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ABSTRACT

We investigate the weakly nonlinear evolution of a triad of nearly-neutral modes su-

perimposed on a mixing layer with velocity profile _ =um -{- tanhy. The perturbation

consists of a plane wave and a pair of oblique waves each inclined at approximately 60 ° to

the mean flow direction. Because the evolution occurs on a relatively fast time scale, the

critical layer dynamics dominate the process and the amplitude evolution of the oblique

waves is governed by an integro-difi'erential equation. The long-time solution of this equa-

tion predicts very rapid (exponential of an exponential) amplification and we discuss the

pertinence of this result to vortex pairing phenomena in mixing layers.



I. INTRODUCTION.

Transition to turbulence in unbounded, incompressible mixing layersoccurs in several

stages. The initialinstability,according to most experiments, isprimarily two-dimensional,

an observation consistent with linear stabilitytheory where the largestgrowth rates cor-

respond to plane waves propagating in the mean flow direction. Nonlinearity resultsin

eventual saturation of the linearly most arnplii=iedwave and as this mode tends toward

equilibration,a subharmonic wave having one-half the frequency of the initialdisturbance

makes its appearance (as do higher harmonics). This intriguing phenomenon is observed

in smoke visualizationexperiments and is also apparent from hot-wire signals. It is usu-

ally described as "vortex pairing", i.e.,the initialdisturbance manifests itselfas a row of

vortices and adjacent pairs of vortices begin to ro11around each other, finallycoalescing

into a singlevortex.

The firstexperimental observations of vortex pairing were reported around 1960 and

concerned laminar flows undergoing transition.It was not until the mid 1970s, however,

that interestin the subject greatly expanded because of the firstreports that thisprocess

occurs in turbulent mixing layers,as well, and is a dominant factor contributing to the

downstream growth of the mixing layer.A comprehensive review of these experiments, as

well as the early theoreticaldevelopments, can be found in the survey articleby Ho and

Huerre (1984). The same articlealso discussessome earlyobservations ofthree-dimensional

structures which take the form of counter-rotating vorticeswhose axes are in the direction

of the mean flow. Considerable experimental work has been reported more recently on

the three-dimensional structures, l-luang and Ho (1990), for example, discuss spanwise

wavelength doubling due to merging of the counter-rotating strearnwisevortices.

The present paper is,of course, concerned with the mathematical analysis of these

phenomena. A principalcontribution toward that end iscontained in ideas put forward by

Kelly (1967) who showed that certainfeatures observed in the early stagesof vortex pairing

could be modelled (and in some cases predicted) by studying the resonant interaction of

two disturbances whose wavenumbers are in the ratio 2:1. The shorter wave in Kelly's

analysis was taken to be periodic in space and time (i.e.neutral) whereas the long wave

had, initially,a much smaller amplitude. Its subharmonic instabilitycorresponds to the

onset of pairing. Subsequently, Patna_k et el. (1976) performed numerical simulations of

instabilityin a stratifiedmixing layer and showed that the entire pairing process could

be modelled by following the temporal evolution of two interacting Fourier modes with



wavenumbers related as in Kelly's analysis.

Patnaik et al. discovered by trim and error that the interaction of two such modes was

greatly influenced by the phase relationship between them and in one limit it is very weak

(they termed this a "shredding interaction"). This sensitivity to the relative phase is in

fact a feature of several weakly nonlinear resonant interaction theories and had been noted

earlier in the context of capillary-gravity waves, as pointed out by Collins and Maslowe

(1989). There are some potentially important technological consequences of the foregoing

remarks because they suggest that by forcing the interacting modes with the desired phase

relationship the rate of growth of the mixing layer can be controlled. This has been verified

experimentally by Hussain and Hussain (1989).

The role of the relative phase was emphasized in an extension of Kelly's analysis by

Monkewitz (1988) in which the fundamental mode was taken to be nearly neutral, whereas

the subharmonic was spatially amplified. Even though the analysis is described as weakly

nonlinear, the wavenumber a of the subharmonic was taken to have an imaginary part as in

linear spatial stability theory because the author argues that the amplification factor, -ai,

is too large to be accounted for by introducing a slow scale in the flow direction. Despite

this inconsistency, comparison of some experiments with an "ad hoc" version of the theory

taking into account weakly nonparallel effects shows reasonable qualitative agreement.

