
NASA Contractor Report

ICASE Report No. 93-53

191513

IC S
PARALLEL SPATIAL DIRECT NUMERICAL SIMULATIONS

ON THE INTEL IPSC/860 HYPERCUBE

Ronald D. Joslin

Mohammad Zubair

NASA Contract No. NAS1-19480

August 1993

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23681-000]

Operated by the Universities Space Research Association

@
National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

I
,,t

Z

uJ

"_Op-
(_. f@

-JOU.

•.J I-- W

)-

e,eZ_

I _ .ta
'_ t.9 ..I k,

Z_Z

t)

O"

O
O"

O

',O

ee_
O

_L

https://ntrs.nasa.gov/search.jsp?R=19940011010 2020-06-16T19:19:02+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42790638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PARALLEL SPATIAL DIRECT NUMERICAL SIMULATIONS

ON THE INTEL IPSC/860 HYPERCUBE

Ronald D. Joslin

NASA Langley Research Center, Hampton, VA 23681

and

Mohammad Zubair 1

Old Dominion University, Norfolk, VA 23529

ABSTRACT

The implementation and performance of a parallel spatial direct numerical simulation

(PSDNS) approach on the Intel iPSC/860 hypercube is documented. The direct numerical
simulation approach is "used to compute spatially evolving disturbances associated with the
laminar-to-turbulent transition in boundary-layer flows. The feasibility of using the PSDNS

on the hypercube to perform transition studies is examined. The results indicate that the
DNS approach can effectively be parallelized on a distributed-memory parallel machine. By
increasing the number of processors, nearly ideal linear speedups are achieved with nonopti-
mized routines; slower than linear speedups are achieved with optimized (machine-dependent

library) routines. This slower than linear speedup results because the FFT routine domi-
nates the computational cost and because the FFT routine indicates less than ideal speedups.
However, with the machine-dependent routines, the total computational cost decreases by a
factor of 4 to 5 compared with standard Fortran routines. The computational cost increases
linearly with spanwise, wall-normal, and streamwise grid refinements. The hypercube with
32 processors was estimated to require approximately twice the amount of Cray supercom-
puter single processor time to complete a comparable simulation; however, it is estimated
that a subgrid-scale model, which reduces the required number of grid points and becomes
a large-eddy simulation (PSLES), would reduce the computational cost and memory re-
quirements by a factor of 10 over the PSDNS. This PSLES implementation would enable
transition simulations on the hypercube at a reasonable computational cost.

1 This research was supported by the National Aeronautics and Space Administration
under NASA Contract No. NAS1-19480 while the second author was in residence at the

Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley

Research Center, Hampton, VA 23681.

1. INTRODUCTION

The state of the three-dimensional boundary-layer flow on the wings and fuselage of an

aircraft determines the viscous drag portion of the total drag of the aircraft. This viscous

drag, which is flow-state dependent, can amount to 40 or 50 percent of the total drag. (See

Bushnell et al., 1977.) Any decrease in the viscous drag can lead to reduced fuel expenditures.

This fuel savings can translate directly into reduced operating costs each year for the industry

in terms of millions (if not billions) of dollars. The flow field on a wing can be in a laminar,

turbulent, or transitional (an intermediate state that indicates transition from a laminar to

a turbulent flow state) state. Because a laminar flow state yields less viscous drag than a

turbulent flow state, laminar flow on the wings is preferable and results in a net fuel savings.

Today, turbulent flows engulf most of the wing area of commercial aircraft. Clearly, any

aircraft manufacturer that successfully designs an aircraft with "laminar flow wings" (i.e.,

wings covered primarily by laminar flow) will have an enormous advantage.

As yet, the transition from laminar to turbulent flow is not completely understood. The

first reasonably comprehensive method for predicting transition was derived from stability

theory, which is the e N method by Smith and Gamberoni (1956) and Van Ingen (1956).

Although the e N method is widely used to predict transition in a broad class of flows, it does

have some limitations: a quasi-parallel boundary layer is assumed; no amplitude information

about the ingested disturbance in the boundary layer is taken into account; and the method

is semiempirical, which requires some foreknowledge of the flow in transition. The true

physical problem involves the ingestion of disturbances that interact in a nonlinear manner

in the later stages of transition and are imbedded in a growing boundary layer. Consequently,

a method that accounts for nonparallel flow and nonlinear interactions is necessary to predict

transition.

Recently, Herbert and Bertolotti (1987) have devised a nonlinear, nonparallel computa-

tional method that is based on the parabolized stability equations (PSE). With some success,

Malik and Li (1992) haveextended the PSE approach to compute crossflowdisturbancesin

swept Hiemenz flow. Validation of this new approach for a broad classof flows will con-

tinue throughout this decade. Before the developmentof this theory, the only approach to

solve the nonparallel, nonlinear boundary-layer transition problem was by direct numerical

simulation (DNS). To date, most studies with DNS have been limited to the temporal for-

mulation, in which a spatially periodic computational domain travels with the disturbance

and the temporal evolution of the disturbance is computed. This method hasenabled the

extension of the simulations into the later stagesof transition (Zang and Hussaini, 1987,

1990;and Laurien and Kleiser, 1989) and has provided a database of qualitative information

that unfortunately lacks the physically realistic spatial representation. Spatial DNS com-

putes spatially evolving disturbances and can provide needed quantitative information about

transition. Progress in spatial DNS has been made by, among others, Danabasoglu et al.

(1990, 1991) for channel flows; Fasel (1976), Spalart (1989), Fasel et al. (1990), Rai and Moin

(1991a, 1991b), Bestek et al. (1992), and Joslin et al. (1992, 1993a) for boundary-layer flows;

and Joslin et al. (1993b) for swept-wing flows. Fora more complete list of accomplishments

in transition prediction with DNS, refer to the reviews by Kleiser and Zang (199t) and Reed

(1993). Enormous speed and memory requirements are necessary for spatial DNS because

of the large domains and intensive computations that are involved.

Machines that can process large amounts of data at faster speeds are in ever increas-

ing demand. Two possibilities exist for achieving high computational speeds: technological

advancements and parallel computations. Technological advancements alone will not pro-

vide the desired computational speed because certain intrinsic physical limitations are being

reached. An important limitation is tlae cycle speed, which is governed by the propagation

speed of the signal in the given media. For example, the Cray 1 (delivered in 1976) had

a cycle time of 12.5 nsec, and the Cray 2 (delivered in 1987) had a cycle time of 4.1 nsec.

Although 11 years elapsed, an improvement of only a factor of 3 in processor speed has been

achieved. Parallel computation is a moreattractive alternate approachbecausethe cost and

sizeof computer componentsdecreaseby an order of magnitude comparedwith Cray-type

supercomputers,with only an incremental decreasein componentspeed.The real advantage

to parallel computing is the increasein computational speedthat occursas the number of

processorsare increased.

A large body of literature coversthe treatment of numerical algorithms for vector and

parallel computers. (SeeOrtega and Voigt, 1988.) In most cases,the numerical treatments

havefocusedon simplified problems. In other cases,algorithms for computationally intensive

kernels in isolation from the entire application have been studied. These studies are all

necessary;however,an efficient schemefor a kernel doesnot necessarilyresult in the efficient

implementation of the whole scientific application. Typically, an entire application consists

of a numberof kernelswith different data-distribution requirements,which necessitatesdata

movement between two kernels. This movementcan considerablydegradethe performance

of the entire application on a parallel machine.

The exploitation of parallelism for real-world computations becomesan even greater

challenge in the absenceof tools that transform sequential codes into parallel codes. A

number of issuesmust be consideredin the implementation of an entire application on a

parallel computer. Someof theseissuesinclude

Data Mapping. The data distribution among the various processors of a parallel ma-

chine is a key factor in the efficiency of a parallel implementation. For many scientific

applications, the optimal data distribution is not obvious and requires experimentation.

