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SUMMARY

The VR-7 airfoil was experimentally studied with

and without a leading-edge slat at fixed angles of at-

tack from 0 ° to 30 ° at Re = 200,000 and for unsteady

pitching motions described by a = am + 10° sin(wt).
The models were two dimensional, and the test was

performed in a water tunnel at Ames Research Center.

The unsteady conditions ranged over Re -- 100,000 ---+

250,000, k = 0.001 ---* 0.2, and am = 10 ° --'*

20 ° . Unsteady lift, drag, and pitching-moment mea-

surements were obtained along with fluorescent-dye
flow visualizations. The addition of the slat was found

to delay the static-drag and static-moment stall by about
5 ° and to eliminate completely the development of

a dynamic-stall vortex during unsteady motions that

reached angles as high as 25 ° . In all of the unsteady

cases studied, the slat caused a significant reduction in
the force and moment hysteresis amplitudes. The re-

duced frequency was found to have the greatest effect

on the results, whereas the Reynolds number had little
effect on the behavior of either the basic or the slatted

airfoil. The slat caused a slight drag penalty at low

angles of attack, but generally increased the lift/drag

ratio when averaged over the full cycle of oscillation.

NOMENCLATURE

Ap

c

Cm
k

qc_
Re
t

V_
OL

O_rn

l]

P

planform area of airfoil (span x chord)
chord of basic VR-7 airfoil

drag coefficient, drag/Apq_
lift coefficient, lift/Apqoc

moment coefficient, moment/cApqoc
reduced frequency, wc/2Vo_

dynamic pressure, 2pV_l2
Reynolds number, cVoc/v
time

free-stream velocity

airfoil angle of attack

mean angle of oscillation

fluid kinematic viscosity

fluid density
frequency of oscillation in pitch, rad/sec

INTRODUCTION

The blades of a helicopter rotor in forward flight

must undergo a cyclic change in angle of attack in

order to produce a balanced lift between the advancing
and retreating sides of the rotor disk. An observer

positioned on the rotor hub and looking toward the
tip of the rotor blade would see the blade sinusoidally

oscillating in pitch from a low angle on the advancing

side to a high angle on the retreating side. The demand

for either a higher flight speed or a higher level of

thrust requires that the angle of attack of the blade on

the retreating side must be increased to an even higher

value to provide the needed lift. Because the motion

is unsteady, an increase beyond the static-stall angle

can normally be tolerated before incurring any adverse

effects, thereby enabling an unusually high value of

lift to be exploited. However, at a sufficiently high

angle of attack, a portion of the blade on the retreating

side will experience stall. The stall that occurs in this

unsteady environment is called dynamic stall, and it is

characterized by a sudden increase in the peak loads

as well as by an increase in the hysteresis amplitudes.

Serious attention to the peculiar events character-

istic of unsteady pitching motions beyond the static-
stall angle began with a concern over aerodynamic

damping and stall flutter on rotor blades (ref. 1). It
was found that the associated transient and often severe

loadings on the blade could be charged to the shedding
of intense vorticity (later to be called a dynamic-stall

vortex) from the forward part of the upper surface,

and that the process could be investigated in relatively

simple two-dimensional oscillating airfoil experiments

(ref. 2). These tests have shown that as the vortex

moves over the surface, the center of pressure moves

aft and induces a nose-down pitching moment. As the

vortex moves off the trailing edge, the high lift, drag,

and pitching moment loads reach a peak, and then sud-

denly collapse. These impulsive loads produce vibra-

tions that not only impact the design and fatigue life

of mechanical linkages (ref. 3), but also contribute to

structural problems, and excite resonances that degrade
human performance (ref. 4). Considering the damag-

ing effects that dynamic stall has on both the machine

and its crew, the operational envelope of the helicopter
is limited.

In an effort to quantify the importance of profile

shape on the initiation and extent of unsteady separa-

tion on oscillating airfoils, it was found that although

the shape of the airfoil has some influence on the loads

during light stall, those differences are obscured by

the large (and somewhat similar) hysteresis loops that

occur during deep stall (refs. 5 and 6). This finding

suggested that something more radical than a change
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in profile would be required in order to avoid or even

modify the stall vortex., Numerous informal experi-
ments were performed at the Army Aeroflightdynamics
Directorate, and several candidate approaches proved

to be successful. One of these approaches involved the

addition of a slat to the leading edge of an airfoil that

already had a good rotor performance record (ref. 7).

The new design was based on a VR-7 for the main ele-

ment and a NACA 15320 for the slat. An optimization

code (ref. 8) was used to determine the best relative

orientation of the two elements for achieving the max-

imum stall-free lift in a steady two-dimensional flow.
It was already known from the literature (refs. 9

and 10) that the lift of an airfoil at high angles of at-

tack can be improved by segmenting an airfoil into

multiple elements. The forward segment, or slat, was
originally referred to simply as the additional airfoil

forming the leading edge of the multi-element airfoil.

