-

-+
brought to you by .. CORE
provided by NASA Technical Reports Server

View metadata, citation and similar papers at core.ac.uk

NASA Technical Memorandum 106347 = e
ATAA-93-0813 . o |87

S st

Modal Element Method for Potential Flow in
Non-Uniform Ducts: Combining Closed
———-Form Analysis With CFD

Kenneth J. Baumeister and Joseph F. Baumeister
____Lewis Research Center
Cleveland, Ohio

Prepared for the )
32nd Aerospace Sciences Meeting and Exhibit o
sponsored by the American Institute of Aeronautics and Astronautics

—————-January 10-13, 1994, Reno, Nevada

v + (NASA-TM-106347) MODAL ELEMENT rm 2
NT 15799
~_ - METHOD FOR PGTENTIAL FLOW IN N94-15799

: ‘ NON"UNI,FORM DUCTS: COMBINING CLOSED
R —_— - FORM ANALYSIS WITH CFD (NASA) Unclas

NNSA °

o G3/64 0191159

{

r



https://core.ac.uk/display/42790485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




MODAL ELEMENT METHOD FOR POTENTIAL FLOW IN NONUNIFORM DUCTS:

COMBINING CLOSED FORM ANALYSIS WITH CFD

Kenneth J. Baumeister and Joseph F. Baumeister
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

Abstract

An analytical procedure is presented, called the
modal element method, that combines numerical grid
based algorithms with eigenfunction expansions devel-
oped by separation of variables. A modal element
method is presented for solving potential flow in a
channel with two-dimensional cylindrical like obstacles.
The infinite computational region is divided into three
subdomains; the bounded finite element domain, which
is characterized by the cylindrical obstacle and the
surrounding unbounded uniform channel entrance and
exit domains. The velocity potential is represented
approximately in the grid based domain by a finite ele-
ment solution and is represented analytically by an
eigenfunction expansion in the uniform semi-infinite
entrance and exit domains. The calculated flow fields are
in excellent agreement with exact analytical solutions.
By eliminating the grid surrounding the obstacle, the
modal element method reduces the numerical grid size,
employs a more precise far field boundary condition, as
well as giving theoretical insight to the interaction of the
obstacle with the mean flow. Although the analysis
focuses on a specific geometry, the formulation is general
and can be applied to a variety of problems as seen by
a comparison to companion theories in aeroacoustics and
electromagnetics.

Introduction

Computational fluid dynamics (CFD) now plays a
major role in aeronautical research and design.
Pironneau (1989) reports that for Dassault industries
1986 was the year when the numerical budget over took
the budget for experimentation in wind tunnels. This
comparison of budgets is appropriate since both wind
tunnels and CFD analysis provide similar information
about the flow physics. Numerical grid based solutions
with color graphics and computer generated movies are
closely akin to their experimental counterparts with
smoke streamlines, shadowgraph, and schlieren photo-
graphy. Current CFD programs in aeronautics model
with incredible accuracy the flow field of whole aircraft
as well as propulsion systems and rotor dynamics
(Henne, 1990). Nevertheless, current CFD analysis does
not develop the mathematical insight into the role of
key variables and parameters that readily unfold from

exact and approximate analytical solutions. Lighthill
(1989) addressed this inherent deficiency when he stated
that it is “essential to stress the connections between
theoretical analysis on one hand and experimental
and/or CFD studies on the other.”

To gain more theoretical insight in CFD problems,
the present paper presents an analytical procedure,
called the modal element method, that combines numer-
ical grid based algorithms with eigenfunction expansions
derived by separation of variables. Herein, a modal ele-
ment method is developed for solving potential flow in
an infinitely long channel with a two-dimensional cylin-
drical like obstacle present. Emphasis is on the problem
formulation. Wholly numerical finite element solutions
for the streamlines and potential lines over a cylinder in
a duct are presented in many introductory texts on
finite elements, such as Hinton and Owen (1779, p. 222)
and Segerlind (1976, p. 183), as well as advanced fluid
dynamic texts such as Chung (1978, p. 177). However,
the modal element method adds theoretical insight to
both the numerical formulation and the physical
problem. In the numerical analysis, the method will aid
judgment in choosing the grid density as well as the
accuracy of the exit boundary condition. In the flow
problem, the method will determine the physical
parameters which dictate the change of the flow
streamlines and the potential lines.

Although the analysis focuses on a specific geometry,
the formulation is quite general and can be applied to a
variety of problems as seen by a comparison to its
companion theories in acoustics and electromagnetics. In
CFD applications, however, singularity requirements
introduce some differences from the previous wave prop-
agation formulations. Historically, a primary reason for
developing the modal element method was to accurately
describe the radiation boundary condition at the compu-
tational boundary of a numerical grid. In electro-
magnetics, Chang and Mei (1976), Lee and Cendes
(1987), and Baumeister and Kreider (1993) applied the
method to scattering from dielectric cylinders while
Beumeister (1991) applied the method to electro-
magnetic propagation in ducts with surface irregular-
ities. In acoustics, Astley and Eversman (1981)
employed the method in duct propagation problems
while Baumeister and Kreider (1992) have applied the



technique to scattering from soft and rigid bodies. For
validation, numerical calculations using the modal ele-
ment method for sound propagation in a variable area
duct with a cylindrical like obstacle show excellent
agreement with experimental results (Baumeister, et al.,
1983).

