. Double Aluminized Mylar

Diaphragm Liner (Freezer Upright)

.00025 in. Double Aluminized Mylar

Diaphragm Liner (Freezer Upright)

.00025 in. Double Aluminized Mylar

Diaphragm Liner (Freezer Upright)
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PRECIEDINIG PAQE PL/'d',_K i_IOT F_LMED

Testing of Biosample Freezer

Table 1 presents a summary of the tests run to date. Table 2 presents a summary of the heat leaks

measured during the tests of 7 September 1990 through 12 December 1990.

Figures 14 through 113 show the temperature and pressure results for the test from 15 November

1990 through 12 December 1990. These plots are shown progressing with time so that the

temperature scales are readable during the early phases of each test.

Figures 114 through 122 show the plots of weight versus time for each of these tests, from which
the heat leak values shown in Table 2 were calculated.
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Summaryof TestsRunto DateonBiosampleFreezer(1of 2)

Test

Date

5/23/90

5/25/90

5/29/90

6/11/90

6/15/90

6/22/90

6/25/90

6/28/90

6/29/90

7/25/90

7/27/90

7/30/90

7/31/90

8/1/90

8/2/90

8/7/90

8/8/90

8/14/90

8/15/90

9/6/90

9/7/90

9/20/90

9/21/90

10/2/90

10/29/90

10/30/90

Heat Sink or "Slush" N2

Temp. at Start of Test (°F)

-2

-6

4

-52

.60

-100

-150

-20O

-240

Minimum Pressure

Obtained (torr)

1 xl0 -3

5x 10-5

6x 10-4

2x 10-5

1 xl0 -5

1 xl0 5

4x 10-5

7x 10-5

3x 10-5

Room temperature pump-down to check O-ring seal
!

-310 **

< -328 **

< -328 **

Data not reduced due to problem with cryopumping air into MLI space

< -328

< -328 (-340)*

< -328 (-370)*

Test Duration

(hr)

5

5

27

46

64

66

46

24

48

68

22

23

96

24

44

Chilldown test in preparation for test on 8/15/90

-345" I 9 x 10-6

Chilldown test in preparation for test on 9/7/90

I '1-370" 8 x 10 -6 1

Chilldown test in preparation for test on 9/21/90 [

I 'i 71-370* 12 x 10.6 j

Chilldown test (Terminated due to leak; could not get MLI space pressure down.)

Chilldown test (Terminated due to leak; could not get MLI space pressure down.)

Chilldown test (Terminated due to leak; could not get MLI space pressure down.)

Temperaturesin "slush" N2.

Data not yet reduced.

30

72
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Table 1. Summary of Tests Run to Date on Biosample Freezer (2 of 2)

Test

Date

1I11190

11/2/90

11/6/90

11/14/90

11/15/90

11119/90

11121190

11/26/90

11/28/90

11/30/90

12/4/90

12/7/90

12/12/90

Heat Sink or "Slush" N2

Temp. at Start of Test (°F)

Room Temperature

-350*

Chilldown after leak repair

Chilldown after leak repair

-370*

-360* (Repeat of test on 11/15/90)

(Freezer in upright position) -370*

(Freezer in upright position) -370*

(Freezer in upright position) -370*

(Test observed by NASA personnel)

(Freezer in upright position) -370*

(Freezer in upright position) -370*

(Freezer in upright position) -370*

Freezer in upright position) -370*

Minimum Pressure

Obtained (torr)

5x 10-6

5x 10-5 to 1 x 10 -4

(leak)

6x 10-6

(2 to 5) x 10 -6

4x 10-6

(3 to 5) x 106

(1 to 5) x 10-6

(1 to 6) x 10-6

(1 to 5) x 10-6

(1 to 6) x 10-6

(1 to 6) x 10-6

(1 to 10) x 10 -6

Test Duration

(hr)

Pressure checkout only

2 (MLI space pressure

started leaking)

18

92

20

98

52

59

91

71

92

116

* Temperatures in "slush" N 2.

