Proteus Two-Dimensional Navier-Stokes Computer Code-Version 2.0

Volume 3-Programmer's Reference

Charles E. Towne, John R. Schwab, and Trong T. Bui
Lewis Research Center
Cleveland, Ohio

```
N94-15967
(NASA-TM-105339) PROTEUS
TWO-CIMENSIONAL NAVIER-STOKES COMPUTER CODE, VERSIUN 2.0. VOLUME 3: PROGRAMMER:S REFERENCE (NASA)
Unclas 260 P

October 1993

\section*{CONTENTS}
SUMMARY ..... 3
1.0 NTRODLCTION ..... 5
2.0 PROGRAM STRCCTURE ..... 7
2.1 FLOW CHART ..... 7
2.2 SUBPROGRAM CALLING TREE ..... 10
2.3 PROGRAMMING CONVENTIONS AND NOTES ..... 14
2.3.1 Computer \& Language ..... 14
2.3.2 Fortran Variables ..... 15
3.0 COMMON BLOCKS ..... 19
3.1 COMMON BLOCK SUMMARY ..... 19
3.2 COMMON VARIABLES LISTED ALPHABETICALLY ..... 19
3.3 COMMON VARIABLES LISTED SYMBOLICALLY ..... 38
4.0 PROTEUS SLBPROGRAMS ..... 49
4.1 SUBPROGRAM SUMMARY ..... 49
4.2 SUBPROGRAM DETAILS ..... 51
Subroutine ADI ..... 53
Subroutine AVISCl ..... 54
Subroutine AVISC2 ..... 57
Subroutine BCDENS ..... 60
Subroutine BCELIM ..... 63
Subroutine BCF ..... 64
Subroutine BCFLIN ..... 69
Subroutine BCGEN ..... 71
Subroutine BCGRAD ..... 73
Subroutine BCMET
74
74
Subroutine BCPRES ..... 75
Subroutine BCQ ..... 82
Subroutine BCSET ..... 85
Subroutine BCTEMP ..... 87
Subroutine BCUVEL ..... 93
Subroutine BCVDIR ..... 97
Subroutine BCVVEL ..... 106
Subroutine BCWVEL ..... 110
Subroutine BLIN1 ..... 114
Subroutine BLIN2 ..... 116
Subroutine BLKOUT ..... 117
Subroutine BLK2 ..... 118
Subroutine BLK2P ..... 120
Subroutine BLK3 ..... 122
Subroutine BLK3P ..... 124
Subroutine BLK4 ..... 126
Subroutine BLK4P ..... 127
Subroutine BLK5 ..... 128
Subroutine BLK5P ..... 129
BLOCK DATA ..... 130
Subroutine BLOUT1 ..... 132
Subroutine BLOLT2 ..... 135
Subroutine BVLP ..... 137
Subroutine COEFC ..... 139
Subroutine COEFE ..... 143
Subroutine COEFS 1 ..... 151
Subroutine COEFS2 ..... 155 ..... 155
Subroutine COEFX ..... 158 ..... 158
Subroutine COEFY ..... 165
Subroutine COEFZ ..... 173
Subroutine CONV ..... 178 ..... 180
Subroutine CUBIC
Subroutine CUBIC
Subroutine EQSTAT ..... 182
Subroutine EXEC ..... 184 ..... 184
Subroutine EXECT ..... 188
Subroutine FILTER ..... 190 ..... 192
Subroutine FTEMP
Subroutine FTEMP
Subroutine GEOM ..... 195 ..... 198
Subroutine INIT
Subroutine INIT
Subroutine INITC ..... 199
Subroutine INPUT ..... 204
Function ISAMAX ..... 206 ..... 208
Function ISAMIN
Function ISAMIN
Function ISRCHEQ ..... 209
Subroutine KEINIT ..... 211 ..... 213
MAIN Program
MAIN Program ..... 216
Subroutine METS
Subroutine METS ..... 218
Subroutine METT
Subroutine METT Subroutine OUTPUT
220
220
Subroutine OLTW ..... 223
Subroutine PAK ..... 225
Subroutine PERIOD ..... 227
Subroutine PLOT ..... 230
Subroutine PRODCT ..... 232
Subroutine PRTHST
233
233
Subroutine PRTOUT ..... 234
Subroutine RESID ..... 237
Subroutine REST ..... 240
Subroutine ROBTS
242
242
Function SASUM ..... 243
Subroutine SGEFA ..... 244
Subroutine SGESL ..... 245
Function SNRM2 ..... 247
Subroutine TBC ..... 249
Subroutine TIMSTP
253
253
Subroutine TREMAIN ..... 254
Subroutine TLRBBL ..... 257
Subroutine TURBCH
259
259
Subroutine UPDATE
261
261
Subroutine UPDTKE ..... 263
Subroutine VORTEX ..... 264
Subroutine YPLUS.
Subroutine YPLUS.
265
265
REFERENCES

\title{
PROTELS TWO-DIMENSIONAL NAVIER-STOKES COMPUTER CODE - VERSION 2.0
}

\author{
Volume 3 - Programmer's Reference \\ Charles E. Towne, John R. Schwab, Trong T. Bui \\ National Aeronautics and Space Administration \\ Lewis Research Center \\ Cleveland, Ohio
}

\section*{SUMMARY}

A computer code called Proteus has been developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized.

The governing equations are written in Cartesian coordinates and transformed into generalized nonorthogonal body-fitted coordinates. They are solved by marching in time using a fully-coupled alternating-direction-implicit solution procedure with generalized first- or second-order time differencing. The boundary conditions are also treated implicitly, and may be steady or unsteady. Spatially periodic boundary conditions are also available. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model.

The program contains many operating options. The governing equations may be solved for twodimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp preand post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central spatial differencing of the convective terms in high Reynolds number flow. Several time step options are available for convergence acceleration, including a locally variable time step and global time step cycling. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system.

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents the equations and solution procedure used in Proteus. It describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Volume 2 is the User's Guide, and contains information needed to run the program. It describes the program's general features, the input and output, the procedure for setting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job control language used to run the program, and several test cases. Volume 3, the current volume, is the Programmer's Reference, and contains detailed information useful when modifying the program. It describes the program structure, the Fortran variables stored in common blocks, and the details of each subprogram.

Version 1.0 of the two-dimensional Proteus code was released in late 1989. The current documentation covers Version 2.0, released in early 1992.


\subsection*{1.0 NTRODCCTION}

Much of the effort in applied computational fluid dynamics consists of modifying an existing program for whatever geometries and flow regimes are of current interest to the researcher. Unfortunately, nearly all of the available non-proprietary programs were started as research projects with the emphasis on demonstrating the numerical algorithm rather than ease of use or ease of modification. The developers usually intend to clean up and formally document the program, but the immediate need to extend it to new geometries and flow regimes takes precedence.

The result is often a haphazard collection of poorly written code without any consistent structure. An extensively modified program may not even perform as expected under certain combinations of operating options. Each new user must invest considerable time and effort in attempting to understand the underlying structure of the program if intending to do anything more than run standard test cases with it. The user's subsequent modifications further obscure the program structure and therefore make it even more difficult for others to understand.

The Proteus two-dimensional Navier-Stokes computer program is a user-oriented and easily-modifiable flow analysis program for aerospace propulsion applications. Readability, modularity, and documentation were primary objectives during its development. The entire program was specified, designed, and implemented in a controlled, systematic manner. Strict programming standards were enforced by immediate peer review of code modules; Kemighan and Plauger (1978) provided many useful ideas about consistent programming style. Every subroutine contains an extensive comment section describing the purpose, input variables, output variables, and calling sequence of the subroutine. With just three clearly-defined exceptions, the entire program is written in ANSI standard Fortran 77 to enhance portability. A master version of the program is maintained and periodically updated with corrections, as well as extensions of general interest (e.g., turbulence models.)

The Proteus program solves the unsteady, compressible, Reynolds-averaged Navier-Stokes equations in strong conservation law form. The governing equations are written in Cartesian coordinates and transformed into generalized nonorthogonal body-fitted coordinates. They are solved by marching in time using a fully-coupled alternating-direction-implicit (ADI) scheme with generalized time and space differencing (Briley and McDonald, 1977; Beam and Warming, 1978). Turbulence is modeled using either the Baldwin and Lomax (1978) algebraic eddy-viscosity model or the Chien (1982) two-equation model. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. The boundary conditions are treated implicitly, and may be steady or unsteady. Spatially periodic boundary conditions are also available.

The program contains many operating options. The governing equations may be solved for twodimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp preand post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central spatial differencing of the convective terms in high Reynolds number flow. Several time step options are available for convergence acceleration, including a locally variable time step and global time step cycling. Simple grids may be generated internally by the program; more complex geometries require external grid generation, such as that developed by Chen and Schwab (1988).

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents the equations and solution procedure used in Proteus. It describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Volume 2 is the User's Guide, and contains information needed to run the program. It describes the program's general features, the input and output, the procedure for setting up initial conditions, the computer resource requirements,
the diagnostic messages that may be generated, the job control language used to run the program, and several test cases. Volume 3, the current volume, is the Programmer's Reference, and contains detailed information useful when modifying the program. It describes the program structure, the Fortran variables stored in common blocks, and the details of each subprogram.

Version 1.0 of the two-dimensional Proteus code was released in late 1989 (Towne, Schwab, Benson, and Suresh, 1990). The current documentation covers Version 2.0, released in early 1992.

The authors would like to acknowledge the significant contributions made by their co-workers. Tom Benson provided part of the original impetus for the development of Proteus, and did the original coding of the block tri-diagonal inversion routines. Simon Chen did the original coding of the Baldwin-Lomax turbulence model, and consulted in the implementation of the nonlinear coefficient artificial viscosity model. William Kunik developed the original code for computing the metrics of the generalized nonorthogonal grid transformation. Frank Molls has created separate diagonalized and patched-grid versions of the code. Ambady Suresh did the original coding for the second-order time differencing and for the nonlinear coefficient artificial viscosity model. These people, along with Dick Cavicchi, Julie Conley, Jason Solbeck, and Pat Zeman, have also run many debugging and verification cases.

\subsection*{2.0 PROGRAM STRUCTURE}

\subsection*{2.1 FLOW CHART}

In this section, a flow chart is presented showing the overall sequence of tasks performed by the twodimensional Proteus computer code. Depending on the various options used in a particular run, of course, some of the elements in the chart may be skipped.


Figure 2.1 - Flow chart for the 2-D Proteus computer code.


Figure 2.1 - Continued.


Figure 2.1 - Concluded.

\subsection*{2.2 SLBPROGRAM CALLING TREE}

In this section, the calling sequence for the various subprograms in the Proteus 2-D code is shown using a tree structure. The subheadings correspond to the elements of the flow chart shown in the previous section. The main program, listed in the first column, calls the subprograms in the second column, which in tum call those in the third column, etc. \({ }^{1}\) For any given case, of course, some of these routines will not be used. The subprograms needed for a particular case will depend on the combination of input parameters being used. The individual subprograms are described in detail in Section 4.0.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{InITIALIZATION} \\
\hline \multicolumn{6}{|l|}{Read and print input.} \\
\hline MAIN & INPUT & ISAMAX & & & \\
\hline \multicolumn{6}{|l|}{Get grid and metric parameters.} \\
\hline MAIN & GEOM & \begin{tabular}{l}
PAK \\
METS
\end{tabular} & ROBTS CUBIC OUTPUT & PRTOUT & \\
\hline \multicolumn{6}{|l|}{Get initial flow field.} \\
\hline MAIN & INITC & \begin{tabular}{l}
REST INIT FTEMP EQSTAT TURBBL \\
KEINIT \\
YPLUSN
\end{tabular} & \begin{tabular}{l}
METS \\
VORTEX BLOUT1 \\
BLIN1 \\
BLOUT2 \\
BLIN2 \\
TURBBL \\
YPLUSN PRODCT VORTEX
\end{tabular} & \begin{tabular}{l}
ISAMAX ISAMIN \\
ISRCHEQ \\
ISRCHEQ \\
ISAMAX \\
ISAMIN \\
ISRCHEQ \\
ISRCHEQ \\
VORTEX \\
BLOUT1 \\
BLIN1 \\
BLOUT2 \\
BLIN2 \\
VORTEX
\end{tabular} & \begin{tabular}{l}
ISAMAX ISAMIN \\
ISRCHEQ ISRCHEQ ISAMAX ISAMIN ISRCHEQ ISRCHEQ
\end{tabular} \\
\hline \multicolumn{6}{|l|}{Set point-by-point boundary condition values.} \\
\hline MAIN & BCSET & & & & \\
\hline
\end{tabular}

\footnotetext{
1 Throughout this Programmer's Reference, elements of the Fortran language, such as input variables and subprogram names, are printed in the text using uppercase letters. However, in most implementations, Fortran is caseinsensitive. The Proteus source code itself is written in lowercase.
}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Initialize plot files and print initial or restart flow field.} \\
\hline MAIN & PLOT OLTPLT OUTW & VORTEX PRTOUT & & & \\
\hline \multicolumn{6}{|l|}{SET UP FOR TIME STEP} \\
\hline \multicolumn{6}{|l|}{Compute time step size.} \\
\hline MAIN & TIMSTP & ISAMAX & & & \\
\hline \multicolumn{6}{|l|}{Reset boundary conditions if time-dependent.} \\
\hline MAIN & TBC & & & & \\
\hline \multicolumn{6}{|l|}{FILL BLOCK COEFFICIENT MATRIX} \\
\hline \multicolumn{6}{|l|}{Add extra data line at \(N+1\) if spatially periodic in sweep direction.} \\
\hline MAIN & EXEC & PERIOD & & & \\
\hline \multicolumn{6}{|l|}{Compute coefficients of governing equations.} \\
\hline MAIN & EXEC & \[
\begin{array}{|l}
\hline \text { EQSTAT } \\
\text { COEFC } \\
\text { COEFX } \\
\text { COEFY } \\
\text { COEFE } \\
\text { COEFZ } \\
\hline
\end{array}
\] & & & \\
\hline \multicolumn{6}{|l|}{Add boundary conditions.} \\
\hline MAIN & EXEC & \begin{tabular}{l}
EQSTAT BCGEN \\
BCELIM
\end{tabular} & \begin{tabular}{l}
BCQ \\
BCUVEL \\
BCVVEL \\
BCWVEL \\
BCPRES \\
BCTEMP \\
BCDENS \\
BCVDIR \\
BCF \\
ISRCHEQ \\
BLKOUT \\
SGEFA \\
SGESL
\end{tabular} & \begin{tabular}{l}
BCMET \\
BCGRAD \\
BCFLIN \\
BCMET
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Compute residuals without artificial viscosity terms (sweep 1 only.)} \\
\hline MAIN & EXEC & RESID & \[
\begin{aligned}
& \text { SNRM2 } \\
& \text { ISAMAX } \\
& \text { SASCM }
\end{aligned}
\] & & \\
\hline \multicolumn{6}{|l|}{Add artificial viscosity.} \\
\hline MAIN & EXEC & \begin{tabular}{l}
AVISCl \\
AVISC2
\end{tabular} & BLKOLT BLKOUT & & \\
\hline \multicolumn{6}{|l|}{Compute residuals with artificial viscosity terms (sweep 1 only.)} \\
\hline MAIN & EXEC & RESID & \[
\begin{aligned}
& \text { SNRM2 } \\
& \text { ISAMAX } \\
& \text { SASUM }
\end{aligned}
\] & & \\
\hline \multicolumn{6}{|l|}{SOLVE DIFFERENCE EQUATIONS} \\
\hline \multicolumn{6}{|l|}{Perform matrix inversion.} \\
\hline \multirow[t]{3}{*}{MAIN} & EXEC & \[
\overline{\mathrm{ADI}}
\] & \begin{tabular}{l}
BLKOUT \\
BLK3P \\
BLK3
\end{tabular} & FILTER & ISAMAX ISRCHEQ BLKOUT \\
\hline & & & \[
\begin{aligned}
& \text { BLK4P } \\
& \text { BLK4 }
\end{aligned}
\] & FILTER & \begin{tabular}{l}
ISAMAX \\
ISRCHEQ \\
BLKOUT
\end{tabular} \\
\hline & & UPDATE & BLK5P BLK5 & FILTER & ISAMAX ISRCHEQ BLKOUT \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Update boundary values from first sweep.} \\
\hline MAIN & EXEC & BVUP & \begin{tabular}{l}
EQSTAT BCGEN \\
SGEFA SGESL
\end{tabular} & \begin{tabular}{l}
BCQ \\
BCLVEL \\
BCVVEL \\
BCWVEL \\
BCPRES \\
BCTEMP \\
BCDENS \\
BCVDIR \\
BCF \\
ISRCHEQ \\
BLKOUT
\end{tabular} & \begin{tabular}{l}
BCMET \\
BCGRAD \\
BCFLIN \\
BCMET
\end{tabular} \\
\hline \multicolumn{6}{|l|}{FINISH TIME STEP AND CHECK RESULTS} \\
\hline \multicolumn{6}{|l|}{Update auxiliary variables.} \\
\hline MAIN & \[
\begin{aligned}
& \text { EQSTAT } \\
& \text { FTEMP }
\end{aligned}
\] & & & & \\
\hline \multicolumn{6}{|l|}{Update turbulence parameters.} \\
\hline MAIN & TURBBL & \begin{tabular}{l}
VORTEX BLOUTI \\
BLINI \\
BLOUT2 \\
BLIN2 \\
YPLUSN PRODCT EXECT
\end{tabular} & \begin{tabular}{l}
ISAMAX \\
ISAMIN \\
ISRCHEQ \\
ISRCHEQ \\
ISAMAX \\
ISAMIN \\
ISRCHEQ \\
ISRCHEQ \\
VORTEX \\
PERIOD \\
COEFS1 \\
BLK2P \\
BLK2 \\
COEFS2 \\
BLK2P \\
BLK2 \\
UPDTKE
\end{tabular} & & \\
\hline \multicolumn{6}{|l|}{Check for convergence, and get CPU time remaining.} \\
\hline MAIN & \begin{tabular}{l}
CONV \\
TREMAIN
\end{tabular} & ISAMAX & & & \\
\hline
\end{tabular}


\subsection*{2.3 PROGRAMMING CONVENTIOXS AND NOTES}

\subsection*{2.3.1 Computer \& Language}

At NASA Lewis Research Center, Proteus is normally run on a Cray X-MP or Y-MP computer. With just three known exceptions, it is written entirely in ANSI standard Fortran 77 as described in the CF77 Compiling System, Volume 1: Fortran Reference Manual (Cray Research, Inc., 1990). The first exception is the use of namelist input. With namelist input, it's relatively easy to create and/or modify input files, to read the resulting files, and to program default values. Since most Fortran compilers allow namelist input, its use is not considered a serious problem. The second exception is the use of *CALL statements to include *COMDECK's, which contain the labeled common blocks, in most of the subprograms. This is a Cray UPDATE feature, and therefore the source code must be processed by UPDATE to create a file that can be compiled. \({ }^{2}\) UPDATE is described in the UPDATE Reference Manual (Cray Research, Inc., 1988). Since using the *CALL statements results in cleaner, more readable code, and since many computer systems have an analogous feature, the *CALL statements were left in the program. The third exception is the use of lowercase alphabetic characters in the Fortran source code. This makes the code easier to read, and is a common extensi, 1 to Fortran 77.

Several library subroutines are called by Proteus. SGEFA and SGESL are Cray versions of LINPACK routines. SASUM and SNRM2 are Cray Basic Linear Algebra Subprograms (BLAS). ISAMAX, ISAMIN, and ISRCHEQ are Cray search routines. TREMAIN is a Cray Fortran library routine. All of these routines are described in detail in Section 4.0. In addition, SGEFA and SGESL are described in Volume 3: UNICOS Math and Scientific Library Reference Manual (Cray Research, Inc., 1989b) and by Dongarra, Moler, Bunch, and Stewart (1979); SASUM, SNRM2, ISAMAX, ISAMIN, and ISRCHEQ are described in Volume 3: UNICOS Math and Scientific Library Reference Manual (Cray Research, Inc., 1989b); and TREMAIN is described in Volume 1: UNICOS Fortran Library Reference Manual (Cray Research, Inc., 1989a).

The Proteus code is highly vectorized for optimal performance on the Cray. The coefficient generation is vectorized in the ADI sweep direction. Since the coefficient matrix is block tridiagonal, the equations are solved using the Thomas algorithm. This algorithm is recursive, and therefore cannot be vectorized in the sweep direction. However, by storing the coefficients and source terms in both coordinate directions, the algorithm can be vectorized in the non-sweep direction. This increases the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

\footnotetext{
2 See the example in Section 8.1 of Volume 2.
}

\subsection*{2.3.2 Fortran Variables}

\section*{Variable Names}

In developing Proteus, code readability has been emphasized. We have therefore attempted to choose Fortran variable names that are meaningful. In general, they either match the notation used in the analysis description in Volume 1, or are in some way descriptive of the parameter being represented. For example, RHO, U, V, W, and ET are the Fortran variables representing the density \(\rho\), the velocities \(u, v\), and \(w\), and the total energy per unit volume \(E_{T}\).

\section*{Real and Integer Variables}

In general, the type (real or integer) of the Fortran variables follows standard Fortran convention (i.e., those starting with I, J, K, L, M, or N are integer, and the remainder are real.) There are, however, several variables that would normally be integer but are explicitly declared to be real. These are noted in the input description in Section 3.0 of Volume 2, and in the description of common block variables in Section 3.0 of this volume.

\section*{Array Dimensions}

Most Fortran arrays are dimensioned using dimensioning parameters. These parameters are set in COMDECK PARAMSI. This allows the code to be re-dimensioned simply be changing the appropriate parameters, and then recompiling the entire program. The dimensioning parameters are described in Section 6.2 of Volume 2.

\section*{Initialization}

All of the input Fortran variables, plus some additional variables, are initialized in BEOCK DATA. Most of the input variables are initialized to their default values directly, but some are initialized to values that trigger the setting of default values in subroutine INPUT. On the Cray X-MP and Y-MP at NASA Lewis, all uninitialized variables have the value zero. There are no. known instances in the Proteus code, however, in which a variable is used before it is assigned a value.

\section*{Nondimensionalization}

In general, Fortran variables representing physical quantities, such as RHO, U, etr., are nondimensional. Two types of nondimensionalizing factors are used - reference conditions and normalizing conditions. The factors used to nondimensionalize the governing equations in Section 2.0 of Volume 1 are called normalizing conditions. These normalizing conditions are defined by six basic reference conditions, for length, velocity, temperature, density, viscosity, and thermal conductivity, which are specified by the user. The normalizing conditions used in Proteus are listed in Table 3-1 of Volume 2.

Note that for some variables, like pressure, the normalizing condition is dictated by the form of the governing equations once the six basic reference conditions are chosen. Unfortunately, some of these may not be physically meaningful or convenient for use in setting up input conditions. Therefore, some additional reference conditions are defined from the six user-supplied ones. The reference conditions are listed in Table 3-2 of Volume 2.

Throughout most of the Proteus code, physical variables are nondimensionalized by the normalizing conditions. For input and output, however, variables are nondimensionalized by the reference conditions because they are usually more physically meaningful for the user. The Fortran variables representing the reference conditions themselves are, of course, dimensional.

\section*{One-Dimensional Addressing of Two-Dimensional Arrays}

In the solution algorithm used in Proteus, there are several instances in which the same steps must be followed in both ADI sweep directions. An example is the computation, in the COEFC, COEFX, COEFY, COEFZ, and COEFE routines, of the submatrices in the block tridiagonal coefficient matrix. These computations involve various flow variables, such as RHO, \(U\), etc., and metric quantities, such as

XIX, XIY, etc. These are stored as two-dimensional arrays, with the two subscripts representing, in order, the indices in the computational \(\xi\) and \(\eta\) directions. For the first ADI sweep, values at various \(\zeta\) indices are needed at a fixed \(\eta\) index. For the second ADI sweep, the reverse is true. In order to use the same coding for both sweeps, a scheme for one-dimensional addressing of a two-dimensional array has been used. \({ }^{3}\)

In Fortran, multi-dimensional arrays are actually stored in memory as a one-dimensional sequence of values, with the first subscript incremented over its range first, then the second subscript, etc. We take advantage of this in Proteus. As a first step, the two-dimensional array is equivalenced to a one-dimensional array of the same total length. The one-dimensional array name is derived from the two-dimensional array name by adding a " 1 ". Thus, letting \(F\) represent a typical two-dimensional array,
```

dimension f(nlp,n2p),fl(ntotp)
equivalence (f(1,1),fl(1))

```
where N1P and N2P are dimensioning parameters specifying the dimension size in the \(\xi\) and \(\eta\) directions, and NTOTP is a dimensioning parameter equal to N1P \(\times N 2 \mathrm{P}\). Next, we define a "step factor", which depends on the ADI sweep, and a "base index" which depends on the index in the non-sweep direction. For the first ADI sweep,
```

istep = 1
do 1000 i2 = 2,npt2-1
iv = i2
ibase = 1 + (i2-1)*nlp
*
continue

```
1000

And for the second ADI sweep,
```

istep = nlp
do 2000 il = 2,nptl-1
iv = il
ibase = il

```
```

2000 continue

```

In both of the above examples, the loop is in the non-sweep direction and IV therefore represents the index in the non-sweep direction. Nested inside this loop is a loop in the sweep direction. In this inner loop, we can compute the equivalent one-dimensional address for a location in a two-dimensional array from the step factor, the base index, and the index in the sweep direction. Thus, for either ADI sweep, the inner loop looks like
```

do 100 i = 2,npts-1
iiml = ibase + istep*(i-2)
ii = ibase + istep*(i-1)
iipl = ibase + istep*i
•
continue

```
where I represents the index in the sweep direction. With this coding, for the first sweep

\footnotetext{
3 An alternative would be to switch the order of the two subscripts in these arrays after each sweep. Since these arrays are used in many other areas of the code, this idea was discarded as being unnecessarily confusing. It should be noted, however, that there are some other arrays in Proteus in which the order of the two subscripts does switch between sweeps. This is described in the next subsection.
}
```

fl(iiml) = f(il-1,i2)
fl(ii) = f(il ,i2)
fl(iipl) = f(il+1,i2)

```

And for the second sweep,
```

fl(iiml) = f(il,i2-1)
fl(ii) = f(il,i2)
fl(iipl) = f(il,i2+1)

```

\section*{Multi-Dimensional Addressing of One-Dimensional Arrays}

As noted in the previous subsection, there are some arrays in Proteus in which the order of the first two subscripts does switch between ADI sweeps. These are the A, B, C, and S arrays, which represent the coefficient submatrices and the source term subvector, and the METX, METY, and METT arrays, which represent the metric coefficients in the sweep direction. (A, B, and C are actually four-dimensional arrays, with the third and fourth subscripts representing the equation and dependent variable, respectively. Similarly, S is actually a three-dimensional array, with the third subscript representing the equation. Only the first two subscripts switch between sweeps, however.) For these arrays, the first subscript is the index in the non-sweep direction (i.e., the \(\eta\) direction for the first sweep and the \(\xi\) direction for the second sweep), and the second is the index in the sweep direction (i.e., \(\xi\) for the first sweep and \(\eta\) for the second sweep.)

These multi-dimensional arrays are actually equivalenced to corresponding one-dimensional arrays, stored in common blocks NUM1 and METRIC1. \({ }^{4}\) The equivalence is done in subroutine EXEC, which manages the solution of the mean flow equations, and in subroutine EXECT, which manages the solution of the \(k-\varepsilon\) turbulence model equations. The multi-dimensional arrays and the appropriate dimensions, which depend on the ADI sweep, are then passed into lower level routines via the argument list. In the lower level routines they can then be referenced as normal, multi-dimensional arrays.

Thus, in subroutine EXEC, we have
```

 dimension a(l, l, 1,1),b(1,1,1,1),c(1,1,1,1),s(1,1,1)
 equivalence (amatl(1),a(1,1,1,1)),(bmat1(1),b(1,1,1,1)),
 \$ (cmatl(1),c(l,i,l,i)),(svectl(1),s(i,i,i))
dimension metx(1,1),mety(1,1),mett(1,1)
equivalence (metxl(1),metx(1,1)),(metyl(1),mety(l,l)),
\$
(mettl(1),mett(1,l))

```

Here METX1, METY1, and METT1 are one-dimensional arrays of length N1P \(\times\) N2P stored in common block METRICI. Similarly, AMAT1, BMAT1, CMAT1, and SVECT1 are one-dimensional arrays stored in common block NUM1. AMAT1, BMAT1, and CMAT1 are of length N1P \(\times N 2 P \times N E Q P \times N E Q P\), and SVECT1 is of length N1P \(\times \mathrm{N} 2 \mathrm{P} \times \mathrm{NEQP}\).

Using COEFC as an example of a lower level routine, we have
```

 subroutine coefc (a,b,c,s,metx,mety,mett,nvd,notsd)
 dimension a(nvd,nptsd,neqp,neqp),b(nvd,nptsd,neqp,neqp),
 \$ c(nvd,nptsd,neqp,neqp),s(nvd,nptsd,neqp)
dimension metx(nvd,nptsd),mety(nvd,nptsd),mett(nvd,nptsd)

```
where NVD and NPTSD are the dimensions in the non-sweep and sweep directions, respectively. For the first sweep, COEFC is thus called from EXEC as
```

call coefc (a,b,c,s,metx,mety,mett,n2p,nlp)

```

And for the second sweep, COEFC is called as

\footnotetext{
4 An alternative would be use the maximum of N1P and N2P as the size for both of the first two dimensions. In fact, this is what was done in earlier versions of Proteus. However, if N1P is significantly different from N2P, this is inefficient, requiring much more storage than the current procedure.
}
```