To illustrate the advantage of coupling analytic and
grid based numerical solutions in the modal element
method, consider the problem of finding the pressure
amplitude resulting from scattering of an acoustic plane
wave by a rigid cylinder. As shown in Fig. 1(a), a
conventional finite difference theory (Khan, Brown, and
Ahuja, 1986) requires a large dense grid to resolve the
wave like nature of the pressure field and to accurately
approximate the far field radiation boundary condition.
In contrast, the limiting case of modal element method
for rigid bodies requires only a single line of elements as
shown in Fig. 1(b). Figure 1(c) compares the pressure
amplitude of these analyses with the exact theoretical
results shown by the solid line. The modal element
method shows excellent agreement with the theory while
the conventional finite difference theory shows some
error because of the previously alluded approximations.
The modal element method can also be extended very
easily to higher frequencies, as shown in Fig. 1(d), since
no nodes are required in the far field.

Considering open systems as in Fig. 1, the modal
element method is a grid based numerical system that
has many advantages of the classical boundary integral
methods such as the boundary element method in acous-
tics, the panel method in aerodynamics, and the method
of moments in electromagnetics. These boundary inte-
gral methods are well suited for solving the scattering
problem discussed in Fig. 1. However, for the semi-
infinite duct problem considered herein, the boundary
element method requires a closure approximation in the
far field similar to the standard finite element method
(Brebbia, 1978, p. 80). Also, similar to the modal
element method considered herein, the finite element
method and the boundary element method can be com-
bined as discussed by Brebbia (1978, p. 178) but with-
out the modal element advantage of obtaining a closed
form analytical solution. Yet in a broader sense, the
modal element method could be considered a subset of
the boundary element method under the title of indirect
method of analysis (Brebbia, 1978, p. 2).

The motivation for adapting the modal element
method for CFD analysis herein is threefold: first, to
explicitly determine the importance of physical param-
eters by obtaining a closed form analytical solution in
part of the solution domain, second, to minimize the size
of the regions requiring numerical grids, and thirdly, to
more accurately approximate the exit boundary condi-
tion of the numerical grid. The later consideration can

be important in the direct computation of aerodynamic
sound from unsteady flows where the sound levels can be
three orders of magnitude smaller than mean flow
variables.

In the present paper, first the method of analysis and
domain decomposition is discussed followed by a devel-
opment of the analytical solution. Next, subdomain
interface conditions are presented followed by the finite
element solution procedure and the requirements of a
Dirichlet boundary condition. The geometric model and
an exact solution for the model are presented next fol-
lowed by results and comparisons that include two
example calculations.

Nomenclature
A total dimensionless area of finite element domain
Al®)  area of element e
A modal amplitude, Eq. (14)
B;; modal amplitude, Eq. (17)

b dipole strength, Eq. (37)
o modal amplitude, Eq. (9)
¢}t modal amplitude, Eq. (9)
F column vector, right hand side of global matrix
equation
h dimensionless channel height, h* / L*
i v-1
K global matrix, Eq. (33)
k#*  wave number, Fig. 1
characteristic distance
m mode number

m mode number, Eq. (19)

M number of elements in finite element domain

M_, number of modal coefficients used in
eigenfunction expansion

Mpts number of grid points on interface S used in
integration, Eq. (20)

N number of nodes in finite element domain

Ng number of nodes on S to resolve harmonics

N(®)  local linear triangular interpolation function,
N (x,y); NP (xy) = 65 (= 1,2,8;§ = 1,2,3)

i outward unit normal vector

n normal vector -



R, global residual error at node I

* radius, Fig. 1

S line interface about finite element domain
S entrance plane

Sy exit plane

st region exterior to S

S~  region interior to S

s arc length parameter on S

Ut free stream velocity

u# normalizing velocity

W;  global weight function associated with node i;

WI(XJ’YJ) = 61] (I = 1-..N; J = 1..-N)

W{e) local weight function associated with node I

W_,+ interface weight function, Eq. (19)

W(z) complex potential, Eq. (37)

X separation function, Eq. (4)

X dimensionless axial distance, x*/ L#

x;, starting position of finite element grid

X, axial intercept of obstacle

X,y ending position of finite element grid
separation function, Eq. (4)

y dimensionless transverse distance, y¥ / L*

Yo height of obstacle
complex variable, Eq. (38)

8 angle between element outward normal and
positive x axis

v Laplace operator

;5  Kronecker delta (§;; = 1 for I=1J; éy = 0 for
I+10)

A eigenvalue, Eq. (8)

® column solution vector, Eq. (33)