We do not believe that this is entirely fortuitous and in the present paper seek to

formulate a rational analysis of resonant triads in a tanh y mixing layer. There are two keys

to overcoming the obstacles cited by Monkewitz. The first is to employ a pair of oblique

waves as the subharmonic so that all modes are neutral or at least nearly-neutral in an

asymptotic sense. The resulting analysis which is related to studies by Wu (1992) of the

Stokes layer and Goldstein and Lee (1992) of the adverse pressure gradient boundary layer

is greatly facilitated in the example of the tanh y mixing layer by the availability of a closed-

form neutral solution. Consequently, we are able to determine explicitly the coefficients

of all terms in our amplitude equations without the need for numerical computation or

long-wave expansions.

The second key is to use an appropriate analysis of the critical layer (a thin layer

centered on the point yc where the phase speed of the interacting waves is equal to the

mean flow velocity) because the critical layer dynamics seem to dominate the evolution

of the flow for a significant distance beyond the region of exponential amplification of the

linearly most unstable wave. This was demonstrated convincingly by Hultgren (1992) who
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employed a quasi-equilibrium nonlinear critical layer analysis downstream of the initial

region of linear instability. In addition, weakly nonparallel effects were taken into account

outside of the critical layer. Excellent agreement was obtained with several experiments

up to the onset of vortex pairing. Briefly, one reason why such favourable comparisons

can be achieved despite the questionable small-amplification assumption in the theory is

that due to the spreading of the mixing layer the wavenumber on a nondimensional basis

increases as the shear layer thickens and it approaches the neutral value near saturation

(an = 1 for a tanh y mixing layer).

An extension of Hultgren's analysis to include resonant interactions would in all like-

lihood lead to the best agreement with the experimental data available to date. However,

because simulating these experiments is not our primary objective, we will employ a pro-

cedure that is appropriate to the early stages of pairing and that will facilitate comparison

with numerical simulations of the Navier-Stokes equations. Specifically, we will employ

what some authors have termed a non-equilibrium critical layer in which the flow evolves

on a relatively fast time scale, i.e., el/4t, where e is an amplitude parameter, rather than

el/2t which would be the slow scale for a nonlinear critical layer (see, e.g., Maslowe (1986)

for a review of critical layer theories). Although a spatial theory using a slow _1/4x scale

would be appropriate for comparison with experiments, most numerical simulations are

based on the temporal theory for reasons of economy. In any case, as shown in Section 5,

our amplitude equations can be converted easily to the spatial case.

Due to the above choice of slow time scale, our critical layer equations can be char-

acterized as unsteady and weakly nonlinear. According to the amplitude equations that

result, the nearly-neutral plane wave will amplify exponentially as in linear theory, but

the oblique mode amplification is governed by an integro-differential equation of the sort

first derived by Hickernell (1984) in the context of a mixing layer on the beta plane. The

asymptotic solution of this equation for very large times is shown in Section 4 to exhibit

exponential of an exponential amplification. Finally, in Section 5, we compare our results

with some numerical simulations and also discuss their possible relevance to experiments.

2. FORMULATION AND OUTER EXPANSION.

We consider the stability of the dimensionless mixing layer profile

_(y) --- um+ tanh y (2.1)
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by adding a small perturbation of O(e), where ¢ << 1 is a dimensionless amplitude param-

eter. The equations of motion can be written

Oq (2.2)
_- + (q- V)q = -Vp

and

V.q=0, (2.3)

where we have supposed the fluid to be inviscid and incompressible. The temporal stability

problem is independent of Urn, the mean velocity in (2.1), so we will set um = 0 until later

in the paper when we discuss the spatial case.

The velocity components q = (_ + _u, ev,¢w) and the perturbation pressure _p are

expanded as follows:

u ---- u (1) -k-_1/4u(2) + C 1/2u(3) + "'"

?3 ___ I)(1) ____1/479(2) 2ff _1/2V(3) -_- ...

w = w (1) -_-51/4w (2) "_ _ 1/2w(3) "_ " ""

(2.4)

(2.5)

(2.6)

and

p = p(1) -4- 61/4p(2) -4- gl/2p(3) -4- "'" • (2.7)

In the linearized problem, perturbations proportional to exp[i(o_x+/3z-act)] are considered

and the y-dependent part of Vl, which we denote _x, satisfies the Rayleigh equation

(2.8)

where _ = (c_2 + 132)1/2.