** Data not yet reduced.
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Table 2. Heat Leaks Summary

Test Date

9/7/90

9/21/90

11/15/90

11/19/90

11/21/90

11/26/90

11/28/90

11/30/90

12/4/90

12/7/90

12/12/90

Heat Leak (W)

3.07

4.11

1.68

1.95

1.11

1.03

1.05

1.23

1.01

1.14

1.32

Remarks

.001 in. S.S. diaphragm liner (freezer horizontal)

.001 in. S.S. diaphragm liner (freezer horizontal)

.00025 in. double aluminized Mylar diaphragm liner

(freezer horizontal)

.00025 in. double aluminized Mylar diaphragm liner

(freezer horizontal)

.00025 in. double aluminized Mylar diaphragm liner

(freezer uptight)

.00025 in. double aluminized Mylar diaphragm liner

(freezer uptight)

.00025 in. double aluminized Mylar diaphragm liner

(freezer uptight)

.00025 in. double aluminized Mylar diaphragm liner

(freezer upright)

.00025 in. double aluminized Mylar diaphragm liner

(freezer upright)

.00025 in. double aluminized Mylar diaphragm liner

(freezer upright)

.00025 in. double aluminized Mylar diaphragm liner

(freezer uptight)
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Figure 119. Results of Biosample Freezer Test on 11/30/90, Freezer + LN2 Weight vs. Time
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APPENDIX C

Evaluation and Comparison of Refrigerants for the Vapor Compression Cycles and

Comparison Between Single and Cascade Cycles

(Excerpt from November 1985 Monthly Progress Report, LMSC-HEC PR F042708)

C-I
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COP

Compressor Capacity
Mass flow

The parameters evaluatea are as follows:

Coefficient of Performance

cfm/ton

ib/mln-ton
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• Evaporator Pressure psia

• Condenser Pressure psia

• Power Factor watts/ton

• Toxicity --

The COP is a measure of the refrigeration effect per unit of work required,

and a high COP Indicates a low power requirement. The COP estimated for

each refrigerant is the cycle COP and not an overall system COP; i.e., power

required for fan motors, controls, compressor inefficiencies, etc., are not

included. These auxiliary requirements are not considered important for

comparison purposes. The compressor capacity is the volumetric flow per ton

of refrigeration that the compressor must move. A higher value means a

larger displacement compressor which means larger cylinder volumes or

increased rotational speeds. The mass flow term indicates the mass flow

that must be provided per ton of refrigeration (a ton of refrigeration "

12,000 Btu/hr - 3514 watts). High mass flows could require larger flow

passages in transfer lines and heat exchangers. Low evaporator pressures,

at the required evaporator temperature usually means high specific volume

and larger CFMs for the compressor to move. High condenser pressure is not

desirable from a safety consideration, and requires stronger and heavy, less

efficient condenser construction. The power factor is related to the COP

and is an indication of the cooling effectiveness of the cycle. The

toxicity of the refrigerant is of prime importance for long time use in a

habitable environment. The toxic limits for none of these refrigerants has

been clearly defined for Space Station application.

