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Abstract

This paper describes an application of the method of moments
to determine resonant frequencies of irregularly shaped microstrip
patches embedded in a grounded dielectric slab. For analysis, the
microstrip patch is assumed to be excited by a linearly polarized plane
wave that is normal to the patch. The surface-current densily that
is induced on the patch because of the incident field is expressed in
terms of subdomain functions by dividing the patch into identical
rectangular subdomains. The amplitudes of the subdomain functions,
as a function of frequency, are determined using the electric-field
integral equation (EFIE) approach in conjunction with the method of
moments. The resonant frequencies of the patch are then obtained by
selecting the frequency at which the amplitude of the surface-current
density is real. The resonant frequencies of the equilateral triangular
and other nonrectangular patches are computed using the present
technique, and these frequencies are compared with measurements
and other independent calculations.

Introduction

Microstrip patch antennas have been studied extensively in recent years because they offer many
practical advantages, such as being lightweight, able to conform to the body of a host object, and
relatively casy and inexpensive to fabricate compared with other types of antennas. As a result,
many analytical approaches have been proposed to analyze microstrip patch antennas (ref. 1). The
electric-field integral equation (EFIE) approach in conjunction with the method of moments is the
most widely used technique to study microstrip patch antennas (refs. 2 to 6). Early work (refs. 2
to 6) on the application of the EFIE approach to patches is limited to microstrip patches of regular
shapes, such as those that are rectangular, circular, or elliptical. Furthermore, these earlier works
(refs. 2 to 6) use an approach in which the surface-current density on the patch is expressed in terms
of entire domain functions. This paper describes the EFIE approach in conjunction with the method
of moments for solving the problem of irregularly shaped microstrip patch antennas by expressing
the surface currents in terms of subdomain functions.

Several authors (refs. 7 and 8) have used the EFIE approach to analyze irregularly shaped
antennas. The work in rcferences 7 and 8, however, is applicable to irregular plates in free
space. In these papers, a nonrectangular plate is viewed as an interconnection of quadrilateral
plates. The currents on the quadrilateral plates arc expressed in terms of nonrectangular surface
modes. Although the segmentation techniques used in reference 7 completely fill the arca of the
nonrectangular plate, extra current modes are required to ensure continuity of surface-current density
at the joining plates of the junctions. Furthermore, when nonrectangular surface modes are used
to express the surface currents, the resulting matrix in the method of moments solution is of a
symmetrical but not of a Toeplitz nature; therefore, the computational time increases.

Mosig (ref. 9) and Michalski and Zheng (ref. 10) use a mixed potential integral equation approach
to solve the problem of irregularly shaped microstrip patches. In these studies, the EFIE is solved
by using numerical techniques in the spatial domain which may require special care to handle the
singularity in the Green’s function. Martinson and Kuester (ref. 11) use generalized edge boundary
conditions to accurately analyze irregularly shaped microstrip patches. This approach, however, is
valid only for thin substrates {e.g., d/ g < 0.01).

This work describes a segmentation technique to analyze irregularly shaped microstrip patch
antennas. We assume that an irregularly shaped patch is enclosed by a rectangle with sides equal



to Wy and Wy. After dividing Wy into (M + 1) sections and W, into (N + 1) sections, the surface-
current density over the rectangle is expressed in terms of overlapping triangular functions in the
current flow direction and pulse functions in the orthogonal direction. A shape function in the current
expansion function is introduced to ensure zero current outside the patch. The shape function is
equal to 1 if the subdomain lies inside the irregularly shaped patch antenna, and it is equal to 0 if the
subdomain lies outside the irregularly shaped patch antenna. However, for the truly irregular shaped
patch, the subdomain that is close to the boundaries of the patch may be partly occupied by the
patch. In such cases, the subdomain is considered to be inside the patch if the arca occupied by the
patch in that subdomain is more than 50 percent of the area of the subdomain. This process of finding
the shape function, however, becomes tedious and time consuming for complicated geometries.