For the mixing layer profile _ = tanh y, Curle (1956) has found the following neutral

solution of the eigenvalue problem consisting of (2.8) and the boundary conditions that

_1 ---* 0 as y _ +oo:

v--7=sechy, _2=_2+/32=1 and c=0. (2.9)

We employ this basic solution to construct an initial disturbance of the form

v (x) {A2o(T)e lax -Jr g'x20 J" ll, Y)

_* --iax/2"_--
+ {All(T)e ic'z/2 + .alle j.Vx(y) 2cosflz, (2.10)
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where vl is given by (2.9) and T is a slow time scale. The disturbance can be described

as a plane wave plus a subharmonic consisting of two oblique waves of equal amplitude

and equally inclined with respect to the mean flow so that in the spanwise direction we

have a standing wave. The factor of 2 is introduced because it will simplify the subsequent

development to utilize complex exponentials along with the identity 2 cos/3z = exp(i/3z) +

A triad of neutral modes satisfying the resonance conditions exactly could be chosen

according to (2.9) if c_ = 1 for the plane wave and the subharmonic is comprised of the

oblique modes having o_ = 1/2 and/3 = -t-x/'3/2. We depart only slightly from this scheme

by allowing the plane wave to be weakly amplified and set

a = 1 - _1/4_ 1 . (2.11)

From Lin's perturbation formula, the linear growth rate is

= 2-(1-
_" 7r

and it follows that an appropriate slow time scale is T = _1/4t.

The procedure for determining the remaining terms in (2.4) - (2.7) will be outlined

only briefly because the details are straightforward and in many respects parallel the in-

vestigation of Benney (1961). (A principal difference is that Benney employed a steady,

viscous critical layer. This, however, has little effect on the first terms of the outer expan-

sion.) When a pair of oblique waves is included in the basic disturbance, then both u (1)

and w (1) contain terms having first-order poles at the critical point y = 0. For example,

(2.12)= _ Alx cosech y,

(cf. Section 4 of Benney) where we introduce the notation "'trn"(") to mean the term at

O(e("-l)/4) containing the factor exp{i(gx + VZ3rnz)/2}.

The presence of singular terms such as that in (2.12) generates discontinuities in

certain higher-order velocity components and these must be smoothed out by the critical

layer solution. Although the general form of the amplitude equation is determined by the

critical layer, the values of coefficients appearing in those equations must be determined

by matching to the outer cxpansion.

Returning now to the expansions (2.4)- (2.7), at O(e 1/4) the quantity v_2a) satisfies a

nonhomogeneous Rayleigh equation which can be written

_lV_21) =-2OQAllsech y-4iA_lsech2y cosech y, (2.13)
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where£1 is the Rayleigh operator in (2.8) with _ - 1. Because both homogeneous solutions

are known in closed form, the method of variation of parameters can be used to write the

general solution of (2.13) as

= c,1 y+ D I) (y sechy+ sinhy)  IA,, coshy

[ /0 ]+ 2iai 2sech y vlcose& 2yl dyl - (y sech y + sinhy)log(tanh Ivl) ,

where + denotes above and below the critical layer. Imposing the homogeneous boundary

conditions as y --_ -l-cx_ shows that there is a jump in D_ ) which is related to the amplitude

of the oblique waves by

D(2)+ _ D_])- _. 2a,All. (2.15)11

Equations (2.2) and (2.3) can now be used to solve for u_ ), w_ ) and p_21).

We next repeat this procedure for the 0(¢ 1/* ) terms involving the plane wave. The

quantity v_20) satisfies

2 (2)
lv2o = -2alA2osech y -2iA_osech2y cosech y, (2.16)

where 121 again is the Rayleigh operator with _ = 1. Using variation of parameters, we

obtain the same solution as in (2.14) except that the factor 2 in front of the term in

square brackets is absent. Imposing the boundary conditions as y _ 4-00 yields the jump

condition

(2)+_ D_2o)- = 2alA2o. (2.17)2O

It will be seen that matching the jumps in (2.15) and (2.17) to the critical layer

solution derived in the following section will lead to the amplitude equations governing the

temporal evolution of All and A20. Before continuing, however, we will note one procedural

difference compared with Hickernell (1984) and other papers employing non-equilibrium

critical layers. Because an analytical solution was not available for the outer problem, the

jump conditions in these papers were derived from a generalization of the usual adjoint

orthogonality condition in which it is implicit that an outer solution can be found satisfying

the boundary conditions. Here, on the other hand, we employ the procedure described in

Section 3 of Benney and Maslowe (1975) and actually find the outer solution. The two

procedures should lead to the same result for the amplitude equations.
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3. CRITICAL LAYER ANALYSIS.