The explanation (ref. 9) given for the overall improve-

ment in performance obtained with this configuration
was that the slat and the main element reacted to the

others presence in a mutually beneficial way. The slat

relieved the adverse pressure gradient on the nose of
the main element (thereby delaying separation), and the

main element provided a lower pressure region around

the trailing edge of the slat (thereby allowing the slat
to reach higher angles of attack before stalling). A

more recent explanation (ref. 11) credits the slat with

producing most of the vorticity and then shedding it

at a large enough distance above the main element so

that not only are higher convective velocities available

to usher the vorticity downstream, but the retarding in-

fluence of the image system that exists along the upper

surface of the airfoil is greatly reduced.

In an earlier oscillating airfoil experiment involv-

ing the slat (ref. 7), only the main element was instru-

mented. Although the data was sufficient to indicate
the success of the slat in preventing the formation of the

dynamic-stall vortex, the total performance could only

be qualitatively inferred. The purpose of the present

experiment was to determine the dynamic loads (lift,
drag, and pitching moment) on the entire configuration

and to explore a wider range of conditions. Another

objective was to ascertain the applicability of relatively

low-Reynolds-number t_e_stsin a water tunnel for eval-
uating the merits of various high-lift concepts that are

intended for use at high Reynolds numbers. Results

will be presented for the VR-7 airfoil with and without

a leading-edge slat for Re = 100, 000 _ 250, 000 and

a = am + 10°sin(a;t), with am = 10 ° _ 20 ° and
k = 0.001 -_ 0.2.

TEST DESCRIPTION

The Facility and the Model

This experimental study was conducted in the
closed-circuit water tunnel at the Aeroflightdynamics

Laboratory at Ames Research Center (fig. 1). Advan-

tages at this facility are that unsteady loads on the entire
airfoil can be measured, and visualizations of the flow

can be easily obtained.

The test section is 8.3 in. wide, 12 in. high, and

extends 34 in. horizontally. There are removable win-

dows on all four sides. The free-stream velocity of the

water (V_) is determined from the difference in static

pressure between the settling chamber and the test sec-

tion. A honeycomb and several screens are positioned

in the settling chamber to straighten the flow and re-
duce the turbulence intensity to about 0.05% when a

model is not present in the test section. The turbu-

lence intensity can increase by a factor of five when a
stalled airfoil is present in the test section. The tunnel

was operated at an ambient temperature of about 70°E

The model selected for this study was a Boeing-

Vertol VR-7 airfoil (fig. 2). The basic airfoil (that is,
the model without the slat) was two dimensional, hav-

ing a chord length of 4 in. and a span of 8.3 in. To
minimize the moment of inertia of the airfoil, the main

body of the airfoil was made from a lightweight ure-

thane material and the bulk of the stainless steel spar
was concentrated around the quarter-chord pitch axis.
The mean camber line over the aft 5% of the VR-7

airfoil is inclined +3 ° relative to the chord line (offi-

cially designated as -3 ° tab). To insure rigidity, the

thickness of this section was maintained at 0.005c by

incorporating a stainless steel plate (0.020 in. thick)

along the trailing edge of the airfoil.

In the case of the VR-7 airfoil with a leading-

edge slat (fig. 2), a separate VR-7 model was used for

the main element and a NACA 15320 profile was used
for the secondary element. The chord length of the
slat was 10% of that of the main element. The slat

was positioned 0.074c forward, 0.056c downward, and

at a negative angle of attack of 51.5 ° with respect to
the chord line of the main element. The slat and the

attachment ribs were machined from stainless steel as

a single unit and joined to the spar with pins. The slat



andsparassemblyareshownin figure3 alongsidethe
moldusedfor constructingtheVR-7airfoil.

Load Measurements

When installed in the water tunnel, the spar of

the airfoil extended through the test-section windows

and was supported by lift and drag transducers on both

sides (fig. 4). One end of the spar was connected to
an instrumented drive shaft through a torsionally stiff

coupling so that airfoil incidence and pitching moment
could be measured. Frictional moments imparted by

the support bearings and seals were also measured and

later treated as dynamic-load tares. Inertial loads were
assumed to be small because the oscillation frequency

was always less than 1.2 Hz and the urethane/water

density ratio was around 1 (compared to a urethane/air

density ratio of around 980).
The electrical instrumentation consisted of trans-

ducers for the measurement of airfoil incidence, lift

(both sides), drag (both sides), total pitching moment,

and the bearing and seal moments (both sides). After

amplification, these signals were either summed appro-

priately (i.e., both frictional moments subtracted from

the total pitching moment) and displayed on local mon-

itors, or they were transmitted to a remote data acqui-

sition system where they were digitized and ensemble

averaged. Digitizing and averaging operations were
based on two additional signals: a 360/rev pulse train

that was synchronous with _vt, and a 1/rev pulse that

was synchronous with the beginning of each cycle of
oscillation.

In cases involving an airfoil undergoing oscilla-

tions in pitch, the ensemble average of a given un-
steady load was monitored in real time so that the data

acquisition sequence could be terminated at any time.

Although the average was routinely based on 100 cy-
cles of data, this online capability of monitoring the

progress of the averaging process was especially use-

ful when the period of oscillation was long. Oscillation

periods in this experiment ranged from about 0.8 sec
to 166 sec. When the oscillation period was consid-

ered too long (in view of potential errors due to "zero"

drifts), the acquisition was terminated once a given
load was observed to have obtained a desired smooth-

ness. This was a subjective decision and it depended

greatly on the nonperiodic content of the signal.