The EFIE equation is reduced to a matrix equation that is solved using standard matrix equation
solver subroutines when the testing functions are selected to be the same as the expansion functions
(i.e., a Galerkin solution). The surface-current density is then used to determine the resonant
frequency of the patch. One of the disadvantages of the present method is that a large number of
subdomains are required to achieve convergence because the edge conditions for the surface-current
distributions are not explicity expressed. However, the Toeplitz nature of the impedance matrix is
still maintained, thus considerably reducing the matrix filling time (ref. 12).

Symbols

Aar,a8,,4a, unit vectors along z, y, and z axes

d dieléctfic substrate thickness, cm

E; incident electric-field vector

Ej intensity of incident electric field

Es(J:) scattered electric-field vector caused by J,

E,(Jy) scattered clectric-field vector caused by Jy

E; tangential electric-field vector

Ezi, Ey; z and y components of incident electric field

Ezs(Jz) x component of scattered electric-field caused by J,
Eys(Jy) x component of scattered clectric field caused by J,
Eys(JIV) y component of scattered clectric field caused by J;
Eys(Jy) y component of scattered electric field caused by J,
Eg clectric-field amplitude for perpendicular polarization, V/m
Ey clectric-ficld amplitude for parallel polarization, V/m

Femn(z,v) expansion function for z-directed current on (m, n)th subdomain
Frp(x,y) ‘expansion function for z-directed current on pth subdomain

Fymn(z,9) cexpansion function for 1V—direc'ted current on (m, n)th subdomain

Fyp(z,y) expanéioﬁ function f&r&—difected current on pth subdomain .
Jo,.5 resonant frequencies of various modes, GHz

fopt Fourier transform of Fyy(z,y)

fyp Fourier transform of Fy(z,y)
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H;

ig(m,n)
iy(m,n)

iz(p)
iy(p)
Jz(z,y)
Jy(z,y)

T, Y,z
x’,y’, Z’
Tm

ZI

vicy

/
zEy

incident magnetic field vector

complex amplitude of z-directed current density on (m,n)th subdomain, A/unit
area

complex amplitude of y-directed current density on (m,n)th subdomain, A/unit
area

complex amplitude of z-directed current density on pth subdomain, A /unit area
complex amplitude of y-directed current density on pth subdomain, A /unit area
z-directed induced surface-current density on plate, A/unit area
y-directed induced surface-current density on plate, A/unit area
s

propagation constant/wave number in free space

propagation vector of plane wave

number of subdivisions in z-direction

(m, n)th subdomain of induced current

number of subdivisions in y direction

total number of z-directed subdomains on plate

piecewise linear distribution in z-direction

piecewise linear distribution in y-direction

equivalent to (m,n)th z-directed subdomain

equivalent to (m’,n’)th z-directed subdomain

total number of y-directed subdomains on plate

pulse distribution in y-direction

pulse distribution in z-direction

position vector in direction of plane wave

reaction of p'th z-directed subdomain testing function with F;
reaction of p/th y-directed subdomain testing function with Ey;
maximum dimension of plate in z-direction, cm

maximum dimension of plate in y-direction, cm

Cartesian coordinates of field point

Cartesian coordinates of source point

=m Az

location of patch, cm
mutual impedance between pth and p’th z-directed subdomain currents, ohm

mutual impedance between pth y-directed and p’th z-directed subdomain currents,
ohm



7
znr mutual impedance between pth z-directed and p’th y-dirccted subdomain currents,

YT
ohm
/

Zgi,p mutual impedance between pth and pth y-directed subdomain currents, ohm
« wedge angle, deg

, _ W
Az = i

W,

Ay = N+
Er relative diclectric constant of slab material
s free-space wave impedance, ohm
0;, b direction of angle of incident wave, deg
Ao wavelength in free space, cm
Abbreviation:
™™ transversc magnetic
Theory

General Theory

Consider an irregularly shaped thin patch embedded in a dielectric slab and illuminated by a
plane wave as shown in figure 1. The incident field can be expressed as

E; (z,y,2) = Ejp [~8ssin(¢;) + 8y cos (¢;)] exp [(jkok;) - 1] (1)
for perpendicular polarization, and