Communication Requirement. The choice of the algorithm and the data distri-

butions determines the communication requirements of an application. Two factors are

treated separately: the communication volume and the frequency of communication. Fre-

quent interprocessor communication is not desirable on parallel machines because of the high

communication-setup overheads. On such machines, large messages and infrequent commu-

nication are preferable.

Problem Granularity. For a given number of processors, a problem granularity ex-

ists below which parallelization is not effective. The problem granularity depends on the

hardware and software characteristics of the parallel machine.

Single Node Performance. The efficient implementation of a code on a single node is

important because any improvement in the computational performance on a single processor

will have a multiplicative effect on the overall parallel performance.

In summary, the whole scientific application needs to be implemented carefully to obtain

desirable performance on parallel machines.

Scientific application_ can be clearly categorized according to their suitability for paral-

lel implementation; however, many scientific and engineering applications fall into grey areas

where the suitability of parallelization for the application is not clear. In most cases, the

application must be implemented and tested to determine its suitability for parallel computa-

tions. These applications include a variety of diverse numerical approaches. Some examples

of these applications are: Fischer et al. (1988) and Henderson and Karniadakis (1991), who

discussed the use of spectral element methods to characterize the unsteady Navier-Stokes

equations; Otto (1993), who studied chemical reactions in a computational fluid dynamics

code; Jackson et al. (1991), who studied incompressible turbulence with a temporal DNS

code; and Edison and E_iebacher (1993), who used a fully balanced tridiagonal solver (all

three directions) in a temporal DNS code to study compressible, isotropic turbulence.

The goal of the present research is to modify a spatial DNS approach described by Joslin

et al. (1993a) to perform boundary-layer transition computations on parallel computers. The

suitability of the DNS code for parallelization on a distributed-memory parallel machine, the

Intel iPSC/860, is examined.

4

2. GOVERNING EQUATIONS

To compute the disturbance development, the incompressibleNavier-Stokesequations

are solved. The streamwisedirection is x, the wMl-normal direction is y, and the spanwise

direction is z. A sketch of the computational domain is shown in Fig. 1. Instantaneous ve-

locities u_"= (fi, _, _) and pressure/5 are decomposed into the base components U = (U, V, W)

and P and the disturbance components u = (u, v, w) and p so that

u-(z_,t) = U(z_) + u_(z_,t) and /5(z_,t) = P(z_) + p(z_,t) (1)

where x__= (x, y, z) and t is time.

The base flow is generally the steady-state solution of the Navier-Stokes equations. For

simplicity, this study will use the Blasius similarity profiles for the base flow of a flat-plate

transition problem.

To determine the disturbance component of the instantaneous velocities and the pres-

sure, substitute equation (1) into the Navier-Stokes equations and subtract the base-flow

equations. The resulting unsteady, nonlinear disturbance equations are

0u_
at + (u_u_.V)u_ + (u. V)u_ + (u_u_.v)u = -Vp + 1---_-V2u (2)

- R6. -

and the continuity equation is

V._=0 (3)

Boundary conditions at the wall and in the far field are

u=0 at y=0 and u__0 as y_oc (4)

The equations have been nondimensionalized with respect to the free-stream velocity Uoo,

the kinematic viscosity v, and some length scale at the inflow (e.g., displacement thickness

_*). A Reynolds number can then be defined as R,; = Uo_5*/v.

5

3. NUMERICAL TECHNIQUES

In the streamwisedirection (x-direction), fourth-order central finite differencesare used

for the pressureequation. At boundary and near-boundary nodes,fourth-order differences

are used. For the first and second derivatives in the momentum equations, sixth-order

compact differencesby Lele (1992) are used. At the boundary and near-boundary nodes,

explicit fifth-order finite differences are used. The compact differences lead to tridiagonal

systems, and the central finite differences lead to a pentadiagonal system; both of these

systems can be solved efficiently by an LU-decomposition with the appropriate backward

and forward substitutions.

In the wall-normal direction (y-direction), a Chebyshev series is used to approximate the

disturbance at the Gauss-Lobatto collocation points. Because this series and its associated

spectral operators are defined on [-1, 1] and the physical problem of interest has either a

semi-infinite [0, oc) or a truncated domain [0, ymax], a transformation is employed. Studies

of spectral methods and mapping transformations in unbounded regions have been conducted

by Grosch and Orszag (1977) and Boyd (1989). Here, an algebraic mapping is used:

YmaxSp(1 + _) (2% + Ymax)Y- Ymax%
Y= 2_. + Yma×(1 - y) o_ _ = Ymax(_. + _) (5)

where y C [0, ymax) and _ C [-1, 1]; ymax is the wall-normal distance from the wall to

the far-field boundary in the truncated domain; and sp controls the grid stretching in the

wall-normal direction. The Chebyshev series operators lead to matrix-matrix multiplies.

In the spanwise direction (z-direction), periodicity is assumed, which allows for Fourier

series representations. With the Fourier series, spectral accuracy is obtained in the spanwise

direction, and fast Fourier transforms (FFT), or sine and cosine transforms, may be used for

fast computation of derivatives. The general Fourier series leads to FFT operations, and the

sine and cosine series lead to matrix-matrix multiply operations. For more details on the

spectral methods used here, refer to Canuto et al. (1988).

6

For time marching, a time-splitting procedure was used with implicit second-order

Crank-Nicolson differencing for normal diffusion terms; an explicit third-order three-stage

Runge-Kutta (RK) method wasusedfor the remaining terms. This time-stepping procedure

was used successfullyby Streett and Hussaini (1991) for Taylor-Couette flow simulations.

The pressure is omitted from the momentum equations (2) for the fractional RK stage,

which leads to

0u* 1 V2u_ ,
0-T + (_-*" v)u* + (_. v)u* + (u*. v)v_ - n_:

with boundary conditions

(6a)

u* = u; (6b)

Time is advanced from u rn to the intermediate disturbance velocities u.u*, and u_. are inter-

mediate boundary conditions that will be explained later in this section.

and

A full RK stage is completed by advancing the solution in time from u* to u m+l by

0u-m+a = -Vp m+l (7a)
0t

V.u m+l = 0 (7b)

By taking the divergence of equation (7) and imposing zero divergence of the flow field at

each RK stage, a pressure equation is obtained

v v- +l = X(v. (s)

which is subject to homogeneous Neumann boundary conditions; h_ are time-step sizes in

the RK scheme. This boundary condition is justified in the context of a time-splitting scheme

as discussed by Streett and Hussaini (1991).

Because the pressure equation (8) is an inviscid calculation and involves boundary con-

ditions on the normal component of velocity only, a nonzero tangential velocity component

may arise at the computational boundary at the end of eachfull RK time-step, which is

referred to as a "slip velocity." To correct this problem, intermediate boundary conditions

as described by Streett and Hussaini (1991) and Joslin et al. (1992) are used,which are

given by

h_' "V m h_]_u_. = u_Bc + hy (1 + h--fzr) p,. Vp_m-1h_n_ 1 (9)

where U_c = 0 for a rigid wall and u_Bc = u_o for an inflow or a wall slot condition, evaluated

at the appropriate time in the RK stage.

The solution procedure follows: The intermediate RK velocities u_.* are determined by

solving equation (6). The pressure p,,,+l is found by solving equation (8). Then, the full

RK stage velocities u__m+l -are obtained from equation(7). After the above system is solved

three consecutive times, full time-step velocities result. The three-stage RK time steps given

by Williamson (1980) are {h_,h_,,h_,} = {1/3,5/12,1/4}ht, where the sum of the three RK

time stages equals the full time step (hi).