call coefc (a,b,c,s,metx,mety,mett,nlp,n2p)

```

\section*{Two-Level Storage}

With the Beam-Warming time differencing scheme used in Proteus, the dependent variables RHO, U, V, W, and ET must be stored at two time levels. For convenience, \(T\) is also stored at two time levels. In the ADI solution procedure, RHO, U, etc. are at the known time level \(n\). The corresponding variable at the other time level is denoted by adding an " \(L\) " to the variable name. Exactly which time level the " \(L\) " variable is at depends on the stage in the solution procedure. Letting F represent one of these variables, the time levels for F and FL are listed in the following table for the different stages of the solution procedure. Recall that * represents the intermediate time level after the first ADI sweep.
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
STAGE IN TIME STEP \\
FROM LEVEL \(n\) TO \(n+1\)
\end{tabular}} & \begin{tabular}{c} 
TIME LEVEL \\
FOR F
\end{tabular} & \begin{tabular}{c} 
TIME LEVEL \\
FOR FL
\end{tabular} \\
\hline From start to end of sweep 1 & \(n\) & \(n-1\) \\
From end of sweep 1 to end of sweep 2 & \(n\) & \(*\) \\
From end of sweep 2 to update in EXEC & \(n\) & \(n+1\) \\
From update in EXEC to start of next step & \(n+1\) & \(n\) \\
\hline
\end{tabular}

\section*{DUMMY Array}

For convenience, a two-dimensional array called DUMMY is stored in common block DUMMY1 and used as a temporary storage location in several areas of the code. This array is dimensioned N1P by N2P, the same as the flow variables, metrics, etc. DUMMY is used internally in subroutines CONV and RESID. It is also defined in subroutines BLIN2 and BLOUT2 for use in TURBBL, and in subroutine YPLUSN for use in subroutines COEFSI and KEINIT. And finally, it is defined in subroutine OUTPUT and passed as an argument into subroutine PRTOUT. Details on its use are presented in the subroutine descriptions in Section 4.0.

\subsection*{3.0 COMMON BLOCKS}

Transfer of data between routines in Proteus is primarily accomplished through the use of labeled common blocks. Each common block contains variables dealing with a particular aspect of the analysis, and is stored in a separate Cray COMDECK (Cray Research, Inc., 1988). The common block names are the same as the COMDECK names. These names also correspond to the names of the input namelists. All the variables in namelist BC are stored in common block BCl , etc. The Fortran variables in each common block are stored in alphabetical order.

\subsection*{3.1 COMMON BLOCK SUMMARY}
Block Name Description
\(\mathrm{BCl} \quad\) Boundary condition parameters for the mean flow equations.
BC 2 Boundary condition parameters for the \(k-\varepsilon\) equations.
DUMMY1
FLOW1

GMTRY1
ICl
IO1
METRICl

NUM1 Parameters associated with the numerical method for the mean flow equations.
NUM2 Parameters associated with the numerical method for the \(k-\varepsilon\) equations.
RSTRT1
TIME1

TITLE1 . Descriptive title for case being run.
TURB1
TURB20
Scratch array.
Variables dealing with fluid properties and the flow being computed.
Parameters defining the geometric configuration.
Variables needed for setting up initial conditions.
Parameters dealing with program input/output requirements.
Metrics of the nonorthogonal grid transformation, plus the Cartesian coordinates of the grid points. Parameters dealing with the restart option.
Parameters dealing with the time step selection and convergence determination.

Parameters and constants associated with the \(k-\varepsilon\) equations.

\subsection*{3.2 COMMON VARIABLES LISTED ALPHABETICALLY}

In this section all the Proteus Fortran variables stored in common blocks are defined, listed alphabetically by variable name. Those marked with an asterisk are input variables. More details on these variables may be found in Section 3.1 of Volume 2. The common block each variable is stored in is given in parentheses at the end of each definition. For subscripted variables, the subscripts are defined along with the variable, except for the subscripts Il and I2, which are the indices \(i\) and \(j\) in the \(\xi\) and \(\eta\) directions, respectively, and run from 1 to \(N_{1}\) and \(N_{2}\).

This list also includes the parameters used as array dimensions. These are not actually stored in a common block, but are stored in the Cray COMDECK PARAMSI. More details may be found in Section 6.2 of Volume 2.

Unless otherwise noted, all variables representing physical quantities are nondimensional. The nondimensionalizing procedure is described in Section 3.1.1 of Volume 2. The type (real or integer) of the variables follows standard Fortran convention, unless stated otherwise. (I.e., those starting with I, J, K, \(\mathrm{L}, \mathrm{M}\), or N are integer, and the remainder are real.)

* CCLAL
* CCP


\(C_{c_{p} 1}-C_{c p^{4}}\)
* CFL(I)
* CFLMAX
* CFLMIN
CHGAVG(I) \(\quad \Delta \mathbf{Q}_{\text {avg }}\)

CHGMAX \((1, \mathrm{~J}) \quad \Delta \mathbf{Q}_{\max }\)
* CHGl
* CHG2
* CKLEB
* CKMIN
\(\left(C_{K l e b}\right)_{\text {min }}\)

CK1-2 \(\quad C_{k 1}-C_{k 2}\)

CMATl(I) C
lence model, and in the inner region of the SpaldingKleinstein turbulence model. (TURB1)

Clauser constant used in the outer region of the BaldwinLomax turbulence model. (TURB1)

Constant used in the outer region of the Baldwin-Lomax turbulence model. (TLRB1)

Constants in empirical formula for specific heat as a function of temperature. (FLOW1)

The ratio \(\Delta \tau / \Delta \tau_{c f i}\) where \(\Delta \tau\) is the actual time step used in the implicit calculation and \(\Delta \tau_{c f}\) is the allowable time step based on the Courant-Friedrichs-Lewy (CFL) criterion for explicit methods. I is the time step sequence number, and runs from 1 to NTSEQ. (TIME1)

Maximum allowed value of the CFL number. (TIME1)
Minimurn allowed value of the CFL number. (TIME1)
Maximum change in absolute value of the dependent variables, averaged over the last NITAVG time steps. \({ }^{5}\) The subscript \(\mathrm{I}=1\) to \(N_{e q}\), corresponding to the \(N_{e q}\) dependent variables. (TIME1)

Maximum change in absolute value of the dependent variables over a single time step. \({ }^{5}\) The subscript \(\mathrm{I}=1\) to \(N_{\text {eg }}\), corresponding to the \(N_{\text {eq }}\) dependent variables, and \(\mathrm{J}=1\) to NITAVG, the number of time steps used in the moving average option for determining convergence. (TIME1)

Minimum change, in absolute value, that is allowed in any dependent variable before increasing the time step. \({ }^{5}\) (TIME1)

Maximum change, in absolute value, that is allowed in any dependent variable before decreasing the time step. \({ }^{5}\) (TIME1)

Constant used in the formula for the Klebanoff intermittency factor \(F_{\text {Kcco }}\) in the outer region of the Baldwin-Lomax turbulence model. (TLRB1)

Constant used in the formula for the Klebanoff intermittency factor \(F_{\text {Kleb }}\) in the outer region of the Baldwin-Lomax turbulence model. (TLRB1)

Constants in empirical formula for thermal conductivity coefficient as a function of temperature. (FLOW1)

Superdiagonal submatrix of coefficients in the block tridiagonal coefficient matrix. In actual use, this onedimensional array is equivalenced to the four-dimensional array \(\mathrm{C}(\mathrm{IV}, \mathrm{I}, \mathrm{J}, \mathrm{K})\). IS is the grid index in the sweep direction, running from 1 to \(N\). IV is the grid index in the "vectorized"

\footnotetext{
\(s\) For the energy equation, the change in \(E_{T}\) is divided by \(E_{T_{r}}=\rho_{r} \bar{R} T_{r} /\left(y_{r}-1\right)+u_{r}^{2} / 2\), so that it is the same order of magnitude as the other conservation variables.
}
* CMUR

CMUI-2
* CNA
* CNL
* CONE
* CTHREE
* CTWOR CV(11,I2)
* CVK
* CWK
DEL \(\quad \Delta \xi\) or \(\Delta \eta\)

DETA
DPDET(I)

DPDRHO(I) \(\quad \partial p / \partial \rho\)

DPDRU(I)
\(\Delta \eta\)
direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to \(N_{v}-1\). The subscript \(\mathrm{J}=1\) to \(N_{\text {eq }}\), corresponding to the \(N_{e c}\) coupled goveming equations, and \(\mathrm{K}=1\) to \(N_{e q}\), corresponding to the \(N_{e q}\) dependent variables. (NLM1)

Constant used to compute \(C_{\mu}\) in the turbulent viscosity formula for the \(k-\varepsilon\) equations. (TLRB20)

Constants in empirical formula for laminar viscosity coefficient as a function of temperature. (FLOW1)

Exponent in the formula used to average the two outer region \(\mu_{t}\) profiles that result when both boundaries in a coordinate direction are solid surfaces. (TURB1)

Exponent in the Launder-Priddin modified mixing length formula for the inner region of the Baldwin-Lomax turbulence model. (TURB1)

Constant used in the production term of the \(\varepsilon\) equation. (TURB20)

Specific heat at constant pressure at time level n. (FLOWl)
Constant used to compute \(C_{\mu}\) in the turbulent viscosity formula for the \(k-\varepsilon\) equations. (TURB20)

Constant used to compute \(C_{2}\) in the dissipation term of the \(\varepsilon\) equation. (TURB20)

Specific heat at constant volume at time level \(n\). (FLOWi)
Von Karman mixing length constant used in the inner region of the Baldwin-Lomax and Spalding-Kleinstein turbulence models. (TURB1)

Constant used in the formula for \(F_{\text {woke }}\) in the outer region of the Baldwin-Lomax turbulence model. (TLRB1)

Computational grid spacing in the ADI sweep direction. (NUM1)

Computational grid spacing in the \(\eta\) direction. (NUM1)
The derivative of \(p\) with respect to \(E_{T}\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOW1)

The derivative of \(p\) with respect to \(\rho\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOW1)

The derivative of \(p\) with respect to \(\rho u\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOW1)
\begin{tabular}{|c|c|c|}
\hline DPDRV(I) & \(\partial p / \partial(\rho v)\) & The derivative of \(p\) with respect to \(\rho v\), stored as a one dimensional array in the sweep direction. The subscript therefore runs from 1 to \(N\). (FLOW1) \\
\hline DPDRW(1) & \(\partial p / \partial(\rho w)\) & The derivative of \(p\) with respect to \(\rho w\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOWl) \\
\hline DT(I) & \(\Delta t\) & The time step size, when specified directly as input. I is the time step sequence number, and runs from 1 to NTSEQ (TIMEI) \\
\hline DTAU(I1,12) & \(\Delta \tau\) & Computational time step size. (TIME1) \\
\hline DTDET(I) & \(\partial T / \partial E_{T}\) & The derivative of \(T\) with respect to \(E_{T}\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOW1) \\
\hline DTDRHO(I) & \(\partial T / \partial \rho\) & The derivative of \(T\) with respect to \(\rho\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOWl) \\
\hline DTDRU(I) & \(\partial T / \partial(\rho u)\) & The derivative of \(T\) with respect to \(\rho u\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOWi) \\
\hline DTDRV(I) & \(\partial T / \partial(\rho v)\) & The derivative of \(T\) with respect to \(\rho v\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOW1) \\
\hline DTDRW(I) & \(\partial T / \partial(\rho w)\) & The derivative of \(T\) with respect to \(\rho w\), stored as a onedimensional array in the sweep direction. The subscript therefore runs from 1 to \(N\). (FLOW1) \\
\hline * DTFI & & Factor by which the time step is multiplied if the solution changes too slowly. (TIMEI) \\
\hline * DTF2 & & Factor by which the time step is divided if the solution changes too quickly. (TIME1) \\
\hline * DTMAX & & Maximum value that \(\Delta \tau\) is allowed to reach, or the maximum \(\Delta \tau\) used in the time step cycling procedure. (TIME1) \\
\hline * DTMIN & & Minimum value that \(\Delta \tau\) is allowed to reach, or the minimum \(\Delta \tau\) used in the time step cycling procedure. (TIME1) \\
\hline DUMMY(I1,I2) & & Dummy array used for temporary storage in several subroutines. (DUMMY1) \\
\hline DXI & \(\Delta \xi\) & Computational grid spacing in the \(\xi\) direction. (NLM1) \\
\hline \(\mathrm{E}(\mathrm{Il}, \mathrm{I2})\) & \(\varepsilon\) & Turbulent dissipation rate at time level \(n\). (TURB20) \\
\hline EL(I1,12) & \(\varepsilon\) & Turbulent dissipation rate at previous or intermediate time level. (TURB20) \\
\hline * EPS(I) & \(\varepsilon\) & Convergence level to be reached. The subscript \(\mathrm{I}=1\) to \(N_{e q}\), corresponding to the \(N_{\mathrm{cq}}\) dependent variables. (TIME1) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ER & \(e_{r}\) & Dimensional reference energy, \(\rho_{r} u_{r}^{2}\). (FLOWl) \\
\hline ET(I1,I2) & \(E_{T}\) & Total energy at time level \(n\). (FLOW1) \\
\hline \(\operatorname{ETAT}(11,12)\) & \(\eta_{t}\) & The derivative of the computational coordinate \(\eta\) with respect to untransformed time \(t\). (METRICl) \\
\hline \(\operatorname{ETAX}(\mathrm{I}, \mathrm{I} 2)\) & \(\eta x\) & The derivative of the computational coordinate \(\eta\) with respect to the Cartesian coordinate \(x\). (METRICl) \\
\hline \(\operatorname{ETAY}(\mathrm{I} 1, \mathrm{I} 2)\) & \(\eta_{y}\) or \(\eta_{r}\) & The derivative of the computational coordinate \(\eta\) with respect to the Cartesian coordinate \(y\) or cylindrical coordinate \(r\). (METRICl) \\
\hline ETL(I1,I2) & \(E_{T}\) & Total energy at previous or intermediate time level. (FLOWl) \\
\hline \(\operatorname{FBCT} 1(12,1, J)\) & & Point-by-point values used for boundary conditions for the \(k-\varepsilon\) turbulence model on the \(\xi=0\) and \(\xi=1\) boundaries These are either set in the input, if a point-by-point distribution is being specified by the user, or by the program itself The subscript \(\mathrm{I}=1\) or 2 , corresponding to the \(k\) and equations, respectively, and \(J=1\) or 2 , corresponding to the \(\xi=0\) and \(\xi=1\) boundaries, respectively. (BC2) \\
\hline
\end{tabular}

Point-by-point values used for boundary conditions for the \(k-\varepsilon\) turbulence model on the \(\eta=0\) and \(\eta=1\) boundaries. These are either set in the input, if a point-by-point distribution is being specified by the user, or by the program itself. The subscript \(I=1\) or 2 , corresponding to the \(k\) and \(\varepsilon\) equations, respectively, and \(\mathrm{J}=1\) or 2 , corresponding to the \(\eta=0\) and \(\eta=1\) boundaries, respectively. (BC2)

Point-by-point values used for steady boundary conditions on the \(\xi=0\) and \(\xi=1\) surfaces. These are either set in the input, if a point-by-point distribution is being specified by the user, or by the program itself. I runs from 1 to \(V_{e q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the \(\xi=0\) and \(\xi=1\) boundaries, respectively. ( BCl )

Point-by-point values used for steady boundary conditions on the \(\eta=0\) and \(\eta=1\) surfaces. These are either set in the input, if a point-by-point distribution is being specified by the user, or by the program itself. I runs from 1 to \(N_{e q}\), corresponding to the \(N_{\text {eq }}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the \(\eta=0\) and \(\eta=1\) boundaries, respectively. ( BCl )

Reference ratio of specific heats, \(c_{p_{r}} / c_{v_{r}}\). (FLOWl)
Values used for boundary conditions for the \(k-\varepsilon\) turbulence model on the \(\xi=0\) and \(\xi=1\) boundaries, when specified for the entire surface. The subscript \(I=1\) or 2 , comesponding to the \(k\) and \(\varepsilon\) equations, respectively, and \(\mathrm{J}=1\) or 2 , corresponding to the \(\xi=0\) and \(\xi=1\) boundaries, respectively. (BC2)

Values used for boundary conditions for the \(k-\varepsilon\) turbulence model on the \(\eta=0\) and \(\eta=1\) boundaries, when specified for the entire surface. The subscript \(I=1\) or 2 , corresponding to the \(k\) and \(\varepsilon\) equations, respectively, and \(\mathrm{J}=1\) or 2 , corre-
* \(\quad \mathrm{GBCl}(\mathrm{I}, \mathrm{J})\)
* GBC2(I,J)

GC \(g_{c}\)
* \(\operatorname{GTBCl}(\mathrm{K}, \mathrm{I}, \mathrm{J})\)
* GTBC2(K,I,J)

HSTAG \(\quad h_{T}\)
* HSTAGR
* IAV2E
* IAV2I
* IAV4E
sponding to the \(\eta=0\) and \(\eta=1\) boundaries, respectively. (BC2)

Values used for steady boundary conditions on the \(\xi=0\) and \(\xi=1\) boundaries, when specified for the entire surface. I runs from 1 to \(N_{c q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the \(\xi=0\) and \(\xi=1\) boundaries, respectively. ( BCl )

Values used for steady boundary conditions on the \(\eta=0\) and \(\eta=1\) boundaries, when specified for the entire surface. I runs from 1 to \(N_{q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the \(\eta=0\) and \(\eta=1\) boundaries, respectively. ( BCl )

Dimensional proportionality factor in Newton's second law, either \(32.174 \mathrm{lb}_{\mathrm{m}}-\mathrm{ft} / \mathrm{lb}_{\mathrm{r}} \sec ^{2}\), or \(1.0 \mathrm{~kg}-\mathrm{m} / \mathrm{N}-\mathrm{sec}^{2}\). (FLOW1)

A variable used to specify the values for unsteady and timeperiodic boundary conditions on the \(\xi=0\) and \(\xi=1\) boundaries. I runs from 1 to \(N_{\text {eq }}\), corresponding to the \(N_{\text {eq }}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the \(\xi=0\) and \(\xi=1\) boundaries, respectively. For general unsteady boundary conditions, \(\mathrm{K}=1\) to NTBC, corresponding to the time levels in the array NTBCA, and GTBCl specifies the boundary condition value directly. For time-periodic boundary conditions, \(\mathrm{K}=1\) to 4 , and GTBC1 specifies the four coefficients in the equation used to determine the boundary condition value. ( BCl )

A variable used to specify the values for unsteady and timeperiodic boundary conditions on the \(\eta=0\) and \(\eta=1\) boundaries. I runs from 1 to \(N_{e q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the \(\eta=0\) and \(\eta=1\) boundaries, respectively. For general unsteady boundary conditions, \(K=1\) to 1 NTBC, corresponding to the time levels in the array NTBCA, and GTBC2 specifies the boundary condition value directly. For time-periodic boundary conditions, \(K=1\) to 4 , and GTBC2 specifies the four coefficients in the equation used to determine the boundary condition value. ( BCI )

Stagnation enthalpy used with constant stagnation enthalpy option. (FLOWl)

Dimensional stagnation enthalpy used with constant stagnation enthalpy option. (FLOW1)

Flag for second-order explicit artificial viscosity; 0 for none, 1 for constant coefficient model, 2 for nonlinear coefficient model. (NLMI)

Flag for second-order implicit artificial viscosity; 0 for none, 1 for constant coefficient model. (NLM1)

Flag for fourth-order explicit artificial viscosity; 0 for none, 1 for constant coefficient model, 2 for nonlinear coefficient model. (NLM1)
* IAXI

IBASE

IBCELM(1,J)
* IBCT \(1(12, \mathrm{I}, \mathrm{J})\)
* IBCT2(II,I,J)
* \(\quad \mathrm{IBCl}(\mathrm{I} 2, \mathrm{I}, \mathrm{J})\)
* \(\quad\) IBC2(II,I,J)

IBVUP(1)

Flag for two-dimensional planar or axisymmetric flow; 0 for two-dimensional planar, 1 for axisymmetric. (GMTRYI)

Base index used with ISTEP to compute one-dimensional index for two-dimensional array. Then, for example, for any sweep \(\mathrm{C}(\mathrm{I} 1,12)=\mathrm{Ul}(\) IBASE \(+\operatorname{ISTEP} *(\mathrm{I}-1))\) where I is the grid index in the sweep direction. (NLMI)

Flags for elimination of off-diagonal sub-matrices resulting from gradient or extrapolation boundary conditions: 0 if elimination is not necessary, 1 if it is. The subscript \(I=1\) or 2 corresponding to the sweep direction, and \(\mathrm{J}=1\) or 2 corresponding to the lower or upper boundary in that direction. (BCl)

Flags specifying, point-by-point, the type of boundary conditions used for the \(k-\varepsilon\) turbulence model on the \(\bar{\zeta}=0\) and \(\zeta=1\) surfaces. These are either set in the input, if a point-by-point distribution is specified by the user, or by the program itself. The subscript \(\mathrm{I}=1\) or 2 , corresponding to the \(k\) and \(\varepsilon\) equations, respectively, and \(\mathrm{J}=1\) or 2 , corresponding to the \(\xi=0\) and \(\xi=1\) boundaries, respectively. ( BC 2 )

Flags specifying, point-by-point, the type of boundary conditions used for the \(k-\varepsilon\) turbulence model on the \(\eta=0\) and \(\eta=1\) surfaces. These are either set in the input, if a point-by-point distribution is specified by the user, or by the program itself. The subscript \(\mathrm{I}=1\) or 2 , corresponding to the \(k\) and \(\varepsilon\) equations, respectively, and \(\mathrm{J}=1\) or 2 , corresponding to the \(\eta=0\) and \(\eta=1\) boundaries, respectively. (BC2)
Flags specifying, point-by-point, the type of steady boundary conditions used on the \(\xi=0\) and \(\xi=1\) surfaces. These are either set in the input, if a point-by-point distribution is specified by the user, or by the program itself. I runs from 1 to \(N_{e q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the \(\xi=0\) and \(\xi=1\) boundaries, respectively. ( BCl )
Flags specifying, point-by-point, the type of steady boundary conditions used on the \(\eta=0\) and \(\eta=1\) surfaces. These are either set in the input, if a point-by-point distribution is specified by the user, or by the program itself. I runs from 1 to \(N_{e q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2, corresponding to the \(\eta=0\) and \(\eta=1\) boundaries, respectively. ( BCl )

Flags for updating boundary values from the first sweep after the last sweep: 0 if updating is not necessary, 1 if it is. Updating is required when gradient or extrapolation boundary conditions are used. The subscript \(\mathrm{I}=1\) or 2 , corresponding to the lower or upper boundary in the first sweep direction. ( BCl )

Results are checked for convergence every ICHECK'th time level. (TIME 1)

Convergence flag; 0 if not converged, 1 if converged. (TIME1)
* ICTEST
* ICVARS
* IDEBLG(I)
* IDTAU
* IDTMOD
* IEULER

IGAM

IGINT(I)
* IHSTAG
* ILAMV
* ILDAMP

INEG
* INNER
* IPACK(I)
* IPLOT
* IPLT
* IPLTA(I)

Flag for convergence criteria to be used. (TIME1)
Parameter specifying which variables are being supplied as initial conditions by subroutine INIT. (FLOWl)

A 20 -element array of flags specifying various debug options. (IOI)

Flag for time step selection method. (TIME1)
The time step size is modified every IDTMOD'th time step. (TIME1)

Flag for Euler calculation option; 0 for a full time-averaged Navier-Stokes calculation, 1 for an Euler calculation. (FLOW1)

Flag set by method used to select GAMR; 0 if GAMR is defaulted (and hence \(c_{p}\) and \(c_{v}\) are functions of temperature), 1 if GAMR is specified by user (and hence \(c_{p}\) and \(c_{v}\) are constants). (FLOWl)

Flags for grid interpolation requirement; 0 if interpolation is not needed, 1 if interpolation is needed. The subscript \(\mathrm{I}=1\) or 2 , corresponding to the \(\xi\) and \(\eta\) directions, respectively. (GMTRY1)

Flag for constant stagnation enthalpy option; 0 to solve the energy equation, 1 to eliminate the energy equation by assuming constant stagnation enthalpy. (FLOW1)

Flag for computation of laminar viscosity and thermal conductivity; 0 for constant values, 1 for functions of local temperature. (FLOW1)

Flag for the Launder-Priddin modified mixing length formula in the inner region of the Baldwin-Lomax turbulence model. (TURB1)

Flag indicating non-positive values of pressure and/or temperature: 0 for no non-positive values, 1 for some. (FLOW1)

Flag for type of inner region turbulence model. (TURB1)
Flags for grid packing option; 0 for no packing, 1 to pack points as specified by the input array SQ. The subscript \(\mathrm{I}=1\) or 2 , corresponding to the \(\xi\) and \(\eta\) directions, respectively. (NUM1)

Flag controlling the creation of an auxiliary file, usually called a "plot file", used for later post-processing. (IO1)

Results are written into the plot file every IPLT time levels. (IO1)

Time levels at which results are written into the plot file. The subscript \(\mathrm{I}=1\) to 101 , the maximum number of time levels that may be written. (IO1)
* IPRT
* IPRTA(I)
* IPRTl
* IPRT2
* IPRTIA(I)
* IPRT2A(I)
* IREST

ISTEP

ISWEEP
* ISWIRL

IT

ITBEG

ITDBC

ITEND
* ITETA
* ITHIN(I)

ITSEQ
* ITURB

Results are printed every IPRT time levels. (IOI)
Time levels at which results are printed. The subscript \(\mathrm{I}=1\) to 101 , the maximum number of time levels that may be printed. (IOl)

Results are printed at every IPRT1'th mesh point in the \(\xi\) direction. ( OL )

Results are printed at every IPRT2'th mesh point in the \(\eta\) direction. (IO1)
\(\xi\) indices at which results are printed. The subscript \(\mathrm{I}=1\) to a maximum of \(\lambda 1\), the number of grid points in the \(\xi\) direction. (IOl)
\(\eta\) indices at which results are printed. The subscript \(\mathrm{I}=1\) to a maximum of N 2 , the number of grid points in the \(\eta\) direction. (1O1)

Flag controlling the reading and writing of auxiliary files used for restarting the calculation in a separate run. (RSTRT1)

Multiplication factor used with IBASE to compute onedimensional index for two-dimensional array. (NUM1)

Flag specifying ADI sweep direction; 1 for \(\xi\) direction and 2 for \(\eta\) direction. (NUM1)

Flag for swirl in axisymmetric flow; 0 for no swirl, 1 for swirl. (FLOW1)

Current time step number, or known time level. Time step number \(n\) updates the solution from time level \(n\) to \(n+1\). (TIME1)

The time time step number, or known time level \(n\), at the beginning of a run. For a non-restart case, \(\operatorname{ITBEG}=1\). (TIME1)

Flag for time-dependent boundary conditions; 0 if all boundary conditions are steady, 1 if any general unsteady boundary conditions are used, 2 if only steady and time-periodic boundary conditions are used. ( BCl )

The final time step number. (TIMEI)
Flag for computing turbulent viscosity on constant \(\eta\) lines. (TLRB1)

Flags for thin-layer option; 0 to include 2 nd. derivative viscous terms, 1 to eliminate them. The subscript \(\mathrm{I}=1\) or 2 , corresponding to the \(\xi\) and \(\eta\) directions, respectively. (FLOW1)

Current time step sequence number. (TIME1)
Flag for turbulent flow option; 0 for laminar flow, 1 for turbulent flow using the Baldwin-Lomax algebraic turbulence
* ITXI
* IUNITS

> IV
* IVOUT(I)
* IWALL1(I)
* IWALL2(I)
* IWOUTl(I)
* IWOUT2(I)

I1
I2
* JBCT1(I,J)
* JBCT2(I,J)
model, 20 for turbulent flow using the Chien two-equation \(k-\varepsilon\) turbulence model. (TURB1)

Flag for computing turbulent viscosity on constant \(\xi\) lines. (TĽRB1)

Flag for type of units used to specify reference conditions; 0 for English units, 1 for SI units. (IO1)

Grid point index in the "vectorized" direction (i.e., the nonsweep direction in which the "BLK" routines are vectorized). Therefore, IV \(=j\) for the first sweep and \(i\) for the second sweep. (NUM1)

A 50 -element array specifying which variables are to be printed. (IOl)

Flags indicating type of surfaces in the \(\xi\) direction; 0 for a free boundary, 1 for a solid wall. The subscript \(\mathrm{I}=1\) or 2 , corresponding to the \(\xi=0\) and \(\xi=1\) surfaces, respectively. (TLRB1)

Flags indicating type of surfaces in the \(\eta\) direction; 0 for a free boundary, 1 for a solid wall. The subscript \(I=1\) or 2 , corresponding to the \(\eta=0\) and \(\eta=1\) surfaces, respectively. (TURB1)

Flags specifying whether or not various parameters are to be printed along the \(\xi\) boundaries; 0 for no printout, 1 for printout along the boundary. The subscript \(\mathrm{I}=1\) or 2 , corresponding to the \(\xi=0\) and \(\xi=1\) boundaries, respectively. (IOI)

Flags specifying whether or not various parameters are to be printed along the \(\eta\) boundaries; 0 for no printout, 1 for printout along the boundary. The subscipt \(\mathrm{I}=1\) or 2 , corresponding to the \(\eta=0\) and \(\eta=1\) boundaries, respectively. (IO1)

Grid point index in the \(\xi\) direction. (NUM1)
Grid point index in the \(\eta\) direction. (NUM1)
Flags specifying the type of boundary conditions used for the \(k-\varepsilon\) turbulence model on the \(\xi=0\) and \(\xi=1\) surfaces, when specified for the entire surface. The subscript \(\mathrm{I}=1\) or 2 , corresponding to the \(k\) and \(\varepsilon\) equations, respectively, and \(\mathbf{J}=1\) or 2, corresponding to the \(\xi=0\) and \(\xi=1\) boundaries, respectively. (BC2)

Flags specifying the type of boundary conditions used for the \(k-\varepsilon\) turbulence model on the \(\eta=0\) and \(\eta=1\) surfaces, when specified for the entire surface. The subscript \(\mathrm{I}=1\) or 2 , corresponding to the \(k\) and \(\varepsilon\) equations, respectively, and \(J=1\) or 2 , corresponding to the \(\eta=0\) and \(\eta=1\) boundaries, respectively. (BC2)

Flags specifying the type of steady boundary conditions used on the \(\xi=0\) and \(\xi=1\) surfaces, when specified for the entire
* \(\mathrm{JBC} 2(\mathrm{I}, \mathrm{J})\)
\(\mathrm{JI}(\mathrm{I} 1, \mathrm{I} 2) \quad J^{-1}\) or \(r J^{-1}\)
* \(\quad \mathrm{JTBC} 1(1, \mathrm{~J})\)
* JTBC2(I,J)

KBCPER(I)
* \(\mathrm{KBCl}(\mathrm{J})\)
* \(\mathrm{KBC2}(\mathrm{~J})\)
\(\mathrm{KE}(11,12)\)

KEL(I1,I2)
\(\mathrm{KT}(\mathrm{I} 1, \mathrm{I} 2)\)
* KTR

LA(I1,I2)
* LR \(L_{T}\)
surface. I runs from 1 to \(N_{e q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the \(\xi=0\) and \(\xi=1\) boundaries, respectively. ( BCl )

Flags specifying the type of steady boundary conditions used on the \(\eta=0\) and \(\eta=1\) surfaces, when specified for the entire surface. I runs from 1 to \(N_{e q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2, corresponding to the \(\eta=0\) and \(\eta=1\) boundaries, respectively. ( BCl )

Normally the inverse Jacobian of the non-orthogonal grid transformation. For the COEF routines in axisymmetric flow, it is temporarily redefined as the product of the local radius and the inverse Jacobian. This is a real variable. (METRIC1)

A variable specifying the type of time dependency for the boundary conditions on the \(\xi=0\) and \(\xi=1\) boundaries. I runs from 1 to \(N_{e q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the \(\xi=0\) and \(\xi=1\) boundaries, respectively. (BC1)

A variable specifying the type of time dependency for the boundary conditions on the \(\eta=0\) and \(\eta=1\) boundaries. I runs from 1 to \(N_{e q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the \(\eta=0\) and \(\eta=1\) boundaries, respectively. ( BCl )

Flags for spatially periodic boundary conditions: 0 for nonperiodic, 1 for periodic. The subscript \(\mathrm{I}=1\) or 2 , corresponding to the \(\xi\) and \(\eta\) directions, respectively. ( BCl )

Flags for type of boundaries in the \(\xi\) direction. The subscript \(\mathbf{J}=1\) or 2 , corresponding to the \(\xi=0\) and \(\xi=1\) boundaries, respectively. ( BCl )

Flags for type of boundaries in the \(\eta\) direction. The subscript \(\mathrm{J}=1\) or 2 , corresponding to the \(\eta=0\) and \(\eta=1\) boundaries, respectively. ( BCl )

Turbulent kinetic energy at time level \(n\). This is a real variable. (TURB20)

Turbulent kinetic energy at previous or intermediate time level. This is a real variable. (TCRB20)

Effective thermal conductivity coefficient at time level \(n\). This is a real variable. (FLOWl)

Dimensional reference thermal conductivity coefficient. This is a real variable. (FLOW1)

Effective second coefficient of viscosity at time level \(n\) (usually assumed equal to \(-2 \mu / 3\).) This is a real variable. (FLOW1)

Dimensional reference length. This is a real variable. (FLOW1)

LRMAX (I,J,K)

LWAKE1(I2)

LWAKE2(II)
* LWALLl(I2,I)
* LWALL2(11,I)

LWSET(I)
\begin{tabular}{cc}
\(*\) & MACHR \\
\(\operatorname{METT}(\mathrm{I})\) & \(M_{r}\) \\
\(\xi_{t}\) or \(\eta_{t}\)
\end{tabular}

METXI(I) \(\quad \xi_{x}\) or \(\eta_{x} \quad \begin{aligned} & \text { The derivative of the computational coordinate in the ADI } \\ & \text { sweep direction with respect to the Cartesian coordinate } x\end{aligned}\)
In actual use, this one-dimensional array is equivalenced to
the two-dimensional array METX(IV,IS). IS is the grid index
in the sweep direction, running from 1 to \(N\). IV is the grid
index in the "vectorized" direction (i.e., the non-sweep direc-
tion in which the "BLK" rutines are vectorized), and runs
from 2 to \(N_{v}-1\). This is a real variable. (METRIC1)
METYI(I) \(\quad \xi_{y}\) or \(\eta_{y} \quad\) The derivative of the computational coordinate in the ADI sweep direction with respect to the Cartesian coordinate \(y\) or cylindrical coordinate \(r\). In actual use, this one-dimensional array is equivalenced to the two-dimensional array METY(IV,IS). IS is the grid index in the sweep direction, running from 1 to \(N\). IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK"
real variable. (METRIC1)

MU(I1,12)
* MUR

MUT(I1,I2)
\(\operatorname{MUTL}(11, \mathrm{I} 2) \quad \mu_{t}\)

NAMAX

NBC

NC
* NDTCYC

NEN
NEQ

NEQP

NEQPM

NET
* NGEOM
* NGRID
* NHIST
* Nhmax

\section*{NIN}
* Nitavg

NMAXP
* NOLT
* NPLOT
* NPLOTX

NPRT1
NPRT2
NPTS
NPT1

NPT2 \(\quad N_{2}\) or \(N_{2}+1\)

NR
* NRQIN
* NRQOUT

NRU

NRV

NRW
* NRXIN
* NRXOUT
* NSCR1
* NTBC
* NTBCA(I)
* NTIME(I)

A dimensioning parameter equal to the maximum of \(\mathrm{N} / \mathrm{P}\) and N2P. (PARAMSI)

Unit number for writing standard output. (IOI)
Unit number for writing CONTOLR or PLOT3D Q plot file. (IO1)

Unit number for writing PLOT3D XYZ plot file. (IO1)
Total number of indices for printout in the \(\bar{\zeta}\) direction. (IO1)
Total number of indices for printout in the \(\eta\) direction. (IO1)
The number of grid points in the sweep direction. (NUM1)
\(N_{1}\) or \(N_{1}+1\)
The number of grid points in the \(\xi\) direction used in computing coefficients: \(N_{1}\) for non-periodic boundary conditions; \(N_{1}+1\) for spatially periodic boundary conditions. (NUM1)

The number of grid points in the \(\eta\) direction used in com- puting coefficients: \(N_{2}\) for non-periodic boundary conditions; \(N_{2}+1\) for spatially periodic boundary conditions. (NUM1)

Array index associated with the dependent variable \(\rho\). (NUM1)

Unit number for reading restart flow field. (RSTRT1)
Unit number for writing restart flow field. (RSTRT1)
Array index associated with the dependent variable \(\rho u\). (NUM1)

Array index associated with the dependent variable \(\rho v\). (NUM1)

Array index associated with the dependent variable \(\rho w\). (NUM1)

Unit number for reading restart computational mesh. (RSTRT1)

Unit number for writing restart computational mesh. (RSTRT1)

Unit number for scratch file in subroutine PLOT. (IO1)
Number of values in the tables of GTBC1 and/or GTBC2 vs. NTBCA for general unsteady boundary conditions. ( BCl )

Time levels at which GTBC1 and/or GTBC2 are specified for general unsteady boundary conditions. The subscript \(I=1\) to NTBC, corresponding to the NTBC values in the table. ( BCl )

Maximum number of time steps to march. I runs from 1 to NTSEQP, corresponding to the time step sequence number. (TIME1)
* ITKE

NTOTP

NTP
* NTSEQ

NTSEQP

NV

NXM

NYM

NZM
* N1

N1P
* N 2

N 2 P
\(\mathrm{P}(\mathrm{I} 1, \mathrm{I} 2) \quad p\)
PONE

PR
* PRLR

PRR
* PRT

PTWO

Number of \(k-\varepsilon\) iterations per mean flow iteration. (TLRB20)
A dimensioning parameter equal to the total storage required for a single two-dimensional array (i.e., N1P \(\times N 2 \mathrm{P}\) ). (PARAMS1)

A dimensioning parameter equal to the maximum number of entries in the table of time-dependent boundary condition values. (PARAMS1)

The total number of time step sequences being used. (TIME1)

A dimensioning parameter equal to the maximum number of time step sequences in the time step sequencing option. (PARAMS1)

The number of grid points in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized). Therefore, NV \(=N_{2}\) for the first sweep and \(N_{1}\) for the second sweep. (NUM1)

Array index associated with the \(x\)-momentum equation. (NUM1)

Array index associated with the \(y\) or \(r\)-momentum equation. (NUM1)

Array index associated with the swirl momentum equation. (NUM1)

The number of grid points in the \(\xi\) direction. (NUM1)
A dimensioning parameter equal to the maximum number of grid points in the \(\xi\) direction. (PARAMS1)

The number of grid points in the \(\eta\) direction. (NUM1)
A dimensioning parameter equal to the maximum number of grid points in the \(\eta\) direction. (PARAMS1)

Static pressure at time level \(n\). (FLOW1)
Part 1 of the production rate of the turbulent kinetic energy. (TURB20)
Dimensional reference static pressure, \(\rho_{r} \bar{R} T_{r} / g_{c}\). (FLOWl)
Reference laminar Prandtl number, \(c_{p, r} \mu_{r} / k_{r}\), where \(c_{p_{r}}=\gamma_{r} \bar{R} /\left(\gamma_{r}-1\right)\). (FLOW 1 )

Reference Prandtl number, \(\mu_{r} u_{r}^{2} \mid k_{r} T_{r}\). (FLOW1)
Turbulent Prandtl number, or, if non-positive, a flag indicating the use of a variable turbulent Prandtl number. (TLRB1)

Part 2 of the production rate of the turbulent kinetic energy. (TURB20)
\begin{tabular}{|c|c|c|c|}
\hline * & P0 & \(p_{0}\) & Initial static pressure. (ICl) \\
\hline & RAX (I) & 1 or \(r\) & 1 for two-dimensional planar flow, and the local radius \(r\) for axisymmetric flow. I is the grid index in the sweep direction, running from 1 to \(\lambda\). (METRICI) \\
\hline * & RER & \(R e_{r}\) & Reference Reynolds number, \(\rho, u_{r} L_{r} / \mu_{r}\). (FLOW1) \\
\hline & RESAVG(J,K) & \(\mathrm{R}_{\text {avg }}\) & The average absolute value of the residual for the previous time step. The subscript \(\mathrm{J}=1\) to \(N_{\text {eq }}\), corresponding to the \(N_{e q}\) coupled governing equations, and \(\mathrm{K}=1\) or 2 , corresponding to the residual computed without and with the artificial viscosity terms. (TIME1) \\
\hline & RESL2(J,K) & \(\mathrm{R}_{L_{2}}\) & The \(L_{2}\) norm of the residual for the previous time step. The subscript \(\mathrm{J}=1\) to \(N_{e q}\), corresponding to the \(N_{e q}\) coupled governing equations, and \(\mathrm{K}=1\) or 2 , corresponding to the residual computed without and with the artificial viscosity terms. (TIME1) \\
\hline & \(\operatorname{RESMAX}(\mathrm{J}, \mathrm{K})\) & \(\mathrm{R}_{\text {max }}\) & The maximum absolute value of the residual for the previous time step. The subscript \(\mathrm{J}=1\) to \(N_{\text {eq }}\), corresponding to the \(N_{\text {eq }}\) coupled governing equations, and \(\mathrm{K}=1\) or 2 , corresponding to the residual computed without and with the artificial viscosity terms. (TIME1) \\
\hline * & REXT1 & \(R e^{\text {xtr }}\) & Reynolds number at the beginning of the transition region, based on maximum total velocity and distance from \(\xi=0\), for flow predominantly in the \(\xi\) direction with a leading edge at \(\xi=0\). (TURB1) \\
\hline * & REXT2 & \(R e_{\text {xtr }}\) & Reynolds number at the beginning of the transition region, based on maximum total velocity and distance from \(\eta=0\), for flow predominantly in the \(\eta\) direction with a leading edge at \(\eta=0\). (TURBI) \\
\hline * & RG & \(\bar{R}\) & Dimensional gas constant. (FLOW1) \\
\hline & RGAS & \(R\) & Nondimensional gas constant. (FLOW1) \\
\hline & RHO(I1,12) & \(\rho\) & Static density at time level n. (FLOW1) \\
\hline & RHOL(I1,I2) & \(\rho\) & Static density at previous or intermediate time level. (FLOWl) \\
\hline * & RHOR & \(\rho\) r & Dimensional reference density. (FLOW1) \\
\hline * & R.MAX & \(r_{\text {max }}^{\prime}\) & Maximum \(r\) ' coordinate for polar grid option. (GMTRY1) \\
\hline * & RMIN & \(r_{\text {min }}\) & Minimum \(r^{\prime}\) coordinate for polar grid option. (GMTRY1) \\
\hline & S & S & See SVECT1. (NUM1) \\
\hline * & SIGE & \(\sigma_{2}\) & Constant used in the diffusion term of the \(\varepsilon\) equation. (TURB20) \\
\hline * & SIGK & \(\sigma_{k}\) & Constant used in the diffusion term of the \(k\) equation. (TURB20) \\
\hline
\end{tabular}
* \(\mathrm{SQ}(\mathrm{I}, \mathrm{J})\)

SVECTI(I)

T(I1,I2)
TAU(Il,I2)
* TFACT
* THC(I) \(\quad \theta_{1}, \theta_{2}\)
* THE(I) \(\quad \theta_{1}, \theta_{2}, \theta_{3}\)
* THKE(I)
* THMAX
* THMIN
* \(\operatorname{THX}(\mathrm{I}) \quad \theta_{1}, \theta_{2}, \theta_{3}\)
* THY(I) \(\quad \theta_{1}, \theta_{2}, \theta_{3}\)
* \(\mathrm{THZ}(\mathrm{I}) \quad \theta_{1}, \theta_{2}, \theta_{3}\)
* TITLE

TL(I1,I2)
* TLIM
* TR
* T0
\(\theta_{1}, \theta_{2}\)
\(\theta_{\text {max }}^{\prime}\)
\[
\theta_{\min }^{\prime}
\]
\(T\)
\(T_{r}\)
\(T_{0}\)

An array controlling the packing of grid points using the Roberts transformation. The subscript \(\mathrm{I}=1\) or 2 , corresponding to the \(\xi\) and \(\eta\) directions, respectively. \(\mathrm{SQ}(\mathrm{I}, 1)\) specifies the location of packing, and \(\mathrm{SQ}(\mathrm{I}, 2)\) specifies the amount of packing. (NUM1)

Subvector of source terms in the block tridiagonal system of equations. In actual use, this one-dimensional array is equivalenced to the three-dimensional array \(\mathrm{S}(\mathrm{IV}, \mathrm{IS}, \mathrm{J})\). IS is the grid index in the sweep direction, running from 1 to \(N\). IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to \(N_{v}-1\). The subscript \(\mathrm{J}=1\) to \(N_{e q}\), corresponding to the \(N_{e q}\) coupled governing equations. (NUM1)

Static temperature at time level \(n\). (FLOW1)
Current value of the time marching parameter. (TIME1)
Factor used in computing the \(k-\varepsilon\) time step, \(\Delta \tau_{k-4}=\operatorname{TFACT}(\Delta \tau) .(T L R B 20)\)

A two-element array specifying the time difference centering parameters used for the continuity equation. (NUM1)

A three-element array specifying the time difference centering parameters used for the energy equation. (NUM1)

A two-element array specifying the time difference centering parameters used for the \(k-\varepsilon\) equations. (NUM2)

Maximum \(\theta^{\prime}\) coordinate in degrees for polar grid option. (GMTRY1)

Minimum \(\theta^{\prime}\) coordinate in degrees for polar grid option. (GMTRY1)

A three-element array specifying the time difference centering parameters used for the \(x\)-momentum equation. (NUM1)

A three-element array specifying the time difference centering parameters used for the \(y\) or \(r\)-momentum equation. (NLM1)

A three-element array specifying the time difference centering parameters used for the swirl momentum equation. (NUM1)

Title for printed output and CONTOUR plot file, up to 72 characters long. This is a character variable. (TITLE1)

Static temperature at previous or intermediate time level. (FLOW1)

When the amount of CPU time remaining for the job drops below TLIM seconds, the calculation is stopped. (TIME1)

Dimensional reference temperature. (FLOW1)
Initial static temperature. (IC1)
\begin{tabular}{|c|c|c|}
\hline U(11,12) & \(u\) & Velocity in the Cartesian \(x\) direction at time level \(n\). (FLOW1) \\
\hline LL(I1,I2) & \(u\) & Velocity in the Cartesian \(x\) direction at previous or intermediate time level. (FLOW1) \\
\hline * LR & \(u_{r}\) & \(\dot{\text { Dimensional reference velocity. (FLOW1) }}\) \\
\hline * L0 & \(u_{0}\) & Initial velocity in the Cartesian \(x\) direction. (IC1) \\
\hline \(\mathrm{V}(11,12)\) & \(v\) & Velocity in the Cartesian \(y\) direction or cylindrical \(r\) direction at time level n . (FLOW1) \\
\hline VL(I1,I2) & \(v\) & Velocity in the Cartesian \(y\) direction or cylindrical \(r\) direction at previous or intermediate time level. (FLOW1) \\
\hline VORT(11,12) & \(|\bar{\Omega}|\) & Total vorticity magnitude. (TURB1) \\
\hline VORT(I1,12) & \(|\vec{\Omega}|\) & Production rate of turbulent kinetic energy. (TURB1) \\
\hline * V0 & \(\nu_{0}\) & Initial velocity in the Cartesian \(y\) direction or cylindrical \(r\) direction. (IC1) \\
\hline W(11,12) & \(w\) & Swirl velocity at time level \(n\). (FLOW1) \\
\hline WL(I1,12) & \(w\) & Swirl velocity at previous or intermediate time level. (FLOW1) \\
\hline * wo & \(w_{0}\) & Initial swirl velocity. (IC1) \\
\hline \(\mathrm{X}(11,12)\) & \(x\) & Cartesian \(x\) coordinate. (METRIC1) \\
\hline XIT(I1,I2) & \(\xi\), & The derivative of the computational coordinate \(\xi\) with respect to untransformed time \(t\). (METRIC1) \\
\hline XIX(I1,I2) & \(\xi_{x}\) & The derivative of the computational coordinate \(\xi\) with respect to the Cartesian coordinate \(x\). (METRIC1) \\
\hline XIY(I1,I2) & \(\xi_{y}\) or \(\xi^{\prime}\). & The derivative of the computational coordinate \(\xi\) with respect to the Cartesian coordinate \(y\) or cylindrical coordinate \(r\). (METRIC1) \\
\hline * XMAX & \(x_{\text {max }}\) & Maximum \(x\) coordinate for Cartesian grid option. (GMTRY1) \\
\hline * XMIN & \(x_{\text {min }}\) & Minimum \(x\) coordinate for Cartesian grid option. (GMTRY1) \\
\hline Y(11,12) & \(y\) or \(r\) & Cartesian \(y\) coordinate or cylindrical \(r\) coordinate. (METRICl) \\
\hline * YMAX & \(y_{\text {max }}\) & Maximum \(y\) coordinate for Cartesian grid option. (GMTRY1) \\
\hline * YMIN & \(y_{\text {min }}\) & Minimum \(y\) coordinate for Cartesian grid option. (GMTRY1) \\
\hline
\end{tabular}
YPLUSD(I1,12) \(y^{+} \quad\)\begin{tabular}{l} 
Non-dimensional distance from the nearest solid wall. \\
(TURB20)
\end{tabular} (TLRB20)

\subsection*{3.3 COMMOY VARIABLES LISTED SYMBOLICALLY}

In this section many of the Proteus Fortran variables stored in common blocks are defined, listed symbolically. Note that this list does not include those variables without symbolic representations, such as various flags, or those whose meaning depends on other parameters, such as the boundary condition values and sweep direction metrics. The variables marked with an asterisk are input variables. More details on these may be found in Section 3.1 of Volume 2. The common block each variable is stored in is given in parentheses at the end of each definition. For subscripted variables, the subscripts are defined along with the variable, except for the subscripts I1 and I2, which are the indices \(i\) and \(j\) in the \(\xi\) and \(\eta\) directions, respectively, and run from 1 to \(N_{1}\) and \(N_{2}\).

Unless otherwise noted, all variables representing physical quantities are nondimensional. The nondimensionalizing procedure is described in Section 3.1.1 of Volume 2. The type (real or integer) of the variables follows standard Fortran convention, unless stated otherwise. (I.e., those starting with I, J, K, \(\mathrm{L}, \mathrm{M}\), or N are integer, and the remainder are real.)
\begin{tabular}{|c|c|c|c|}
\hline & Symbol & \begin{tabular}{l}
Fortran \\
Variable
\end{tabular} & Definition \\
\hline * & \(A^{+}\) & APLUS & Van Driest damping constant in the inner and outer regions of the Baldwin-Lomax turbulence model. (TURB1) \\
\hline & A & A.MATl(I) & Subdiagonal submatrix of coefficients in the block tridiagonal coefficient matrix. In actual use, this one-dimensional array is equivalenced to the four-dimensional array \(A(I V, I S, J, K)\). IS is the grid index in the sweep direction, running from 1 to \(N\). IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to \(N_{v}-1\). The subscript \(\mathrm{J}=1\) to \(N_{e q}\), corresponding to the \(N_{e q}\) coupled governing equations, and \(\mathrm{K}=1\) to \(N_{e q}\), corresponding to the \(N_{e q}\) dependent variables. (NUM1) \\
\hline * & B & CB & Constant used in the formula for the Klebanoff intermittency factor \(F_{\text {Kleb }}\) in the outer region of the Baldwin-Lomax turbulence model, and in the inner region of the SpaldingKleinstein turbulence model. (TURB1) \\
\hline & B & BMAT1(I) & Diagonal submatrix of coefficients in the block tridiagonal coefficient matrix. In actual use, this one-dimensional array is equivalenced to the four-dimensional array \(B(I V, I S, J, K)\). IS is the grid index in the sweep direction, running from 1 to \(N\). IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to \(N_{v}-1\). The subscript \(\mathrm{J}=1\) to \(N_{e q}\), corresponding to the \(N_{e q}\) coupled governing equations, and \(\mathrm{K}=1\) to \(N_{e q}\), corresponding to the \(N_{e q}\) dependent variables. (NUM1) \\
\hline & \(c_{p}\) & CP(11,12) & Specific heat at constant pressure at time level n. (FLOWl) \\
\hline & \(c_{v}\) & \(\mathrm{CV}(\mathrm{I} 1, \mathrm{I} 2)\) & Specific heat at constant volume at time level \(n\). (FLOW1) \\
\hline * & \(C_{c p}\) & CCP & Constant used in the outer region of the Baldwin-Lomax turbulence model. (TURB1) \\
\hline
\end{tabular}
\(C_{c_{p l}}-C_{c_{p} A}\)
\(C_{k 1}-C_{k 2}\)
* \(C_{\text {Kieb }}\)
* \(\left(C_{\text {Kles }}\right)_{\text {min }}\)

CKMIN
* \(C_{\mu r}\)
\(C_{\mu 1}-C_{\mu 2}\)
* \(C_{w k}\)
* \(C_{1}\)

CONE
* \(C_{2 r}\)

CTWOR
* \(C_{3}\)

CTHREE

C
CMAT1(I)
\(e_{r} \quad\) ER
\(E_{T} \quad \mathrm{ET}(\mathrm{I} 1, \mathrm{I} 2)\)
\(E_{T} \quad \operatorname{ETL}(11,12)\)
\(g c\)
GC
\(h_{T}\)
HSTAG
* \(h_{T_{r}}\)

HSTAGR
\begin{tabular}{|c|c|c|}
\hline \(i v\) & IV & Grid point index in the "vectorized" direction (i.e., the nonsweep direction in which the "BLK" routines are vectorized). Therefore, \(\mathrm{IV}=j\) for the first sweep and \(i\) for the second sweep. (NUM1) \\
\hline j & 12 & Grid point index in the \(\eta\) direction. (NUM1) \\
\hline \(J^{-1}\) & JI(II,I2) & Inverse Jacobian of the non-orthogonal grid transformation. (For axisymmetric flow, in the COEF routines \(\mathrm{JI}=r J^{-1}\), the product of the local radius and the inverse Jacobian.) This is a real variable. (METRIC1) \\
\hline \(k\) & KT(11,I2) & Effective thermal conductivity coefficient at time level \(n\). This is a real variable. (FLOW1) \\
\hline \(k\) & KE(11,I2) & Turbulent kinetic energy at time level \(n\). This is a real variable. (TLRB20) \\
\hline \(k\) & KEL(I1,I2) & Turbulent kinetic energy at previous or intermediate time level. This is a real variable. (TURB20) \\
\hline * \(k\), & KTR & Dimensional reference thermal conductivity coefficient. This is a real variable. (FLOW1) \\
\hline * K & CCLAU & Clauser constant used in the outer region of the BaldwinLomax turbulence model. (TURB1) \\
\hline * \(L_{r}\) & LR & Dimensional reference length. This is a real variable. (FLOW1) \\