é potential

¢ stream function

Subscripts

a analytical solution

b analytical solution

1 global node index in finite element domain
I global node index for interface S

i local element mode index

J ‘global node index, Eq. (25)

i local element node index

Superscripts

approximate solution

3

dimensional quantity

—
p——

average value

element value

—
(1]
St

Method of Analysis

The present study is concerned with computing the
potential flow field in a channel with two-dimensional
cylindrical like obstacles, as shown in Fig. 2. A uniform
velocity profile U: is assumed to exist far upstream. For
inviscid and irrotational two-dimensional flow, the
potential equation governs;

v#ig# = ¢ (1)

where # denotes a dimensional variable. For this paper
the following dimensionless variables are introduced:

# #
x=X y=3_
L#* L¥
+4#

# U

b= U= ()
L Uo
¢#
u? L#

The superscript + indicates the direction of the velocity
in the + x direction. All symbols are defined in the
nomenclature. Equation (1) becomes

(3)
V2 =0

The exact shape of the obstacle is defined by an
infinite row of doublets transverse to a uniform flow
(Kirchhoff, 1985). For obstacles less than half the height
of the duct, its shape is nearly a circular cylinder. The
advantage of using this obstacle is that an exact solution
exists for validating the theoretical results. The detailed
shape of the obstacle will be full described in a later
section of this report.

The common numerical approach to this problem is
to extend the grid far upstream and downstream of the



obstacle such that the assumption of uniform velocity is
valid, as shown in Fig. 3. Generally, a large entrance
and exit grid region must be selected. The leading edge
of the obstacle is defined by x_ while the inlet and exit
positions of the grid are defined by x;; and x_,,
respectively. Symmetry about the cylinder was not used
allowing the computer program to handle a greater
variety of problems.

In contrast to the conventional approach, a typical
modal element grid system is shown in Fig. 4. The
spatial domain is divided into three subdomains, the
entrance and exit analytical domains and the finite
element domain. The finite element domain contains a
nodal grid system that covers the region of complicated
geometry. Linear triangular elements are used and the
subdomain interface is approximated by piecewise linear
segments. In the finite element domain, an approximate
solution for the velocity potential is calculated by the
Galerkin method. In the analytical domains, which
extends to +w, an eigenfunction expansion for the
velocity potential is derived by separation of variables.

The modal element method couples the analytical
and numerical solutions by imposing continuity on the
potential and velocity at the interface between the
subdomains. This coupling results in a single matrix
equation in which the eigenfunction coefficients and the
potential at the finite element nodes are calculated
simultaneously, yielding a global representation of the
potential field. Next, Eq. (3) will be solved by the
method of separation of variables in the entrance and
exit regions and then by the finite element technique in
the grid system surrounding the obstacle.

Analytical Solution

Consider the entrance portion of the duct as shown
in Fig. 4 for x < x,, that is upstream to the duct
obstruction. Employing separation of variables for the
solution of Eq. (3},

$a = X(x) Y(y) (4)
yields
18X _ _138Y _ o (5)
Xz Yo?

The subscript a denotes the analytical solution in the
entrance portion of the duct, as labeled in Fig. 4.
Solving the ordinary differential equation for Y and
applying the solid wall boundary conditions,

v=%=0 at y=0 and y=h (6)

yields
8y = cm cos{AY)X(x) @

where the eigenvalues are

m = 0,1,2,3,.... (8)

Now, solving the ordinary differential equation of X
yields (noting the double root at m = 0)

M:oef mFx
¢a = c:x + E c;e b cos[m"y]
m=1 h
(9)
Mcoef l_.ﬂ )
- = h mry
+ e, + E cne cos
m=1 /
where M_ ., the number of coefficients used in the

expansion, must be set a priori. From now on, the eigen-
function terms are called modes, as commonly used in
acoustic theory. The two separate roots have been dis-
tinguished by a + or — superscript. For large values of
negative x, the upstream velocity boundary condition
requires

—_—= U; X — - oo (10)

thus, all values of ¢} must be set to zero and Eq. (9)
becomes

. _ Mcoef _ E m7 (11)
$y = Ux + [, + E cne b cos hy

m=1

Physically, the constant ¢, in Eq. (11) represents a
negative potential that will later be shown to be propor-
tional to the size of the obstacle in the duct. The last
term in Eq. (11) represents damped higher order modes
that blend the distorted potential around the obstacle
into the uniform potential upstream.

