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SUblMARY

The convergence characteristics of various approximate factorizations for the 3D

Euler and Navier-Stokes equations are examined using the von-Neumann stabil-

ity analysis method. Three upwind-difference based factorizations and several

central-difference based factorizations are considered for the Euler equations. In

the upwind factorisations both the flux-vector splitting met.hods of Steger and

Warming and van Leer are considered. Analysis of the Navier-Stokes equations

is performed only on the Beam and Warming central-difference scheme. The

range of CFL numbers over which each factorization is stable is presented for

one-, two- and three-dimensional flow. Also presented for each factorization is

the CFL number at which the maximum eigenvalue is minimized, for all Fourier

components, as well as for the high frequency range only. The latter is useful

for predicting the effectiveness of multigrid procedures with these schemes as

smoothers. Further, local mode analysis is performed to test the suitability of

using a uniform flow field in the stability analysis. Some inconsistencies in the

results from previous analyses are resolved.



INTRODUCTION

Implicit numerical schemes are gaining increasing popularity since they allow

large time steps for advancing the solution of Euler and Navier-Stokes equations

to steady state. To reduce the computational cost that is usually involved, the

implicit operator is often approximated by a number of smaller easily invertible

factors. However, as observed by Thomas et at. [1], the approximately factored

scheme has a stability restriction which is more severe in 3D, and also an optimal

convergence time step that is not known a priori. Therefore, to avoid the long

and costly approach of trial and error of obtaining an optimal CFL number, it is

highly desirable to carry out a stability analysis for any numerical scheme. Some

researchers have found that analyzing scalar equations such as the convection or

the diffusion equation can provide insight into the stability requirements for Euler

and Navier-Stokes equations. Beam and Warming [2] employed a combination

of these scalar equations to approximate the restriction that will be placed on

their ADI methods for compressible Navier-Stokes equations. Jameson and Yoon

[3] and Caughey [4], among many others, used the scalar convection equation

as a model problem for the Euler equations to investigate appropriate conditions

for multigrid implementation. Rather than utilizing model equations, Jespersen

and Pulliam [5] developed a technique where Fourier analysis is extended to the

actual coupled equations of quasi-one-dimensional Euler equations. Jespersen [6]

further extended this technique to 2D Euler equations in order to find the best

conditions at which to implement multigrid for a transonic flow. Thomas et al.

[1], von Lavante [7] and Anderson et al. [8] have also utilized a similar approach

in the stability analysis of Euler equations for certain approximate factorizations



and relaxationschemes.

In this paper,the stability analysis for both the Euler and Navier-Stokes equations

is carried out for different approximate factorizations. For the Euler equations,

three different upwind factorizations, the LU factorization and the Beam and

Warming (ADI) factorization are considered while for the Navier-Stokes equa-

tions, only the Beam and Warming (ADI) central scheme is analyzed. Also, the

quasi-one-dimensional Euler equations investigated by Jespersen and Pulliam [5]

is revisited in order to illuminate the actual influence on stability of using approx-

imate Jacobians (to reduce computational costs), instead of the exact Jacobians

in upwind factorizations. To ascertain the adequacy of using a uniform flow field

in the stability analysis, a local mode analysis is further carried out using actual

flow fields (transonic and subsonic) from a quasi-one-dimensional flow.

THEORY AND ANALYSIS

In order to extend the Fourier analysis to the coupled equations under consid-

eration, a discrete analog of these equations is formulated based on different

approximate factorizations in this section. The Euler equations are first analyzed

using upwind and LU factorizations. The ADI factorization is formulated for the

Navier-Stokes equations with the Euler equations as a degenerate case.

Upwind Approximate Factorizations for Euler Equations

The conservation form of the 3-D Euler equations in Cartesian coordinates can

be written as:

OQ OE OF OG

Oq--"_"+ "_x + "_'-y + 0--"_ = 0, (i)

where Q is the solution vector and E, F and G are the conserved inviscid fluxes:
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Q = [p, pu, pv, pw, pe] T

e = [p_,,p_?+ p,p_v,p_w,(p_+ v)_,]r

F = [pv,p_,v,p_2+ p,p_w,(p_+ p)_]r

G = [pw,pw_,,p_, p_2 + v, (p_+,)w] r

If the Euler implicit scheme is used for time discretization, Eq. (1) can be written

in the following form of the augmented Newton's method [9]:

[I+ A_(_An + _B n + _zCn)]zXQ" = -At(_e" + _yF_ + 6zC'_) (3)

OE aF and fr_, respectively. Thewhere the Jacobians A, B and C are b-_, g_

expressions for A, B and C are given in Appendix A.