The toxicity information provided for these refrigerants was taken from

Refs. i, 2, and 3. Reference I provides the Underwriter's Laboratory class-

ification as shown in Fig. i. Reference 2 provides the maxim_u allowable

concentrations shown in Fig. 2. Based on these values the amount of ref-

rigerant allowed was estimated based on the expected volume of the Space

Station. For example, assuming a free volume of about 35,000 ft3 approx-

imately 0.8 ib of Freon 22 can be released without exceeding the maximum

allowable concentration (MAC). A preliminary estimate indicates that about

one-half pound of R-502 would be required to provide approximately 650 watts

of cooling at -20 F with a condenser temperature of 50 F. (R-502 is an

azeotrope of R-22 and R-IIS.) Chemical beds to remove this amount of Freon

from the Space Station atmosphere, in less than seven days, could maintain

the cabin atmosphere below the MAC even in the case of a total loss of ref-

rigerant. Another concern is the reaction of Freons with other elements in

the habitable environment. For example freons react with Lithium Hydroxide

(LiOH) and form new compounds dichloroacetelyene (C2CI 2) and

difloroacetelyene (C2F2). These compounds are toxic to humans and

affect performance and physical well being of primates in concentrations of

0.i to 1 ppm. At 7 ppm C2C12 is i00 percent fatal to monkeys after

seven days of exposure (Ref. 3). Although LiOH may not be in tile Space

Station it is used in the Shuttle ECLS, and could cause a problem when the

Shuttle is docked to tile Station. In summary the toxicity assessment of

heat transfer fluids requires an overall systems evaluation considering the

LOCKHEED-HUNTSVILLE ENGINEERING CENTER
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GROUP DEFINITION .EXAMPLES

I Sulfur Dioxide

Between
4&5

5a

5b

Gases or vapors which, in concentrations of

the order of ½ to I percent for durations of
exposure of the order of 5 minutes, are

lethal or produce serious injury.

Gases or vapors which, in concentrations
of the order of ½ to 1 percent for dura-

tions of exposure of the order of ½ hour,
are lethal or produce serious injury.

Gases or vapors which, in concentrations
of the order of 2 to 2½ percent for dur-

ations of exposure of the order of 1 hour,

are lethal or produce serious injury.

Gases or vapors which, in concentration
of the order of 2 to 2½ percent for
durations of exposure of the order of 2

hours, are lethal or produce serious
injury.

Gases or vapors which appear to classify
as somewhat less toxic than Group 4.

Gases or vapors which are much less toxic
than group 4, but somewhat more toxic
than group 5.

Gases or vapors which are much less toxic

than Group 4, but more toxic than Group 6.

Gases or vapors which available data indi-

cate would classify as either Group 5a or
Group 6.

Gases or vapors which, in concentrations

up to at least about 20 percent by volume

for durations of exposure of the order of
2 hours, do not appear to produce injury.

Ammonia

Methyl formate

Methyl chloride

Methylene
cloride

Refrigerant 113

Refrigerant 11
Refrigerant 22
Carbon dioxide

Refrigerant 500
Refrigerant 502

Ethane

Propane
Butane

Refrigerant 12
Refrigerant 114

Fig. 1 Underwriter's Laboratories Classification of Comparative

Life Hazards of Gases and Vapors
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FREON MAXIMUM ALLOWABLE

CONCENTRATION

(PPM) (Mg/M 3)

12 I00 494.4

21 5 21

22 100 353.6

112 100 834.2

113 50 383

114 I00 702.9

FE 1301 100 608.8

23 100 286.3

AMMONIA 25 17.4

ALLOWABLE MASS**

(LBS)

I 09

0461

777

183

841

1 54

1 34

629

038

(GMS)

492.6

20.92

352.3

831.2

382

700.38

606.6

285.27

17.34

**Based on Volume of 35,188 ft 3
* From Reference 2.

Fig. 2 Maximum Allowable Concentration Limits for 7-Day Exposure

interactions of the fluids with the Station systems and any synergistic

effects of these interactions. Although this evaluation is beyond the scope

of the present analyses, it appears that due to the large volume of the
station and the relatively small amount of Freon required, a vapor com-

pressor system, using Freon as a working fluid, could be designed to operate

safely in the Space Station.

Thermodynamic Cycle Analysis: The results of the comparative analysis of
each of the i0 candidates are shown in Fig. 3. Based on this information

the following candidates were eliminated from further consideration.

• R-13 - high condenser pressure and power factor

• R-23 - high condenser pressure and power factor
• R-142b - flammable

• R-503 - high condenser pressure and power factor
R-504 - high condenser pressure

The effect of lowering the condenser temperature is shown in Fig. 4. This

could be done by providing a lower temperature radiator for heat rejection.

As shown the power requirements can be reduced by a factor of approximately

2 or better. There is also a reduction in compressor capacity but this is

LOCKHEED-HUNTSVILLE ENGINEERING CENTER
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not as significant as the power reduction. Based on this evaluation, R-22

and R-502 are the best choices for these specific applications.