For convenience, the constant ¢ will be pulled into
the exponential, so that the summation begins with
m = 0 such that



Mcoef ﬂ
$a = U:X + E c;e b cos _.ml’:y (12)

m=0

Also, because the damped exponentials can be very
small at the beginning of the analytical regions, the
separation constants are redefined. By introducing the
identity in the brackets ],

M, ¢ mrXip, WX, | mrx
¢a=U;x + 2 c; e P e B |eh cos[mwy]
m=0

h
(13)
Defining the constant A as
mrx,, (14)
A_=c e b
such that
M e w7 (x i)
b, = U;x + E A;e_—_h—-cos[m] (15)
m=0 h

Finally, the characteristic length L# is set equal to h#
so that h = 1 and Eq. (15) simplifies to

. Mcoef
¢, =U_x + E A e

m=0

(e cos(mwy) (16)

Similarly, for the exit duct where x > x_,, the
analytical expression for the potential becomes

coef
¢p = v’ WX+ Yy B+ ~m{x-x °“‘)cos(m1ry)

m=0

(17)

In a typical analytical solution, the separation
constants A_ and B; are evaluated by some ortho-
gonality condition in coordinate systems that matches
the physical boundary. The rectangular coordinate
system chosen herein obviously does not match the cir-
cular boundary of the obstacle. However, the numerical
grid system will transfer the necessary information such
that A_ and B;; can be conveniently determined.

Interface Conditions

At the interface S between the finite element domain
and the analytical domains, both the potential and
velocity are continuous. The local continuity of potential

¢|s* - ¢Is— =0 (18)

can be expressed numerically by a collocation procedure
(Lee and Cendes, 1987) or an integral weighting proce-
dure (Baumeister and Krieder, 1992) The latter are
used here with weight functions cos(m 7y), so the con-
tinuity of potential at the entrance interface S, is
expressed by

y=1
f S Wi [¢° -
y (19)

W,- = cos(m”ry)

(m* = 0,1,2,....,.M_,s equations)

There must be one equation for every unknown separa-
tion constant. Thus, M_,; + 1 weight equations are
required. The superscript * designates the particular
weight index to differentiate it from the eigenvalue
index m used in Eq. (8). In contrast to FE weighted
residual theory using local weight functions, the weight
function here is global in nature acting over the whole
y domain.

Rather than take advantage of the orthogonality
conditions in Eq. (19), a completely numerical approach
has been adopted to determine equations for the A in
anticipation of future code complications. It sufﬁces to
apply a simple quadrature to obtain acceptable results
when approximating Eq. (19). S, is divided into sub-
intervals centered at points (xy,,yy,), Which correspond
to finite element boundary nodes introduced later in the
paper. The nodes are evenly spaced on the boundary
with the index I,. Once the number of modes M, ¢ has
been assumed (based on convergence of the numerical
solution) the grid is set up so that the number of nodes
on S, is NS > 6M_ ¢ to adequately resolve all the har-
monic terms in Eq. (18).

Applying the trapezoidal rule to the chosen nodes
gives



p"

Es [ a( :Y]) ¢l]cos(m‘1ryl')AyI. =0.

(20)
(m* = 0,1,2,....,.M

coef €quations)

where Ay is the distance between nodes except at the
two end points. At the ends, Ay is half the distance
between nodes. Thus,

1- 2(61.1 + 61'M )
AyI = 2 pes

' Mpts

— (21)
é = Kronecker A

By expressing ¢, in terms of the modal coefficients

in Eq. (18}, Eq. (20) can be written explicitly as
Mcoef _ Mptl
Y oAy, cos(mﬂ'yl')cos(m'xyI')AyI.
m=0 1,=1
Mptl
- ES cos(m'ﬂ'yl')qﬁl' Ayy,
I'zl (22)
. Mptl
= -U_x Escos(m‘aryl’)AyI'
I,=_1
(m*=0,1,2,...,M_,.¢ equations)

Equation (22) comprises M_ s + 1 separate difference
equations, each of which is written in terms of all the
unknown coefficients A_ and the potential ¢, at the

nodes on S,.

The continuity of velocity requires that at the

interface
9. _ 3
on - onlg-

where n is the outward normal. This relationship is used
to satisfy the natural boundary condition later required
in the finite element portion of the problem.

(23)

A similar set of equations can be written for the
outlet region coefficients B;. These equations are later
combined with the finite element equations to form a

matrix system that yields values of all the unknowns ¢;
values at the nodes as well as the separation constants

A and B}

Finite Element Solution

The finite element domain, with total area A, is
divided into M discrete triangular elements, A(e)
e = 1,2,...,M, defined by N corner nodal points {x yI),
1=1.2 N The corner nodes for element a.rea Ale 5

denoted (x{e),yl ), (X-S ,y§°)), and (X:S Yg ).

The potential is approximated by a linear combina-
tion of weight functions Wi(x,y):

N
xy) = 3 Wilxy)é; = [Wixy)] {4} (24)
I=1

with | | representing a row vector and { } representing
a column vector. The weights have the property that
(25)

Wi(x5,y5) = 813 (Kronecker §),

so that the unknown nodal pressure values are given by
¢ = ¢(x1,yl).

To determine {¢}, apply the method of weighted
residuals. In this method, the residual error of Eq. (3),

Ry = J’J'AWI (v . v3 )ax dy

(26)

(I=12,3,.,N one residual

equation for each node I)

is set to 0 for each node I. Applying Green’s vector
identity (integration by parts) and the divergence
theorem to the integrand in Eq. (26) yields the weak
formulation of Eq. (3):

Ri= J'A(le . V4 )axdy - js(wIVJs “h)ds=0
(1=123,.,N) o

Equation (27) is a global, or node-oriented, formulation,
in that it provides a difference equation for each node
that can be used to determine {4}.