In cases involving the VR-7 at fixed angles of

attack, the "steady" data were digitized at a rate of

360 samples/see and averaged over a period of 30 sec.

A limited amount of data was obtained for the basic

VR-7 to ascertain the time-dependent nature of the flow

(especially when the airfoil is stalled). For these cases

the data were digitized at a rate of 1000 samples/see

over a period of 10 sec.
In addition to the averaged data being stored for

future processing, the data was automatically reduced

to engineering coefficients and graphically presented in
a familiar format that showed the lift, drag, and mo-

ment loads versus angle of attack. This practice of

immediately displaying the results permitted a timely

evaluation of the data so that any irregularity in the

measurement system could be quickly exposed and cor-

rected. It is estimated that the angle of attack of the
airfoil could be measured with an accuracy of 0.2 ° .

Lift and drag measurements are considered accurate to

0.002 lb and the pitching moments to 0.02 in-lb.

Flow Visualization

The technique for visualizing the flow was based

on the release of a fluorescing dye from an orifice

(0.030-in. diameter) located midspan on the leading

edge of the VR-7 airfoil. The same orifice location
was used for both the basic and slatted airfoils. No

provision was made for releasing dye from the slat in

this experiment. The dye solution was prepared from
Rhodamine 6G and deionized water at a ratio of about

1 mg powder to 800 ml water. This aqueous solu-
tion was carried to the model through a flexible tube
from a reservoir located above the water tunnel and at

a sufficient height to maintain flow at all angles of at-

tack. The dye flowed out from the surface of the airfoil

and mixed with the fluid coming from the stagnation

region. The mixture was then transported downstream

from the leading edge by the fluid in the boundary layer
and wake, thereby enabling the thickness and eventual

separation of the boundary layer to be observed.
The dye appears orange under ordinary room light-

ing, and has a fluorescence emission that is yellow
when the dye is stimulated by light at a shorter wave-

length. Since a dark background offers the best con-
trast with yellow, the rear test-section wail was painted

black and a black pigment was included in the ure-
thane mixture when the VR-7 models were cast. The

dye was stimulated by two sources of light: a Xenon
strobe which emitted a large quantity of radiation in the

ultraviolet range, and an Argon-ion laser which emitted

a majority of its radiation in the green and blue range.



Thestrobecavityhastheshapeof a longtubeso
that the light from theXenongasneededonly to be
baffledto form_sheetof lightwithathicknessof about
1 in. Thelightfromthelaserwascarriedalonganop-
tical fiberandthendirectedontoa mirrorthatwasos-
cillatingatabout120cps.Theslightlydivergingbeam
thatwasreflectedfromthemirrorformedafanof light
with nearlythesamethicknessasthestrobe.In both
cases,the light passedthroughtheuppertest-section
windowandstraightdownontotheairfoilsurface.The
strobewasusedfor thesingle-framerecordingswhich
weremadeonKodakTMY 6053blackandwhitefilm
(ASA400),andthelaserwasusedforthevideorecord-
ings(30frames/sec)onBetacam-formattedfilm.

Theflowvisualizationportionof theexperiment
wasperformedwith thelift anddragbalanceremoved
ontheviewingsideof thetunnel,therebyallowingthe
camerasto sightdowntheaxisof rotationwithoutbe-
ing obstructed.Thepitchingmomentgageremained
activeduringtheflowvisualizations,andthetimehis-
tory of thissignalwassimultaneouslyrecordedwitha
secondvideocamera(fig. 5). A singletimecodewas
recordedon bothvideofilmsso thatimageoverlays
couldbe synchronizedduringa post-testeditingses-
sion.Valuesof either_t (unsteadycase)or a (steady
case) were digitally displayed by light-emitting diodes

that were positioned in the field of view of the camera

looking into the test section.

RESULTS AND DISCUSSION

Both steady and unsteady data were obtained for

the basic and slatted airfoils. A majority of this data
was taken at Re = 200K at ambient temperatures be-
tween 67°F and 70°E For a 4-in.-chord airfoil this

Reynolds number corresponds approximately to a free-

stream velocity of 6.5 ft/sec and a dynamic pressure of
0.28 lb/in 2.

Steady data were obtained over a range of angles

of attack from 0 ° to 30 °. Unsteady data were pri-

marily for airfoil oscillations described by a = 15 ° +

10 ° sin(_vt), with the pitching motion being about the

quarter-chord axis, at reduced frequency k = 0.1. This

value of reduced frequency corresponded to an oscil-

lation frequency of about 0.66 cps. In addition to
these primary conditions, a limited amount of data

was also taken for Reynolds numbers ranging from
100K to 250K, mean angles ranging from 10 ° to 20 °,

and reduced frequencies ranging from 0.001 to 0.2

(tables 1-3). When measurements are taken on a lifting

airfoil in a flow that is confined by tunnel walls, cer-

tain quantities (such as the lift coefficient) are altered

from their free-air values because of blockage and a
distortion of the streamlines. In a closed test section,

blockage has the effect of producing higher velocities

in the region where the airfoil is located. A change

in streamline curvature has the effect of increasing the

"apparent" camber of the airfoil and inducing a higher
angle of attack (ref. 12).