To obtain evolution equations for A20 and All, we shall now pose an inner expansion

in the critical layer in order to obtain expressions for the jumps. To this end, we introduce

the inner variables Y = e-I/¢y, U = g-114_, V = _-l12_j, W = g-1/4w and P _-- _-lp

inside the critical layer, where it should be recalled that e was the order of magnitude of

the disturbance in the outer expansion, so that the governing equations become

UT + UUx + VUy + WUz + e-1/2 Px = 0

VT + + VVv + + Py =0

WT "J- UWz ']- VWy "[- WWz "_ _-1/2 p: = 0

u,,+yy+W =0.

(3.1)

(3.9)

(3.3)

(3.4)

The form of the outer solution written in the inner variables suggests that the inner

expansion is of the form

U = Y + _1/2U2 + _3/4U3 + eU,, + ...

V = _1/2V2 + eS/4Vs + eV4 +...

W = _1/2W2 + _3/4Ws + _W4 +...

P = Po + sl/4p1 + _1/2p2 + cS/4Ps + eP4 +'".

(3.5)

(3.6)

(3.7)

(3.s)

Substituting this expansion into the governing equations, collecting powers of _ and

grouping terms with the same x dependence, we arrive at a series of equations of the form

.nY

Cr + "-_-¢ = X(Y,T) (3.9)

which have solutions of the form

) niY
¢ = x(Y, To)e--_(To-r)dT o.

oo

(3.10)

We will also need to calculate the jumps in several quantities across the critical layer with,

//for example, the jump in ¢ given by CydY; when we come to do this, it should be

recalled from the definition of the Fourier transform that, for real a # 0,

? ciaYT d Y 2_o_ = -_[ 6( T).



rr(0 to mean the term at O (_U4)For the inner expansion, we shall use the notation ,_,,,,n

accompanyingexp(is (rex+ _V_Z)/2);inwhatfollows,wewillonlygivethetermscor-
respondingto non-negative m and n, with the remaining terms following from symmetry:

for example, U (2) rr (2)* Additionally, only those terms necessary to evaluate the jumps--2,0 = "-'20 "

will be determined.

3.1 O($1/2 ) terms.

At this order, we find that, in addition to both the two-dimensional and the oblique waves,

there is a non-zero component of the mean flow present in the x-direction, U_ 2) = -YZ/3,

wi_hVoW:_=WYo_- o.
For the two-dimensional wave, we find that U_ ) = W2(o2) = 0 and V2(o2) = A20, with

the relevant pressure terms given by

e_(°)=i&0 (3.11)

e_0_)= ic_)(_) (3.12)
t II

p(22o) iA2°y2 A2oY + 3iA2 o + io_1C_2o)(_) + iC_3o )('4-) 9n (2)(+)' (3.13)
= - 2 - "---20 •

Since P(_) and p(2) must be continuous, this tells us that °(2)(+)--20 -- Ci_ )(-) -- C_ 2)

2in(2)(+1' = C_ao)(-> 9;n(2)(-)'and C_ 3)(+)+ "-'20 +-°'-'so •

For the oblique waves, we find that ]I1(2)= AI: and that U_I2) satisfies

U(2) iY rr(2) 3_,,T + _-'_11 = -_All

with solution U_) = -_ _
An (To )e _(T°-T) dTo

and w(2) = A11(To)e-_-(T°-T)dTo (3.15)
"' 11 --- -- ¢¢

(3.14)

with the relevant pressure terms given by

pl(0)-iAl_
2

ic_p(+)
P_I)= 2

and 1:'(21) - iAnY:
4

(3.16)

(3.17)

, ,, . ,-,(2)(+) .,-,(s)(+)
An Y + 6iAn + Z°fl__11 .-I- ZlJll 9D(2)(+)' (3.18)

2 2 "_" 11 "

(1) _(2)(+) C_ )(-)- C_ ) andSince Pll and P_) must be continuous, this tells us that V:l =