Hz‘ (z,y,2) = l:éo [—8; sin (¢;) + 8y cos (¢;)] exp [(Fkok;) - 1] (2)

for parallel polarization, where s and ky are the free-space wave impedance and the wave number,
respectively, and (6;, ¢;) is the direction of the angle of incident wave. In equations (1) and (2),
E;) is the incident electric-field intensity; the quantities &,, a,, and &, are the unit vectors along
the z, y, and z axes, respectively; and

k; = @, sin (6;) cos (¢;) + 8y sin (6;) sin (¢;) + @, cos (0;)
r=a,r+ayy+az

The tangential electric field in the plane of the patch when the patch is absent (ref. 12) is then
obtained as

Ey = Eig [~ sin (¢;) + 8y cos (¢;)] exp {7 [(kok:) - &) 2} + {J [(kok,) - 8] v} 3)
for perpendicular polarization, and

Ey; = By [—8; cos (¢;) + 8y sin (¢;)] exp {j [(kok;) - &:]x} + {7 [(koki) - 8] v} (4)
for parallel polarization, where

_ j 2Ei0 COS (91) sin (koz’kz) -
"k cos (kodk,) + j cos () sin (kodk.)

Ey exp [jkod cos (6;)]
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. —J 2Ei0 k cos (GL) sin (k‘ozlkz)
" gy cos (8;) cos (kodk) + jk; sin (kodk;)

and k, = \/er — sin?(6;).

Let J,(2',y) and Jy(2’,y’) be the z- and y-directed induced electric surface-current densities on
the patch and E4(J;) and E4(Jy) be the scattered electric fields caused by the z- and y-directed
currents, respectively. Sctting the total tangential electric field over the patch to zero yields

Ey exp [jkod cos (6;)]

a; x [Eg(Jp) +Es (Jy) +E;] =0 (5a)

Equation (5a) can be written in component form as

Ers (JI) + Eqgs (Jy) + Ef'i =0 } (5b)

where the suffixes  and y are used to indicate the z and y components of the scattered and incident
fields. To solve equations (5) for Jz(z',y’) and Jy(z',y'), the z- and y-directed currents on the patch

arc cxpressed as
M N+1

Jr (@) = Z Z iz (m,n) Frmn (7', 9) (6a)

m=1 n=1

M+1 N

Jy (') = Z Z iy (M, n) Fymn (=',y) (6b)

m=1n=1

In deriving equations (6), the irregularly shaped patch is first enclosed by a rectangle with
sides W, and Wy, and this rectangle is then divided into M + 1 and N + 1 sections along the z
and y directions, respectively, as shown in figure 1(b). The quantities iz(m,n) and iy(m,n) in
equations (6) are the amplitudes of surface-current densities at the (m,n)th subdomain. The
expansion functions Fgmn(z',y') and Fymn(',y') in equations (6) are given by

Frmn (lja y’) = Pn (-73,) Qn (y,)

Fymn (I"» y’) = Qm (‘TI) Py (y,)

where ,
, 1- &Z—_TL ((l'm - Al’) <z’ < l'm)
Py, (-75 ) = ,
1-— *TTm_ﬁ (mm <z < (Tm — A‘T))
) 1 (n-1)Ay <y <ndy)
Qn (y ) = .
0 (Otherwise)
= UE
T M+1
W,
Ay = —2
YN+

In the above expressions, Pn(y') is obtained by replacing m and z’ in the expression for Pp(z')
by n and ¢/, respectively. Similarly, @, (z’) is obtained by rcplacing n and y' in the expression
for Qn(y’) by m and z’, respectively. For simplicity, the double summation with respect to m
and n in equations (6) can be represented by a single summation with respect to p. If P and Q are
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the maximum numbers of the z- and y-directed subdomain cells, respectively, on the patch, then
equations (6) may be rewritten as

P
Jz (mla y’) = Zl iz (p) Fzp (1’7 yl)
=
PiQ ™
Jy (=,y) = p=§+1 iy (p) Fyp (', ¢)

Using the method of moments and test modes that arc identical to expansion modes, equations (5)
yield

/ Eyps (Jz) Fppy (z,y) dedy +/ Ezs (Jy) Fopy (z,y) dzdy + / EyiFyy (z,y) dedy =0 (8a)
where p’ = 1,2,3,..., P, and