Since the frontal area of the present airfoil at
a = 25 ° is 13.8% of the cross-sectional area of the

test section and since the chord of the airfoil is 33% of

the height of the test section, some amount of blockage
of the flow and distortion of the streamlines around the

airfoil can be expected. However, since the available

methods for determining wall corrections are not ex-

act, the data are presented as measured, without the

introduction of any questionable (and irreversible) al-
terations. This point should be kept in mind when

these data are compared with free-air calculations or
other experimental data, but it is of little concern as

long as the comparisons are limited to cases within

this experiment.

The dynamic pressure, q_, is involved in the cal-

culation of the nondimensional coefficients Ct, Cd, and
Cm. In unsteady flows that involve pitching airfoils,

the average value for q_ may be used as long as the

blockage is small. When the blockage is not small and
the tunnel drive does not have a feedback circuit for

maintaining a constant speed, then the dynamic pres-

sure will vary in concert with changes in the total pres-
sure (which, in turn, are caused by a cyclic variation of

the drag force on the oscillating airfoil). This unsteady
behavior of qoo will be especially significant when the

airfoil oscillates in and out of deep stall. For this rea-

son, it is important that the instantaneous value of qoQ

be used to calculate the load coefficients. If the average

value of qoo is mistakenly used to calculate these co-
efficients, the amount of hysteresis present in the data

will be altered. This feature is particularly evident in

quasi-steady data that includes an a sweep through the

low-angle-of-attack range in which the flow is normally

attached (fig. 6).

A pitching airfoil that goes beyond the static-stall

angle produces an unsteady flow in which separation

and stall can be quite different from that experienced in
steady flow. In both cases separation occurs when the

flow (either laminar or turbulent) encounters an adverse

4



pressuregradientandcanno longerfollow the sur-
faceof theairfoil. However,therelationshipbetween
reversedflow andseparationdependson whetherthe
flow is steadyor unsteady.In steadyflow, thepoint
of reversedflow is coincidentwith thepointof sep-
aration.In unsteadyflow, theentireuppersurfaceof
anairfoil maytemporarilyexperiencereversedflow
withoutanyevidenceof separation.In steadyflow,
thespreadof separationaffectstheforceandmoment
loadsandcharacterizesthestall. Whenstalloccurs,
thereis massiveseparationandall the loadsareaf-
fectedsimultaneously.In unsteadyflow,theeffectsof
separationarenormallyaugmentedsubstantiallybythe
formationandsheddingof avortexovertheuppersur-
face.Duringthefinitetimeit takesfor thevortexto
travelovertheairfoil, thedragandpitchingmoment
rapidlygrowinmagnitude(therebyinitiatingdragand
momentstall)whilethe lift continuesto benefitfrom
the low pressurethataccompaniesthe vortex. It is
not until thevortexleavesthetrailingedgethat the
lift collapses(indicatinglift stall). Thesedistinctions
shouldbe kept in mindwhenreadingthefollowing
discussions.

Basic VR-7 Airfoil

Steady results- The steady results for the basic
VR-7 airfoil show that the loads are linearly dependent

on the angle of attack for o_ < 8 ° (fig. 7). For angles

above 8 ° the lift-curve slope gradually decreases, indi-

cating that the flow is undergoing an increasing amount

of separation from the trailing edge of the airfoil (also
verified in flow visualizations in fig. 8). As the point

of separation moves toward the leading edge, the cen-
ter of pressure moves aft to produce an increasingly

negative (nose down) pitching moment. The abrupt

changes in drag and pitching moment that occur be-
tween a = 18 ° and a = 19 ° signal that the airfoil has

fully stalled. The data obtained from wind tunnel tests
(refs. 6 and 13) at higher Reynolds numbers exhibit
the same linear behavior at low values of a and an

increasingly negative pitching moment up to the point

of stall (fig. 9). The stall angles are different in each
case and the lift collapses more rapidly with angle of

attack as the Reynolds number and Mach number are
increased.

Although these results are referred to as "steady,"

they are actually the average of values taken over a pe-
riod of time. The time histories of these loads (fig. 10)

indicate an abundance of unsteadiness with amplitudes

and frequencies that depend on the angle of attack (or

the scale of the separated flow). The high-frequency

segment that is superimposed on the drag at 0.6-sec

intervals (fig. 10(b)) is due to noise in the drive sys-

tem that is telegraphed along the tunnel walls to the
balance, and should be disregarded. Aside from this,

a cursory examination of the curves reveals that as the

angle of attack increases, the amplitude of the unsteadi-
ness increases, but the frequency decreases.