C(3)(+) a;n(2)(+)' _ ,,_(a)(-) 4iD_)(-)'11 nU -_"_ 11 -- Vll nU

9



3.2 O (e 3/4) terms.

At this order, only the exp(iax) terms and the exp (itr (x -4- v_z)/2) terms need to be

calculated. For the two-dimensional wave, we find that U(03) = W2(03) = 0 and that V(: ) =

c__-_,A20(T)
For the oblique waves, we find that V(_ ) = C_ ) -a,An/4 and that

r_i(_)_iY_(_) vq_A. _c_) i_xru_)
1,T + 2 "'11 ---- 4 + _ 2V_

_ v_C_ ) v_oq [T A'n(To)e_(T°-T)dTo
4 4 J_

(3.19)

which has a solution

_ ,/5 ff
O0

+ v_oq fr__ ' T(To-T)dTo '4 (To - T)An(To)e 'r (3.20)

and that

ll,YT + 2 "I_'Y - 2 + 2 + 2

= -_ C_)(To)e_(T°-T)dTo

4 _ oo All(T°)e_tT°-T)dT°dT1
(3.21)

which has a solution

= _3jf C_)(To)_÷(n_T)aT°4

3cq __T4 (To - T)A'll(To)e_(T°-T)dTo
O0

(3.22)

so that U(_ ) + v/'3WI(_ ) = 0.

3.3 0 (e) terms.

It is at this order that we shall evaluate the jumps necessary to obtain the evolution

equations. For the two-dimensional wave, from the outer, we know that as Y --* +oo,

! I

U(_ ) + ia2o(T)Y ": 2A2olog l Y l +A_o + 2iD(2o )(±) + O (Y -1)

10



so that

We find that U(4) satisfies

1 (D_)(+) - D_2o)(-))A2o - 2_tl

' )-- 4ial oo It 2O,Y -_7A2o •
(3.23)

(o ) _¢') iP¢_) e<') ..,(_),,(2) _ 2A,,_!y,._-_ -t- iV 20,Y = - 20,Y -_- iO_l 20,Y - LiZUll Ull,Y

= - - All (To)A11 (T2)e _ (To+ ms-2T) dTo dm_ dm2
O0 O0 O0

?? "- 4 o_ A'I(T)AH(T°)e_(T°-T)dT°dT_dT2

t

+ A2o(T)Y + iA2o(T) (3.24)

so that

U (4):o,Y + iA2o

A2o -

--S oo.,-_ -t- 3TTo - T2o + 3TT1 - ToT1 - T2)A,,(To)A,,(T,)e_(T°+T'-2T)dTo tiT,

T ,

+2i i-o= A2°(T°)eiY(T°-T)dT°

/o/o_ 3 o= (_-o2 + 3vo_'_ + 37"_)All(To)A_l(T1)e-_O'°+2")drodv_
8

LOO t
+2i A2o( T - %)e-iY_'odTo. (3.25)

The jump in (U_)(Y, T) + iA2oY) across the critical layer tells us that

1 i; (U(4) )4ial o_ t, :o,Y + iA:o •

i_L=i:_ 3i oo (v 2 + 3roy, + 3vl2)A,i(T- % - r,)A,,(T- r,)e-'_-("°+2")drodr, dY
3231 oo

'l_=io='+ _ _ A2°(T - ro)e-iY_'OdrodY

Iolo_ 3i7r _ (_ (7-o .4- 2-rl) (To2 +3roTi+3r_)All(T-To-vl)Aii(T-vl)drod_'l
1631

/o71" t

+ -- b (%) A2o(T - To)alTo
Ct 1

71" J

- 2c_l A2°(T)'

11



and henceone equation is

A2o - _-_a A2o = 0.