Flux-vector splitting is employed for the upwind scheme where discretization of

the flux derivatives is based on the physical propagation of the solutions of the

Euler equations [10]. Based on the direction of the characteristics at a grid point,

A, B, C, E, F, etc., are split into their forward and backward contributions.

Denoting the forward contribution with "+" and the backward contribution with

"-", and forward and backward difference operators with g+ and 6_- respectivelY,

we can rewrite Eq. (3) as:

[I + At(6;A + + 6+A -) + At(6;B + + 6+B-) + At(6"[ C+ + 6+0-)] AQ =

- _t[6;E + + _+_E-+ _;r+ + 6+_F- + 67a+ + 6+_a-1
(4)

The left hand side of the equation is usually approximated with first-order differ-

ences, but the right hand side uses second-order differences to improve the overall

accuracy of the converged solution. However, even with first-order difference ap-

proximations of the implicit terms, the equation is computationally expensive to



solve. To reduce this cost, the implicit operator is factored into a sequence of eas-

ily invertible terms. Following Anderson et ah [8] we will consider the following

three factorizations:

[I + At(a_A + + a_+A-)][I + At(a]/3 '+ + a_B-)]
(S)

[I + At(a_C + + a+C-)]AQ n =-AtR n

[I + At(a_'A + + 5_-B + + 5j-C+)]
(6)

_i + At(a+A - + a+B - + 6+C-)]AQ n =-AtR n

[I + At(a_A + + 5+A - + 6_"C+)]
(7)

[I+ At(af s+ + a;s-+ a+c-)]_Q n = -_xtRn
Eq. (5), (6) and (7) shall be referred to as the spatial, eigenvalue and combination

factorizations, respectively.

There are different ways of obtaining the split fluxes expressed in the above

equations but two popular methods viz: Steger and Warming flux-vector splitting

[11], and van Leer flux-vector splitting [12], are considered in this work.

In the Steger and Warming case, the fluxes are obtained from the following

transformation:

A + = XAD-_XA 1, A- = XADAXA 1, etc. (8)

where D_ and D A are diagonal matrices whose elements are the positive and

negative eigenvalues of A, respectively, and the columns of XA are the eigenvec-

tors of the Jacobian A. E + and E- are obtained from E + = A+Q, E- = A-Q

etc. Eq. (8) gives approximate values for A +,A- etc. while exact values can

be obtained from:

A+_ OE + OE-
ogQ ' A-= S--Q (9)
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In order to resolvethe singular nature of the Stegerand Warming flux-vector

splitting at the sonic speed, a, van Leer proposed the following splitting in

Cartesian coordinates:

"1

- +

E. l__.+p(u+a) 2 v (10)
4a

W

((7- 1)u 4- 2a)2/2(7 2 -- 1) + l(v2 4- W 2 )

With similar forms for F +, F-, G +, G-, the Jacobians A +, A- etc. are obtained

from Eq. (9). The analytical expressions for these can be obtained using a

symbolic manipulator such as Mathematica. In these expressions, van Leer

ensured continuous differentiability of the fluxes especially at the sonic transition

[10].

LU Approximate Factorization for Euler Equations

This approach has become popular in recent times. It factors the implicit term of

Eq. (3) into two components such that each component is strictly either a lower

(L) or an upper (U) matrix as in the following equation:

[I + At(5"ZA1 + 5_ B1 + 5[C1)][I + At(5+A2 + 5+B2 + _+C2)]AQ _ =
(11)

-At(6xE + 5_F + 5_G)

The Jacobian matrices are split to ensure diagonal dominance for each matrix

inversion at each grid point. For our numerical computation we have adopted the

flux-vector splitting devised by Jameson and Turkel [13].

(A - raI)
A1 - (A + rAI ) A2 = etc. (12)

2 ' 2 '
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where rA > max(I,Xal), etc. and ,_A are the eigenvalues of matrix A viz:

It "Jr a_zt _ a_tt_u_tt.

The explicit terms are central differenced and it is necessary to damp the associated

high frequency waves and/or to correct the odd-even decouplings. In this study,

the following combination of second- and fourth-order explicit linear dissipations

is employed. According to Caughey [4], and Yokota and Caughey [14], the former

term is necessary for any spurious waves at the vicinity of shock while the latter

ensures convergence to steady state.