To obtain the pressure p for the two- and three-dimensional boundary-layer problems,

solutions of the Poisson equation (8) for each RK stage are required. For three-dimensional

simulations with spanwise periodicity assumed, the pressure is determined in transform space,

where the Fourier coefficients are evaluated.

For the two-dimensional problem and the zero-wave-number component of the three-

dimensional problem, the Poisson equation with Neumann boundary conditions is equiva-

lent to the composite solution of a Poisson problem and a Laplace problem with Dirichlet

boundary conditions (Streett and Hussaini, 1991):

V2pl=Ro in r pl=O on cgF (10a)

V2pll=o in F pII=I_.l.pI n on OF (10b)

where p,_ are gradients normal to the boundaries, Ro is the known zero-wave-number Fourier

coefficient of the right side of the pressure equation (8), and INv is the influence matrix.

This boundary condition gives the influence of the right side Ro on the boundary. The

final solution p = pit _ pii satisfies the original problem and the boundary conditions. The

influence-matrix technique is also used for the pressure solver to ensure that the continuity

equation is discretely satisfied. Details of the influence-matrix technique are given by Streett

and Hussaini (1991), Danabasoglu et al. (1991), and Joslin et al. (1992). To form the

influence matrix, a sequence of solutions is first determined for a problem

V2pi=0 in F pi=_i, j on OF (11)

for each discrete boundary point (gj). The *i,j is the Dirac-Delta function defined as _i,j =

1 for i = j and 6i,j = 0 for i 76 j. After the vector of normal gradients pi is computed at all

of the boundary points, these vectors are stored in columns to yield a matrix referred to as

the influence matrix

INF = _ 2 N. (12),Pn,"" ,Pn]

where NB is the number of boundary points minus the corner points. The composed influence

matrix gives the residuals of p as a result of the unit boundary-condition influence. The value

of one boundary condition is temporarily relaxed so that the problem is not overspecified.

This relaxation is accomplished by setting one column of the influence matrix to zero, except

for the boundary point of interest, which is set to unity. The corresponding residual is exactly

zeroed.

Because the gradient, or boundary condition, at one discrete boundary point was relaxed

in the influence-matrix formulation, the desired condition (p, = 0) may not hold at that

boundary point. The desired condition may not hold because the discrete compatibility

relation may not be true for the pure Neumann problem. To regain this boundary condition,

the pressure problem (10) is solved again; this time a nonzero constant (e.g., 0.01) is added

to the right side of equation (10a). A pressure correction _ results. The composite solution

satisfies the boundary conditions at all discrete nodes and consists of a linear combination

9

of p and _. This combination is found by satisfying the equations

alpn + a2pn = 0 on OFi and al + a2 = 1 (13)

The final pressure (p,,+i) is then given by

pm+l=alp+(1-al)_ with al=pn/(Pn--Pn) (14)

In transform space, Poisson equations are solved for the zero-wave-number component;

for the remaining wave numbers , Helmholtz equations are solved. To solve the equations

efficiently, a fast elliptic solver is required. For this purpose, the tensor-product method

described by Lynch et al. (1964) is used. On a nonstaggered grid, this approach was

employed by Danabasogtu et al. (1990, 1991) for the channel problem and by 3oslin et al.

(1992) for the boundary-layer problem.

The discretized equations become

(H.- 2_n)Pn -4- Pn XT : Rn (15)

where Pn are nonzero Fourier coefficients of the desired pressure solution p, Hn are the wall-

normal derivative operators, X T is the transpose of the streamwise central finite-difference

operator, fin = n/3 are spanwise wave-number coefficients of the Fourier series, and Rn are

known Fourier coefficients of the right side of the pressure equation (8).

The following matrix operations determine the wall-normal operators Hn:

Ho = b 2 and Hn = IaaLDDI_ L (16)

where D is a spectral wall-normal derivative operator for the stretched grid, D is the deriva-

tive matrix with the first and last rows set to zero, and 1)2 is the spectral wail-normal second

derivative operator with the boundary conditions contained in the first and last rows. This

modification enforces the homogeneous Neumann boundary conditions required for p on the

10

Gauss-Lobatto grid. The zero-wave-numberequation is solved on Gauss-Lobatto points;

all other wave-numberequations aresolved on Gausspoints. The interpolation matrix IgL

operates on variables at Gauss-Lobatto points and transforms them to Gauss points; the

interpolation matrix Ig z performs the inverse operation. These operators are defined by

Joslin et al. (1993a).

The operator Hn is decomposed into

Hn=QAQ -1 (17)

where A is a diagonal matrix of eigenvalues and Q is the corresponding matrix of eigenvectors.

Temporary matrices are introduced and defined

f_. = Q-lp,, and Gn = Q-IR. (18)

Equations (17) and (18) are substituted into equation (15) to obtain

Apn -t-_)nX T -'_ Gn (19)

Because X T is a fourth-order accurate, pentadiagonal matrix, the LU-decomposition method

is used and provides an efficient method to solve the pressure equation (19). Equation (19)

is used to solve for/>n, which is then used in equation (18) to solve for pn.

The operators Hn, the eigenvalue and eigenvector matrices Q,Q-1,A, the penta-

diagonal operator X T, and the influence matrix I_F are all mesh-dependent matrices and

need to be calculated only once.

Here, disturbances are introduced into the boundary layer by forcing at the inflow

boundary; however, the swept-wing problem of Joslin et al. (1993b) used surface suction

and blowing to introduce disturbances. At the outflow, the buffer-domain technique of

Streett and Macaraeg (1989) is used.

11

4. PARALLEL IMPLEMENTATION OF THE SPATIAL DNS

In this section, the variousdata-distribution options available for implementation in the

three-dimensionalDNS codeon a parallel machineare discussed,and the data distribution

usedin this application is outlined.

4.1 Data Mapping

The DNS code consistsof a number of computationally intensive kernels. Dependent

upon the data mapping, someof these kernels are executed locally on a single processor,

and the rest are executedglobally acrossthe processors.The kernels that are executedlo-

cally do not require communication between processors; kernels that are executed globally

require communication. The major computationally intensive kernels are the matrix-matrix

multiplication, the FFT, the tridiagonal solver, and the pentadiagonal solver. The operation

counts that correspond to the kernels are illustrated in table 1; these operation counts are

for a one-time iteration of the DNS code. Of these major kernels, the matrix-matrix multi-

plication is the most computationally intensive kernel. Hereafter, np denotes the number of

processors on a parallel machine, and n,, nv, and n, denote the number of data items (i.e.,

f

grid points) in the streamwise, wall-normal, and spanwjse directions.

For the three:dimensional problem, three major data mappings exist:

x-mapping. The three-dimensional data are partitioned into n, two-dimensional planes

of n_n_ data items each. The first nx/np planes are mapped to processor p0, the next n,/np

planes are mapped to processor pl, and so on.

y-mapping. The three-dimensional data are partitioned into ny two-dimensional planes

of n_n.. data items each. Tile first ny/np planes are mapped to processor P0, the next ny/np

planes are mapped to processor pl, and so on.

z-mapping. The three-dimensional data are partitioned into n, two-dimensional planes

of nxny data items each. The first n_/np planes are mapped to processor p0, the next n,/np

planes are mapped to processor pl, and so on. An example of this mapping is shown in Fig.

12

2 fornp =4.