\hline * \(M_{r}\) & MACHR & Reference Mach number, \(u_{l} /\left(y_{r} \bar{R} T_{r}\right)^{1 / 2}\). This is a real variable. (FLOWl) \\
\hline \(n\) & IT & Current time step number, or known time level. Time step number \(n\) updates the solution from time level \(n\) to \(n+1\). (TIME1) \\
\hline * \(n\) & CNA & Exponent in the formula used to average the two outer region \(\mu_{\text {t }}\) profiles that result when both boundaries in a coordinate direction are solid surfaces. (TURB1) \\
\hline * \(n\) & CNL & Exponent in the Launder-Priddin modified mixing length formula for the inner region of the Baldwin-Lomax turbulence model. (TURBI) \\
\hline \(N\) & NPTS & The number of grid points in the sweep direction. (NLM1) \\
\hline \(N_{e q}\) & NEQ & The number of coupled governing equations actually being solved. (NUMI) \\
\hline \(N\) & NV & The number of grid points in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized). Therefore, NV \(=N_{2}\) for the first sweep and \(N_{1}\) for the second sweep. (NCM1) \\
\hline * \(N_{1}\) & Nl & The number of grid points in the \(\xi\) direction. (NLM1) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(N_{1}\) & \PT1 & The number of grid points in the \(\xi\) direction used in computing coefficients (only for non-periodic boundary conditions.) (NLM1) \\
\hline \(N_{1}+1\) & \PTl & The number of grid points in the \(\xi\) direction used in computing coefficients (only for spatially periodic boundary conditions.) (..UMI) \\
\hline * \(\mathrm{N}_{2}\) & N2 & The number of grid points in the \(\eta\) direction. (NUM1) \\
\hline \(N_{2}\) & NPT2 & The number of grid points in the \(\eta\) direction used in computing coefficients (only for non-periodic boundary conditions.) (NLM1) \\
\hline \(N_{2}+1\) & NPT2 & The number of grid points in the \(\eta\) direction used in computing coefficients (only for spatially periodic boundary conditions.) (NUM1) \\
\hline \(p\) & P(11,12) & Static pressure at time level \(n\). (FLOW1) \\
\hline \(p_{r}\) & PR & Dimensional reference static pressure, \(\rho_{r} \bar{R} T / / g_{c}\). (FLOW 1 ) \\
\hline * \(p_{0}\) & P0 & Initial static pressure. (ICl) \\
\hline \(\partial p / \partial E_{T}\) & DPDET(I) & The derivative of \(p\) with respect to \(E_{T}\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOWl) \\
\hline \(\partial p / \partial \rho\) & DPDRHO(I) & The derivative of \(p\) with respect to \(\rho\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOW1) \\
\hline \(\partial p / \partial(\rho u)\) & DPDRU(I) & The derivative of \(p\) with respect to \(\rho u\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOW1) \\
\hline \(\partial p / \partial(\rho v)\) & DPDRV(I) & The derivative of \(p\) with respect to \(\rho v\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOW1) \\
\hline \(\partial p / \partial(\rho w)\) & DPDRW(1) & The derivative of \(p\) with respect to \(\rho w\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOW1) \\
\hline \(P_{1}\) & PONE & Part 1 of the production rate of the turbulent kinetic energy. (TURB20) \\
\hline \(P_{2}\) & PTWO & Part 2 of the production rate of the turbulent kinetic energy. (TURB20) \\
\hline * Pr \(r_{\text {r }}\) & PRLR & Reference laminar Prandtl number, \(c_{p r} \mu_{r} / k_{r}\), where \(c_{p_{r}}=\gamma_{r} \bar{R} /\left(\gamma_{r}-1\right)\). (FLOW1) \\
\hline Pr & PRR & Reference Prandtl number, \(\mu_{r} u_{r}^{2} / k_{r} T_{r}\). (FLOWl) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline * & \(P r_{t}\) & PRT & Turbulent Prandtl number, or, if non-positive, a flag indicating the use of a variable turbulent Prandtl number. (TURB1) \\
\hline & \(\Delta Q_{\text {cra }}\) & CHGAVG(I) & Maximum change in absolute value of the dependent variables, averaged over the last NITAVG time steps. \({ }^{6}\) The subscript \(I=1\) to \(N_{e q}\), corresponding to the \(N_{e q}\) dependent variables. (TIME1) \\
\hline & \(\Delta Q_{\text {max }}\) & CHGMAX ( \(\mathrm{I}, \mathrm{J}\) ) & Maximum change in absolute value of the dependent variables over a single time step. \({ }^{6}\) The subscript \(\mathrm{I}=1\) to \(N_{\text {eq }}\), corresponding to the \(N_{e q}\) dependent variables, and \(\mathrm{J}=1\) to NITAVG, the number of time steps used in the moving average option for determining convergence. (TIME1) \\
\hline & \(r\) & \(\mathrm{Y}(\mathrm{I} 1, \mathrm{I} 2)\) & Cylindrical \(r\) coordinate. (METRIC1) \\
\hline & \(r\) & RAX (I) & Local radius \(r\) for axisymmetric flow. I is the grid index in the sweep direction, running from 1 to \(N\). (METRIC1) \\
\hline * & \(r_{\text {max }}\) & RMAX & Maximum coordinate coordinate for polar grid option. (GMTRY1) \\
\hline * & \(r_{\text {min }}\) & RMIN & Minimum \(r^{\prime}\) coordinate coordinate for polar grid option. (GMTRY1) \\
\hline & \(\mathrm{R}_{\text {avg }}\) & RESAVG(J,K) & The average absolute value of the residual for the previous time step. The subscript \(\mathrm{J}=1\) to \(V_{e q}\), corresponding to the \(N_{\text {eq }}\) coupled governing equations, and \(\mathrm{K}=1\) or 2 , corresponding to the residual computed without and with the artificial viscosity terms. (TIME1) \\
\hline & \(\mathrm{R}_{L_{2}}\) & RESL2(J,K) & The \(L_{2}\) norm of the residual for the previous time step. The subscript \(\mathrm{J}=1\) to \(N_{e q}\), corresponding to the \(N_{e q}\) coupled governing equations, and \(K=1\) or 2 , corresponding to the residual computed without and with the artificial viscosity terms. (TIME1) \\
\hline & \(\mathrm{R}_{\text {max }}\) & RESMAX \((\mathrm{J}, \mathrm{K})\) & The maximum absolute value of the residual for the previous time step. The subscript \(\mathrm{J}=1\) to \(N_{e q}\), corresponding to the \(N_{\text {eq }}\) coupled governing equations, and \(\mathrm{K}=1\) or 2 , corresponding to the residual computed without and with the artificial viscosity terms. (TIME1) \\
\hline * & \(\bar{R}\) & RG & Dimensional gas constant. (FLOW1) \\
\hline & \(R\) & RGAS & Nondimensional gas constant. (FLOW1) \\
\hline * & \(R e_{r}\) & RER & Reference Reynolds number, \(\rho_{r} u_{r} L_{r} / \mu_{r}\). (FLOW \()\) \\
\hline * & * \(R e_{\text {etr }}\) & REXT1 & Reynolds number at the beginning of the transition region, based on maximum total velocity and distance from \(\xi=0\), for flow predominantly in the \(\xi\) direction with a leading edge at \(\xi=0\). (TURB1) \\
\hline
\end{tabular}

For the energy equation, the change in \(E_{T}\) is divided by \(E_{T_{r}}=\rho_{r} \bar{R} T_{r} /\left(\gamma_{r}-1\right)+u_{r}^{2} / 2\), so that it is the same order of magnitude as the other conservation variables.
\begin{tabular}{|c|c|}
\hline * \(R e_{x_{t r r}}\) & REXT2 \\
\hline S & SVECT1(1) \\
\hline * \(\Delta t\) & DT(I) \\
\hline \(T\) & T(I1,I2) \\
\hline \(T\) & TL(I1,I2) \\
\hline \(\partial T / \partial E_{T}\) & DTDET(I) \\
\hline \(\partial T / \partial \rho\) & DTDRHO(I) \\
\hline \(\partial T / \partial(\rho u)\) & DTDRU(I) \\
\hline \(\partial T / \partial(\rho v)\) & DTDRV(I) \\
\hline \(\partial T / \partial(\rho w)\) & DTDRW(I) \\
\hline * \(T_{r}\) & TR \\
\hline * \(T_{0}\) & T0 \\
\hline \(u\) & U(I1,I2) \\
\hline \(u\) & UL(I1,I2) \\
\hline * \(u_{r}\) & UR \\
\hline * \(u_{0}\) & U0 \\
\hline \(v\) & \(\mathrm{V}(\mathrm{I} 1, \mathrm{I} 2)\) \\
\hline
\end{tabular}

Reynolds number at the beginning of the transition region, based on maximum total velocity and distance from \(\eta=0\), for flow predominantly in the \(\eta\) direction with a leading edge at \(\eta=0\). (TLRB1)

Subvector of source terms in the block tridiagonal system of equations. In actual use, this one-dimensional array is equivalenced to the three-dimensional array S(IV,IS,J). IS is the grid index in the sweep direction, running from 1 to \(N\). IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to \(N_{\nu}-1\). The subscript \(\mathrm{J}=1\) to \(N_{\text {eq }}\), corresponding to the \(N_{e q}\) coupled governing equations. (NUM1)

The time step size, when specified directly as input. I is the time step sequence number, and runs from 1 to NTSEQ. (TIME1)

Static temperature at time level n. (FLOWI)
Static temperature at previous or intermediate time level. (FLOW1)

The derivative of \(T\) with respect to \(E_{T}\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOWI)

The derivative of \(T\) with respect to \(\rho\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOW1)

The derivative of \(T\) with respect to \(\rho u\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOW1)

The derivative of \(T\) with respect to \(\rho v\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOWl)

The derivative of \(T\) with respect to \(\rho w\), stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to \(N\). (FLOW1)

Dimensional reference temperature. (FLOWI)
Initial static temperature. (IC1)
Velocity in the Cartesian \(x\) direction at time level \(n\). (FLOWI)

Velocity in the Cartesian \(x\) direction at previous or intermediate time level. (FLOW1)

Dimensional reference velocity. (FLOW1)
Initial velocity in the Cartesian \(x\) direction. (ICI)
Velocity in the Cartesian \(y\) direction or cylindrical \(r\) direction at time level n . (FLOWI)

W(11,12)
WL(I1,I2)

W0
X(I1,I2)
XMAX

XMIN
\(\mathrm{Y}(\mathrm{I} 1, \mathrm{I} 2)\)
YMAX

YMIN

YPLUSD(I \(1, \mathrm{I} 2)\)

EPS(1)
\(E(I 1, I 2)\)
EL(II,I2)

CAVS2E(I)

CAVS4E(I)

CAVS2I(I)

ETAY(I1,I2)

METYl(I)

Velocity in the Cartesian \(y\) direction or cylindrical \(r\) direction at previous or intermediate time level. (FLOWl)

Initial velocity in the Cartesian \(y\) direction or cylindrical \(r\) direction. (ICl)

Swirl velocity at time level \(n\). (FLOW1)
Swirl velocity at previous or intermediate time level. (FLOW1)

Initial swirl velocity. ( ICl )
Cartesian \(x\) coordinate. (METRIC1)
Maximum \(x\) coordinate for Cartesian grid option. (GMTRY1)

Minimum \(x\) coordinate for Cartesian grid option. (GMTRY1)

Cartesian \(y\) coordinate. (METRICl)
Maximum \(y\) coordinate for Cartesian grid option. (GMTRY1)

Minimum \(y\) coordinate for Cartesian grid option. (GMTRY1)

Non-dimensional distance from the nearest solid wall. (TURB20)

Convergence level to be reached. The subscript I \(=1\) to \(N_{e q}\), corresponding to the \(N_{e q}\) dependent variables. (TIME1)

Turbulent dissipation rate at time level \(n\). (TURB20)
Turbulent dissipation rate at previous or intermediate time level. (TURB20)

Second-order explicit artificial viscosity coefficient in constant coefficient model. The subscript \(I=1\) to \(N_{e q}\), corresponding to the \(N_{\text {eq }}\) coupled governing equations. (NLM1)

Fourth-order explicit artificial viscosity coefficient in constant coefficient model. The subscript \(\mathrm{I}=1\) to \(N_{e q}\), corresponding to the \(N_{e q}\) coupled governing equations. (NUM1)

Second-order implicit artificial viscosity coefficient in constant coefficient model. The subscript \(I=1\) to \(N_{\text {eq }}\), corresponding to the \(N_{\text {eq }}\) coupled governing equations. (NUM1)

The derivative of the computational coordinate \(\eta\) with respect to the cylindrical coordinate \(r\). (METRIC1)

The derivative of the computational coordinate \(\eta\) with respect to the cylindrical coordinate \(r\) (second ADI sweep only.) In actual use, this one-dimensional array is equivalenced to the
\(\eta_{r}\)
\(\eta_{t}\)
\(\eta_{x}\)
\(\eta_{x}\)
\(\eta_{y}\)
\(\eta_{y}\)
n
\(\Delta \eta\)
* \(\kappa\)
* \(\kappa_{2}\)
* \(\mathrm{K}_{4}\)
\(\operatorname{ETAT}(\mathrm{I} 1, \mathrm{I} 2)\)

METTl(I)

ETAX (I1,I2)

METX1(I)
\(\operatorname{ETAY}(11,12)\)

METY1(I)

DEL

DETA
CVK

CAVS2E(I)

CAVS4E(I)
two-dimensional array METY(IV,IS). IS is the grid index in the sweep direction, running from 1 to \(N\). IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the " BLK " routines are vectorized), and runs from 2 to \(N_{v}-1\). This is a real variable. (METRICl)

The derivative of the computational coordinate \(\eta\) with respect to untransformed time \(t\). (METRICl)

The derivative of the computational coordinate \(\eta\) with respect to untransformed time \(t\) (second ADI sweep only.) In actual use, this one-dimensional array is equivalenced to the twodimensional array METT(IV,IS). IS is the grid index in the sweep direction, running from 1 to \(N\). IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to \(N_{v}-1\). This is a real variable. (METRICl)

The derivative of the computational coordinate \(\eta\) with respect to the Cartesian coordinate \(x\). (METRICl)

The derivative of the computational coordinate \(\eta\) with respect to the Cartesian coordinate \(x\) (second ADI sweep only.) In actual use, this one-dimensional array is equivalenced to the two-dimensional array METX(IV,IS). IS is the grid index in the sweep direction, running from 1 to \(N\). IV is the grid index. in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to \(N_{v}-1\). This is a real variable. (METRIC1)

The derivative of the computational coordinate \(\eta\) with respect to the Cartesian coordinate \(y\). (METRIC1)

The derivative of the computational coordinate \(\eta\) with respect to the Cartesian coordinate \(y\) (second ADI sweep only.) In actual use, this one-dimensional array is equivalenced to the two-dimensional array METY(IV,IS). IS is the grid index in the sweep direction, running from 1 to \(N\). IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to \(N_{\iota}-1\). This is a real variable. (METRIC1)

Computational grid spacing in the \(\eta\) direction (second ADI sweep only.) (NUM1)

Computational grid spacing in the \(\eta\) direction. (NUM1)
Von Karman mixing length constant used in the inner region of the Baldwin-Lomax and Spalding-Kleinstein turbulence models. (TURB1)

User-specified constant in nonlinear coefficient artificial viscosity model. The subscript \(I=1\) to \(N_{e q}\), corresponding to the \(N_{e q}\) coupled governing equations. (NUM1)

User-specified constant in nonlinear coefficient artificial viscosity model. The subscript \(I=1\) to \(N_{e q}\), corresponding to the \(N_{e q}\) coupled governing equations. (NUM1)
\begin{tabular}{|c|c|c|}
\hline * \(\gamma_{r}\) & GAMR & Reference ratio of specific heats, \(c_{p_{r}} / c_{v_{r} \text {. }}\) (FLOW 1) \\
\hline \(\lambda\) & LA(I1,I2) & Effective second coefficient of viscosity at time level \(n\) (usually assumed equal to \(-2 \mu / 3\).) This is a real variable. (FLOW1) \\
\hline \(\mu\) & MU(11,I2) & Effective viscosity coefficient at time level \(n\). This is a real variable. (FLOW1) \\
\hline * \(\mu_{r}\) & MLR & Dimensional reference viscosity coefficient. This is a real variable. (FLOW1) \\
\hline \(\mu_{t}\) & MUT(I1,I2) & Turbulent viscosity coefficient at time level \(n\). This is a real variable. (FLOW1) \\
\hline \(\mu_{t}\) & MUTL( 11,12 ) & Turbulent viscosity coefficient at previous or intermediate time level. This is a real variable. (TURB20) \\
\hline \(\xi_{r}\) & XIY(I1,I2) & The derivative of the computational coordinate \(\xi\) with respect to the cylindrical coordinate \(r\). (METRIC1) \\
\hline \(\xi_{r}\) & METY1(I) & The derivative of the computational coordinate \(\xi\) with respect to the cylindrical coordinate \(r\) (first ADI sweep only.) In actual use, this one-dimensional array is equivalenced to the two-dimensional array METY(IV,IS). IS is the grid index in the sweep direction, running from 1 to \(N\). IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to \(N_{v}-1\). This is a real variable. (METRIC1) \\
\hline \(\xi_{t}\) & XIT(11,12) & The derivative of the computational coordinate \(\xi\) with respect to untransformed time \(t\). (METRICl) \\
\hline \(\xi_{t}\) & METTI(I) & The derivative of the computational coordinate \(\xi\) with respect to untransformed time \(t\) (first ADI sweep only.) In actual use, this one-dimensional array is equivalenced to the twodimensional array METT(IV,IS). IS is the grid index in the sweep direction, running from 1 to \(N\). IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to \(N_{\imath}-1\). This is a real variable. (METRIC1) \\
\hline \(\xi_{x}\) & XIX (I1,I2) & The derivative of the computational coordinate \(\xi\) with respect to the Cartesian coordinate \(x\). (METRICl) \\
\hline \(\xi_{x}\) & METX1(I) & The derivative of the computational coordinate \(\xi\) with respect to the Cartesian coordinate \(x\) (first ADI sweep only.) In actual use, this one-dimensional array is equivalenced to the two-dimensional array METX(IV,IS). IS is the grid index in the sweep direction, running from 1 to \(N\). IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to \(N_{v}-1\). This is a real variable. (METRICl) \\
\hline \(\xi_{y}\) & XIY(I1,I2) & The derivative of the computational coordinate \(\xi\) with respect to the Cartesian coordinate \(y\). (METRICl) \\
\hline \(\xi_{y}\) & METY1(I) & The derivative of the computational coordinate \(\xi\) with respect to the Cartesian coordinate \(y\) (first ADI sweep only.) In actual use, this one-dimensional array is equivalenced to the \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & two-dimensional array METY(IV,IS). IS is the grid index in the sweep direction, running from 1 to \(N\). IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to \(N_{v}-1\). This is a real variable. (METRICl) \\
\hline \(\Delta \xi\) & DEL & Computational grid spacing in the \(\xi\) direction (first ADI sweep only.) (NUM1) \\
\hline \(\Delta \xi\) & DXI & Computational grid spacing in the \(\xi\) direction. (NUM1) \\
\hline \(\rho\) & RHO(I1,12) & Static density at time level \(n\). (FLOW1) \\
\hline \(\rho\) & RHOL(I1,I2) & Static density at previous or intermediate time level. (FLOW1) \\
\hline \(\rho_{\text {r }}\) & RHOR & Dimensional reference density. (FLOW1) \\
\hline * \(\sigma_{k}\) & SIGK & Constant used in the diffusion term of the \(k\) equation. (TURB20) \\
\hline * \(\sigma_{t}\) & SIGE & Constant used in the diffusion term of the \(\varepsilon\) equation. (TURB20) \\
\hline \(\tau\) & TAU(11,12) & Current value of the time marching parameter. (TIME1) \\
\hline \(\Delta \tau\) & DTAU(I1,12) & Computational time step size. (TIME1) \\
\hline * \(\theta_{\text {max }}^{\prime}\) & THMAX & Maximum \(\theta^{\prime}\) coordinate in degrees for polar grid option. (GMTRY1) \\
\hline * \(\theta_{\text {min }}^{\prime}\) & THMIN & Minimum \(\theta^{\prime}\) coordinate in degrees for polar grid option (GMTRY1) \\
\hline * \(\theta_{1}, \theta_{2}\) & THC(I) & A two-element array specifying the time difference centering parameters used for the continuity equation. (NUM1) \\
\hline * \(\theta_{1}, \theta_{2}\) & THKE(I) & A two-element array specifying the time difference centering parameters used for the \(k-\varepsilon\) equations. (NLM2) \\
\hline * \(\theta_{1}, \theta_{2}, \theta_{3}\) & THE(I) & A three-element array specifying the time difference centering parameters used for the energy equation. (NLMI) \\
\hline * \(\theta_{1}, \theta_{2}, \theta_{3}\) & THX(I) & A three-element array specifying the time difference centering parameters used for the \(x\)-momentum equation. (NLM1) \\
\hline * \(\theta_{1}, \theta_{2}, \theta_{3}\) & THY(I) & A three-element array specifying the time difference centering parameters used for the \(y\) or \(r\)-momentum equation. (NUM1) \\
\hline * \(\theta_{1}, \theta_{2}, \theta_{3}\) & THZ(I) & A three-element array specifying the time difference centering parameters used for the swirl momentum equation. (NUM1) \\
\hline \(|\vec{\Omega}|\) & VORT(I1,12) & Total vorticity magnitude. (TURB1) \\
\hline \(|\vec{\Omega}|\) & VORT(Il,I2) & Production rate of turbulent kinetic energy. (TURB1) \\
\hline
\end{tabular}

\subsection*{4.0 PROTEUS SUBPROGRAMS}

In this section, each subprogram in Proteus is described, first in summary, then in detail. The summary is simply a list of the subprograms with a brief description of the purpose of each one. The detailed description includes, for each subprogram, a list of the subprograms that reference it, and a list of the subprograms that it references. The Fortran variables that are input to and output from each subprogram are defined. And finally, details of the computations being done within each subprogram are presented.

\subsection*{4.1 SUBPROGRAM SUMMARY}

The following table presents a brief description of the purpose of each subprogram in the Proteus code.
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Proteus Subprogram Summary } \\
\hline Subprogram & Purpose \\
\hline ADI & Manage the block tridiagonal inversion. \\
AVISC1 & Compute constant coefficient artificial viscosity. \\
AVISC2 & Compute nonlinear coefficient artificial viscosity. \\
BCDENS & Compute density boundary conditions. \\
BCELIM & Eliminate off-diagonal coefficient submatrices resulting from \\
& tbree-point boundary conditions. \\
BCF & Compute user-written boundary conditions. \\
BCFLIN & User-supplied routine for linearization of user-supplied boundary \\
& conditions. \\
BCGEN & Manage computation of boundary conditions. \\
BCGRAD & Compute gradients with respect to \(\xi\) and \(\eta\). \\
BCMET & Compute various metric functions for normal gradient boundary \\
& conditions. \\
BCPRES & Compute pressure boundary conditions. \\
BCQ & Compute conservation variable boundary conditions. \\
BCSET & Set various boundary condition parameters and flags. \\
BCTEMP & Compute temperature boundary conditions. \\
BCUVEL & Compute \(x\)-velocity boundary conditions. \\
BCVDIR & Compute normal and tangential velocity boundary conditions. \\
BCVVEL & Compute \(y\) or \(r\)-velocity boundary conditions. \\
BCWVEL & Compute swirl velocity boundary conditions. \\
BLIN1 & Compute inner layer turbulent viscosity along constant \(\xi\) lines. \\
BLIN2 & Compute inner layer turbulent viscosity along constant \(\eta\) lines. \\
BLKOUT & Print coefficient blocks at specified indices in the \(\xi\) and \(\eta\) di- \\
& rections. \\
BLK2 & Solve \(2 \times 2\) block tridiagonal system of equations. \\
BLK2P & Solve \(2 \times 2\) periodic block tridiagonal system of equations. \\
BLK3 & Solve \(3 \times 3\) block tridiagonal system of equations. \\
BLK3P & Solve \(3 \times 3\) periodic block tridiagonal system of equations. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Proteus Subprogram Summary} \\
\hline Subprogram & Purpose \\
\hline BLK4 & Solve \(4 \times 4\) block tridiagonal system of equations. \\
\hline BLK4P & Solve \(4 \times 4\) periodic block tridiagonal system of equations. \\
\hline BLK5 & Solve \(5 \times 5\) block tridiagonal system of equations. \\
\hline BLK5P & Solve \(5 \times 5\) periodic block tridiagonal system of equations. \\
\hline BLOCK DATA & Set default values for input parameters, plus a few other parameters. \\
\hline BLOUT1 & Compute outer layer turbulent viscosity along constant \(\xi\) lines. \\
\hline BLOUT2 & Compute outer layer turbulent viscosity along constant \(\eta\) lines. \\
\hline BVUP & Update first sweep boundary values after second sweep. \\
\hline COEFC & Compute coefficients and source terms for the continuity equation. \\
\hline COEFE & Compute coefficients and source terms for the energy equation. \\
\hline COEFS 1 & Compute coefficients and source terms for the \(k\) and \(\varepsilon\) equations for the first ADI sweep. \\
\hline COEFS 2 & Compute coefficients and source terms for the \(k\) and \(\varepsilon\) equations for the second ADI sweep. \\
\hline COEFX & Compute coefficients and source terms for the \(x\)-momentum equation. \\
\hline COEFY & Compute coefficients and source terms for the \(y\) or \(r\)-momentum equation. \\
\hline COEFZ & Compute coefficients and source terms for the swirl momentum equation. \\
\hline CONV & Test computed flow field for convergence. \\
\hline CUBIC & Interpolation using Ferguson's parametric cubic. \\
\hline EQSTAT & Use equation of state to compute pressure, temperature, and their derivatives with respect to the dependent variables. \\
\hline EXEC & Manage solution of the mean flow equations. \\
\hline EXECT & Manage solution of the \(k-\varepsilon\) equations. \\
\hline FILTER & Rearrange rows of the boundary condition coefficient submatrices and the source term subvector to eliminate any zeroes on the diagonal. \\
\hline FTEMP & Compute auxiliary variables that are functions of temperature. \\
\hline GEOM & Manage computation of grid and metric parameters. \\
\hline INIT & Get user-defined initial flow field. \\
\hline INITC & Set up consistent initial conditions based on data from INIT. \\
\hline INPUT & Read and print input, perform various initializations. \\
\hline ISAMAX & Find the first index corresponding to the largest absolute value of the elements of an vector. This is a Cray search routine. \\
\hline ISAMIN & Find the first index corresponding to the smallest absolute value of the elements of an vector. This is a Cray search routine. \\
\hline ISRCHEQ & Find the first index in an array whose element is equal to a specified value. This is a Cray search routine. \\
\hline KEINIT & Get user-defined initial conditions for \(k\) and \(\varepsilon\). \\
\hline MAIN & Manage overall solution. \\
\hline METS & Compute metrics of nonorthogonal grid transformation. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Proteus Subprogram Summary} \\
\hline Subprogram & Purpose \\
\hline OLTPUT & Manage printing of output. \\
\hline OUTW & Compute and print parameters at boundaries. \\
\hline PAK & Manage packing and/or interpolation of grid points. \\
\hline PERIOD & Define extra line of data for use in computing coefficients for spatially periodic boundary conditions. \\
\hline PLOT & Write files for post-processing by CONTOUR or PLOT3D plotting programs. \\
\hline PRODCT & Compute production term for the \(k-\varepsilon\) turbulence model. \\
\hline PRTHST & Print convergence history. \\
\hline PRTOUT & Print output. \\
\hline RESID & Compute residuals and write convergence history file. \\
\hline REST & Read and/or write restart file. \\
\hline ROBTS & Pack points along a line using Roberts transformation. \\
\hline SASUM & Compute the sum of the absolute values of the elements of a vector. This is a Cray BLAS routine. \\
\hline SGEFA & Factor a matrix using Gaussian elimination. This is a Cray LINPACK routine. \\
\hline SGESL & Solve the matrix equation \(\mathbf{A x}=\mathbf{B}\) or \(\mathbf{A}^{\mathrm{T}} \mathbf{x}=\mathbf{B}\) using the factors computed by SGEFA. This is a Cray LINPACK routine. \\
\hline SNRM2 & Compute the \(L_{2}\) norm of a vector. This is a Cray BLAS routine. \\
\hline TBC & Set time-dependent boundary condition values. \\
\hline TIMSTP & Set computational time step. \\
\hline TREMAIN & Get CPU time remaining for the job. This is a Cray Fortran routine. \\
\hline TURBBL & Manage computation of turbulence parameters using the Baldwin-Lomax algebraic model. \\
\hline TURBCH & Manage computation of turbulence parameters using the Chien \(k-\varepsilon\) model. \\
\hline UPDATE & Update flow variables after each ADI sweep. \\
\hline UPDTKE & Update \(k\) and \(\varepsilon\) after each time step. \\
\hline VORTEX & Compute magnitude of total vorticity. \\
\hline YPLUSN & Compute the distance to the nearest solid wall. \\
\hline
\end{tabular}

\subsection*{4.2 SLBPROGRAM DETAILS}

The subprograms used in Proteus are described in detail in the remainder of this section. A few additional words are necessary about the input and output descriptions. The description of the input to each subprogram includes all Fortran variables actually used by the subprogram that are defined outside the subprogram. Variables defined and used inside the subprogram are not listed as input. In addition, common block variables that are merely passed through to lower level routines are not listed. Variables marked with an asterisk are user-specified namelist input variables.

Similarly, the output description includes only those variables computed inside the subprogram and used outside the subprogram. It does not include common block variables computed by lower level routines. In general, variables defined inside the subprogram that are used by lower level routines are listed as output, even if they are not needed after control is returned to the calling program.

Variables entering or leaving a subprogram through an argument list are defined in detail. However, most of the Fortran variables listed in the input and output descriptions are contained in common blocks, and are defined in detail in Section 3.0. For that reason, they are defined only briefly in this section.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine ADI (A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline EXEC & BLKOUT & Manage the block tridiagonal inversion. \\
& BLK3 & \\
& BLK3P & \\
& BLK4 & \\
& BLK4P & \\
& BLK5 & \\
& BLK5P & \\
\hline
\end{tabular}

\section*{Input}
A, B, C
Coefficient submatrices A, B, and C.
* IDEBUG
* IPRTIA, IPRT2A

ISWEEP
IT
KBCPER

NEQ
* NOUT

NPRT1, NPRT2
NVD, NPTSD
S
Debug flags.
Indices for printout in the \(\xi\) and \(\eta\) directions.
Current ADI sweep number.
Current time step number \(n\).
Flags for spatially periodic boundary conditions in the \(\zeta\) and \(\eta\) directions; 0 for non-periodic, 1 for periodic.
Number of coupled equations being solved, \(N_{e q}\).
Unit number for standard output.
Total number of indices for printout in the \(\xi\) and \(\eta\) directions.
Leading two dimensions for the arrays A, B, C, and S.
Source term subvector \(\mathbf{S}\), and computed solution subvector, \(\Delta \hat{\mathbf{Q}}^{-}\) or \(\Delta \hat{\mathbf{Q}}^{r}\).

\section*{Output}

None.

\section*{Description}

For each ADI sweep, subroutine ADI calls the appropriate block solver. The choice is determined by the number of equations being solved, and by the presence or absence of spatially periodic boundary conditions in the sweep direction.

\section*{Remarks}
1. This subroutine generates the output for the \(\operatorname{IDEBUG}(1)\), IDEBUG(5), and IDEBUG(6) options.

Subroutine AVISCl (A,B,C,S,NVD,NPTSD)
\begin{tabular}{|l|l|l|}
\hline Called by & Calls & Purpose \\
\hline EXEC & BLKOUT & Compute constant coefficient artificial viscosity. \\
\hline
\end{tabular}

\section*{Input}

A, B, C
* CAVS2E, CAVS4E, CAVS2I

DTAU
* IAV2E, IAV4E, IAV2I
* IDEBLG
* IHSTAG
* IPRT1A, IPRT2A

ISWEEP
* ISWIRL

IT

\section*{JI}

NC, NXM, NYM, NZM, NEN

Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) without artificial viscosity.
Artificial viscosity coefficients \(\varepsilon \varepsilon_{z}^{(2)}, \varepsilon_{\varepsilon}^{\left(\frac{1}{2}\right)}\), and \(\varepsilon_{I}\).
Time step \(\Delta \tau\).
Flags for second-order explicit, fourth-order explicit, and secondorder implicit artificial viscosity.
Debug flags.
Flag for constant stagnation enthalpy option.
Indices for printout in the \(\xi\) and \(\eta\) directions.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Current time step number \(n\).
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Array indices associated with the continuity, \(x\)-momentum, \(y\)-momentum (or \(r\)-momentum if axisymmetric), swirl momentum, and energy equations.
* NOUT

NPRT1, NPRT2
NPT1, NPT2
Unit number for standard output.
Total number of indices for printout in the \(\xi\) and \(\eta\) directions.
\(N_{1}\) and \(N_{2}\) for non-periodic boundary conditions, \(N_{1}+1\) and \(N_{2}+1\) for spatially periodic boundary conditions in \(\xi\) and \(\eta\).
NR, NRU, NRV, NRW, NET
NVD, NPTSD
RHO, U, V, W, ET
S
Array indices associated with the dependent variables \(\rho, \rho u, \rho v\), \(\rho w\), and \(E_{T}\).
Leading two dimensions for the arrays \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S .
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level \(n\).
Source term subvector \(\mathbf{S}\) without artificial viscosity.

\section*{Output}
A, B, C
S
Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) with artificial viscosity. Source term subvector \(\mathbf{S}\) with artificial viscosity.

\section*{Description}

Subroutine AVISC1 adds explicit and/or implicit artificial viscosity to the governing equations, using the constant coefficient model of Steger (1978), as presented by Pulliam (1986b). The model is described in Section 8.1 of Volume 1. The explicit artificial viscosity may be second and/or fourth order, and is added only during the first ADI sweep. The implicit artificial viscosity is second order, and is added during both sweeps.

The fourth-order explicit artificial viscosity is implemented in Fortran by redefining the source term subvector as
\[
\mathbf{S}_{i, j}=\mathbf{S}_{i, j}-\frac{\varepsilon_{E}^{(4)} \Delta \tau_{i, j}}{J_{i, j}}\left[\left(\nabla_{\xi} \Delta_{\xi}\right)^{2} \mathbf{Q}_{i, j}+\left(\nabla_{\eta} \Delta_{\eta}\right)^{2} \mathbf{Q}_{i, j}\right]
\]
where \(i\) and \(j\) vary from 3 to NPT1 - 2 and from 3 to NPT2-2, respectively. At grid points adjacent to boundaries the fourth-order differences in the above equation cannot be used, and therefore are replaced by second-order differences. Thus, at \(i=2\) and at \(i=\) NPT1 -1 , with \(j\) varying from 3 to NPT2-2,
\[
\mathbf{S}_{i, j}=\mathbf{S}_{i, j}+\frac{\varepsilon_{E}^{(4)} \Delta_{i, j}}{J_{i, j}}\left[\nabla_{\xi} \Delta_{\xi} \mathbf{Q}_{i, j}-\left(\nabla_{\eta} \Delta_{\eta}\right)^{2} \mathbf{Q}_{i, j}\right]
\]

Similarly, at \(j=2\) and at \(j=\) NPT \(2-1\), with \(i\) varying from 3 to NPT \(1-1\),
\[
\mathbf{S}_{i, j}=\mathbf{S}_{i, j}+\frac{\varepsilon_{E}^{(4)} \Delta \tau_{i, j}}{J_{i, j}}\left[-\left(\nabla_{\xi} \Delta_{\xi}\right)^{2} \mathbf{Q}_{i, j}+\nabla_{\eta} \Delta_{\eta} \mathbf{Q}_{i, j}\right]
\]

The second-order explicit artificial viscosity is implemented in Fortran by redefining the source term subvector as
\[
\mathbf{S}_{i, j}=\mathbf{S}_{i, j}+\frac{\varepsilon_{E}^{(2)} \Delta \tau_{i, j}}{J_{i, j}}\left(\nabla_{\xi} \Delta_{\xi} \mathbf{Q}_{i, j}+\nabla_{\eta} \Delta_{\eta} \mathbf{Q}_{i, j}\right)
\]
where \(i\) and \(j\) vary from 2 to NPT1 - 1 and from 2 to NPT2-1, respectively.
The second-order implicit artificial viscosity for the first ADI sweep is implemented in Fortran by redefining the coefficient block submatrices as
\[
\begin{aligned}
& \mathbf{A}_{i, j}=\mathbf{A}_{i, j}-\frac{\varepsilon_{l} \Delta \tau_{i, j}}{J_{i, j}} J_{i-1, j} \\
& \mathbf{B}_{i, j}=\mathbf{B}_{i, j}+2 \frac{\varepsilon_{I} \Delta \tau_{i, j}}{J_{i, j}} J_{i, j} \\
& \mathbf{C}_{i, j}=\mathbf{C}_{i, j}-\frac{\varepsilon_{I} \Delta \tau_{i, j}}{J_{i, j}} J_{i+1, j}
\end{aligned}
\]
where \(i\) and \(j\) vary from 2 to NPT \(1-1\) and from 2 to NPT2 -1 , respectively. Similarly, for the second sweep,
\[
\begin{aligned}
& \dot{\mathbf{A}}_{i, j}=\mathbf{A}_{i, j}-\frac{\varepsilon_{I} \Delta \tau_{i, j}}{J_{i, j}} J_{i, j-1} \\
& \mathbf{B}_{i, j}=\mathbf{B}_{i, j}+2 \frac{\varepsilon_{I} \Delta \tau_{i, j}}{J_{i, j}} J_{i, j} \\
& \mathbf{C}_{i, j}=\mathbf{C}_{i, j}-\frac{\varepsilon_{I} \Delta \tau_{i, j}}{J_{i, j}} J_{i, j+1}
\end{aligned}
\]

\section*{Remarks}
1. The sign in front of each artificial viscosity term depends on the sign of the " \(i, j\) " term in the difference formula. See Section 8.1 of Volume 1 for details.
2. The coding to add artificial viscosity to the energy and/or swirl momentum equations is separate from the coding for the remaining equations, and is bypassed if they are not being solved.
3. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep direction. For the first sweep (which includes all the explicit artificial viscosity) the order is thus (I2,I1), and for the second sweep the order is ( \(11, \mathrm{I} 2\) ).
4. For spatially periodic boundary conditions in the \(\xi\) direction, fourth-order differences could be used at \(i=2\) and at \(i=\) NPT1 \(-1\left(=N_{1}\right)\). Similarly, for the \(\eta\) direction, fourth-order differences could be used at \(j=2\) and at \(j=\) NPT \(2-1\left(=N_{2}\right)\). The logic to do this has not been coded, however, and at these points second-order differences are still used, as described above.
5. This subroutine generates the output for the IDEBUG(2) option.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine AVISC2 (A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline EXEC & BLKOUT & Compute nonlinear coefficient artificial viscosity. \\
\hline
\end{tabular}

\section*{Input}
A, B, C
Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\).
* CAVS2E, CAVS4E

CP, CV
DTAU
DXI, DETA
ETAX, ETAY, ETAT
* IAV2E, IAV4E
* IDEBUG

User-specified coefficients \(\kappa_{2}\) and \(\kappa_{4}\).
Specific heats \(c_{\rho}\) and \(c_{\nu}\) at time level \(n\).
Time step \(\Delta \tau\).
Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
Metric coefficients \(\eta_{x}, \eta_{y}\) (or \(\eta_{r}\) if axisymmetric), and \(\eta_{t}\).
Flags for second-order and fourth-order explicit artificial viscosity.
Debug flags.
* IHSTAG

Flag for constant stagnation enthalpy option.
* IPRT1A, IPRT2A

Indices for printout in the \(\xi\) and \(\eta\) directions.
ISWEEP
Current ADI sweep number.
* ISWIRL

Flag for swirl in axisymmetric flow.
IT
Current time step number \(n\).
JI Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
NC, NXM, NYM, NZM, NEN
Array indices associated with the continuity, \(x\)-momentum, \(y\)-momentum (or \(r\)-momentum if axisymmetric), swirl momentum, and energy equations.
* NOUT

Unit number for standard output.
NPRT1, NPRT2
NPT1, NPT2
Total number of indices for printout in the \(\xi\) and \(\eta\) directions.
\(N_{1}\) and \(N_{2}\) for non-periodic boundary conditions, \(N_{1}+1\) and \(N_{2}+1\) for spatially periodic boundary conditions in \(\xi\) and \(\eta\).
NVD, NPTSD
Leading two dimensions for the arrays \(A, B, C\), and \(S\).
P, T
Static pressure \(p\) and temperature \(T\) at time level \(n\).
RGAS
Gas constant \(R\).
RHO, U, V, W, ET Static density \(\rho\), velocities \(u\), \(v\), and \(w\), and total energy \(E_{T}\) at time level \(n\).

S
Source term subvector \(\mathbf{S}\) without artificial viscosity.
XIX, XIY, XIT Metric coefficients \(\xi_{x}, \xi_{y}\) (or \(\xi_{r}\) if axisymmetric), and \(\xi_{r}\).

\section*{Output}

Source term subvector \(\mathbf{S}\) with artificial viscosity.

\section*{Description}

Subroutine AVISC2 adds explicit artificial viscosity to the goveming equations, using the nonlinear coefficient model of Jameson, Schmidt, and Turkel (1981), as presented by Pulliam (1986b). The model is described in Section 8.2 of Volume 1. Implicit artificial viscosity is not normally used in combination with
the explicit nonlinear coefficient model. The explicit artificial viscosity is added only during the first ADI sweep.

The artificial viscosity in the \(\xi\) direction is computed first, at the \(\eta\)-indices \(j=2\) to NPT2-1. The spectral radius term \(\psi_{i, j}\) and the pressure gradient scaling factor \(\sigma_{i, j}\) are computed and stored in local onedimensional arrays for \(i=1\) to NPT1. Special formulas are used to compute \(\sigma\) near boundaries, as described in Section 8.2 of Volume 1.

The second-order artificial viscosity is added first, and is implemented in Fortran by redefining the source term subvector as
\[
\mathbf{S}_{i, j}=\mathbf{S}_{i, j}+\nabla_{\xi}\left\{\left[\left(\frac{\psi}{J}\right)_{i+1, j}+\left(\frac{\psi}{J}\right)_{i, j}\right]\left(\varepsilon_{\xi}^{(2)}\right)_{i, j} \Delta_{\xi} \mathbf{Q}_{i, j}\right\}
\]

Or, after evaluating the differences,
\[
\begin{aligned}
\mathbf{S}_{i, j}=\mathbf{S}_{i, j} & +\left[\left(\frac{\psi}{J}\right)_{i+1, j}+\left(\frac{\psi}{J}\right)_{i, j}\right]\left(\varepsilon_{\xi}^{(2)}\right)_{i, j}\left(\mathbf{Q}_{i+1, j}-\mathbf{Q}_{i, j}\right) \\
& -\left[\left(\frac{\psi}{J}\right)_{i, j}+\left(\frac{\psi}{J}\right)_{i-1, j}\right]\left(\varepsilon_{\xi}^{(2)}\right)_{i-1, j}\left(\mathbf{Q}_{i, j}-\mathbf{Q}_{i-1, j}\right)
\end{aligned}
\]
where \(i\) varies from 2 to NPT1-1.
The fourth-order artificial viscosity is added next, and is implemented similarly by redefining the source term subvector as
\[
\mathbf{S}_{i, j}=\mathbf{S}_{i, j}-\nabla_{\xi}\left\{\left[\left(\frac{\psi}{J}\right)_{i+1, j}+\left(\frac{\psi}{J}\right)_{i, j}\right]\left(\varepsilon_{\xi}^{(4)}\right)_{i, j} \Delta_{\xi} \nabla_{\xi} \Delta_{\xi} \mathbf{Q}_{i, j}\right\}
\]

Or, after evaluating the differences,
\[
\begin{aligned}
\mathbf{S}_{i, j}=\mathbf{S}_{i, j} & -\left[\left(\frac{\psi}{J}\right)_{i+1, j}+\left(\frac{\psi}{J}\right)_{i, j}\right]\left(\varepsilon_{\xi}^{(4)}\right)_{i, j}\left(\mathbf{Q}_{i+2, j}-3 \mathbf{Q}_{i+1, j}+3 \mathbf{Q}_{i, j}-\mathbf{Q}_{i-1, j}\right) \\
& +\left[\left(\frac{\psi}{J}\right)_{i, j}+\left(\frac{\psi}{J}\right)_{i-1, j}\right]\left(\varepsilon_{\xi}^{(4)}\right)_{i-1, j}\left(\mathbf{Q}_{i+1, j}-3 \mathbf{Q}_{i, j}+3 \mathbf{Q}_{i-1, j}-\mathbf{Q}_{i-2, j}\right)
\end{aligned}
\]
where \(i\) varies from 3 to NPT1-2. Special formulas are used at \(i=2\) and at \(i=\) NPTI -1 , as described in Section 8.2 of Volume 1.

The artificial viscosity in the \(\eta\) direction is computed next, and is implemented in a manner analogous to that just described for the artificial viscosity in the \(\xi\) direction.

\section*{Remarks}
1. The sign in front of each artificial viscosity term depends on the sign of the "i,j" term in the difference formula. See Section 8.1 of Volume 1 for details.
2. The coding to add artificial viscosity to the energy and/or swirl momentum equations is separate from the coding for the remaining equations, and is bypassed if they are not being solved.
3. The subscripts on the Fortran variable \(S\) may be confusing. The first subscript is the index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep direction. For the first sweep (which includes all the explicit artificial viscosity) the order is thus (I2,II).
4. For spatially periodic boundary conditions, the need for special formulas near boundaries could be eliminated. The logic to do this has not been coded, however.
5. This subroutine generates the output for the IDEBUG(2) option.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BCDENS (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline BCGEN & \begin{tabular}{l} 
BCGRAD \\
BCMET
\end{tabular} & Compute density boundary conditions. \\
\hline
\end{tabular}

\section*{Input}

DEL
IBASE, ISTEP

IBC,, FBC

IBOUND

IEQ
IMIN, IMAX
ISWEEP
IV
JI
* NOUT

NR
NVD, NPTSD
RHO

\section*{Output}

Computational grid spacing in sweep direction.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Mean flow boundary condition types and values for current sweep direction, specified as \(\operatorname{IBC}(I, J)\) and \(F B C(I, J)\), where \(I\) runs from 1 to \(N_{e q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the lower and upper boundaries.
Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.
Boundary condition equation number.
Minimum and maximum indices in the sweep direction.
Current ADI sweep number.
Index in the "vectorized" direction, \(i_{\nu}\).
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Unit number for standard output.
Array index associated with the dependent variable \(\rho\).
Leading two dimensions for the arrays \(A, B, C\) and \(S\).
Static density \(\rho\) at time level \(n\).

Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) at boundary IBOUND (row IEQ only).
S
Source term subvector \(\mathbf{S}\) at boundary IBOUND (element IEQ only).

\section*{Description}

Subroutine BCDENS computes coefficients and source terms for density boundary conditions. The linearized equations for the various general types of boundary conditions are developed in Section 6.0 of Volume 1. The following sections apply these generalized equations to the particular density boundary conditions in Proteus. \({ }^{7}\)

\footnotetext{
\({ }^{7}\) In the following description, for the first ADI sweep the dependent variable should have the superscript *, representing the intermediate solution, and for the second ADI sweep it should have the superscript \(n\), representing the final solution. For simplicity, however, only the superscript \(n\) is used. The superscripts on all other variables are correct as written.
}

\section*{No Change From Initial Conditions, \(\Delta \rho=0\)}

Applying equation (6.3) of Volume 1 , and noting that \(\partial g / \partial \hat{\mathbf{Q}}=J \partial g / \partial \mathbf{Q}\), we get simply
\[
J_{i, j} \Delta \hat{\rho}_{i, j}^{n}=0
\]

Specified Static Density, \(\rho=f\)
Applying equation (6.5) of Volume 1 ,
\[
J_{i, j} \Delta \hat{\rho}_{i, j}^{n}=f_{i, j}^{n+1}-\rho_{i, j}^{n}
\]

\section*{Specified Two-Point Density Gradient in Coordinate Direction, \(\partial \rho / \partial \phi=f\)}

Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
-J_{1, j} \Delta \hat{\rho}_{1, j}^{n}+J_{2, j} \Delta \hat{\rho}_{2, j}^{n}=(\Delta \xi) f_{1, j}^{n+1}+\rho_{1, j}^{n}-\rho_{2, j}^{n}
\]

At the \(\bar{\xi}=1\) boundary,
\[
-J_{N_{1}-1, j} \Delta \hat{\rho}_{N_{1}-1, j}^{n}+J_{N_{1}, j} \Delta \hat{\rho}_{N_{1}, j}^{n}=(\Delta \xi) \int_{N_{1}, j}^{n+1}+\rho_{N_{1}-1, j}^{n}-\rho_{N_{1}, j}^{n}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point Density Gradient in Coordinate Direction, \(\partial \rho / \partial \phi=f\)}

Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
-3 J_{1, j} \Delta \hat{\rho}_{1, j}^{n}+4 J_{2, j} \Delta \hat{\rho}_{2, j}^{n}-J_{3, j} \Delta \hat{\rho}_{3, j}^{n}=2(\Delta \xi) f_{1, j}^{n+1}+3 \rho_{1, j}^{n}-4 \rho_{2, j}^{n}+\rho_{3, j}^{n}
\]

At the \(\xi=1\) boundary,
\[
J_{N_{1}-2, j} \Delta \hat{\rho}_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j} \Delta \hat{\rho}_{N_{1}-1, j}^{n}+3 J_{N_{1}, j} \Delta \hat{\rho}_{N_{1}, j}^{n}=2(\Delta \xi) f_{N_{1}, j}^{n+1}-\rho_{N_{1}-2, j}^{n}+4 \rho_{N_{1}-1, j}^{n}-3 \rho_{N_{1}, j}^{n}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Two-Point Density Gradient in Normal Direction, \(\nabla_{\rho}: \vec{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
-J_{1, j} \Delta \hat{\rho}_{1, j}^{n}+J_{2, j} \Delta \hat{\rho}_{2, j}^{n}=\frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} \rho_{1, j}^{n}\right]+\rho_{1, j}^{n}-\rho_{2, j}^{n}
\]
where
\[
m=\sqrt{\xi_{x}^{2}+\dot{\zeta}_{y}{ }^{2}}
\]
and \(\delta_{\eta}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
-J_{N_{1}-1, j} \Delta \hat{\rho}_{N_{1}-1, j}^{n}+J_{N_{1}, j} \Delta \hat{\rho}_{N_{1}, j}^{n}=\frac{\Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} \rho_{N_{1}, j}^{n}\right]+\rho_{N_{1}-1, j}^{n}-\rho_{N_{1}, j}^{n}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point Density Gradient in Normal Direction, \(\nabla \rho \cdot \vec{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
\begin{aligned}
& -3 J_{1, j} \Delta \hat{\rho}_{1, j}^{n}+4 J_{2, j} \Delta \hat{\rho}_{2, j}^{n}-J_{3, j} \Delta \hat{\rho}_{3, j}^{n}= \\
& \frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} \rho_{1, j}^{n}\right]+3 \rho_{1, j}^{n}-4 \rho_{2, j}^{n}+\rho_{3, j}^{n}
\end{aligned}
\]
where
\[
m=\sqrt{\xi_{x}{ }^{2}+\xi_{y}{ }^{2}}
\]
and \(\delta_{\eta}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
\begin{aligned}
& J_{N_{1}-2, j} \Delta \hat{\rho}_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j} \Delta \hat{\rho}_{N_{1}-1, j}^{n}+3 J_{N_{1}, j} \Delta \hat{\rho}_{N_{1}, j}^{n}= \\
& \frac{2 \Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} \rho_{N_{1}, j}^{n}\right]-\rho_{N_{1}-2, j}^{n}+4 \rho_{N_{1}-1, j}^{n}-3 \rho_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Linear Extrapolation of Static Density}

Applying equation (6.14) of Volume 1 at the \(\xi=0\) boundary,
\[
J_{1, j} \Delta \hat{\rho}_{1, j}^{n}-2 J_{2, j} \Delta \hat{\rho}_{2, j}^{n}+J_{3, j} \Delta \hat{\rho}_{3, j}^{n}=-\rho_{1, j}^{n}+2 \rho_{2, j}^{n}-\rho_{3, j}^{n}
\]

At the \(\xi=1\) boundary,
\[
J_{N_{1}-2, j} \Delta \hat{\rho}_{N_{1}-2, j}^{n}-2 J_{N_{1}-1, j} \Delta \hat{\rho}_{N_{1}-1, j}^{n}+J_{N_{1}, j} \Delta \hat{\rho}_{N_{1}, j}^{n}=-\rho_{N_{1}-2, j}^{n}+2 \rho_{N_{1}-1, j}^{n}-\rho_{N_{1}, j}^{n}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent density boundary condition is specified.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BCELIM (A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline EXEC & \begin{tabular}{l} 
SGEFA \\
SGESL
\end{tabular} & \begin{tabular}{l} 
Eliminate off-diagonal coefficient submatrices resulting from three- \\
point boundary conditions.
\end{tabular} \\
\hline
\end{tabular}

\section*{Input}

A, B, C Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) before eliminating offdiagonal blocks.

IBCELM

ISWEEP
IV
NEQ
NEQP
NPTS
NVD, NPTSD
S

\section*{Output}

Flags for elimination of off-diagonal coefficient submatrices resulting from three-point boundary conditions in the \(\xi\) and \(\eta\) directions at either boundary; 0 if elimination is not necessary, 1 if it is.
Current ADI sweep number.
Index in the "yectorized" direction, \(i\).
Number of coupled equations being solved, \(N_{c q}\).
Dimensioning parameter specifying maximum number of coupled equations allowed.
Number of grid points in the sweep direction, \(N\).
Leading two dimensions for the arrays A, B, C, and S.
Source term subvector \(\mathbf{S}\) before eliminating off-diagonal blocks.

Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) after eliminating offdiagonal blocks.

S
Source term subvector \(\mathbf{S}\) after eliminating of-diagonal blocks.

\section*{Description}

Subroutine BCELIM eliminates the off-diagonal coefficient submatrices that result from the application of three-point boundary conditions. This is necessary when three-point gradients are specified in the coordinate or normal direction, and when linear extrapolation is used. The procedure is described in Section 7.2.1 of Volume 1.

\section*{Remarks}
1. Subroutines SGEFA and SGESL are Cray LINPACK routines. In general terms, if the Fortran arrays \(A\) and \(B\) represent \(A\) and \(\mathbf{B}\), where \(\mathbf{A}\) is a square \(\mathbf{N}\) by \(N\) matrix and \(\mathbf{B}\) is a matrix (or vector) with NCOL columns, and if the leading dimension of the Fortran array A is LDA, then the Fortran sequence
```