A dominant frequency (or tone) appears in the

pitching moment at c_ = 0 ° (fig. 10(c)) and is proba-

bly due to vortex shedding from the trailing edge (al-

fernating between the upper and the lower surface, one
clockwise and the next counterclockwise). It can be

reasoned that the moment is the load most sensitive to

this shedding phenomenon since the small alternating

forces that are produced by these vortices are amplified

by virtue of their large distance from the pitch axis (and

hence large moment arm). The shedding frequency is

127 cps, which corresponds to a Strouhal number of
0.74 (based on the projected thickness of the airfoil).
Since the thickness of the wake at the trailing edge of

the airfoil is much less than the projected thickness of

the airfoil, an effective Strouhal number based on the
wake thickness would no doubt be much more compa-

rable to the classical value of 0.21 (ref. 14) reported for

flows past circular cylinders (when shedding occurs,
the wake thickness is nearly equal to the diameter of

the circular cylinder).
Unsteady results- The basic VR-7 airfoil was

tested over a range of Reynolds numbers, reduced fre-

quencies, and mean angles of oscillation. In all cases,
the unsteady motion was sinusoidal in pitch about an

axis passing through the quarter-chord of the airfoil.
The load coefficients Cl, C d, and Cm are calculated

using the chord of the basic airfoil as the reference

length and the instantaneous value of the dynamic pres-
sure. When the results are displayed with a as the

independent variable, a solid curve is used when a is
increasing and a dashed curve is used when a is de-

creasing. When the results are displayed with wt as
the independent variable, the curve begins and ends at

the minimum angle of attack (which is _t = -90 ° or,

equally, wt = 270°).
The effects of Reynolds number were examined

over a range from Re = 100K to Re = 250K (fig. ll).
The reduced frequency of oscillation and the pitch-

ing motion were maintained at k = 0.10 and o =
15 ° + 10° sin(wt). In each case the airfoil stalls, as

evidenced by the sudden and large changes in the drag



and pitchingmomentcurves. The lift curveshows
a broadhysteresisloop,indicatingthatthestallis fol-
lowedbyanextensiveamountof separationthatlingers
throughoutthe"pitch-down"portionof thecycle.Al-
thoughtheresultsmaydiffersomewhatin detail,there
appearsto beno significantdifferencein the curves
overthisrangeof Reynoldsnumbers(fig. 12).

Theeffectsof reducedfrequencywereexamined
overa rangeof k from 0.001 to 0.20 (fig. 13). The

Reynolds number and the pitching motion were main-

tained at Re = 200K and c_ = 15 ° + 10 ° sin(o Jr).

Increasing the reduced frequency caused an increase
in the stall angle of attack, a decrease in the recov-

ery angle of attack, and a broadening of the hystere-

sis amplitude. These extensions of the separated-flow

boundaries and the broadening of the hysteresis loops

are most evident in the lift curves (fig. 14). A feature

that is particularly noticeable at low reduced frequen-

cies is the gradual decrease in the lift-curve slope with

angle of attack during the "pitch-up" portion of the cy-
cle. This decrease in slope is due to the spread of sepa-
rated flow over the upper surface of the airfoil from the

trailing edge. Increasing the reduced frequency delays

this decrease in the lift-curve slope to higher angles of

attack. Increasing the reduced frequency also increases
the damping in pitch (in a positive sense), and causes

an increase in all of the peak loads (lift, drag, and
pitching moment). The damping in pitch is positive
when the Cm vs. c_ curve is traversed in a counter-

clockwise sense (-f Cmdc_ > 0), and indicates that

the airfoil is imparting energy to the surrounding flow.

Another noteworthy feature of the unsteady flow

at all Reynolds numbers is the peculiar distortion in

the lift curve that occurs just before the peak. Visu-

alizations of the flow reveal that this distortion (con-
sisting of several inflections) corresponds to the initial

growth and movement of the dynamic-stall vortex over

the upper surface of the airfoil (fig. 15). A review of

the curves in figure 13 at various reduced frequencies

indicates that the drag is only mildly sensitive to this
event. However, the moment shows a sudden increase

in value followed by a sudden decrease. These rapid

reversals in the moment are due to the changing po-
sition of the stall vortex on the airfoil. The vortex is

initially forward of the pitch axis, hence it produces
a positive increment in the moment. The vortex then

moves aft over the upper surface, thereby producing
an increasingly negative increment in the moment.

The point in the cycle of oscillation when the vor-

tex passes over the pitch axis of the airfoil (the quarter-

chord in the present case) is signaled, approximately,

by two distinct characteristics in the loads: it is pre-
ceded by a positive spike in the moment curve and it
is coincident with a sudden increase in the lift-curve

slope. These are important events because they not

only offer clear evidence that a vortex is present on the

airfoil, but they herald an approaching stall. The asso-

ciated distortion in each load curve is identified by the

middle arrow in figure 15 and is explored more fully in
figure 16 for a range of reduced frequencies. This im-

pending moment-stall condition, marked by rapid flow
separation and the initial movement of the vortex over

the upper surface, is very dependent on the reduced

frequency (fig. 17). The higher the frequency of oscil-

lation (corresponding to higher values of k), the longer

this condition is delayed (corresponding to higher val-
ues of wt). The delay appears to be nearly linear with
_t, which is the same result that was obtained for a

NACA 0012 airfoil in an earlier wind tunnel experi-
ment (ref. 15).

The effects of the mean angle of oscillation were

examined over a range from 10° to 20 ° (fig. 18). The
Reynolds number was fixed at 200K, the reduced fre-

quency at 0.10, and the amplitude of oscillation at 10°.
Increasing the mean angle can be seen to broaden the

hysteresis amplitudes in each of the loads and increase

the level of positive-pitch damping (fig. 19). For all of
the mean angles considered, a common succession of

events occurs during the pitch-up portion of the cycle.
Over a portion of this interval the flow is attached and

the load curves are coincident (independent of mean
angle). This attached segment is followed by the same

distortions in the lift and moment curves prior to stall
that were discussed earlier (recall the sudden increase

in lift-curve slope and the positive spike in the mo-

ment), even though the instantaneous value of do/dr
for this event is substantially different in each case.