/ Eys (J2) Fypy (2, y) ddy + f/ Eys (Jy) Fyy (2,) dedy + / EpiFyy (z,y) dedy =0 (8b)
where p' =P+ 1,P+2,P+3,...,P+Q, the surfacc integrals in equations (8a) and (8b) are

carried out over the p’ subdomain. Equations (8a) and (8b) can be written in the following convenient
matrix form: o

7 v 4
Zg:’f Zgg‘;p iz (p) Uz (P,)
, ey = , (9)
2y oy lw®] e @)
where p' =1,2,3,..., (P + Q) and ng’ and Z&Zg}" are the self and mutual impedances between pth

and p'th current basis functions. Detailed expressions for these impedances are given in reference 5.
The elements of excitation vectors in equation (9) are given by

vz (p') = —Erosin () fry [(kok; - 8z) , (kok; - &y)] (10)
vy (') = E1pcos (¢;) fy [(kok; - 8z), (kok; - 8y)] (11)
for perpendicular polarization, and
vz (p') = Eaocos (6;) fopy [(kok; - Az) , (Kok; - 8y)] (12)
vy (p) = Eggsin(¢;) Sy [(kok; - 8z), (kok; - 8y)] (13)

for parallel polarization, where f,; and fyp are the Fourier transforms of F, zp and pr/, respectively.

Resonant Frequency

The current density that is excited by an incident plane wave is obtained by solving the matrix
equation (9). The current amplitudes i;(p) and iy(p) are in general complex quantities; however,
at resonance, iz(p) and i,(p) are real numbers. The resonant frequency of the patch may therefore
be defined as a frequency at which the real part of i,(p) and iy(p) is maximum and the imaginary
part is zero. The dominant and higher order resonances of an irregularly shaped patch can therefore
be determined by finding the frequencies at which the real part of the surface-current density is
maximum and the imaginary part of the surface-current density is zero.

Numerical Results
In this section, resonant frequencies of irregularly shaped patch antennas are obtained and

compared with the measured data and the results obtained using the cavity model (refs. 13 and 14).
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The induced currents i;(p) and i,(p) are determined using equation (9) as a function of frequency.
The dominant and higher order resonances of the patch are determined from the knowledge of the
variation of i;(p) and iy(p) as a function of frequency.

Resonant Frequencies of Equilateral Triangular Patch

As a first example, we select an equilateral triangular patch with dimensions @ = 10 ¢m, &, = 2.32,
and d = 2’ = 0.16 cm, as shown in figure 2. For resonant frequency calculations, the patch is assumed
to be excited by a paralle]l polarized plane wave at normal incidence with ¢; = 0° or ¢; = 90°.

The triangular patch is assumed to be enclosed by a rectangle with W, =10 cm and
W, = 8.66 cm, as shown in figure 2. Selecting values of M and N (e.g.,, M = N = 11) and defin-
ing the (m,n)th subdomain for the z- and y-directed currents to be inside the triangular patch if
more than 50 percent of the subdomain area lies inside the patch, the matrix equation (9} is solved
for iz(p) and iy(p). The current densities i;(p) and iy(p) that are normalized to the incident field at
the center of the patch are then plotted in figures 3(a) and 3(b) for the two incidence angles (8; = 0°,
¢; = 90°) and (8; = 0°, ¢; = 0°), respectively. From figures 3(a) and 3(b), we see that the resonant
frequencies at which the real part of the current density is maximum and the imaginary part of the
current density crosses zero are fo = 1.210 GHz and f; = 1.256 GHz.

To test the dependence of these resonant frequencies on M and N, the resonant frequencies are
calculated as a function of M and N and are plotted in figure 4. This figure clearly shows that
M = N > 19 gives stable numerical results and that the first resonance occurs at fg = 1.249 GHz
and the second resonance occurs at f; = 1.276 GHz.