D e = _2AtAxSzx - tc4AtAx35==== (13)

_ 1 (5+_ 5_-), the second-order term is split in a mannerNoting that 5zz - -_z_ z

consistent with the differencing of the Jacobians and is implemented implicitly.

Thus, with similar terms in the y- and z-directions, we write:

[I + At(5_A1 + 5_B1 + 5"_C1) + _2At (5_- + 5_ + 57) ]

[!: + At(5+A2 + 5+B2 + 5+C2) - n2At(5 + + 5+ + 5+)]AQ n = (14)

-At(SxE + 5yF + 5zG) - n4At(Ax35_xz_ + AY35yyyy q- AzaSzzzz)IQ

This factorization is similar to the eigenvalue filctorization (see Eq. (6)) except that

the explicit terms are centrally differenced rather than upwinded, thus, requiring

the addition of dissipation. Also, the split fluxes of Jameson and Turkel which

are less difficult to derive are used to achieve diagonal dominance in this case.

ADI Factorizations for Euler and Navier-Stokes Equations

The 3--D Navier-Stokes equations in Cartesian coordinates can be written as:

OO 8(E- E_) 8(F- F_) O(G- Gv) _ 0 (15)
07 + Oz + Oy + Oz



where E, F and G are as defined earlier, and E_,, F,,, and G,_ are the viscous

fluxes:

Ev --.

_(2u. - v, - w.)
#(u_ + v,)

_,v(u_,+ v_)+ _w(uz+ w_)+

(16)

0

#(u_ + v_)
_(2_ - _ - _)

_(vz + wy)

}#v(2vy - u,: - w,) + kr_

(17)

GV

0

_(_ + u.)
_(v. + wy)

#_,(_, + u_)+ #v(vz+ wp+
]#w(2w_ - i_y - u,) + kT,

(18)

Where T -- _ and p is as defined in Appendix A. Also, Stokes hypothesis

( A = -_#) has been assumed. With Ev, Fv and Gv set to zero, we recover

the Euler Eqs. (1).

Following the approach of Beam and Warming [9], the viscous fluxes are split

directionally. Also following the approach presented in Anderson et al. [14]

for 2D Navier-Stokes equations, analysis yields the following ADI approximate

factorization for the 3D Navier-Stokes equations, while assuming Euler implicit

8



time integrationand constantfluid properties:

[I+ At(6zA - 6xxR)][I+ At(fyB - 6_yS)][I + 5t(6zC - 6zzY)]AQ n =

-At[A6z - R6zx - R16yz - R26zz + B6y - S16z_ - S(Sy_ - S26zy+

C8_ - Y_8_ - Y28_ - YSz_]Q
(19)

The analytical expressions for the various Jacobians (from the viscous fluxes) that

appear in this equation are shown in Appendix B. The right-hand-side resulted

from linearization and from assuming the flux Jacobians locally constant.

To damp the high frequency waves that will arise due to central differencing,

second-order implicit (D / = --eiAtAzS_) and fourth-order explicit

(Dg = -eeAtAxa6xzzz) artificial dissipations are added in the numerical exam-

ples. Thus, with similar dissipations added in the y- and z-directions Eq. (19)

becomes:

[I + At(6zA - 6zzR) - eiAtAz6=_I][I + At(6_B - 6_yS) - eiAtAy6yyI]

[I+ At(6_C - 6z_Y) - eiAtAz6_I]AQ" =

- At[A6z - R6zx - R16yz - R26z_ + B_u - $16z_ - S6y_ - $26_ + C6z

- Yi6xz - Y26yz - Y6zz + (EeAxS6zzzz + 6eAy36yyyy + seAzS_zzzz)I]Q
(20)

The corresponding factorization for the Euler equations is obtained by setting to

zero the viscous flux Jacobians R, R1, R2, S, 5'1, $2, Y, Ya, Y2.

In the forgone analyses, different approximate factorizations that are widely used

in practice have been formulated for the 3D Euler and Navier-Stokes equations.