As stated earlier, the data mapping determines whether a particular kernel is to be

executed across all processors or executed locally on a single processor. Table 2 shows the

executions of the major kernels for the three data mappings. For the x-mapping, a great deal

of communication is clearly required, which is undesirable. Both the y- and z-mapping are

more desirable than the x-mapping because most of the kernels are executed locally. Because

the operation counts shown in table 1 indicate that the matrix-matrix multiply is higher than

FFT's, the z-mapping should be more efficient than the y-mapping. The z-mapping requires

that one kernel (FFT) be executed globally. Our implementation of the PSDNS code on the

Intel iPSC/860 is based on the z-mapping.

4.2 FFT Implementation

The FFT kernel computes n,n v sequences of discrete Fourier transforms of size n,. The

z-mapping distributes sequences across all processors of the machine. One way to compute

the discrete Fourier transform of these sequences is as follows: first, the transpose is taken

of the three-dimensional data (the resulting distribution is the x-mapping of u), the one-

dimensional FFT algorithm is then executed on sequences of length nz on each processor, the

results are multiplied by a coefficient array, the inverse Fourier transform of the data is then

computed, and, finally, the results are transposed back to the original data distribution. In

this scheme, all global data movement occurs in the transpose step. To keep communication

overheads to a minimum, the transpose operation must be implemented efficiently. The

transpose operation is a complete exchange operation; every node has an equivalent amount

of data to exchange with every other node. The zor algorithm is used to implement this

exchange procedure because it is the optimal procedure on the Intel iPSC/860. The zor

algorithm, which is illustrated in table 3, schedules various exchanges at particular nodes to

avoid link contention. In this scheme at the ith step, a node j sends data to node iXj.

13

5. PSDNS VALIDATION

The evolution of a Tollmien-Schlichting wave in the three-dimensional flow is used to

validate the PSDNS approach. A disturbance with an initial amplitude A ° = 1 x 10 -6 is
1,0

introduced into the boundary layer by a forcing at the inflow for the PSDNS. The inflow

disturbance profiles are obtained with linear stability theory (LST). The parallel-flow as-

sumption is used for comparison with LST. Calculations are made with an inflow Reynolds

number R_. = 900 and frequency w = 0.0774. The PSDNS was computed on a grid of 200

uniformly spaced streamwise nodes (60 nodes per disturbance wavelength), 61 wall-normal

collocation points, and 8 spanwise nodes. The outflow boundary is 121_* from the inflow

boundary, the far-field (or free-stream) boundary is 75(_* from the wall, and the wall-normal

grid-stretching parameter sp is equal to 10. For the time-marching scheme, the disturbance

period is divided into 320 time steps.

Figure 3 shows the streamwise evolution of the computed streamwise (u) and wall-

normal (v) velocity components of PSDNS compared with LST. Very good agreement in

amplitude and phase are found at every spanwise location in the physical domain. (Note,

that the buffer-domain region is nonphysical and that the DNS and LST results are not

expected to agree.)

6. PERFORMANCE OF PSDNS ON INTEL IPSC/860

Although direct simulations of transition involve large computational grids and many

thousands of time steps per simulation, the performance of the PSDNS code can be suffi-

ciently examined for a single time step on smaller grids. The cost and feasibility of a full-scale

simulation can be estimated by using scaling information.

The range of parameters is limited to the capability of the machine. The Intel iPSC/860

hypercube at NASA Langley Research Center has 32 processors, each with 8 megabytes of

memory. Because the single precision is limited to 32-bit words and because simulations of

transition require the computations of small-scale phenomena, all performance test cases are

14

double-precision(64-bit words) computations.

The first sequenceof performancesimulations is computed on a grid of 64 streamwise

points and 41 wall-normal points. Figure 4 showsboth the computational cost (total cost

minus communication) and the communication cost for each processor in CPU secfor a

variation in the spanwisegrid and the number of processors.For a given computational grid,

a decreasein both the computational and communication cost is achievedby increasingthe

number of processors. For this parallel implementation, the communication cost does not

exceed6 percent of the total cost for all grids and variations in the number of processors

that were considered.

Figure 5showsthe relative cost of the major numerical techniquesand showsthe speedup

of eachtechniquewith the numberof processors.As expected,the computational cost break-

down indicates that the majority of the time is spent on matrix-matrix multiply operations

(table 1). The results suggestthat a negligible changeoccurs in the cost contributions from

eachnumerical technique with an increasein the number of processors.The speedupof each

numerical technique as the number of processorsincreasesindicates a nearly ideal linear

speedupfor the matrix-matrix multiply and the tridiagonal solver. Becausematrix-matrix

multiplies account for nearly 80 percent of the total computational cost and becausethe

speedupfor the matrix-matrix multiplies are nearly ideal, the total speedupapproachesa

nearly linear rate. For example, the theoretically ideal speeduprate is 4 with an increase

from 8 to 32 processorsand the speedupof 3.4 was realizedin the total computational cost.

Figure 6 showsthe computational cost and the slowdownfor a spanwisegrid refinement

with 8 processors.Matrix-matrix multiplies dominate the PSDNS cost; matrix-matrix mul-

tiplies and tridiagonal and pentadiagonalsolversslowdown at a faster rate than other major

numerical techniques.For example,the matrix-matrix multiply has a theoretically ideal rate

of slowdownof 8 when n, is increased from 8 to 64. The FFT adds the least additional cost

as the spanwise grid is refined from8 to 64; the FFT results in only an increase of a factor of

15

3.3 in the computational cost. (The ideal slowdownrate is 8, which is undesirablebecause

of the cost increase.)

The relative balancein work loadbetween respectiveprocessorsis an important element

in documenting the PSDNSperformance. Figure 7 showsthe computational and communi-

cation cost for eachstageof the three-stageRunge-Kutta time step for eachprocessorof an

8-processorsimulation on a spanwisegrid of n, = 8. In this figure, the AIMS performance

software showsthe work load for each processorin a separatedisplay area. The lines that

connect the processorareasindicate global communication; the shadedareasindicate the

computational work; the blank spacesbetweenshadedareasindicate idle times. The results

show that all processorsare load balanced,with the exceptionof the first node (node = 0).

For the present combination of numerical techniquesand parallel implementation, this is the

best load balancethat canbe expected. Becauseof the influence-matrix pressuresolverthat

is usedon the first nodeonly, additional work is alwaysrequired on this node. The idle time

amounts to about 20 percent of the total cost for a single time-step advancement.

In the secondseriesof simulations, the matrix-matrix multiply is optimized becauseit

requires over 80 percent of the total computational cost of the PSDNS on the hypercube

(seeFig. 5). For a moreefficient code, the matrix-matrix multiply routine would haveto be

improved (if possible). Instead of a standard Fortran routine, the library routine DGEMM

is usedhere to attempt optimization. The performancesimulations are repeated.

Figure 8 showsthe computational and communication costs with a spanwise grid re-

finement and an increase in the number of processors. In comparison with Fig. 4, the trend

of reduced cost as the number of processors is increased remains the same; however, the

relative communication cost has become significant. Although the quantitative cost of com-

munication is the same as before the new matrix-matrix multiply routine was introduced, the

communication now equals 20 to 30 percent of the total cost because the new matrix-matrix

multiply routine has reduced the total computational cost by a factor of 4 to 5 in comparison

16

with the original code implementation.

Figure 9 shows the relative cost of the numerical techniquesand the speedup of each

technique with the number of processors. With the new matrix-matrix multiply routine,

the major numerical techniques are more balanced in terms of relative work load. The

communication and FFT have comparable relative cost and now dominate over the other

major numerical techniques. The matrix-matrix multiply and the tridiagonal solver both

have nearly ideal speedupsas before; however, the total speedupis only about half of the

ideal rate. This decreasein efficiency occursbecausethe FFT routine is now the dominant

numerical technique and the FFT rate of speedupis not ideal.