Potential benefits for cascading the cycles were investigated. This is two

simple cycles operating in series. Both cycles can use the same or differ-

ent refrigerants. In this case the same refrigerants were used in both

cycles. The cycles selected can be represented on a pressure enthalpy

diagram as shown in Sketch 1 below:

Sketch i

The temperature differences of i0 F between the Ist stage condensing temp-

erature and the second stage evaporating temperature was selected to allow

heat transfer between the two cycles without using a liquid vapor separa-

tor. The use of a liquid vapor separator would allow fluid mixing of the

first and second stages, eliminating the temperature diffrential between the

second stage evaporator and the first stage condenser. This would, however,

require development of a zero "g" liquid vapor separator.

The first and second stage characteristics for the selected refrigerants are

shown in Fig. 5. The combined system (COP) can be represented as:

(COP) 1 (COP) 2

(COP)s " (COP) 1 + (COP) 2 + 1

LOCKHEED-HUNTSVILLE ENGINEERING CENTER
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(COP)I = ist stage coefficient of performance

(COP) 2 ffi2nd stage coefficient of performance.

And the compressor capacity of the second stage is related to the first

stage by:

i v2 Ahl

C 2 = CI [ i + _i ] vl Ah2

Ah - enthalpy change in the evaporator

v - specific volume at tile compressor inlet

Subscripts: i - Ist stage

2 - 2nd stage.

The combined compressor capacity is the sum of the capacities of the first

and second stage compressor capacities. A comparison of the cascade and

single cycle characteristics is shown in Fig. 6. As shown there, cascade

cycles provides a small reduction in power with an increase in compressor

capacity. For these operating conditions, the slight power savings is not

sufficient to off set the increase in compressor capacity and the increased

complication and weight of the cascade cycle. As will be shown in the

following section, as the condenser temperature is increased the cascade

cycle becomes more attractive.

Computer Model for Thermodynamic Property Generation and Cycle Calculation:

A computer model has been developed to perform single and cascade cycle

analysis of a vapor compression refrigeration system. The analysis shows

that cascade cycle becomes more beneficial at a higher condenser temp-

erature. The computer model has basically two modules. First,

thermodynamic properties are calculated at condenser and evaporator temp-

eratures. Finally, cycle performance parameters are calculated from the

state point enthalples.

The only empirical input of this computer model is the relationship between

saturation pressure, Ps, and temperature, T s. They are related by the
following expression (Ref. 4).

in Ps = A + B/T s + C _n Ts + DT s (i)

where A, B, C, and D are constants to be evaluated from four known state

points.

LOCKHEED-HUNTSVTr,r,_ _WCT_===T_,_ r=_=o
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The enthalpy of evaporation, hfg, is calculated from the

C[auslus-Clapeyron equatlou as follows:

hf = T (Vg-Vf) dps
g s dPs

(2)

where the specific volume of the vapor, Vg, is calculated from the Van der

Waal equation given as:

R_ - a
p -

2
v-b v
g g

(3)

where a = 27R22T 2/(64 P ) (4)
c c

b = RT /8P (5)
c c

The specific volume of liquid, vf, is calculated from a two-degree

polynomlnal given as:

vf = CO +clT + C2 T2

where CO, C1 and C2 are curve fit constants.

(6)

The other thermodynamic relationships used in generating the thermodynamic

properties are as follows:

h - u + pv (7)

u - Cv(T-Tre f) (8)

where Tre f = -40 F

T2
- £n -- (9)

$2-S I Cp T1

hfg
Sfg =

S

(i0)
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h =,h + fg
g

With the help of the above equations, all saturation properties are calcu-
lated.

Cycle Performance Calculation: A single stage vapor compression ref-

rigeration cycle is shown in the Sketch 2.

/

Sketch 2

COP
h3 -h 2

h4-h 3

Accomplished Coolln$
Compressor Work

v3 x Cooling Load

Compressor Capacity - (h 3 _h2)
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,Massflow of refrigerant =

Cooling Load

h -h

3 2

Pressure ratio = PI/P2

C I_ _ Load
Power factor = _oo__n_

COP

A schematic of the cascade cycle and its representation in a

pressure-enthalpy diagram is shown below as Sketch 3.