From a practical standpoint, though, it is more
convenient to consider a local, or element-oriented,
formulation. To develop the local formulation, write
each residual R as the sum of the element residuals:



0=R;= R(°)

e—l

X [/ - 93%)as

- Is(e)ns (W§°)V$(°) . ﬁ)ds] ,

(I=1,23,..,N) s (28)

where S(®) is the boundary of element Al

In the boundary integral terms in Eq. (28), it is rea-
sonable to approximate the (continuous) normal deriva-
tive with its mean value over S(e)ﬂS, The key step is to
apply the continuity of velocity (Eq. (23)), which intro-
duces the eigenfunction coefficients, thus linking the
analytic solution and the finite element solution on the
interface. The term is transformed as follows:

e)ile) — e (e
Is(e)ns(w§ )V¢( ). n)ds = Is(=)ns[w( )3¢an ]d
%, :
B [—éx_l_]s(‘) J.S(G)nsaw% ) ds

a9y, (e)
+ |2 w) g,
[ n ]s(e) Is(e)nsb r®

(29)

Only the entrance and exit interfaces contribute, since
the normal derivative of the potential is zero along the
upper and lower channel walls and the obstacle.

If B is the angle between the positive x axis and the
outward normal, for the geometry shown in Fig. 4, the
interface between the elements and the analytical regions
is vertical and 8 = 180° at the entrance; thus, the
normal derivative can be simplified to

[%] = [ﬁfcos(ﬂ) + %sin(ﬂ)] =[— %]
dn Jg(e) x 9 5 () X Jg(e)

(30)

Similar for the exit except 8 = 0 so that the cos(8) has
a value of +1.

Substituting Egs. (29) and (30) into Eq. (28) yields

M
0

]
';U

5 [[f0 (79093 s

e._

/

3¢a] (e)
—|-_ W:" ds
ax S(e) J'S(e) nsl 1

\

—
_ @] [ W)
(& Jgo s ns,
(I=1,2,3,..,N) (31)
The gradient of the potential in (31) can be

evaluated directly from Eqs. (16) and (17) in terms of
the unknown amplitude coefficients A~ and B*.

To evaluate the integrals in Eq( (31), it is necessary
to represent ¢(x,y) locally. Let N3¢, j = 1,2,3, be the
local linear shape functions for hnear tna.ngula.r elements
associated with each corner node (Segerlind, 1976,
P- 29), so that

é(e)(x,y) (e)( ,y) ¢(e) + N( )( X,y ) ¢(e)

4 N(e)( X,y )¢(e)

3
> N xy) 8 = [N () |{81} -

(32)

Next, implement the Galerkin method. When the global
index I equals the local node index i associated with
node (x(e y( ), let W{ equal the local shape function
N(e) The globa.l shape function Wy is assumed to be
1dent1ca.lly zero for any element where node I does not
appear (simple pyramid weight approximation); thus,
the line integral in Eq. (28) vanishes unless node I is on
the boundary S.

The solution to Eq. (31) is obtained by performing
the usual element by element formation of the global
matrix as presented in introductory FE texts. The final
form of the global matrix equation is obtained by com-
bining the solution of Eq. (31) along with Eq. (22) and
the exit equivalent to Eq. (22).

(K] {8} = {F}, (33)



where

T _ — — — —
@)T = |A7,A] A7 Ay

’
coef

ot ot +
$1,99,---,9n:B o’Bl ,32’."’BMcoef . (34)

F contains the free stream velocity terms present in
Eq. (22) and from the free stream velocity terms that
enter Eq. (31) through the derivatives of ¢, and ¢,.

The matrix K has the following general form

o e e e e 1 P

Ve(22) | g(23)
+¢> -i-B

0 ! 5(32) | BG3)

(35)

The top and bottom rows in the matrix represent the
contribution from Eq. (22) for the entrance and its
equivalent exit representation. The middle row repre-
sents the contribution from Eq. (31).

The submatrix A(11) is a full M_ e X M(gef Matrix
composed of the coefficients of the A_| terms in Eq. (22)
which resulted in applying Eq. (18) at the entrance
interface. The submatrix ¢ is a sparse M_ ; X N
matrix composed of the coefficients of ¢; in Eq. (22).
The submatrices ®(32) and B(®®) are similar in form
resulting from applying Eq. (18) at the exit interface.

The submatrix A(®Y) is an N x M, .; matrix com-
posed of the coefficients of A from the surface integral
in Eq. (31). For each boundary node, there is a full row
of terms in A'2Y). For interior nodes not on the bound-
ary, there is a full row of zeros in A since the surface
integral in Eq. (31) does not contribute to the difference
equation at the interior nodes. A similar interpretation
applies to B(23)_ 8(22) i5 a sparse, highly banded N x N
matrix composed of the coefficients of ¢ resulting from
the solution of Eq. (31). Equation (33) is solved by a
standard frontal solver program.