VR-7 Airfoil with Slat

Steady results- The steady results for the VR-7
airfoil with slat show that the loads are nowhere lin-

early dependent on the angle of attack (fig. 20). There
are two inflections in the lift curve, one around c_ ----8 °
and the other around a = 21 °. The reason for the first

inflection can be better understood with the help of the

flow visualizations shown in figure 21. There appears

to be a reversal in the growth of the boundary layer



overtheaft portionof theairfoilbetweena -- 5 ° and

a -- 15 °, which implies a reversal in the extent of

trailing-edge separation present on the airfoil. This re-

covery may be due to the energizing effect of the flow

coming from the region between the slat and the main
element. Although the flow over the slat was not visu-

alized, the second inflection may reflect a degradation

in lift on the main element as a result of trailing-edge

separation (quite apparent at a = 20°) followed by
a boost in lift as the slat assumes a more favorable

orientation to the oncoming flow. The lift reaches a
maximum at around c_ = 23 °, and although the drag

and moment have suddenly increased at this angle of

attack, the lift is only modestly degraded as the angle
of attack is increased further.

Unsteady results- The VR-7 airfoil with slat was

tested over the same range of conditions as that used
to test the basic airfoil. The load coefficients C l, C d,

and Cm are calculated using the chord of the basic

airfoil as the reference length (not the length of the

main element plus the slat) and the instantaneous value

of the dynamic pressure.
The effects of Reynolds number were examined

for Re = 100K to Re = 250K (fig. 22). The reduced

frequency of oscillation and the pitching motion were
maintained at k = 0.10 and a = 15 ° + 10° sin(_vt). In

each case the airfoil is observed to execute a complete

cycle of oscillation without any evidence of dynamic

stall. The hysteresis present in all of the load curves is
due to both the unsteady motion of the airfoil (dc_/dt)

and the extent of the separated flow during the cy-

cle of oscillation. Although the results appear to be

qualitatively similar throughout the cycle over the en-

tire Reynolds number range (fig. 23), especially when
c_ < 15 °, there is a noticeable improvement in the lift

and pitching moment (with only positive contributions
to the pitch-damping) at high angles of attack when
Re = 250K.

The effects of reduced frequency were examined

over a range of k from 0.001 to 0.20 (fig. 24). The
Reynolds number and the pitching motion were main-
tained at Re = 200K and a = 15 ° + 10 ° sin(wt). At

the lowest reduced frequency (k = 0.001) the load

curves are essentially free of any hysteresis and are

nearly identical to the static results shown in figure

20. There is some raggedness in the data for a > 23 °

(caused by unsteadiness in the separated portion of the

flow) that is not smoothed out by averaging over only

five cycles of oscillation. At k = 0.005 the lift curve

begins to show some hysteresis. There is also an in-
crease in the lift as the airfoil is pitching up (beginning

at c_ > 13 °) and the inflection at a = 21.5 ° has nearly

vanished. The flow is evidently sufficiently sensitive

to even this modest value of da/dt, with the result be-

ing a measurable delay in the appearance of separation

on the airfoil. Increasing the reduced frequency causes

the hysteresis amplitudes to broaden and the lift-curve

slope to become more linear. Although the maximum
value of lift increases with increasing k, the maximum

value of drag is slightly reduced (fig. 25). As k is in-

creased, the pitching moment experiences a decrease

in the negative peak and an increase in the positive

peak, and the damping becomes more positive.
The effects of the mean angle of oscillation were

examined over a range from 10 ° to 20 ° (fig. 26). The

Reynolds number was fixed at 200K, the reduced fre-

quency at 0.10, and the amplitude of oscillation at 10 °.
Increasing the mean angle of oscillation results in pro-

gressively higher loads on the airfoil (fig. 27). There is
no evidence of a stall vortex; however, the broadening

of the hysteresis loops and the increase in the magni-

tude of the pitching moment at high angles of attack
indicate that a substantial amount of trailing-edge sep-

aration may be present over the airfoil.

Contrast in Performance

For convenience, the results are graphically sum-

marized in figures 28-30 so that any dependence on
k, Re, and C_m can be readily distinguished for the

basic and the slatted cases. In every case, the hys-

teresis amplitudes, as well as the peak values of drag

and pitching moment, have been significantly reduced

by the addition of the slat. The Reynolds number has
little effect on either the basic or the slatted case. The

reduced frequency has the greatest effect, causing large
increases in the hysteresis amplitudes and the peak load

values. Increasing the mean angle does not eliminate

the presence of dynamic stall in the basic case (it still
occurs at about ct = 20°), and it does not provoke the

development of a classical stall vortex in the slatted

case, although the amount of trailing-edge separation
does increase.