Figure 10showsthe numerical cost and the slowdownfor a spanwisegrid refinementwith

eight processors.The numerical techniquesand communicationcost are balanced;however,

communication becomesdominant as the spanwisegrid is refined. The slowdown rate as

spanwisegrid is increasedare the sameasthose for the initial comparison(Fig. 6); however,

the total slowdownrate hasdecreasedsignificantly. Becausethe FFT routine is the dominant

numerical techniqueand becausethe FFT slowdownrate is small, the total rate of slowdown

closely follows the FFT rate. This result is advantageous;it indicates that little additional

cost will result from refinement of the grid in the spanwisedirection.

The present multiprocessorimplementation of the PSDNScanbe evaluated by varying

the number of z - y planes on each processor. For example, the use of eight spanwise grid

points on an eight-processor simulation indicates that each processor performs computations

on a single x - y plane; eight spanwise grid points on a four processor simulation indicates

that each processor performs computations on two z - y planes. Figure 11 shows the cost

for a single z - g plane on each processor compared with the cost of four x - y planes on

each processor. Because FFT and global communication costs increase, cost increases are

incurred in both cases with increased number of processors. Although the FFT technique

and the global communication are both effected by changes in the number of processors for a

17

fixed number of z - g planes on each processor, the costs are constant for all other techniques

(Fig. 11). For four x -y planes on each processor, note the initial drop in the computational

cost from two to four processors.

In the remainder of this section, the streamwise and wall-normal grids will be refined

to determine the cost scalings. The relative cost of the major numerical techniques and

the speedup of each technique with the number of processors are shown in Fig. 12, with a

streamwise grid refinement from nx = 64 to n_ = 128. Decreases in both the computational

and communication costs are achieved by increasing the number of processors. The relative

communication cost accounts for 10 to 30 percent of the total computational cost.

Figure 13 shows the relative numerical cost breakdown for the dominant kernels. The

numerical techniques and the communication are balanced; the FFT routine and commu-

nication dominate the cost. Similar to the speedup rates from the earlier case, the total

rate of speedup (as the number of processors increases) is slower than the ideal speedup rate

because the dominant FFT routine and the communication have speedup rates that are less

than ideal.

Figure 14 shows the computational and communication costs with a spanwise grid vari-

ation. The results show trends similar to the nx = 64 grid shown in Fig. 9. If the spanwise

grid is refined by a factor of four, then a factor-of-three increase in the total computational

cost results.

As in Fig. 11, Fig. 15 shows the cost of the PSDNS with a single z - y plane on each

processor and with four z - y planes per processor. For the single x - y plane on each

processor, the cost increases with the number of processors in use; however, the case with

four x - y planes on each processor results in a decrease in the total computational cost.

This result is encouraging for the performance of large-scale simulations with a large number

of processors.

Figures 6, 10, and 14 show the effect of spanwise grid refinements on the computational

18

and communication costs. Figure 16 showsthat streamwise(x) refinements lead to nearly

linear theoretical increasesin cost; Fig. 17 showsthat wall-normal (y) refinementsalso lead

to nearly ideal linear increasesin computational cost. Although the results in Fig. 16 show

that the matrix-matrix multiplies scalelike n_, the FFT and communication dominate the

cost leading to the total cost scaling like the FFT rate.

7. DISCUSSION

The present performance data for the PSDNS suggest that insufficient core memory is a

limitation of the hypercube. The largest grid that fits on a single node has 128 streamwise,

41 wall-normal, and 4 spanwise points (21,000 total grid points). An attempt to perform

computations with 8 spanwise planes of this same x - y grid failed because of insufficient

memory. Because the code requires about 160 bytes per grid point, the 21,000-point grid

used about 3.4 megabytes of memory; the failed grid required 6.8 megabytes (plus operating

system). The largest grid that could potentially be used for the present PSDNS code has less

than 42,000 grid points on each processor. With the code optimized for the matrix-matrix

multiplies, the total cost for a single time step varied significantly with the grid and the

number of processors in use. To determine if simulations of transition can be undertaken,

the grid requirements must be specified to estimate the computational cost requirements.

The grid resolution is highly dependent on the problem and the numerical techniques. To

estimate the feasibility of using PSDNS on the hypercube, a sample transition problem

computed on a single processor of a Cray-2 supercomputer is used for comparison.

In a recent study, Joslin and Streett (1993b) computed the nonlinear evolution of a

crossflow vortex packet on a swept wing with spatial DNS on the Cray-2. The cost of this

computation amounted to approximately 125 CPU hr with a single processor. The grid

contained 901 chordwise, 61 wall-normal, and 32 spanwise points (1.76 million total points)

which required 36.6 megabytes of core memory. The unsteady computation required 9500

time steps in the time-marching scheme to reach the nonlinear inflectional velocity profile

19

stage,which occurs just prior to the laminar-to-turbulent transition.

Eachx-y plane of the Joslin and Streett (1993b) study contained 55,000 grid points (8.8

megabytes of memory), which is beyond the capability of the present hypercube (8 megabytes

per processor). In this case, the feasibility of using PSDNS has been easily determined by

examining the memory limitation alone. However, if 16 or 32 megabytes of memory per

processor were available transition studies could potentially be conducted on the hypercube.

Then the feasibility of using this parallel computer would rest on the computational cost of

such a simulation.

The temporal cost can be determined based on the previous performance results of a

single time step. Prom data in Figs. 16 and 17, the rates at which computational cost

increases with streamwise and wall-normal grid refinements can be determined at 1.95 and

2.15, respectively. The performance results indicate that a single time step on a grid of 64

streamwise, 41 wall-normal, and 32 spanwise points distributed on 32 processors will cost 3.7

sec for each processor. With the scaling rates, the computation by Joslin and Streett (1993b)

performed on the hypercube is estimated to cost 77 sec for each processor per time step. This

results in a total cost of 206 hr for each processor to achieve the nonlinear inflectional velocity

profile state described by Joslin and Streett (1993b). With the dedicated use of a 32-processor

hypercube with 16 megabytes of memory per processor, a simulation could be completed

in approximately 9 days, which is nearly twice the cost of using a supercomputer. This

comparison is a rough estimate of the total computational cost required for the simulations

because only small grids can be used. On a grid with 64 streamwise, 41 wall-normal, and

32 spanwise points, the computational cost of 3.0 sec resulted on a single processor of a

Cray-Y/MP; the performance was 189 megaflops. For the same grid, the computational cost

on the hypercube resulted in 3.7 sec for each processor and roughly 153 megaflops.

From the estimate, simulations can apparently be performed on the hypercube, provided

that each processor has at least 16 megabytes of memory. Similar to using supcrcomputers,

2O

the hypercube would require a number of days to completea singlesimulation. To decrease

the memory and computer-cost requirements, two basic alternatives can be explored. The

first alternative is an increasein the number of processorsin usefor a given grid; the second

alternative is the reduction of the computational grid size for a given simulation. However,

by decreasingthe sizeof the grid, the PSDNS will not resolvethe smaller scales(subgrid),

which will degradethe results. To capture these small scales with an appropriate model, the

PSDNS approach becomes a large-eddy simulation (LES) code, or PSLES. As discussed and

demonstrated by Piomelli et al. (1990), LES can reduce the computational grid and cost by

an order of magnitude in comparison with DNS. If a subgrid-scale mode could accurately

capture the physics in the boundary-layer flow, then a PSLES on a computational grid of

256 streamwise, 41 wall-normal, and 32 spanwise points, distributed on 32 processors, could

potentially be computed. The cost for a single time step would be 14 see for each processor.