Microstrip patch resonances are usually associated with the cavity modes described in refer-
ence 14. To identify the above two resonances with cavity modes, we must plot a vectorial repre-
sentation of the surface-current density over the patch that is excited by an incident plane wave at
resonant frequencies fo = 1.249 GHz and f; = 1.276 GHz, as is done in figures 5(a) and 5(b). These
figures show that the magnitude of the surface-current density is proportional to the length of the
vector, while the direction of the current flow is indicated by the arrow direction. Upon careful
examination of the resonances of the TMy; (transverse magnetic) and TMg cavity modes given in
reference 14, it is clear that the resonance at fy = 1.249 GHz corresponds to the TMy; mode, and
that the resonance at f; = 1.276 GHz corresponds to the TMjg cavity mode. Note that the cavity
model discussed in references 13 and 14 predicts that the resonant frequencies of the TM1g and TMq;
modes are identical. This technique, however, gives slightly different resonant frequencies of these
modes; this difference may be attributed to discretization of the patch.

To study higher order resonances of the triangular patch, surface-current densities that are excited
by plane waves for the incident angles of (6; = 0°, ¢; = 0°) and (#; = 0°, ¢; = 90°) are plotted in
figures 6 and 7, respectively, over a wider frequency band. The resonant frequencies of higher order
modes of the patch are determined from these figures, and they are presented in table 1 with the
corresponding cavity modes calculated using the cavity model (ref. 14) and measured results given
in reference 13.

The resonant frequencies of the TM;,, and TMy,, modes are identical, as seen from the cavity
model formulations. As noted earlier, the present method that is based on discretization predicts the
resonant frequencies of these modes to be slightly different from each other. Corresponding vectorial
representations of the surface-current densities at incident angles of (8; = 0°, ¢; = 0°) and (6; = 0°,
¢; = 90°) are depicted in figures 8 and 9, respectively, for higher order resonant frequencies.

Resonant Frequencies of Circular Patch

As a second example, we consider a circular patch with a = 1.88 cm, as shown in figure 10. This
patch is assumed to be excited by a parallel polarized plane wave at normal incidence with ¢; = 0°

7



or ¢; = 90°. The induced current density iz(p) and iy(p) as a function of frequency at the center
of the patch is obtained after solving equation (9), and it is plotted in figures 11(a) and 11(b).
Values of M and N were arbitrarily selected to be M = N = 11. These figures show that the
frequency at which the real parts of the current densities are maximum and the imaginary parts
of the current densities are zero is fy = 2.760 GHz. The first resonance of the patch is therefore
at 2.760 GHz. To test the dependence of the first resonance on M and N, fy is determined as a
function of M and N, and it is plotted in figure 12. Figure 12 clearly shows that M = N > 19
gives stable numerical results. This figure also gives the first resonant frequency of the circular
patch obtained using the method described in reference 15. Good agreement exists between the
two results for M = N > 19. The vectorial representations of the surface-current density over the
circular patch, excited by the z- and y-directed linearly polarized plane waves at the first resonant
frequency, are shown in figures 13(a) and 13(b), respectively. Comparison of this representation
with the cavity model representation (ref. 14) indicates that the rcsonant mode at a frequency of
2.760 GHz corresponds to the TMj; cavity mode.

Higher order resonances of the circular patch are determined, and they are given in table 2. This
table also gives higher order resonances that are calculated using the cavity model (ref. 14). Good
agreement exists between the two methods. A vectorial representation of the surface-current densitics
at higher order resonant frequencies is given in figure 14. A comparison of these representations
with the representations obtained by the cavity model confirms that resonances at frequencies
of 4.685 GHz, 5.855 GHz, and 6.360 GHz correspond to the TMgy;, TMpg, and TM3; cavity modes
(ref. 14).

Resonant Frequency of Trapezoidal Patch

As a third example, we consider a trapezoidal patch with dimensions as shown in figure 15.
Figures 16(a) and 16(b) present the variation of current density as a function of frequency at the
center of the trapezoidal patch for two angles of incidence. These plots show that the frequency at
which the real part of the current density is maximum while the imaginary part is zero is 1.342 GHz.
The first resonance of the patch therefore occurs at a frequency of 1.342 GHz. To test the dependence
of the first resonance on M and N, the first resonance frequency of the patch is calculated as a
function of M and N, and it is given in table 3. Table 3 clearly shows that A/ > 12 and N > 6 give
stable numerical results. Figure 17 gives the vectorial representation of the surface-current density
on the patch at the first resonance for incident angle of (8; = 0°, ¢; = 0°).