The contrast between the basic and slatted air-

foils is typified by the results presented in figure 31,
which are for Re = 200K, k = 0.1, and c_ = 15 ° +

10 ° sin(_zt). The loads are displayed as a function of

wt and the corresponding flow visualizations are shown

at 45-deg intervals, beginning at the minimum angle of



attack(a = 5° when_t = -90°). The dynamic-stall

vortex is clearly evident at wt = 45 ° in the basic case,
and the flow still has not recovered from stall after

reaching wt = 180 °. In the slatted case the boundary

layer appears much thicker, there is no evidence of sep-
arated flow until reaching _ot = 90 °, and reattachment

is already in progress at _t = 180 °.

The forward portion of the main element (just
behind the slat) always appears attached (fig. 31(b)),

indicating that in all likelihood the slat never experi-

ences stall. During the time that the flow is separated

over part of the main element, the viscous layer be-

comes reorganized briefly into several discrete vortices
(wt = 90°), which soon coalesce into a single domi-

nant vortex (_t = 135 °) as they move down the airfoil.

This multiple-vortex organization of the separated flow

has been observed in the past (ref. 16) and seems to

be the result of an instability that is characteristic of

the free-shear layer that is formed between the outer

flow and the reversing flow next to the surface of the
airfoil.

The onset of dynamic stall on the basic VR-7 air-

foil is rather sudden, beginning with a condition of re-

versed flow over a majority of the upper surface (start-

ing at wt = 25 ° in fig. 32(a)). The viscous layer in this
unsteady environment is much thinner than it would be

had the airfoil been at a fixed angle of attack with the

same amount of reversed flow (ref. 16). At roughly

5% chord, the flow moving toward the leading edge

meets with the flow moving away from the leading

edge and causes an enlargement of the viscous layer
(_t = 26°). Within this viscous flow protuberance, the

vorticity (which was generated along the surface, start-

ing at the stagnation point) accumulates until reaching

a stage when it "breaks away" and moves down the
airfoil (wt = 40°).

While the stall vortex is developing near the lead-

ing edge of the basic airfoil (fig. 32(a)), the aft por-
tion separates and appears dominated by a "shear-layer

vortex" (ref. 16). This sequence of events is in clear
contrast to what occurs on the VR-7 airfoil with slat

(fig. 32(b)). In the case of the slatted airfoil, a dynamic-

stall vortex does not appear; however, a similar sepa-
ration and shear-layer vortex does occur over the aft

portion of the main element. Although the region of

trailing-edge separation appears to extend farther into

the outer flow in the basic case (compare wt = 40 ° in

fig. 32(a) with wt = 90 ° in fig. 32(b)), the forward pro-

gression of this region up the airfoil is slightly higher in

the slatted case (fig. 33). The success of the leading-

edge slat in delaying the static stall and suppressing

the dynamic-stall vortex is shown in figure 34. In

the unsteady case, the hysteresis amplitudes and peak
drag and moment loads are significantly reduced by

the slat. This means that the impulsive loads that nor-
mally attend the basic airfoil have been virtually elim-

inated (note especially the comparatively modest vari-
ation along the pitching moment curve). In the static

case, the drag and moment curves indicate that the slat

has produced a much more gentle stall. The slat has

also delayed the onset of static stall by about 5° (at

= 22°), however the peak in the lift curve does not

occur for about another 3° (at c_ = 25 °) where it is

accompanied by another inflection change in both the

drag and pitching moment curves.

Although the streamlined appearance of the airfoil

has been compromised by the addition of the slat, there

seems to be only a slight drag penalty at low angles of

attack (fig. 34). This result was also reported in ref-

erence 17. With regard to lift/drag, the slat offers an
advantage over the basic airfoil for fixed angles of at-

tack when _ > 15 ° (fig. 35). For c_ < 15 ° the lift/drag
is lower for the slatted airfoil because of a loss of lift

on the main element. In the unsteady case (am = 15 °
and k = 0.1), the slatted airfoil has about a 10% ad-

vantage over the basic airfoil if the lift/drag is averaged
over the complete cycle of oscillation. Provided that

the airfoil oscillation ranges over the higher angles of
attack, the lift/drag will be higher with the slat for all

k (fig. 36).

Whereas the results of this study may not contain

certain features found in compressible flows at higher

Reynolds numbers (water is virtually incompressible
and the slat Reynolds number is only about 20K), the

present data are in good agreement with the findings
of an earlier study dealing with the effects of a slat on

dynamic stall (ref. 7). In this earlier study, conducted
in a wind tunnel where the Mach number was 0.19 and

the Reynolds number was 2.5 × 106, the same observa-

tions were made regarding the reduction of hysteresis
amplitudes, peak lift and moment loads, and the stall

vortex. Although there are differences in some details
between the water tunnel and the wind tunnel results,

the effect of the slat is qualitatively the same in both

cases (fig. 37).



CONCLUDING REMARKS

The basic findings of this study were as follows:

1. The addition of a leading-edge slat on a VR-7

airfoil delays the static-drag and static-moment stall by

about 5 ° and eliminates completely the development

of a dynamic-stall vortex during unsteady motions that
reach angles as high as 25 ° .

2. The forward portion of the main element (just

behind the slat) always appeared attached, indicating

that the slat may not have experienced stall for any of
the steady or unsteady conditions studied.