For the swept-wing problem described by Joslin and Streett (1993b), the total computational

cost on this LES grid would amount to 37.5 hr for each processor, or 1.5 days. Although

the PSLES performance scalings are slightly underestimated because additional costs are

involved with this model, PSLES seems plausible, and its use on parallel computers will be

explored in the near future.

8. CONCLUDING REMARKS

The performance of a recently implemented parallel spatial direct numerical simulation

(PSDNS) approach on the Intel iPSC/860 is documented. The PSDNS results are in good

agreement with linear stability theory for a small-amplitude test case, which serves as the

initial validation of the code on the parallel computer. The performance results show nearly

ideal linear speedups, which are achieved by increasing the number of processors. The

computational cost shows nearly theoretical linear increases with streamwise, wall-normal,

and spanwise grid refinements. The results show that the work is well balanced between the

processors (except the first node, which will have approximately 15 to 20 percent larger work

21

load becauseof the numerical techniques employed). Furthermore, a speedup with a factor

of 4 to 5 was obtained by using machine-dependent libraries rather than standard Fortran

routines.

The feasibility of using the PSDNS on the hypercube to compute transitional flows is

assessed. A comparative study with the Cray supercomputer demonstrates that PSDNS

could be used for transition studies on the hypercube, provided that each processor had

16 megabytes of memory. Furthermore, the use of a subgrid-scale model to compute large-

eddy simulations (PSLES) would reduce the computational cost by an order of magnitude

compared with PSDNS. Large-eddy simulations could readily be used to study transition on

the hypercube at a reasonable computational cost.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to Dr. Bart A. Singer, High Technology

Corporation, for reviewing this manuscript. Also, thanks goes to Ms. Jonay A. Campbell,

Mason and Hanger Services Incorporated, for her editorial assistance.

REFERENCES

Bestek, H., Thumm, A., and Fasel, H. F. (1992). Numerical investigation of later stages

of transition in transonic boundary layers. In First European Forum on Laminar Flow

Technology, March 16-18, 1992. Hamburg, Germany.

Boyd, J. P. (1989). Chebyshev-Fourier Spectral Methods. Lecture Notes in Physics, 49,

Springer-Verlag, New York.

Bushnell, D. M., Hefner, J. N., and Ash, R. L. (1977). Effect of compliant wall motion on

turbulent boundary layers, Phys. Fluids, 20(10), s31-48.

Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1988). Spectral Methods in

Fluid Dynamics. Springer-Verlag, New York.

22

Danabasoglu,G., Biringen, S., and Streett, C. L. (1990). Numerical simulation of spatially-

evolving instability control in plane channelflow. AIAA Paper No. 90-1530.

Danabasoglu, G., Biringen, S., and Streett, C. L. (1991). Spatial simulation of instability

control by periodic suction blowing. Phys. Fluids A, 3(9), 2138-2147.

Eidson, T. M., and Erlebacher, G. (1993). Implementation of a fully-balanced periodic tridi-

agonal solver on a parallel distributed memory architecture, (to be submitted for publication

in Concurrency: Practice and Experience).).

Fasel, H. F. (1976). Investigation of the stability of boundary layers by a finite-difference

model of the Navier-Stokes equations. J. Fluid Mech., 78, 355-383.

Fasel, H. F., Rist, U., and Konzelmann, U. (1990). Numerical investigation of the three-

dimensional development in boundary-layer transition. AIAA J., 28(1), 29-37.

Fischer, P. F., Ho, L.-W., Karniadakis, G. E., Ronquist, E. M., and Patera, A. T. (1988).

Recent advances in parallel spectral element simulation of unsteady incompressible flows.

Computers and Structures, 30(1-2), 217-231.

Grosch, C. E., and Orszag, S. A. (1977). Numerical solution of problems in unbounded

regions: coordinate transforms.]. Comput. Phys., 25,273-296.

Henderson, R., and Karniadakis, G. E. (1991). Hybrid spectral-element-low-order methods

for'incompressible flows, J. Sci. Comp., 6(2), 79-99.

Herbert, Th., and Bertolotti, F. P. (1987). Stability analysis of nonparallel boundary layers.

Bull. Am. Phys. Soc., 32, 2079.

Jackson, E., She, Z.-S., and Orszag, S. A. (1991). A case study in parallel computing: I.

Homogeneous turbulence on a hypercube, J. Sci. Comp., 6(1), 27-45.

Joslin, R. D., Streett, C. L., and Chang, C.-L. (1992). Validation of three-dimensional

incompressible spatial direct numerical simulation code-a comparison with linear stability

23

and parabolic stability equationstheoriesfor boundary-layer transition on a flat plate. NA SA

TP-3205, 1992.

Joslin, R. D., Streett, C. L., and Chang, C.-L. (1993a). Spatial DNS of boundary-layer

transition mechanisms: Validation of PSE theory. (accepted for publication in Theor. and

Comp. Fluid Dyn.).

Joslin, R. D. and Streett, C. L. (1993b). The role of stationary crossflow vortices in boundary-

layer transition on swept wings. (submitted for publication in Phys. Fluids A).

Kleiser, L., and Zang, T. A. (1991). Numerical simulation of transition in wall-bounded

shear flows. Ann. Rev. Fluid Mech., 23,495-537.

Laurien, E., and Kleiser, L. 1989). Numerical simulation of boundary-layer transition and

transition control. J. Fluid Mech., 199, 403-440.

Lele, S. K. (1992). Compact finite difference schemes with spectral-like resolution. J. Corn-

put. Phys., 103, I6-42.

Lynch, R. E., Rice, J. R., and Thomas, D. H. (1964). Direct solution of partial difference

equations by tensor product methods. Num. Math., 6, 185-199.

Malik, M. R. and Li, F., Three-dimensional boundary layer stability and transition. Aerotech

'92, Paper No. 921991, 1992.

Ortega, J. M. and Voigt, It. G. (1988). A bibliography on parallel and vector numerical

algorithms. ICASE Interim Report 6.

Otto, J. C. (1993). Parallel execution of a three-dimensional, chemically reacting, Navier-

Stokes code on distributed-memory machines. AIAA Paper 93-3307-CP.

Piomelli, U., Zang, T. A., Speziale, C. G., and Hussaini, M. Y. (1990), On the large-eddy

simulation of transitional wall-bounded flows. Phys. FIui& A, 2(2), 257-265.

24

Rai, M. M., and Moin, P. (1991a). Direct numerical simulation of transition and turbulence

in a spatially-evolving boundary layer. AIAA Paper No. 91-1607.

Rai, M. M., and Moin, P. (1991b). Direct numerical simulation of turbulent flow using

finite-difference schemes. J. Comput. Phys., 96, 15-53.

Reed, H. L. (1993). Progress in transition modelling: Spatial direct numerical simulations.

AGARD-R-793.

Smith, A. M. O., and Gamberoni, N. (1956). Transition, pressure gradients, and stability

theory. Douglas Aircraft Company Report No. ES-_6388.

Spalart, P. R. (1989). Direct numerical study of leading-edge contamination. In Fluid

Dynamic_ of Three-Dimensional Turbulent Shear Flows and Transition, AGARD-CP-438,

5.1-5.13.

Streett, C. L., and Macaraeg, M. G. (1989). Spectral multi-domain for large-scale fluid

dynamic simulations. Int. J. Appl. Numer. Math., 6, 123-140.

Streett, C. L., and Hussaini, M. Y. (1991). A numerical simulation of the appearance of

chaos in finite-length Taylor-Couette flow. Appl. Numer. Math., 7, 41-71.

Van Ingen, J. L. (1956). A suggested semi-empirical method for the calculation of the

boundary-layer transition region. University o/ Delft Report VTH-7_, Department of

Aerospace Engineering, Delft, The Netherlands.