6

( o.,p,'PsSoF Coml_ressor

Pressure _50_ FF F

Fntbalpy

Sketch 3

COP of the system =
h7-h 6

h8 -h 7 + h8-h 5 (h4-h3)

h3-h2

A comparison of the performance between single stage and cascade vapor com-

pression cycle using R-12 as refrigerant is given in Figs. 7 and 8.
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Evaporator Temperature :-40°F
Refrigerant - R-12

Condenser Cascade Cycle
Temperature Single Interfacing Heat Exchanger AT

Ratio of COP (°F) Stage _T=5°F AT=IO°F _T:!5OF

COP 3.8744 5.0461 4.765 4.512

COP) 50 I 1.302 1.230 1.165COP) single stage

COP 3.381 4.648 4.411 4.196

(COP) 60 I 1.375 1.305 1.241
(COP) single stage

COP 2.96 4.32 4.12 3.934

COP) 70 I 1.459 1.392 1.329COP) single stage

COP 2.619 4.05 3.886 3.727

COP) 80 I 1.546 1.484 1.423COP) single stage

COP 2.314 3.833 3.682 3.541

(COP) 90 I 1.656 1.591 1.530
(COP) single stage

Fig. 7 Comparison of Cycle Performance Parameters Between
Single Stage and Cascade Vapor Compression Cycle
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Description of Various Compressor Types for Application to Space Station

Refrigeration (Excerpt from LMSC-Hsv PR F312427, 15 February 1991

Progress Report
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PROGRESS DURING THE CURRENT REPORTING PERIOD

Comparison of Various Compressor Types and their Potential Application to

Space Station Refrigeration

A study is being performed to compare various generic types of existing compressor designs.

Specifically, the purposes of this study are to answer the following questions.

• What are the various candidate types of compressors?

• How does each type work?

• What are the advantages/disadvantages of each type?

• What is their relative merit for Space Station refrigeration application?

As shown in Figure I, compressors can be divided into two broad groups, intermittent and

continuous. The intermittent, or positive displacement, mode of compression is cyclic in nature, in

LOCKHEED-HUNTSVILLE
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Figure 1. Compressor Types

that a specific volume of gas is ingested, compressed, and discharged before the cycle is repeated.

There are two distinct types of intermittent flow compressors, reciprocating and rotary. As their

name implies, continuou_ compressors deliver a continuous stream of compressed gas. There are

also two types of continuous-mode compressors, dynamic and ejector.

Drivers are usually electric motors, except for portable equipment which use internal combustion

engines. Also, on small reciprocating compressors, unique, linear motors with spring-loaded

pistons and electromagnets and coils are effective.

Positive displacement compressors are more suitable for high compression ratio and low volume

applications, especially the reciprocating type, which can attain compression ratios up to 20 in a

single stage and greater than 200 in multistage designs. The continuous flow dynamic types are

more suitable for high volume and low compression ratio; however, multistage models can attain

compression ratios equivalent to single stage reciprocating type (see Figure 2). Once specific

compression/volume requirements are established, Figure 2 can be used for initial compressor

selection. When all system and special requirements are known, Table 1 can be helpful in final
selection.
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Figure 2. Typical Application Ranges of Compressor Types

Intermittent Mode Compressors

Reciprocating Compressors

These are the most widely used compressors and are generally for lower flow rate applications.

They are well suited for high pressure service, being one of the most efficient of all compressors at

compression ratios above 1.5:1. Reciprocating compressors are single or double acting depending

upon whether compression takes place on one or both sides of the piston. Figures 3, 4, and 5

show typical single stage and multistage reciprocating compressor arrangements. Normally,

reciprocating compressors utilize oil lubrication between the piston and inner cylinder wall. This

serves two purposes: 1) to reduce friction and wear and 2) to help create a seal and reduce "blow

by" of the gas as it is being compressed. However, crosshead type reciprocating compressors are

designed to run oil-free. In the crosshead design, the connecting rod is divided into two sections.