Likewise, for the oblique waves, from the outer, we know that as Y ---, =koo,

(3.26)

t I

U_ ) + v_W(_ ) + 2iA1, Y "." 8All log[Y[+4A11 +4iDOl )('4") + O (y-l),

so that

Axx -- 2al

-- 8ial ¢¢ _, ll,Y -_- + dY.
(3.27)

We find that

= -- 2A2o(T)UII,Y Y - All(T)U_o,y Y
I

= YAh(T) + 2iAn(T )

;?- -4 o_ oo oo A2°(T)A*_I(T°)e_(-T°+T)dT°dTldT2

so that

ll,Y + q-

T

-4i f A', (To)  (ro-r)aTo

8 oo oo(T° - T_)2A2o(Tx)A_I(To)e_(-%+2T_-T)dTodT_

_0 °° ' iYyo
= 4i Alx(T - vo)e _ dro

3 o_ r2A20( T - rl)A_I(T - _'1 - vo)e__2("o-"Ddvodvl •-g

The jump in (U_'(Y,T) + x/3W(_)(Y,T) + 2iAlaY)

(3.2s)

across the critical layer tells us that

12



1-- _Ull,r +All 8ial oo

1 /__fo_ ' to)e- _ drodY
- Aii(T -

•3i _ _ r_A2o(r - rl)A_(T - r_ - ro)e-r("°-n)drodrldY
+ 64al

_ 2____ E(ro)AIl(T - ro)dro
O_1

/o/;3i7r _ ro26(rl - v0) A20(T - r,)A_I(T- rl - v0)dr0drl
+ 16c_-----_

, 3i_r foo •

_ lr All(T) + _ jo r2oA2o(T - ro)All(T - 2ro)dro(3' 1 16al

and hence the amplitude equation for the oblique waves is

AIlx _ _a' A,, 3i f/°°
7i" --- --Y'6 do

r_A2o(T- ro)A*11(T- 2ro)dro.

(3.29)

(3.30)

4. SOLUTION OF TItE AMPLITUDE EQUATIONS.

Equation (3.26) has the obvious solution

A20(T) = a2o e2alT/lt (4.1)

where a20 is a constant, and substituting this result into (3.30), we obtain

A,I(T) _r ,- _A,I(T) -- v2e2al(T-_°)/'_A;l(T - 2ro)dro; (4.2)

the left-hand side of this equation suggests that we write AI,(T) = Bll(T)e _IT/_, which

leads to an equation for Bll(T) which can be cast in the form

, 3ia2o // )2 ,,2,_l,o/,_*B,, - 128 (T- ro _ --,l(ro)dro, (4.3)
OO

which we can integrate with respect to T to get

ia2o // )3e2al_o/,_B;,(ro)dro (4.4)BI,(T) = ai, - 12----8 (T - r0
OO

where all is a constant.
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4.1 SOLUTION BY ITERATION.

A standard technique for solving equations such as (4.4) is the method of successive ap-

proximations (Hildebrand, 1965, §3.9), whereby we solve the equation iteratively, taking

B(O)11 = a,l to be our initial guess, and then for successive iterations taking

ia2o i; _2air0 ,_.(,,-1)., ,. (4.5)B_)(T) = all _-_ (T- r0)3= / xoll (ro)aro,
o¢

which leads to a solution in the form of a series

Bll(T)---- _ 3me 2'n°'lT/_, (4.6)
rn---- O

with 30 = all and 3m = -3ia2o3*-lTr4/(21°m40_) • The ratio test tells us that this series

converges absolutely for all T < oo. We can write this series for Bll as

I ( ) oo I ( 3]a20 ,a "4 )mB,I(T) = _ all + ia_l e'a'u<":°) _ (m!)" 21°a_ e2a'T/'_
m----D

1 (_ia:leiarg(,,o)) °° 1 (3ia20 ,_r 4 )m+ 5 all _ (m!)' 21o4 e_°'_'/" (4.7/
rn-_-0

It follows that in order to evaluate Bll, we must evaluate the series _ xm/(m!) 4. We
rn=0

know (Abramowitz & Stegun, 1964) that

oo 1 _2_m

Z ¥z )J2o(Z ) _- (-llm(2m)!(

.,=o (m!p

and

(2m)!- 2-= (-P)-2"_-_e-'dP' (4.8)

the latter of which is Hankel's contour integral, where C starts at +_ on the real axis,

circles the origin in the counterclockwise direction, and returns to the starting point. It

follows that

" 5( ( ) i..,=o (m!)4 -- .,=o (m!) 4 ) x (2m)! = 27r p o dp (4.9)

so that

i (all-l-ia_ieiarg(a2°)) -_-J_ dpB11(T) =- _ 24c_Ip

i.-.,,(<v°.oi ••¢.,,(::o))p o _-<_ ) dp. (4._o14-(<,11-,all
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4.2 ASYMPTOTIC SOLUTION FOR LARGE T.