Williamson, .J.H. (1980). Low-storage Runge-Kutta schemes. J. Comput. Phys., 35(1),

48-56.

Zang, T. A., and Hussaini, M. Y. (1987). Numerical simulation of nonlinear interactions in

channel and boundary-layer transition. Nonlinear Wave Interactions in Fluids, 87, 131-145.

Zang, T. A., and Hussaini, IVl. Y. (1990). Multiple paths to subharmonic laminar breakdown

in a boundary layer. Phy.q. Rev. Lett., 64, 641-644.

25

Table 1. Operation Counts for the Major Kernels

Kernel Operation count (oc) Normalization count
= oc/rlx?2yrt z

o(z)MAT-MAT

FFT

TRIDIAG

PENTADIAG

O(n_nyn:log2nz)

)
O(log 2 n_)

o(1)
o(1)

Table 2. Major Kernel Executions With Different Data Mappings

Kernel x-mapping y-mapping z-mapping
MAT-MAT

FFT

TRIDIAG

PENTADIAG

global
local

global

global

global
local

local

local

local

global

local

local

Table 3. Illustration of the zor Scheme for Complete Exchanges

node 0 1 2 3 4 5 6

steps

1 1 0 3 2 5 4 7

2 2 3 0 1 6 7 4

3 3 2 1 0 7 6 5

4 4 5 6 7 0 1 2

5 5 4 7 6 1 0 3

6 6 7 4 5 2 3 0

7 7 6 5 4 3 2 1

7

6

5

4

3

2

1

0

26

y =:=_oo

\
Inflow ...,. .._Outflow

Lx

\

Inflow

IX}

!

J

J

I

I-_- _ i
L_........ _'

r-dBUffer
omain

Outflow
_O

Fig. 1. Computational domain of boundary-layer transition problem.

27

ny

/ /
/

/

/

/

ny

1
!

t
I

P0

m

_2

P1
P,

t'3

n X

Fig. 2. The z-mapping of n_ = 8 spanwise grid onto four-processor machine.

28

xlO -e
2 ' I ' I '

__ DNS Buffer
o LST __

Domain

1

o

U0V 0

-1

U oo

-2 , I , I ,

300 350 400 450

x/_°

Fig. 3. Amplitude growth with downstream distance for a Tollmien-Schlichting

wave with initial amplitude A ° = 1 x 10 -6, Reynolds number R,; = 900, and

frequency co = 0.0774.

29

Comp, sec

8O

60

40

2O

0 I L I _ I ,

0 I0 20 30 40

Comm, sec

5

4

3

2

1

0

0

I ' I ' I '

\
\

_ ""',,%,

%

, I , I , I ,

I0 20 30 40

n,

-O- 8

-O- 16

--A-- 32.

-0- 64

-*- 128

Fig. 4. Computational and communication cost with number of processors (np) for

initial implementation of PSDNS, where n_ = 64 and n_ = 41.

30

Comp, %

100

8O

6O

4O

2O

0

" I ' r-" I ' I ' I "_

5 10 15 20 25 30 35

5,

7"

4

3

2

1

' I ' I ' I ' I ' I.._

/ / Q
//tl/" /I

///i, "/

/// _,
///

i/// //
///

O0 _
./l:/ .ix

--/._ " t I ..-13

./;f" , I , I L I , I ,

5 10 15 20 25 30 35

5,

-0- Total

-O- Comm

--A-- FFT

-0- Mat-Mat

-,- Tridiag

-x- Pentadiag

Fig. 5. Computational-cost breakdown and speedup with number of processors

(np) for initial implementation of PSDNS, where nx = 64, ny = 41, and nz = 64.

' 31

Comp, sec

8O

6O

4O

2O

0

' I ' I ' I '

i/

/
iIt ,,, S_

_t i f

/ ,"

I I I

////4' /

$::g"
--._-I..--_II'-_===F--=_I,

0 20 40 60 80

nlt

8

6

2

0

' I ' I ' J/_" '
I

/

iii II //41'_

/ //
ii jJ

i1_[/, /_"

iii I _--_

, I , I , I ,

0 20 40 60 80

TT,z

-0- Total

-1:3- Comm

-_-

-<>- Mat-Mat

-,- Y_diag

-x- Pentadiag

Fig. 6. Computational-cost breakdown and slowdown with spanwise grid (nz) for

initial implementation of PSDNS, where n_ = 64, n_ = 41, and np = 8.

32

TiHE (msec)

Fig. 7. Computational-cost breakdown for each processor for initial implementation

of PSDNS, where nx = 64, ny = 41, and nz = 8.

33

Comp, sec

15

I0

5

0

"-,,,
oi\'\ ,,.

\ "% "'o

0

, I , 1 L I ,

I0 20 30 40

Comm, sec

5

4

3

2

1

0

i ' I ' I

_kkkkk\ _._,

% \

"- "_'s-.""A......... -A

0 I0 20 30 40

%

-0- 8

-D- 16

-z_- 32

-<>- 64

-*- 128

Fig. 8. Computational and communication cost with number of processors (np) for

optimized PSDNS, where n_ = 64 and ny = 41.

34

I00 _,, ,_,,,,, ,_

Comp, %

80

60

40

20

0 _-l--F-t_;-1--K-r- ;-1-_

5 10 15 20 25 30 35

Y

4

3

2

1

' I ' I ' I ' I ' I/r t

/
/I //

/ /
/ /

/ /

,4;/
I Ill _

i//I il_

/Z /_ /

/._'A.

._ , I , I , I , I ,

5 10 15 20 25 30 35

-0- Total

-D- Comm

-A- FFT

-0- Mat-Mat

-,- Tridiag

-x- PenLadia_

Fig. 9. Computational-cost breakdown and speedup with number of processors

(rip) for optimized PSDNS, where nx = 64 and n v = 41, and n_ = 64.

35

Comp, sec

15

i0

5

0

' I ' I ' I

,e

///J

//
/

/,if/

/

/;_// _._

_""1 , .i , I 1

20 40 60 80

n Z

10

8

6

4

2

0

0 80

' I ' I ' I

//t /El

t,/'/ t///

/_" ///

, I , I , I

20 40 60

_'z

-0- Total

-D- Comm

-&- FFT

-0- Mat-Mat

-,- Tridiag

-x- Pentadiag

Fig. 10. Computational-cost breakdown and slowdown with spanwise grid (nz) for

optimized PSDNS, where nx = 64, n_ = 41, and np = 8.

38

r

comp, sec

4

3

2

1

0

' I ' I ' I ' I ' I '

(3-..... -e -" ""

..... =_
l I t i , I , i , I ,

5 lO 15 20 25 30 35

comp, sec

I0

8

6

4

2

0

' I ' I ' I

- 6>--8 e----

[_--A---=ff___--......-_

=:e===---_: : : ::_

I , I l I , I

0 I0 20 30 4O

n,

-0- 8

-n- 16

-A- 32

-<>- 64
-*- 128

Fig. 11. Computational-cost breakdown for one (top) and four (bottom) ac - y

planes per processor and number of processors (np) for optimized PSDNS, where

nx = 64 and _zy = 41.

37

Comp, sec

15F_, \ -_
li\ \ "-,
_i",.',, ",,

,,,,

0 10 20 30 4.0

5,

5

4

Comm, sec 3

2

1

' I ' I ' I_" '

k

%k

k\\ ,,

\ ,
\ \

r , _-....

t\
I i _I I I , I ,

0 10 20 30 40

5,

%

-0- 8

-rl- 16

-A- 32

-0- 64
-*- 128

Fig. 12. Computational and communication cost with number of processors (np)

for optimized PSDNS, where n_ = 128 and ny = 41.

|
E

i

38

Comp, %

I00

8O

60

4O

2O

0

15

.-.--,--.---,--.--,--.,

20 25 30 35

2.5

2.0

/',,_,-iei.5

T

1.0

' I ' I ' I '

r _.ssf_..-."