Dirichlet Condition

One additional constraint is required to keep the
matrix (Eq. (35)) nonsingular; namely the potential
must be given a value (grounded) at some nodal location
in the finite element grid. For the purposes of this paper,
(36)

¢; =00 at x=00 y=10

This condition is necessary because complete information
about the magnitude of the analytical duct modes was
not passed to the nodal difference equations. Information
about the entrance condition is passed to the finite ele-
ment equations through the x derivative of the analyti-
cal solution in Eq. (31). However, the magnitudes of the
lowest order reflected mode A’ and lowest order trans-
mitted mode B';' are not passed into the modal differ-
ence equations because the normal derivatives of the
lowest order modes are identical to zero.

In retrospect, Eq. (36) was not required in acoustics
and electromagnetic applications of the modal element
method discussed in the introduction. In these applica-
tions, the Helmholtz equation governs rather than the
Laplace equation. Consequently, the reflected and trans-
mitted lowest order modes are harmonic wave like func-
tions of x and derivatives exist for all modes. Thus,
sufficient information is transmitted to the finite ele-
ment equations to make them nonsingular.

Geometrical Model and Exact Solutions

The cylindrical like obstacle shown in Fig. 2 is
described by an infinite row of doublets in a uniform

stream. Here, the complex potential can be written as
(Kirchhoff, 1985)

. wbU] ,r
W(z) = ¢(x,y) + iv(x,y) = Uz + 5 “coth Ez
(37)
where
z=x + iy (38)

and where the notation has been modified to reflect the
nondimensionalization used herein. Using the identity
given in Abramowitz and Stegun (1964, p. 84), the
potential and stream function can be written as

2 +
6= U'x + b, sinh (7 x) (39)
“ 2 cosh(rx) — cos(xy)
2 +
b= Uy - TbU, sin(ry) (40)
® 2 cosh(rx) — cos(ry)
In the examples to follow,
Ul =10 (41)



so that the value of the streamline along the upper wall
y == 1is ¢ = 1 and the value of the streamline is ¢ = 0
along the lower wall and obstacle. Therefore, the height
of the obstacle y as a function of x is given by

xb? sin(xy)
"2 cosh(rx) — cos(ry)

0=y — (42)

Equation (42) is solved numerically by the bisection
method for the height y of the obstacle as & function x
and as a function of the assumed strength of the dipole
parameter b. The following two values of b are used in
the examples of the next section:

b X, Yo
0.5642 0.5084 0.5000
1.9020 1.1552 0.9000

Recall that the extremes of the obstacle x, and y, are
defined in Fig. 2. For b equals 0.5642 the obstacle
closely approximates a circular cylinder.

Equation (39) representsthe exact analytical solution
to which the approximate numerical analysis will be
compared graphically in the examples to follow. In addi-
tion, the numerically determined modal coefficients in
Egq. (16) can also be compared to the exact results in
Eq. (39) by equating both expressions:

Mcoef
A+ ) A;emf(x—x“‘)cos(mwy)
m=1 . (43)
_ wb? sinh(7 x)

T2 cosh{nrx) — cos(;ry)

The lowest order reflected mode A | can be easily deter-
mined by letting x go to negative infinity. Noting that
the higher order modes on the left-hand side go to zero
and the ratio of sinh to cosh is —1 at —, it follows

(43)

Thus, the lowest order potential acts with the opposite
polarity of the free stream potential and is proportional
to the square of the dipole strength.

The amplitude of the higher order modes can also be
determined using the series expansion (Gradshteyn and
Ryzhik, 1965, p. 42, Eq. (1.461), modified for x < 0)

sinh(7x)

cosh(xx) — cos(ry)

= —1 -2 f: e™ "X cos(mry) (44)

m=1

x <0

Substituting Eq. (44) into Eq. (43), the exact expres-
sion for the modal amplitude A_ can be expressed as

A = —wb? ¢ (45)

Equations (43) and (45) can be used to compare the
exact results with the analytical approximations. A simi-
lar analysis applies to the B; modes. For this symmetri-
cal obstacle the B;:" modes are identical in magnitude to
the A modes but of opposite sign.

For the examples to be considered later, the follow-
ing tabulated values give the exact amplitude of the
back reflected potential A and the higher order cutoff
potential modes.

Example 1 Example 2
b = 0.5642 b = 1.9020
x, = —0.5084 x, = —1.1552

. = —0.5084 o = —1.3084
AE = —0.5000E+00 AE = —5.6825E+00
A; = —0.2024E+00 AT = —0.1404E+00
A, = —0.4099E-01 A; = —-0.1736E—-02
A; = —0.8299E—-02 A; = —0.2146E-04
A= —0.1680E—02 A: = —-0.2652E—-08
Ay = —0.3401E-03 Ag = —0.3279E-08
AE = —0.6887TE—-04 A; = —0.4053E-10

As seen above, the amplitudes of the higher order
modes fall off rapidly with increasing m. Thus, the grid
density can be reasonably sparse in the transverse y
direction to resolve the important modes. Because the
grid was extended farther from the body in the second
example (x;, < x,), the modal element coefficients for
the higher order modes are smaller for this second exam-
ple. Of course, as the magnitude of x; increases to very
large values, all the higher order modes will become neg-
ligible, so the grid density could be very sparse near the
end of the finite element grid in the neighborhood x; .
However, the analysis also indicates that the finite ele-
ment grid density must still be increased at x to what-
ever level of accuracy is desired to resolve the higher
order modes.