Conclusions

An electric-field integral equation approach in conjunction with the method of moments has been
used to determine the resonant frequencies of irregularly shaped microstrip patches. Numerical
results obtained using this approach compare well with experimental results and other independent
calculations. Discretization of an irregular patch into symmetrical rectangular subdomains, in the
present technique, results in a symmetrical and block Toeplitz impedance matrix. The discretization
scheme used, however, does not explicitly enforce the proper edge conditions on the surface-
current distribution. As a result, a large number of subdomains are required to achieve numerical
convergence.

NASA Langley Research Center
Hampton, VA 23681-0001
August 16, 1993
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Table 1. Calculated and Measured Resonant Frequencies of
Equilateral Triangular Patch for M = N =19
[Patch shown in fig. 2]
Resonant frequency, GHz
Measured results | Cavity model

Mode | Present method (ref. 12) (ref. 13)
TMo; | 1.249 1.280 1.299
TMg 1.276
TM 2.172 2.242 2.252
TMp2 2.525 2.550 2.599
TMag 2.510
TMyz | 3.265

| TMy 3.356 3.400 3.439

Table 2. Calculated Resonant Frequencies of Higher
Order Modes of Circular Patch

[Patch shown in fig. 10]

Reéonant frequency, GHz
Cavity model
Mode Present method (ref. 13)
TMq; 2.816 2.818
TMo; 4.685 4.674
TMgo 5.855 5.864

Table 3. Resonant Frequencies of Trapezoidal Patch
for Various Values of M and N

[Patch shown in fig. 15]

M N Resonant frequency, GHz
7 5 1.370
12 6 1.345
14 7 1.342
16 8 1.343
18 9 1.343
20 10 1.342
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Figure 10. Geometry of circular patch with radius a = 1.88 cm, d = 2 =0.16 cm, &, = 2.53, and
Loss tangent = 0.002.
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(a) (6; =0° ¢; =0°).

Figure 13. Vectorial representation of surface-current density on circular patch (shown in fig. 10)
excited by plane wave with angles of incidence of (§; = 0°, ¢; = 0°) and (¢; = 0°, ¢; = 90°) and
fo = 2.796 GHz (TMj; mode case).
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Figure 13. Concluded.
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current density on circular patch (shown in fig. 10)

........... o B
4 s
|||||||||||||||||||| o ©
o -
= o
.................................................... m -+
S - e
...... &= o
= O
— ] o~
N % o
o e
O I
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll M % «
;< =
............................. 1 <
X Il
eeeeee = ol
' Sy
t
......... G
N’
¥
xxxxxxxxxxxxxxx J
3
13
13

V i ¥ i
1 [ t t
1 1 t 1 i t
re- - el ol Ml B R il Tl BdPe - bl st Sl |
[ t t - \ ' i i i
1 EH | ¥ i H b ] t i
R . P - - - R I S R ]
i ' f ) ] ) ! [ [ [
[ [ ' J ' ) ' s ! [
Lood ool oLk --unal S S N [ U U

excited by plane wave with angle of incidence of (6;

fi = 4.685 GHz (TMy; mode case),

ure 14. Vectorial representation of surface-
(TM3; mode case).

Fig



B Tt B S S I I Bl cdE

-
-

i

1
—y, 3 T
A U P e M

i

-~ —F >

N S

~

]
i

-

)

¥
i

= P

s

i
i
B

i
i

Fo-T- -0
| R L. SR IR

i

e
;
'
!
[EORF R
|
1

i
EH
i

5.855 GHz (TMpy mode case).
33

Figure 14. Continued.
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Figure 16. Normalized current density as function of resonant frequency for trapezoidal patch (shown
in fig. 15) excited by plane wave at angles of incidence of (6; = 45°, ¢; = 0°) and (; = 45°,
¢; = 90°), M =20, and N = 10.
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