In order to evaluate the large T behavior of (4.10), it is necessary to evaluate

i. (4.11)

and

as x --_ oo. If we set p = qx in (4.11), it becomes

fce-q____*j_o(_) dq= /ce-,_-lo*,J2o (_) dq.q (4.13)

Since w(x, q) = -qx - log q has a saddle point at q = -l/x, we can evaluate the large x

behavior of (4.13) by setting

1 iqo (4.14)
q _ _

x 2:

which tells us that

/c e-'j2 (p)-_o dp ... ie J: e-qg/2J3oo (-x) dqo

Following a similar procedure with (4.12) tells us that

Now, as x _ oo, we know (Abramowitz _ Stegun, 1964) that

1
J2o(x ) ... -- (sin2x + 1)

7rx

e2 z

,,_ iev/2-_J2o (X) . (4.15)

(4.16)

(4.17)

so that

jc e-p 12

iv/2e (sin 2x + 1)

iV/2ei+2z

VE z '

and therefore our expression for Bii(T), namely (4.10), tells us that as T --* oo,

ia * eiarg(a2°)_ _" ( _V__Tr2e'_lT/Tr))2 5/2a2e(ail+ ,1 ,ea,.pr l-4-sin_Bll "" lrT/2v_/_ a20 ]

-t- 2512a2e(all--ia_leiarg(s2°))e'_'Tlrexp(VI_/q_a2OTrTI2V/3V_a20 I sa_l'r2P"T/") "

(4.18)

(4.19)
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Sincewe set All(T) -- Bll(T)e °_T/'_, we have an expression for All as T ---+oo,

All(T)
25/2a21e(ail + ia_ieiarg("2°)) (l + sin ( Vi3V_ a2o lrc2ealT/'r_ _~ I ) )
25/2ale(a,, -/a_l.e i''g¢:'°)) (V13%il a2_o [___2e'_'Tl'_

+ zeT/2V_%/] alo I exp it ]"
(4.20)

If the coefficient in front of the second term in (4.20) is non-zero, all 7£ ia_l ei arg(a20), then

the second term will dominate the large T behavior, and we have

25/2a12e(an -- ia_iei'rg(":°)) exp (4.21)
A,i(T) ,-, zeT/2V/3V/[ a20 I 8_I

and we will have so-called e er growth. However, when all -----ia_le iarg(a2°), so that the

second term in (4.20) vanishes, we are left with

1+ sint, ) , (4.22)

so that as T ---+c_, the oblique waves stop growing and rather oscillate about a fixed value.

This corresponds to the shredding interaction discussed in Section 1.

5. CONCLUDING REMARKS.

In the preceding sections, we have investigated the weakly nonlinear interaction of a

triad of modes comprised of a plane fundamental and a pair of oblique subharmonics that

in the linear neutral limit satisfy the resonance conditions exactly. This has enabled us

to carry out a rational asymptotic analysis of the interaction; when only two-dimensional

waves are included this cannot be done. Singularities that occur at the critical point have

been resolved using a non-equilibrium critical layer that evolves slowly because the plane

wave is weakly amplified on a linear basis. To the order of our analysis, the exponential

amplification of the plane wave is not altered by the interaction and, for that reason, we

term this a parametric resonance. The common amplitude of the oblique waves, on the

other hand, satisfies an integro-differential equation, namely, (3.30). This is in contrast to

the more conventional resonant interaction theory which employs a viscous critical layer,

an _t slow time scale instead of the present _ll'tt, and leads to a pair of coupled nonlinear

ordinary differential equations [see, e.g., eqs. (1) of Collins and Maslowe (1988)].
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Both an exact and a long-time asymptotic solution of (3.30) were found in Section

4. Of particular interest is the asymptotic result (4.21) showing very rapid growth of the

oblique wavesfor T >> 1. This raises the question of the extent to which such amplification

might be observed in a numerical solution of the full Navier-Stokes equations. Although

many numerical simulations of unstable mixing layers have been reported in recent years,

none employs initial conditions that would permit the resonance studied here to be ob-

served. However, several computational papers are at least indirectly related to our own

work in that both oblique and plane wave perturbations were superimposed on a plane

mixing layer. These include articles by Metcalfe et al. (1987), Moser and Rogers (1993)

and Klaassen and Peltier (1989). In each of these papers, significant three-dimensional

instabilities were reported, the third differing from the first two in that a Floquet analysis

was employed. Unfortunately, these papers all view the three-dimensional perturbations

as secondary instabilities, whereas in our analysis the amplitude of the oblique waves is

the same order of magnitude as the plane wave.