Results and Comparisons

To validate the method, two numerical experiments
are presented for potential flow over a cylinder like
obstacle described by Eq. (42). The first example con-
siders an obstacle that blocks 50 percent of the channel
while the second example is concerned with an obstacle
blocking 90 percent of the channel. For the examples to
follow, recall that the characteristic length L# is set
equal to the height of the channel so that the channel
has a dimensionless height of unity. The dimensionless
mean flow velocity is also assumed to be unity. The
parameter M__,; specifying the number of modes in
Eq. (8) was taken to be 3 for a good comparison to the
exact solution. For problems without an exact solution,
the number of modes must be increased till the results
converge. For example, in the acoustic application
shown in Fig. 1(d), the number of modes required was
121.

Example 1.—Half Channel Obstruction

Consider the potential flow over the cylinder with a
b value of 0.5642, x, = —0.5082, and y, = 0.5000. In
this example, the finite element region was placed
directly over the obstacle as shown in Fig. 4 so that the
end of the analytical domain x, coincides with the
beginning of the obstacle at x_. As shown in Fig. 4, the
finite element domain extends from —0.5082 to 0.5082.
Thirteen nodes were used on the interface and eleven
nodes along the surface of the obstacle for a total of
143 nodes and 240 elements.

In Fig. 5, the velocity potential is plotted as a
function of x along the upper wall, y = 1. The dashed
line represents the potential on the duct wall without an
obstacle. The modal element solutions (hollow boxes)
are compared to the exact solution {solid line) given by
Eq. (39). In Fig. 5, for —0.5082 < x < 0.5082, the
values of potential at the finite element nodes are used
to generate the solution. Here, eleven closely packed
nodal values are shown in Fig. 5.

Also in Fig. 5, the numerical solution is generated
from Eq. (18) using the numerically determined modal
coefficients A for x < —0.5082 and B;; for x > 0.5082.
The numerically calculated modal coefficients and the
exact coefficients are:

Numerical Solution Exact Solution
Aj = —0.486E—00
A7 = ~0.197E-00
A, = —0.454E-01

A = —0.50002E—00
A7 = —0.20247E—00
—0.40994E—01

>
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The numerically calculated and exact modal coefficients
are in reasonable agreement. Six separate values of the

potenﬁa.l were calculated in each analytical region as
shown in Fig. 5. Clearly, the modal element method
gives good agreement with the numerical results.

A convergence check was made in this example by
increasing the number of vertical nodes to 25 and x
coordinate nodes to 21 for a total of 525 nodes and 960
elements. In this case, the numerically calculated modes
and the exact modes are

Numerical Solution Exact Solution
A; = —0.497E-00 Ay = —0.50002E-00
A = —0.202E-00 A7 = —0.20247E—-00
A, = —0.446E~01 ~0.40994E—01
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No improvement of the graphical results was seen by
eye. Figure 6 shows the resulting contour plot including
the analytical and finite element regions. The dash line
in Fig. 6 shows the streamlines. There is good agreement
between the exact and the modal element results.

The disagreement in the A, modal amplitude was
believed to be a result of the highly skewed triangles
near the leading edge of the cylinder as shown in Fig. 3.
This simple grid system was chosen just to confine the
grid directly over the obstacle. In the next example with
90 percent channel blockage and a very steep slope near
the leading edge, a more conventional grid system is
employed. As will now be shown, the new grid system
will lead to good resolution of the highest order mode.

Example 2.—Large Channel Obstruction

Consider the potential flow over the cylinder with a
b value of 1.9020, x, = 1.1552, and y, = 0.9000. In this
case, 90 percent of the channel has an obstruction as
illustrated in Fig. 7. The grid was extended slightly in
front of the obstacle to better resolve the steep slope of
the obstacle near x . In this case, x;, = —1.3984 and
Xout = 1.3984. Twenty one nodes were used on the inter-
face and 132 nodes along the upper channel wall for a
total of 1272 nodes and 2212 elements, as shown in
Fig. 7.

In Fig. 8, the velocity potential is again plotted as a
function of x along the upper wall, y = 1. The dashed
line again represents the potential on the duct wall with-
out an obstacle. The modal element solutions (hollow
boxes) are compared to the exact solution (solid line)
given by Eq. (39). In Fig. 8, for —1.3984 < x < 1.3984,
the values of potential at the finite element nodes are
used to generate the solution. In this case, the closely
packed nodal values are shown in Fig. 8.