The section which is connected to the piston is mounted in two guide bearings which eliminate side

loads from the piston and inner cylinder walls (see Figure 5). With this arrangement, self

lubricating or dry lubricated materials such as PTFE composites can be used. These designs are

utilized for application where high purity gases are being compressed, or in cases where the gases

may be highly reactive or otherwise incompatible with oil lubrication. These have been designed

for numerous industrial applications and yield both long life and high pressures.

Essentially all reciprocating compressors use intake and exhaust valves of some type.

A third variation of the reciprocating type compressor is shown in Figure 6. This approach is very

well suited to oil-free, or dry-lubricated applications because it has essentially zero side loads

without the need for the crosshead linkage as described above. In this design, a linear motor is

used to move the piston back and forth. It is unique in that it moves the coil rather than the
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Table 1. Compressor Selection Guidelines (1)

Generally
Suitable

Liquid ring,
helical screw

Liquid ring

Nonlubricated

reciprocating

Helical screw

1st Choice

Reciprocating,

sliding vane,

scroll

Centrifugal, axial

Low flow - high

head centrifugal

Conditionally

Suitable

Centrifugal, axial

Helical screw,

centrifugal, axial

Centrifugal,

axial, liquid ring

Centrifugal

2nd Choice

Axial, helical

screw

Helical screw,

liquid ring

Diaphragm

Requires Add.

Investment

Reciprocating,

sliding vane,

high-speed

centrifugal

Reciprocating,

sliding vane,

high-speed

centrifugal

Helical screw

3rd Choice

Centrifugal

Reciprocating
(lubed)

Usually
Unsuitable

Lubed

reciprocating,

sliding vane

Lubed

reciprocating,

high-speed

centrifugal, axial

4th Choice

Liquid ring

Sliding vane,
reciprocating
(non-lubed)

°

°

From Compressors and Expanders, Selection and Application for the Process Industry,

Marcel Debber, Inc.

Volumetric efficiency of a reciprocation compressor may be expressed as

Mass of gas actually compressed and delivered
Vol(eff) =

Mass of gas occupying the piston displacement at inlet pressure
and temperature
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Figure 3. Trunk Type Reciprocating Compressor, Lubricated

_, .', _ _ ,,.,-- ,'.,_-Ar f_.

Figure 4. Three Stage Single -Acting Reciprocating Compressor, Trunk Type (Courtesy of
Ingersoll-Rand)
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Figure 5. Reciprocating Compressor, Nonlubricated, Crosshead Type

COPPER
COLD lIP

BOLTED INTERFACE WITH
REDUNDANT WELD CLOSURE

CLEARANCE SEAL/
GUIDE BEARING

MOTOR COIL

MOTOR IRON MAGNET

DISPLACER/REGENERATOR

GAS/METAL
HEAT EXCHANGER

WELD CLOSURE

/
PISTON.

CENTERING
SPRING

HOLECLILA_ SIEVE/
LOCATION

AC POWER HERMETIC
FEED /HROUGHI21

HEAr SINK
INIERFACE

GUIDE BEARING/
CLEARANCE SEAL

PISTON/COIL

ASSEMBLY

ALTERNATE BOLTED INTERFACE
WITH REDUNDANT WELD CLOSURE

Figure 6. Integral Reciprocating Compressor�Linear Drive Configuration Currently Used in
Stirring Refrigeration Devices (from Magnavox, Mowah, N J)
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magnet, which reduces or eliminates the torque on the moving parts, allowing extremely high

tolerances and low wear on the moving parts. This design is now in high quantity mass

production application.

Rotary Compressors

The several configurations of rotary positive displacement compressors have the following

common features.

1. They impart energy to the gas with an input shaft moving a single or multiple rotating
element.

2. They compress in an intermittent mode.

3. They do not normally use inlet and discharge valves.

The helical and spiral lobe compressors use two intermeshing helical or spiral lobes to compress

gas between the lobes and the rotor chamber of the casing (see Figure 7).

Figure 7. Helical Compressor Rotors

The helical lobe (or screw) compressors can be either dry, using timing gears, or oil-flooded. The

flooding provides cooling, lubrication, and sealing between parts. The male rotor drives the

female through the oil film. The flooded version is less complex than the dry version because of

elimination of timing gears. It also provides a higher volumetric and overall efficiency because the
oil acts as a seal for internal clearances.