call sgefa (a,lda,n,ipvt,info)
do 10 j = 1,ncol
call sgesl (a,lda,n,ipvt,b(l,j),0)
continue

```
computes \(\mathbf{A}^{-1} \mathbf{B}\), storing the result in \(\mathbf{B}\).
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BCF (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,.NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline BCGEN & \begin{tabular}{l} 
BCFLIN \\
BCMET
\end{tabular} & Compute user-written boundary conditions. \\
\hline
\end{tabular}

\section*{Input}

DEL
IBASE, ISTEP

IBC, FBC

IBOUND

IEQ
* IHSTAG

IMIN, IMAX
ISWEEP
* ISWIRL

IV
JI
* NOUT

NK, NRU, NRV, NRW, NET

NVD, NPTSD

Computational grid spacing in sweep direction.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Mean flow boundary condition types and values for current sweep direction, specified as IBC \((I, J)\) and \(F B C(I, J)\), where I runs from 1 to \(N_{e q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the lower and upper boundaries.
Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.
Boundary condition equation number.
Flag for constant stagnation enthalpy option.
Minimum and maximum indices in the sweep direction.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Index in the "vectorized" direction, \(i_{\nu}\).
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Unit number for standard output.
Array indices associated with the dependent variables \(\rho, \rho u, \rho v\), \(\rho w\), and \(E_{T}\).
Leading two dimensions for the arrays \(A, B, C\), and \(S\).

\section*{Output}

Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) at boundary IBOUND (row IEQ only).
Source term subvector \(S\) at boundary IBOUND (element IEQ only).

\section*{Description}

Subroutine BCF computes coefficients and source terms for user-written boundary conditions of the form \(\Delta F=0, F=f, \partial F \mid \partial \phi=f\), and \(\nabla F \cdot \vec{n}=f\). The values of \(F\) and its derivatives with respect to the dependent variables must be supplied by the user-written subroutine BCFLIN. The linearized equations for these types of boundary conditions are developed in Section 6.0 of Volume 1 . The following sections expand these generalized equations in detail. \({ }^{8}\)

\footnotetext{
8 In the following description, for the first ADI sweep the dependent variables should have the superscript *, representing the intermediate solution, and for the second ADI sweep they should have the superscript \(n\), representing
}

\section*{No Change From Initial Conditions, \(\Delta F=0\)}

Applying equation (6.3) of Volume 1 , and noting that \(\partial g / \partial \hat{\mathbf{Q}}=J \partial g / \partial \mathbf{Q}\), we get simply
\[
J_{i, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=0
\]

Specified Value, \(F=f\)
Applying equation (6.5) of Volume 1 ,
\[
\left.J_{i, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta \hat{\rho v}\right)+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=f_{i, j}^{n+1}-F_{i, j}^{n}
\]

Specified Two-Point Gradient in Coordinate Direction, \(\partial F \mid \partial \phi=f\)
Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{aligned}
-J_{1, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
J_{2, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}=} \\
& (\Delta \xi) f_{1, j}^{n+1}+F_{1, j}^{n}-F_{2, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{aligned}
-J_{N_{1}-1, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
J_{N_{1}, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \dot{\hat{\rho}}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& (\Delta \xi) f_{N_{1}, j}^{n+1}+F_{N_{1}-1, j}^{n}-F_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point Gradient in Coordinate Direction, \(\partial F / \partial \phi=f\)}

Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
the final solution. For simplicity, however, only the superscript \(n\) is used. The superscripts on all other variables are correct as written.
\[
\begin{aligned}
-3 J_{1, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
4 J_{2, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}-} \\
J_{3, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}=} \\
& 2(\Delta \xi) f_{1, j}^{n+1}+3 F_{1, j}^{n}-4 F_{2, j}^{n}+F_{3, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{aligned}
J_{N_{1}-2, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}-} \\
4 J_{N_{1}-1, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
3 J_{N_{1}, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& 2(\Delta \xi) f_{N_{1}, j}^{n+1}-F_{N_{1}-2, j}^{n}+4 F_{N_{1}-1, j}^{n}-3 F_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Two-Point Gradient in Normal Direction, \(\nabla F \cdot \vec{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{aligned}
-J_{1, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
J_{2, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u} u)+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}=} \\
& \frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} F_{1, j}^{n}\right]+F_{1, j}^{n}-F_{2, j}^{n}
\end{aligned}
\]
where
\[
m=\sqrt{\xi_{x}{ }^{2}+\xi_{y}{ }^{2}}
\]
and \(\delta_{\eta}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
\begin{gathered}
-J_{N_{1}-1, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+ \\
J_{N_{1}, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}= \\
\frac{\Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} F_{N_{1}, j}^{n}\right]+F_{N_{1}-1, j}^{n}-F_{N_{1}, j}^{n}
\end{gathered}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point Gradient in Normal Direction, \(\nabla F \cdot \vec{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
\begin{gathered}
-3 J_{1, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+ \\
4 J_{2, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}- \\
J_{3, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}= \\
\frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} F_{1, j}^{n}\right]+3 F_{1, j}^{n}-4 F_{2, j}^{n}+F_{3, j}^{n}
\end{gathered}
\]
where
\[
m=\sqrt{\xi_{x}^{2}+\xi_{y}{ }^{2}}
\]
and \(\delta_{\eta}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
\begin{array}{r}
J_{N_{1}-2, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}- \\
4 J_{N_{1}-1, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+ \\
3 J_{N_{1}, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u} u)+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}= \\
\frac{2 \Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} F_{N_{1}, j}^{n}\right]-F_{N_{1}-2, j}^{n}+4 F_{N_{1}-1, j}^{n}-3 F_{N_{1}, j}^{n}
\end{array}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Linear Extrapolation}

Applying equation (6.14) of Volume 1 at the \(\zeta=0\) boundary,
\[
\begin{aligned}
& J_{1, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}- \\
& 2 J_{2, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}+ \\
& J_{3, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}= \\
& \quad-F_{1, j}^{n}+2 F_{2, j}^{n}-F_{3, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{aligned}
& J_{N_{1}-2, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}- \\
& 2 J_{N_{1}-1, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+ \\
& J_{N_{1}, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}= \\
& \quad-F_{N_{1}-2, j}^{n}+2 F_{N_{1}-1, j}^{n}-F_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent user-written boundary condition is specified.
\left.\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Subroutine BCFLIN } \\
(IBC,IEQ,IBOUND,IMIN,IMAX,F,DFDRHO,DFDRU,DFDRV,DFDRW, \\
DFDET,FBCM,FBCP,FBC)
\end{tabular}\(\right]\)

Input
IBASE, ISTEP
IBC

IBOUND
IEQ
IMIN, IMAX
ISWEEP
I1, I2
N1P

\section*{Output}

DFDRHO, DFDRU, DFDRV, DFDRW, DFDET
F

FBC

FBCM, FBCP

Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Mean flow boundary condition types for current sweep direction, specified as IBC(I,J), where I runs from 1 to \(N_{e q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the lower and upper boundaries.
Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.
Boundary condition equation number.
Minimum and maximum indices in the sweep direction.
Current ADI sweep number.
Grid indices \(i\) and \(j\), in the \(\xi\) and \(\eta\) directions.
Parameter specifying the dimension size in the \(\xi\) direction.

Three-element arrays, specified as DFDRHO(IW), etc., giving the values of \(\partial F / \partial \rho, \partial F / \partial(\rho u), \partial F / \partial(\rho v), \partial F / \partial(\rho w)\), and \(\partial F / \partial E_{T}\).
A three-element array specified as F (IW) giving the value of the function \(F\) at the boundary (IW \(=1\) ), at the first point away from the boundary ( \(\mathrm{IW}=2\) ), and at the second point away from the boundary ( \(\mathrm{IW}=3\) ). Values at IW \(=3\) are not needed for boundary condition types 91,92 , or -92 . Values at IW \(=2\) are not needed for boundary condition type 91.
Boundary condition values for current sweep direction, specified as \(\mathrm{FBC}(\mathrm{I}, \mathrm{J})\), where I runs from 1 to \(N_{\text {eq }}\), corresponding to the \(N_{\text {eq }}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the lower and upper boundaries. This is only needed if values for GBCl or GBC 2 , or FBCl or FBC , are not specified in the input namelist BC.
Boundary condition values on the boundary, at the grid points "below" and "above" the current boundary point. These are only needed for boundary condition types \(\pm 93\).

\section*{Description}

Subroutine BCFLIN is a user-written routine used in conjunction with subroutine BCF for user-written boundary conditions of the form \(\Delta F=0, F=f, \partial F \mid \partial \phi=f\), and \(\nabla F \cdot \vec{n}=f\). BCFLIN supplies the values of \(F\) and its derivatives with respect to the dependent variables, which are required for writing the linearized form of the boundary condition.

The version of BCFLIN supplied with Proteus makes BCF equivalent to BCTEMP, except for the total temperature options in BCTEMP. Thus \(F=T, \partial F / \partial \rho=\partial T / \partial \rho\), etc., where \(T\) and its derivatives with respect to the dependent variables are computed using the perfect gas equation of state. (See Section 4.3 of Volume 1.) This version of BCFLIN is intended as an example for use in coding boundary conditions not already available.

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. The capability of specifying FBC as an output variable may be useful in writing time-dependent boundary conditions. It also may be used when specifying boundary conditions involving derivatives in both coordinate directions. In this case, the derivatives in the non-sweep direction may be lagged one time step and treated as source terms.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Subroutine BCGEN (A,B,C:S,METX,METY,METT,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline BVUP & BCDENS & Manage computation of boundary conditions. \\
EXEC & BCF & \\
& BCPRES & \\
& BCQ & \\
& BCTEMP & \\
& BCUVEL & \\
& BCVDIR & \\
& BCVVEL & \\
& BCWVEL & \\
& BLKOUT & \\
& ISRCHEQ & \\
\hline
\end{tabular}

\section*{Input}

A, B, C
* \(\mathrm{FBC} 1, \mathrm{FBC} 2\)
* \(\mathrm{IBCl}, \mathrm{IBC} 2\)
* IDEBUG
* IPRT1A, IPRT2A

ISWEEP
IT
IV
I1, I2
METX, METY, METT

NBC

NEQ
* NOUT

NPRT1, NPRT2
NVD, NPTSD
* N1, N2

S

\section*{Output}

Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\).
Point-by-point mean flow boundary condition values for the \(\xi\) and \(\eta\) directions.

Point-by-point mean flow boundary condition types for the \(\xi\) and \(\eta\) directions.
Debug flags.
Indices for printout in the \(\xi\) and \(\eta\) directions.
Current ADI sweep number.
Current time step number \(n\).
Index in the "vectorized" direction, \(i_{k}\).
Grid indices \(i\) and \(j\), in the \(\xi\) and \(\eta\) directions.
Derivatives of sweep direction computational coordinate with respect to \(x, y\) (or \(r\) if axisymmetric), and \(t\).
Dimensioning parameter specifying number of boundary conditions per equation.
Number of coupled equations being solved, \(N_{e q}\).
Unit number for standard output.
Total number of indices for printout in the \(\xi\) and \(\eta\) directions.
Leading two dimensions for the arrays \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S .
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Source term subvector \(S\).

IBOUND
IBC, FBC

IEQ
IMIN, IMAX

Boundary condition equation number, from 1 to \(N_{e q}\). Minimum and maximum indices in the sweep direction.

\section*{Description}

Subroutine BCGEN manages the computation of coefficients and source terms for the mean flow boundary conditions. It first loads the NEQ boundary condition types and values from the input arrays \(I B C 1\) and \(\mathrm{FBC1}\), or IBC2 and FBC2, depending on the ADI sweep, into the arrays IBC and FBC. This was done so that the BC routines could be non-sweep dependent. Next the coefficient submatrices and source term subvectors at the two boundaries in the current sweep direction are initialized to zero. And finally, the appropriate BC routine is called, depending on the input boundary condition type, for each of the NEQ boundary conditions at each boundary in the sweep direction.

\section*{Remarks}
1. An error message is generated and execution is stopped if any of the non-existent boundary condition types \(80-89\) is specified, or if the boundary condition type is less than 0 or greater than 99 .
2. The Cray search routine ISRCHEQ is used in determining the grid locations for debug printout.
3. This subroutine generates the output for the IDEBUG(3) option.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine BCGRAD (F,I,DFDI,DFD2) } \\
\hline Called by & Calls & Purpose \\
\hline BCDENS & & Compute gradients with respect to \(\xi\) and \(\eta\). \\
BCF & & \\
BCPRES & & \\
BCQ & & \\
BCTEMP & & \\
BCVVEL & & \\
BCVDIR & & \\
BCVVEL & & \\
BCWVEL & & \\
\hline
\end{tabular}

\section*{Input}

DXI, DETA
F

I
ISWEEP
I1, I2
* N1, N2

Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
A two-dimensional array, specified as \(\mathrm{F}(\mathrm{I}, \mathrm{J})\), containing the function \(f\) whose gradient is to be computed. The subscripts I and J run from 1 to \(N_{1}\) and \(N_{2}\), respectively.
Current grid point index in the current sweep direction.
Current ADI sweep number.
Grid indices \(i\) and \(j\), in the \(\xi\) and \(\eta\) directions.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.

\section*{Output}

DFD1, DFD2
First derivatives of \(f\) with respect to \(\xi\) and \(\eta\).

\section*{Description}

Subroutine BCGRAD computes first derivatives of the function \(f\), with respect to \(\xi\) and \(\eta\), at the current grid point in the ADI sweep direction. At interior points, the centered difference formula presented in Section 5.0 of Volume 1 is used. For derivatives with respect to \(\xi\),
\[
\left(\frac{\partial f}{\partial \xi}\right)_{i, j} \simeq \frac{f_{i+1, j}-f_{i-1, j}}{\Delta \xi}
\]

An analogous formula is used for \(\eta\) derivatives.
At boundary points three-point one-sided formulas are used.
\[
\begin{gathered}
\left(\frac{\partial f}{\partial \xi}\right)_{1, j} \simeq \frac{1}{2 \Delta \xi}\left(-3 f_{1, j}+4 f_{2, j}-f_{3, j}\right) \\
\left(\frac{\partial f}{\partial \xi}\right)_{N_{1}, j} \simeq \frac{1}{2 \Delta \xi}\left(f_{N_{1}}-2, j-4 f_{N_{1}-1, j}+3 f_{N_{1}, j}\right)
\end{gathered}
\]

Again, analogous formulas are used for \(\eta\) derivatives.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine BC.MET (I,FM0,FM1,FM2) } \\
\hline Called by & Calls & Purpose \\
\hline BCDENS & & Compute various metric functions for normal gradient boundary con- \\
BCF & & \\
BCPRES & & \\
BCQ & & \\
BCTEMP & & \\
BCUVEL & & \\
BCVDIR & & \\
BCVVEL & & \\
BCWVEL & & \\
\hline
\end{tabular}

\section*{Input}

ETAX, ETAY
I
ISWEEP
I1, I2
XIX, XIY

\section*{Output}

FM0, FM1, FM2

Metric coefficients \(\eta_{x}\) and \(\eta_{y}\) (or \(\eta_{r}\) if axisymmetric.)
Current grid point index in the current sweep direction.
Current ADI sweep number.
Grid indices \(i\) and \(j\), in the \(\xi\) and \(\eta\) directions.
Metric coefficients \(\xi_{x}\) and \(\xi_{y}\) (or \(\xi_{x}\) if axisymmetric.)

\section*{Description}

Subroutine BCMET computes metric functions used for normal gradient boundary conditions. For the first ADI sweep,
\[
\begin{aligned}
& \text { FM0 }=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}} \\
& \text { FM1 }=0 \\
& \text { FM2 }=\xi_{x} \eta_{x}+\xi_{y} \eta_{y}
\end{aligned}
\]

And for the second sweep,
\[
\begin{aligned}
& \text { FM } 0=\sqrt{\eta_{x}^{2}+\eta_{y}^{2}} \\
& \text { FM1 }=\xi_{x} \eta_{x}+\xi_{y} \eta_{y} \\
& \text { FM2 }=0
\end{aligned}
\]
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BCPRES (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,_IVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline BCGEN & \begin{tabular}{l} 
BCGRAD \\
BCMET
\end{tabular} & Compute pressure boundary conditions. \\
\hline
\end{tabular}

Input

CP, CV
DEL
DPDRRHO, DPDRU, DPDRV, DPDRW, DPDET

DTDRHO, DTDRU, DTDRV, DTDRW, DTDET
GC
IBASE, ISTEP
IBC, FBC

IBOUND
IEQ
* IHSTAG

IMIN, IMAX
ISWEEP
* ISWIRL

IV
JI
* NOUT

NR, NRU, NRV, NRW, NET
NVD, NPTSD
P, T
PR
RGAS
RHO, U, V, W
* RHOR, UR

\section*{Output}

\section*{A, B, C}

Specific heats \(c_{p}\) and \(c_{v}\) at time level \(n\).
Computational grid spacing in sweep direction.
Derivatives \(\partial p / \partial \rho, \partial p / \partial(\rho u), \partial p / \partial(\rho v), \partial p / \partial(\rho w)\), and \(\partial p / \partial E_{T}\).
Derivatives \(\partial T / \partial \rho, \partial T / \partial(\rho u), \partial T / \partial(\rho v), \partial T / \partial(\rho w)\), and \(\partial T / \partial E_{T}\).
Proportionality factor \(g_{c}\) in Newton's second law.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Mean flow boundary condition types and values for current sweep direction, specified as \(\operatorname{IBC}(1, J)\) and \(\operatorname{FBC}(I, J)\), where I runs from 1 to \(N_{e q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the lower and upper boundaries.
Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.
Boundary condition equation number.
Flag for constant stagnation enthalpy option.
Minimum and maximum indices in the sweep direction.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Index in the "vectorized" direction, \(i_{2}\).
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Unit number for standard output.
Array indices associated with the dependent variables \(\rho, \rho u, \rho v\), \(\rho w\), and \(E_{T}\).
Leading two dimensions for the arrays A, B, C, and S.
Static pressure \(p\) and temperature \(T\) at time level \(n\).
Reference pressure \(p_{r}\).
Gas constant \(R\).
Static density \(\rho\), and velocities \(u, v\), and \(w\), at time level \(n\).
Reference density \(\rho_{r}\) and velocity \(u_{r}\).

Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) at boundary IBOUND (row IEQ only).

Source term subvector \(\mathbf{S}\) at boundary IBOCND (element IEQ only).

\section*{Description}

Subroutine BCPRES computes coefficients and source terms for pressure boundary conditions. The linearized equations for the various general types of boundary conditions are developed in Section 6.0 of Volume 1. The following sections apply these generalized equations to the particular pressure boundary conditions in Proteus. 9

\section*{No Change From Initial Conditions, \(\Delta p=0\)}

Applying equation (6.3) of Volume 1 , and noting that \(\partial g / \partial \hat{\mathbf{Q}}=J \partial g / \partial \mathbf{Q}\), we get simply
\[
J_{i, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=0
\]

The derivatives \(\partial p / \partial \rho, \partial p / \partial(\rho u)\), etc., depend on the equation of state. They are defined for a perfect gas in Section 4.3 of Volume 1.

\section*{Specified Static Pressure, \(p=f\)}

Applying equation (6.5) of Volume 1 ,
\[
J_{i, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho \boldsymbol{w})} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=f_{i, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}-p_{i, j}^{n}
\]

\section*{Specified Two-Point Pressure Gradient in Coordinate Direction, \(\partial p l \partial \phi=f\)}

Aprlying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{aligned}
-J_{1, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
J_{2, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}=} \\
& (\Delta \xi) f_{1, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}+p_{1, j}^{n}-p_{2, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,

\footnotetext{
9 In the following description, for the first ADI sweep the dependent variables should have the superscript *, representing the intermediate solution, and for the second ADI sweep they should have the superscript \(n\), representing the final solution. For simplicity, however, only the superscript \(n\) is used. The superscripts on all other variables are correct as written.
}
\[
\begin{aligned}
&-J_{N_{1}-1, j} {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
& J_{N_{1}, j} {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
&(\Delta \xi) f_{N_{1}, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{T}^{2}}+p_{N_{1}-1, j}^{n}-p_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specifled Three-Point Pressure Gradient in Coordinate Direction, \(\partial p / \partial \phi=f\)}

Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
\begin{aligned}
&-3 J_{1, j} {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
& 4 J_{2, j} {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}-} \\
& J_{3, j} {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u} u)+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}=} \\
& 2(\Delta \xi) f_{1, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}+3 p_{1, j}^{n}-4 p_{2, j}^{n}+p_{3, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{gathered}
J_{N_{1}-2, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}- \\
4 J_{N_{1}-1, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+ \\
3 J_{N_{1}, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}= \\
2(\Delta \xi) f_{N_{1}, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}-p_{N_{1}-2, j}^{n}+4 p_{N_{1}-1, j}^{n}-3 p_{N_{1}, j}^{n}
\end{gathered}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Two-Point Pressure Gradient in Normal Direction, \(\nabla p \cdot \vec{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{aligned}
-J_{1, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
J_{2, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}=} \\
& \frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} p_{1, j}^{n}\right]+p_{1, j}^{n}-p_{2, j}^{n}
\end{aligned}
\]
where
\[
m=\sqrt{\xi_{x}{ }^{2}+\xi_{y}{ }^{2}}
\]
and \(\delta_{n}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
\begin{gathered}
-J_{N_{1}-1, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+ \\
J_{N_{1}, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}= \\
\frac{\Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} p_{N_{1}, j}^{n}\right]+p_{N_{1}-1, j}^{n}-p_{N_{1}, j}^{n}
\end{gathered}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point Pressure Gradient in Normal Direction, \(\nabla p: \vec{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
\begin{aligned}
-3 J_{1, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
4 J_{2, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}-} \\
J_{3, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}=} \\
& \frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} p_{1, j}^{n}\right]+3 p_{1, j}^{n}-4 p_{2, j}^{n}+p_{3, j}^{n}
\end{aligned}
\]
where
\[
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
\]
and \(\delta_{\eta}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
\begin{aligned}
J_{N_{1}-2, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}-} \\
4 J_{N_{1}-1, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
3 J_{N_{1}, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& \frac{2 \Delta \xi}{m_{N_{1}, j}}\left[\int_{N_{1}, j}^{n+1} \frac{p_{r} g_{c}}{\rho, \mu_{r}^{2}}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} p_{N_{1}, j}^{n}\right]-p_{N_{1}-2, j}^{n}+4 p_{N_{1}-1, j}^{n}-3 p_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Linear Extrapolation of Static Pressure}

Applying equation (6.14) of Volume 1 at the \(\xi=0\) boundary,
\[
\begin{aligned}
& J_{1, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}- \\
& 2 J_{2, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u v)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}+ \\
& J_{3, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}= \\
& -p_{1, j}^{n}+2 p_{2, j}^{n}-p_{3, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{aligned}
& J_{N_{1}-2, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}- \\
& 2 J_{N_{1}-1, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+ \\
& J_{N_{1}, j} \\
& \quad\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}= \\
& \quad-p_{N_{1}-2, j}^{n}+2 p_{N_{1}-1, j}^{n}-p_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.
No Change From Initial Conditions for Total Pressure, \(\Delta p_{T}=0\)
The total pressure is defined as
\[
p_{T}=p\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}
\]

Applying equation (6.3) of Volume 1, we get
\[
J_{i, j}\left[\frac{\partial p_{T}}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p_{T}}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p_{T}}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p_{T}}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p_{T}}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=0
\]
where
\[
\begin{aligned}
& \frac{\partial p_{T}}{\partial \rho}=\frac{\partial p}{\partial \rho}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}+p \frac{\gamma}{2}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{1}{\gamma-1}} \frac{\partial M^{2}}{\partial \rho} \\
& \frac{\partial p_{T}}{\partial(\rho u)}=\frac{\partial p}{\partial(\rho u)}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}+p \frac{\gamma}{2}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{1}{\gamma-1}} \frac{\partial M^{2}}{\partial(\rho u)} \\
& \frac{\partial p_{T}}{\partial(\rho v)}=\frac{\partial p}{\partial(\rho v)}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}+p \frac{\gamma}{2}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{1}{\gamma-1}} \frac{\partial M^{2}}{\partial(\rho v)} \\
& \frac{\partial p_{T}}{\partial(\rho w)}=\frac{\partial p}{\partial(\rho w)}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}+p \frac{\gamma}{2}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{1}{\gamma-1}} \frac{\partial M^{2}}{\partial(\rho w)} \\
& \frac{\partial p_{T}}{\partial E_{T}}=\frac{\partial p}{\partial E_{T}}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}+p \frac{\gamma}{2}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{1}{\gamma-1}} \frac{\partial M^{2}}{\partial E_{T}}
\end{aligned}
\]

The Mach number is defined by
\[
M^{2}=\frac{u^{2}+v^{2}+w^{2}}{\gamma R T}=\frac{(\rho u)^{2}+(\rho v)^{2}+(\rho w)^{2}}{\gamma R \rho^{2} T}
\]

The derivatives \(\partial M^{2} / \partial \rho\), etc., can then be derived as
\[
\begin{aligned}
\frac{\partial M^{2}}{\partial \rho} & =-M^{2}\left(\frac{2}{\rho}+\frac{1}{T} \frac{\partial T}{\partial \rho}\right) \\
\frac{\partial M^{2}}{\partial(\rho u)} & =\frac{2 u}{\gamma p}-\frac{M^{2}}{T} \frac{\partial T}{\partial(\rho u)} \\
\frac{\partial M^{2}}{\partial(\rho v)} & =\frac{2 v}{\gamma p}-\frac{M^{2}}{T} \frac{\partial T}{\partial(\rho v)} \\
\frac{\partial M^{2}}{\partial(\rho w)} & =\frac{2 w}{\gamma p}-\frac{M^{2}}{T} \frac{\partial T}{\partial(\rho w)} \\
\frac{\partial M^{2}}{\partial E_{T}} & =-\frac{M^{2}}{T} \frac{\partial T}{\partial E_{T}}
\end{aligned}
\]

\section*{Specified Total Pressure, \(p_{T}=f\)}

Applying equation (6.5) of Volume 1 , we get
\[
\begin{gathered}
J_{i, j}\left[\frac{\partial p_{T}}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p_{T}}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p_{T}}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p_{T}}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p_{T}}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}= \\
f_{i, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}-p_{i, j}^{n}\left[\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}\right]_{i, j}^{n}
\end{gathered}
\]
where \(p_{T}, \partial p_{T} / \partial \rho\), etc., are defined above as part of the description of the \(\Delta p_{T}=0\) boundary condition.

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent pressure boundary condition is specified.
3. The multiplying factor \(p_{r} g_{c} / \rho \cdot u_{j}^{2}\) that appears with specified values of pressure and pressure gradients is necessary because input values of pressure are nondimensionalized by the reference pressure \(p_{r}=\rho_{r} \vec{R} T_{r} / g_{c}\), while internal to the Proteus code itself pressure is nondimensionalized by the normalizing pressure \(p_{n}=\rho_{r} u_{r}^{2}\). (See Section 3.1.1 of Volume 2.)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BCQ (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,_MPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline BCGE.N & BCMET & Compute conservation variable boundary conditions. \\
\hline
\end{tabular}

\section*{Input}

DEL
DXI, DETA
IBASE, ISTEP
IBC, FBC

IBOUND

IEQ
IMIN, IMAX
ISWEEP
* ISWIRL

IV
I1, I2
JI
NC, NXM, NYM, NZM, NEN
* . . OUT

NVD, NPTSD
N1P
RHO, U, V, W, ET

Computational grid spacing in sweep direction.
Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Mean flow boundary condition types and values for current sweep direction, specified as IBC \((I, J)\) and \(\operatorname{FBC}(I, J)\), where I runs from 1 to \(N_{e q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the lower and upper boundaries.
Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.
Boundary condition equation number.
Minimum and maximum indices in the sweep direction.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Index in the "vectorized" direction, \(i_{v}\).
Grid indices \(i\) and \(j\), in the \(\xi\) and \(\eta\) directions.
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Array indices associated with the continui \(y\), \(x\)-momentum, \(y\)-momentum (or \(r\)-momentum if axisymmetric), swirl momentum, and energy equations.
Unit number for standard output.
Leading two dimensions for the arrays \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S .
Parameter specifying the dimension size in the \(\xi\) direction.
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level \(n\).

\section*{Output}
A, B, C
Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) at boundary IBOUND (row IEQ only).
Source term subvector \(\mathbf{S}\) at boundary IBOLND (element IEQ only).

\section*{Description}

Subroutine BCQ computes coefficients and source terms for conservation variable boundary conditions. The linearized equations for the various general types of boundary conditions are developed in Section 6.0
of Volume 1. The following sections apply these generalized equations to the particular conservation variable boundary conditions in Proteus. \({ }^{10}\)

No Change From Initial Conditions, \(\Delta Q=0\)
Applying equation (6.3) of Volume 1 , and noting that \(\partial g / \partial \hat{\mathbf{Q}}=J \partial g / \partial \mathbf{Q}\), we get simply
\[
J_{i, j} \Delta \hat{Q}_{i, j}^{n}=0
\]
where \(\hat{Q}\) is the element of \(\hat{\mathbf{Q}}\) for which this boundary condition is to be applied.

\section*{Specified Conservation Variable, \(Q=f\)}

Applying equation (6.5) of Volume 1 ,
\[
J_{i, j} \Delta \hat{Q}_{i, j}^{n}=f_{i, j}^{n+1}-Q_{i, j}^{n}
\]

\section*{Specified Two-Point Conservation Variable Gradient in Coordinate Direction, \(\partial Q 1 \partial \phi=f\)}

Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
-J_{1, j} \Delta \hat{Q}_{1, j}^{n}+J_{2, j} \Delta \hat{Q}_{2, j}^{n}=(\Delta \xi) f_{1, j}^{n+1}+Q_{1, j}^{n}-Q_{2, j}^{n}
\]

At the \(\xi=1\) boundary,
\[
-J_{N_{1}-1, j} \Delta \hat{Q}_{N_{1}-1, j}^{n}+J_{N_{1}, j} \Delta \hat{Q}_{N_{1}, j}^{n}=(\Delta \xi) f_{N_{1}, j}^{n+1}+Q_{N_{1}-1, j}^{n}-Q_{N_{1}, j}^{n}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point Conservation Variable Gradient in Coordinate Direction, \(\partial Q / \partial \phi=f\)}

Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
-3 J_{1, j} \Delta \hat{Q}_{1, j}^{n}+4 J_{2, j} \Delta \hat{Q}_{2, j}^{n}-J_{3, j} \Delta \hat{Q}_{3, j}^{n}=2(\Delta \xi) f_{1, j}^{n+1}+3 Q_{1, j}^{n}-4 Q_{2, j}^{n}+Q_{3, j}^{n}
\]

At the \(\xi=1\) boundary,
\[
J_{N_{1}-2, j} \Delta \hat{Q}_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j} \Delta \hat{Q}_{N_{1}-1, j}^{n}+3 J_{N_{1}, j} \Delta \hat{Q}_{N_{1}, j}^{n}=2(\Delta \xi) f_{N_{1}, j}^{n+1}-Q_{N_{1}-2, j}^{n}+4 Q_{N_{1}-1, j}^{n}-3 Q_{N_{1}, j}^{n}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Two-Point Conservation Variable Gradient in Normal Direction, \(\nabla Q \cdot \vec{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,

\footnotetext{
10 In the following description, for the first ADI sweep the dependent variables should have the superscript \({ }^{*}\), representing the intermediate solution, and for the second ADI sweep they should have the superscript \(n\), representing the final solution. For simplicity, however, only the superscript \(n\) is used. The superscripts on all other variables are correct as written.
}
\[
-J_{1, j} \Delta \hat{Q}_{1, j}^{n}+J_{2, j} \Delta \hat{Q}_{2, j}^{n}=\frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} Q_{1, j}^{n}\right]+Q_{1, j}^{n}-Q_{2, j}^{n}
\]
where
\[
m=\sqrt{\xi_{x}^{2}+\xi_{y}{ }^{2}}
\]
and \(\delta_{\eta}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
-J_{N_{1}-1, j} \Delta \hat{Q}_{N_{1}-1, j}^{n}+J_{N_{1}, j} \Delta \hat{Q}_{N_{1}, j}^{n}=\frac{\Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} Q_{N_{1}, j}^{n}\right]+Q_{N_{1}-1, j}^{n}-Q_{N_{1}, j}^{n}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point Conservation Variable Gradient in Normal Direction, \(\nabla Q \cdot \vec{n}=f\)}

Applying equation ( 6.12 a ) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
\begin{gathered}
-3 J_{1, j} \Delta \hat{Q}_{1, j}^{n}+4 J_{2, j} \Delta \hat{Q}_{2, j}^{n}-J_{3, j} \Delta \hat{Q}_{3, j}^{n}= \\
\frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} Q_{1, j}^{n}\right]+3 Q_{1, j}^{n}-4 Q_{2, j}^{n}+Q_{3, j}^{n}
\end{gathered}
\]
where
\[
m=\sqrt{\xi_{x}^{2}+\xi_{y}{ }^{2}}
\]
and \(\delta_{\eta}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
\begin{gathered}
J_{N_{1}-2, j} \Delta \hat{Q}_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j} \Delta \hat{Q}_{N_{1}-1, j}^{n}+3 J_{N_{1}, j} \Delta \hat{Q}_{N_{1}, j}^{n}= \\
\frac{2 \Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} Q_{N_{1}, j}^{n}\right]-Q_{N_{1}-2, j}^{n}+4 Q_{N_{1}-1, j}^{n}-3 Q_{N_{1}, j}^{n}
\end{gathered}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Linear Extrapolation of Conservation Variable}

Applying equation (6.14) of Volume 1 at the \(\xi=0\) boundary,
\[
J_{1, j} \Delta \hat{Q}_{1, j}^{n}-2 J_{2, j} \Delta \hat{Q}_{2, j}^{n}+J_{3, j} \Delta \hat{Q}_{3, j}^{n}=-Q_{1, j}^{n}+2 Q_{2, j}^{n}-Q_{3, j}^{n}
\]

At the \(\xi=1\) boundary,
\[
J_{N_{1}-2, j} \Delta \hat{Q}_{N_{1}-2, j}^{n}-2 J_{N_{1}-1, j} \Delta \hat{Q}_{N_{1}-1, j}^{n}-J_{N_{1}, j} \Delta \hat{Q}_{N_{1}, j}^{n}=-Q_{N_{1}-2, j}^{n}+2 Q_{N_{1}-1, j}^{n}-Q_{N_{1}, j}^{n}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent conservation variable boundary condition is specified.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BCSET } \\
\hline Called by & Calls & Purpose \\
\hline MAIN & & Set various boundary condition parameters and flags. \\
\hline
\end{tabular}

\section*{Input}
* GBC1, GBC2
* GBCT1, GBCT2
* GTBCI, GTBC2
* IHSTAG
* ISWIRL

ITDBC
* ITURB
* JBC1, JBC2
* JBCT1, JBCT2
* JTBC1, JTBC2
* KBC1, KBC2

NBC

NEQ
* NOUT
* NTBC
* NTBCA
* N1, N2

\section*{Output}
\(\mathrm{FBCl}, \mathrm{FBC} 2\)

FBCT1, FBCT2

IBCELM

Surface mean flow boundary condition values for the \(\zeta\) and \(\eta\) directions.
Surface \(k-\varepsilon\) boundary condition values for the \(\xi\) and \(\eta\) directions.
Time-dependent surface mean flow boundary condition values for the \(\xi\) and \(\eta\) directions.
Flag for constant stagnation enthalpy option.
Flag for swirl in axisymmetric flow.
Flag for time-dependent mean flow boundary conditions; 0 if all boundary conditions are steady, 1 if any general unsteady boundary conditions are used, 2 if only steady and time-periodic boundary conditions are used.
Flag for turbulent flow option.
Surface mean flow boundary condition types for the \(\xi\) and \(\eta\) directions.
Surface \(k-\varepsilon\) boundary condition types for the \(\xi\) and \(\eta\) directions.
Flags for type of time dependency for mean flow boundary conditions in the \(\xi\) and \(\eta\) directions.
Boundary types for the \(\xi\) and \(\eta\) directions.
Dimensioning parameter specifying number of boundary conditions per equation.
Number of coupled equations being solved, \(N_{\text {eq }}\).
Unit number for standard output.
Number of values in tables for general unsteady boundary conditions.

Time levels at which general unsteady boundary conditions are specified.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.

Point-by-point mean flow boundary condition values for the \(\xi\) and \(\eta\) directions.

Point-by-point \(k\) - \(\varepsilon\) boundary condition values for the \(\xi\) and \(\eta\) directions.
Flags for elimination of off-diagonal coefficient submatrices resulting from three-point boundary conditions in the \(\xi\) and \(\eta\) directions at either boundary; 0 if elimination is not necessary, 1 if it is.
\(\mathrm{IBCl}, \mathrm{IBC} 2\)
IBCT1, IBCT2
IBVUP
\(\mathrm{JBC} 1, \mathrm{JBC} 2\)
KBCPER

NPT1, NPT2

Point-by-point mean flow boundary condition types for the \(\bar{\zeta}\) and \(\eta\) directions.
Point-by-point \(k\) - \(\varepsilon\) boundary condition types for the \(\xi\) and \(\eta\) directions.
Flags for updating boundary values from first sweep after second sweep; 0 if updating is not necessary, 1 if it is.
Surface mean flow boundary condition types for the \(\xi\) and \(\eta\) directions (only if using the KBC meta flags.)
Flags for spatially periodic boundary conditions in the \(\xi\) and \(\eta\) directions; 0 for non-periodic, 1 for periodic.
\(N_{1}\) and \(N_{2}\) for non-periodic boundary conditions, \(N_{1}+1\) and \(N_{2}+1\) for spatially periodic boundary conditions in \(\xi\) and \(\eta\).

\section*{Description}

Subroutine BCSET sets various boundary condition parameters and flags. If boundary types are specified with the KBC meta flags, the appropriate surface boundary condition types are loaded into the JBC arrays. Special flags are set if spatially periodic boundary conditions are being used. BCSET also sets NPT1 and NPT2, the number of grid points in each ADI sweep direction to be used in computing coefficients and source terms. For spatially periodic boundary conditions in the \(\xi\) direction, NPT1 \(=\) N \(1+1\). Similarly, for spatially periodic boundary conditions in the \(\eta\) direction, NPT \(2=\mathrm{N} 2+1\). This is done in order to use central differences at the periodic boundary. (See Section 7.2.2 of Volume 1.)

Next, if the boundary types are being specified using the KBC meta flags, the appropriate JBC mean flow boundary condition parameters are defined. Then, if the mean flow boundary conditions are being specified using the JBC and GBC parameters (or the KBC meta flags), the appropriate point-by-point boundary condition types and values (the IBC and FBC parameters) are loaded with the JBC and GBC values.

If three-point mean flow boundary conditions are being used at a boundary, a flag is set for eliminating the resulting off-diagonal coefficient submatrix. If gradient (two-point or three-point) or extrapolation mean flow boundary conditions are used during the first sweep, a flag is set for updating the \(\xi\) boundary values after the second sweep.

Next, for turbulent flow using the \(k-\varepsilon\) model, if the \(k-\varepsilon\) boundary conditions are being specified using the JBCT and GBCT parameters, the appropriate point-by-point boundary condition types and values (the IBCT and FBCT parameters) are loaded with the JBCT and GBCT values.

And finally, the input boundary condition parameters are then written to the standard output file.

\section*{Remarks}
1. An error message is generated and execution is stopped if an invalid boundary type is specified with the KBC meta flags.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BCTEMP (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline BCGEN & \begin{tabular}{l} 
BCGRAD \\
BCMET
\end{tabular} & Compute temperature boundary conditions. \\
\hline
\end{tabular}

\section*{Input}

CP, CV
DEL
DTDRHO, DTDRU, DTDRV, DTDRW, DTDET
IBASE, ISTEP

IBC, FBC

IBOUND

IEQ
* IHSTAG

IMIN, IMAX
ISWEEP
* ISWIRL

IV
JI
* NOUT

NR, NRU, NRV, NRW, NET

NVD, NPTSD
\(P, T\)
RGAS
RHO, U, V, W

\section*{Output}
A, B, C
S
Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) at boundary IBOUND (row IEQ only).
Source term subvector \(S\) at boundary IBOUND (element IEQ only).

\section*{Description}

Subroutine BCTEMP computes coefficients and source terms for temperature boundary conditions. The linearized equations for the various general types of boundary conditions are developed in Section 6.0
of Volume 1. The following sections apply these generalized equations to the particular temperature boundary conditions in Proteus. \({ }^{11}\)

\section*{No Change From Initial Conditions, \(\Delta T=0\)}

Applying equation (6.3) of Volume 1 , and noting that \(\partial g / \partial \hat{\mathbf{Q}}=J \partial g / \partial \mathbf{Q}\), we get simply
\[
J_{i, j}\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=0
\]

The derivatives \(\partial T / \partial \rho, \partial T / \partial(\rho u)\), etc., depend on the equation of state. They are defined for a perfect gas in Section 4.3 of Volume 1.

\section*{Specified Static Temperature, \(T=f\)}

Applying equation (6.5) of Volume 1 ,
\[
J_{i, j}\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=f_{i, j}^{n+1}-T_{i, j}^{n}
\]

\section*{Speciffed Two-Point Temperature Gradient in Coordinate Direction, \(\partial T / \partial \phi=f\)}

Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{aligned}
-J_{1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
J_{2, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}=} \\
& (\Delta \xi) f_{1, j}^{n+1}+T_{1, j}^{n}-T_{2, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{aligned}
-J_{N_{1}-1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
J_{N_{\mathrm{i}}, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& (\Delta \xi) f_{N_{1}, j}^{n+1}+T_{N_{1}-1, j}^{n}-T_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point Temperature Gradient in Coordinate Direction, \(\partial T / \partial \phi=f\)}

Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,

\footnotetext{
"In the following description, for the first ADI sweep the dependent variables should have the superscript *, representing the intermediate solution, and for the second ADI sweep they should have the superscript \(n\), representing the final solution. For simplicity, however, only the superscript \(n\) is used. The superscripts on all other variables are correct as written.
}
\[
\begin{aligned}
-3 J_{1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
4 J_{2, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}-} \\
J_{3, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}=} \\
& 2(\Delta \xi) f_{1, j}^{n+1}+3 T_{1, j}^{n}-4 T_{2, j}^{n}+T_{3, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{aligned}
& J_{N_{1}-2, j} {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}-} \\
& 4 J_{N_{1}-1, j} {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
& 3 J_{N_{1}, j} {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& 2(\Delta \xi) f_{N_{1}, j}^{n+1}-T_{N_{1}-2, j}^{n}+4 T_{N_{1}-1, j}^{n}-3 T_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Two-Point Temperature Gradient in Normal Direction, \(\nabla T \cdot \vec{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{aligned}
-J_{1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
J_{2, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}=} \\
& \frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} T_{1, j}^{n}\right]+T_{1, j}^{n}-T_{2, j}^{n}
\end{aligned}
\]
where
\[
m=\sqrt{\xi_{x}^{2}+\xi_{y}{ }^{2}}
\]
and \(\delta_{\eta}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
\begin{aligned}
-J_{N_{1}-1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
J_{N_{1}, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& \frac{\Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} T_{N_{1}, j}^{n}\right]+T_{N_{1}-1, j}^{n}-T_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point Temperature Gradient in Normal Direction, \(\nabla T \cdot \vec{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
\begin{aligned}
-3 J_{1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
4 J_{2, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}-} \\
J_{3, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}=} \\
& \frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} T_{1, j}^{n}\right]+3 T_{1, j}^{n}-4 T_{2, j}^{n}+T_{3, j}^{n}
\end{aligned}
\]
where
\[
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
\]
and \(\delta_{\eta}\) is the centered difference operator presented in Section 5.0 of Volume 1 . At the \(\xi=1\) boundary,
\[
\begin{aligned}
J_{N_{1}-2, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}-} \\
4 J_{N_{1}-1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
3 J_{N_{1}, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& \frac{2 \Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} T_{N_{1}, j}^{n}\right]-T_{N_{1}-2, j}^{n}+4 T_{N_{1}-1, j}^{n}-3 T_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Linear Extrapolation of Static Temperature}

Applying equation (6.14) of Volume 1 at the \(\xi=0\) boundary,
\[
\begin{aligned}
& J_{1, j}\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}- \\
& 2 J_{2, j}\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}+ \\
& J_{3, j}\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}= \\
& -T_{1, j}^{n}+2 T_{2, j}^{n}-T_{3, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{aligned}
J_{N_{1}-2, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}-} \\
2 J_{N_{1}-1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u} u)+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
J_{N_{1}, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& -T_{N_{1}-2, j}^{n}+2 T_{N_{1}-1, j}^{n}-T_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{No Change From Initial Conditions for Total Temperature, \(\Delta T_{r}=0\)}

The total temperature is defined as
\[
T_{T}=T\left(1+\frac{\gamma-1}{2} M^{2}\right)
\]

Applying equation (6.3) of Volume 1 , we get
\[
J_{i, j}\left[\frac{\partial T_{T}}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T_{T}}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T_{T}}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T_{T}}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T_{T}}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=0
\]
where
\[
\begin{aligned}
\frac{\partial T_{T}}{\partial \rho} & =\frac{\partial T}{\partial \rho}\left(1+\frac{\gamma-1}{2} M^{2}\right)+\frac{\gamma-1}{2} T \frac{\partial M^{2}}{\partial \rho} \\
\frac{\partial T_{T}}{\partial(\rho u)} & =\frac{\partial T}{\partial(\rho u)}\left(1+\frac{\gamma-1}{2} M^{2}\right)+\frac{\gamma-1}{2} T \frac{\partial M^{2}}{\partial(\rho u)} \\
\frac{\partial T_{T}}{\partial(\rho v)} & =\frac{\partial T}{\partial(\rho v)}\left(1+\frac{\gamma-1}{2} M^{2}\right)+\frac{\gamma-1}{2} T \frac{\partial M^{2}}{\partial(\rho v)} \\
\frac{\partial T_{T}}{\partial(\rho w)} & =\frac{\partial T}{\partial(\rho w)}\left(1+\frac{\gamma-1}{2} M^{2}\right)+\frac{\gamma-1}{2} T \frac{\partial M^{2}}{\partial(\rho w)} \\
\frac{\partial T_{T}}{\partial E_{T}} & =\frac{\partial T}{\partial E_{T}}\left(1+\frac{\gamma-1}{2} M^{2}\right)+\frac{\gamma-1}{2} T \frac{\partial M^{2}}{\partial E_{T}}
\end{aligned}
\]

The Mach number is defined by
\[
M^{2}=\frac{u^{2}+v^{2}+w^{2}}{\gamma R T}=\frac{(\rho u)^{2}+(\rho v)^{2}+(\rho w)^{2}}{\gamma R \rho^{2} T}
\]

The derivatives \(\partial M^{2} / \partial \rho\), etc., can then be derived as
\[
\begin{aligned}
\frac{\partial M^{2}}{\partial \rho} & =-M^{2}\left(\frac{2}{\rho}+\frac{1}{T} \frac{\partial T}{\partial \rho}\right) \\
\frac{\partial M^{2}}{\partial(\rho u)} & =\frac{2 u}{\gamma P}-\frac{M^{2}}{T} \frac{\partial T}{\partial(\rho u)} \\
\frac{\partial M^{2}}{\partial(\rho v)} & =\frac{2 v}{\gamma P}-\frac{M^{2}}{T} \frac{\partial T}{\partial(\rho v)} \\
\frac{\partial M^{2}}{\partial(\rho w)} & =\frac{2 w}{\gamma p}-\frac{M^{2}}{T} \frac{\partial T}{\partial(\rho w)} \\
\frac{\partial M^{2}}{\partial E_{T}} & =-\frac{M^{2}}{T} \frac{\partial T}{\partial E_{T}}
\end{aligned}
\]

\section*{Speciffed Total Temperature, \(T_{I}=f\)}

Applying equation (6.5) of Volume 1 , we get
\[
\begin{aligned}
J_{i, j} & {\left.\left[\frac{\partial T_{T}}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T_{T}}{\partial(\rho u)} \Delta \hat{(\rho u)}\right)+\frac{\partial T_{T}}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T_{T}}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T_{T}}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=} \\
& f_{i, j}^{n+1}-T_{i, j}^{n}\left(1+\frac{\gamma-1}{2} M^{2}\right)_{i, j}^{n}
\end{aligned}
\]
where \(T_{T}, \partial T_{T} / \partial \rho\), etc., are defined above as part of the description of the \(\Delta T_{T}=0\) boundary condition.

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent temperature boundary condition is specified.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BCUVEL (IBC,FBC,IEQ,IMIN,IMAX,IBOLND,A,B,C,S,_NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline BCGE N & \begin{tabular}{l} 
BCGRAD \\
BC.MET
\end{tabular} & Compute \(x\)-velocity boundary conditions. \\
\hline
\end{tabular}

\section*{Input}

DEL
IBASE, ISTEP

IBC, FBC

IBOUND

IEQ
IMIN, IMAX
ISWEEP
IV
JI
* NOUT

NR, NRU
NVD, NPTSD
RHO, U

Computational grid spacing in sweep direction.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Mean flow boundary condition types and values for current sweep direction, specified as IBC \((I, J)\) and \(F B C(I, J)\), where I runs from 1 to \(N_{\text {eq }}\), corresponding to the \(N_{\text {eq }}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the lower and upper boundaries.
Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.
Boundary condition equation number.
Minimum and maximum indices in the sweep direction.
Current ADI sweep number.
Index in the "vectorized" direction, \(i_{v}\).
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Unit number for standard output.
Array indices associated with the dependent variables \(\rho\) and \(\rho u\).
Leading two dimensions for the arrays \(A, P, C\), and \(S\).
Static density \(\rho\) and velocity \(u\) at time level \(n\).

\section*{Output}
A, B, C
S
Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) at boundary IBOUND (row IEQ only).
Source term subvector \(S\) at boundary IBOUND (element IEQ only).

\section*{Description}

Subroutine BCUVEL computes coefficients and source terms for \(x\)-velocity boundary conditions. The linearized equations for the various general types of boundary conditions are developed in Section 6.0 of Volume l. The following sections apply these generalized equations to the particular \(x\)-velocity boundary conditions in Proteus. \({ }^{12}\)

\footnotetext{
12 In the following description, for the first ADI sweep the dependent variables should have the superscript *, representing the intermediate solution, and for the second ADI sweep they should have the superscript \(n\), representing the final solution. For simplicity, however, only the superscript \(n\) is used. The superscripts on all other variables are correct as written.
}

\section*{No Change From Initial Conditions, \(\Delta u=0\)}

Applying equation (6.3) of Volume 1 , and noting that \(\partial g \mid \partial \hat{\mathbf{Q}}=J \partial \hat{o} / \partial \mathbf{Q}\), we get simply
\[
J_{i, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{i, j}^{n}=0
\]

\section*{Specified \(x\)-Velocity, \(u=f\)}

Applying equation (6.5) of Volume 1 ,
\[
\left.J_{i, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta \hat{\rho u} u\right)\right]_{i, j}^{n}=f_{i, j}^{n+1}-u_{i, j}^{n}
\]

\section*{Specified Two-Point \(x\)-Velocity Gradient in Coordinate Direction, \(\partial u \mid \partial \phi=f\)}

Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{aligned}
&-J_{1, j} {\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{1, j}^{n}+J_{2, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{2, j}^{n}=} \\
&(\Delta \zeta) f_{1, j}^{n+1}+\hat{u}_{1, j}^{n}-u_{2, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{aligned}
&-J_{N_{1}-1, j} {\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}-1, j}^{n}+J_{N_{1}, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}, j}^{n}=} \\
&(\Delta \tilde{\xi}) f_{N_{1}, j}^{n+1}+u_{N_{1}-1, j}^{n}-u_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point \(x\)-Velocity Gradient in Coordinate Direction, \(\partial u \mid \partial \phi=f\)}

Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
\begin{array}{r}
\left.-3 J_{1, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{1, j}^{n}+4 J_{2, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta \hat{\rho u}\right)\right]_{2, j}^{n}- \\
J_{3, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{3, j}^{n}=2(\Delta \xi) f_{1, j}^{n+1}+3 u_{1, j}^{n}-4 u_{2, j}^{n}+u_{3, j}^{n}
\end{array}
\]

At the \(\xi=1\) boundary,
\[
\begin{gathered}
J_{N_{1}-2, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}-1, j}^{n}+ \\
3 J_{N_{1}, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}, j}^{n}=2(\Delta \xi) f_{N_{1}, j}^{n+1}-u_{N_{1}-2, j}^{n}+4 u_{N_{1}-1, j}^{n}-3 u_{N_{1}, j}^{n}
\end{gathered}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Two-Point \(x\)-Velocity Gradient in Normal Direction, \(\nabla u \cdot \bar{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{gathered}
-J_{1, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{1, j}^{n}+J_{2, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{2, j}^{n}= \\
\frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} u_{1, j}^{n}\right]+u_{1, j}^{n}-u_{2, j}^{n}
\end{gathered}
\]
where
\[
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
\]
and \(\delta_{n}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
\begin{aligned}
-J_{N_{1}-1, j} & {\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}-1, j}^{n}+J_{N_{1}, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}, j}^{n}=} \\
& \frac{\Delta \xi}{m_{N_{1}, j},}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} u_{N_{1}, j}^{n}\right]+u_{N_{1}-1, j}^{n}-u_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point \(x\)-Velocity Gradient in Normal Direction, \(\nabla u \cdot \vec{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
\begin{aligned}
&-3 J_{1, j} {\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{1, j}^{n}+4 J_{2, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{2, j}^{n}-} \\
& J_{3, j} {\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{3, j}^{n}=\frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta}^{u_{1, j}^{n}}\right]+} \\
& 3 u_{1, j}^{n}-4 u_{2, j}^{n}+u_{3, j}^{n}
\end{aligned}
\]
where
\[
m=\sqrt{\xi_{x}^{2}+\xi_{y}{ }^{2}}
\]
and \(\delta_{n}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\bar{\zeta}=1\) boundary,
\[
\begin{aligned}
& J_{N_{1}-2, j} {\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u} u)\right]_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}-1, j}^{n}+} \\
& 3 J_{N_{1}, j} {\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}, j}^{n}=\frac{2 \Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} u_{N_{1}, j}^{n}\right]-} \\
& u_{N_{1}-2, j}^{n}+4 u_{N_{1}-1, j}^{n}-3 u_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

Applying equation (6.14) of Volume 1 at the \(\bar{\xi}=0\) boundary,
\[
\begin{aligned}
& J_{1, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{1, j}^{n}-2 J_{2, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{2, j}^{n}+ \\
& J_{3, j}^{n}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u u})\right]_{3, j}^{n}=-u_{1, j}^{n}+2 u_{2, j}^{n}-u_{3, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{gathered}
J_{N_{1}-2, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}-2, j}^{n}-2 J_{N_{1}-1, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}-1, j}^{n}+ \\
J_{N_{1}, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}, j}^{n}=-u_{N_{1}-2, j}^{n}+2 u_{N_{1}-1, j}^{n}-u_{N_{1}, j}^{n}
\end{gathered}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent \(x\)-velocity boundary condition is specified.

Subroutine BCVDIR (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,METX,METY,NVD,NPTSD)
\begin{tabular}{|l|l|l|}
\hline Called by & Calls & Purpose \\
\hline BCGE. & \begin{tabular}{l} 
BCGRAD \\
BCMET
\end{tabular} & Compute normal and tangential velocity boundary conditions. \\
\hline
\end{tabular}

Input
DEL
DXI, DETA
IBASE, ISTEP
IBC, FBC

IBOUND
IEQ
IMIN, IMAX
ISWEEP
* ISWIRL

IV
I1, 12
JI
METX, METY
* NOUT

NR, NRU, NRV, NRW
NVD, NPTSD
N1P
RHO, U, V, W

\section*{Output}
\begin{tabular}{ll} 
A, B, C & \begin{tabular}{l} 
Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) at boundary IBOUND (row \\
IEQ only).
\end{tabular} \\
S & \begin{tabular}{l} 
Source term subvector \(\mathbf{S}\) at boundary IBOUND (element IEQ \\
only).
\end{tabular}
\end{tabular}

\section*{Description}

Subroutine BCVDIR computes coefficients and source terms for normal and tangential velocity boundary conditions. The linearized equations for the various general types of boundary conditions are
developed in Section 6.0 of Volume 1. The following sections apply these generalized equations to the particular normal and tangential velocity boundary conditions in Proteus. \({ }^{13}\)

\section*{Specified Normal Velocity, \(V_{n}=f\)}

The normal velocity is defined as
\[
V_{n}=\vec{V} \cdot \vec{n}
\]
where \(\vec{n}\) is the unit vector normal to the boundary. For a \(\xi\) boundary,
\[
\vec{n}=\frac{\nabla \xi}{|\nabla \xi|}=\frac{1}{m} \xi_{x} \vec{i}+\frac{1}{m} \xi_{y} \vec{j}
\]
where
\[
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
\]

Therefore, for a \(\xi\) boundary,
\[
V_{n}=\frac{1}{m}\left(\xi_{x} u+\xi_{y} v\right)=f
\]

Note that the unit vector \(\vec{n}\) is in the direction of increasing \(\xi\). Therefore \(V_{n}\) is positive in the direction of increasing \(\xi\). Thus, a positive \(V_{n}\) at \(\xi=0\) implies flow into the computational domain, and a positive \(V_{n}\) at \(\xi=1\) implies flow out of the computational domain.

Similarly, for an \(\eta\) boundary,
\[
V_{n}=\frac{1}{m}\left(\eta_{x} u+\eta_{y} v\right)=f
\]
where
\[
m=\sqrt{\eta_{x}^{2}+\eta_{y}{ }^{2}}
\]
and \(V_{n}\) is positive in the direction of increasing \(\eta\).
Applying equation (6.5) of Volume 1 , the linearized boundary condition at a \(\xi\) boundary becomes
\[
\frac{J_{i, j}}{m_{i, j}}\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{i, j}^{n}=f_{i, j}^{n+1}-\left(V_{n}\right)_{i, j}^{n}
\]

An analogous equation can easily be written for the \(\eta\) boundaries.

\footnotetext{
\({ }^{13}\) In the following description, for the first ADI sweep the dependent variables should have the superscript \({ }^{*}\), representing the intermediate solution, and for the second ADI sweep they should have the superscript \(n\), representing the final solution. For simplicity, however, only the superscript \(n\) is used. The superscripts on all other variables are correct as written.
}

\section*{Specified Two-Point Normal Velocity Gradient in Coordinate Direction, \(\partial V_{n} \mid \partial \phi=f\)}

Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{aligned}
-\frac{J_{1, j}}{m_{1, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+} \\
\frac{J_{2, j}}{m_{2, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}=} \\
& (\Delta \xi) f_{1, j}^{n+1}+\left(V_{n}\right)_{1, j}^{n}-\left(V_{n}\right)_{2, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{aligned}
&-\frac{J_{N_{1}-1, j}}{m_{N_{1}-1, j}} {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+} \\
& \frac{J_{N_{1}, j}}{m_{N_{1}, j}} {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
&(\Delta \xi) f_{N_{1}, j}^{n+1}+\left(V_{n}\right)_{N_{1}-1, j}^{n}-\left(V_{n}\right)_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point Normal Velocity Gradient in Coordinate Direction, \(\partial V_{n} \mid \partial \phi=f\).}

Applying equation (6.8) of Volume 1 at the \(\zeta=0\) boundary, and using three-point one-sided differencing,
\[
\begin{gathered}
-3 \frac{J_{1, j}}{m_{1, j}}\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+ \\
4 \frac{J_{2, j}}{m_{2, j}}\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}- \\
\frac{J_{3, j}}{m_{3, j}}\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{3, j}^{n}= \\
2(\Delta \xi) f_{1, j}^{n+1}+3\left(V_{n}\right)_{1, j}^{n}-4\left(V_{n}\right)_{2, j}^{n}+\left(V_{n}\right)_{3, j}^{n}
\end{gathered}
\]

At the \(\xi=1\) boundary,
\[
\begin{array}{r}
\frac{J_{N_{1}-2, j}}{m_{N_{1}-2, j}}\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-2, j}^{n}- \\
4 \frac{J_{N_{1}-1, j}}{m_{N_{1}-1, j}}\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+ \\
3 \frac{J_{N_{1}, j}}{m_{N_{1}, j}}\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}= \\
2(\Delta \xi) f_{N_{1}, j}^{n+1}-\left(V_{n}\right)_{N_{1}-2, j}^{n}+4\left(V_{n}\right)_{N_{1}-1, j}^{n}-3\left(V_{n}\right)_{N_{1}, j}^{n}
\end{array}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Two-Point Normal Velocity Gradient in Normal Direction, \(\nabla V_{n} \cdot \vec{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{aligned}
-\frac{J_{1, j}}{m_{1, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\check{\zeta}_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+} \\
\frac{J_{2, j}}{m_{2, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}=} \\
& \frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta}\left(V_{n}\right)_{1, j}^{n}\right]+\left(V_{n}\right)_{1, j}^{n}-\left(V_{n}\right)_{2, j}^{n}
\end{aligned}
\]
where \(\delta_{n}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
\begin{aligned}
-\frac{J_{N_{1}-1, j}}{m_{N_{1}-1, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v v)}]_{N_{1}-1, j}^{n}+\right.} \\
\frac{J_{N_{1}, j}}{m_{N_{1}, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
& \frac{\Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta}\left(V_{n}\right)_{N_{1}, j}^{n}\right]+\left(V_{n}\right)_{N_{1}-1, j}^{n}-\left(V_{n}\right)_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point Normal Velocity Gradient in Normal Direction, \(\nabla V_{n} \cdot \vec{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
\begin{aligned}
-3 \frac{J_{1, j}}{m_{1, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v)}]_{1, j}^{n}+\right.} \\
4 \frac{J_{2, j}}{m_{2, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}-} \\
\frac{J_{3, j}}{m_{3, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{3, j}^{n}=} \\
& \frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta}\left(V_{n}\right)_{1, j}^{n}\right]+3\left(V_{n}\right)_{1, j}^{n}-4\left(V_{n}\right)_{2, j}^{n}+\left(V_{n}\right)_{3, j}^{n}
\end{aligned}
\]
where \(\delta_{\eta}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
\begin{aligned}
& \frac{J_{N_{1}-2, j}}{m_{N_{1}-2, j}}\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-2, j}^{n}- \\
& 4 \frac{J_{N_{1}-1, j}}{m_{N_{1}-1, j}}\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+ \\
& 3 \frac{J_{N_{1}, j}}{m_{N_{1}, j}}\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}= \\
& \frac{2 \Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta}\left(V_{n}\right)_{N_{1}, j}^{n}\right]-\left(V_{n}\right)_{N_{1}-2, j}^{n}+4\left(V_{n}\right)_{N_{1}-1, j}^{n}-3\left(V_{n}\right)_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Linear Extrapolation of Normal Velocity}

Applying equation (6.14) of Volume 1 at the \(\xi=0\) boundary,
\[
\begin{aligned}
\frac{J_{1, j}}{m_{1, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}-} \\
2 \frac{J_{2, j}}{m_{2, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}+} \\
\frac{J_{3, j}}{m_{3, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{3, j}^{n}=} \\
& -\left(V_{n}\right)_{1, j}^{n}+2\left(V_{n}\right)_{2, j}^{n}-\left(V_{n}\right)_{3, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{aligned}
\frac{J_{N_{1}-2, j}}{m_{N_{1}-2, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-2, j}^{n}-} \\
2 \frac{J_{N_{1}-1, j}}{m_{N_{1}-1, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+} \\
\frac{J_{N_{1}, j}}{m_{N_{1}, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
& -\left(V_{n}\right)_{N_{1}-2, j}^{n}+2\left(V_{n}\right)_{N_{1}-1, j}^{n}-\left(V_{n}\right)_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Tangential Velocity, \(V_{t}=f\)}

For a \(\zeta\) boundary, the tangential velocity is the velocity in the \(\eta\) direction, and is given by
\[
\begin{aligned}
V_{t}=V_{\eta} & =\sqrt{u^{2}+v^{2}-V_{n}^{2}} \\
& =\frac{1}{m}\left(-\xi_{y} u+\xi_{x} v\right)
\end{aligned}
\]
where
\[
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
\]

Note that this definition for tangential velocity does not include the swirl velocity \(w\) in axisymmetric flow. Separate boundary conditions should be set for \(w\).

Similarly, for an \(\eta\) boundary,
\[
V_{t}=V_{\xi}=\frac{1}{m}\left(\eta_{y} u-\eta_{x} v\right)
\]
where
\[
m=\sqrt{\eta_{x}^{2}+\eta_{y}^{2}}
\]

Applying equation (6.5) of Volume 1 , the linearized boundary condition at a \(\xi\) boundary becomes
\[
\frac{J_{i, j}}{m_{i, j}}\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{i, j}^{n}=f_{i, j}^{n+1}-\left(V_{t}\right) i_{i, j}^{n}
\]

An analogous equation can easily be written for the \(\eta\) boundaries.

\section*{Specified Two-Point Tangential Velocity Gradient in Coordinate Direction, \(\partial V_{t} / \partial \phi=f\)}

Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{aligned}
-\frac{J_{1, j}}{m_{1, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+} \\
\frac{J_{2, j}}{m_{2, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho} u)+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}=} \\
& (\Delta \xi) f_{1, j}^{n+1}+\left(V_{t}\right)_{1, j}^{n}-\left(V_{t}\right)_{2, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{aligned}
&-\frac{J_{N_{1}-1, j}}{m_{N_{1}-1, j}} {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+} \\
& \frac{J_{N_{1}, j}}{m_{N_{1}, j}} {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
&(\Delta \xi) f_{N_{1}, j}^{n+1}+\left(V_{t}\right)_{N_{1}-1, j}^{n}-\left(V_{t}\right)_{N_{1}, j}^{n} .
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.
Specified Three-Point Tangential Velocity Gradient in Coordinate Direction, \(\partial V_{;} / \partial \phi=f\)
Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
\begin{array}{r}
-3 \frac{J_{1, j}}{m_{1, j}}\left[\frac{\xi_{y} u-\check{\xi}_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+ \\
4 \frac{J_{2, j}}{m_{2, j}}\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}- \\
\frac{J_{3, j}}{m_{3, j}}\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho} \hat{v})\right]_{3, j}^{n}= \\
2(\Delta \xi) f_{1, j}^{n+1}+3\left(V_{i}\right)_{1, j}^{n}-4\left(V_{t}\right)_{2, j}^{n}+\left(V_{t}\right)_{3, j}^{n}
\end{array}
\]

At the \(\xi=1\) boundary,
\[
\begin{aligned}
& \frac{J_{N_{1}-2, j}}{m_{N_{1}-2, j}}\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-2, j}^{n}- \\
& 4 \frac{J_{N_{1}-1, j}}{m_{N_{1}-1, j}} {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u} u)+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+} \\
& 3 \frac{J_{N_{1}, j}}{m_{N_{1}, j}} {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u} u)+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
& 2(\Delta \xi) f_{N_{1}, j}^{n+1}-\left(V_{t}\right)_{N_{1}-2, j}^{n}+4\left(V_{t}\right)_{N_{1}-1, j}^{n}-3\left(V_{t}\right)_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Two-Point Tangential Velocity Gradient in Normal Direction, \(\nabla V_{-} \cdot \vec{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{aligned}
-\frac{J_{1, j}}{m_{1, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+} \\
\frac{J_{2, j}}{m_{2, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}=} \\
& \frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta}\left(V_{t}\right)_{1, j}^{n}\right]+\left(V_{t}\right)_{1, j}^{n}-\left(V_{t}\right)_{2, j}^{n}
\end{aligned}
\]
where \(\delta_{n}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
\begin{aligned}
-\frac{J_{N_{1}-1, j}}{m_{N_{1}-1, j}} & {\left[\frac{\xi_{y} u-\xi_{x}^{y}}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+} \\
\frac{J_{N_{1}, j}}{m_{N_{1}, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
& \frac{\Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta}\left(V_{t}\right)_{N_{1}, j}^{n}\right]+\left(V_{t}\right)_{N_{1}-1, j}^{n}-\left(V_{t}\right)_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point Tangential Velocity Gradient in Normal Direction, \(\nabla V_{\cdot}, \bar{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