Also in Fig. 8, the numerical solution is generated
from Eq. (16) using the numerically determined modal



coefficients A for x < —1.3984 and B;; for x > 1.3984.
The numerically calculated modal coefficients and the
exact coefficients are as follows:

Numerical Solution Exact Solution

A, = —0.567E+01 A, = —0.56825E+01
A7 = —0.140E-00 A, = —0.14048E-00
A, = —0.173E-02 A, = —0.17364E—-02
In this example, the numerically calculated and exact

modal coefficients are in good agreement for all modes
including the highest order mode. Six separate values of
the potential were calculated in each analytical region as
shown in Fig. 8. Clearly, the modal element method
again gives good agreement with the numerical results.

Finally, Fig. 9 shows a contour plot of the potential
inside the finite element region while Fig. 10 shows a
contour plot including both the analytical and finite ele-
ment regions. The dash line in Fig. 10 shows the stream-
lines. Again, there is good agreement between the exact
and the modal element results.

The first mode A has increased from —0.5 to
—5.8825 or a factor of 10 increase in the magnitude of
the potential. This is a direct result of the larger
obstruction in the second example. In both cases the
gradient of the potential along the upper wall reaches
the free stream value once outside the obstacle because
of the quick decay of the higher order modes.

Concluding Remarks

The modal element method for potential flow over a
two-dimensional cylindrical like obstacle is presented.
The total flow domain is broken into three subdomains
that are patched together. The potential field is repre-
sented by a finite element solution in the irregular
subdomain next to the obstacle and by an exact eigen-
function expansion in the unbounded entrance and exit
ducts. The analytical and numerical solutions are
coupled by the continuity of potential and velocity
across the interface between the subdomains and are
calculated simultaneously from a single matrix equation.
The method is applicable to problems involving a com-
plete range of channel blockage.

The combined numerical and analytical results show
excellent agreement with the corresponding exact solu-
tions. For numerical insight, the analytical results indi-
cate the accuracy of the chosen exit boundary condition
and the grid density required for a given harmonic
accuracy near the obstacle {generally about 12 nodes per
wavelength are required to resolve a modal harmonic).
For flow field insight, the analytical results indicate the
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exact magnitude of the back potential and the decay
rates of the harmonics which blend the flow streamline
and the potential lines from about the obstacle into the
uniform flow lines of the far field.

Eigenfunction solutions are applicable for a wide
range of practical CFD problems in regions where viscos-
ity no longer dominates. Nevertheless, eigenfunction
solutions do not exist for most CFD problems. For these
more complicated problems, a challenging and intriguing
aspect of the modal element approach could be to use a
finite series of known trial functions with unknown coef-
ficients A,. These trial functions would approximate the
physics, but not necessarily satisfy the governing differ-
ential equations. Meirovitch (1987) suggests using
admissible trial functions (satisfying geometric boundary
conditions) or comparison trial functions (satisfying
geometric and natural boundary conditions) for this
task. In these cases, additional constraints must be
applied to the coefficients A, so that differential equa-
tions are satisfied in the analytical region. Meirovitch
suggests that the collocation method is a practical
approach to this problem.

The long term goal or vision of this research is to
(1) adapt the modal element method for greater analyti-
cal and numerical insight to a wider class of CFD prob-
lems and (2) decrease computational costs by reducing
the numerical grid.
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radius of cylinder = 5 cm

(a) Computational grid; Khan, Brown, Ahuja (b) Computational grid; model ring grid analysis.
transient difference.

Exact analysis ABS (p) ————— Exactanalysis
o Khan, Brown, Ahuja transient difference O Numerical solution
O Modal ring grid analysis

i 2{0
Pressure

amplitude

(c) Comparison of Numerical Approaches k¥ = (d) Application of model ring grid to high frequency
0.182 cm™1 radius of cylinders = 5 cm, k*r < 1.08. scattering kr = 150, 2904 nodes.

Figure 1.—Application of modal element methods in acoustic scattering from a hard circular cylinder.
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Figure 2.—Flow field geometry.
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Figure 3.—Conventional finite element discretization for flow around
cylindrical object in channel.
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Figure 4.—Modal element finite element discretization for flow around cylindrical object
in channel.
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Figure 5.—Effect of a half channel obstruction on the potential
along the upper wall (143 nodes and 240 elements).
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Figure 6.—Contour plots of the potential in both the finite element region and the
analytical reglons for the half channel obstruction (525 nodes and 960 elements).

T e
EO,EOOeEEEOESOESsE R
TRl - 7
= =
2
o~ o
O 7z
i
& o
e A
A

>a vy
RS
“’4&

)
7
ot
0N
NS

¥

Figure 7.—~Modal element finite element discretization for flow around large cylindrical object
in channel.
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Figure 8. —Effect of a large channel obstruction on the potential
along the upper wall (1272 nodes and 2212 elements).
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Figure 9.—Contour plots of the potential in the finite element
region for the channel obstruction.
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Figure 10.—Contour plots of the potential in both the finite element region
and the analytical reglons for the half channel obstruction (1272 nodes and
2212 elements).
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