0.5 , I , I , I ,

15 20 25 30 35

-0- Total

-0- Comm

--A-- FFT

-0- Mat-Mat

-,- Tridiag

-x- Pentadiag

Fig. 13. Computational-cost breakdown and speedup with number of processors

(np) for optimized PSDNS, where nx = 128, r_y = 41, and nz = 64.

39

20 ' I ' I ' I ' I ' I '

Comp, sec

15

i0

5

0

ff_f_)

fjs/j _l_rj/

l_ _ _..,_ : _

--7-,'*, J, I, ,

5 10 15 20 25 30 35

n z

4 t' I' I' u' /I ',////_/",_
// /'

/ /'

/ / .,_

/ / i, f _,1

r=., 2 - _&" /,,-
ixj'_ ., 11

I/ ./,I

i .Zr _, l. i, l, l,

5 I0 15 20 25 30 35

T'f,z

-0- Total

-[3- Comm

-z_- FFT

-<>- Mat-Mat

-,- Tridiag

-x- Pentadiag

Fig. 14. Computational-cost breakdown and speedup with spanwise grid (nz) for

optimized PSDNS, where nx = 128, ny = 41, and np = 8.

(=

i

4O

8

6

Comp, sec 4

2

0

' I ' I ' i ' I ' I '

, I , I , I , I , I ,

5 10 15 20 25 30 35

20

15

Comp. sec I0

5

' I ' I ' I

Gl,,

"G....e-......... e

, I , ! , I
!

0 5 i0 15 20

%

-0- Total

-El- Comm

-_- FFT

-<>- Mat-Mat

-,- Tridiag

-x- Pentadiag

Fig. 15. Computational-cost breakdown for one (top) and four (bottom) :r-g plains

per processor and number of processors for optimized PSDNS, where nx = 128 and

r_y = 41.

41

Comp, sec

I0

8

6

_

2

0

60

' I ' I ' I _)'

/i,_ w"

11

/s"

/i
11

14"

y//1

sml=mlm z

_, 1 , I , 1 ,

80 I00 120 140

n.

2.0

18

16

... 14

12

1.0

, l , J ' i._' -0- Total
/.4o -O- Comm
I/i

/ /
Illl l_]

Z,/ /..,_ -A- FFT

.,,.'.7.f" -0- Mat-Mat
-.;;/,/,

-,- TrMiag

-x- Pentadiag

,:;;"

I- _', , I..,I I , I ,

60 80 i00 120 140

n,

F

Fig. 16. Computational-cost breakdown and slowdown with streamwise grid refine-

ment for optimized PSDNS, where ny = 41, nz = 32, and np = I6.

42

¢

|

it

15 ' I ' I ' I ' I '

Comp. sec

i0

5

0

-__. _..... ==== -e

•--.=7--7--[--,-I , l

40 50 60 70 80

l

9O

4

3

?

T"_'41 2

' I ' I ' I ' I '

/_>
//

//

//

//
/

lit
t"

/
/

//I/f// .. _ _

dJ__ I , I , I , I ,
1

40 50 60 70 80 90

-0- Total

-0- Comm

-A- FFT

-O- Mat-Mat

-,- Tridiag

-x- Pentadiag

Fig. 17. Computational-cost breakdown and slowdown with streamwise grid refine-

ment for optimized PSDNS, where nx = 64, n, = 32, and r_p = 16.

43

11

Form Approved
REPORT DOCUMENTATION PAGE OMB_o 0,0_0,Sa

PuDhC reoort_ng burden for th_s collection of informauon p_,estJmate_ to average ! hour Oer resOorse, including the t_me for reviewing InstructiOns, _.earch_ng extst*ng data _ource.k

gathering and malnt=inli3g the d4ta ne_¢led, and ¢omDletmg and rev_ew=n 9 the collection of lnformat*on. Send ¢oi_ment$;'¢=_ard_ng this burden e*.tt_ate or any ot_er asDec[of this
coffee,on Of information, including suggestions for reducing thl_ burden, tc Wash,ngtOn Heeld(;luilr_@r_ _ervice% Direftorate _or InfOrm4trOrl Oo_rattons and Regort_, 12 _5 jefferson

Daws H,ghway, Su*te 1204, Arlington, VA 22202-4302. and to the Office of Management and Buclget Pa_rwor* Re¢iuct_On Pro e_ (0704-0188). Wash,ngton, DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORTDATE 3. REPORT TYPE AND DATES COVERED

! Au_;ust 1993 Contractor R#port
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

PARALLEL SPATIAL DIRECT NUMERICAL SIMULATIONS ON THE

INTEL IPSC/860 HYPERCUBE C NASI-19480

B. AUTHOR(S}

Ronald D. Joslin

Mohammad Zubair

7. PERFORMINGORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

%.SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES}

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

WU 505-90-52-01

B. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 93.53

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-191513

ICASE Report No. 93-53

11. SUPPLEMENTARYNOTES

Langley Technical Monitor:

Final Report

Michael F. Card Submitted to Journal of

Scientific Computing

iZa. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 61

12b. DISTRIBUTION CODE

13, ABSTRACT(Maximum 200 words)

The implementation and performance of a parallel spatiaJ direct numerical simulstion (PSDNS) approach on the Intel

iPS¢/860 hypercube is documented, The direct numerical simulation approach is used to compute spatially evolving distur-
bances associated with the laminar-to-turbulent transition in boundary-layer flows. The feasibility of using the PSDNS on
the hypercube to perform transition studies is examined. The results indicate that the direct numerical simulation approach

can efectively be parallelized on & distributed-memory parallel machine. By increasing the number of processors, nearly ideal
linear speedups are achieved with nonoptimized routines; slower than linear speedups are achieved with optimized (machine-
dependent library) routines. This slower than linear speedup results becanse the FFT routine dominstes the computational
cost and because the routine indicates less than ideal speedups. However, with the machine-dependent routines, the total

computational cost decreases by & factor of 4 to 5 compared with standard Fortran routines. The computational cost increases
linearly with spanwise, waJl-normal, and strea.mwise grid refinements. The hypercube with 32 processors w_ estimated to
require ,_pproxlmately twice the &mount of Cray supercomputer single processor time to complete a compar&ble simulation;
how_ever, it is estimated that L subgrid-scale mode], which reduces the required number of grid points and becomes a large-eddy
simulation (PSLES), would reduce the computational cost and memory requirements by a factor of 10 over the PSDNS. This
PSLES implementation would enable transition simulations on the hypercube at a reasonable computational cost.

14. SUBJECTTERMS " '

spatial direct numerical simulations; parallel computing

17. SECURITYCLASSIFICATION 18. SECURITYCLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01 -iB0-SS00

15. NUMBER OF PAGES

45
16. PRICECODE

A03
19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF ABSTRACT

"_t' U.$. GOV£RNMENT PRINTING OrlFlC£: 19_ -711-_4/IM0_1

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z]g-lS
_]gS-t02

National Aeronautics and

Space Administration
Code JIF

Washington, D.C.
20546-0001
Official Business

Penalty for Private Use, $300

POSTMASTER:

BULK RATE

POSTAGE & FEES PAID

NASA

Permit No. G-27

If Undeliverable (Section 158
Postal Manual) Do Not Return

,e

r.

r=e,.

=

=

===--
=

-=

|

==