\begin{aligned}
-3 \frac{J_{1, j}}{m_{1, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u} u)+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+} \\
4 \frac{J_{2, j}}{m_{2, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}-} \\
\frac{J_{3, j}}{m_{3, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{3, j}^{n}=} \\
& \frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta}\left(V_{t}\right)_{1, j}^{n}\right]+3\left(V_{t}\right)_{1, j}^{n}-4\left(V_{t}\right)_{2, j}^{n}+\left(V_{t}\right)_{3, j}^{n}
\end{aligned}
\]
where \(\delta_{\eta}\) is the centered difference operator presented in Section 5.0 of Volume 1 . At the \(\xi=1\) boundary,
\[
\begin{aligned}
\frac{J_{N_{1}-2, j}}{m_{N_{1}-2, j}} & {\left[\frac{\xi_{y} u-\xi_{x} y}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-2, j}^{n}-} \\
4 \frac{J_{N_{1}-1, j}}{m_{N_{1}-1, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+} \\
3 \frac{J_{N_{1}, j}}{m_{N_{1}, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
& \frac{2 \Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta}\left(V_{t}\right)_{N_{1}, j}^{n}\right]-\left(V_{t}\right)_{N_{1}-2, j}^{n}+4\left(V_{t}\right)_{N_{1}-1, j}^{n}-3\left(V_{t}\right)_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Linear Extrapolation of Tangential Velocity}

Applying equation (6.14) of Volume 1 at the \(\xi=0\) boundary,
\[
\begin{aligned}
\frac{J_{1, j}}{m_{1, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}-} \\
2 \frac{J_{2, j}}{m_{2, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u} u)+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}+} \\
\frac{J_{3, j}}{m_{3, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u} u)+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{3, j}^{n}=} \\
& -\left(V_{t}\right)_{1, j}^{n}+2\left(V_{t}\right)_{2, j}^{n}-\left(V_{t}\right)_{3, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{aligned}
\frac{J_{N_{1}-2, j}}{m_{N_{1}-2, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-2, j}^{n}-} \\
2 \frac{J_{N_{1}-1, j}}{m_{N_{1}-1, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+} \\
\frac{J_{N_{1}, j}}{m_{N_{1}, j}} & {\left[\frac{\xi_{y} u-\xi_{x} v}{\rho} \Delta \hat{\rho}-\frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
& -\left(V_{t}\right)_{N_{1}-2, j}^{n}+2\left(V_{t}\right)_{N_{1}-1, j}^{n}-\left(V_{t}\right)_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent normal or tangential velocity boundary condition is specified.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BCVVEL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline BCGEN & \begin{tabular}{l} 
BCGRAD \\
BCMET
\end{tabular} & Compute \(y\) or \(r\)-velocity boundary conditions. \\
\hline
\end{tabular}

Input

DEL
IBASE, ISTEP

IBC, FBC

IBOUND

IEQ
IMIN, IMAX
ISWEEP
IV
JI
* NOUT
\(N R, N R U, N R V\)

NVD, NPTSD
RHO, U, V

Computational grid spacing in sweep direction.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Mean flow boundary condition types and values for current sweep direction, specified as \(\operatorname{IBC}(I, J)\) and \(F B C(I, J)\), where I runs from 1 to \(N_{e q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the lower and upper boundaries.
Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.
Boundary condition equation number.
Minimum and maximum indices in the sweep direction.
Current ADI sweep number.
Index in the "vectorized" direction, \(i_{v}\).
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Unit number for standard output.
Array indices associated with the dependent variables \(\rho, \rho u\), and \(\rho v\).
Leading two dimensions for the arrays \(A, B, C\), and \(S\).
Static density \(\rho\), and velocities \(u\) and \(v\), at time level \(n\).

\section*{Output}

A, B, C

S

Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) at boundary IBOUND (row IEQ only).
Source term subvector \(S\) at boundary IBOUND (element IEQ only).

\section*{Description}

Subroutine BCVVEL computes coefficients and source terms for \(y\) or \(r\)-velocity boundary conditions. The linearized equations for the various general types of boundary conditions are developed in Section 6.0 of Volume 1. The following sections apply these generalized equations to the particular \(y\) or \(r\)-velocity boundary conditions in Proteus. \({ }^{14}\)

\footnotetext{
14 In the following description, for the first ADI sweep the dependent variables should have the superscript *, representing the intermediate solution, and for the second ADI sweep they should have the superscript \(n\), representing the final solution. For simplicity, however, only the superscript \(n\) is used. The superscripts on all other variables are correct as written.
}

\section*{No Change From Initial Conditions, \(\Delta v=0\)}

Applying equation (6.3) of Volume 1 , and noting that \(\partial g / \partial \hat{\mathbf{Q}}=J \partial g / \partial \mathbf{Q}\), we get simply
\[
J_{i, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{i, j}^{n}=0
\]

\section*{Specified y or \(r\)-Velocity, \(v=f\)}

Applying equation (6.5) of Volume 1 ,
\[
J_{i, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{i, j}^{n}=f_{i, j}^{n+1}-v_{i, j}^{n}
\]

Specified Two-Point y or r-Velocity Gradient in Coordinate Direction, \(\partial v / \partial \phi=f\)
Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{aligned}
-J_{1, j} & {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+J_{2, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}=} \\
& (\Delta \zeta) f_{1, j}^{n+1}+v_{1, j}^{n}-v_{2, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{aligned}
&-J_{N_{1}-1, j} {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+J_{N_{i}, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
&(\Delta \xi) f_{N_{1}, j}^{n+1}+v_{N_{1}-1, j}^{n}-v_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point y or \(r\)-Velocity Gradient in Coordinate Direction, \(\partial v / \partial \phi=f\)}

Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
\begin{array}{r}
-3 J_{1, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+4 J_{2, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}- \\
J_{3, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{3, j}^{n}=2(\Delta \xi) f_{1, j}^{n+1}+3 v_{1, j}^{n}-4 v_{2, j}^{n}+v_{3, j}^{n}
\end{array}
\]

At the \(\xi=1\) boundary,
\[
\begin{gathered}
J_{N_{1}-2, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+ \\
\left.3 J_{N_{1}, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=2(\Delta \zeta)\right) f_{N_{1}, j}^{n+1}-v_{N_{1}-2, j}^{n}+4 v_{N_{1}-1, j}^{n}-3 v_{N_{1}, j}^{n}
\end{gathered}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Two-Point y or \(r\)-Velocity Gradient in Normal Direction, \(\nabla v \cdot \bar{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{gathered}
-J_{1, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+J_{2, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}= \\
\frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} v_{1, j}^{n}\right]+v_{1, j}^{n}-v_{2, j}^{n}
\end{gathered}
\]
where
\[
m=\sqrt{\xi_{x}{ }^{2}+\xi_{y}{ }^{2}}
\]
and \(\delta_{n}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
\begin{aligned}
&-J_{N_{1}-1, j} {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+J_{N_{1}, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
& \frac{\Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} \nu_{N_{1}, j}^{n}\right]+v_{N_{1}-1, j}^{n}-v_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point y or \(r\)-Velocity Gradient in Normal Direction, \(\nabla v \cdot \vec{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
\begin{aligned}
-3 J_{1, j} & {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+4 J_{2, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}-} \\
J_{3, j} & {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{3, j}^{n}=\frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} v_{1, j}^{n}\right]+} \\
& 3 v_{1, j}^{n}-4 v_{2, j}^{n}+v_{3, j}^{n}
\end{aligned}
\]
where
\[
m=\sqrt{\xi_{x}{ }^{2}+\xi_{y}{ }^{2}}
\]
and \(\delta_{\eta}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
\begin{aligned}
& J_{N_{1}-2, j} {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+} \\
& 3 J_{N_{1}, j} {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=\frac{2 \Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} \nu_{N_{1}, j}^{n}\right]-} \\
& v_{N_{1}-2, j}^{n}+4 v_{N_{1}-1, j}^{n}-3 v_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Linear Extrapolation of y or \(r\)-Velocity}

Applying equation (6.14) of Volume 1 at the \(\xi=0\) boundary,
\[
\begin{aligned}
& J_{1, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}-2 J_{2, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}+ \\
& J_{3, j}^{n}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{3, j}^{n}=-v_{1, j}^{n}+2 v_{2, j}^{n}-v_{3, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{gathered}
J_{N_{1}-2, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-2, j}^{n}-2 J_{N_{1}-1, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+ \\
J_{N_{1}, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=-v_{N_{1}-2, j}^{n}+2 v_{N_{1}-1, j}^{n}-v_{N_{1}, j}^{n}
\end{gathered}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.
Specified Flow Angle, \(\tan ^{-1}(v / u)=f\)
This boundary condition can be rewritten as
\[
\frac{v}{u}=\tan f
\]
where \(f\) is the specified flow angle. Multiplying by \(\rho u\),
\[
(\tan f) \rho u-\rho v=0
\]

Applying equation (6.5) of Volume 1 to the above equation, we get
\[
J_{i, j}\left[(\tan f)_{i, j}^{n+1} \Delta(\hat{\rho u})_{i, j}^{n}-\Delta(\hat{\rho v})_{i, j}^{n}\right]=-(\tan f)_{i, j}^{n}+(\rho v)_{i, j}^{n}
\]

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent \(y\)-velocity boundary condition
is specified.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BCWVEL (IBC,FBC,IEQ,IMIN,IMAX,IBOLND,A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline BCGE. & \begin{tabular}{l} 
BCGRAD \\
BC.MET
\end{tabular} & Compute swirl velocity boundary conditions. \\
\hline
\end{tabular}

\section*{Input}

DEL
IBASE, ISTEP
\(\mathrm{IBC}, \mathrm{FBC}\)

IBOUND

IEQ
IMIN, IMAX
ISWEEP
IV
JI
* NOUT

NR, NRU, NRW

NVD, NPTSD
RHO, U, W

Computational grid spacing in sweep direction.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Mean flow boundary condition types and values for current sweep direction, specified as \(\operatorname{IBC}(I, J)\) and \(\operatorname{FBC}(I, J)\), where I runs from 1 to \(N_{e q}\), corresponding to the \(N_{e q}\) conditions needed, and \(\mathrm{J}=1\) or 2 , corresponding to the lower and upper boundaries.
Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.
Boundary condition equation number.
Minimum and maximum indices in the sweep direction.
Current ADI sweep number.
Index in the "vectorized" direction, \(i\).
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Unit number for standard output.
Array indices associated with the dependent variables \(\rho, \rho u\), and \(\rho w\).
Leading two dimensions for the arrays \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S .
Static density \(\rho\), and velocities \(u\) and \(w\), at time level \(n\).

\section*{Output}

A, B, C
S

Coefficient submatrices A, B, and \(\mathbf{C}\) at boundary IBOUND (row IEQ only).
Source term subvector \(\mathbf{S}\) at boundary IBOLND (element IEQ only).

\section*{Description}

Subroutine BCWVEL computes coefficients and source terms for swirl velocity boundary conditions. The linearized equations for the various general types of boundary conditions are developed in Section 6.0 of Volume 1. The following sections apply these generalized equations to the particular swirl velocity boundary conditions in Proteus. \({ }^{15}\)

15 In the following description, for the first ADI sweep the dependent variables should have the superscript *, representing the intermediate solution, and for the second ADI sweep they should have the superscript \(n\), representing the final solution. For simplicity, however, only the superscript \(n\) is used. The superscripts on all other variables are correct as written.

\section*{No Change From Initial Conditions, \(\Delta w=0\)}

Applying equation (6.3) of Volume 1 , and noting that \(\partial g / \partial \hat{\mathbf{Q}}=J \partial g / \partial \mathbf{Q}\), we get simply
\[
J_{i, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{i, j}^{n}=0
\]

\section*{Specified Swirl Velocity, \(w=f\)}

Applying equation (6.5) of Volume 1 ,
\[
J_{i, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{i, j}^{n}=f_{i, j}^{n+1}-w_{i, j}^{n}
\]

Specified Two-Point Swirl Velocity Gradient in Coordinate Direction, \(\partial w / \partial \phi=f\)
Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{aligned}
-J_{1, j} & {\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{1, j}^{n}+J_{2, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{2, j}^{n}=} \\
& (\Delta \xi) f_{1, j}^{n+1}+w_{1, j}^{n}-w_{2, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{aligned}
&-J_{N_{1}-1, j} {\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-1, j}^{n}+J_{N_{1}, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}, j}^{n}=} \\
&(\Delta \xi) f_{N_{1}, j}^{n+1}+w_{N_{1}-1, j}^{n}-w_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.
Specified Three-Point Swirl Velocity Gradient in Coordinate Direction, \(\partial w / \partial \phi=f\)
Applying equation (6.8) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
\begin{array}{r}
-3 J_{1, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{1, j}^{n}+4 J_{2, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{2, j}^{n}- \\
J_{3, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{3, j}^{n}=2(\Delta \xi) f_{1, j}^{n+1}+3 w_{1, j}^{n}-4 w_{2, j}^{n}+w_{3, j}^{n}
\end{array}
\]

At the \(\xi=1\) boundary,
\[
\begin{gathered}
J_{N_{1}-2, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-1, j}^{n}+ \\
3 J_{N_{1}, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}, j}^{n}=2(\Delta \xi) f_{N_{1}, j}^{n+1}-w_{N_{1}-2, j}^{n}+4 w_{N_{1}-1, j}^{n}-3 w_{N_{1}, j}^{n}
\end{gathered}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Two-Point Swirl Velocity Gradient in Normal Direction, \(\nabla w \cdot \vec{n}=f\)}

Applying equation ( 6.12 a ) of Volume 1 at the \(\xi=0\) boundary, and using two-point one-sided differencing,
\[
\begin{gathered}
-J_{1, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{1, j}^{n}+J_{2, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{2, j}^{n}= \\
\frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} w_{1, j}^{n}\right]+w_{1, j}^{n}-w_{2, j}^{n}
\end{gathered}
\]
where
\[
m=\sqrt{\xi_{x}^{2}+\xi_{y}{ }^{2}}
\]
and \(\delta_{\eta}\) is the centered difference operator presented in Section 5.0 of Volume 1 . At the \(\xi=1\) boundary,
\[
\begin{aligned}
-J_{N_{1}-1, j} & {\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-1, j}^{n}+J_{N_{1}, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}, j}^{n}=} \\
& \frac{\Delta \xi}{m_{N_{1}, j}}\left[\int_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} w_{N_{1}, j}^{n}\right]+w_{N_{1}-1, j}^{n}-w_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Specified Three-Point Swirl Velocity Gradient in Normal Direction, \(\nabla w \cdot \vec{n}=f\)}

Applying equation (6.12a) of Volume 1 at the \(\xi=0\) boundary, and using three-point one-sided differencing,
\[
\begin{aligned}
-3 J_{1, j} & {\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{1, j}^{n}+4 J_{2, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{2, j}^{n}-} \\
J_{3, j} & {\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{3, j}^{n}=\frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} w_{1, j}^{n}\right]+} \\
& 3 w_{1, j}^{n}-4 w_{2, j}^{n}+w_{3, j}^{n}
\end{aligned}
\]
where
\[
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
\]
and \(\delta_{\eta}\) is the centered difference operator presented in Section 5.0 of Volume 1. At the \(\xi=1\) boundary,
\[
\begin{aligned}
& J_{N_{1}-2, j} {\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-1, j}^{n}+} \\
& 3 J_{N_{1}, j} {\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}, j}^{n}=\frac{2 \Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)}{m_{N_{1}, j}} \delta_{N_{1}, j} w_{N_{1}, j}^{n}\right]-} \\
& w_{N_{1}-2, j}^{n}+4 w_{N_{1}-1, j}^{n}-3 w_{N_{1}, j}^{n}
\end{aligned}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.

\section*{Linear Extrapolation of Swirl Velocity}

Applying equation (6.14) of Volume 1 at the \(\xi=0\) boundary,
\[
\begin{aligned}
& J_{1, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{1, j}^{n}-2 J_{2, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho} \hat{w})\right]_{2, j}^{n}+ \\
& J_{3, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho} \hat{w})\right]_{3, j}^{n}=-w_{1, j}^{n}+2 w_{2, j}^{n}-w_{3, j}^{n}
\end{aligned}
\]

At the \(\xi=1\) boundary,
\[
\begin{gathered}
J_{N_{1}-2, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-2, j}^{n}-2 J_{N_{1}-1, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-1, j}^{n}+ \\
J_{N_{1}, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}, j}^{n}=-w_{N_{1}-2, j}^{n}+2 w_{N_{1}-1, j}^{n}-w_{N_{1}, j}^{n}
\end{gathered}
\]

Analogous equations can easily be written for the \(\eta\) boundaries.
Specified Flow Angle, \(\tan ^{-1}(w / u)=f\)
This boundary condition can be rewritten as
\[
\frac{w}{u}=\tan f
\]
where \(f\) is the specified flow angle. Multiplying by \(\rho u\),
\[
(\tan f) \rho u-\rho w=0
\]

Applying equation (6.5) of Volume 1 to the above equation, we get
\[
J_{i, j}\left[(\tan f)_{i, j}^{n+1} \Delta(\hat{\rho u})_{i, j}^{n}-\Delta(\hat{\rho w})_{i, j}^{n}\right]=-(\tan f)_{i, j}^{n}+(\rho w)_{i, j}^{n}
\]

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent swirl velocity boundary condition is specified.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine BLIN1 } \\
\hline Called by & Calls & Purpose \\
\hline TCRBBL & ISRCHEQ & Compute inner layer turbulent viscosity along constant \(\bar{\xi}\) lines. \\
\hline
\end{tabular}

\section*{Input}
* APLUS
* CB
* CNL
* CVK
* IDEBLG
* ILDAMP
* INNER
* IPRTIA, IPRT2A

IT
* IWALL2

II
* LWALL2

MU
MUT
* NOUT

NPRT1, NPRT2
* N 2
* RER

RHO, U, V, W
VORT
\(\mathrm{X}, \mathrm{Y}\)

Van Driest damping constant \(A^{+}\).
Constant \(B\) in the Spalding-Kleinstein inner layer model.
Exponent \(n\) in the Launder-Priddin modified mixing length formula for the inner region of the Baldwin-Lomax turbulence model.
Von Karman mixing length constant used in the inner region of the Baldwin-Lomax and Spalding-Kleinstein models.
Debug flags.
Flag for Launder-Priddin modified mixing length formula in the Baldwin-Lomax inner region model.
Flag for type of inner region model.
Indices for printout in the \(\xi\) and \(\eta\) directions.
Current time step number \(n\).
Flags indicating whether or not the \(\eta\) boundaries are walls.
Grid index \(i\) in the \(\xi\) direction.
Flags specifying wall locations for \(\eta\) boundaries.
Laminar coefficient of viscosity \(\mu_{1}\).
Outer layer turbulent viscosity coefficient \(\left(\mu_{r}\right)_{\text {oute }}\) along constant \(\xi\) lines.
Unit number for standard output.
Total number of indices for printout in the \(\xi\) and \(\eta\) directions.
Number of grid points \(N_{2}\) in the \(\eta\) direction.
Reference Reynolds number \(R e_{r}\).
Static density \(\rho\), and velocities \(u, v\), and \(w\).
Total vorticity magnitude.
Cartesian coordinates \(x\) and \(y\), or cylindrical coordinates \(x\) and \(r\).

\section*{Output}

MUT
Turbulent viscosity coefficient \(\mu_{\text {: }}\) along constant \(\xi\) lines.

\section*{Description}

Subroutine BLINl computes the inner layer turbulent viscosity coefficient \(\left(\mu_{\mathrm{t}}\right)_{\text {uner }}\) at a specified \(\xi\) location (i.e., due to walls at \(\eta=0\) and/or \(\eta=1\).) Two different inner region models are available - the model of Baldwin and Lomax (1978), and the model of Spalding (1961) and Kleinstein (1967). These are described in Section 9.1.2 of Volume 1.

If both \(\eta\) boundaries are solid walls, \(\left(\mu_{q}\right)_{\text {inece }}\) is computed separately for each wall, and it is assumed that the two inner regions do not overlap. For each wall, the computation is done inside a loop starting at the wall and moving outward. Once the inner region value exceeds the outer region value, the loop is exited. Thus \(\mu_{t}=\left(\mu_{t}\right)_{\text {inere }}\) until \(\left(\mu_{t}\right)_{\text {imer }} \geq\left(\mu_{t}\right)_{\text {outer }}\), then \(\mu_{t}=\left(\mu_{t}\right)_{\text {outer }}\).

The distribution of \(\mu_{t}\) across the intersection of the inner and outer regions is smoothed using the following formulas. For the \(\eta=0\) wall,
\[
\begin{aligned}
\left(\mu_{t}\right)_{j_{b}} & =\frac{1}{4}\left[\left(\mu_{t}\right)_{j_{b}-1}+2\left(\mu_{t}\right)_{j_{b}}+\left(\mu_{t}\right)_{j_{b}+1}\right] \\
\left(\mu_{t}\right)_{j_{b}-1} & =\frac{1}{4}\left[\left(\mu_{t}\right)_{j_{b}-2}+2\left(\mu_{t}\right)_{j_{b}-1}+\left(\mu_{t}\right)_{b_{b}}\right]
\end{aligned}
\]
where the boundary between the inner and outer regions falls between between \(j=j_{b}-1\) and \(j=j_{b}\). It should be noted that the unsmoothed value of \(\left(\mu_{t}\right)_{j b}\) is used in the second smoothing formula, not the smoothed value from the first formula. Similarly, for the \(\eta=1\) wall,
\[
\begin{aligned}
\left(\mu_{t}\right)_{j_{b}} & =\frac{1}{4}\left[\left(\mu_{t}\right)_{b_{b}+1}+2\left(\mu_{t}\right)_{j_{b}}+\left(\mu_{t}\right)_{j_{b}-1}\right] \\
\left(\mu_{t}\right)_{j_{b}+1} & =\frac{1}{4}\left[\left(\mu_{t}\right)_{j_{b}+2}+2\left(\mu_{t}\right)_{j_{b}+1}+\left(\mu_{t}\right)_{j_{b}}\right]
\end{aligned}
\]
where the boundary between the inner and outer regions falls between between \(j=j_{b}+1\) and \(j=j_{b}\).

\section*{Remarks}
1. To avoid the possibility of floating point errors, the value of \(|\vec{\Omega}|_{w}\) used to compute \(\tau^{+}\)and \(u^{+}\)is set to a minimum of \(10^{-10}\).
2. The Cray search routine ISRCHEQ is used in determining the grid locations for debug printout.
3. This subroutine generates output for the IDEBUG(8) option.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine BLIN2 } \\
\hline Called by & Calls & Purpose \\
\hline TURBBL & ISRCHEQ & Compute inner layer turbulent viscosity along constant \(\eta\) lines. \\
\hline
\end{tabular}

\section*{Input}
* APLUS
* CB
* C.NL
* CVK

DLMMY
* IDEBUG
* ILDAMP
* INNER
* IPRTIA, IPRT2A

IT
* IWALLI

I2
* LWALLI

MU
* NOUT

NPRT1, NPRT2
* N1
* RER

RHO, U, V, W
VORT
\(\mathrm{X}, \mathrm{Y}\)

Van Driest damping constant \(A^{+}\).
Constant \(B\) in the Spalding-Kleinstein inner layer model.
Exponent \(n\) in the Launder-Priddin modified mixing length formula for the inner region of the Baldwin-Lomax turbulence model.
Von Karman mixing length constant used in the inner region of the Baldwin-Lomax and Spalding-Kleinstein models.
Outer layer turbulent viscosity coefficient \(\left(\mu_{t}\right)_{\text {outer }}\) along constant \(\eta\) lines.

\section*{Debug flags.}

Flag for Launder-Priddin modified mixing length formula in the Baldwin-Lomax inner region model.
Flag for type of inner region model.
Indices for printout in the \(\xi\) and \(\eta\) directions.
Current time step number \(n\).
Flags indicating whether or not the \(\xi\) boundaries are walls.
Grid index \(j\) in the \(\eta\) direction.
Flags specifying wall locations for \(\xi\) boundaries.
Laminar coefficient of viscosity \(\mu_{l}\).
Unit number for standard output.
Total number of indices for printout in the \(\xi\) and \(\eta\) directions.
Number of grid points \(N_{1}\) in the \(\xi\) direction.
Reference Reynolds number \(R e_{r}\).
Static density \(\rho\), and velocities \(u, v\), and \(w\).
Total vorticity magnitude.
Cartesian coordinates \(x\) and \(y\), or cylindrical coordinates \(x\) and \(r\).

\section*{Output}

\section*{DUMMY}

Turbulent viscosity coefficient \(\mu_{t}\) along constant \(\eta\) lines.

\section*{Description}

Subroutine BLIN2 computes the inner layer turbulent viscosity coefficient \(\left(\mu_{d}\right)_{\text {inere }}\) at a specified \(\eta\) location (i.e., due to walls at \(\xi=0\) and or \(\xi=1\).) The procedure is exactly analogous to that used in subroutine BLINI.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BLKOUT (IIPT,I2PT,A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline ADI & & Print coefficient blocks at specified indices in the \(\xi\) and \(\eta\) directions. \\
AVISCl & & \\
AVISC2 & & \\
BCGEN & & \\
FILTER & & \\
\hline
\end{tabular}

\section*{Input}

A, B, C
* IHSTAG

ISWEEP
* ISWIRL

I1PT, I2PT
NC, NXM, NYM, NZM, NEN

NEQ
* NOUT

NVD, NPTSD
S

Coefficient submatrices A, B, and C
Flag for constant stagnation enthalpy option.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Indices for printout in the \(\xi\) and \(\eta\) directions.
Array indices associated with the continuity, \(x\)-momentum, \(y\)-momentum (or \(r\)-momentum if axisymmetric), swirl momentum, and energy equations.
Number of coupled equations being solved, \(N_{e q}\).
Unit number for standard output.
Leading two dimensions for the arrays \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S .
Source term subvector \(\mathbf{S}\).

\section*{Output}

None.

\section*{Description}

Subroutine BLKOUT prints the coefficient block submatrices A, B, and C, and the source term subvector \(S\) at the grid points specified by I1PT and I2PT. This is the routine that actually prints the output for the IDEBUG(1) through IDEBUG(4) options.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BLK2 (A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline EXECT & & Solve \(2 \times 2\) block tridiagonal system of equations. \\
\hline
\end{tabular}

\section*{Input}

A, B, C
NPTS
NV
NVD, NPTSD
S

Coefficient submatrices A, B, and C
Number of grid points in the sweep direction, \(N\).
Number of grid points in the "vectorized" direction, \(N_{v}\).
Leading two dimensions for the arrays \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S .
Source term subvector \(\mathbf{S}\).

\section*{Output}

S
Computed solution subvector.

\section*{Description}

Subroutine BLK2 solves a block tridiagonal system of equations with \(2 \times 2\) blocks using the block matrix version of the Thomas algorithm. The algorithm is described in Section 7.2.1 of Volume 1. For clarity, that description involves additional "new" matrices \(\mathbf{D}, \mathbf{E}\), and \(\Delta \hat{\mathbf{Q}}^{\prime}\). In Fortran, however, we can save storage by overwriting B, C, and S. The following table relates the algorithm as implemented in Fortran to the notation used in Volume 1, for the first ADI sweep. An exactly analogous procedure is followed for the second sweep.
\begin{tabular}{|c|c|c|}
\hline Step & In Fortran & In Volume 1 Notation \\
\hline 1 & & \(\mathrm{D}_{2}=\mathrm{B}_{2}\) \\
\hline \[
\begin{aligned}
& 2 \mathrm{a} \\
& 2 \mathrm{~b}
\end{aligned}
\] & Solve \(\mathbf{B}_{2} \mathbf{E}_{2}=\mathbf{C}_{1}\) for \(\mathbf{E}_{2}\), storing result in \(\mathbf{C}_{2}\) Solve \(\mathbf{B}_{2} \Delta \hat{\mathbf{Q}}_{2}^{\prime}=\mathbf{S}_{2}\) for \(\Delta \hat{\mathbf{Q}}_{2}^{\prime}\), storing result in \(\mathbf{S}_{2}\) & \[
\begin{aligned}
& \mathbf{E}_{2}=\mathbf{D}_{2}^{-1} \mathbf{C}_{2} \\
& \Delta \hat{\mathbf{Q}}_{2}^{\prime}=\mathbf{D}_{2}^{-1} \mathbf{S}_{2}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 3 \mathrm{a} \\
& 3 \mathrm{~b} \\
& 3 \mathrm{c} \\
& 3 \mathrm{~d}
\end{aligned}
\] & \begin{tabular}{l}
For \(i=3\) to \(N_{1}-1\), \\
Compute \(\mathbf{B}_{i}-\mathbf{A}_{i} \mathbf{C}_{i-1}\), storing result in \(\mathbf{B}_{i}\) \\
Compute \(\mathbf{S}_{i}-\mathbf{A} \mathbf{S}_{i-1}\), storing result in \(\mathbf{S}_{i}\) \\
Solve \(\mathbf{B}_{i} \mathbf{E}_{i}=\mathbf{C}_{i}\) for \(\mathbf{E}_{i}\), storing result in \(\mathbf{C}_{i}\) \\
Solve \(\mathbf{B}_{i} \Delta \hat{\mathbf{Q}}_{i}^{\prime}=\mathbf{S}_{i}\) for \(\Delta \hat{\mathbf{Q}}_{i}^{\prime}\), storing result in \(\mathbf{S}_{i}\)
\end{tabular} & \[
\begin{aligned}
& \mathbf{D}_{i}=\mathbf{B}_{i}-\mathbf{A}_{i} \mathbf{E}_{i-1} \\
& \mathbf{S}_{i}-\mathbf{A}_{\Delta} \Delta \mathbf{Q}_{i-1}^{\prime} \\
& \mathbf{E}_{i}=\mathbf{D}_{i}^{-1} \mathbf{C}_{i} \\
& \Delta \hat{\mathbf{Q}}_{i}^{\prime}=\mathbf{D}_{i}^{-1}\left(\mathbf{S}_{i}-\mathbf{A}_{i} \Delta \hat{\mathbf{Q}}_{i-1}^{\prime}\right)
\end{aligned}
\] \\
\hline 4 & & \(\Delta \hat{\mathbf{Q}}_{N_{1}-1}=\Delta \hat{\mathbf{Q}}_{N_{1}-1}^{\prime}\) \\
\hline 5 & \begin{tabular}{l}
For \(i=N_{1}-2\) to 2 , \\
Compute \(\mathbf{S}_{i}-\mathbf{C}_{i} \mathbf{S}_{i+1}\), storing result in \(\mathbf{S}_{i}\)
\end{tabular} & \(\Delta \hat{\mathbf{Q}}_{i}=\Delta \hat{\mathbf{Q}}_{i}^{\prime}-\mathbf{E}_{i} \Delta \hat{\mathbf{Q}}_{i+1}\) \\
\hline
\end{tabular}

\section*{Remarks}
1. The notation used in the comments in BLK2 is consistent with the notation used in the description of the algorithm in Volume 1. However, BLK2 is actually used to solve the \(k-\varepsilon\) turbulence model equations, and the boundary conditions for these equations are treated explicitly. That's why the index in BLK2 runs from \(i=2\) to \(N_{1}-1\), instead of from \(i=1\) to \(N_{1}\). In addition, in BLK2 the matrix \(\mathbf{D}^{-1}\) is computed directly, rather than by LU decomposition.
2. The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S arrays. It was added simply to allow vectorization of the BLK routines. This increases the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine BLK2P (A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline EXECT & & Solve \(2 \times 2\) periodic block tridiagonal system of equations. \\
\hline
\end{tabular}

\section*{Input}
A, B, C
Coefficient submatrices A, B, and C

NPTS
NV
NVD, NPTSD
S

Number of grid points in the sweep direction, \(N\).
Number of grid points in the "vectorized" direction, \(N_{v}\).
Leading two dimensions for the arrays A, B, C, and S.
Source term subvector \(\mathbf{S}\).

\section*{Output}

S
Computed solution subvector.

\section*{Description}

Subroutine BLK2P solves a periodic block tridiagonal system of equations with \(2 \times 2\) blocks. An efficient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations. The algorithm is described in Section 7.2.2 of Volume 1. For clarity, that description involves additional "new" matrices D, E, F, G, and \(\Delta \hat{\mathbf{Q}}^{\prime}\). In Fortran, however, we can save storage by overwriting A, B, C, and S. The following table relates the algorithm as implemented in Fortran to the notation used in Volume 1, for the first ADI sweep. An exactly analogous procedure is followed for the second sweep
\begin{tabular}{|c|c|c|}
\hline Step & In Fortran & In Volume 1 Notation \\
\hline \[
\begin{aligned}
& \text { la } \\
& \mathrm{lb}
\end{aligned}
\] & & \[
\begin{aligned}
& \mathbf{D}_{2}=\mathbf{B}_{2} \\
& \mathbf{F}_{2}=\mathbf{C}_{N_{1}}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 2 \mathrm{a} \\
& 2 \mathrm{~b} \\
& 2 \mathrm{c}
\end{aligned}
\] & \begin{tabular}{l}
Solve \(\mathbf{B}_{2} \mathbf{E}_{2}=\mathbf{C}_{2}\) for \(\mathbf{E}_{2}\), storing result in \(\mathbf{C}_{2}\) Solve \(\mathbf{B}_{2} \mathbf{G}_{2}=\mathbf{A}_{2}\) for \(\mathbf{G}_{2}\), storing result in \(\mathbf{A}_{2}\) \\
Solve \(\mathbf{B}_{2} \Delta \hat{\mathbf{Q}}_{2}^{\prime}=\mathbf{S}_{2}\) for \(\Delta \hat{Q}_{2}^{\prime}\), storing result in \(\mathbf{S}_{2}\)
\end{tabular} & \[
\begin{aligned}
& \mathbf{E}_{2}=\mathbf{D}_{2}^{-1} \mathbf{C}_{2} \\
& \mathbf{G}_{2}=\mathbf{D}_{\mathbf{2}}^{-1} \mathbf{A}_{2} \\
& \Delta \hat{\mathbf{Q}}_{2}^{\prime}=\mathbf{D}_{\mathbf{2}}^{-1} \mathbf{S}_{2}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
3a \\
3b \\
3c \\
3d \\
3 e \\
\(3 f\) \\
3 g \\
3h \\
3i
\end{tabular} & \begin{tabular}{l}
For \(i=3\) to \(N_{1}-1\), \\
Compute \(\mathbf{B}_{i}-\mathbf{A}_{i} \mathbf{C}_{i-1}\), storing result in \(\mathbf{B}_{i}\) \\
Compute \(\mathbf{S}_{i}-\mathbf{A}_{i} \mathbf{S}_{i-1}\), storing result in \(\mathbf{S}_{i}\) \\
Compute \(-\mathbf{A}_{i} \mathbf{A}_{i-1}\), storing result in \(\mathbf{A}_{i}\) \\
Solve \(\mathbf{B} \mathbf{E}_{i}=\mathbf{C}_{i}\) for \(\mathbf{E}_{i}\), storing result in \(\mathbf{C}_{i}\) \\
Solve \(\mathbf{B}_{i} \mathbf{G}_{i}=\mathbf{A}_{i}\) for \(\mathbf{G}_{i}\), storing result in \(\mathbf{A}_{i}\) \\
Solve \(\mathbf{B} \Delta \hat{\mathbf{Q}}_{i}^{\prime}=\mathbf{S}_{i}\) for \(\Delta \hat{\mathbf{Q}}_{i}^{\prime}\), storing result in \(\mathbf{S}_{i}\) \\
Compute \(\mathbf{B}_{N_{1}}-\mathbf{C}_{N_{1}} \mathbf{A}_{i-1}\), storing result in \(\mathbf{B}_{N_{1}}\) \\
Compute \(\mathbf{S}_{N_{1}}-\mathbf{C}_{N_{1}} \mathbf{S}_{i-1}\), storing result in \(\mathbf{S}_{N_{1}}\) \\
Compute \(-\mathrm{C}_{N_{1}} \mathrm{C}_{i-1}\), storing result in \(\mathrm{C}_{N_{1}}\)
\end{tabular} & \[
\begin{aligned}
& \mathbf{D}_{i}=\mathbf{B}_{i}-\mathbf{A}^{\prime} \mathbf{E}_{i-1} \\
& \mathbf{S}_{i}-\mathbf{A}_{i} \Delta \hat{\mathbf{Q}}_{i-1}^{\prime} \\
& -\mathbf{A}_{i} \mathbf{G}_{i-1} \\
& \mathbf{E}_{i}=\mathbf{D}_{i}^{-1} \mathbf{C}_{i} \\
& \mathbf{G}_{i}=\mathbf{D}_{i}^{-1} \mathbf{A}_{i} \mathbf{G}_{i-1} \\
& \Delta \hat{\mathbf{Q}}_{i}^{\prime}=\mathbf{D}_{i}^{-1}\left(\mathbf{S}_{i}-\mathbf{A}_{i} \Delta \hat{\mathbf{Q}}_{i-1}^{\prime}\right) \\
& \mathbf{B}_{N_{1}}-\sum_{j=2}^{1} \mathbf{F}_{i} \mathbf{G}_{j} \\
& \mathbf{S}_{N_{1}}-\sum_{j=2}^{i-1} \mathbf{F}_{j} \Delta \hat{\mathbf{Q}}_{j}^{\prime} \\
& \mathbf{F}_{i}=-\mathbf{F}_{i-1} \mathbf{E}_{i-1} \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Step & In Fortran & In Volume 1 Notation \\
\hline 4 a & Compute \(\mathbf{A}_{N_{1}-1}+\mathrm{C}_{N_{1}-1}\), storing result in \(\mathbf{A}_{N_{1}-1}\) & \(\mathbf{G}_{N_{1}-1}=\mathbf{D}_{\bar{N}_{1}^{1}-1}^{1}\left(\mathbf{C}_{N_{1}-1}-\mathbf{A}_{N_{1}-1} \mathbf{G}_{N_{1}-2}\right)\) \\
\hline 4 b & Compute \(\mathbf{A}_{N_{1}}+\mathbf{C}_{N_{1}}\), storing result in \(\mathbf{C}_{N_{1}}\) & \(\mathbf{F}_{N_{1}-1}=\mathbf{A}_{N_{1}}-\mathbf{F}_{N_{1}-2} \mathbf{E}_{N_{1}-2}\) \\
\hline 4 c & Compute \(\mathbf{B}_{N_{1}}-\mathbf{C}_{N_{1}} \mathbf{A}_{N_{1}-1}\), storing result in \(\mathbf{B}_{N_{1}}\) & \[
\mathbf{D}_{N_{1}}=\mathbf{B}_{N_{1}}-\sum_{i=2}^{N_{i}-1} \mathbf{F}_{i} \mathbf{G}_{i}
\] \\
\hline 4 d & Compute \(\mathbf{S}_{N_{1}}-\mathbf{C}_{N_{1}} \mathbf{S}_{N_{1}-1}\), storing result in \(\mathbf{S}_{N_{1}}\) & \[
\mathbf{S}_{N_{1}}-\sum_{i=2}^{N_{1}-1} \mathbf{F}_{i} \Delta \hat{\mathbf{Q}}_{i}^{\prime}
\] \\
\hline 4f & Solve \(\mathbf{B}_{N_{1}} \Delta \hat{\mathbf{Q}}_{N_{1}}^{\prime}=\mathbf{S}_{N_{1}}\) for \(\Delta \hat{\mathbf{Q}}_{N_{1}}^{\prime}\), storing result in \(\mathbf{S}_{N_{1}}\) & \[
\Delta \hat{\mathbf{Q}}_{N_{1}}^{\prime}=\mathbf{D}_{\bar{N}_{1}}^{1}\left(\mathbf{S}_{N_{1}}-\sum_{i=2}^{N_{1}-1} \mathbf{F}_{i} \Delta \hat{\mathbf{Q}}_{i}^{\prime}\right)
\] \\
\hline 5 & & \(\Delta \hat{\mathbf{Q}}_{N_{1}}=\Delta \hat{\mathbf{Q}}_{N_{1}}^{\prime}\) \\
\hline 6 & Compute \(\mathbf{S}_{N_{1}-1}-\mathbf{A}_{N_{1}-1} \mathbf{S}_{N_{1}}\), storing result in \(\mathbf{S}_{N_{1}-1}\) & \(\Delta \hat{\mathbf{Q}}_{N_{1}-1}=\Delta \hat{\mathbf{Q}}_{N_{1}-1}^{\prime}-\mathbf{G}_{N_{1}-1} \Delta \hat{\mathbf{Q}}_{N_{1}}\) \\
\hline 7 & \begin{tabular}{l}
For \(i=N_{1}-2\) to 2 , \\
Compute \(\mathbf{S}_{i}-\mathbf{A}_{i} \mathbf{S}_{N_{1}}-\mathbf{C}_{i} \mathbf{S}_{i+1}\), storing result in \(\mathbf{S}_{i}\)
\end{tabular} & \(\Delta \hat{\mathbf{Q}}_{i}=\Delta \hat{\mathbf{Q}}_{i}^{\prime}-\mathbf{G}_{i} \Delta \hat{\mathbf{Q}}_{N_{1}}-\mathbf{E}_{i} \Delta \hat{\mathbf{Q}}_{i+1}\) \\
\hline 8 & Set \(\mathbf{S}_{\mathbf{t}}=\mathbf{S}_{N_{1}}\) & \(\Delta \hat{\mathbf{Q}}_{\mathbf{1}}=\Delta \hat{\mathbf{Q}}_{N_{1}}\) \\
\hline
\end{tabular}

\section*{Remarks}
1. The notation used in the comments in BLK2P is consistent with the notation used in the description of the algorithm in Volume 1. However, in BLK2P the matrix \(\mathbf{D}^{-1}\) is computed directly, rather than by LU decomposition.
2. The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S arrays. It was added simply to allow vectorization of the BLK routines. This increases the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BLK3 (A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline ADI & FILTER & Solve \(3 \times 3\) block tridiagonal system of equations. \\
\hline
\end{tabular}

\section*{Input}

A, B, C
NPTS
NV
NVD, NPTSD
S

Coefficient submatrices A, B, and C
Number of grid points in the sweep direction, \(N\).
Number of grid points in the "vectorized" direction, \(N_{v}\).
Leading two dimensions for the arrays \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S .
Source term subvector \(\mathbf{S}\).

\section*{Output}

S
Computed solution subvector.

\section*{Description}

Subroutine BLK3 solves a block tridiagonal system of equations with \(3 \times 3\) blocks using the block matrix version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero values on the diagonal of the submatrix B at the two boundaries. These can occur when mean flow boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial conditions and the order of the boundary conditions.

The algorithm is described in Section 7.2.1 of Volume 1. For clarity, that description involves additional "new" matrices \(\mathbf{D}, \mathbf{E}\), and \(\Delta \hat{\mathbf{Q}}^{\prime}\). In Fortran, however, storage is saved by overwriting B, C, and S. The following table relates the algorithm as implemented in Fortran to the notation used in Volume 1, for the first ADI sweep. An exactly analogous procedure is followed for the second sweep.
\begin{tabular}{|c|c|c|}
\hline Step & In Fortran & In Volume 1 Notation \\
\hline 1 & & \(\mathrm{D}_{1}=\mathrm{B}_{1}\) \\
\hline \[
\begin{aligned}
& 2 \mathrm{a} \\
& 2 \mathrm{~b} \\
& 2 \mathrm{c}
\end{aligned}
\] & \begin{tabular}{l}
LU decompose \(\mathbf{B}_{1}\), storing result in \(\mathbf{B}_{1}\) \\
Solve \(\mathbf{B}_{1} \mathbf{E}_{1}=\mathbf{C}_{1}\) for \(\mathbf{E}_{1}\) using LU decomposition of \(\mathbf{B}_{1}\), storing result in \(\mathbf{C}_{1}\) \\
Solve \(\mathbf{B}_{1} \Delta \hat{\mathbf{Q}}_{1}^{\prime}=\mathbf{S}_{1}\) for \(\Delta \hat{\mathbf{Q}}_{1}^{\prime}\) using LU decomposition of \(\mathbf{B}_{1}\), storing result in \(\mathbf{S}_{1}\)
\end{tabular} & LU' decomposition of \(\mathbf{D}_{1}\)
\[
\begin{aligned}
& \mathbf{E}_{1}=\mathbf{D}_{1}^{-1} \mathbf{C}_{1} \\
& \Delta \hat{\mathbf{Q}}_{1}^{\prime}=\mathbf{D}_{1}^{-1} \mathbf{S}_{1}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 3 \mathrm{a} \\
& 3 \mathrm{~b} \\
& 3 \mathrm{c} \\
& 3 \mathrm{~d} \\
& 3 \mathrm{e}
\end{aligned}
\] & \begin{tabular}{l}
For \(i=2\) to \(N_{1}\), \\
Compute \(\mathbf{B}_{i}-\mathbf{A}_{i} \mathbf{C}_{i-1}\), storing result in \(\mathbf{B}_{i}\) \\
Compute \(\mathbf{S}_{i}-\mathbf{A}_{i} \mathbf{S}_{i-1}\), storing result in \(\mathbf{S}_{i}\) \\
LU decompose \(\mathbf{B}_{i}\), storing result in \(\mathbf{B}_{i}\) \\
Solve \(\mathbf{B}_{i} \mathbf{E}_{i}=\mathbf{C}_{i}\) for \(\mathbf{E}_{i}\) using LU decomposition of \(\mathbf{B}_{i}\), storing result in \(\mathbf{C}_{i}\) \\
Solve \(\mathbf{B}_{i} \Delta \hat{\mathbf{Q}}_{i}^{\prime}=\mathbf{S}_{i}\) for \(\Delta \hat{\mathbf{Q}}_{i}^{\prime}\) using \(\mathbf{L U}\) decomposition of \(\mathbf{B}_{i}\), storing result in \(\mathbf{S}_{i}\)
\end{tabular} & \begin{tabular}{l}
\[
\mathbf{D}_{i}=\mathbf{B}_{i}-\mathbf{A}_{\mathbf{i}} \mathbf{E}_{i-1}
\] \\
\(\mathbf{S}_{i}-\mathbf{A}_{i} \Delta \hat{\mathbf{Q}}_{i-1}^{\prime}\) \\
LU decomposition of \(\mathbf{D}_{i}\)
\[
\mathbf{E}_{i}=\mathbf{D}_{i}^{-1} \mathbf{C}_{i}
\]
\[
\Delta \hat{\mathbf{Q}}_{i}^{\prime}=\mathbf{D}_{i}^{-1}\left(\mathbf{S}_{i}-\mathbf{A} \Delta \hat{\mathbf{Q}}_{i-1}^{\prime}\right)
\]
\end{tabular} \\
\hline 4 & & \(\Delta \hat{\mathbf{Q}}_{N_{1}}=\Delta \hat{\mathbf{Q}}_{N_{1}}^{\prime}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|}
\hline Step & \multicolumn{1}{|c|}{ In Fortran } & In Volume 1 Notation \\
\hline 5 & \begin{tabular}{l} 
For \(i=N_{1}-1\) to 1, \\
Compute \(\mathbf{S}_{i}-\mathbf{C}_{i} \mathbf{S}_{i+1}\), , storing result in \(\mathbf{S}_{i}\)
\end{tabular} & \(\Delta \hat{\mathbf{Q}}_{i}=\Delta \hat{\mathbf{Q}}_{i}^{\prime}-\mathbf{E}_{i} \Delta \hat{\mathbf{Q}}_{i-1}\) \\
\hline
\end{tabular}

\section*{Remarks}
1. The notation used in the comments in BLK3 is consistent with the notation used in the description of the algorithm in Volume 1.
2. The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S arrays. It was added simply to allow vectorization of the BLK routines. This increases the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Subroutine BLK3P (A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline ADI & & Solve \(3 \times 3\) periodic block tridiagonal system of equations. \\
\hline
\end{tabular}

\section*{Input}
A, B, C
Coefficient submatrices A, B, and C
NPTS
NV
NVD, NPTSD
S

> Number of grid points in the sweep direction, \(N\).
> Number of grid points in the "vectorized" direction, \(N_{v}\).
> Leading two dimensions for the arrays A, B, C, and S.
> Source term subvector S .

\section*{Output}

S
Computed solution subvector.

\section*{Description}

Subroutine BLK3P solves a periodic block tridiagonal system of equations with \(3 \times 3\) blocks. An efficient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations. The algorithm is described in Section 7.2 .2 of Volume 1. For clarity, that description involves additional "new" matrices \(\mathbf{D}, \mathbf{E}, \mathbf{F}, \mathbf{G}\), and \(\Delta \hat{\mathbf{Q}}^{\prime}\). In Fortran, however, storage is saved by overwriting A, B, C, and S . The following table relates the algonithm as implemented in Fortran to the notation used in Volume 1, for the first ADI sweep. An exactly analogous procedure is followed for the second sweep.

\begin{tabular}{|c|c|c|}
\hline Step & In Fortran & In Volume 1 Notation \\
\hline 3a & \begin{tabular}{l}
For \(i=3\) to \(N_{1}-1\), \\
Compute \(\mathbf{B}_{i}-\mathbf{A}_{i} \mathbf{C}_{i-1}\), storing result in \(\mathbf{B}_{i}\)
\end{tabular} & \(\mathbf{D}_{i}=\mathbf{B}_{i}-\mathbf{A}_{i} \mathbf{E}_{i-1}\) \\
\hline 3 b & Compute \(\mathbf{S}_{i}-\mathbf{A}_{i} \mathbf{S}_{i-1}\), storing result in \(\mathbf{S}_{i}\) &  \\
\hline 3 c & Compute - \(\mathbf{A}_{i} \mathbf{A}_{i-1}\), storing result in \(\mathbf{A}_{i}\) & \(-\mathbf{A}_{i} \mathbf{G}_{i-1}\) \\
\hline 3 d & LU decompose \(\mathbf{B}_{i}\), storing result in \(\mathbf{B}_{i}\) & LU decomposition of \(\mathbf{D}_{i}\) \\
\hline 3 e & Solve \(\mathbf{B}_{i} \mathbf{E}_{i}=\mathbf{C}_{i}\) for \(\mathbf{E}_{i}\) using LU decomposition of \(\mathbf{B}_{i}\), storing result in \(\mathbf{C}_{i}\) & \(\mathbf{E}_{i}=\mathbf{D}_{i}^{-1} \mathbf{C}_{i}\) \\
\hline 3 f & Solve \(\mathbf{B}_{i} \mathbf{G}_{i}=\mathbf{A}_{i}\) for \(\mathbf{G}_{i}\) using LU decomposition of \(\mathbf{B}_{i}\), storing result in \(\mathbf{A}_{i}\) & \(\mathbf{G}_{i}=\mathbf{D}_{i}^{-1} \mathbf{A}_{i} \mathbf{G}_{i-1}\) \\
\hline 3 g & Solve \(\mathbf{B}_{\Delta} \Delta \hat{\mathbf{Q}}_{i}^{\prime}=\mathbf{S}_{i}\) for \(\Delta \hat{\mathbf{Q}}_{i}^{\prime}\) using LU decomposition of \(\mathbf{B}_{i}\), storing result in \(\mathbf{S}_{i}\) & \(\Delta \hat{\mathbf{Q}}_{i}^{\prime}=\mathbf{D}_{i}^{-1}\left(\mathbf{S}_{i}-\mathbf{A}_{i} \Delta \hat{\mathbf{Q}}^{\prime}{ }_{i-1}\right)\) \\
\hline 3h & Compute \(\mathbf{B}_{N_{1}}-\mathbf{C}_{N_{1}} \mathbf{A}_{i-1}\), storing result in \(\mathbf{B}_{N_{1}}\) & \(\mathbf{B}_{N_{1}}-\sum_{j=2} \mathbf{F}_{j} \mathbf{G}_{j}\) \\
\hline 3 i
3 j & \begin{tabular}{l}
Compute \(\mathbf{S}_{N_{1}}-\mathbf{C}_{N_{1}} \mathbf{S}_{i-1}\), storing result in \(\mathbf{S}_{N_{1}}\) \\
Compute \(-\mathrm{C}_{N_{1}} \mathrm{C}_{i-1}\), storing result in \(\mathrm{C}_{N_{1}}\)
\end{tabular} & \[
\begin{aligned}
& \mathbf{S}_{N_{1}}-\sum_{j=2}^{i-1} \mathbf{F}_{j} \Delta \hat{\mathbf{Q}}_{j}^{\prime} \\
& \mathbf{F}_{i}=-\mathbf{F}_{i-1} \mathbf{E}_{i-1}
\end{aligned}
\] \\
\hline \[
4 \mathrm{a}
\] & Compute \(\mathbf{A}_{N_{1}-1}+\mathbf{C}_{N_{1}-1}\), storing result in \(\mathbf{A}_{N_{1}-1}\) Compute \(\mathbf{A}_{N_{1}}+\mathbf{C}_{N_{1},}\) storing result in \(\mathbf{C}_{N_{1}}\) & \[
\mathbf{G}_{N_{1}-1}=\mathbf{D}_{\bar{N}_{1}-1}^{1}\left(\mathbf{C}_{N_{1}-1}-\mathbf{A}_{N_{1}-1} \mathbf{G}_{N_{1}-2}\right)
\] \\
\hline 4 c & Compute \(\mathbf{B}_{N_{1}}-\mathbf{C}_{N_{1}} \mathbf{A}_{N_{1}-1}\), storing result in \(\mathbf{B}_{N_{1}}\) & \[
\mathbf{D}_{N_{1}}=\mathbf{B}_{N_{1}}-\sum_{i=2}^{N_{1}-1} \mathbf{F}_{i} \mathbf{G}_{i}
\] \\
\hline 4 d & Compute \(\mathbf{S}_{N_{1}}-\mathbf{C}_{N_{1}} \mathbf{S}_{N_{1}-1}\), storing result in \(\mathbf{S}_{N_{1}}\) & \[
\mathbf{S}_{N_{1}}-\sum_{i=2}^{N_{1}-1} \mathbf{F}_{i} \Delta \hat{\mathbf{Q}}_{i}^{\prime}
\] \\
\hline 4 e & LU decompose \(\mathbf{B}_{N_{1}}\), storing result in \(\mathbf{B}_{N_{1}}\) & LU decomposition of \(\mathbf{D}_{N_{1}}\) \\
\hline 4f & Solve \(\mathbf{B}_{N_{1}} \Delta \hat{\mathbf{Q}}_{N_{1}}^{\prime}=\mathbf{S}_{N_{1}}\) for \(\Delta \hat{\mathbf{Q}}_{N_{1}}^{\prime}\) using LU decomposition of \(\mathbf{B}_{N_{1}}\), storing result in \(\mathbf{S}_{N_{1}}\) & \(\Delta \hat{Q}_{N_{1}}^{\prime}=\mathbf{D}_{\bar{N}_{1}}^{1}\left(\mathbf{S}_{N_{1}}-\sum_{i=2} \mathbf{F}_{i} \Delta \hat{\mathbf{Q}}^{\prime}\right)\) \\
\hline 5 & & \(\Delta \hat{\mathbf{Q}}_{N_{1}}=\Delta \hat{\mathbf{Q}}_{N_{1}}^{\prime}\) \\
\hline 6 & Compute \(\mathbf{S}_{N_{1}-1}-\mathbf{A}_{N_{1}-1} \mathbf{S}_{N_{1}}\), storing result in \(\mathbf{S}_{N_{1}-1}\) & \(\Delta \hat{\mathbf{Q}}_{N_{1}-1}=\Delta \hat{\mathbf{Q}}_{N_{1}-1}^{\prime}-\mathbf{G}_{N_{1}-1} \Delta \hat{\mathbf{Q}}_{N_{1}}\) \\
\hline 7 & \begin{tabular}{l}
For \(i=N_{1}-2\) to 2 , \\
Compute \(\mathbf{S}_{i}-\mathbf{A}_{i} \mathbf{S}_{N_{1}}-\mathbf{C}_{i} \mathbf{S}_{i+1}\), storing result in \(\mathbf{S}_{i}\)
\end{tabular} & \(\Delta \hat{\mathbf{Q}}_{i}=\Delta \hat{\mathbf{Q}}_{i}^{\prime}-\mathbf{G}_{i} \Delta \hat{\mathbf{Q}}_{N_{1}}-\mathbf{E}_{i} \Delta \hat{\mathbf{Q}}_{\text {+ }}\) \\
\hline 8 & Set \(\mathbf{S}_{1}=\mathbf{S}_{N_{1}}\) & \(\Delta \hat{\mathbf{Q}}_{\mathbf{1}}=\Delta \hat{\mathbf{Q}}_{N_{1}}\) \\
\hline
\end{tabular}

\section*{Remarks}
1. The notation used in the comments in BLK3P is consistent with the notation used in the description of the algorithm in Volume 1.
2. The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the \(A, B, C\), and \(S\) arrays. It was added simply to allow vectorization of the BLK routines. This increases the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BLK4 (A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline ADI & FILTER & Solve \(4 \times 4\) block tridiagonal system of equations. \\
\hline
\end{tabular}

\section*{Input}

A, B, C
NPTS
NV
NVD, NPTSD
S

Coefficient submatrices A, B, and C
Number of grid points in the sweep direction, \(N\).
Number of grid points in the "vectorized" direction, \(N_{v}\).
Leading two dimensions for the arrays \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S .
Source term subvector \(\mathbf{S}\).

\section*{Output}

S
Computed solution subvector.

\section*{Description}

Subroutine BLK4 solves a block tridiagonal system of equations with \(4 \times 4\) blocks using the block matrix version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero values on the diagonal of the submatrix \(\mathbf{B}\) at the two boundaries. These can occur when mean flow boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial conditions and the order of the boundary conditions.

The algorithm is described in Section 7.2.1 of Volume 1. For clarity, that description involves additional "new" matrices \(\mathbf{D}, \mathbf{E}\), and \(\Delta \hat{Q}^{\prime}\). In Fortran, however, storage is saved by overwriting B, C, and S. The algorithm is identical to that used in subroutine BLK3. See the description of that subroutine for a table relating the algorithm as implemented in Fortran to the notation used in Volume 1.

\section*{Remarks}
1. The notation used in the comments in BLK4 is consistent with the notation used in the description of the algorithm in Volume 1.
2. The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S arrays. It was added simply to allow vectorization of the BLK routines. This increases the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BLK4P (A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline ADI & & Solve \(4 \times 4\) periodic block tridiagonal system of equations. \\
\hline
\end{tabular}

\section*{Input}
\begin{tabular}{ll} 
A, B, C & Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) \\
NPTS & Number of grid points in the sweep direction, \(N\). \\
NV & Number of grid points in the "vectorized" direction, \(N_{\nu}\). \\
NVD, NPTSD & Leading two dimensions for the arrays A, B, C, and S. \\
S & Source term subvector \(\mathbf{S}\).
\end{tabular}

\section*{Output}

S
Computed solution subvector.

\section*{Description}

Subroutine BLK4P solves a periodic block tridiagonal system of equations with \(4 \times 4\) blocks. An efficient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations. The algorithm is described in Section 7.2.2 of Volume 1. For clarity, that description involves additional "new" matrices D, E, F, G, and \(\Delta \hat{\mathbf{Q}}^{\prime}\). In Fortran, however, storage is saved by overwriting A, B, C, and S. The algorithm is identical to that used in subroutine BLK3P. See the description of that subroutine for a table relating the algorithm as implemented in Fortran to the notation used in Volume 1.

\section*{Remarks}
1. The notation used in the comments in BLK4P is consistent with the notation used in the description of the algorithm in Volume 1.
2. The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BLK5 (A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline ADI & FILTER & Solve \(5 \times 5\) block tridiagonal system of equations. \\
\hline
\end{tabular}

\section*{Input}

A, B, C
NPTS
NV
NVD, NPTSD
S

Coefficient submatrices A, B, and C
Number of grid points in the sweep direction, \(N\).
Number of grid points in the "vectorized" direction, \(N_{v}\).
Leading two dimensions for the arrays \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S .
Source term subvector \(\mathbf{S}\).

\section*{Output}

S
Computed solution subvector.

\section*{Description}

Subroutine BLK 5 solves a block tridiagonal system of equations with \(5 \times 5\) blocks using the block matrix version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero values on the diagonal of the submatrix \(\mathbf{B}\) at the two boundaries. These can occur when mean flow boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial conditions and the order of the boundary conditions.

The algorithm is described in Section 7.2.1 of Volume 1. For clarity, that description involves additional "new" matrices D, E, and \(\Delta \hat{\mathbf{Q}}^{\prime}\). In Fortran, however, storage is saved by overwriting B, C, and S. The algorithm is identical to that used in subroutine BLK3. See the description of that subroutine for a table relating the algorithm as implemented in Fortran to the notation used in Volume 1.

\section*{Remarks}
1. The notation used in the comments in BLK5 is consistent with the notation used in the description of the algorithm in Volume 1.
2. The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S arrays. It was added simply to allow vectorization of the BLK routines. This increases the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Subroutine BLK5P (A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline ADI & & Solve \(5 \times 5\) periodic block tridiagonal system of equations. \\
\hline
\end{tabular}

\section*{Input}

A, B, C
NPTS
NV
NVD, NPTSD
S

Coefficient submatrices A, B, and C
Number of grid points in the sweep direction, \(N\).
Number of grid points in the "vectorized" direction, \(N_{v}\). Leading two dimensions for the arrays \(A, B, C\), and \(S\). Source term subvector \(\mathbf{S}\).

\section*{Output}

\section*{S}

Computed solution subvector.

\section*{Description}

Subroutine BLK5P solves a periodic block tridiagonal system of equations with \(5 \times 5\) blocks. An efficient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations. The algorithm is described in Section 7.2.2 of Volume 1. For clarity, that description involves additional "new" matrices D, E, F, G, and \(\Delta \hat{Q}^{\prime}\). In Fortran, however, storage is saved by overwriting A, B, C, and S . The algorithm is identical to that used in subroutine BLK3P. See the description of that subroutine for a table relating the algorithm as implemented in Fortran to the notation used in Volume 1.

\section*{Remarks}
1. The notation used in the comments in BLKSP is consistent with the notation used in the description of the algorithm in Volume 1.
2. The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ BLOCK DATA Subprogram } \\
\hline Called by & Calls & Purpose \\
\hline & & Set default values for input parameters, plus a few other parameters. \\
\hline
\end{tabular}

\section*{Input}

None.

\section*{Output}

All namelist input parameters, plus:
\begin{tabular}{|c|c|}
\hline CCP1, ССP2, ССP3, ССР4 & Constants in formula for specific heat. \(\left(8.53 \times 10^{3}, 3.12 \times 10^{4}\right.\), \(\left.2.065 \times 10^{6}, 7.83 \times 10^{8}\right)^{16}\) \\
\hline CK1, CK2 & Constants in formula for laminar thermal conductivity coefficient.
\[
\left(7.4907 \times 10^{-3}, 350.0\right)^{16}
\] \\
\hline CMU1, CMU2 & Constants in formula for laminar viscosity coefficient. (7.3035 \(\left.\times 10^{-7}, 198.6\right)^{16}\) \\
\hline GC & Proportionality factor \(g_{c}\) in Newton's second law. (32.174) \({ }^{16}\) \\
\hline IBCELM & Flags for elimination of off-diagonal coefficient submatrices resulting from three-point boundary conditions in the \(\xi\) and \(\eta\) directions at either boundary; 0 if elimination is not necessary, 1 if it is. \(\left(2^{*} 0,2^{*} 0\right)\) \\
\hline IBVUP & Flags for updating boundary values from first sweep after second sweep; 0 if updating is not necessary, 1 if it is. ( 0,0 ) \\
\hline ICONV & Convergence flag; 1 if converged, 0 if not. (0) \\
\hline IGINT & Flags for grid interpolation requirement for the \(\xi\) and \(\eta\) directions; 0 if interpolation is not necessary, 1 if it is. ( 0,0 ) \\
\hline ITBEG & The time level \(n\) at the beginning of a run. (1) \\
\hline KBCPER & Flags for spatially periodic boundary conditions in the \(\xi\) and \(\eta\) directions; 0 for non-periodic, 1 for periodic. ( 0,0 ) \\
\hline NC, NXM, NYM, NZM, NEN & Array indices associated with the continuity, \(x\)-momentum, \(y\)-momentum (or \(r\)-momentum if axisymmetric), swirl momentum, and energy equations. ( \(1,2,3,5,4\) ) \\
\hline Nin & Unit number for standard input. (5) \\
\hline NR, NRU, NRV, NRW, NET & Array indices associated with the dependent variables \(\rho, \rho u, \rho v\), \(\rho w\), and \(E_{T .}\). \(1,2,3,5,4\) ) \\
\hline RAX & 1 for two-dimensional planar flow, and the local radius \(r\) for axisymmetric flow. (NMAXP*1.0) \\
\hline TAU & Initial time value \(\tau\). ( NTOTP*0.0) \(^{\text {a }}\) \\
\hline
\end{tabular}

These values are for reference conditions specified in English units. Values for SI units are set in subroutine INPLT.

\section*{Description}

The BLOCK DATA routine is used to set default values for all the input parameters, plus various other parameters and constants. The defaults for all the input parameters are given as part of the standard input description in Section 3.1 of Volume 2. The values for the other parameters and constants set in BLOCK DATA are given in parentheses in the above output description. Note that some of these values assume English units are being used to specify reference conditions. If SI units are being used, these values are redefined in subroutine INPUT.

\section*{Remarks}
1. Most of the default values are defined directly, but some, like the reference viscosity MUR, are set equal to zero and defined in subroutine INPUT if not specified by the user.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BLOLT1 } \\
\hline Called by & Calls & Purpose \\
\hline TLRBBL & \begin{tabular}{l} 
ISAMAX \\
ISAMIN \\
ISRCHEQ
\end{tabular} & \begin{tabular}{l} 
Compute outer layer turbulent viscosity, using the algebraic Baldwin- \\
Lomax model, along constant \(\xi\) lines.
\end{tabular} \\
\hline
\end{tabular}

\section*{Input}
* APLUS
* CB
* CCLAU
* CCP
* CKLEB, CKMIN
* CNA
* CWK
* IDEBUG
* IPRTIA, IPRT2A

IT
* IWALL2

II
* LWALL2

MU
* NOUT

NPRT1, NPRT2
* N 2
* RER

RHO, U, V, W
VORT
X, Y

\section*{Output}

LWAKE2

MUT

Van Driest damping constant \(A^{+}\).
Constant \(B\) in the Klebanoff intermittency factor.
Clauser constant \(K\) in the Baldwin-Lomax outer region model.
Constant \(C_{c p}\) in the Baldwin-Lomax outer region model.
Constants \(C_{K l e b}\) and \(\left(C_{\text {Kleb }}\right)_{\text {min }}\) in the Klebanoff intermittency factor.
Exponent \(n\) in the formula used to average the two outer region \(\mu_{t}\) profiles that result when both boundaries in a coordinate direction are solid surfaces.
Constant \(C_{w k}\) in the Baldwin-Lomax outer region model.
Debug flags.
Indices for printout in the \(\xi\) and \(\eta\) directions.
Current time step number \(n\).
Flags indicating whether or not the \(\eta\) boundaries are walls.
Grid index \(i\) in the \(\xi\) direction.
Flags specifying wall locations for \(\eta\) boundaries.
Laminar coefficient of viscosity \(\mu_{l}\).
Unit number for standard output.
Total number of indices for printout in the \(\xi\) and \(\eta\) directions.
Number of grid points \(N_{2}\) in the \(\eta\) direction.
Reference Reynolds number Rer.
Static density \(\rho\), and velocities \(u, v\), and \(w\).
Total vorticity magnitude.
Cartesian coordinates \(x\) and \(y\), or cylindrical coordinates \(x\) and \(r\).

Grid index \(j\) in the \(\eta\) direction used as the origin for computing length scales for free turbulent flows.
Outer layer turbulent viscosity coefficient \(\left(\mu_{t}\right)_{\text {outer }}\) along constant \(\xi\) lines.

\section*{Description}

Subroutine BLOUT1 computes the outer layer turbulent viscosity coefficient \(\left(\mu_{t}\right)_{\text {outer }}\) at a specified \(\xi\) location (i.e., due to walls at \(\eta=0\) and/or \(\eta=1\), or due to a free turbulent flow in the \(\xi\) direction) using the
algebraic eddy viscosity model of Baldwin and Lomax (1978). The model is described in Section 9.1 of Volume 1. The steps performed in BLOUT1 are as follows:
1. Find the values and locations of \(|\vec{V}|_{\max }\) and \(|\vec{V}|_{\min }\).
2. Compute the parameter
\[
F_{w a k e}= \begin{cases}y_{\max } F_{\max } & \text { for wall-bounded flows } \\ C_{w k} V_{\text {diff }}^{2} \frac{y_{\max }}{F_{\max }} & \text { for free turbulent flows }\end{cases}
\]
where \(C_{w k}\) is a constant taken as 0.25 , and
\[
V_{d i f f}=|\vec{V}|_{\max }-|\vec{V}|_{\min }
\]
where \(\vec{V}\) is the total velocity vector. The procedure for computing the parameter \(F_{\max }\) depends on whether a solid wall exists at \(\eta=0\) and/or at \(\eta=1\).
3. If, at the current \(\xi\) location, the \(\eta=0\) boundary is a solid wall, compute \(\left(F_{\max }\right)_{1}\) as follows:

3a. For \(\eta\)-indices from the wall to the location of \(|\vec{V}|_{\text {max }}\), compute
\[
F\left(y_{n}\right)=y_{n}|\stackrel{\rightharpoonup}{\Omega}|\left(1-e^{-y^{+} \mid A^{+}}\right)
\]

3b. Get the location of the maximum value of \(F\left(y_{n}\right)\), calling its \(\eta\)-index \(L_{1}\). Tentatively set \(\left(L_{\text {max }}\right)_{1}=L_{1}\).
3c. Search outward from this location for a local minimum in \(F\left(y_{n}\right)\). If one is found, call its \(\eta\)-index \(L_{\text {min }}\).
3d. If a local minimum exists, get the location of the next maximum value of \(F\left(y_{n}\right)\), calling its \(\eta\)-index \(L_{2}\). This is the location of the second peak in \(F\left(y_{n}\right)\). Let
\[
\begin{aligned}
& \Delta F_{1}=F\left(y_{n}\right)_{L_{1}}-F\left(y_{n}\right)_{L_{\min }} \\
& \Delta F_{2}=F\left(y_{n}\right)_{L_{2}}-F\left(y_{n}\right)_{L_{\text {min }}}
\end{aligned}
\]

Then, if \(\Delta F_{2}>0.25 \Delta F_{1}\), set \(\left(L_{m a x}\right)_{1}=L_{2}\). This test is intended to filter false peaks resulting from noise, or wiggles, in \(F\left(y_{n}\right)\).
3e. Set \(\left(F_{\max }\right)_{1}=F\left(y_{n}\right)\) at the \(\eta\)-index \(\left(L_{\max }\right)_{1}\), and set \(y_{\text {max }}\) equal to the corresponding value of \(y_{n}\).
4. If, at the current \(\xi\) location, the \(\eta=1\) boundary is a solid wall, compute \(\left(F_{\operatorname{mox}}\right)_{2}\). The procedure is exactly analogous to the procedure described in steps \(3 \mathrm{a}-3 \mathrm{e}\) for computing \(\left(F_{\max }\right)_{1}\) at the \(\eta=0\) wall.
5. If neither \(\eta\) boundary is a solid wall, a free turbulent flow in the \(\zeta\) direction is assumed. In this case, the required value of \(F_{\max }\) is computed as follows:
5a. For \(\eta\)-indices between the locations of \(|\vec{V}|_{\text {min }}\) and \(|\vec{V}|_{\max }\), and using the location of \(|\vec{V}|_{\text {max }}\) as the origin for \(y_{n}\), compute
\[
F\left(y_{n}\right)=y_{n}|\vec{\Omega}|
\]

Get the location of the maximum value of \(F\left(y_{n}\right)\), and compute \(F_{\text {wocke }}\)
5b. Repeat step 5a using the location of \(|\vec{V}|_{\text {min }}\) as the origin for \(y_{n}\).
\(5 c\). Set the final value of \(F_{\text {weke }}\) equal to the one from step 5 a or 5 b that corresponds to the smaller value of \(y_{\max }\). Set \(L_{\text {woke }}\) accordingly.
6. If a solid wall exists at \(\eta=0\) or at \(\eta=1\), but not both, or if neither \(\eta\) boundary is a solid wall, compute \(\left(\mu_{t}\right)_{\text {outer }}\) directly.
7. If both \(\eta\) boundaries are solid walls, compute \(\left(\mu_{\mathrm{t}}\right)_{\text {outer }}\) by combining the two computed values of \(F_{\text {wake }}\) using the averaging formula presented as equation (9.12) of Volume 1.

\section*{Remarks}
1. The computation of \(y_{n}\), the normal distance to the wall or wake centerline, is approximate. It is actually the straight-line distance between the interior grid point and the wall or wake centerline grid point
2. The Cray search routines ISAMAX and ISAMIN are used in computing \(\left|\vec{V}_{\text {max }}\right|,\left|\vec{V}_{\min }\right|\), and \(F_{\text {max }}\). The Cray search routine ISRCHEQ is used in determining the grid locations for debug printout.
3. If the maximum and minimum total velocities are equal, indicating a uniform flow along this particular \(\xi\) line, their locations are arbitrarily set equal to the middle \(\eta\) index, and the turbulent viscosity coefficient ( \(\mu_{t}\) ) outer is set equal to 0 . This normally would occur only during the first time step in a case with uniform initial velocity profiles.
4. To avoid the possibility of floating point errors, the values of \(\left|\vec{V}_{\max }\right|,\left|\vec{V}_{\min }\right|, F_{\max }\), and \(y_{\max }\) are set to a minimum of \(10^{-10}\).
5. This subroutine generates output for the IDEBUG(8) option.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BLOUT2 } \\
\hline Called by & Calls & Purpose \\
\hline TLRBBL & \begin{tabular}{l} 
ISAMAX \\
ISAMIN \\
ISRCHEQ
\end{tabular} & \begin{tabular}{l} 
Compute outer layer turbutent viscosity, using the algebraic Baldwin- \\
Lomax model, along constant \(\eta\) lines.
\end{tabular} \\
\hline
\end{tabular}

\section*{Input}
* APLUS
* CB
* cClau
* CCP
* CKLEB, CKMIN
* CNA
* CWK
* IDEBUG
* IPRT1A, IPRT2A

IT
* IWALLI

I2
* LWALLI

MU
* NOUT

NPRT1, NPRT2
* N1
* RER

RHO, U, V, W
VORT
X, Y

\section*{Output}

LWAKEI

DUMMY

Van Driest damping constant \(A^{+}\).
Constant \(B\) in the Klebanoff intermittency factor.
Clauser constant \(K\) in the Baldwin-Lomax outer region model.
Constant \(C_{c p}\) in the Baldwin-Lomax outer region model.
Constants \(C_{\text {Kleb }}\) and \(\left(C_{\text {Kleb }}\right)_{m n}\) in the Klebanoff intermittency factor.
Exponent \(n\) in the formula used to average the two outer region \(\mu_{t}\) profiles that result when both boundaries in a coordinate direction are solid surfaces.
Constant \(C_{w k}\) in the Baldwin-Lomax outer region model.
Debug flags.
Indices for printout in the \(\xi\) and \(\eta\) directions.
Current time step number \(n\).
Flags indicating whether or not the \(\xi\) boundaries are walls.
Grid index \(j\) in the \(\eta\) direction.
Flags specifying wall locations for \(\xi\) boundaries.
Laminar coefficient of viscosity \(\mu_{l}\).
Unit number for standard output.
Total number of indices for printout in the \(\xi\) and \(\eta\) directions.
Number of grid points \(N_{1}\) in the \(\xi\) direction.
Reference Reynolds number \(R e_{r}\).
Static density \(\rho\), and velocities \(u, v\), and \(w\).
Total vorticity magnitude.
Cartesian coordinates \(x\) and \(y\), or cylindrical coordinates \(x\) and \(r\).

Grid index \(i\) in the \(\xi\) direction used as the origin for computing length scales for free turbulent flows.
Outer layer turbulent viscosity coefficient ( \(\mu_{r}\) ) outer along constant \(\eta\) lines.

\section*{Description}

Subroutine BLOLT2 computes the outer layer turbulent viscosity coefficient \(\left(\mu_{\text {}}\right)_{\text {outer }}\) at a specified \(\eta\) location (i.e., due to walls at \(\xi=0\) and/or \(\xi=1\), or due to a free turbulent flow in the \(\eta\) direction) using the
algebraic eddy viscosity model of Baldwin and Lomax (1978). The procedure is exactly analogous to that used in subroutine BLOUT1.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine BVLP (A,B,C,S,METX,METY,METT,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline EXEC & \begin{tabular}{l} 
BCGEN \\
EQSTAT \\
SGEFA \\
SGESL
\end{tabular} & Lpdate first sweep boundary values after second sweep. \\
\hline
\end{tabular}

\section*{Input}
A, B, C
Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\).

DXI
IBVUP
* IHSTAG
* ISWIRL

JI
KBCPER
NEQ
NEQP
NPT1, NPT2
NR, NRU, NRV, NRW, NET
NVD, NPTSD
* N1, N2

N1P
RHO, U, V, W, ET
RHOL, UL, VL, WL, ETL

S
XIX, XIY, XIT

\section*{Output}

DEL
IBASE, ISTEP

ISWEEP
IV
METX, METY, METT

Computational grid spacing \(\Delta \xi\).
Flags for updating boundary values from first sweep after second sweep; 0 if updating is not necessary, 1 if it is.
Flag for constant stagnation enthalpy option.
Flag for swirl in axisymmetric flow.
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Flags for spatially periodic boundary conditions in the \(\xi\) and \(\eta\) directions; 0 for non-periodic, 1 for periodic.
Number of coupled equations being solved, \(N_{\text {eq }}\).
Dimensioning parameter specifying maximum number of coupled equations allowed.
\(N_{1}\) and \(N_{2}\) for non-periodic boundary conditions, \(N_{1}+1\) and \(N_{2}+1\) for spatially periodic boundary conditions in \(\xi\) and \(\eta\).
Array indices associated with the dependent variables \(\rho, \rho u, \rho v\), \(\rho w\), and \(E_{T}\).
Leading two dimensions for the arrays \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S .
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Parameter specifying the dimension size in the \(\zeta\) direction.
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level \(n\) at all grid points.
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level \(n+1\) at all interior grid points.
Source term subvector \(\mathbf{S}\).


Computational grid spacing for the sweep direction being updated. Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
ADI sweep number for sweep direction being updated.
Index in the "vectorized" direction, i.
Derivatives of computational coordinate, for the sweep direction being updated, with respect to \(x, y\) (or \(r\) if axisymmetric), and \(t\).

NPTS
NV
RHOL, UL, VL, WL, ETL

Number of grid points \(N\) in the sweep direction being updated.
Number of grid points in the "vectorized" direction, \(N_{v}\).
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level \(n+1\) at boundary points from first sweep.

\section*{Description}

Subroutine BVLP updates boundary values from the first, or \(\xi\), sweep after the second, or \(\eta\), sweep. In general, this is necessary when gradient or extrapolation boundary conditions are used in the \(\xi\) direction. Some updating is also necessary when spatially periodic boundary conditions are used. The procedure is described in Section 7.3 of Volume 1 for all cases.

\section*{Remarks}
1. The comer values of \(\rho\) and \(E_{T}\) are updated by linearly extrapolating from the two adjacent points in the \(\xi\) and \(\eta\) directions, and averaging the two results. Note that this extrapolation is done in computational space. Grid packing in either direction is thus not taken into account. The comer values of the velocities are updated by doing the same type of extrapolation. Instead of averaging, however, the extrapolated velocity whose absolute value is lower is used. This was done to maintain no-slip at duct inlets and exits.
2. Subroutines SGEFA and SGESL are Cray LINPACK routines. In general terms, if the Fortran arrays \(A\) and \(S\) represent \(A\) and \(S\), where \(A\) is a square \(N\) by \(N\) matrix and \(S\) is a vector with \(N\) elements, and if the leading dimension of the Fortran array A is LDA, then the Fortran sequence
```