The convergence characteristics of each of these are examined using the von-

Neumann type Fourier analysis methods.



von-Neumann Stability Analysis

Each of Eqs. (5), (6), (7), (14) and (20) can be expressed as

NAQ" = -L = -AtR n (21)

von-Neumann stability analysis is used on this system of linear Eq. (21) by letting

the step by step solution be characterized by

Qn = AnUoeliOxelJ¢_elk¢, (22)

where I = x/"L'] -, ,_ is the amplification factor and ¢z, Cv, ¢z represent the modes

in the x-, y- and z-directions. Thus, Eq. (14) reduces to a complex generalized

eigenvalue problem of the form [5]:

t<v = A_'v where t_ = N- f_, (23)

The Fourier symbols .Nand L are derived for each of the factorizations shown

in Eq. (5), (6), (7), (14) and (20). For example, for the spatial factorization

(represented by Eq (5)), employing a first-order differencing for the implicit

operator and second-order differencing for the explicit operator, these two Fourier

symbols are expressed as follows:

{/Q" = I + _--_z [(A + - A')(1 -

{I+ _y [(B+ - B-)(1 -

At +
i+ -

cos Cx) + (A+ + A-)I sin Cz] }

cos Cy)+ (B + + B-)Isin ¢u] }

cos ¢,)+ (C + + C-)Isin ¢,] }

(24)

.L= At
2A----_[(A + - A-)(3 + cos 2¢x - 4 cos #_z) + (A + + A-)(4 sin Cx - sin 2¢x)I]

At

+ 2--_Tv[(B + - B-)(3 + cos 2¢y - 4 cos Cu) + (B + + B-)(4 sin ¢y - sin 2¢y)I]

At

-t-2--_z [(C + -C-)(3-t-cos 26,- 4cos 6,)+ (C + + C-)(4sin ¢,- sin2¢,)I]
(25)

I0



The Fourier symbolscorrespondingto the otherapproximatefactorizationsare

documentedin Demurenand Ibraheem[16].

SOLUTION PROCEDURE

The convergencecharacteristicsfor solution algorithmsbasedon each of the

factorizationsdiscussedare investigatedby solving the generalizedeigenvalue

problem (23) over a fixed numberof Fourier modes. 16 modesare selected,

in the range0 < _bx, 4y, Oz < 27r, and over these modes the maximum eigen-

value (Amax), the average eigenvalue (Aavg) and the smoothing factor (At,) are

computed. The smoothing factor is computed to show the effectiveness of the

selected scheme as a relaxation operator in a multigrid implementation. This

is calculated from Au = max(IAl) for the high frequency modes in the range

_- < _bx, _bu, 4z < -_. For the analyses, uniform flow is assumed with Moo = 0.8,

zero yaw and angle of attack and "7 = 1.4. Further, the grid spacing is assumed

to be uniform in all directions. The time step, At is calculated from:

CFL
At = (26)

A_ + /x u /x, _r +

As a further test case, quasi-one-dimensional Euler equations are solved with

a similar formulation as the 3-D upwind spatial factorization, with uniform

conditions of Moo = 0.5, zero yaw and angle of attack and p = 1.0, chosen

to enable comparison with Jespersen and Pulliam's results [5]. In this case, the

computed parameters are the maximum eigenw_lue (,_max), the L2-norm of the

eigenvalue (12) and the eigenvalue at 0:_ = ,-r (A_).

I1



RESULTS AND DISCUSSIONS

Computed values of the maximum eigenvalue (Amax), the average eigenvalue

(Aavg) and the smoothing factor (At) for the spatial, eigenvalue and combination

factorizations based on the Steger and Warming flux-vector splitting are shown

in Figs. (la), (lb) and (lc) respectively. Both the eigenvalue and the combina-

tion factorizations are unconditionally stable for all CFL numbers. The spatial

factorization is stable only for CFL numbers below 5. The maximum eigenvalue

for each of the spatial, eigenvalue and combination factorizations is minimized at

CFL numbers of 3, 8 and 7, respectively. Corresponding results obtained for 2-D

case (not shown) indicate that the spatial and eigenvalue factorizations are uncon-

ditionally stable and have lower (Amax) than the 3D case, for all CFL numbers.

The corresponding minimum value of (Araax) are minimized at a CFL numbers

of 8 and 10, respectively. The I-D case is also stable for all CFL numbers with

the maximum eigenvalue minimized at a CFL number of 11, for both spatial and

eigenvalue factorizations (Table I).