The lobe compressor is a clearance type design using timing gears and requiring no lubrication in

the compression chamber. A stage consists of a male and a female rotor each with either one or

two lobes extending from a center hub section (see Figure 8). Compression occurs between the

rotors and around their perimeter as the entrapped gas volume is carded from the inlet to the outlet.

Compression is achieved by the intermeshing and trapping of gas between the male and female

rotors, with the volume of gas being progressively reduced as it is moved from the inlet to the

outlet port.
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Figure 8. Two-Lobe and Single-Lobe Rotors for Rotary, Positive Displacement Compressors

The straight-lobe (or roots) compressor is similar to the helical-lobe but with two untwisted or

straight lobe rotors which intermesh as they rotate (Figure 9). All versions use timing gears to

phase the rotors. Compression is only by backflow from the discharge port and is low, up to 15

psi output in the first stage.

Figure 9.

OI_AFIGE

_NLET

't"
a

OISCHA_E

• L.

INLET b

t
OI_.CHAR C_

Operating Cycle of a Straight Lobe Rotary Compressor (Modified Courtesy of
Ingersoll-Rand)
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Figure 9. Operating Cycle of a Straight Lobe Rotary Compressor (Modified Courtesy of
Ingersoll-Rand)

The sliding-vane, oil injected compressor uses an eccentrically mounted single rotating

element with vanes which are free to move in and out as the rotor rotates (see Figure 10). Gas is

trapped, moved, and compressed as the vane pair moves circumferentially to the discharge post.

Cooling and efficiency depend on injection of liberal quantities of lubricating oil.

¸

Figure 10. An Oil-Flooded, Sliding Vane Rotary Compressor

The liquid piston compressor (or liquid ring pump) uses a single rotor which consists of a set

of forward curved fixed vanes (see Figure 11). The inner area of the rotor contains sealed

openings rotating about a stationary hollow inner core containing the inlet and discharge ports.

The rotor, carrying liquid at the tips of the vanes, turns in an eccentric cylinder which moves in and

out as the rotor turns, forming a liquid piston. Port openings are located to allow gas to enter as

the liquid moves away from center and to be compressed and discharged as rotation progresses.

Scroll compressors are rotary positive displacement compressors whose gas passages are in

various stages of compression at all times, resulting in nearly continuous suction and discharge.

Compression is by interaction of a stationary spiral and an orbiting (not rotating) spiral (see Figure

12). Gas enters the outer openings and discharges at the center port as one of the spirals orbits.

The scroll is inherently more efficient than the piston compressor due to 1) separation and resultant

reduced heat transfer between suction and discharge gases, 2) no need for dynamic suction and

discharge valves, and 3) smoother rotary motion with less vibration and noise. In addition, there

are no seals to wear and cause gas leakage. However, only recently has computer controlled

advanced manufacturing technology overcome complex part geometries and precise tolerance

requirements for cost competitiveness. Oil lubrication is normally required.
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Figure 11. A Sectional and End View of a Liquid Piston Compressor (Courtesy of Nash
Engineering Co.)

Figure 12. Scroll Compressor Cycle

Diaphragm compressors supply pressures intermediate to rotary and piston positive displacement

pumps. They require no oil lubrication in the compression chamber and are applicable where low

flow rates and cool, clean, oil-free compression are desired. Energy is imparted by a diaphragm

which alternately pulls in, compresses, and discharges air. Figure 13 shows the assembly and air

flow of a typical diaphragm compressor by Gast Manufacturing Corp.
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Figure 13. Diaphragm Compressor Assembly and Air Flow

Continuous Mode Compressors

Continuous mode compressors are of two types, ejector and dynamic. Ejectors have no moving

parts and are operated by a motive gas, usually air or steam, which is mixed with the suction gas

(see Figure 14). They are used mainly as vacuum pumps.
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Figure 14. Cross Section of an Ejector (Courtesy of Graham Manufacturing Co., Inc.)