3. The Slat caused a more gradual advance of

trailing-edge separation to occur over the main ele-
ment. The contribution of the slat to the overall static

lift was sufficient to enable the angle of attack to be in-

creased an additional 8 ° before reaching a peak value.

4. The onset of dynamic stall on the basic VR-7

airfoil is sudden, beginning with a condition of re-

versed flow over a majority of the upper surface. At

roughly 5% chord, the flow moving toward the lead-

ing edge meets with the flow moving away from the

leading edge and causes an enlargement of the viscous

layer. Within this viscous flow protuberance, vorticity

accumulates until it "breaks away" and moves down
the airfoil.

5. In every unsteady case studied, the hystere-

sis amplitudes, as well as the peak values of drag and

pitching moment, were significantly reduced by the ad-

dition of the slat. The Reynolds number was found to
have little effect on the results for either the basic or the

slatted airfoil. The reduced frequency had the greatest
effect, causing a large increase in the hysteresis ampli-

tudes and the peak load values. Increasing the mean

angle did not provoke the development of a classical

stall vortex in the slatted case (although the amount of

trailing-edge separation did increase).

6. Although the slat altered the streamlined ap-

pearance of the airfoil, there was only a slight drag

penalty at low angles of attack. At fixed angles of
attack, the slat causes higher values of lift/drag when

a > 15 °. When the motion was unsteady and am >

13 ° , the averaged lift/drag for the slatted airfoil be-

came increasingly higher than that for the basic airfoil
as k increased.

7. The present water tunnel results are qualita-
tively the same as those obtained in an earlier wind

tunnel test at a much higher Reynolds number, and thus

substantiate the former conclusion that the dynamic-

stall vortex on the VR-7 airfoil can be suppressed by

the addition of a leading-edge slat.
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Table1. VR-7steadydataat Re = 200K

Frame

Without slat With slat a, deg

14970 14640 0

14971 14656 2
14972 14644 4

14973 14659 6

14974 14647 8

14975 14662 10

14982 14650 12
14983 14665 14

14984 14653 16

14985 17

14986 14668 18

14987 19
14994 14671 20

14674 21

14995 14677 22

14680 23

14996 14684 24

14997 14687 26

14998 14690 28

14999 14693 30

Table 2. Basic VR-7 time-history data at Re = 200K

Frame a, deg
12059 0

12064 5

12068 10
12077 15

12084 20

12088 25

10



Table3. VR-7unsteadydata

Frame

Without slat With slat Cycles averaged Mean angle Amplitude Re
24883 24542

24885 24560

24887 24633

24890 24522

24900 24616

24901 24620

24906 24624

24908 24626

24913 24635

24915 24638

24923 24731

2493O 24612

14963 24698

100 15 10 100K

100 15 10 150K

100 15 10 200K

100 15 10 250K

5 15 10 200K

15 15 10 200K

50 15 10 200K

100 15 10 200K

100 15 10 200K

100 15 10 200K

100 10 10 200K

100 20 10 200K

5 15 15 200K

0.10

0.10

0.10

0.10

0.001

0.005

0.025

0.05

0.15

0.20

0.10

0.10

0.003

Figure 1. Aeroflightdynamics 8- by 12-in. Water Tunnel.
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Basic VR-7 airfoil

VR-7 airfoil with NACA 15320 slat

Figure 2. VR-7 airfoil with and without leading-edge
slat.

Figure 3. Slat and spar assembly alongside mold for
VR-7 airfoil.
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Figure 6. Consequence of using average q_ instead of the instantaneous value for the basic VR-7 airfoil at

Re = 200K and k = 0.003 with a = 15 ° + 15 ° sin(wt).

14



2

1.5

CI 1

0.5

0

0.8

0.6

Cd 0.4

0.2

0.0

0.1

0.0

Cm -0.1

-0.2

-0.3
0 5 10 15 20 25 30

(x (deg)

Figure 7. Steady data for the basic VR-7 airfoil at Re = 0.2 × 10 6.
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Figure 8. Boundary layer and wake visualization for the basic VR-7 airfoil at Re = 0.2 x 106 with fixed angles
of attack.
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(b) Wind tunnel data (ref. 13) at
Re = 5.T x 106 and Mo_ = 0.30.

Figure 9. Steady data for the basic VR-7 airfoil from wind tunnel tests.
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Figure 10. Time history of loads over 1-sec interval for basic VR-7 airfoil at Re = 0.2 x 10 6 at fixed angles of
attack.
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Figure 10. Continued.
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Figure 11. Reynolds number effects on the basic VR-7 airfoil at k = 0.10 with a = 15° + 10 ° sin(wt),
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Figure 13. Reduced frequency effects on the basic VR-7 airfoil at Re = 200K with c_ = 15 ° + 10 ° sin(cot).
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Figure 21. Boundary layer and wake visualization for the VR-7 airfoil with slat at Re = 0.2 × 106 with fixed

angles of attack.
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Figure 32. Concluded.
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Figure 34. Force and moment comparison between basic and slatted VR-7 airfoils at Re= 200K.
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Figure 35. Lift/drag comparison between basic and slatted VR-7 airfoils at Re = 200K for steady and unsteady

conditions.
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C_m = 10 ° _ 20 ° with c_ = c_m + 10° sin(_t).
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