Figs. (2a), (2b) and (2c) show the convergence characteristics of each of the

factorizations based on the van Leer flux-vector splitting. These agree very

well with that of Anderson et al. [8]. Except for the spatial factorization,

all the schemes are unconditionally stable for all CFL numbers. The spatial

factorization is stable only for CFL number below 14. The maximum eigenvalues

for the spatial, eigenvalue and combination factorizations are minimized at CFL

numbers of 7, 4 and 7 respectively. From the Au curve, it appears that the

spatial factorization with the Steger and Warming method has poorer smoothing

properties comparison with the van Leer spatial factorization. Based on linear

12



analysis, there is also a smaller range of CFL numbers over which it is stable. The

spatial factorization and the eigenvalue factorization of the 2-D case are found to

be unconditionally stable with maximum eigenvalue minimized at CFL numbers

of about 9 and 6, respectively. Results for the I-D case are almost identical to

those of the Steger and Warming analysis, with maximum eigenvalues minimized

at CFL numbers of 11 and 19, respectively.

In the computations presented thus far, approximate Jacobians derived from a

time linearization of the Euler equations have been employed in the Steger and

Warming method on both the implicit and explicit sides. The effect of using the

exact Jacobians in the stability analysis was investigated with 1D Euler equations

using uniform conditions of ,_4"_c = 0.5 and p = 1.0. The results are compared

in Figs. (3a) and (3b), respectively. In both cases, first-order differencing were

used on the implicit side and second-order differencing on the explicit side, as in

previous computations. From these figures, it can be observed that the results (as

reflected by the variation of /_max, Aavg,/_# with CFL) are similar. This shows

that the use of approximate Jacobians does not place a restriction on the stability.

This is at variance with the conclusicm of Jespersen and Pulliam [5]. Restriction

on the stability will result if the Jacobians are "mixed" such that approximate

Jacobians are used on the implicit side and the exact Jacobians on the explicit

side. In this case, Fig. (3c) shows that the stability is restricted to CFL numbers

below 1. On the other hand, if the Jacobians are mixed in the reverse order

i.e., with exact Jacobians on the implicit side and approximate Jacobians on the

explicit side, the results (see Fig. (3d)) is not significantly affected. Further, from

Figs. (4a), (4b), (4c) and (4d), where we have used second-order differencing on

13



both sides, similar conclusionscanbe drawn.

All computationshavebeenbasedon uniform flow conditions.To ascertainthe

suitability of using such uniform flow field assumptions in the stability analysis,

computations were carried out on two non-uniform flow fields with quasi-lD Euler

equations using local mode analysis. These correspond to supersonic and transonic

flows in a converging duct with steady-state solutions shown in Figs. (5a) and (5b),

respectively. The von-Neumann method is applied at each point in the flow field

thereby accounting for the variation in flow properties. The stability results for the

supersonic case for both first-order and second-order differencing of the implicit

side are shown in Figs. (5c) and (5d). Corresponding results for the transonic

case are shown in Figs. (5e) and (51). These results follow a similar trend as

those obtained for I D Euler equations with uniform fl¢_w properties, except that

instability is now predicted fear lower CFL numbers. Boundary conditions were

implemented explicitly and might have contributed to this instability. The use of

local mode analysis here, is similar to the use of the total matrix method approach

of Jespersen and Pulliam [5], except that, the fi',rmer is easier to compute because

it involves the solution of only a 3X3 eigenvalue problem.

Figs. (6a), (6b) and (6c) show the convergence characteristics of the 3D Euler

equations using the LU approximate factorization with central difference approxi-

mations and various levels of second- and fourth-order artificial viscosities; x2 and

x4. Without" the addition of second-order dissip_ltion i.e., x2 = 0, the coefficient

x4 = 0.4 yields the optimal results (see Fig. (6:1)). Appropriate combinations

of x2 and _4 (especially, when ,c,_ >_ n'2.) considerably reduce the amplification

factor (see Fig. (6b) as compared with Fig. (6c)). The amplification factor is

14



minimized in each case at a CFL of about 5. Similar trends were observed in

1D and 2D cases.

In Figs. (7a), (7b), (7c), (8a), (8b) and (8c), the convergence characteristics for

the full 3-D Naiver-Stokes equations using the Beam and Warming (ADI) central

difference scheme as the baseline solution algorithm are shown for different

Reynolds numbers and levels of artificial dissipation. For Reynolds number

of 100 (Fig. 7a) and with no dissipation added, the scheme is stable for CFL

number below 18. However, with artificial dissipation coefficients of ee = 0.5

and si = 1.0 (Fig. 7b), the stability is restricted to a lower CFL number of 10, but

with better smor_thing properties. Optimal dissipation coefficients of ee = 1.0 and

ei = 2.0 (Fig. 7c), are ti_und to improve th_ stability to a CFL of about 18 while

maintaining good smoothing properties. The maximum eigenvalue is minimized

at a CFL number of about 4 for this optimal dissipation. Both 1-D and 2-D

cases are unconditionally stable for all levels of dissipation. For ee = 1.0 and

ei = 2.0, their maximum eigenvalues are both minimized at about CFL numbers

of 24 and 11, respectively. For Reynolds number of 106, the results are similar

to the cases with Reynolds number of 100, especially when dissipation is added.