Nonetheless, Metcalfe et al. have considered a set of initial conditions that is, in some

sense, related to our own. In particular, results depicted in Figures 12 and 13 of their paper

correspond to the initial superposition of a plane wave with a = 0.4, a subharmonic with

a = 0.2 and a pair of oblique waves having (a,/9) = (0.4, +0.2). The Reynolds number

in these computations was 400 which form a stability standpoint is practically inviscid.

Although the wavenumbers seem, at first glance, to correspond to modes that are too

highly amplified for comparison with our theory, the thickness of the mixing layer doubles

during the computation so that at some point they are not far from the linear neutral

values.

On the basis of weak nonlinear interactions, it could be argued that the subharmonic

and oblique modes interact to produce a subharmonic resembling our own except that the

angle of inclination to the flow direction would be 45 ° instead of 60 ° . This discrepancy is

not serious and could be accounted for by modifying the coefficient of the linear A11 term

in (3.30). What really precludes any direct comparison with the present theory is that

the amplitude of the plane wave in the simulations of Metcalfe e* al. is several orders of

magnitude larger than the oblique and subharmonic perturbations. Even so, after a period

of time the amplitudes of both subharmonic and oblique modes become comparable to the

fundamental. This is especially true in Figure 12 which pertains to a case where the oblique

modes have a much larger initial amplitude than the subharmonic.
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Given that even if it is not the case initially the amplitude of the oblique waves can

become larger than that of the plane wave according to our analysis (and the numerical

simulations do not dispute this) a different scaling in which the oblique waves have a larger

amplitude may be appropriate. Such a distinguished limit has been identified by Goldstein

and Lee (1092) in their study of the adverse pressure gradient boundary layer [see, also,

Wu (1002) for a subsequent application to the Stokes layer]. This scaling leads to coupled

nonlinear integro-differential equations for the amplitudes which develop a singularity that

signals the onset of a possibly fully nonlinear stage. The singularity appears, in fact, even

in the earlier work of Goldstein and Choi (1989) where only the pair of oblique waves was

present without a plane wave.

We have formulated this sort of theory for the mixing layer and are presently preparing

a paper on that topic. The amplitudes of the oblique and plane waves are taken to be,

respectively, O(_) and O(_ 4/3) and the slow time scale becomes _1/3t instead of the present

_1/4t. These scales are identical to those employed by Wu (1992). When the amplitude of

the oblique waves is taken to be small compared with the plane wave the new amplitude

equations reduce to those of the parametric resonance stage, as was shown by both Wu

(1092) and Goldstein and Lee (1902).

Finally, some comments about the spatial case are appropriate due to its relevance

to experiments. As discussed in the Appendix of Kelly (1967), it is necessary that um be

greater than zero to have spatial growth and so we discuss the case Urn = 1. In a frame of

reference moving with the real phase speed (if it were the same for both the oblique and

plane waves), the evolution equations (3.26) and (3.30) would be unchanged except that

the independent variable would be X = _1/4x instead of T.

An important difference, however, between the spatial and temporal cases is that

spatial modes are dispersive for the mixing layer profile (2.1), whereas unstable temporal

modes always have cr = urn. Numerical computations for the spatial case with um = 1

[see, e.g., Figure 3 of Maslowe and Kelly (1971)] show that Cr does not differ greatly from

1 except for relatively long waves with o_ < 0.4 and this is why numerical simulations of

the temporal case seem to yield results that can be compared with experiments. In some

of the experiments reported to date, the spanwise wavenumber _ is small (although it can

vary with downstream distance), so the angle of the oblique waves' inclination is not close

to the 60 ° in our analysis. However, provided that the dispersion is not large, the present

analysis could easily be modified to take into account detuning and this should be done if

18



comparisons were to be made with a particular experiment.

For the nearly neutral modes considered in this paper, the difference in phase speeds

in the case um -- 1 turns out to be negligible and could be completely eliminated by having

the inclination of the oblique waves increased slightly. If we write

c = 1 - _1/4Cl, (5.1)

then for the plane wave cl = 4(_1/7r 2, whereas for the oblique waves Cl = 4.5o_1/rr 2.
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