call sgefa (a,lda,n,ipvt,info)
call sgesl (a,lda,n,ipvt,s,0)

```
computes \(\mathbf{A}^{-1} \mathbf{S}\), storing the result in \(\mathbf{S}\).
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine COEFC (A,B,C,S,METX,METY,METT,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline EXEC & & Compute coefficients and source term for the continuity equation. \\
\hline
\end{tabular}

\section*{Input}

DEL
DTAU
DXI, DETA
ETAX, ETAY, ETAT
* IAXI

IBASE, ISTEP
* IHSTAG

ISWEEP
* ISWIRL

IV
I1, I2
II
METX, METY, METT

NC
NEQ
NPTS
NR, NRU, NRV, NRW, NET

NVD, NPTSD
RAX
RHO, U, V
RHOL
* THC

XIX, XIY, XIT
Y

Computational grid spacing in sweep direction.
Time step \(\Delta \tau\).
Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
Metric coefficients \(\eta_{x}, \eta_{y}\) (or \(\eta_{t}\) if axisymmetric), and \(\eta_{t}\).
Flag for axisymmetric flow.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Flag for constant stagnation enthalpy option.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Index in the "vectorized" direction, \(i\).
Grid indices \(i\) and \(j\), in the \(\xi\) and \(\eta\) directions.
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\) (times the radius \(r\) for axisymmetric flow.)
Derivatives of sweep direction computational coordinate with respect to \(x, y\) (or \(r\) if axisymmetric), and \(t\).
Array index associated with the continuity equation.
Number of coupled equations being solved, \(N_{e q}\).
Number of grid points in the sweep direction, \(N\).
Array indices associated with the dependent variables \(\rho, \rho u, \rho v\), \(\rho w\), and \(E_{T}\).
Leading two dimensions for the arrays A, B, C, S, METX, METY, and METT.
1 for two-dimensional planar flow, and the local radius \(r\) for axisymmetric flow.
Static density \(\rho\), and velocities \(u\) and \(v\), at time level \(n\).
Static density \(\rho\) from previous ADI sweep.
Parameters \(\theta_{1}\) and \(\theta_{2}\) determining type of time differencing for the continuity equation.

Radial coordinate \(r\) for axisymmetric flow.

\section*{Output}

A, B, C
Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) at interior points (row NC only).

\section*{Description}

Subroutine COEFC computes the coefficients and source term for the continuity equation. Equations ( \(7.5 \mathrm{a}-\mathrm{b}\) ) in Volume 1 represent, in vector form, the four governing difference equations for the two ADI sweeps for 2-D planar flow. The elements of the inviscid flux vectors \(\hat{\mathbf{E}}\) and \(\hat{\mathbf{F}}\) are given in Section 2.0 of Volume 1, and the elements of the viscous flux vectors \(\hat{\mathbf{E}}_{V_{1}}, \hat{\mathbf{E}}_{V_{2}}\), etc., are given in Appendix A of Volume 1. The Jacobian coefficient matrices \(\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}, \partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}\), etc., are given in Section 4.0 of Volume 1. Using all of these equations, the differenced form of the continuity equation for 2-D planar flow may be written for the two ADI sweeps as \({ }^{17}\)

\section*{Sweep 1 ( \(\xi\) direction)}
\[
\begin{aligned}
\Delta \hat{\rho}_{i}^{*} & +\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \xi}\left[\left(\frac{\partial \hat{\mathbf{E}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{*}-\left(\frac{\partial \hat{\mathbf{E}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}\right]= \\
& -\frac{\Delta \tau}{1+\theta_{2}}\left(\delta_{\xi} \hat{\mathbf{E}}_{1}+\delta_{\eta} \hat{\mathbf{F}}_{1}\right)^{n}+\frac{\theta_{2}}{1+\theta_{2}} \Delta \hat{\rho}^{n-1}
\end{aligned}
\]

\section*{Sweep 2 ( \(\eta\) direction)}
\[
\Delta \hat{\rho}_{j}^{n}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \eta}\left[\left(\frac{\partial \hat{\mathbf{F}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}-\left(\frac{\partial \hat{\mathbf{F}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}\right]=\Delta \hat{\rho}^{*}
\]

In the above equations, the subscripts \(i\) and \(j\) represent grid point indices in the \(\xi\) and \(\eta\) directions. For notational convenience, terms without an explicitly written \(i\) or \(j\) subscript are understood to be at \(i\) or \(j\).

The vector of dependent variables is
\[
\hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{llll}
\rho & \rho u & \rho v & E_{T}
\end{array}\right]^{T}
\]

The appropriate elements of the flux vectors are given by
\[
\begin{aligned}
& \hat{\mathbf{E}}_{1}=\frac{1}{J}\left[\rho u \xi_{x}+\rho v \xi_{y}+\rho \xi_{t}\right] \\
& \hat{\mathbf{F}}_{1}=\frac{1}{J}\left[\rho u \eta_{x}+\rho v \eta_{y}+\rho \eta_{t}\right]
\end{aligned}
\]

The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}\) for the continuity equation are
\[
\frac{\partial \hat{\mathbf{E}}_{1}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{llll}
\xi_{t} & \xi_{x} & \xi_{y} & 0
\end{array}\right]
\]

\footnotetext{
17 These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case, the total energy \(E_{T}\) would not appear as a dependent variable, and the Jacobian coefficient matrices would have only three elements.
}

The Jacobian coefficient matrix \(\partial \hat{\mathbf{F}}_{1} / \partial \hat{\mathbf{Q}}\) has the same form as \(\partial \hat{\mathbf{E}}_{1} \partial \hat{\mathbf{Q}}\), but with \(\xi\) replaced by \(\eta\).
As an example of how these equations are translated into Fortran, consider the \(\Delta(\rho u \mid J)\) term on the left hand side for the first sweep. This is the second element of \(\hat{\mathbf{Q}}\), so using the second element in \(\partial \hat{\mathbf{E}}_{1} / \partial \hat{\mathbf{Q}}\) we get
\[
\begin{aligned}
& \mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NC}, \mathrm{NRC})=-\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2 \Delta \xi}\left(\xi_{x}\right)_{i-1, j} \\
& \mathrm{~B}(\mathrm{IV}, \mathrm{I}, \mathrm{NC}, \mathrm{NRU})=0 \\
& \mathrm{C}(\mathrm{IV}, \mathrm{I}, \mathrm{NC}, \mathrm{NRU})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2 \Delta \xi}\left(\xi_{x}\right)_{i+1, j}
\end{aligned}
\]

The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetric continuity equation for the two ADI sweeps is given by \({ }^{18}\)

\section*{Sweep 1 ( \(\xi\) direction)}
\[
\begin{aligned}
\Delta \hat{\rho}_{i}^{*} & +\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \xi} \frac{1}{r}\left[\left(r \frac{\partial \hat{\mathbf{E}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{*}-\left(r \frac{\partial \hat{\mathbf{E}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}\right]= \\
& -\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\delta_{\xi}\left(r \hat{\mathbf{E}}_{1}\right)+\delta_{\eta}\left(r \hat{\mathbf{F}}_{1}\right)\right]^{n}+\frac{\theta_{2}}{1+\theta_{2}} \Delta \hat{\rho}^{n-1}
\end{aligned}
\]

\section*{Sweep 2 ( \(\eta\) direction)}
\[
\Delta \hat{\rho}_{j}^{n}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \eta} \frac{1}{r}\left[\left(r \frac{\partial \hat{\mathbf{F}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}-\left(r \frac{\partial \hat{\mathbf{F}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}\right]=\Delta \hat{\rho}^{*}
\]
where now
\[
\begin{aligned}
& \hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{lllll}
\rho & \rho u & \rho v & \rho w & E_{T}
\end{array}\right]^{T} \\
& \hat{\mathbf{E}}_{1}=\frac{1}{J}\left[\rho u \xi_{x}+\rho \nu \xi_{r}+\rho \xi_{I}\right] \\
& \hat{\mathbf{F}}_{1}=\frac{1}{J}\left[\rho v \eta_{x}+\rho v \eta_{r}+\rho \eta_{t}\right] \\
& \frac{\partial \hat{\mathbf{E}}_{1}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{lllll}
\xi_{r} & \xi_{x} & \xi_{r} & 0 & 0
\end{array}\right]
\end{aligned}
\]

As in 2-D planar flow, the Jacobian coefficient matrix \(\partial \hat{\mathbf{F}}_{1} / \partial \hat{\mathbf{Q}}\) has the same form as \(\partial \hat{\mathbf{E}}_{1} / \partial \hat{\mathbf{Q}}\), but with \(\zeta\) replaced by \(\eta\).

\footnotetext{
18 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum \(\rho w\) would not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.
}

Note that the equations for 2-D planar and axisymmetric flow are very similar. In the axisymmetric equations, the radius \(r\) appears as an additional coefficient in front of the flux vectors \(\hat{\mathbf{E}}\) and \(\hat{\mathbf{F}}\), and in front of the Jacobian coefficient matrices \(\partial \hat{\mathbf{E}}_{1} / \partial \hat{\mathbf{Q}}\) and \(\partial \hat{\mathbf{F}}_{1} / \partial \hat{\mathbf{Q}}\). In addition, \(\mathrm{I} / r\) appears in front of every term in the equation except the \(\Delta \hat{\rho}\) terms. In Proteus, the Fortran variables are defined in such a way that, for many terms, the same coding can be used for both 2-D planar and axisymmetric flow. Lnfortunately, this may make some of the coding a little confusing. It is hoped that this detailed description, when compared with the source listing, will help make things clear.

In COEFC, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms for the second ADI sweep have exactly the same form as for the first sweep, but with \(\xi\) replaced by \(\eta\). By defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep direction, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow, and the radius \(r\) for axisymmetric flow. This adds the \(r\) in front of the Jacobian coefficient matrices for axisymmetric flow, but has no effect for 2-D planar flow. The \(1 / r\) coefficient in front of each term will be added later. In this section of code, the coefficient of \(\Delta \hat{\rho}\) (part of \(\mathrm{B}(\mathrm{IV}, \mathrm{I}, \mathrm{NC}, \mathrm{NR}\) )) is set equal to \(r\), not 1 as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to compute the source term are the same as those used for the implicit terms. These formulas are presented in Section 5.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as \(1 / J\), is temporarily redefined as \(r / J\) before the COEF routines are called. This automatically accounts for the \(r\) coefficient in front of all the flux vectors in the source term. The \(1 / r\) coefficient in front of each term will be added later. This definition of JI adds an \(r\) in front of the \(\Delta \hat{\rho}^{n-1}\) term that should not be there. This will also be corrected later.

The coding for the source term for the second sweep, which consists only of \(\Delta \hat{\rho}^{*}\), comes next. The definition of JI also adds an \(r\) in front of this term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius \(r\). This adds the \(1 / r\) coefficient where it should be added, and removes the \(r\) in front of the \(\Delta \hat{\rho}\) terms.

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. Th: subscripts on the Fortran variables A, B, C, and S may be confusing. The fust subscript is the index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division by \(r\) at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only to the first sweep, the first two subscripts are written as (I2,II). For sections that apply only to the second sweep, they are written as (I1,I2). The third subscript on A, B, C, and S corresponds to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which \(\mathrm{A}, \mathrm{B}\), or C is a coefficient.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine COEFE (A,B,C,S,METX,METY,METT,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline EXEC & & Compute coefficients and source term for the energy equation. \\
\hline
\end{tabular}

\section*{Input}

DEL
DPDRHO, DPDRU, DPDRV, DPDRW, DPDET
DTAU
DTDRHO, DTDRU, DTDRV, DTDRW, DTDET
DXI, DETA
ETAX, ETAY, ETAT
* IAXI

IBASE, ISTEP
* IEULER

ISWEEP
* ISWIRL
* ITHIN

IV
I1, I2
JI

METX, METY, METTT
MU, LA, KT

NEN
NEQ
NPTS
NR, NRU, NRV, NRW, NET
NVD, NPTSD
P, T
PRR
RAX
* RER

Computational grid spacing in sweep direction.
Derivatives \(\partial p / \partial \rho, \partial p / \partial(\rho u), \partial p / \partial(\rho v), \partial p / \hat{\partial}(\rho w)\), and \(\partial p / \partial E_{T}\).
Time step \(\Delta \tau\).
Derivatives \(\partial T / \partial \rho, \partial T / \partial(\rho u), \partial T / \partial(\rho v), \partial T / \partial(\rho w)\), and \(\partial T / \partial E_{T}\).
Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
Metric coefficients \(\eta_{x}, \eta_{y}\) (or \(\eta_{r}\) if axisymmetric), and \(\eta_{t}\).
Flag for axisymmetric flow.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Flag for Euler calculation.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Flags for thin-layer option.
Index in the "vectorized" direction, \(i_{v}\).
Grid indices \(i\) and \(j\), in the \(\xi\) and \(\eta\) directions.
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\) (times the radius \(r\) for axisymmetric flow.)
Derivatives of sweep direction computational coordinate with respect to \(x, y\) (or \(r\) if axisymmetric), and \(t\).
Effective coefficient of viscosity \(\mu\), effective second coefficient of viscosity \(\lambda\), and effective coefficient of thermal conductivity \(k\) at time level \(n\).
Array index associated with the energy equation.
Number of coupled equations being solved, \(N_{\text {eq }}\).
Number of grid points in the sweep direction, \(N\).
Array indices associated with the dependent variables \(\rho, \rho u, \rho v\), \(\rho w\), and \(E_{T}\).
Leading two dimensions for the arrays \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{S}, \mathrm{METX}\), METY, and METT.
Static pressure \(p\) and temperature \(T\) at time level \(n\).
Reference Prandtl number \(P_{r}\).
1 for two-dimensional planar flow, and the local radius \(r\) for axisymmetric flow.

RHO, U, V, W, ET
* THE

TL
UL, VL, WL, ETL
XIX, XIY, XIT
Y

Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level \(n\).
Parameters \(\theta_{1}, \theta_{2}\), and \(\theta_{3}\) determining type of time differencing for the energy equation.
Static temperature \(T\) from previous ADI sweep.
Velocities \(u, v\), and \(w\), and total energy \(E_{T}\) from previous ADI sweep.
Metric coefficients \(\xi_{x}, \xi_{y}\) (or \(\xi_{r}\) if axisymmetric), and \(\xi_{t}\)
Radial coordinate \(r\) for axisymmetric flow.

\section*{Output}

A, B, C

S

Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) at interior points (row NEN only).
Source term subvector \(S\) at interior points (element NEN only).

\section*{Description}

Subroutine COEFE computes the coefficients and source term for the energy equation. Equations (7.5a-b) in Volume 1 represent, in vector form, the four governing difference equations for the two ADI sweeps for 2-D planar flow. The elements of the inviscid flux vectors \(\hat{\mathbf{E}}\) and \(\hat{\mathbf{F}}\) are given in Section 2.0 of Volume 1, and the elements of the viscous flux vectors \(\hat{\mathbf{E}}_{v_{1}}, \hat{\mathbf{E}}_{v_{2}}\), etc., are given in Appendix A of Volume 1. The Jacobian coefficient matrices \(\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}, \partial \hat{\mathbf{E}}_{v_{1}} / \partial \hat{\mathbf{Q}}\), etc., are given in Section 4.0 of Volume 1. Using all of these equations, the differenced form of the energy equation for 2-D planar flow may be written for the two ADI sweeps as

\section*{Sweep 1 ( \(\xi\) direction)}
\[
\begin{aligned}
\Delta\left(\hat{E}_{T}\right)_{i}^{*} & +\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \zeta}\left[\left(\frac{\partial \hat{\mathbf{E}}_{4}}{\partial \hat{\mathbf{Q}}^{\prime}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{*}-\left(\frac{\partial \hat{\mathbf{E}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}\right] \\
& -\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \zeta)^{2}}\left[\left(f_{i-1}+f_{i}\right)^{n} g_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}-\left(f_{i-1}+2 f_{i}+f_{i+1}\right)^{n} g_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{*}+\left(f_{i}+f_{i+1}\right)^{n} g_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{*}\right]= \\
& -\frac{\Delta \tau}{1+\theta_{2}}\left(\delta_{\xi} \hat{\mathbf{E}}_{4}+\delta_{\eta} \hat{\mathbf{F}}_{4}\right)^{n}+\frac{\Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{1}}\right)_{4}\right]^{n} \\
& +\frac{\left(1+\theta_{3}\right) \Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{2}}\right)_{4}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{2}}\right)_{4}\right]^{n}-\frac{\theta_{3} \Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{2}}\right)_{4}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{2}}\right)_{4}\right]^{n-1}+\frac{\theta_{2}}{1+\theta_{2}} \Delta \hat{E}_{T}^{n-1}
\end{aligned}
\]

\section*{Sweep 2 ( \(\eta\) direction)}
\[
\begin{aligned}
& \Delta\left(\hat{E}_{T}\right)_{j}^{n}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \eta}\left[\left(\frac{\partial \hat{\mathbf{F}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}-\left(\frac{\partial \hat{\mathbf{F}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}\right] \\
& \quad-\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \eta)^{2}}\left[\left(f_{j-1}+f_{j}\right)^{n} g_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}-\left(f_{j-1}+2 f_{j}+f_{j+1}\right)^{n} g_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+\left(f_{j}+f_{j+1}\right)^{n} g_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right]= \\
& \Delta \hat{E}_{T}^{*}
\end{aligned}
\]

In the above equations, the subscripts \(i\) and \(j\) represent grid point indices in the \(\xi\) and \(\eta\) directions. For notational convenience, terms without an explicitly written \(i\) or \(j\) subscript are understood to be at \(i\) or \(j\). On the left hand side, \(f\) is the coefficient of \(\partial / \partial \xi\) (or \(\partial / \partial \eta\), depending on the sweep) in the \(\partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}\) (or \(\partial \hat{\mathbf{F}}_{V_{1}} / \partial \hat{\mathbf{Q}}\) ) Jacobian coefficient matrix. Similarly, \(g\) is the term in the parentheses following \(\partial / \partial \xi\) (or \(\partial / \partial \eta\) ) in the \(\partial \hat{\mathbf{E}}_{v_{1}} \partial \partial \hat{\mathbf{Q}}\) (or \(\partial \hat{\mathbf{F}}_{v_{1}} \partial \partial \hat{\mathbf{Q}}\) ) Jacobian coefficient matrix.

The vector of dependent variables is
\[
\hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{llll}
\rho & \rho u & \rho v & E_{T}
\end{array}\right]^{T}
\]

The appropriate elements of the inviscid flux vectors are given by
\[
\begin{aligned}
& \hat{\mathbf{E}}_{4}=\frac{1}{J}\left[\left(E_{T}+p\right) u \xi_{x}+\left(E_{T}+p\right) v \xi_{y}+E_{T} \xi_{t}\right] \\
& \hat{\mathbf{F}}_{4}=\frac{1}{J}\left[\left(E_{T}+p\right) u \eta_{x}+\left(E_{T}+p\right) v \eta_{y}+E_{T} \eta_{t}\right]
\end{aligned}
\]

The appropriate elements of the non-cross derivative viscous flux vectors are
\[
\begin{aligned}
\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}\{ & \left\{\frac{(2 \mu+\lambda)}{2}\left[\xi_{x}^{2}\left(u^{2}\right)_{\xi}+\xi_{y}^{2}\left(v^{2}\right)_{\xi}\right]+(\mu+\lambda) \xi_{x} \xi_{y}(u v)_{\xi}\right. \\
& \left.+\frac{\mu}{2}\left[\xi_{x}^{2}\left(v^{2}\right)_{\xi}+\xi_{y}^{2}\left(u^{2}\right)_{\xi}\right]+\frac{k}{P r_{r}}\left(\xi_{x}^{2}+\xi_{y}^{2}\right) T_{\xi}\right\} \\
\left(\hat{\mathbf{F}}_{V_{1}}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}\{ & \frac{(2 \mu+\lambda)}{2}\left[\eta_{x}^{2}\left(u^{2}\right)_{\eta}+\eta_{y}^{2}\left(v^{2}\right)_{\eta}\right]+(\mu+\lambda) \eta_{x} \eta_{y}(u v)_{\eta} \\
& \left.+\frac{\mu}{2}\left[\eta_{x}^{2}\left(v^{2}\right)_{\eta}+\eta_{y}^{2}\left(u^{2}\right)_{\eta}\right]+\frac{k}{P r_{r}}\left(\eta_{x}^{2}+\eta_{y}^{2}\right) T_{\eta}\right\}
\end{aligned}
\]

And the appropriate elements of the cross derivative viscous flux vectors are
\[
\begin{aligned}
\left(\hat{\mathbf{E}}_{V_{2}}\right)_{4}=\frac{1}{J} \frac{1}{\operatorname{Re} e_{r}}[ & 2 \mu\left(\xi_{x} \eta_{x} v u_{\eta}+\xi_{y} \eta_{y} v v_{\eta}\right)+\lambda \xi_{x}\left(\eta_{x} u u_{\eta}+\eta_{y} v v_{\eta}\right)+\lambda \xi_{y}\left(\eta_{x} v u_{\eta}+\eta_{y} v v_{\eta}\right) \\
& \left.+\mu \xi_{x}\left(\eta_{y} v u_{\eta}+\eta_{x} v v_{\eta}\right)+\mu \xi_{y}\left(\eta_{y} u u_{\eta}+\eta_{x} v v_{\eta}\right)+\frac{k}{P r_{r}}\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right) T_{\eta}\right]
\end{aligned}
\]
\[
\begin{aligned}
\left(\hat{\mathbf{F}}_{V_{2}}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}[ & 2 \mu\left(\eta_{x} \xi_{x} u u_{\xi}+\eta_{y} \check{\zeta}_{y} v v_{\xi}\right)+\lambda \eta_{x}\left(\xi_{x} u u_{\xi}+\xi_{y} u v_{\xi}\right)+i \eta_{y}\left(\xi_{x} \nu u_{\xi}+\check{\zeta}_{y} \nu v_{\xi}\right) \\
& \left.+\mu \eta_{x}\left(\xi_{y} \nu u_{\xi}+\xi_{x} v v_{\xi}\right)+\mu \eta_{y}\left(\check{\xi}_{y} u u_{\xi}+\xi_{x} u v_{\xi}\right)+\frac{k}{P r_{r}}\left(\eta_{x} \xi_{x}+\eta_{y} \xi_{y}\right) T_{\xi}\right]
\end{aligned}
\]

The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}\) for the inviscid terms in the energy equation are
\[
\frac{\partial \hat{\mathbf{E}}_{4}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{lll}
-f_{1}\left(f_{2}-\frac{\partial p}{\partial \rho}\right) & f_{2} \xi_{x}+f_{1} \frac{\partial p}{\partial(\rho u)} & f_{2} \xi_{y}+f_{1} \frac{\partial p}{\partial(\rho v)}
\end{array} \quad \xi_{t}+f_{1}\left(1+\frac{\partial p}{\partial E_{T}}\right)\right]
\]
where \(f_{1}=u \xi_{x}+\nu \xi_{y}\) and \(f_{2}=\left(E_{T}+p\right) / \rho\).
The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{E}}_{v_{1}} / \partial \hat{\mathbf{Q}}\) for the viscous terms are
\[
\frac{\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4}}{\partial \hat{\mathbf{Q}}}=\frac{1}{R e_{r}}\left[\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{41}\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{42}\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{43} \alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial E_{T}}\right)\right]
\]
where
\[
\begin{gathered}
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{41}=-\alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{u^{2}}{\rho}\right)-\alpha_{y y} \frac{\partial}{\partial \xi}\left(\frac{v^{2}}{\rho}\right)-2 \alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{u v}{\rho}\right)+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial \rho}\right) \\
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{42}=\alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)+\alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial(\rho u)}\right) \\
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{43}=\alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)+\alpha_{y y} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial(\rho v)}\right) \\
\alpha_{x x}=(2 \mu+\lambda) \xi_{x}^{2}+\mu \xi_{y}^{2} \\
\alpha_{y y}=\mu \xi_{x}^{2}+(2 \mu+\lambda) \xi_{y}^{2} \\
\alpha_{x y}=(\mu+\lambda) \xi_{x} \xi_{y} \\
\alpha_{0}=\frac{k}{P r_{r}}\left(\xi_{x}^{2}+\xi_{y}^{2}\right)
\end{gathered}
\]

The Jacobian coefficient matrices \(\partial \hat{\mathbf{F}}_{4} / \partial \hat{\mathbf{Q}}\) and \(\partial\left(\hat{\mathbf{F}}_{V_{1}}\right)_{4} / \partial \hat{\mathbf{Q}}\) have the same form as \(\partial \hat{\mathbf{E}}_{4} / \dot{\boldsymbol{\mathbf { Q }}}\) and \(\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4} / \partial \hat{\mathbf{Q}}\), but with \(\xi\) replaced by \(\eta\).

As an example of how these equations are translated into Fortran, consider the \(\Delta(\rho u / J)\) term on the left hand side for the first sweep. This is the second element of \(\hat{\mathbf{Q}}\), so using the second element in \(\partial \hat{\mathbf{E}}_{4} / \hat{\partial} \hat{\mathbf{Q}}\) we get for the inviscid term
\[
\begin{aligned}
& \mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NEN}, \wedge \mathrm{RU})=-\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2 \Delta \xi}\left\{\left(\frac{E_{T}+p}{\rho} \xi_{x}\right)_{i-1, j}+\left[\left(u \xi_{x}+v \xi_{y}\right) \frac{\partial p}{\partial(\rho u)}\right]_{i-1, j}\right\} \\
& \mathrm{B}(\mathrm{IV}, \mathrm{I}, \mathrm{NEN}, \wedge \mathrm{RU})=0 \\
& \mathrm{C}(\mathrm{IV}, \mathrm{I}, \mathrm{NEN}, \triangle \mathrm{RU})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2 \Delta \xi}\left\{\left(\frac{E_{T}+p}{\rho} \xi_{x}\right)_{i+1, j}+\left[\left(u \xi_{x}+v \xi_{y}\right) \frac{\partial p}{\partial(\rho u)}\right]_{i+1, j}\right\}
\end{aligned}
\]

For the viscous terms on the left hand side, we use the second element in \(\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4} / \partial \hat{\mathbf{Q}}\), which is
\[
\frac{1}{R e_{r}}\left[\alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)+\alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial(\rho u)}\right)\right]
\]

There are three terms in that element. Thus, in turn, \(f=\alpha_{x x} / R e_{r}, \alpha_{x y} / R e_{r}\), and \(\alpha_{0} / R e_{r}\), and \(g=u / \rho, v / \rho\), and \(\partial T / \partial(\rho u)\). To add the viscous contribution to this part of the \(\mathbf{A}\) coefficient submatrix, we therefore set
\[
\begin{gathered}
\mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NEN}, \mathrm{NRU})=\mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NEN}, \mathrm{NRU})-\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2} \operatorname{Re}} \cdot \\
\left\{\left[\left(\alpha_{x x}\right)_{i-1, j}+\left(\alpha_{x x}\right)_{i, j}\right]\left(\frac{u}{\rho}\right)_{i-1, j}+\left[\left(\alpha_{x y}\right)_{i-1, j}+\left(\alpha_{x y}\right)_{i, j}\right]\left(\frac{v}{\rho}\right)_{i-1, j}+\left[\left(\alpha_{0}\right)_{i-1, j}+\left(\alpha_{0}\right)_{i, j}\right]\left(\frac{\partial T}{\partial(\rho u)}\right)_{i-1, j}\right\}
\end{gathered}
\]

Similar equations may be written for the \(\mathbf{B}\) and \(\mathbf{C}\) coefficient submatrices.
The equations for axisymmetric flow are developed in Appendix \(B\) of Volume 1. The axisymmetric energy equation for the two ADI sweeps is given by \({ }^{19}\)

\section*{Sweep 1 ( \(\xi\) direction)}
\[
\begin{aligned}
& \Delta\left(\hat{E}_{T}\right)_{i}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \xi} \frac{1}{r}\left[\left(r \frac{\partial \hat{\mathbf{E}}_{5}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{\cdot}-\left(r \frac{\partial \hat{\mathbf{E}}_{5}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{\cdot}\right] \\
& -\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2}} \frac{1}{r}\left[\left(r_{i-1} f_{i-1}+r_{i} f_{i}\right)^{n} g_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}-\left(r_{i-1} f_{i-1}+2 r_{i} f_{i}+r_{i+1} f_{i+1}\right)^{n} g_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{0}+\left(r_{i} f_{i}+r_{i+1} f_{i+1}\right)^{n} g_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{0}\right]= \\
& -\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\delta_{\xi}\left(r \hat{\mathbf{E}}_{5}\right)+\delta_{\eta}\left(r \hat{\mathbf{F}}_{5}\right)\right]^{n}+\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\xi}\left[r\left(\hat{\mathbf{E}}_{V_{1}}\right)_{s}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{\nu_{1}}\right)_{s}\right]\right\}^{n} \\
& +\frac{\left(1+\theta_{3}\right) \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\xi}\left[r\left(\hat{\mathbf{E}}_{V_{2}}\right)_{s}\right]+\delta_{\eta}\left[r\left(\hat{\mathbf{F}}_{V_{2}}\right)_{s}\right]\right\}^{n}-\frac{\theta_{3} \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\xi}\left[r\left(\hat{\mathbf{E}}_{V_{2}}\right)_{s}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{2}}\right) s\right]\right\}^{n-1}+\frac{\theta_{2}}{1+\theta_{2}} \Delta \hat{E}_{T}^{n-1}
\end{aligned}
\]

Sweep 2 ( \(\eta\) direction)
\[
\begin{aligned}
& \Delta\left(\hat{E}_{T}\right)_{j}^{n}+\frac{\theta_{1} \Delta z}{\left(1+\theta_{2}\right) 2 \Delta \eta} \frac{1}{r}\left[\left(r \frac{\partial \hat{\mathbf{F}}_{5}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}-\left(r \frac{\partial \hat{\mathbf{F}}_{S}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}\right] \\
& \quad-\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \eta)^{2}} \frac{1}{r}\left[\left(r_{j-1} f_{j-1}+r_{j} f_{j}\right)^{n} g_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}-\left(r_{j-1} f_{j-1}+2 r_{j} f_{j}+r_{j+1} f_{j+1}\right)^{n} g_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+\left(r_{j} f_{j}+r_{j+1} f_{j+1}\right)^{n} g_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right]= \\
& \Delta \hat{E}_{T}^{\cdot}
\end{aligned}
\]

\footnotetext{
19 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum \(\rho w\) would not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.
}
where now
\[
\begin{aligned}
& \hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{lllll}
\rho & \rho u & \rho v & \rho w & E_{T}
\end{array}\right]^{T} \\
& \hat{\mathbf{E}}_{5}=\frac{1}{J}\left[\left(E_{T}+p\right) u \breve{\zeta}_{x}+\left(E_{T}+p\right) v \xi_{r}+E_{T} \xi_{t}\right] \\
& \hat{\mathbf{F}}_{5}=\frac{1}{J}\left[\left(E_{T}+p\right) u \eta_{x}+\left(E_{T}+p\right) v \eta_{T}+E_{T} \eta_{t}\right] \\
& \left(\hat{\mathbf{E}}_{V_{1}}\right)_{5}=\frac{1}{J} \frac{1}{\operatorname{Re}_{r}}\left\{\frac{(2 \mu+\lambda)}{2}\left[\xi_{x}^{2}\left(u^{2}\right)_{\xi}+\xi_{r}^{2}\left(v^{2}\right)_{\xi}\right]+(\mu+\lambda) \xi_{x} \xi_{r}(u v)_{\xi}+\lambda \xi_{r} \frac{r_{\xi}}{r}\left(\xi_{r} v^{2}+\xi_{x} u v\right)\right. \\
& \left.+\frac{\mu}{2}\left[\xi_{x}^{2}\left(\nu^{2}+w^{2}\right)_{\xi}+\xi_{r}^{2}\left(u^{2}+w^{2}\right)_{\xi}\right]+\frac{k}{P r_{r}}\left(\xi_{x}^{2}+\xi_{r}^{2}\right) T_{\xi}\right\} \\
& \left(\hat{\mathbf{F}}_{V_{1}}\right)_{S}=\frac{1}{J} \frac{1}{R e_{r}}\left\{\frac{(2 \mu+\lambda)}{2}\left[\eta_{x}^{2}\left(u^{2}\right)_{\eta}+\eta_{r}^{2}\left(v^{2}\right)_{\eta}\right]+(\mu+\lambda) \eta_{x} \eta_{r}(u v)_{\eta}+\lambda \eta_{r} \frac{r_{\eta}}{r}\left(\eta_{r} \nu^{2}+\eta_{x} u v\right)\right. \\
& \left.+\frac{\mu}{2}\left[\eta_{x}^{2}\left(v^{2}+w^{2}\right)_{\eta}+\eta_{r}^{2}\left(u^{2}+w^{2}\right)_{\eta}\right]+\frac{k}{P r_{r}}\left(\eta_{x}^{2}+\eta_{r}^{2}\right) T_{\eta}\right\} \\
& \left(\hat{\mathbf{E}}_{V_{2}}\right)_{5}=\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu\left(\xi_{x} \eta_{x} u u_{\eta}+\xi_{r} \eta_{r} v v_{\eta}\right)+\lambda \xi_{x}\left(\eta_{x} u u_{\eta}+\eta_{r} u v_{\eta}\right)+\lambda \xi_{r}\left(\eta_{x} v u_{\eta}+\eta_{r} v v_{\eta}\right)+\lambda \eta_{r} \frac{v}{r}\left(\xi_{x} u+\xi_{r} v\right)_{\eta}\right. \\
& +\mu \xi_{x}\left(\eta_{r} v u_{\eta}+\eta_{x} v v_{\eta}+\eta_{x} w w_{\eta}\right)+\mu \xi_{r}\left(\eta_{r} u u_{\eta}+\eta_{x} u v_{\eta}+\eta_{r} w w_{\eta}\right)-\mu \xi_{r} \frac{w^{2}}{r} \\
& \left.+\frac{k}{P r_{r}}\left(\xi_{x} \eta_{x}+\xi_{r} \eta_{r}\right) T_{\eta}\right] \\
& \left(\hat{\mathbf{F}}_{V_{2}}\right)_{S}=\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu\left(\eta_{x} \xi_{x} u u_{\xi}+\eta_{r} \xi_{r} v v_{\xi}\right)+\lambda \eta_{x}\left(\xi_{x} u u_{\xi}+\xi_{r} u v_{\xi}\right)+\lambda \eta_{r}\left(\xi_{x} v u_{\xi}+\xi_{r} v v_{\xi}\right)+\lambda \xi_{r} \frac{v}{r}\left(\eta_{x} u+\eta_{r} v r_{\xi}\right.\right. \\
& +\mu \eta_{x}\left(\xi_{r} v u_{\xi}+\xi_{x} v v_{\xi}+\xi_{x} w w_{\xi}\right)+\mu \eta_{r}\left(\xi_{r} u u_{\xi}+\check{\xi}_{x} u v_{\xi}+\xi_{r} w w_{\xi}\right)-\mu \eta_{r} \frac{w^{2}}{r} \\
& \left.+\frac{k}{P r_{r}}\left(\eta_{x} \xi_{x}+\eta_{r} \xi_{r}\right) T_{\xi}\right]
\end{aligned}
\]

The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}\) for the inviscid terms in the axisymmetric form of the energy equation are
\[
\frac{\partial \hat{\mathbf{E}}_{5}}{\partial \hat{\mathbf{Q}}}=\left[-f_{1}\left(f_{2}-\frac{\partial p}{\partial \rho}\right) f_{2} \xi_{x}+f_{1} \frac{\partial p}{\partial(\rho u)} \quad f_{2} \xi_{r}+f_{1} \frac{\partial p}{\partial(\rho v)} \quad f_{1} \frac{\partial p}{\partial(\rho w)} \quad \xi_{t}+f_{1}\left(1+\frac{\partial p}{\partial E_{T}}\right)\right]
\]
where \(f_{1}=u \xi_{x}+\nu \zeta_{r}\) and \(f_{2}=\left(E_{T}+p\right) / \rho\).
The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{E}}_{v_{1}} / \partial \hat{\mathbf{Q}}\) for the viscous terms are
\[
\frac{\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{s}}{\partial \hat{\mathbf{Q}}}=\frac{1}{R e_{r}}\left[\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{s 1}\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{s 2}\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{s 3}\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{s 4} x_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial E_{T}}\right)\right]
\]
where
\[
\begin{gathered}
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{51}= \\
-\alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{u^{2}}{\rho}\right)-\alpha_{r r} \frac{\partial}{\partial \xi}\left(\frac{\nu^{2}}{\rho}\right)-\alpha_{z z} \frac{\partial}{\partial \xi}\left(\frac{w^{2}}{\rho}\right) \\
\left(\frac{\partial \alpha_{x r} \frac{\partial}{\partial \xi}\left(\frac{u v}{\rho}\right)-2 \alpha_{r r}^{\prime} \frac{v^{2}}{\rho} r_{\xi}-2 \alpha_{x r}^{\prime} \frac{u v}{\rho} r_{\xi}+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial \rho}\right)}{\partial \hat{\mathbf{Q}}}\right)_{52}=\alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)+\alpha_{x r} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)+\alpha_{x r}^{\prime} \frac{v}{\rho} r_{\xi}+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial(\rho u)}\right) \\
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{53}=\alpha_{x r} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)+\alpha_{r r} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)+\alpha_{r r}^{\prime} \frac{v}{\rho} r_{\xi}+\alpha_{r r}^{\prime} \frac{v}{\rho} r_{\xi}+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial(\rho v)}\right) \\
\binom{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}_{54}=\alpha_{z z} \frac{\partial}{\partial \xi}\left(\frac{w}{\rho}\right)+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial(\rho w)}\right) \\
\alpha_{x x}= \\
=(2 \mu+\lambda) \xi_{x}^{2}+\mu \xi_{r}^{2} \\
\alpha_{r r}=
\end{gathered} \mu_{\xi_{x}{ }^{2}+(2 \mu+\lambda) \xi_{r}^{2}}^{\alpha_{z z}=\mu \xi_{x}^{2}+\mu \xi_{r}^{2}} \begin{array}{r}
\alpha_{x r}=(\mu+\lambda) \xi_{x} \xi_{r} \\
\alpha_{x r}^{\prime}=\frac{\lambda}{r} \xi_{x} \xi_{r} \\
\alpha_{r r}^{\prime}=\frac{\lambda}{r} \xi_{r}^{2} \\
\alpha_{0}=\frac{k}{P r_{r}}\left(\xi_{x}^{2}+\xi_{r}^{2}\right)
\end{array}
\]

As in 2-D planar flow, the Jacobian coefficient matrices \(\partial \hat{\mathbf{F}}_{s} / \partial \hat{\mathbf{Q}}\) and \(\partial\left(\hat{\mathbf{F}}_{V_{1}}\right)_{s} / \partial \hat{\mathbf{Q}}\) have the same form as \(\partial \hat{\mathbf{E}}_{s} / \partial \hat{\mathbf{Q}}\) and \(\partial\left(\hat{\mathbf{E}}_{\nu_{1}}\right)_{s} / \partial \hat{\mathbf{Q}}\), but with \(\xi\) replaced by \(\boldsymbol{\eta}\).

Note that the equations for 2-D planar and axisymmetric flow are very similar. In the axisymmetric equations there are some additional terms involving the radius \(r\) in the viscous flux vectors, with corresponding terms in the Jacobian coefficient matrices. The radius \(r\) appears as an additional coefficient in front of the flux vectors \(\hat{\mathbf{E}}, \hat{\mathbf{E}}_{V_{1}}\), etc., and in front of the Jacobian coefficient matrices \(\partial \hat{\mathbf{E}}_{s} / \partial \hat{\mathbf{Q}}, \partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{s} / \partial \hat{\mathbf{Q}}\), etc. In addition, \(1 / r\) appears in front of every term in the equation except the \(\Delta \hat{E}_{r}\) terms. In Proteus, the Fortran variables are defined in such a way that, for many terms, the same coding can be used for both 2-D planar and axisymmetric flow. Unfortunately, this may make some of the coding a little confusing. It is hoped that this detailed description, when compared with the source listing, will help make things clear.

In COEFE, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms for the second ADI sweep have exactly the same form as for the first sweep, but with \(\xi\) replaced by \(\eta\). By defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep direction, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow, and the radius \(r\) for axisymmetric flow. This adds the \(r\) in front of the Jacobian coefficient matrices for axisymmetric flow, but has no effect for 2-D planar flow. The \(1 / r\) coefficient in front of each term will be
added later. In this section of code, the coefficient of \(\Delta \hat{E}_{T}\) (part of \(\mathrm{B}(\mathrm{IV}, \mathrm{I}, \mathrm{NEN}, \mathrm{NET})\) ) is set equal to \(r\), not 1 as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to compute the source term are the same as those used for the implicit terms. These formulas are presented in Section 5.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as \(1 / J\), is temporarily redefined as \(r / J\) before the COEF routines are called. This automatically accounts for the \(r\) coefficient in front of all the flux vectors in the source term. The \(1 / r\) coefficient in front of each term will be added later. This definition of JI adds an \(r\) in front of the \(\Delta \hat{E}_{4^{-1}}\) term that should not be there. This will also be corrected later.

The coding for the source term for the second sweep, which consists only of \(\Delta \hat{E}_{T}^{*}\), comes next. The definition of JI also adds an \(r\) in front of this term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius \(r\). This adds the \(1 / r\) coefficient where it should be added, and removes the \(r\) in front of the \(\Delta \hat{E}_{T}\) terms.

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division by \(r\) at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only to the first sweep, the first two subscripts are written as (I2,I1). For sections that apply only to the second sweep, they are written as (I1,I2). The third subscript on A, B, C, and S corresponds to the equation. And, for \(\mathrm{A}, \mathrm{B}\), and C , the fourth subscript corresponds to the dependent variable for which \(\mathrm{A}, \mathrm{B}\), or C is a coefficient.
3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the coding of coefficients and source terms involving the swirl velocity is separate from the rest of the coding, and is bypassed if there is no swirl.
4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms for the viscous and heat conduction terms.
5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms for the viscous and heat conduction terms containing derivatives in the specified direction.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine COEFS1 (A,B,C,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline EXECT & & \begin{tabular}{l} 
Compute coefficients and source terms for the \(k\) and \(\varepsilon\) equations for \\
the first ADI sweep.
\end{tabular} \\
\hline
\end{tabular}

\section*{Input}
\begin{tabular}{|c|c|}
\hline CMUR & Constant \(C_{\mu_{r}}\) in formula for \(C_{\mu}\). \\
\hline * cthree & Constant \(C_{3}\) in formula for \(C_{\mu}\). \\
\hline * CTWOR & Constant \(C_{2}\), in formula for \(C_{2}\). \\
\hline DTAU & Time step \(\Delta \tau\). \\
\hline DUMMY & Distance to the nearest solid wall. \\
\hline DXI, DETA & Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\). \\
\hline E, EL & Turbulent dissipation rate \(\varepsilon\) at time levels \(n\) and \(n-1\). \\
\hline ETAX, ETAY & Metric coefficients \(\eta_{x}\) and \(\eta_{y}\) (or \(\eta_{r}\) if axisymmetric). \\
\hline * IAXI & Flag for axisymmetric flow. \\
\hline II & Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\). \\
\hline KE, KEL & Turbulent kinetic energy \(k\) at time levels \(n\) and \(n-1\). \\
\hline MU & Laminar viscosity \(\mu_{l}\) at time level \(n\). \\
\hline MUT, MUTL & Turbulent viscosity \(\mu_{\mathrm{f}}\) at time levels \(n\) and \(n-1\). \\
\hline NPTS & Number of grid points in the sweep direction, \(N\). \\
\hline NV & Number of grid points in the "vectorized" direction, \(N_{r}\). \\
\hline NVD, NPTSD & Leading two dimensions for the arrays \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S . \\
\hline * RER & Reference Reynolds number \(R e_{r}\). \\
\hline RHO, U, V & Static density \(\rho\), and velocities \(u\) and \(v\), at time level \(n\). \\
\hline RHOL & Static density \(\rho\) at time level \(n-1\). \\
\hline * SIGE, SIGK & Constants \(\sigma_{t}\) and \(\sigma_{k}\) used in the diffusion term of the \(\varepsilon\) equation. \\
\hline * tFACT & Factor used in computing the \(k-\varepsilon\) time step. \\
\hline * THKE & Parameters \(\theta_{1}\) and \(\theta_{2}\) determining type of time differencing for the \(k-\varepsilon\) equations. \\
\hline VORT & Production rate of turbulent kinetic energy. \\
\hline XIX, XIY & Metric coefficients \(\xi_{x}\) and \(\xi_{y}\) (or \(\xi\), if axisymmetric). \\
\hline Y & Radial coordinate \(r\) for axisymmetric flow. \\
\hline YPLUSD & Nondimensional distance \(y^{+}\)from the nearest solid wall. \\
\hline
\end{tabular}

\section*{Output}
A, B, C
Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) at interior points.
S
Source term subvector \(\mathbf{S}\) at interior points.

\section*{Description}

Subroutine COEFS 1 computes the coefficients and source terms for the \(k-\varepsilon\) equations for the first ADI sweep. Equation (9.40a) in Volume 1 represents, in vector form, the goveming equation for the first ADI sweep for 2-D planar flow. This equation may be written in difference form as:
\[
\begin{aligned}
& {\left[\begin{array}{cc}
1-T_{1} Z_{11} & -T_{1} Z_{12} \\
-T_{1} Z_{21} & 1-T_{1} Z_{22}
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{W}_{1}^{*} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]+T_{1}\left\{\left(\delta_{u}\right)_{\xi}\left(\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{l}
\Delta \hat{W}_{1}^{*} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]\right)-\delta_{\xi}\left(\left[\begin{array}{cc}
B_{11} & 0 \\
0 & B_{22}
\end{array}\right]\left[\begin{array}{l}
\Delta \hat{W}_{1}^{*} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]\right)=\right.} \\
& T_{1}\left(\delta_{\xi} \hat{\mathbf{F}}_{M}^{n}-\delta_{\xi} \hat{\mathbf{F}}_{M}^{n-1}+\delta_{\eta} \hat{\mathbf{G}}_{M}^{n}-\delta_{\eta} \hat{\mathbf{G}}_{M}^{n-1}\right) \\
& +T_{2}\left(-\left(\delta_{u}\right)_{\xi} \hat{\mathbf{F}}_{C}^{n}+\delta_{\xi} \hat{\mathbf{F}}_{D}^{n}+\delta_{\xi} \hat{\mathbf{F}}_{M}^{n}-\left(\delta_{u}\right)_{\eta} \hat{\mathbf{G}}_{C}^{n}+\delta_{\eta} \hat{\mathbf{G}}_{D}^{n}+\delta_{\eta} \hat{\mathbf{G}}_{M}^{n}+\hat{\mathbf{S}}^{n}+\hat{\mathbf{T}}^{n}\right)+T_{3} \Delta \hat{\mathbf{W}}^{n-1}
\end{aligned}
\]
where
\[
\begin{aligned}
& T_{1}=\frac{\theta_{1} \Delta \tau}{1+\theta_{2}} \\
& T_{2}=\frac{\Delta \tau}{1+\theta_{2}} \\
& T_{3}=\frac{\theta_{2}}{1+\theta_{2}}
\end{aligned}
\]

In the above equation, \(Z_{11}\), etc., are elements of a matrix \(Z\), defined as \(Z=M+N\), and \(A, B, M\), and \(N\) are the Jacobian coefficient matrices defined in equations (9.31), (9.32), (9.35), and (9.36) of Volume 1. Also, \(\left(\delta_{u}\right)_{\xi}\) is the first-order upwind difference operator used for the convective terms, and \(\delta_{\xi}\) is the second-order central difference operator used for the viscous terms.

The convective term on the left side can thus be expanded as:
\[
\left(\delta_{u}\right)_{\xi}\left(\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{l}
\Delta \hat{W}_{1}^{*} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]\right)= \begin{cases}\frac{1}{\Delta \xi}\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{W}_{1}^{*} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]_{i}-\frac{1}{\Delta \xi}\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{W}_{1} \\
\Delta \hat{W}_{2}^{\prime}
\end{array}\right]_{i-1} & \text { if } \xi_{x} u+\xi_{y} \nu>0 \\
\frac{1}{\Delta \xi}\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{cc}
\Delta \hat{W}_{1}^{\prime} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]_{i+1}-\frac{1}{\Delta \xi}\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{ll}
\Delta \hat{W}_{i}^{\prime} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]_{i} & \text { if } \xi_{x} u+\xi_{y} \nu<0\end{cases}
\]

In the above equations, and in those to follow, the subscripts \(i\) and \(j\) represent grid point indices in the \(\bar{\zeta}\) and \(\eta\) directions. For notational convenience, terms without an explicitly written \(i\) or \(j\) subscript are understood to be at \(i\) or \(j\).

The Jacobian coefficient matrix \(B\) may be written as:
\[
B=\left[\begin{array}{cc}
f g_{\xi(11)} & 0 \\
0 & f g_{5(22)}
\end{array}\right]
\]

The viscous term on the left hand side may thus be expanded as:
\[
\begin{aligned}
\delta_{\xi}\left(\left[\begin{array}{cc}
B_{11} & 0 \\
0 & B_{22}
\end{array}\right]\left[\begin{array}{l}
\Delta \hat{W}_{1}^{*} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]\right)=\frac{1}{2(\Delta \xi)^{2}}\left(\begin{array}{cc}
{\left[\begin{array}{cc}
\left(f_{i-1}+f_{i}\right) g_{i-1(1)} & 0 \\
0 & \left(f_{i-1}+f_{i}\right) g_{i-1(22)}
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{W}_{1}^{*} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]_{i-1}} \\
& -\left[\begin{array}{cc}
\left(f_{i+1}+2 f_{i}+f_{i-1}\right) g_{i(11)} & \left(f_{i+1}+2 f_{i}+f_{i-1}\right) g_{i(22)} \\
0 &
\end{array}\right]\left[\begin{array}{l}
\Delta \hat{W}_{1}^{*} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]_{i} \\
& +\left[\begin{array}{cc}
\left(f_{i}+f_{i+1}\right) g_{i+1(11)} & \left(f_{i}+f_{i+1}\right) g_{i+1(22)} \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{W}_{1}^{*} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]_{i+1}
\end{array}\right)
\end{aligned}
\]

On the right hand side, the convective term \(\left(\delta_{x}\right)_{\xi} \hat{\mathbf{F}}_{c}\) is differenced as:
\[
\left(\delta_{u}\right)_{\xi} \hat{\mathbf{F}}_{C}= \begin{cases}\frac{1}{\Delta \xi}\left[\left(\hat{\mathbf{F}}_{C}\right)_{i}-\left(\hat{\mathbf{F}}_{C}\right)_{i-1}\right] & \text { if } \xi_{x} u+\xi_{y} v>0 \\ \frac{1}{\Delta \xi}\left[\left(\hat{\mathbf{F}}_{C}\right)_{i+1}-\left(\hat{\mathbf{F}}_{C}\right)_{i}\right] & \text { if } \xi_{x} u+\xi_{y} v<0\end{cases}
\]

An analogous expression may be written for \(\left(\delta_{u}\right)_{\eta} \hat{\mathbf{G}}_{c}\). The vectors \(\hat{\mathbf{F}}_{D}\) and \(\hat{\mathbf{F}}_{M}\) may be written as
\[
\begin{gathered}
\hat{\mathbf{F}}_{D}=\left[\begin{array}{l}
f g_{\xi(1)} \\
f g_{\xi(2)}
\end{array}\right] \\
\hat{\mathbf{F}}_{M}=\left[\begin{array}{l}
f g_{\eta(1)} \\
f g_{\eta(2)}
\end{array}\right]
\end{gathered}
\]

The terms \(\delta_{\xi} \hat{\mathbf{F}}_{D}\) and \(\delta_{\xi} \hat{\mathbf{F}}_{M}\) are thus differenced as:
\[
\begin{aligned}
& \delta_{\xi} \hat{\mathbf{F}}_{D}=\frac{1}{2(\Delta \zeta)^{2}}\left\{\left[\begin{array}{l}
\left(f_{i-1}+f_{i}\right) g_{i-1(1)} \\
\left(f_{i-1}+f_{i}\right) g_{i-1(2)}
\end{array}\right]-\left[\begin{array}{l}
\left(f_{i+1}+2 f_{i}+f_{i-1}\right) g_{i(1)} \\
\left(f_{i+1}+2 f_{i}+f_{i-1}\right) g_{i(2)}
\end{array}\right]+\left[\begin{array}{l}
\left(f_{i}+f_{i+1}\right) g_{i+1(1)} \\
\left(f_{i}+f_{i+1}\right) g_{i+1(2)}
\end{array}\right]\right\} \\
& \delta_{\xi} \hat{\mathbf{F}}_{M}=\frac{1}{4 \Delta \zeta \Delta \eta}\left\{\left[\begin{array}{l}
f_{i+1, j}\left(g_{i+1, j+1}-g_{i+1, j-1}\right)_{(1)} \\
f_{i+1, j}\left(g_{i+1, j+1}-g_{i+1, j-1}\right)
\end{array}\right]-\left[\begin{array}{l}
f_{i-1, j}\left(g_{i-1, j+1}-g_{i-1, j-1}\right)_{(1)} \\
f_{i-1, j}\left(g_{i-1, j+1}-g_{i-1, j-1}\right)_{(2)}
\end{array}\right]\right\}
\end{aligned}
\]

Analogous expressions may be written for \(\delta_{\eta} \hat{\mathbf{G}}_{D}\) and \(\delta_{\eta} \hat{\mathbf{G}}_{M}\).
The \(k\) - equations for axisymmetric flow are presented in Appendix B of Volume 1. They may be written in difference form for the first ADI sweep as:
\[
\begin{aligned}
& {\left[\begin{array}{cc}
1-T_{1} Z_{11} & -T_{1} Z_{12} \\
-T_{1} Z_{21} & 1-T_{1} Z_{22}
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{W}_{1}^{*} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]+\frac{T_{1}}{r}\left\{\left(\delta_{L}\right)_{\xi}\left(r\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{W}_{1}^{*} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]\right)-\delta_{\xi}\left(r\left[\begin{array}{cc}
B_{11} & 0 \\
0 & B_{22}
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{W}_{1}^{*} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]\right)\right\}=} \\
& \frac{T_{1}}{r}\left(\delta_{\xi} r \hat{\mathbf{F}}_{M}^{n}-\delta_{\xi} r \hat{\mathbf{F}}_{M}^{n-1}+\delta_{\eta} r \hat{G}_{M}^{n}-\delta_{\eta} r \hat{\mathbf{G}}_{M}^{n-1}\right) \\
& +\frac{T_{2}}{r}\left(-\left(\delta_{u}\right)_{\xi} r \hat{\mathbf{F}}_{C}^{n}+\delta_{\xi} r \hat{\mathbf{F}}_{D}^{n}+\delta_{\xi} \hat{\mathbf{F}}_{M}^{n}-\left(\delta_{u}\right)_{\eta} r \hat{\mathbf{G}}_{C}^{n}+\delta_{\eta} r \hat{\mathbf{G}}_{D}^{n}+\delta_{\eta} r \hat{\mathrm{G}}_{M}^{n}+r \hat{\mathbf{S}}^{n}+r \hat{\mathbf{T}}^{n}\right)+T_{3} \Delta \hat{\mathbf{W}}^{n-1}
\end{aligned}
\]
where \(r\) is the radial coordinate and all other terms are the same as the 2-D planar equations presented above.

\section*{Remarks}
1. For the variables \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S , the first subscript is the index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep direction. Since this subroutine only applies to the first sweep, the first two subscripts of A, B, C, and S variables are written as ( \(J, I\) ). The third subscript on \(A, B, C\), and \(S\) corresponds to the equation. And, for \(A, B\), and \(C\), the fourth subscript corresponds to the dependent variable for which \(\mathrm{A}, \mathrm{B}\), or C is a coefficient.
2. For axisymmetric flows, the Fortran variables RIJ, RIP1J, and RIM1J are the cylindrical \(r\) coordinates for the grid points (I,J), (I \(+1, \mathrm{~J}\) ), and ( \(\mathrm{I}-1, \mathrm{~J}\) ), respectively. Similarly, RIJP1 and RIJM1 are the cylindrical \(r\) coordinates for the grid points \((1, J+1)\) and \((I, J-1)\). For 2-D flows, all of these variables are set equal to 1.0 .
```