Hence, the stability results are not significantly affected by Reynolds number.

Figs. (ga), (gb) and (9c) show the stability results for Euler equations with the

Beam and Warming (ADI) central difference scheme. These results are identical

to those obtained fi_r the full Navier-Stokes equations at a Reynolds number of

106 . Generally, the addition of dissipation reduces the amplification factor and

the smoothing f;lctor at lower CFL numbers. Optimal smoothing is usually at a

CFL number close to ].
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The above results are surmmarised in Table I. In the Table, Am stands for the

minimum amplification factor, CFLm for the corresponding CFL number, CFLI

the maximum CFL number for stability and CFL# is the CFL number at which

)_/_ is minimized.

CONCLUSIONS

The stability of some approximate factorization schemes for the solution of the

3D Euler equations and Navier-Stokes equations have been studied. For the

Euler equations, the Steger and Warming, and van Leer flux-vector splittings

were used with three different upwind factorizations namely: spatial, eigenvalue

and combination factorizations. For both flux-vector splittings, the eigenvalue and

combination factorizations are unconditionally stable, but the spatial factorization

is only conditionally stable for CFL numbers below 5 for the Steger and Warming

scheme, and 14 for the van Leer scheme. Moreover, the amplification factor

(Amax) is minimized t\_r the Steger and Warming scheme at CFL numbers of 3,

7, and 8 respectively, and for the wm Leer scheme at 7, 4, and 7, for spatial,

eigenvalue and combination factorizations, respectively. Each of the approximate

factorization methods has good smoothing properties fi_r the van Leer flux-vector

splitting, while for the Steger and Warming splitting, the smoothing factors are

comparatively worse. Therefi_re, the van Leer splitting will be preferable for

multigrid implementation. The Euler equations have also been analyzed for

stability using the LU approximate factorization with central differences and

various levels of artificial dissipation. It was found to be unconditionally stable

in all dimensions with the maximum eigenvalue minimized at a CFL number of

about 3. Contrary to the conclusion drawn by Jespersen and Pulliam [5] that the

16



use of approximate Jacobians places restriction on the stability, it is shown, after

careful investigation, that if they are used on both the implicit and the explicit

sides, the stability results are comparable to the case where the exact Jacobians

are used. The von-Neumann analysis method was also employed in performing

local mode analysis for actual (supersonic and transonic) flow fields of a quasi

1D problem to show the suitability of using unifi_rm flow field in the stability

analysis. Stability results for the 3D Euler and Navier-Stokes equations solved

with the Beam and Warming (ADI) central scheme with various levels of artificial

dissipation (and at different Reynolds number for the latter) have been presented.

It was observed that the stability is not significantly affected by Reynolds numbers

and that addition of dissipation reduces the amplification factor and the smoothing

factor at lower CFL numbers.
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APPENDIX A

lnviscid Flux Jacobians

A

0 1 0

--t/W U3 0

-_[7_-(7-i)q_] 7_-_i(q_+ 2_2)-(7- i)_v

0 0

-(7-i)_ (7-i)
0 0

u 0

-(7 - 1)uw 7u

B ,,.. 0 0 1

--UV V U

__ + _iq-_ -(_-I)_, (3-_)_
/ -_w 0 w
L-_[_-(_-l)q2] -(7- 1)uv 7e- _2ktT!l(q2 + 2v2)
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where p = (7- l)(pe-O.Sq 2) and q2 = u_ + v 2 + w2
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APPENDIX B

Viscous Flux Jacobians
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0 0 0 0 0

-_,v v -_, o o

_E?J_Z

• R2 -- = _
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OGV_X

rl _ __ ta

OQ_

0 0 0 0 0

-w 0 0 1 0
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2 0 0 0_u --_

,½-
P

0 0 0 0 O"
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-w 0 0 1 0

2 0 02-v 0 --_

-_vw 0 -.}w v 0

where Pr = _ = V___.
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