Dynamic compressors transfer energy from a moving set of blades to the gas. They are further

classified as radial, axial, and mixed flow and have the following characteristics.

The radial, or centrifugal, compressor uses an impeller consisting of radial or backward-

leaning blades on a front and rear shroud. Gas is moved between the rotating blades near

the shaft and radially outward, discharging into the stationary diffuser (see Figure 15).

Part of the imparted energy converts to pressure along the blade path while the balance is

velocity at the impeller tip, where it is slowed in the diffuser and converted to pressure.

Axial compressors are characterized by the axial direction of flow and are basically smaller

and significantly more efficient than centrifugal compressors. The rotor consists of

multiple rows of unshrouded blades alternating with stationary blades. A pair of rotating

and stationary blades defines a stage (see Figure 16).

Mixed flow compressors are relatively uncommon except in pipeline booster service. The

energy transfer is the same as for the centrifugal compressor except that the flow path has

both axial and radial components as can be seen from comparison of centrifugal and mixed

flow impeller shapes (see Figure 17).
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T

Figure 15. Cutaway View of a Single-Stage, Single Inlet Centrifugal Compressor with
Closed-Type Impeller

Figure 16. Multistage Single-Flow Axial Compressor
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Centrifugal impeller 60 "_ mixed-llowimpeller 45 ° mixed-Ilowimpeller

Figure 17. Comparison of Radial and Mixed Flow Compressor Impellers

COMPRESSOR SOURCES

Table 2 lists available compressor sources.

BIBLIOGRAPHY

I. Brown, Royce N. Compressors, Selection & Sizing. Houston, TX: Gulf Publishing

Company, Book Division.

2. Rollins, John P., Editor. Compressed Air and Gas Handbook. Englewood Cliffs, NJ:

Prentice Hall, Fifth Edition.

3. Air Compressors, Rotary Vane, Piston, Diaphragm, Roc-R. Gast Manufacturing Corp. P.O.

Box 97, Benton Harbor, MI 49022, Tel: 616-926-6171.

4. "Compressors and Expanders, Selection and Application for the Process Industry."

Encyclopedia of Chemical Processing and Design, Volume 10.

5. Positive Displacement Compressors. American Society of Heating, Refrigerating and Air

Conditioning Engineers, Semi-Annual Meeting, Jan 30 - Feb 2, 1967. American Society of

Heating, Refrigerating and Air-Conditioning Engineers, Inc., 345 East 47th St., NY, NY

10017.

Note: The above sources are not referred to within this report. Descriptions of compressor types

and modes are similar, regardless of source.

LOCKHEED-HUNTSVILLE



Page 16
LMSC-HSV PR F312427
15 February 1991

Table 2. Compressor Sources

NO. Source

1 Ingersol-Rand, Woodcliff Lake, NJ 07657

2 Worthington Operation, Dresser Industries

Inc., Buffalo, NY 14240

3 Joy Manufacturing Co., Ind. Compressor
Group, Pittsburgh, PA 15219

4 Gardner-Denver Industrial Machinery

Div., Quincy, IL 62301

5 Compair Kellog, Inc., Kingston, NH
03848-0159

6 U.S. Air Compressor, Minneapolis, MN
55407

7 Pneumotive, Monroe, LA 71203

8 Gast Manufacturing Corp., Benton
Harbor, MI 49022

9 Rix Industries, Oakland, CA 94608

10 Atlas Copco Industrial Compressors, Inc

11 American Compressors, Charlotte, NC
28217

12 LeRoi Division, Dresser Industries, Inc.,

Sidney, OH 45365

13 Thomas Industries, Sheboygan, WI
53082-0029

Recipro. Rotary Dynamic

X X X

Other

X X X

X X

X X

X X

X X Diaphragm

X

X X X

X X X

X X

X Diaphragm

14 Dresser Clark Division, Dresser

Industries, Inc., Olean, NY 14760

X X

15

16

17

Nash Engineering Co., Norwalk, CT
06856

Graham Manufacturing Co., Inc., Batavia,
NY 14020

Copeland Corp., Wapakonita & West
Union, OH

Ejector

Scroll
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