Subroutine COEFS2 (A,B,C,S,NVD,NPTSD)

```
\begin{tabular}{|l|l|l|}
\hline Called by & Calls & Purpose \\
\hline EXECT & & \begin{tabular}{l} 
Compute coefficients and source terms for the \(k\) and \(\varepsilon\) equations for \\
the second ADI sweep.
\end{tabular} \\
\hline
\end{tabular}

\section*{Input}

DETA
DTAU
E, EL
ETAX, ETAY
* IAXI

JI
KE, KEL
MU
MUT
NPTS
NV
NVD, NPTSD
* RER

RHO, U, V
RHOL
S
* SIGE, SIGK
* TFACT
* THKE

Y

Computational grid spacing \(\Delta \eta\).
Time step \(\Delta \tau\).
Turbulent dissipation rate \(\varepsilon\) at time levels \(n\) and \(n-1\).
Metric coefficients \(\eta_{x}\) and \(\eta_{y}\) (or \(\eta_{r}\) if axisymmetric).
Flag for axisymmetric flow.
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Turbulent kinetic energy \(k\) at time levels \(n\) and \(n-1\).
Laminar viscosity \(\mu_{l}\) at time level \(n\).
Turbulent viscosity \(\mu_{\mathrm{t}}\) at time level \(n\).
Number of grid points in the sweep direction, \(N\).
Number of grid points in the "vectorized" direction, \(N_{v}\).
Leading two dimensions for the arrays \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S .
Reference Reynolds number \(R e_{r}\).
Static density \(\rho\), and velocities \(u\) and \(v\), at time level \(n\).
Static density \(\rho\) at time level \(n-1\).
Computed solution subvector from first sweep.
Constants \(\sigma_{\mathrm{t}}\) and \(\sigma_{k}\) used in the diffusion term of the \(\varepsilon\) equation.
Factor used in computing the \(k-\varepsilon\) time step.
Parameters \(\theta_{1}\) and \(\theta_{2}\) determining type of time differencing for the \(k-\varepsilon\) equations.
Radial coordinate \(r\) for axisymmetric flow.

\section*{Output}
A, B, C
Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) at interior points.
S Source term subvector \(S\) at interior points.

\section*{Description}

Subroutine COEFS2 computes the coefficients and source terms for the \(k-\varepsilon\) equations for the second ADI sweep. Equation ( 9.40 b ) in Volume 1 represents, in vector form, the governing equation for the second ADI sweep for 2-D planar flow. This equation may be written in difference form as:
\[
\left[\begin{array}{c}
\Delta \hat{W}_{1}^{n} \\
\Delta \hat{W}_{2}^{n}
\end{array}\right]+T_{1}\left\{\left(\delta_{u}\right)_{\eta}\left(\left[\begin{array}{cc}
C_{11} & 0 \\
0 & C_{22}
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{W}_{1}^{n} \\
\Delta \hat{W}_{2}^{n}
\end{array}\right]\right)-\delta_{\eta}\left(\left[\begin{array}{cc}
D_{11} & 0 \\
0 & D_{22}
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{W}_{1}^{n} \\
\Delta \hat{W}_{2}^{n}
\end{array}\right]\right)\right\}=\left[\begin{array}{c}
\Delta \hat{W}_{1}^{*} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]
\]
where
\[
T_{1}=\frac{\theta_{1} \Delta \tau}{1+\theta_{2}}
\]

In the above equation \(C\) and \(D\) are the Jacobian coefficient matrices defined in equations (9.33) and (9.34) of Volume 1. Also, \(\left(\delta_{k}\right)_{n}\) is the first-order upwind difference operator used for the convective terms, and \(\delta_{n}\) is the second-order central difference operator used for the viscous terms.

The convective term on the left side can thus be expanded as:
\[
\left(\delta_{u}\right)_{n}\left(\left[\begin{array}{cc}
c_{11} & 0 \\
0 & c_{22}
\end{array}\right]\left[\begin{array}{l}
\Delta \hat{W}_{1}^{n} \\
\Delta \hat{W}_{2}^{n}
\end{array}\right]\right)= \begin{cases}\frac{1}{\Delta \eta}\left[\begin{array}{cc}
c_{11} & 0 \\
0 & c_{22}
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{W}_{1}^{n} \\
\Delta \hat{W}_{2}^{n}
\end{array}\right]-\frac{1}{\Delta \eta}\left[\begin{array}{cc}
c_{11} & 0 \\
0 & c_{22}
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{W}_{1}^{n} \\
\Delta \hat{W}_{2}^{n}
\end{array}\right]_{j-1} & \text { if } \eta_{x^{u}}+\eta_{y} y>0 \\
\frac{1}{\Delta \eta}\left[\begin{array}{cc}
c_{11} & 0 \\
0 & c_{22}
\end{array}\right]\left[\begin{array}{ll}
\Delta \hat{W}_{1}^{n} \\
\Delta \hat{W}_{2}^{n}
\end{array}\right]_{j+1}-\frac{1}{\Delta \eta}\left[\begin{array}{cc}
c_{11} & 0 \\
0 & c_{22}
\end{array}\right]\left[\begin{array}{ll}
\Delta \hat{W}_{1}^{n} \\
\Delta \hat{w}_{2}^{n}
\end{array}\right]_{j} & \text { if } \eta_{x} u+\eta_{y} v<0\end{cases}
\]

In the above equations, and in those to follow, the subscripts \(i\) and \(j\) represent grid point indices in the \(\xi\) and \(\eta\) directions. For notational convenience, terms without an explicitly written \(i\) or \(j\) subscript are understood to be at \(i\) or \(j\).

The Jacobian coefficient matrix \(D\) may be written as:
\[
D=\left[\begin{array}{cc}
f g_{\eta(11)} & 0 \\
0 & f g_{\eta(22)}
\end{array}\right]
\]

The viscous term on the left hand side may thus be expanded as:
\[
\begin{aligned}
\delta_{\eta}\left(\left[\begin{array}{cc}
D_{11} & 0 \\
0 & D_{22}
\end{array}\right]\left[\begin{array}{l}
\Delta \hat{W}_{1}^{n} \\
\Delta \hat{W}_{2}^{n}
\end{array}\right]\right)=\frac{1}{2(\Delta \xi)^{2}}\left(\begin{array}{cc}
{\left[\begin{array}{cc}
\left(f_{j-1}+f_{j}\right) g_{j-1}(11) & 0 \\
0 & \left(f_{j-1}+f_{j}\right) g_{j-1}(22)
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{W}_{1}^{n} \\
\Delta \hat{W}_{2}^{n}
\end{array}\right]_{j-1}} \\
& -\left[\begin{array}{cc}
\left(f_{j+1}+2 f_{j}+f_{j-1}\right) g_{j}(11) & \left(f_{j+1}+2 f_{j}+f_{j-1}\right) g_{j}(22)
\end{array}\right]\left[\begin{array}{l}
\Delta \hat{W}_{1}^{n} \\
\Delta \hat{W}_{2}^{n}
\end{array}\right]_{j} \\
& +\left[\begin{array}{cc}
\left(f_{j}+f_{j+1}\right) g_{j+1}(11) & \left(f_{j}+f_{j+1}\right) g_{j+1}(22)
\end{array}\right]\left[\begin{array}{l}
\Delta \hat{W}_{1}^{n} \\
0
\end{array}\right)
\end{array}\right)
\end{aligned}
\]

The \(k-\varepsilon\) equations for axisymmetric flow are presented in Appendix B of Volume 1. They may be written in difference form for the second ADI sweep as:
\[
\left[\begin{array}{c}
\Delta \hat{W}_{1}^{n} \\
\Delta \hat{W}_{2}^{n}
\end{array}\right]+\frac{T_{1}}{r}\left\{\left(\delta_{u}\right)_{\eta}\left(r\left[\begin{array}{cc}
C_{11} & 0 \\
0 & C_{22}
\end{array}\right]\left[\begin{array}{c}
\Delta \hat{W}_{1}^{n} \\
\Delta \hat{W}_{2}^{n}
\end{array}\right]\right)-\delta_{\eta}\left(r\left[\begin{array}{cc}
D_{11} & 0 \\
0 & D_{22}
\end{array}\right]\left[\begin{array}{l}
\Delta \hat{W}_{1}^{n} \\
\Delta \hat{W}_{2}^{n}
\end{array}\right]\right)\right\}=\left[\begin{array}{c}
\Delta \hat{W}_{1}^{*} \\
\Delta \hat{W}_{2}^{*}
\end{array}\right]
\]
where \(r\) is the radial coordinate and all other terms are the same as the 2-D planar equations presented above.

\section*{Remarks}
1. For the variables \(A, B, C\), and \(S\), the first subscript is the index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep direction. Since this subroutine only ap-
plies to the second sweep, the first two subscripts of \(A, B, C\), and \(S\) variables are written as \((I, J)\). The third subscript on \(A, B, C\), and \(S\) corresponds to the equation. And, for \(A, B\), and \(C\), the fourth subscript corresponds to the dependent variable for which \(A, B\), or \(C\) is a coefficient.
2. For axisymmetric flows, the Fortran variables RIJ, RIJP1, and RIJM1 are the cylindrical \(r\) coordinates for the grid points ( \(I, J\) ) , \((I, J+1)\), and \((I, J-1)\), respectively. For \(2-D\) flows, these variables are set equal to 1.0 .
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine COEFX (A,B,C,S,,METX,METY,METT,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline EXEC & & Compute coefficients and source term for the \(x\)-momentum equation. \\
\hline
\end{tabular}

\section*{Input}

DEL
DPDRHO, DPDRU, DPDRV, DPDRW, DPDET
DTAU
DXI, DETA
ETAX, ETAY, ETAT
* IAXI

IBASE, ISTEP
* IEULER
* IHSTAG

ISWEEP
* ISWIRL
* ITHIN

IV
I1, I2
JI
METX, METY, METT
MU, LA
NEQ
NPTS
NR, NRU, NRV, NRW, NET
NVD, NPTSD
NXM
P
RAX
* RER

RHO, U, V
RHOL, UL, VL

Computational grid spacing in sweep direction.
Derivatives \(\partial p / \partial \rho, \partial p / \partial(\rho u), \partial p / \partial(\rho v), \partial p / \partial(\rho w)\), and \(\partial p / \partial E_{T}\).
Time step \(\Delta \tau\).
Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
Metric coefficients \(\eta_{x}, \eta_{y}\) (or \(\eta_{t}\) if axisymmetric), and \(\eta_{t}\).
Flag for axisymmetric flow.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Flag for Euler calculation.
Flag for constant stagnation enthalpy option.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Flags for thin-layer option.
Index in the "vectorized" direction, \(i_{v}\).
Grid indices \(i\) and \(j\), in the \(\xi\) and \(\eta\) directions.
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\) (times the radius \(r\) for axisymmetric flow.)
Derivatives of sweep direction computational coordinate with respect to \(x, y\) (or \(r\) if axisymmetric), and \(t\).
Effective coefficient of viscosity \(\mu\) and effective second coefficient of viscosity \(\lambda\) at time level \(n\).
Number of coupled equations being solved, \(N_{e q}\).
Number of grid points in the sweep direction, \(N\).
Array indices associated with the dependent variables \(\rho, \rho u, \rho v\), \(\rho w\), and \(E_{T}\).
Leading two dimensions for the arrays A, B, C, S, METX, METY, and METT.
Array index associated with the \(x\)-momentum equation.
Static pressure \(p\) at time level \(n\).
1 for two-dimensional planar flow, and the local radius \(r\) for axisymmetric flow.
Reference Reynolds number \(R e_{r}\).
Static density \(\rho\), and velocities \(u\) and \(v\) at time level \(n\).
Static density \(\rho\), and velocities \(u\) and \(v\) from previous ADI sweep.
* THX

XIX, XIY, XIT
Y

Parameters \(\theta_{1}, \theta_{2}\), and \(\theta_{3}\) determining type of time differencing for the \(x\)-momentum equation.
Metric coefficients \(\xi_{x}, \xi_{y}\) (or \(\xi_{r}\) if axisymmetric), and \(\xi_{r}\).
Radial coordinate \(r\) for axisymmetric flow.

\section*{Output}

A, B, C

S

Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) at interior points (row NXM only).
Source term subvector \(S\) at interior points (element NXM only).

\section*{Description}

Subroutine COEFX computes the coefficients and source term for the \(x\)-momentum equation. Equations ( \(7.5 \mathrm{a}-\mathrm{b}\) ) in Volume 1 represent, in vector form, the four governing difference equations for the two ADI sweeps for 2-D planar flow. The elements of the inviscid flux vectors \(\hat{\mathbf{E}}\) and \(\hat{\mathbf{F}}\) are given in Section 2.0 of Volume 1 , and the elements of the viscous flux vectors \(\hat{\mathbf{E}}_{V_{1}}, \hat{\mathbf{E}}_{V_{2}}\), etc., are given in Appendix A of Volume 1. The Jacobian coefficient matrices \(\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}, \partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}\), etc., are given in Section 4.0 of Volume 1. Using all of these equations, the differenced form of the \(x\)-momentum equation for 2-D planar flow may be written for the two ADI sweeps as \({ }^{20}\)

Sweep 1 ( \(\xi\) direction)
\[
\begin{aligned}
\Delta(\hat{\rho u})_{i}^{*} & +\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \xi}\left[\left(\frac{\partial \hat{\mathbf{E}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{*}-\left(\frac{\partial \hat{\mathbf{E}}_{2}}{\partial \hat{\mathbf{Q}}^{\prime}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}\right] \\
& -\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2}}\left[\left(f_{i-1}+f_{i}\right)^{n} g_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}-\left(f_{i-1}+2 f_{i}+f_{i+1}\right)^{n} g_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{*}+\left(f_{i}+f_{i+1}\right)^{n} g_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{*}\right]= \\
& -\frac{\Delta \tau}{1+\theta_{2}}\left(\delta_{\xi} \hat{\mathbf{E}}_{2}+\delta_{\eta} \hat{\mathbf{F}}_{2}\right)^{n}+\frac{\Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{1}}\right)_{2}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{1}}\right)_{2}\right]^{n} \\
& +\frac{\left(1+\theta_{3}\right) \Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{2}}\right)_{2}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{2}}\right)_{2}\right]^{n}-\frac{\theta_{3} \Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{2}}\right)_{2}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{2}}\right)_{2}\right]^{n-1}+\frac{\theta_{2}}{1+\theta_{2}} \Delta(\hat{\rho u})^{n-1}
\end{aligned}
\]

Sweep 2 ( \(\eta\) direction)
\[
\begin{aligned}
& \Delta(\hat{\rho u})_{j}^{n}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \eta}\left[\left(\frac{\partial \hat{\mathbf{F}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}-\left(\frac{\partial \hat{\mathbf{F}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}\right] \\
&-\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \eta)^{2}}\left[\left(f_{j-1}+f_{j}\right)^{n} g_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}-\left(f_{j-1}+2 f_{j}+f_{j+1}\right)^{n} g_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+\left(f_{j}+f_{j+1}\right)^{n} g_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right]= \\
& \Delta(\hat{\rho u})^{*}
\end{aligned}
\]

\footnotetext{
\({ }^{20}\) These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case, the total energy \(E_{T}\) would not appear as a dependent variable, and the Jacobian coefficient matrices would have only three elements.
}

In the above equations, the subscripts \(i\) and \(j\) represent grid point indices in the \(\xi\) and \(\eta\) directions. For notational convenience, terms without an explicitly written \(i\) or \(j\) subscript are understood to be at \(i\) or \(j\). On the left hand side, \(f\) is the coefficient of \(\partial / \partial \xi\) (or \(\partial / \partial \eta\), depending on the sweep) in the \(\partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}\) (or \(\partial \hat{\mathbf{F}}_{\nu_{1}} / \partial \hat{\mathbf{Q}}\) ) Jacobian coefficient matrix. Similarly, \(g\) is the term in the parentheses following \(\partial / \partial \xi\) (or \(\partial / \partial \eta\) ) in the \(\partial \hat{\mathbf{E}}_{v_{1}} \partial \partial \hat{\mathbf{Q}}\) (or \(\partial \hat{\mathbf{F}}_{v_{1}} / \partial \hat{\mathbf{Q}}\) ) Jacobian coefficient matrix.

The vector of dependent variables is
\[
\hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{llll}
\rho & \rho u & \rho v & E_{T}
\end{array}\right]^{T}
\]

The appropriate elements of the inviscid flux vectors are given by
\[
\begin{aligned}
& \hat{\mathbf{E}}_{2}=\frac{1}{J}\left[\left(\rho u^{2}+p\right) \xi_{x}+\rho u v \xi_{y}+\rho u \xi_{t}\right] \\
& \hat{\mathbf{F}}_{2}=\frac{1}{J}\left[\left(\rho u^{2}+p\right) \eta_{x}+\rho u v \eta_{y}+\rho u \eta_{l}\right]
\end{aligned}
\]

The appropriate elements of the non-cross derivative viscous flux vectors are
\[
\begin{aligned}
& \left(\hat{\mathbf{E}}_{V_{1}}\right)_{2}=\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu \xi_{x}^{2} u_{\xi}+\lambda \xi_{x}\left(\xi_{x} u_{\xi}+\xi_{y} v_{\xi}\right)+\mu \xi_{y}\left(\xi_{y} u_{\xi}+\xi_{x} v_{\xi}\right)\right] \\
& \left(\hat{\mathbf{F}}_{V_{1}}\right)_{2}=\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu \eta_{x}^{2} u_{\eta}+\lambda \eta_{x}\left(\eta_{x} u_{\eta}+\eta_{y} v_{\eta}\right)+\mu \eta_{y}\left(\eta_{y} u_{\eta}+\eta_{x} v_{\eta}\right)\right]
\end{aligned}
\]

And the appropriate elements of the cross derivative viscous flux vectors are
\[
\begin{aligned}
& \left(\hat{\mathbf{E}}_{V_{2}}\right)_{2}=\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu \xi_{x} \eta_{x} u_{\eta}+\lambda \xi_{x}\left(\eta_{x} u_{\eta}+\eta_{y} v_{\eta}\right)+\mu \xi_{y}\left(\eta_{y} u_{\eta}+\eta_{x} v_{\eta}\right)\right] \\
& \left(\hat{\mathbf{F}}_{V_{2}}\right)_{2}=\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu \eta_{x} \xi_{x} u_{\xi}+\lambda \eta_{x}\left(\xi_{x} u_{\xi}+\xi_{y} v_{\xi}\right)+\mu \eta_{y}\left(\xi_{y} u_{\xi}+\xi_{x} v_{\xi}\right)\right]
\end{aligned}
\]

The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}\) for the inviscid terms in the \(x\)-momentum equation are
\[
\frac{\partial \hat{\mathbf{E}}_{2}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{llll}
\frac{\partial p}{\partial \rho} \xi_{x}-u f_{1} & \xi_{t}+f_{1}+u \xi_{x}+\frac{\partial p}{\partial(\rho u)} \xi_{x} & u \xi_{y}+\frac{\partial p}{\partial(\rho v)} \xi_{x} & \frac{\partial p}{\partial E_{T}} \xi_{x}
\end{array}\right]
\]
where \(f_{1}=u \check{\zeta}_{x}+v \zeta_{y}\).
The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{E}}_{v_{1}} / \partial \hat{\mathbf{Q}}\) for the viscous terms are
\[
\frac{\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{2}}{\partial \hat{\mathbf{Q}}}=\frac{1}{R e_{r}}\left[\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{21} \alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right) \quad \alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right) \quad 0\right]
\]
where
\[
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{21}=-\alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)-\alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)
\]
\[
\begin{gathered}
\alpha_{x x}=(2 \mu+\lambda) \xi_{x}^{2}+\mu \xi_{y}^{2} \\
\alpha_{x y}=(\mu+\lambda) \xi_{x} \xi_{y}
\end{gathered}
\]

The Jacobian coefficient matrices \(\partial \hat{\mathbf{F}}_{2} / \partial \hat{\mathbf{Q}}\) and \(\partial\left(\hat{\mathbf{F}}_{v_{1}}\right)_{2} / \partial \hat{\mathbf{Q}}\) have the same form as \(\partial \hat{\mathbf{E}}_{2} / \partial \hat{\mathbf{Q}}\) and \(\partial\left(\hat{\mathbf{E}}_{v_{1}}\right)_{2} / \partial \hat{\mathbf{Q}}\), but with \(\xi\) replaced by \(\eta\).

As an example of how these equations are translated into Fortran, consider the \(\Delta(\rho u / J)\) term on the left hand side for the first sweep. This is the second element of \(\hat{\mathbf{Q}}\), so using the second element in \(\partial \hat{\mathbf{E}}_{2} / \partial \hat{\mathbf{Q}}\), and including the \(\Delta(\hat{\rho u} u)_{i}^{*}\) term, we get for the inviscid term
\[
\mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NXM}, \mathrm{NRU})=-\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2 \Delta \xi}\left[\left(\xi_{t}\right)_{i-1, j}+\left(u \xi_{x}+v \xi_{y}\right)_{i-1, j}+\left(u \xi_{x}\right)_{i-1, j}+\left(\frac{\partial p}{\partial(\rho u)} \xi_{x}\right)_{i-1, j}\right]
\]
\(\mathrm{B}(\mathrm{IV}, \mathrm{I}, \mathrm{NXM}, \mathrm{NRU})=1\)
\[
\mathrm{C}(\mathrm{IV}, \mathrm{I}, \mathrm{NXM}, \mathrm{NRU})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2 \Delta \xi}\left[\left(\xi_{t}\right)_{i+1, j}+\left(u \xi_{x}+v \xi_{y}\right)_{i+1, j}+\left(u \xi_{x}\right)_{i+1, j}+\left(\frac{\partial p}{\partial(\rho u)} \xi_{x}\right)_{i+1, j}\right]
\]

For the viscous terms on the left hand side, we use the second element in \(\partial\left(\hat{\mathbf{E}}_{v_{1}}\right)_{2} / \partial \hat{\mathbf{Q}}\), which is
\[
\frac{1}{R e_{r}} \alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right)
\]

Thus \(f=\alpha_{x x} / R e_{r}\) and \(g=1 / \rho\). To add the viscous contribution to this part of the A coefficient submatrix, we therefore set
\[
\mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NXM}, \mathrm{NRU})=\mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NXM}, \mathrm{NRU})-\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2} \operatorname{Re}_{r}}\left[\left(\alpha_{x x}\right)_{i-1, j}+\left(\alpha_{x x}\right)_{i, j}\right]\left(\frac{1}{\rho}\right)_{i-1, j}
\]

Similar equations may be written for the \(\mathbf{B}\) and \(\mathbf{C}\) coefficient submatrices.
The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetric \(x\)-momentum equation for the two ADI sweeps is given by \({ }^{21}\)

\section*{Sweep 1 ( \(\xi\) direction)}
\[
\begin{aligned}
& \Delta(\hat{\rho u})_{i}^{\cdot}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \xi} \frac{1}{r}\left[\left(r \frac{\partial \hat{\mathbf{E}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{\cdot}-\left(r \frac{\partial \hat{\mathbf{E}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}\right] \\
& -\frac{\theta_{1} \Delta t}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2}} \frac{1}{r}\left[\left(r_{i-1} f_{i-1}+r_{i} f_{i}\right)_{g_{i-1}}^{n} \Delta \hat{\mathbf{Q}}_{i-1}-\left(r_{i-1} f_{i-1}+2 r_{i} f_{i}+r_{i+1} f_{i+1}\right)^{n} g_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{0}+\left(r_{i} f_{i}+r_{i+1} f_{i+1}\right)^{n} g_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{0}\right]= \\
& -\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{2}\right)+\delta_{\eta}\left(\hat{\mathbf{F}}_{2}\right)\right]^{n}+\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\xi}\left[r\left(\hat{\mathbf{E}}_{V_{1}}\right)_{2}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{1}}\right)_{2}\right]\right\}^{n}
\end{aligned}
\]

\footnotetext{
\({ }^{21}\) These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum \(\rho w\) would not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.
}

Sweep 2 ( \(\eta\) direction)
\[
\begin{aligned}
& \Delta(\hat{\rho u})_{j}^{n}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \eta} \frac{1}{r}\left[\left(r \frac{\partial \hat{\mathbf{F}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}-\left(r \frac{\partial \hat{\mathbf{F}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}\right] \\
& \quad-\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \eta)^{2}} \frac{1}{r}\left[\left(r_{j-1} f_{j-1}+r_{j} f_{j}{ }^{n} \mathrm{~g}_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}-\left(r_{j-1} f_{j-1}+2 r_{j} f_{j}+r_{j+1} f_{j+1}\right)^{n} \mathrm{~g}_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+\left(r_{j} f_{j}+r_{j+1} f_{j+1}\right)^{n} g_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right]=\right. \\
& \Delta(\hat{\rho u})^{0}
\end{aligned}
\]
where now
\[
\begin{aligned}
& \hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{lllll}
\rho & \rho u & \rho v & \rho w & E_{T}
\end{array}\right]^{T} \\
& \hat{\mathbf{E}}_{2}=\frac{1}{J}\left[\left(\rho u^{2}+p\right) \xi_{x}+\rho u v \xi_{r}+\rho u \xi_{t}\right] \\
& \hat{\mathbf{F}}_{2}=\frac{1}{J}\left[\left(\rho u^{2}+p\right) \eta_{x}+\rho u v \eta_{r}+\rho u \eta_{i}\right] \\
& \left(\hat{\mathbf{E}}_{V_{1}}\right)_{2}=\frac{1}{J} \frac{1}{R e_{r}}\left\{2 \mu \xi_{x}^{2} u_{\xi}+\lambda \xi_{x}\left[\xi_{x} u_{\xi}+\frac{1}{r} \xi_{r}(r v)_{\xi}\right]+\mu \xi_{r}\left(\xi_{r} u_{\xi}+\xi_{x} v_{\xi}\right)\right\} \\
& \left(\hat{\mathbf{F}}_{V_{1}}\right)_{2}=\frac{1}{J} \frac{1}{R e_{r}}\left\{2 \mu \eta_{x}^{2} u_{\eta}+\lambda \eta_{x}\left[\eta_{x} u_{\eta}+\frac{1}{r} \eta_{r}(n)_{\eta}\right]+\mu \eta_{r}\left(\eta_{r} u_{\eta}+\eta_{x} v_{\eta}\right)\right\} \\
& \left(\hat{\mathbf{E}}_{V_{2}}\right)_{2}=\frac{1}{J} \frac{1}{R e_{r}}\left\{2 \mu \xi_{x} \eta_{x} u_{\eta}+\lambda \xi_{x}\left[\eta_{x} u_{\eta}+\frac{1}{r} \eta_{r}(v)_{\eta}\right]+\mu \xi_{r}\left(\eta_{r} u_{\eta}+\eta_{x} v_{\eta}\right)\right\} \\
& \left(\hat{\mathbf{F}}_{V_{2}}\right)_{2}=\frac{1}{J} \frac{1}{R e_{r}}\left\{2 \mu \eta_{x} \xi_{x} u_{\xi}+\lambda \eta_{x}\left[\xi_{x} u_{\xi}+\frac{1}{r} \xi_{r}(r)_{\xi}\right]+\mu \eta_{r}\left(\xi_{r} u_{\xi}+\xi_{x} v_{\xi}\right)\right\}
\end{aligned}
\]

The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}\) for the inviscid terms in the axisymmetric form of the energy equation are
\[
\frac{\partial \hat{\mathbf{E}}_{2}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{llll}
\frac{\partial p}{\partial \rho} \xi_{x}-u f_{1} & \xi_{t}+f_{1}+u \xi_{x}+\frac{\partial p}{\partial(\rho u)} \xi_{x} & u \xi_{r}+\frac{\partial p}{\partial(\rho v)} \xi_{x} & \frac{\partial p}{\partial(\rho w)} \xi_{x}
\end{array} \frac{\partial p}{\partial E_{T}} \xi_{x}\right]
\]
where \(f_{1}=u \xi_{x}+\nu \xi_{r}\).
The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}\) for the viscous terms are
\[
\frac{\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{2}}{\partial \hat{\mathbf{Q}}}=\frac{1}{R e_{r}}\left[\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{21} \alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right) \alpha_{x r} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right)+\alpha_{x r}^{\prime} \frac{1}{\rho} r_{\xi} 00 \quad 0\right]
\]
where
\[
\begin{gathered}
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{21}=-\alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)-\alpha_{x r} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)-\alpha_{x r}^{\prime} \frac{v}{\rho} r_{\xi} \\
\alpha_{x x}=(2 \mu+\lambda) \check{\zeta}_{x}^{2}+\mu_{\zeta_{r}}^{2}
\end{gathered}
\]
\[
\begin{gathered}
\alpha_{x r}=(\mu+\lambda) \xi_{x} \xi_{r} \\
\alpha_{x r}^{\prime}=\frac{\lambda}{r} \xi_{x} \xi_{r}
\end{gathered}
\]

As in 2-D planar flow, the Jacobian coefficient matrices \(\partial \hat{\mathbf{F}}_{2} / \partial \hat{\mathbf{Q}}\) and \(\partial\left(\hat{\mathbf{F}}_{\nu_{1}}\right)_{2} / \partial \hat{\mathbf{Q}}\) have the same form as \(\partial \hat{\mathbf{E}}_{2} / \partial \hat{\mathbf{Q}}\) and \(\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{2} / \partial \hat{\mathbf{Q}}\), but with \(\xi\) replaced by \(\eta\).

Note that the equations for 2-D planar and axisymmetric flow are very similar. In the axisymmetric equations there are some additional terms involving the radius \(r\) in the viscous flux vectors, with corresponding terms in the Jacobian coefficient matrices. The radius \(r\) appears as an additional coefficient in front of the flux vectors \(\hat{\mathbf{E}}, \hat{\mathbf{E}}_{V_{1}}\), etc., and in front of the Jacobian coefficient matrices \(\partial \hat{\mathbf{E}}_{2} / \partial \hat{\mathbf{Q}}, \partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{2} / \partial \hat{\mathbf{Q}}\), etc. In addition, \(1 / r\) appears in front of every term in the equation except the \(\Delta(\hat{\rho u})\) terms. In Proteus, the Fortran variables are defined in such a way that, for many terms, the same coding can be used for both 2-D planar and axisymmetric flow. Unfortunately, this may make some of the coding a little confusing. It is hoped that this detailed description, when compared with the source listing, will help make things clear.

In COEFX, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms for the second ADI sweep have exactly the same form as for the first sweep, but with \(\xi\) replaced by \(\eta\). By defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep direction, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow, and the radius \(r\) for axisymmetric flow. This adds the \(r\) in front of the Jacobian coefficient matrices for axisymmetric flow, but has no effect for 2-D planar flow. The \(1 / r\) coefficient in front of each term will be added later. In this section of code, the coefficient of \(\Delta(\hat{\rho} u)\) (part of \(\mathrm{B}(\mathrm{IV}, \mathrm{I}, \mathrm{NXM}, \mathrm{NRU})\) ) is set equal to \(r\), not \(l\) as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to compute the source term are the same as those used for the implicit terms. These formulas are presented in Section 5.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as \(1 / J\), is temporarily redefined as \(r / J\) before the COEF routines are called. This automatically accounts for the \(r\) coefficient in front of all the flux vectors in the source term. The \(1 / r\) coefficient in front of each term will be added later. This definition of JI adds an \(r\) in front of the \(\Delta \hat{\rho} \hat{\rho})^{n-1}\) term that should not be there. This will also be corrected later.

The coding for the source term for the second sweep, which consists only of \(\Delta(\hat{\rho u})^{*}\), comes next. The definition of JI also adds an \(r\) in front of this term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius \(r\). This adds the \(1 / r\) coefficient where it should be added, and removes the \(r\) in front of the \(\Delta(\hat{\rho} u)\) terms.

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division by \(r\) at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only to the first sweep, the first two subscripts are written as (I2,II). For sections that apply only to the second sweep, they are written as (Il,I2). The third subscript on A, B, C, and S corresponds to the equation. And, for \(\mathrm{A}, \mathrm{B}\), and C , the fourth subscript corresponds to the dependent variable for which \(\mathrm{A}, \mathrm{B}\), or C is a coefficient.
3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the coding of coefficients and source terms involving the swirl velocity is separate from the rest of the coding, and is bypassed if there is no swirl.
4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms for the viscous terms.
5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms for the viscous terms containing derivatives in the specified direction.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine COEFY (A,B,C,S,METX,METY,METT,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline EXEC & & \begin{tabular}{l} 
Compute coefficients and source term for the \(y\) or \(r\)-momentum \\
equation.
\end{tabular} \\
\hline
\end{tabular}

\section*{Input}

DEL
DPDRHO, DPDRU, DPDRV, DPDRW, DPDET
DTAU
DXI, DETA
ETAX, ETAY, ETAT
* IAXI

IBASE, ISTEP
* IEULER
* IHSTAG

ISWEEP
* ISWIRL
* ITHIN

IV
I1, I2
JI
METX, METY, METT
MU, LA
NEQ
NPTS
NR, NRU, NRV, NRW, NET
NVD, NPTSD
NYM
P
RAX
* RER

RHO, U, V, W

Computational grid spacing in sweep direction.
Derivatives \(\partial p|\partial \rho, \partial p| \partial(\rho u), \partial p \mid \partial(\rho v), \partial p / \partial(\rho w)\), and \(\partial p / \partial E_{T}\).
Time step \(\Delta \tau\).
Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
Metric coefficients \(\eta_{x}, \eta_{y}\) (or \(\eta_{t}\) if axisymmetric), and \(\eta_{t}\).
Flag for axisymmetric flow.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Flag for Euler calculation.
Flag for constant stagnation enthalpy option.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Flags for thin-layer option.
Index in the "vectorized" direction, \(i\).
Grid indices \(i\) and \(j\), in the \(\xi\) and \(\eta\) directions.
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\) (times the radius \(r\) for axisymmetric flow.)
Derivatives of sweep direction computational coordinate with respect to \(x, y\) (or \(r\) if axisymmetric), and \(t\).
Effective coefficient of viscosity \(\mu\) and effective second coefficient of viscosity \(\lambda\) at time level \(n\).
Number of coupled equations being solved, \(N_{e q}\).
Number of grid points in the sweep direction, \(N\).
Array indices associated with the dependent variables \(\rho, \rho u, \rho v\), \(\rho w\), and \(E_{T}\).
Leading two dimensions for the arrays A, B, C, S, METX, METY, and METT.
Array index associated with the \(y\)-momentum (or \(r\)-momentum if axisymmetric) equation.
Static pressure \(p\) at time level \(n\).
1 for two-dimensional planar flow, and the local radius \(r\) for axisymmetric flow.
Reference Reynolds number \(R e_{r}\).
Static density \(\rho\), and velocities \(u, v\), and \(w\), at time level \(n\).

RHOL, UL, VL
* THY

XIX, XIY, XIT
Y

Static density \(\rho\), and velocities \(u\) and \(v\) from previous ADI sweep. Parameters \(\theta_{1}, \theta_{2}\), and \(\theta_{3}\) determining type of time differencing for the \(y\)-momentum equation.
Metric coefficients \(\xi_{x}, \xi_{y}\) (or \(\xi_{r}\) if axisymmetric), and \(\xi_{r}\).
Radial coordinate \(r\) for axisymmetric flow.

\section*{Output}

A, B, C

S

Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) at interior points (row NYM only).
Source term subvector \(\mathbf{S}\) at interior points (element NYM only).

\section*{Description}

Subroutine COEFY computes the coefficients and source term for the \(y\)-momentum equation for 2-D planar flow, or the \(r\)-momentum equation for axisymmetric flow. Equations ( \(7.5 \mathrm{a}-\mathrm{b}\) ) in Volume 1 represent, in vector form, the four governing difference equations for the two ADI sweeps for 2-D planar flow. The elements of the inviscid flux vectors \(\hat{\mathbf{E}}\) and \(\hat{\mathbf{F}}\) are given in Section 2.0 of Volume 1, and the elements of the viscous flux vectors \(\hat{\mathbf{E}}_{V_{1}}, \hat{\mathbf{E}}_{v_{2}}\), etc., are given in Appendix A of Volume 1. The Jacobian coefficient matrices \(\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}, \partial \hat{\mathbf{E}}_{v_{1}} / \partial \hat{\mathbf{Q}}\), etc., are given in Section 4.0 of Volume 1. Using all of these equations, the differenced form of the \(y\)-momentum equation for 2-D planar flow may be written for the two ADI sweeps \(\mathrm{as}^{22}\)

\section*{Sweep 1 ( \(\xi\) direction)}
\[
\begin{aligned}
\Delta(\hat{\rho v})_{i}^{*} & +\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \xi}\left[\left(\frac{\partial \hat{\mathbf{E}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \cdot \Delta \hat{\mathbf{Q}}_{i+1}^{*}-\left(\frac{\partial \hat{\mathbf{E}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}\right] \\
& -\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2}}\left[\left(f_{i-1}+f_{i}\right)^{n} g_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}-\left(f_{i-1}+2 f_{i}+f_{i+1}\right)^{n} g_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{*}+\left(f_{i}+f_{i+1}\right)^{n} g_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{*}\right]= \\
& -\frac{\Delta \tau}{1+\theta_{2}}\left(\delta_{\xi} \hat{\mathbf{E}}_{3}+\delta_{\eta} \hat{\mathbf{F}}_{3}\right)^{n}+\frac{\Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{1}}\right)_{3}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{1}}\right)_{3}\right]^{n} \\
& +\frac{\left(1+\theta_{3}\right) \Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{2}}\right)_{3}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{2}}\right)_{3}\right]^{n}-\frac{\theta_{3} \Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{2}}\right)_{3}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{2}}\right)_{3}\right]^{n-1}+\frac{\theta_{2}}{1+\theta_{2}} \Delta(\hat{\rho} v)^{n-1}
\end{aligned}
\]

\footnotetext{
22 These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case, the total energy \(E_{T}\) would not appear as a dependent variable, and the Jacobian coefficient matrices would have only three elements.
}

Sweep 2 ( \(\eta\) direction)
\[
\begin{aligned}
& \Delta(\hat{\rho} v)_{j}^{n}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \eta}\left[\left(\frac{\partial \hat{\mathbf{F}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}-\left(\frac{\partial \hat{\mathbf{F}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}\right] \\
&-\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \eta)^{2}}\left[\left(f_{j-1}+f_{j}\right)^{n} g_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}-\left(f_{j-1}+2 f_{j}+f_{j+1}\right)^{n} g_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+\left(f_{j}+f_{j+1}\right)^{n} g_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right]= \\
& \Delta(\hat{\rho v})^{*}
\end{aligned}
\]

In the above equations, the subscripts \(i\) and \(j\) represent grid point indices in the \(\xi\) and \(\eta\) directions. For notational convenience, terms without an explicitly written \(i\) or \(j\) subscript are understood to be at \(i\) or \(j\). On the left hand side, \(f\) is the coefficient of \(\partial / \partial \xi\) (or \(\partial / \partial \eta\), depending on the sweep) in the \(\partial \hat{\mathbf{E}}_{v_{l}} / \partial \hat{\mathbf{Q}}\) (or \(\partial \hat{\mathbf{F}}_{V_{1}} / \partial \hat{\mathbf{Q}}\) ) Jacobian coefficient matrix. Similarly, \(g\) is the term in the parentheses following \(\partial / \partial \xi\) (or \(\partial / \partial \eta\) ) in the \(\partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}\) (or \(\partial \hat{\mathbf{F}}_{V_{1}} / \partial \hat{\mathbf{Q}}\) ) Jacobian coefficient matrix.

The vector of dependent variables is
\[
\hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{llll}
\rho & \rho u & \rho v & E_{T}
\end{array}\right]^{T}
\]

The appropriate elements of the inviscid flux vectors are given by
\[
\begin{aligned}
& \hat{\mathbf{E}}_{3}=\frac{1}{J}\left[\rho u v \xi_{x}+\left(\rho v^{2}+p\right) \xi_{y}+\rho v \xi_{t}\right] \\
& \hat{\mathbf{F}}_{3}=\frac{1}{J}\left[\rho u v \eta_{x}+\left(\rho v^{2}+p\right) \eta_{y}+\rho v \eta_{t}\right]
\end{aligned}
\]

The appropriate elements of the non-cross derivative viscous flux vectors are
\[
\begin{aligned}
\left(\hat{\mathbf{E}}_{V_{1}}\right)_{3} & =\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu \xi_{y}^{2} v_{\xi}+\lambda \xi_{y}\left(\xi_{x} u_{\xi}+\xi_{y} v_{\xi}\right)+\mu \xi_{x}\left(\xi_{y} u_{\xi}+\xi_{x} v_{\xi}\right)\right] \\
\left(\hat{\mathbf{F}}_{\nu_{1}}\right)_{3} & =\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu \eta_{y}^{2} v_{\eta}+\lambda \eta_{y}\left(\eta_{x} u_{\eta}+\eta_{y} v_{\eta}\right)+\mu \eta_{x}\left(\eta_{y} u_{\eta}+\eta_{x} v_{\eta}\right)\right]
\end{aligned}
\]

And the appropriate elements of the cross derivative viscous flux vectors are
\[
\begin{aligned}
& \left(\hat{\mathbf{E}}_{V_{2}}\right)_{3}=\frac{1}{J} \frac{1}{\operatorname{Re}}\left[2 \mu \xi_{y} \eta_{y} v_{\eta}+\lambda \xi_{y}\left(\eta_{x} u_{\eta}+\eta_{y} v_{\eta}\right)+\mu \xi_{x}\left(\eta_{y} u_{\eta}+\eta_{x} v_{\eta}\right)\right] \\
& \left(\hat{\mathbf{F}}_{V_{2}}\right)_{3}=\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu \eta_{y} \xi_{y} v_{\xi}+\lambda \eta_{y}\left(\xi_{x} u_{\xi}+\xi_{y} v_{\xi}\right)+\mu \eta_{x}\left(\xi_{y} u_{\xi}+\xi_{x} v_{\xi}\right)\right]
\end{aligned}
\]

The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}\) for the inviscid terms in the \(y\)-momentum equation are
\[
\frac{\partial \hat{\mathbf{E}}_{3}}{\partial \hat{\mathbf{Q}}}=\left[\frac{\partial p}{\partial \rho} \xi_{y}-v f_{1} \quad \nu \xi_{x}+\frac{\partial p}{\partial(\rho u)} \tilde{\zeta}_{y} \quad \xi_{t}+f_{1}+v \xi_{y}+\frac{\partial p}{\partial(\rho v)} \xi_{y} \quad \frac{\partial p}{\partial E_{T}} \xi_{y}\right]
\]
where \(f_{1}=u \xi_{x}+v \xi_{y}\).

The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{E}}_{v_{1}} / \partial \hat{\mathbf{Q}}\) for the viscous terms are
\[
\frac{\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{3}}{\partial \hat{\mathbf{Q}}}=\frac{1}{R e_{r}}\left[\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{31} \quad \alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right) \quad \alpha_{y y} \frac{\partial}{\partial \dot{\zeta}}\left(\frac{1}{\rho}\right) \quad 0\right]
\]
where
\[
\begin{gathered}
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{31}=-\alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)-\alpha_{y y} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right) \\
\alpha_{x y}=(\mu+\lambda) \xi_{x} \xi_{y} \\
\alpha_{y y}=\mu \xi_{x}^{2}+(2 \mu+\lambda) \xi_{y}^{2}
\end{gathered}
\]

The Jacobian coefficient matrices \(\partial \hat{\mathbf{F}}_{3} / \partial \hat{\mathbf{Q}}\) and \(\partial\left(\hat{\mathbf{F}}_{V_{1}}\right)_{3} / \partial \hat{\mathbf{Q}}\) have the same form as \(\partial \hat{\mathbf{E}}_{3} / \partial \hat{\mathbf{Q}}\) and \(\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{3} / \partial \hat{\mathbf{Q}}\), but with \(\xi\) replaced by \(\eta\).

As an example of how these equations are translated into Fortran, consider the \(\Delta(\rho u / J)\) term on the left hand side for the first sweep. This is the second element of \(\hat{\mathbf{Q}}\), so using the second element in \(\partial \hat{\mathbf{E}_{3}} / \partial \hat{\mathbf{Q}}\), we get for the inviscid term
\[
\begin{aligned}
& \mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NYM}, \mathrm{NRU})=-\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2 \Delta \xi}\left[\left(\nu \xi_{x}\right)_{i-1, j}+\left(\frac{\partial p}{\partial(\rho u)} \xi_{y}\right)_{i-1, j}\right] \\
& \mathrm{B}(\mathrm{IV}, \mathrm{I}, \mathrm{NYM}, \mathrm{NRU})=0 \\
& \mathrm{C}(\mathrm{IV}, \mathrm{I}, \mathrm{NYM}, \mathrm{NRU})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2 \Delta \xi}\left[\left(\nu \xi_{x}\right)_{i+1, j}+\left(\frac{\partial p}{\partial(\rho u)} \xi_{y}\right)_{i+1, j}\right]
\end{aligned}
\]

For the viscous terms on the left hand side, we use the second element in \(\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{3} / \partial \hat{\mathbf{Q}}\), which is
\[
\frac{1}{R e_{r}} \alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right)
\]

Thus \(f=\alpha_{x y} / R e_{r}\) and \(g=1 / \rho\). To add the viscous contribution to this part of the A coefficient submatrix, we therefore set
\[
\mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NYM}, \mathrm{NRU})=\mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NYM}, \mathrm{NRU})-\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2} R e_{r}}\left[\left(\alpha_{x y}\right)_{i-1, j}+\left(\alpha_{x y}\right)_{i, j}\left(\frac{1}{\rho}\right)_{i-1, j}\right.
\]

Similar equations may be written for the \(\mathbf{B}\) and \(\mathbf{C}\) coefficient submatrices.
The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetric \(r\)-momentum equation for the two ADI sweeps is given by \({ }^{23}\)

\footnotetext{
\({ }^{23}\) These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum \(\rho w\) would not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.
}

\section*{Sweep 1 ( \(\xi\) direction)}
\[
\begin{aligned}
& \Delta(\hat{\rho} v)_{i}^{\cdot}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \xi} \frac{1}{r}\left[\left(r \frac{\partial \hat{\mathbf{E}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}-\left(r \frac{\partial \hat{\mathbf{E}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}\right] \\
& -\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2}} \frac{1}{r}\left[\left(r_{i-1} f_{i-1}+r_{i} f_{i}\right)^{n} g_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}-\left(r_{i-1} f_{i-1}+2 r_{i} f_{i}+r_{i+1} f_{i+1}\right)^{n} g_{i}^{n} \hat{\mathbf{Q}}_{i}^{0}+\left(r_{i} f_{i}+r_{i+1} f_{i+1}\right)^{n} g_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{0}\right] \\
& +\frac{\theta_{1} \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\frac{\partial \hat{\mathbf{H}}_{3}}{\partial \hat{\mathbf{Q}}}-\frac{\partial\left(\hat{\mathbf{H}}_{V)_{3}}\right.}{\partial \hat{\mathbf{Q}}}\right]_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{-}=-\frac{\Delta z}{1+\theta_{2}} \frac{1}{r}\left[\delta_{\xi(r}\left(\hat{\mathbf{E}}_{3}\right)+\delta_{n}\left(\hat{\mathbf{F}}_{3}\right)+\hat{\mathbf{H}}_{3}\right]^{n} \\
& +\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\{[ }\left[\left(\hat{\mathbf{E}}_{V_{1}}\right)_{3}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{1}}\right)_{3}\right]+\left(\hat{\mathbf{H}}_{V_{3}}\right\}^{n}+\frac{\left(1+\theta_{3}\right) \Delta z}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\left\{\left[r\left(\hat{\mathbf{E}}_{V_{2}}\right)_{3}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{2}}\right)_{3}\right]\right\}^{n},}\right.\right. \\
& \left.-\frac{\theta_{3} \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\xi}\left[r\left(\hat{\mathbb{E}}_{V_{2}}\right)_{\}}\right]+\delta_{\eta}\left[r\left(\hat{\mathbf{F}}_{V_{2}}\right)\right]_{\}}\right]\right\}^{n-1}+\frac{\theta_{2}}{1+\theta_{2}} \Delta(\hat{\rho} v)^{n-1}
\end{aligned}
\]

\section*{Sweep 2 ( \(\eta\) direction)}
\[
\begin{aligned}
& \Delta(\hat{\rho} v)_{j}^{n}+\frac{\theta_{j} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \eta} \frac{1}{r}\left[\left(r \frac{\partial \hat{\mathbf{F}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}-\left(r \frac{\partial \hat{\mathbf{F}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}\right] \\
& \\
& -\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \eta)^{2}} \frac{1}{r}\left[\left(r_{j-1} f_{j-1}+r_{j} f_{j}\right)^{n} g_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}-\left(r_{j-1} f_{j-1}+2 r_{j} f_{j}+r_{j+1} f_{j+1}\right)^{n} g_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+\left(r_{j} f_{j}+r_{j+1} f_{j+1}\right)^{n} \varepsilon_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right] \\
& \quad+\frac{\theta_{1} \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\frac{\partial \hat{\mathbf{H}}_{3}}{\partial \hat{\mathbf{Q}}}-\frac{\partial\left(\hat{\mathbf{H}}_{\nu 3}\right)_{3}}{\partial \hat{\mathbf{Q}}}\right]_{i}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}= \\
& \Delta(\hat{\rho} v)^{-}+\frac{\theta_{1} \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\frac{\partial \hat{\mathbf{H}}_{3}}{\partial \hat{\mathbf{Q}}}-\frac{\partial\left(\hat{\mathbf{H}}_{v)_{3}}\right.}{\partial \hat{\mathbf{Q}}}\right] \Delta \hat{\mathbf{Q}} .
\end{aligned}
\]
where now
\[
\begin{aligned}
& \hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{lllll}
\rho & \rho u & \rho v & \rho w & E_{T}
\end{array}\right]^{T} \\
& \hat{\mathbf{E}}_{3}=\frac{1}{J}\left[\rho u v \xi_{x}+\left(\rho v^{2}+p\right) \xi_{r}+\rho v \xi_{t}\right] \\
& \hat{\mathbf{F}}_{3}=\frac{1}{J}\left[\rho v \eta_{x}+\left(\rho v^{2}+p\right) \eta_{r}+\rho v \eta_{t}\right] \\
& \left(\hat{\mathbf{E}}_{V_{1}}\right)_{3}=\frac{1}{J} \frac{1}{R e_{r}}\left\{2 \mu \xi_{r}^{2} v_{\xi}+\lambda \xi_{r}\left[\xi_{x} u_{\xi}+\frac{1}{r} \xi_{r}(r)_{\xi}\right]+\mu \xi_{x}\left(\xi_{r} u_{\xi}+\xi_{x} \nu_{\xi}\right)\right\} \\
& \left(\hat{\mathbf{F}}_{V_{1}}\right)_{3}=\frac{1}{J} \frac{1}{R e_{r}}\left\{2 \mu \eta_{r}^{2} v_{\eta}+\lambda \eta_{r}\left[\eta_{x} u_{\eta}+\frac{1}{r} \eta_{r}(r v)_{\eta}\right]+\mu \eta_{x}\left(\eta_{r} u_{\eta}+\eta_{x} v_{\eta}\right)\right\} \\
& \left(\hat{\mathbf{E}}_{V_{2}}\right)_{3}=\frac{1}{J} \frac{1}{R e_{r}}\left\{2 \mu \xi_{r} \eta_{r} v_{\eta}+\lambda \xi_{r}\left[\eta_{x} u_{\eta}+\frac{1}{r} \eta_{r}(r)_{\eta}\right]+\mu \xi_{x}\left(\eta_{r} u_{\eta}+\eta_{x} v_{\eta}\right)\right\} \\
& \left(\hat{\mathbf{F}}_{V_{2}}\right)_{3}=\frac{1}{J} \frac{1}{R e_{r}}\left\{2 \mu \eta_{r} \xi_{r} \nu_{\xi}+\lambda_{r}\left[\xi_{x} u_{\xi}+\frac{1}{r} \xi_{r}(r)_{\xi}\right]+\mu \eta_{x}\left(\xi_{r} u_{\xi}+\xi_{x} \nu_{\xi}\right)\right\} \\
& \hat{\mathbf{H}}_{3}=\frac{1}{J}\left(-p-\rho w^{2}\right)
\end{aligned}
\]
\[
\left(\hat{\mathbf{H}}_{V}\right)_{3}=\frac{1}{J} \frac{1}{R e_{r}}\left\{-2 \mu \frac{\nu}{r}-\lambda\left(\xi_{x} u_{\xi}+\eta_{x} u_{\eta}\right)+\frac{\lambda}{r}\left[\xi_{r}(r)_{\xi}+\eta_{r}(v)_{\eta}\right]\right\}
\]

The \(\hat{\mathbf{H}}\) and \(\hat{\mathbf{H}}_{y}\) terms, which do not appear in the 2-D planar form of the equations, result from the nonconservative form of the axisymmetric equations.

The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}\) for the inviscid terms in the axisymmetric form of the energy equation are
where \(f_{1}=u \xi_{x}+v \xi_{r}\).
The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{E}}_{v_{1}} / \partial \hat{\mathbf{Q}}\) for the viscous terms are
\[
\frac{\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{3}}{\partial \hat{\mathbf{Q}}}=\frac{1}{R e_{r}}\left[\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{31} \alpha_{x r} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right) \alpha_{r r} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right)+\alpha_{r r}^{\prime} \frac{1}{\rho} r_{\xi} 000\right]
\]
where
\[
\begin{gathered}
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{31}=-\alpha_{x r} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)-\alpha_{r r} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)-\alpha_{r r}^{\prime} \frac{v}{\rho} r_{\xi} \\
\alpha_{x r}=(\mu+\lambda) \xi_{x} \xi_{r} \\
\alpha_{r r}=\mu \xi_{x}^{2}+(2 \mu+\lambda) \xi_{r}^{2} \\
\alpha_{r r}^{\prime}=\frac{\lambda}{r} \xi_{r}^{2}
\end{gathered}
\]

As in 2-D planar flow, the Jacobian coefficient matrices \(\partial \hat{\mathbf{F}}_{3} / \partial \hat{\mathbf{Q}}\) and \(\partial\left(\hat{\mathbf{F}}_{V_{1}}\right)_{3} / \partial \hat{\mathbf{Q}}\) have the same form as \(\partial \hat{\mathbf{E}}_{3} / \partial \hat{\mathbf{Q}}\) and \(\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{3} / \partial \hat{\mathbf{Q}}\), but with \(\xi\) replaced by \(\eta\).

The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{H}} / \partial \hat{\mathbf{Q}}\) are
\[
\frac{\partial \hat{\mathbf{H}}_{3}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{lllll}
-\frac{\partial p}{\partial \rho}+w^{2} & -\frac{\partial p}{\partial(\rho u)} & -\frac{\partial p}{\partial(\rho v)} & -\frac{\partial p}{\partial(\rho w)}-2 w & -\frac{\partial p}{\partial E_{T}}
\end{array}\right]
\]

The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{H}}_{V} / \partial \hat{\mathbf{Q}}\) are
\[
\frac{\partial\left(\hat{\mathbf{H}}_{V}\right)_{3}}{\partial \hat{\mathbf{Q}}}=\frac{1}{R e_{r}}\left[\left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{31}\left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{32}\left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{33} .0 \begin{array}{ll} 
& 0
\end{array}\right]
\]
where
\[
\begin{gathered}
\left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}^{\prime}}\right)_{31}=\lambda \xi_{x} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)+\lambda \xi_{r} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)+\lambda \eta_{x} \frac{\partial}{\partial \eta}\left(\frac{u}{\rho}\right) \\
+\left[2 \mu+\lambda\left(\xi_{r} r_{\xi}+\eta_{r} r_{\eta}\right)\right] \frac{1}{r} \frac{v}{\rho}+\lambda \eta_{r} \frac{\partial}{\partial \eta}\left(\frac{v}{\rho}\right) \\
\left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{32}=-\lambda \xi_{x} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right)-\lambda \eta_{x} \frac{\partial}{\partial \eta}\left(\frac{1}{\rho}\right) \\
\left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{33}=-\lambda \xi_{r} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right)-\left[2 \mu+\lambda\left(\xi_{r} r_{\xi}+\eta_{r} r_{\eta}\right)\right] \frac{1}{r} \frac{1}{\rho}-\lambda \eta_{r} \frac{\partial}{\partial \eta}\left(\frac{1}{\rho}\right)
\end{gathered}
\]

Note that, except for the additional \(\hat{\mathbf{H}}\) and \(\hat{\mathbf{H}}_{V}\) terms, the equations for \(2-\mathrm{D}\) planar and axisymmetric flow are very similar. In the axisymmetric equations there are some additional terms involving the radius \(r\) in the viscous flux vectors, with corresponding terms in the Jacobian coefficient matrices. The radius \(r\) appears as an additional coefficient in front of the flux vectors \(\hat{\mathbf{E}}, \hat{\mathbf{E}}_{V_{1}}\), etc., and in front of the Jacobian coefficient matrices \(\partial \hat{\mathbf{E}}_{3} / \partial \hat{\mathbf{Q}}, \partial\left(\hat{\mathbf{E}}_{v_{1}}\right)_{3} / \partial \hat{\mathbf{Q}}\), etc. In addition, \(1 / r\) appears in front of every term in the equation except the \(\Delta(\hat{\rho} v)\) terms. In Proteus, the Fortran variables are defined in such a way that, for many terms, the same coding can be used for both 2-D planar and axisymmetric flow. Unfortunately, this may make some of the coding a little confusing. It is hoped that this detailed description, when compared with the source listing, will help make things clear.

In COEFY, the coefficients of the left hand side, or implicit, terms are defined first. Note that the implicit terms for the second ADI sweep have exactly the same form as for the first sweep, but with \(\xi\) replaced by \(\eta\). By defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep direction, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow, and the radius \(r\) for axisymmetric flow. This adds the \(r\) in front of the Jacobian coefficient matrices for axisymmetric flow, but has no effect for 2-D planar flow. The \(1 / r\) coefficient in front of each term will be added later. In this section of code, the coefficient of \(\Delta(\hat{\rho v})\) (part of \(\mathrm{B}(\mathrm{IV}, \mathrm{I}, N \mathrm{YM}, \mathrm{NRV})\) ) is set equal to \(r\), not 1 as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to compute the source term are the same as those used for the implicit terms. These formulas are presented in Section 5.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as \(1 / J\), is temporarily redefined as \(r / J\) before the COEF routines are called. This automatically accounts for the \(r\) coefficient in front of all the flux vectors in the source term. The \(1 / r\) coefficient in front of each term will be added later. This definition of JI adds an \(r\) in front of the \(\Delta(\hat{\rho} v)^{n-1}\) term that should not be there. This will also be corrected later.

The coding for the source term for the second sweep comes next. The definition of JI also adds an \(r\) in front of the \(\Delta(\hat{\rho} v)^{*}\) term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius \(r\). This adds the \(1 / r\) coefficient where it should be added, and removes the \(r\) in front of the \(\Delta(\hat{\rho} v)\) terms.

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3 .
2. The subscripts on the Fortran variables \(A, B, C\), and \(S\) may be confusing. The first subscript is the index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division by \(r\) at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only
to the first sweep, the first two subscripts are written as (I2,I1). For sections that apply only to the second sweep, they are written as (I1,I2). The third subscript on A, B, C, and S corresponds to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which \(\mathrm{A}, \mathrm{B}\), or C is a coefficient.
3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the coding of coefficients and source terms involving the swirl velocity is separate from the rest of the coding, and is bypassed if there is no swirl.
4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms for the viscous terms.
5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms for the viscous terms containing derivatives in the specified direction.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine COEFZ (A,B,C,S,METX,METY,METT,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline EXEC & & \begin{tabular}{l} 
Compute coefficients and source term for the swirl momentum \\
equation.
\end{tabular} \\
\hline
\end{tabular}

\section*{Input}

DEL
DTAU
DXI, DETA
ETAX, ETAY, ETAT
IBASE, ISTEP
* IEULER
* IHSTAG

ISWEEP
* ITHIN

IV
I1, I2
JI

METX, METY, METT

MU
NEQ
NPTS
NR, NRU, NRV, NRW, NET

NVD, NPTSD

NZM
RAX
* RER

RHO, U, V, W
RHOL, WL
* THZ

XIX, XIY, XIT
Y

Computational grid spacing in sweep direction.
Time step \(\Delta \tau\).
Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
Metric coefficients \(\eta_{x}, \eta_{y}\) (or \(\eta_{\text {, if }}\) if axisymmetric), and \(\eta_{t}\).
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Flag for Euler calculation.
Flag for constant stagnation enthalpy option.
Current ADI sweep number.
Flags for thin-layer option.
Index in the "vectorized" direction, \(i_{v}\).
Grid indices \(i\) and \(j\), in the \(\xi\) and \(\eta\) directions.
Inverse Jacobian of the nonorthogonal grid transformation times the radius, \(r J^{-1}\).
Derivatives of sweep direction computational coordinate with respect to \(x, r\), and \(t\).
Effective coefficient of viscosity \(\mu\) at time level \(n\).
Number of coupled equations being solved, \(N_{e q}\).
Number of grid points in the sweep direction, \(N\).
Array indices associated with the dependent variables \(\rho, \rho u, \rho v\), \(\rho w\), and \(E_{T}\).

Leading two dimensions for the arrays \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{S}, \mathrm{METX}\), METY, and METT.
Array index associated with the swirl momentum equation.
The local radius \(r\).
Reference Reynolds number \(R e_{r}\).
Static density \(\rho\), and velocities \(u, v\), and \(w\), at time level \(n\).
Static density \(\rho\) and velocity \(w\) from previous ADI sweep.
Parameters \(\theta_{1}, \theta_{2}\), and \(\theta_{3}\) determining type of time differencing for the swirl momentum equation.
Metric coefficients \(\xi_{x}, \xi_{y}\) (or \(\xi_{r}\) if axisymmetric), and \(\xi_{t}\).
Radial coordinate \(r\).

\section*{Output}

A, B, C

S

Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) at interior points (row NZM only).
Source term subvector \(\mathbf{S}\) at interior points (element XZM only).

\section*{Description}

Subroutine COEFZ computes the coefficients and source term for the swirl momentum equation, which is only valid in axisymmetric flow. The equations for axisymmetric flow are developed in Appendix B of Volume 1. The swirl momentum equation for the two ADI sweeps is given by \({ }^{2 d}\)

Sweep 1 ( \(\xi\) direction)
\[
\begin{aligned}
& \Delta(\hat{\rho w})_{i}^{\cdot}+\frac{\theta_{1} \Delta z}{\left(1+\theta_{2}\right) 2 \Delta \xi} \frac{1}{r}\left[\left(r \frac{\partial \hat{\mathbf{E}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}-\left(r \frac{\partial \hat{\mathbf{E}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{.}\right] \\
& -\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2}} \frac{1}{r}\left[\left(r_{i-1} f_{i-1}+r_{i} f_{i}^{n}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{0}-\left(r_{i-1} f_{i-1}+2 r_{i} f_{i}+r_{i+1} f_{i+1}\right)^{n} g_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{0}+\left(r_{i} f_{i}+r_{i+1} f_{i+1}\right)^{n} g_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{0}\right] \\
& +\frac{\theta_{1} \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\frac{\partial \hat{\mathbf{H}}_{4}}{\partial \hat{\mathbf{Q}}}-\frac{\partial\left(\hat{\mathbf{H}}_{V}\right)_{4}}{\partial \hat{\mathbf{Q}}}\right]_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{\cdot}=-\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{4}\right)+\delta_{n}\left(r \hat{\mathbf{F}}_{4}\right)+\hat{\mathbf{H}}_{4}\right]^{n}+\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\xi}\left[r\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{1}}\right)_{d}\right]+\left(\hat{\mathbf{H}}_{V}\right)_{4}\right\}^{n} \\
& \left.+\frac{\left(1+\theta_{3}\right) \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\{[r}\left[\hat{\mathbb{E}}_{V_{2}}\right)_{4}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{2}}\right)_{4}\right]\right\}^{n}-\frac{\theta_{3} \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\xi}\left[r\left(\hat{\mathbf{E}}_{V_{2}}\right)_{4}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{2}}\right)_{4}\right]\right\}^{n-1}+\frac{\theta_{2}}{1+\theta_{2}} \Delta(\hat{\rho})^{n-1}
\end{aligned}
\]

Sweep 2 ( \(\eta\) direction)
\[
\begin{aligned}
& \Delta(\hat{\rho} w)_{j}^{n}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2 \Delta \eta} \frac{1}{r}\left[\left(r \frac{\partial \hat{\mathbf{F}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}-\left(r \frac{\partial \hat{\mathbf{F}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right] \\
& \left.-\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \eta)^{2}} \frac{1}{r}\left[r_{j-1} f_{j-1}+r_{j} f_{j}\right)^{n} g_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}-\left(r_{j-1} f_{j-1}+2 r_{j} f_{j}+r_{j+1} f_{j+1}\right)^{n} g_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+\left(r_{j} f_{j}+r_{j+1} f_{j+1}\right)^{n} g_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right] \\
& +\frac{\theta_{1} \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\frac{\partial \hat{\mathbf{H}}_{4}}{\partial \hat{\mathbf{Q}}}-\frac{\partial\left(\hat{\mathbf{H}}_{\nu_{4}}\right.}{\partial \hat{\mathbf{Q}}}\right]_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}=\Delta(\hat{\rho} \hat{w})^{\theta}+\frac{\theta_{1} \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\frac{\partial \hat{\mathbf{H}}_{4}}{\partial \hat{\mathbf{Q}}}-\frac{\partial\left(\hat{\mathbf{H}}_{\nu_{4}}\right.}{\partial \hat{\mathbf{Q}}}\right]^{n} \Delta \hat{\mathbf{Q}} .
\end{aligned}
\]

In the above equations, the subscripts \(i\) and \(j\) represent grid point indices in the \(\xi\) and \(\eta\) directions. For notational convenience, terms without an explicitly written \(i\) or \(j\) subscript are understood to be at \(i\) or \(j\). On the left hand side, \(f\) is the coefficient of \(\partial / \partial \xi\) (or \(\partial / \partial \eta\), depending on the sweep) in the \(\partial \hat{\mathbf{E}}_{\nu_{1}} / \partial \hat{\mathbf{Q}}\) (or \(\partial \hat{\mathbf{F}}_{V_{1}} / \partial \hat{\mathbf{Q}}\) ) Jacobian coefficient matrix. Similarly, \(g\) is the term in the parentheses following \(\partial / \partial \xi\) (or \(\partial / \partial \eta\) ) in the \(\partial \hat{\mathbf{E}}_{v_{1}} / \partial \hat{\mathbf{Q}}\) (or \(\partial \hat{\mathbf{F}}_{v_{1}} / \partial \hat{\mathbf{Q}}\) ) Jacobian coefficient matrix.

The vector of dependent variables is
\[
\hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{lllll}
\rho & \rho u & \rho v & \rho w & E_{T}
\end{array}\right]^{T}
\]

The appropriate elements of the inviscid flux vectors are given by

\footnotetext{
24 These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case, the total energy \(E_{T}\) would not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.
}
\[
\begin{aligned}
& \hat{\mathbf{E}}_{4}=\frac{1}{J}\left[\rho w w \xi_{x}+\rho v w \xi_{r}+\rho w \xi_{t}\right] \\
& \hat{\mathbf{F}}_{4}=\frac{1}{J}\left[\rho v w \eta_{x}+\rho v w \eta_{r}+\rho w \eta_{t}\right]
\end{aligned}
\]

The appropriate elements of the non-cross derivative viscous flux vectors are
\[
\begin{aligned}
& \left(\hat{\mathbf{E}}_{V_{1}}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}\left(\mu \xi_{x}^{2} w_{\xi}+\mu \xi_{r}^{2} w_{\xi}\right) \\
& \left(\hat{\mathbf{F}}_{V_{1}}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}\left(\mu \eta_{x}^{2} w_{\eta}+\mu \eta_{r}^{2} w_{\eta}\right)
\end{aligned}
\]

And the appropriate elements of the cross derivative viscous flux vectors are
\[
\begin{aligned}
& \left(\hat{\mathbf{E}}_{V_{2}}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}\left(\mu \xi_{x} \eta_{x} w_{\eta}+\mu \xi_{r} \eta_{r} w_{\eta}-\mu \xi_{r} \frac{w}{r}\right) \\
& \left(\hat{\mathbf{F}}_{V_{2}}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}\left(\mu \eta_{x} \xi_{x} w_{\xi}+\mu \eta_{r} \xi_{r} w_{\xi}-\mu \eta_{r} \frac{w}{r}\right)
\end{aligned}
\]

The extra terms resulting from the non-conservative form of the axisymmetric equations are
\[
\begin{gathered}
\hat{\mathbf{H}}_{4}=\frac{1}{J} \rho v w \\
\left(\hat{\mathbf{H}}_{V}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}\left[\mu\left(\xi_{r} w_{\xi}+\eta_{r} w_{\eta}\right)-\mu \frac{w}{r}\right]
\end{gathered}
\]

The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}\) for the inviscid terms in the \(r\)-momentum equation are
\[
\frac{\partial \hat{\mathbf{E}}_{4}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{llll}
-w f_{1} & w \xi_{x} & w \xi_{r} & \xi_{t}+f_{1} \tag{0}
\end{array}\right.
\]
where \(f_{1}=u \xi_{x}+v \xi_{r}\).
The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}\) for the viscous terms are
\[
\frac{\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4}}{\partial \hat{\mathbf{Q}}}=\frac{1}{R e_{r}}\left[\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{41} \quad 0 \quad 0 \quad \alpha_{z z} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right) \quad 0\right]
\]
where
\[
\begin{gathered}
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{41}=-\alpha_{z z} \frac{\partial}{\partial \xi}\left(\frac{w}{\rho}\right) \\
\alpha_{z z}=\mu \xi_{x}^{2}+\mu \xi_{r}^{2}
\end{gathered}
\]

The Jacobian coefficient matrices \(\partial \hat{\mathbf{F}}_{4} / \partial \hat{\mathbf{Q}}\) and \(\partial\left(\hat{\mathbf{F}}_{V_{1}}\right)_{4} / \partial \hat{\mathbf{Q}}\) have the same form as \(\partial \hat{\mathbf{E}}_{4} / \partial \hat{\mathbf{Q}}\) and \(\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4} / \partial \hat{\mathbf{Q}}\), but with \(\xi\) replaced by \(\eta\).

The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{H}} / \partial \hat{\mathbf{Q}}\) are
\[
\frac{\partial \hat{\mathbf{H}}_{4}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{lllll}
-v w & 0 & w & v & 0
\end{array}\right]
\]

The elements of the Jacobian coefficient matrix \(\partial \hat{\mathbf{H}}_{V} / \partial \hat{\mathbf{Q}}\) are
\[
\frac{\partial\left(\hat{\mathbf{H}}_{V}\right)_{4}}{\partial \hat{\mathbf{Q}}}=\frac{1}{\operatorname{Re} e_{r}}\left[\left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{41} 00\left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{44} 0\right]
\]
where
\[
\begin{aligned}
& \left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{41}=-\mu \xi_{r} \frac{\partial}{\partial \xi}\left(\frac{w}{\rho}\right)+\frac{\mu}{r} \frac{w}{\rho}-\mu \eta_{r} \frac{\partial}{\partial \eta}\left(\frac{w}{\rho}\right) \\
& \left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{44}=\mu \xi_{r} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right)-\frac{\mu}{r} \frac{1}{\rho}+\mu \eta_{r} \frac{\partial}{\partial \eta}\left(\frac{1}{\rho}\right)
\end{aligned}
\]

As an example of how these equations are translated into Fortran, consider the \(\Delta(\rho v / J)\) term on the left hand side for the first sweep. This is the third element of \(\hat{\mathbf{Q}}\), so using the third element in \(\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}\), and including the contribution from the third element of \(\partial \hat{\mathbf{H}}_{4} / \partial \hat{\mathbf{Q}}\), we get for the inviscid term
\[
\begin{aligned}
& \mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NZM}, \mathrm{NRV})=-\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2 \Delta \xi} \frac{1}{r_{i, j}}\left[\left(w^{2} \xi_{r}\right)_{i-1, j}\right] \\
& \mathrm{B}(\mathrm{IV}, \mathrm{I}, \mathrm{NZM}, \mathrm{NRV})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{1+\theta_{2}} \frac{1}{r_{i, j}} w_{i, j} \\
& \mathrm{C}(\mathrm{IV}, \mathrm{I}, \mathrm{NZM}, \mathrm{NRV})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2 \Delta \xi} \frac{1}{r_{i, j}}\left[\left(r w \xi_{r}\right)_{i+1, j}\right]
\end{aligned}
\]

For the \(\Delta(\rho v / J)\) term, there are no viscous terms on the left hand side.
In COEFZ, the coefficients of the left hand side, or implicit, terms are defined first. Note that the implicit terms for the second sweep have exactly the same form as for the first sweep, but with \(\xi\) replaced by \(\eta\). By defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep direction, the same coding can be used for both sweeps. Since COEFZ is only used in axisymmetric flow, the variable RAX is equal to the radius \(r\). This adds the \(r\) in front of the Jacobian coefficient matrices. The \(1 / r\) coefficient in front of each term will be added later. In this section of code, the coefficient of \(\Delta(\rho \omega)\) (part of \(\mathrm{B}(I \mathrm{~V}, \mathrm{I}, \mathrm{NZM}, \mathrm{NRW})\) ) is set equal to \(r\), not l as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to compute the source term are the same as those used for the implicit terms. These formulas are presented in Section 5.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as \(1 / J\), is temporarily redefined as \(r / J\) before the COEF routines are called. This automatically accounts for the \(r\) coefficient in front of all the flux vectors in the source term. The \(1 / r\) coefficient in front of each term will be added later. This definition of JI adds an \(r\) in front of the \(\Delta(\rho \hat{\omega})^{n-1}\) term that should not be there. This will also be corrected later.

The coding for the source term for the second sweep comes next. The definition of JI also adds an \(r\) in front of the \(\Delta(\rho \omega)^{*}\) term that should not be there.

And finally, the entire equation is divided by the local radius \(r\). This adds the \(1 / r\) coefficient where it should be added, and removes the \(r\) in front of the \(\Delta(\rho \hat{w})\) terms.

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division by \(r\) at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only to the first sweep, the first two subscripts are written as (I2,I1). For sections that apply only to the second sweep, they are written as (I1,I2). The third subscript on A, B, C, and S corresponds to the equation. And, for \(\mathrm{A}, \mathrm{B}\), and C , the fourth subscript corresponds to the dependent variable for which \(\mathrm{A}, \mathrm{B}\), or C is a coefficient.
3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the coding of coefficients and source terms involving the swirl velocity is separate from the rest of the coding, and is bypassed if there is no swirl.
4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms for the viscous terms.
5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms for the viscous terms containing derivatives in the specified direction.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine CONV } \\
\hline Called by & Calls & Purpose \\
\hline MAIN & ISAMAX & Test computed flow field for convergence. \\
\hline
\end{tabular}

\section*{Input}

CHGMAX

\section*{DUMMY}
* EPS
* GAMR
* IAV2E, IAV4E
* ICTEST
* IHSTAG
* ISWIRL

IT
NEQ
* NITAVG
* NOUT

NR, NRU, NRV, NRW, NET

NTOTP
* N1, N2

RESAVG
RESL2
RESMAX

RGAS
RHO, U, V, W, ET

RHOL, LL, VL, WL, ETL

Maximum change in absolute value of the dependent variables from time level \(n-1\) to \(n\) (or over the previous NITAVG -1 time steps if ICTEST \(=2\) ), \(\Delta \mathbf{Q}_{\text {max }}\).
A two-dimensional scratch array.
Convergence level to be reached, \(\varepsilon\).
Reference ratio of specific heats, \(\gamma_{r}\).
Flags for second- and fourth-order explicit implicit artificial viscosity.
Flag for convergence criteria to be used.
Flag for constant stagnation enthalpy option.
Flag for swirl in axisymmetric flow.
Current time step number \(n\).
Number of coupled equations being solved, \(N_{e q}\).
Number of time steps in moving average convergence test.
Unit number for standard output.
Array indices associated with the dependent variables \(\rho, \rho u, \rho v\), \(\rho w\), and \(E_{T}\).
Dimensioning parameter specifying the storage required for a full two-dimensional array (i.e., N1P \(\times \mathrm{N} 2 \mathrm{P}\) ).
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
The average absolute value of the residual at time level \(n, \mathrm{R}_{\text {avg }}\).
The \(L_{2}\) norm of the residual at time level \(n, \mathrm{R}_{L_{2}}\).
The maximum absolute value of the residual at time level \(n\), \(\mathrm{R}_{\text {max }}\).
Gas constant \(R\).
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level \(n+1\).

Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level \(n\).

\section*{Output}

CHGAVG

CHGMAX

Maximum change in absolute value of the dependent variables, averaged over the last NITAVG time steps, \(\Delta Q_{\text {avg }}\).
Maximum change in absolute value of the dependent variables from time level \(n\) to \(n+1\) (or over the previous NITAVG time steps if ICTEST \(=2\) ), \(\Delta Q_{\text {max }}\).

\section*{Description}

Subroutine CONV checks the computed flow field for convergence. Convergence may be based on: (1) the absolute value of the maximum change in the dependent variables over the previous time step; (2) the absolute value of the maximum change in the dependent variables, averaged over the last NITAVG time steps; (3) the \(L_{2}\) norm of the residual for each equation; (4) the average residual for each equation; or (5) the maximum residual for each equation. These parameters are defined in Section 4.1.6 of Volume 2.

The convergence criteria to be used and the level to be reached are set by the input parameters ICTEST and EPS. Each dependent variable or equation is checked separately, and convergence is declared when the specified level is reached for all of the variables or equations. The same criteria is used for each one, but different levels may be specified.

Subroutine CONV first computes \(\Delta Q_{\text {max }}\), the absolute value of the maximum change in each dependent variable over all the grid points for the most recent time step. These values are stored in CHGMAX(IVAR,1), where IVAR varies from 1 to NEQ, the number of dependent variables. If ICTEST \(=2\) (the so-called "moving average" convergence test), CHGMAX (IVAR,2) contains the maximum change for the previous time step, etc.

Then, depending on the value of ICTEST, the chosen convergence criteria is compared with the level to be reached for each dependent variable or equation, and a flag is set if the calculation is converged.

\section*{Remarks}
1. For ICTEST \(=1\) or 2, the change in \(E_{T}\) is divided by \(R /\left(y_{1}-1\right)+1 / 2\). This is equivalent to dividing the dimensional value \(\bar{E}_{T}\) by
\[
E_{T_{r}}=\frac{\rho_{r} \bar{R} T_{r}}{\gamma_{r}-1}+\frac{\rho_{r} u_{r}^{2}}{2}
\]

This makes the change in total energy the same order of magnitude as the other conservation variables.
2. For ICTEST \(=1\) or 2 , the convergence test is based on (or includes) the change in dependent variables from time level \(n\) to \(n+1\). For ICTEST \(=3,4\), or 5 , convergence is based on the residual at time level \(n\), not \(n+1\). This is because the residuals at time level \(n+1\) are not computed until the marching step from \(n+1\) to \(n+2\) is taken.
3. For cases run with artificial viscosity, the residuals are computed and printed both with and without the artificial viscosity terms. This may provide some estimate of the overall error in the solution introduced by the artificial viscosity. Convergence is determined by the residuals with the artificial viscosity terms included.
4. The Cray search routine ISAMAX is used in computing the absolute value of the maximum change in dependent variables.
5. The scratch array DUMMY, from the common block DUMMY1, is used to store the values of the change in dependent variables for use by ISAMAX.
6. A warning message is generated if an illegal convergence criteria is specified. ICTEST is reset to 3 (convergence based on the \(L_{2}\) norm of the residual), and the calculation will continue.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine CUBIC (IDIR,T,G,NOLD,TINT,GINT) } \\
\hline Called by & Calls & Purpose \\
\hline PAK & & Interpolation using Ferguson's parametric cubic. \\
\hline
\end{tabular}

\section*{Input}

G
A two-dimensional array containing NOLDI \(\times\) NOLD2 values of the function \(g(t)\) to be interpolated.

IDIR
Direction flag; 1 if first subscript in \(G\) varies, 2 if second subscript varies.

I1, I2
Grid indices \(i\) and \(j\), in the \(\xi\) and \(\eta\) directions.
NOLD
Number of values in direction IDIR in array G (i.e., NOLD1 or NOLD2.)
* N1, N2

T
TINT
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
A one-dimensional array containing NOLD values of the independent variable \(t\).
A one-dimensional array containing N 1 or N 2 (depending on IDIR) values of the independent variable \(t=t_{n t}\) at which interpolated values \(g_{u n t}=g\left(t_{n r t}\right)\) are desired.

\section*{Output}

GINT
A one-dimensional array containing N 1 or N 2 (depending on IDIR) interpolated values \(g_{i n t}=g\left(t_{i n t}\right)\).

\section*{Description}

Subroutine CUBIC performs interpolation using Ferguson's parametric cubic polynomial (Faux and Pratt, 1979). Given the function \(g(t)\) and a value \(t_{i n t}\), CUBIC computes \(g_{i n t}=g\left(t_{i n t}\right)\).

The function \(g(t)\) is specified by the Fortran arrays G and T . For a general value \(t\), let
\[
t_{f}=\frac{t-t_{u}}{t_{d}-t_{u}}
\]
where \(t_{u} \leq t \leq t_{d}\). (I.e., \(t_{u}\) and \(t_{d}\) are the two elements of the array T that bracket \(t\).)
Between \(t_{u}\) and \(t_{d}\), assume \(g\) can be described by a cubic polynomial in \(t_{f}\), as follows:
\[
g=a_{1}+a_{2} t_{f}+a_{3} t_{f}^{2}+a_{4} t_{f}^{3}
\]

Differentiating,
\[
g^{\prime}=\frac{d g}{d t_{f}}=a_{2}+2 a_{3} t_{f}+3 a_{4} t_{f}^{2}
\]

Noting that \(t_{f}=0\) at \(t=t_{u}\), and 1 at \(t=t_{d}\), we get
\[
\begin{aligned}
g_{u} & =a_{1} \\
g_{u}^{\prime} & =a_{2} \\
g_{d} & =a_{1}+a_{2}+a_{3}+a_{4} \\
g_{d}^{\prime} & =a_{2}+2 a_{3}+3 a_{4}
\end{aligned}
\]

Solving for \(a_{1}\) through \(a_{4}\),
\[
\begin{aligned}
& a_{1}=g_{u} \\
& a_{2}=g_{u}^{\prime} \\
& a_{3}=3\left(g_{d}-g_{u}\right)-2 g_{u}^{\prime}-g_{d}^{\prime} \\
& a_{4}=2\left(g_{u}-g_{d}\right)+g_{u}^{\prime}+g_{d}^{\prime}
\end{aligned}
\]

Plugging these into the cubic polynomial for \(f\) and rearranging,
\[
\begin{aligned}
g & =g_{u}\left(1-3 t_{f}^{2}+2 t_{f}^{3}\right)+g_{d}\left(3 t_{f}^{2}-2 t_{f}^{3}\right) \\
& +g_{u}^{\prime}\left(t_{f}-2 t_{f}^{2}+t_{f}^{3}\right)+g_{d}^{\prime}\left(-t_{f}^{2}+t_{f}^{3}\right)
\end{aligned}
\]

This is the form of the equation used to compute \(g_{\text {int }}\).

\section*{Remarks}
1. At interior points in the array \(g\), the derivatives \(g_{u}^{\prime}\) and \(g_{d}^{\prime}\) are computed using a second-order central difference formula. At the end points, second-order one-sided difference formulas are used.
2. The Fortran variable TINT is actually a one-dimensional array containing \(N_{1}\) or \(N_{2}\) input values of \(t_{\text {int }}\) Similarly, GINT is a one-dimensional array containing \(N_{1}\) or \(N_{2}\) output values of \(g_{i n}\).
3. The Fortran array G that specifies the input values of \(g(t)\) is actually a two-dimensional array. Within CUBIC, however, only one of the subscripts varies. The input flag IDIR specifies which one.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine EQSTAT (ICALL) } \\
\hline Called by & Calls & Purpose \\
\hline BVLP & & \begin{tabular}{l} 
Use equation of state to compute pressure, temperature, and their de- \\
EXEC \\
rivatives with respect to the dependent variables.
\end{tabular} \\
IIITC & & \\
MAIN & & \\
\hline
\end{tabular}

\section*{Input}
\(\mathrm{CP}, \mathrm{CV}\)
* HSTAG

IBASE, ISTEP
ICALL
* IHSTAG

NPTS
* N1, N2

RGAS
RHO, U, V, W, ET

Specific heats \(c_{p}\) and \(c_{\text {. }}\).
Stagnation enthalpy \(h_{T}\) used with constant stagnation enthalpy option.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
0 to get \(p\) and \(T, 1\) to get derivatives of \(p\) and \(T\) with respect to dependent variables.
Flag for constant stagnation enthalpy option.
Number of grid points in the sweep direction, \(N\).
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Gas constant \(R\).
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\).

\section*{Output}

DPDRHO, DPDRU, DPDRV, DPDRW, DPDET
DTDRHO, DTDRU, DTDRV, DTDRW, DTDET
ET
INEG
P, T

Derivatives \(\partial p / \partial \rho, \partial p / \partial(\rho u), \partial p / \partial(\rho v), \partial p / \partial(\rho w)\), and \(\partial p / \partial E_{T}\).
Derivatives \(\partial T / \partial \rho, \partial T / \partial(\rho u), \partial T / \partial(\rho v), \partial T / \partial(\rho v)\), and \(\partial T / \partial E_{T}\).
Total energy (constant stagnation enthalpy option only.)
Flag for non-positive pressure and/or temperature; 0 if positive, 1 if non-positive.
Static pressure \(p\) and temperature \(T\).

\section*{Description}

Subroutine EQSTAT computes various quantities that depend on the form of the equation of state. It actually serves a dual purpose. First, it is called from subroutine INITC and from the MAIN program, with the input parameter ICALL \(=0\), to compute the static pressure \(p\) and temperature \(T\) from the initial or just-computed values of the dependent variables. If the constant stagnation enthalpy option is being used it also computes a value for the total energy \(E_{T}\). And second, it is called from subroutines BVLP and EXEC, with ICALL \(=1\), to compute the derivatives of \(p\) and \(T\) with respect to the dependent variables. \({ }^{25}\)

The equation of state currently built into Proteus is for a perfect gas. The formulas used to compute \(p, T\), and their derivatives with respect to the dependent variables are presented in Section 4.3 of Volume 1 for two-dimensional planar flow and in Section B.2.3 of Volume 1 for axisymmetric flow.

\footnotetext{
\({ }_{25}\) These are needed for linearization of the governing equations. See Section 4.1 of Volume 1 for details.
}

\section*{Remarks}
1. When used to compute \(p\) and \(\mathcal{T}\) (ICALL \(=0\) ), this subroutine is called from outside any loops in the \(\xi\) or \(\eta\) directions. When used to compute \(\partial p / \partial \rho\), etc., (ICALL \(=1\) ), it is called for each ADI sweep from inside a loop in the non-sweep direction.
2. When computing \(\partial p / \partial \rho\), etc., this subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine EXEC } \\
\hline Called by & Calls & Purpose \\
\hline MAIN & ADI & Manage solution of governing equations. \\
& AVISC1 & \\
& AVISC2 & \\
& BCELIM & \\
& BCGEN & \\
& BVLP & \\
& COEFC & \\
& COEFE & \\
& COEFX & \\
& COEFY & \\
& COEFZ & \\
& EQSTAT & \\
& PERIOD & \\
& RESID & \\
& UPDATE & \\
\hline
\end{tabular}

\section*{Input}

DXI, DETA
ETAX, ETAY, ETAT
* IAV2E, IAV4E, IAV2I
* IAXI

IBCELM
* ICHECK
* IHSTAG
* ISWIRL

IT
ITBEG
* ITHIN

JI
KBCPER

NEQP

NPT1, NPT2

NTABC

NTS

Computational grid spacing \(\Delta \zeta\) and \(\Delta \eta\).
Metric coefficients \(\eta_{x}, \eta_{y}\) (or \(\eta_{r}\) if axisymmetric), and \(\eta_{r}\).
Flags for second-order explicit, fourth-order explicit, and secondorder implicit artificial viscosity.
Flag for axisymmetric flow.
Flags for elimination of off-diagonal coefficient submatrices resulting from three-point boundary conditions in the \(\xi\) and \(\eta\) directions at either boundary; 0 if elimination is not necessary, 1 if it is.
Convergence checking interval.
Flag for constant stagnation enthalpy option.
Flag for swirl in axisymmetric flow.
Current time step number \(n\).
The time level \(n\) at the beginning of a run.
Flags for thin-layer option.
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Flags for spatially periodic boundary conditions in the \(\xi\) and \(\eta\) directions; 0 for non-periodic, 1 for periodic.

Dimensioning parameter specifying maximum number of coupled equations allowed.
\(N_{1}\) and \(N_{2}\) for non-periodic boundary conditions, \(N_{1}+1\) and \(N_{2}+1\) for spatially periodic boundary conditions in \(\xi\) and \(\eta\).
Dimensioning parameter specifying total storage required for the coefficient submatrices \(\mathrm{A}, \mathrm{B}\), and C .

Dimensioning parameter specifying total storage required for the source term subvector S .
* \(\mathrm{N}_{1}, \mathrm{~N}_{2}\)

N1P, N2P
XIX, XIY, XIT
Y

\section*{Output}

DEL
IBASE, ISTEP
ISWEEP
IV
I1, I2
JI

METX, METY, METT
NPTS
NV
RAX
RHO, U, V, W, ET
RHOL, UL, VL, WL, ETL

TL

Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\bar{\zeta}\) and \(\eta\) directions.
Parameters specifying the dimension sizes in the \(\xi\) and \(\eta\) directions.
Metric coefficients \(\xi_{x}, \xi_{y}\) (or \(\xi_{r}\) if axisymmetric), and \(\xi_{r}\).
Radial coordinate \(r\) for axisymmetric flow.

Computational grid spacing in sweep direction.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Current ADI sweep number.
Index in the "vectorized" direction, \(i\).
Grid indices \(i\) and \(j\), in the \(\xi\) and \(\eta\) directions.
The radius times the inverse Jacobian of the nonorthogonal grid transformation, \(r^{J^{-1}}\) (used in COEF routines for axisymmetric flow only.)
Derivatives of sweep direction computational coordinate with respect to \(x, y\) (or \(r\) if axisymmetric), and \(t\).
Number of grid points in the sweep direction, \(N\).
Number of grid points in the "vectorized" direction, \(N_{v}\).
1 for two-dimensional planar flow, and the local radius \(r\) for axisymmetric flow.
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level \(n+1\).
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level \(n\).
Static temperature \(T\) at time level \(n\).

\section*{Description}

Subroutine EXEC manages the solution of the goveming equations. It is called by the MAIN program during each marching step from time level \(n\) to \(n+1\). The steps involved in EXEC are described below.

\section*{Preliminary Steps}
1. If this is the first time step, temporarily set the thin-layer flags to zero.
2. Initialize the coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\), and the source term subvector \(\mathbf{S}\), to zero.
3. If spatially periodic boundary conditions are being used in either direction, call PERIOD to add the appropriate extra line(s) of data.

\section*{First ADI sweep, \(\xi\) direction}
4. Set various sweep-dependent parameters, as follows:
```

isweep = 1
istep = 1
del =\Delta\xi
npts = N
nv = N % or N2+1

```
5. For axisymmetric flow, set \(\mathrm{JI}=r / J\) at all grid points.
6. Set metrics in sweep ( \(\xi\) ) direction at all grid points as follows:
```

metx(i2,il) = (\xix) (j,j
mety(i2,il)=(\xiy)
mett(i2,il)=(\xiz)}\mp@subsup{)}{i,j}{

```
7. Begin loop in non-sweep \((\eta)\) direction over interior points \((j=\mathrm{I} 2=2\) to NPT2-1).
8. For axisymmetric flow, set \(\operatorname{RAX}(I 1)=r_{i, j}\) along the current \(\eta\)-line at all \(\xi\) grid points.
9. Call EQSTAT to get the derivatives of \(p\) and \(T\) with respect to \(\rho, \rho u\), etc., along the current \(\eta\)-line at all \(\xi\) grid points.
10. Call the COEF routines to compute the coefficients and source terms for the governing equations along the current \(\eta\)-line at all interior \(\xi\) grid points.
11. End of loop in non-sweep ( \(\eta\) ) direction.
12. For axisymmetric flow, reset \(\mathrm{JI}=1 / J\) at all grid points.
13. For non-spatially periodic boundary conditions in the \(\xi\) direction, begin loop in non-sweep ( \(\eta\) ) direction over interior points ( \(j=\mathrm{I} 2=2\) to NPT2-1).
14. Call EQSTAT to get the derivatives of \(p\) and \(T\) with respect to \(\rho, \rho u\), etc., along the current \(\eta\)-line at all \(\xi\) grid points.
15. Call BCGEN to compute the coefficients and source terms for the boundary condition equations at the end points \(\left(i=I I=1\right.\) and \(\left.N_{1}\right)\) of the current \(\eta\)-line.
16. If three-point boundary conditions were used at either boundary, call BCELIM to eliminate the resulting off-diagonal coefficient submatrices.
17. End of loop in non-sweep ( \(\eta\) ) direction.
18. Every ICHECK time steps, call RESID to compute residuals at time level \(n\) without the artificial viscosity terms, and to update the convergence history file.
19. If artificial viscosity is being used, call AVISC1 or AVISC2 to add the appropriate terms to the coefficient submatrices and/or the source term subvectors at all interior grid points.
20. Every ICHECK time steps, if artificial viscosity is being used, call RESID to compute residuals at time level \(n\) with the artificial viscosity terms, and to update the convergence history file.
21. If spatially periodic boundary conditions are being used in the \(\xi\) direction, reset NPTS \(=N_{1}\).
22. Call ADI to solve the system of difference equations.
23. Begin loop in non-sweep \((\eta)\) direction over interior points \((j=I 2=2\) to NPT2-1).
24. Call UPDATE to compute the primitive flow variables, \(\mathbf{Q}^{*}\), from the newly computed conservation variables in delta form, \(\Delta \hat{\mathbf{Q}}^{*}\), along the current \(\eta\)-line at all \(\xi\) grid points.
25. End of loop in non-sweep ( \(\eta\) ) direction.

\section*{Second ADI sweep, \(\eta\) direction}
26. Set various sweep-dependent parameters, as follows:
\[
\begin{aligned}
\text { isweep } & =2 \\
\text { istep } & =\text { nlp } \\
\text { del } & =\Delta \eta \\
\text { npts } & =N_{2} \text { or } N_{2}+1 \\
\text { nv } & =N_{1} \text { or } N_{1}+1
\end{aligned}
\]
27. For axisymmetric flow, set \(\mathrm{JI}=r / J\) at all grid points.
28. Set metrics in sweep ( \(\eta\) ) direction at all grid points as follows:
\[
\begin{aligned}
& \operatorname{met} \times(i 1, i 2)=\left(\eta_{x}\right)_{i, j} \\
& \operatorname{mett}(i 1, i 2)=\left(\eta_{y}\right)_{i, j} \text { or }\left(\eta_{r}\right)_{i, j} \\
& \operatorname{mett}(i 1, i 2)=\left(\eta_{r}\right)_{i, j}
\end{aligned}
\]
29. Begin loop in non-sweep ( \(\xi\) ) direction over interior points ( \(i=\mathrm{Il}=2\) to NPT1-1).
30. For axisymmetric flow, set \(\operatorname{RAX}(12)=r_{i, j}\) along the current \(\xi\)-line at all \(\eta\) grid points.
31. Call EQSTAT to get the derivatives of \(p\) and \(T\) with respect to \(\rho, \rho u\), etc., along the current \(\xi\)-line at all \(\eta\) grid points.
32. Call the COEF routines to compute the coefficients and source terms for the governing equations along the current \(\xi\)-line at all interior \(\eta\) grid points.
33. End of loop in non-sweep ( \(\xi\) ) direction.
34. For axisymmetric flow, reset \(\mathrm{JI}=1 / J\) at all grid points.
35. For non-spatially periodic boundary conditions in the \(\eta\) direction, begin loop in non-sweep ( \(\xi\) ) direction over interior points ( \(i=11=2\) to NPT1-1).
36. Call EQSTAT to get the derivatives of \(p\) and \(T\) with respect to \(\rho, \rho u\), etc., along the current \(\xi\)-line at all \(\eta\) grid points.
37. Call BCGEN to compute the coefficients and source terms for the boundary condition equations at the end points ( \(j=12=1\) and \(N_{2}\) ) of the current \(\xi\)-line.
38. If three-point boundary conditions were used at either boundary, call BCELIM to eliminate the resulting off-diagonal coefficient submatrices.
39. End of loop in non-sweep ( \(\xi\) ) direction.
40. If implicit artificial viscosity is being used, call AVISCI to add the appropriate terms to the coefficient submatrices at all interior grid points.
41. If spatially periodic boundary conditions are being used in the \(\eta\) direction, reset NPTS \(=N_{2}\).
42. Call ADI to solve the system of difference equations.
43. Begin loop in non-sweep \((\xi)\) direction over interior points ( \(i=\mathrm{Il}=2\) to NPT1-1).
44. Call UPDATE to compute the primitive flow variables \(\rho^{n+1}, u^{n+1}\), etc., from the newly computed conservation variables in delta form, \(\Delta \hat{\mathbf{Q}}^{n}\), along the current \(\xi\)-line at all \(\eta\) grid points.
45. End of loop in non-sweep ( \(\xi\) ) direction.

\section*{Finishing Steps}
46. If this is the first time step, reset the thin-layer flags back to their input value.
47. Call BVUP to update the \(\xi\) boundary values, if necessary.
48. For all grid points, shift RHO and RHOL so that \(\mathrm{RHO}=\rho^{n+1}\) and \(\mathrm{RHOL}=\rho^{n}\). Similarly, shift the Fortran variables for \(u, v, w\), and \(E_{T}\). Finally, set \(T L=T^{n}\).
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine EXECT } \\
\hline Called by & Calls & Purpose \\
\hline TLRBCH & BLK2 & Manage solution of the \(k\) - \(\varepsilon\) equations. \\
& BLK2P & \\
& COEFS1 \\
& COEFS2 \\
& PERIOD \\
& \\
& \\
\hline
\end{tabular}

\section*{Input}

A
* CMUR
* CTHREE

JI
KBCPER
NPT1, NPT2
* \(\mathrm{N} 1, \mathrm{~N} 2\)
\(\mathrm{N} 1 \mathrm{P}, \mathrm{N} 2 \mathrm{P}\)
RHO
S
YPLLSD

\section*{Output}

E, EL
ISWEEP
KE, KEL
MUT, MUTL
NPTS
NV
S

Coefficient submatrix A.
Constant \(C_{\mu}\) in formula for \(C_{\mu}\).
Constant \(C_{3}\) in formula for \(C_{\mu}\).
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Flags for spatially periodic boundary conditions in the \(\xi\) and \(\eta\) directions; 0 for non-periodic, 1 for periodic.
\(N_{1}\) and \(N_{2}\) for non-periodic boundary conditions, \(N_{1}+1\) and \(N_{2}+1\) for spatially periodic boundary conditions in \(\xi\) and \(\eta\).
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Parameters specifying the dimension sizes in the \(\xi\) and \(\eta\) directions.
Static density \(\rho\) at time level \(n\).
Source term subvector \(\mathbf{S}\).
Nondimensional distance \(y^{+}\)from the nearest solid wall.

Turbulent dissipation rate \(\varepsilon\) at time levels \(n+1\) and \(n\).
Current ADI sweep number.
Turbulent kinetic energy \(k\) at time levels \(n+1\) and \(n\).
Turbulent viscosity \(\mu_{t}\) at time levels \(n+1\) and \(n\).
Number of grid points in the sweep direction, \(N\).
Number of grid points in the "vectorized" direction, \(N_{\nu}\).
Computed solution subvector \(\Delta \hat{\mathbf{W}}\).

\section*{Description}

Subroutine EXECT manages the solution of the \(k-\varepsilon\) equations. It is called by subroutine TURBCH, NTKE times per mean flow iteration. The steps involved in EXECT are described below.

\section*{Preliminary Steps}
1. If spatially periodic boundary conditions are being used in either direction, call PERIOD to add the appropriate extra line(s) of data.

\section*{First ADI sweep, \(\xi\) direction}
2. Set various sweep-dependent parameters.
3. Call COEFSI to compute the coefficients and source terms for the \(k-\varepsilon\) equations.
4. Solve the system of difference equations by calling BLK2 for non-periodic boundary conditions, or BLK2P for periodic boundary conditions in the \(\xi\) direction.

\section*{Second ADI sweep, \(\eta\) direction}
5. Set various sweep-dependent parameters.
6. Swap indices in the subvector \(S\). The submatrix \(A\) is used as a temporary scratch array for this operation.
7. Call COEFS2 to compute the coefficients and source terms for the \(k-\varepsilon\) equations.
8. Solve the system of difference equations by calling BLK2 for non-periodic boundary conditions, or BLK2P for periodic boundary conditions in the \(\eta\) direction.

\section*{Finishing Steps}
9. For all grid points, set \(\mathrm{KEL}=k^{n}\) and \(\mathrm{EL}=\varepsilon^{n}\).
10. Call LPDTKE to compute the primitive flow variables \(k^{n+1}\) and \(\varepsilon^{n+1}\) from \(\Delta \hat{\mathbf{W}}^{n}\), the newly computed conservation variables in delta form.
11. Compute the turbulent viscosity at each grid point, storing \(\mu_{f}^{n+1}\) and \(\mu_{t}^{n}\) in MUT and MUTL, respectively.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine FILTER (A,B,C,S,NVD,APTSD) } \\
\hline Called by & Calls & Purpose \\
\hline BLK3 & BLKOLT & \begin{tabular}{l} 
Rearrange rows of the boundary condition coefficient submatrices and \\
the source term subvector to eliminate any zeroes on the diagonal.
\end{tabular} \\
BLK4 & ISAMAX \\
BLK5 & ISRCHEQ & \\
\hline
\end{tabular}

\section*{Input}
A, B, C
Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) before rearrangement.
* IDEBUG
* IPRT1A, IPRT2A

ISWEEP
IT
Debug flags.
Indices for printout in the \(\xi\) and \(\eta\) directions.
Current ADI sweep number.
Current time step number \(n\).
IV
Index in the "vectorized" direction, \(i_{v}\).
NEQ
* NOUT

NPRT1, NPRT2
NPTS
NVD, NPTSD
S
Number of coupled equations being solved, \(N_{e q}\).
Unit number for standard output.
Total number of indices for printout in the \(\xi\) and \(\eta\) directions.
Number of grid points in the sweep direction, \(N\).
Leading two dimensions for the arrays \(\mathrm{A}, \mathrm{B}, \mathrm{C}\), and S .
Source term subvector \(\mathbf{S}\) before rearrangement.

\section*{Output}
A, B, C
Coefficient submatrices \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) after rearrangement.
S
Source term subvector \(\mathbf{S}\) after rearrangement.

\section*{Description}

Subroutine FILTER rearranges rows of the coefficient block submatrices and the source term subvector, at the two boundaries in the ADI sweep direction, in an attempt to eliminate any zero values on the diagonal of the submatrix \(\mathbf{B}\). These zero values may occur when mean flow boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial conditions and the order of the boundary conditions.

For instance, if the specified initial conditions are zero velocity and constant flow properties everywhere in the flow field, the perfect gas equation of state yields:
\[
\begin{gathered}
E_{T}=\rho c_{v} T \\
p=(\gamma-1) E_{T} \\
\frac{\partial p}{\partial \rho}=\frac{\partial p}{\partial(\rho u)}=\frac{\partial p}{\partial(\rho v)}=0 \\
\frac{\partial p}{\partial E_{T}}=\gamma-1
\end{gathered}
\]
\[
\begin{gathered}
\frac{\partial T}{\partial \rho}=-\frac{E_{T}}{c_{v} \rho^{2}} \\
\frac{\partial T}{\partial(\rho u)}=\frac{\partial T}{\partial(\rho v)}=0 \\
\frac{\partial T}{\partial E_{T}}=\frac{1}{c_{v} \rho}
\end{gathered}
\]

If, in addition, the boundary conditions at a given boundary are, in order, specified pressure \(p=f\), no-slip \(x\) - and and \(y\)-velocity \(u=0\) and \(v=0\), and specified temperature \(T=f\), then the linearization of the boundary conditions leads to the following \(\mathbf{B}\) coefficient submatrix for that boundary:
\[
\mathbf{B}=\left[\begin{array}{cccc}
0 & 0 & 0 & J(\gamma-1) \\
0 & J / \rho & 0 & 0 \\
0 & 0 & J / \rho & 0 \\
-J E_{T} / c_{\nu} \rho^{2} & 0 & 0 & J / c_{\nu} \rho
\end{array}\right]
\]

The zero on the diagonal will lead to a divide-by-zero error in subroutine BLK4, even though this is not a singular matrix.

Subroutine FILTER tries to fix this problem. In this example, it finds a zero at element \(\mathbf{B}_{11}\), searches column 1 for the largest element in absolute value (in this case \(-J E_{T} / c_{i} \rho^{2}\) ), and adds that row to the row with the zero on the diagonal. Of course, the corresponding rows of \(\mathbf{A}, \mathbf{C}\), and \(\mathbf{S}\) must also be added together. The new \(\mathbf{B}\) submatrix would be:
\[
\mathbf{B}=\left[\begin{array}{cccc}
-J E_{T} / c_{\nu} \rho^{2} & 0 & 0 & J(\gamma-1)+J / c_{\nu} \rho \\
0 & J / \rho & 0 & 0 \\
0 & 0 & J / \rho & 0 \\
-J E_{T} / c_{\nu} \rho^{2} & 0 & 0 & J / c_{v} \rho
\end{array}\right]
\]

\section*{Remarks}
1. If a column with a zero on the diagonal has no other elements greater than \(10^{-10}\), then it is assumed that the matrix \(\mathbf{B}\) is singular, which means the specified boundary conditions are not independent of one another. An error message is printed and the calculation is stopped.
2. It's probably sufficient to only call this subroutine for the first time step. After the first step, the chances of \(u\) and \(v\) both being exactly zero at the same interior grid point are slim. Nevertheless, in the current version of Proteus, FILTER is called at every time step.
3. The Cray search routine ISAMAX is used in finding the largest element in any column corresponding to a zero on the matrix diagonal. The Cray search routine ISRCHEQ is used in determining the grid locations for debug printout.
4. This subroutine generates the output for the IDEBUG(4) option.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine FTEMP } \\
\hline Called by & Calls & Purpose \\
\hline \begin{tabular}{l} 
INITC \\
MAIN
\end{tabular} & & Compute auxiliary variables that are functions of temperature. \\
\hline
\end{tabular}

\section*{Input}

CCP1, ССР2, ССР3, ССР4
CK1, CK2
CMU1, CMU2
* GAMR

IGAM
* ILAMV
* NOUT
* N1, N2

RGAS
T
* TR, UR, MUR, KTR

Constants in formula for specific heat.
Constants in formula for laminar thermal conductivity coefficient.
Constants in formula for laminar viscosity coefficient.
Reference ratio of specific heats, \(\gamma_{r}\).
Flag for constant or variable \(c_{p}, c_{v}\), and \(\gamma ; 0\) if they are to be computed as functions of temperature, \(l\) if they are to be treated as constant.
Flag for computation of laminar viscosity and thermal conductivity.
Unit number for standard output.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Gas constant \(R\).
Static temperature \(T\).
Reference temperature \(T_{r}\), velocity \(u_{r}\), viscosity \(\mu_{r}\), and thermal conductivity \(k_{r}\).

\section*{Output}

CP, CV
MU, LA, KT

Specific heats \(c_{p}\) and \(c_{v}\).
Laminar coefficient of viscosity \(\mu_{l}\), laminar second coefficient of viscosity \(\lambda_{l}\), and laminar coefficient of thermal conductivity \(k_{i}\).

\section*{Description}

Subroutine FTEMP computes the auxiliary variables \(\mu_{l}, \lambda_{1}, k_{l}, c_{p}\), and \(c_{v}\). For the laminar viscosities \(\mu_{l}\) and \(\lambda_{l}\), and the laminar thermal conductivity \(k_{i}\), there are two options currently available.

If the input parameter ILAMV \(=0\) (the default), FTEMP sets the nondimensional values as:
\[
\begin{aligned}
\mu_{l} & =1 \\
\lambda_{l} & =-2 / 3 \\
k_{l} & =1
\end{aligned}
\]

Thus, with this option, the laminar viscosity and thermal conductivity are held constant at their reference values. These reference values may be specified by the user, or computed from the reference temperature. The laminar second coefficient of viscosity \(\lambda_{l}\) is set equal to \(-2 \mu_{l} / 3\).

If ILAMV \(=1, \mu_{l}\) and \(k_{l}\) are computed as functions of temperature using Sutherland's formula (White, 1974). The formula for the laminar viscosity coefficient \(\mu_{l}\) is
\[
\mu_{l}=\frac{\bar{\mu}_{l}}{\mu_{r}}=\frac{\mu_{r}^{\prime}}{\mu_{r}} \frac{T_{r}+C_{\mu 2}}{\bar{T}+C_{\mu 2}}\left(\frac{\bar{T}}{T_{r}}\right)^{3 / 2}
\]
where the overbar indicates a dimensional value, and \(\mu_{r}^{\prime}\) is the laminar viscosity coefficient at \(\bar{T}=T_{r}\), given by
\[
\mu_{r}^{\prime}=C_{\mu 1} \frac{T_{r}^{3 / 2}}{T_{r}+C_{\mu 2}}
\]

Depending on the namelist input values of MLR and RER, \(\mu^{\prime}\) may or may not be equal to \(\mu_{r}\). These formulas are valid for air for temperatures from 300 to \(3420^{\circ} \mathrm{R}\) ( 167 to 1900 K ). The value of the constants \(C_{\mu 1}\) and \(C_{\mu 2}\) depend on whether reference values are being specified by the user in English units (IUNITS \(=0\) ) or SI units (IUNITS \(=1\) ). The values are presented in Table 4-1. The laminar second coefficient of viscosity \(\lambda_{1}\) is set equal to \(-2 \mu_{/} / 3\). The formula for the laminar thermal conductivity coefficient \(k_{l}\) is
\[
k_{l}=\frac{\bar{k}_{l}}{k_{r}}=\frac{k_{r}^{\prime}}{k_{r}} \frac{T_{r}+C_{k 2}}{\bar{T}+C_{k 2}}\left(\frac{\bar{T}}{T_{r}}\right)^{3 / 2}
\]
where the overbar indicates a dimensional value, and \(k_{r}^{\prime}\) is the laminar thermal conductivity coefficient at \(\bar{T}=T_{r}\), given by
\[
k_{r}^{\prime}=C_{k 1} \frac{T_{r}^{3 / 2}}{T_{r}+C_{k 2}}
\]

Depending on the namelist input values of KTR and PRLR, \(k_{r}^{\prime}\) may or may not be equal to \(k_{r}\). These formulas are valid for air for temperatures from 300 to \(1800^{\circ} \mathrm{R}(167\) to 1000 K ). The value of the constants \(C_{k 1}\) and \(C_{k 2}\) depend on whether reference values are being specified by the user in English units (IUNITS \(=0\) ) or SI units (IUNITS \(=1\) ). The values are presented in Table 4-1.

There are also two options available for the specific heat coefficients \(c_{p}\) and \(c_{v}\). If the flag IGAM \(=1\), a value of the specific heat ratio \(\gamma\) has been specified by the user. In this case \(c_{p}\) and \(c_{v}\) are treated as constants, and computed from
\[
\begin{aligned}
& c_{\nu}=\frac{R}{\gamma-1} \\
& c_{p}=c_{v}+R
\end{aligned}
\]

If IGAM \(=0\), the user did not specify a value of \(y\). In this case, the specific heat coefficient \(c_{p}\) is computed as a function of temperature from the empirical formula of Hesse and Mumford (1964), and \(c_{v}\) is computed from that value assuming a thermally perfect gas. The ratio \(\gamma=c_{p} / c_{v}\) will then vary with temperature. The equations for \(c_{p}\) and \(c_{v}\) are:
\[
\begin{gathered}
c_{p}=\bar{c}_{p} \frac{T_{r}}{u_{r}^{2}}=\frac{T_{r}}{u_{r}^{2}}\left(C_{c_{p} 1}-C_{c_{p} 2} \bar{T}-1 / 2-C_{c_{p} 3} \bar{T}+C_{c_{p} 4} \bar{T}^{2}\right) \\
c_{v}=c_{p}-R
\end{gathered}
\]

This formula is valid for air for temperatures from 540 to \(9000^{\circ} \mathrm{R}(300\) to 5000 K\()\). The values of the constants \(C_{c_{p} 1}\) through \(C_{c_{p} 4}\) are presented in Table 4-1.

TABLE 4-1. - EMPIRICAL CONSTANTS FOR \(\mu_{l}, k_{l}\), AND \(c_{p}\)
\begin{tabular}{|c|c|c|}
\hline CONSTANT & \begin{tabular}{c} 
ENGLISH \\
UNITS
\end{tabular} & SI LNITS \\
\hline\(C_{\mu 1}\) & \(7.3035 \times 10^{-7}\) & \(1.4582 \times 10^{-6}\) \\
\(C_{\mu 2}\) & 198.6 & 110.3 \\
\(C_{k 1}\) & \(7.4907 \times 10^{-3}\) & \(1.8641 \times 10^{-3}\) \\
\(C_{k 2}\) & 350.0 & 194.4 \\
\(C_{c_{p} 1}\) & \(8.53 \times 10^{3}\) & \(1.4264 \times 10^{3}\) \\
\(C_{c_{p} 2}\) & \(3.12 \times 10^{4}\) & \(3.8888 \times 10^{3}\) \\
\(C_{c_{p} 3}\) & \(2.065 \times 10^{6}\) & \(1.9184 \times 10^{5}\) \\
\(C_{c_{p} 4}\) & \(7.83 \times 10^{8}\) & \(4.0413 \times 10^{7}\) \\
\hline
\end{tabular}

\section*{Remarks}
1. The formulas used with the ILAMV \(=1\) option are for air. For other fluids, different formulas should be used to compute \(\mu_{l}, \lambda_{l}\), and \(k_{l}\). These could easily be programmed as additional ILAMV options. Or, if the flow being computed is such that \(\mu_{l}\) and \(k_{l}\) may be considered constant, simply set ILAMV \(=0\) and read in the appropriate values for \(\mu_{r}\) and \(k_{r}\). Note, however, that the ILAMV \(=0\) option still sets \(\lambda_{i}=-2 \mu_{l} / 3\).
2. The formula used to compute \(c_{p}\), when a value of \(y\) is not specified by the user, is for air. For other gases, a different formula should be programmed. Or, if \(c_{\rho}\) and \(c_{\nu}\) may be considered constant, a value of \(\gamma\) should be read in.
3. An error message is generated and execution is stopped if an illegal value is specified for ILAMV.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine GEOM } \\
\hline Called by & Calls & Purpose \\
\hline MAIN & \begin{tabular}{l} 
METS \\
PAX
\end{tabular} & Manage computation of grid and metric parameters. \\
\hline
\end{tabular}

\section*{Input}
* PACK
* NGEOM
* GRID
* NOUT
* Ni, N2

NiP, NiP
* RMIN, RMAX
* THMIN, THMAX
* XMIN, MAX
* MIN, MAX

Flags for grid packing option.
Flag for type of computational coordinates.
Unit number for input mesh file.
Unit number for standard output.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Parameters specifying the dimension sizes in the \(\xi\) and \(\eta\) directions.
Minimum and maximum \(r\)-coordinates for polar grid.
Minimum and maximum \(\theta^{\prime}\)-coordinates for polar grid.
Minimum and maximum \(x\)-coordinates for Cartesian grid.
Minimum and maximum \(y\)-coordinates for Cartesian grid.

\section*{Output}

DI, DETA
X, Y

Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
Cartesian coordinates \(x\) and \(y\), or cylindrical coordinates \(x\) and \(r\).

\section*{Description}

Subroutine GEOM manages the computation of the grid and metric parameters. There are currently three coordinate system options built into Proteus, as follows:
\begin{tabular}{cll} 
NGEOM & & Computational Coordinates \\
\cline { 1 - 1 } & & Cartesian \((x-y)\) \\
2 & & Polar \(\left(r^{\prime}-\theta^{\prime}\right)\) \\
10 & & Read from separate file.
\end{tabular}

Subroutine GEOM first computes the grid spacing in computational space in the \(\xi\) and \(\eta\) directions as \(\Delta \xi=1 /\left(N_{1}-1\right)\) and \(\Delta \eta=1 /\left(N_{2}-1\right)\). Note that grid points in computational space are always evenly distribute along the ( \(\xi-\eta\) ) coordinate lines.

\section*{Cartesian \((x-y)\) Coordinates (NGEOM \(=1\) )}

For the Cartesian coordinate option, an evenly spaced set of physical Cartesian \((x-y)\) coordinates are related to the computational \((\xi-\eta)\) coordinates by
\[
\begin{aligned}
& x=x_{\text {min }}+\left(x_{\text {max }}-x_{\text {min }}\right) \xi \\
& y=y_{\text {min }}+\left(y_{\text {max }}-y_{\text {min }}\right) \eta
\end{aligned}
\]

These equations also apply to axisymmetric flow, with \(y\) representing the radius \(r\). If grid packing is used, subroutine PAK is called to redistribute these points according to the packing parameters specified by the
user, and to interpolate to get the new physical Cartesian \((x-y)\) coordinates in the computational mesh. Subroutine METS is then called to numerically compute the grid transformation metrics and Jacobian.

\section*{Polar \(\left(r^{\prime}-\theta^{\prime}\right)\) Coordinates ( GGEOM \(=2\) )}

For the polar coordinate option, an evenly spaced set of physical polar ( \(r^{\prime}-\theta^{\prime}\) ) coordinates are related to the computational ( \(\zeta-\eta\) ) coordinates by
\[
\begin{aligned}
\theta^{\prime} & =\theta_{\text {min }}^{\prime}+\left(\theta_{\text {max }}^{\prime}-\theta_{\text {min }}^{\prime}\right) \xi \\
r^{\prime} & =r_{\text {min }}^{\prime}+\left(r_{\text {max }}-r_{\text {min }}^{\prime}\right) \eta
\end{aligned}
\]

The Cartesian ( \(x-y\) ) coordinates are simply given by
\[
\begin{aligned}
& x=r^{\prime} \cos \theta^{\prime} \\
& y=r^{\prime} \sin \theta^{\prime}
\end{aligned}
\]

The above equations also could be used in axisymmetric flow, with \(y\) representing the radius \(r\). As in the NGEOM \(=1\) option, if grid packing is used, subroutine PAK is called to redistribute these points according to the packing parameters specified by the user, and to interpolate to get the new physical Cartesian \((x-y)\) coordinates in the computational mesh. Subroutine METS is then called to numerically compute the grid transformation metrics and Jacobian.

\section*{Coordinates Read From Separate File (NGEOM \(=10\) )}

The third option for specifying the computational coordinate system is to read it from a separate file, as described in Section 3.2 of Volume 2. The computational \((\xi-\eta)\) coordinate system is determined by a set of \(N_{G 1} \times N_{G 2}\) points whose physical Cartesian ( \(x-y\) ) coordinates are specified. Here \(N_{G 1}\), and \(N_{G 2}\) are the number of points in the \(\xi\) and \(\eta\) directions used to specify the computational coordinate system. Note that they do not have to be equal to \(N_{1}\) and \(N_{2}\), the number of points in the computational mesh used for the finite-difference method. \({ }^{26}\) Note also that the points do not have to be equally distributed in physical space along the \(\xi\) and \(\eta\) coordinate lines.

If grid packing is being used, subroutine PAK is called to distribute \(N_{1} \times N_{2}\) computational mesh points in physical space according to the packing parameters SQ specified by the user, and to interpolate among the \(N_{G 1} \times N_{G 2}\) points in the input computational coordinate system to get the new physical Cartesian coordinates of the points in the computational mesh.

If grid packing is not being used, but \(N_{G 1}\) and \(N_{G 2}\) are not equal to \(N_{1}\) and \(N_{2}\) respectively, then subroutine PAK is still called. In this case, however, PAK distributes the \(N_{1} \times N_{2}\) computational mesh points evenly in physical space and then interpolates among the \(N_{G 1} \times N_{G 2}\) points in the input computational coordinate system to get the new physical Cartesian coordinates of the points in the computational mesh.

In either case, subroutine METS is then called to numerically compute the grid transformation metrics and Jacobian.

\section*{Remarks}
1. There may be some confusion between the axisymmetric flow option and the polar coordinate system option, or between the axisymmetric radius \(r\) and the polar coordinate \(r\). They are not the same thing. The governing flow equations were originally developed by writing them in Cartesian ( \(x-y\) ) coordinates, then transforming them into generalized \((\xi-\eta)\) coordinates. Therefore, any computational coordinate system that is used, including the polar coordinate system, must be related to the original Cartesian system through the transformation metrics and Jacobian. The parameters \(r^{\prime}\) and \(\theta^{\prime}\) are used only to initially define the coordinates in the NGEOM \(=2\) option. Now, if the \((x-y)\) coordinates, no matter how they are obtained, are rotated about the Cartesian \(x\) axis, the result is a cylindrical coordinate co-

\footnotetext{
\({ }^{26}\) The distinction between the computational coordinate system and the computational mesh is described in Section 2.2 of Volume 2.
}
ordinate system with \(y\) representing the radius \(r\). Thus, the axisymmetric flow option can be used with any of the coordinate system options. The polar coordinate option would be useful, for instance, for flow over a sphere.
2. An error message is generated and execution is stopped if an illegal coordinate system option is specified.
3. With the NGEOM = 10 option, an error message is generated and execution is stopped if \(N_{G 1}\) and or \(N_{G 2}\) are greater than the dimensioning parameters N 1 P and or N 2 P .
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine INIT } \\
\hline Called by & Calls & Purpose \\
\hline INITC & & Get user-defined initial flow field. \\
\hline
\end{tabular}

\section*{Input}
* ICVARS

NIN
* NOUT
* N1, N2

\section*{Output}
\[
\mathrm{P}, \mathrm{~T}, \mathrm{U}, \mathrm{~V}, \mathrm{~W}
\]

Flag specifying which variables are being supplied as initial conditions by subroutine INIT.
Unit number for namelist input.
Unit number for standard output.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.

Initial flow field values of static pressure \(p\), static temperature \(T\), and velocities \(u, v\), and \(w\).

\section*{Description}

Subroutine INIT supplies the user-defined initial flow field. In general, this subroutine will be tailored to the problem being solved, and supplied by the user. Details on the variables to be supplied by INIT are presented in Section 5.1 of Volume 2.

A default version of INIT is supplied with Proteus that specifies uniform flow with constant properties everywhere in the flow field. The above list of input and output Fortran variables are for the default version of INIT. The default version assumes ICVARS \(=2\) (the default value), and reads values of \(p_{0}, v_{0}, v_{0}, w_{0}\), and \(T_{0}\) from namelist IC. The defaults for these parameters are \(1.0,0.0,0.0,0.0\), and 1.0 , respectively, resulting in an initial flow field with \(\bar{p}=p_{r}, u=v=w=0\), and \(\bar{T}=T_{r}\).

\section*{Remar':s}
1. If a value for ICVARS other than 2 is set in the input, a warning message is generated and ICVARS is reset to 2 .
2. Subroutine INIT is a convenient place to specify point-by-point boundary condition types and values. It's often easier to do this using Fortran coding rather than entering each value into the namelist input file.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine INITC } \\
\hline Called by & Calls & Purpose \\
\hline MAIN & EQSTAT & Set up consistent initial conditions based on data from INIT. \\
& FTEMP & \\
& INIT & KEINIT \\
& REST & \\
& TURBBL & \\
& YPLCSN & \\
\hline
\end{tabular}

\section*{Input}
* CMUR
* CTHREE
* GAMR

GC
* hSTAG
* ICVARS
* IHSTAG
* IREST

ITBEG
* ITURB
* KBC1, KBC2

LWSET
* N1, N2

PR
RGAS
* RHOR, UR

INITIAL FLOW FIELD

Constant \(C_{\mu_{r}}\) in formula for \(C_{\mu}\).
Constant \(C_{3}\) in formula for \(C_{\mu}\).
Reference ratio of specific heats, \(\gamma_{r}\).
Proportionality factor \(g_{c}\) in Newton's second law.
Stagnation enthalpy \(h_{T}\) used with constant stagnation enthalpy option.
Flag specifying which variables are being supplied as initial conditions by subroutine INIT.
Flag for constant stagnation enthalpy option.
Flag for reading restart file.
The time level \(n\) at the beginning of a run.
Flag for turbulent flow option.
Boundary types for the \(\xi\) and \(\eta\) directions.
Flags specifying how wall locations are to be determined for the turbulence model; 0 if wall locations are to be found automatically by searching for boundary points where the velocity is zero, 1 if input using the LWALL parameters, 2 if input using the IWALL parameters.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Reference pressure \(p_{r}\).
Gas constant \(R\).
Reference density \(\rho_{r}\), and velocity \(u_{r}\).
From the user-suppled or default version of subroutine INIT. The combination of variables supplied by INIT is specified by ICVARS. See Section 5.0 of Volume 2 for details.

\section*{Output}

LWALL1, LWALL2
MUT, MUTL
RHO, U, V, W, ET

Flags specifying wall locations for \(\xi\) and \(\eta\) boundaries, if not set in input.
Turbulent viscosity \(\mu_{t}\) at time levels \(n\) and \(n-1\).
Initial flow field values of static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{r}\) at time level \(n\).

RHOL, LL, VL, WL, ETL
TL

Initial flow field values of static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level \(n-1\).
Static temperature \(T\) at time level \(n-1\).

\section*{Description}

Subroutine INITC sets up consistent initial flow field conditions based on the data supplied by subroutine INIT. For restart cases, subroutine REST is called to read the computational mesh and the initial flow field. Otherwise, the data supplied by INIT are used to obtain the density \(\rho\), the velocities \(u, v\), and \(w\), and the temperature \(T\). \({ }^{27}\) It then calls FTEMP to compute the laminar viscosity coefficients \(\mu_{l}\) and \(\lambda_{l}\), the laminar thermal conductivity coefficient \(k_{l}\), and the specific heat coefficients \(c_{p}\) and \(c_{r}\). EQSTAT is called next to compute the pressure \(p\) and to recompute the temperature \(T .{ }^{28}\) For turbulent flow, the appropriate subroutines are called to compute the effective viscosity and thermal conductivity coefficients using the turbulence model specified by the user. And finally, for non-restart cases, the values of the dependent variables at time level \(n-1\) are set equal to the values at level 1 .

The flag ICVARS is used to specify which combination of variables are being supplied by INIT. The calculation of \(\rho, u, v, w\), and \(T\) is described below for the different values of ICVARS. In all of the equations below, the specific heats are defined by
\[
\begin{aligned}
& c_{v}=\frac{R}{\gamma_{r}-1} \\
& c_{p}=R+c_{v}
\end{aligned}
\]
where \(\gamma_{r}\) is either specified by the user or computed from the reference temperature \(T_{r}\).

\section*{\(\underline{I C V A R S}=I\)}

With this option, the density \(\rho\), the momentum components \(\rho u, \rho v\), and \(\rho w\), and if IHSTAG \(=0\) the total energy \(E_{T}\), are supplied by INIT. Thus, the velocity components are simply
\[
\begin{aligned}
u & =\frac{\rho u}{\rho} \\
v & =\frac{\rho v}{\rho} \\
w & =\frac{\rho w}{\rho}
\end{aligned}
\]

If the energy equation is being solved ( \(\mathrm{IHSTAG}=0\) ), the temperature is computed from
\[
T=\frac{1}{c_{v}}\left[\frac{E_{T}}{\rho}-\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
\]

If the energy equation is being eliminated by assuming constant stagnation enthalpy (IHSTAG \(=1\) ), the temperature is computed from
\[
T=\frac{1}{c_{p}}\left[h_{T}-\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
\]

\footnotetext{
\({ }^{27}\) The calculation of \(T\) at this point may be approximate. See Remark 1.
\({ }^{28}\) See Remark 1.
}

\section*{\(\underline{I C V A R S}=2\)}

With this option, the pressure \(p\) and the velocities \(u, v\), and \(w\) are supplied by INIT. If the energy equation is being solved (IHSTAG \(=0\) ), the temperature \(T\) is also supplied by INIT. If it is being eliminated by assuming constant stagnation enthalpy (IHSTAG \(=1\) ), the temperature is computed from
\[
T=\frac{1}{c_{p}}\left[h_{T}-\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
\]

The density is then given by
\[
\rho=\frac{p}{R T}
\]
and the total energy is
\[
E_{T}=\rho\left[c_{v} T+\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
\]

ICVARS \(=3\)
With this option, the density \(\rho\) and the velocities \(u, v\), and \(w\) are supplied by INIT. If the energy equation is being solved (IHSTAG \(=0\) ), the temperature \(T\) is also supplied by INIT. If it is being eliminated by assuming constant stagnation enthalpy (IHSTAG \(=1\) ), the temperature is computed from
\[
T=\frac{1}{c_{p}}\left[h_{T}-\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
\]

The total energy is then
\[
E_{T}=\rho\left[c_{v} T+\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
\]

\section*{ICVARS \(=4\)}

With this option, the pressure \(p\) and the velocities \(u, v\), and \(w\) are supplied by INIT. If the energy equation is being solved (IHSTAG \(=0\) ), the density \(\rho\) is also supplied by INIT. If it is being eliminated by assuming constant stagnation enthalpy (IHSTAG \(=1\) ), this option is the same as the ICVARS \(=2 \mathrm{op}\) tion. If the energy equation is being solved, then, the temperature is
\[
T=\frac{p}{\rho R}
\]

The total energy is then
\[
E_{T}=\rho\left[c_{v} T+\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
\]
\(\underline{I C V A R S}=5\)
With this option, the static pressure coefficient \(c_{p}\) and the velocities \(u, v\), and \(w\) are supplied by INIT. If the energy equation is being solved (IHSTAG \(=0\) ), the temperature \(T\) is also supplied by INIT. If it is being eliminated by assuming constant stagnation enthalpy (IHSTAG \(=1\) ), the temperature is computed from
\[
T=\frac{1}{c_{p}}\left[h_{T}-\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
\]

The pressure coefficient is defined by
\[
c_{p}=\frac{\left(\bar{p}-p_{r}\right) g_{c}}{\rho_{r} u_{r}^{2} \eta}
\]

The nondimensionalized pressure \(p=\bar{p} g_{c} / \rho, u_{i}^{2}\) is thus
\[
p=\frac{c_{p}}{2}+\frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}
\]
or, since \(p_{r}=\rho_{r} \bar{R} T_{r} \mid g_{c}\) and the nondimensionalized gas constant \(R=\bar{R} T_{r} \mid u_{r}^{2}\),
\[
p=\frac{c_{p}}{2}+R
\]

The density is then
\[
\rho=\frac{p}{R T}
\]
and the total energy is
\[
E_{T}=\rho\left[c_{\nu} T+\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
\]

\section*{\(I C V A R S=6\)}

With this option, the pressure \(p\), Mach number \(M\), and flow angles \(\alpha_{\nu}\) and \(\alpha_{w}\) are supplied by INIT. If the energy equation is being solved (IHSTAG \(=0\) ), the temperature \(T\) is also supplied by INIT. If it is being eliminated by assuming constant stagnation enthalpy (IHSTAG \(=1\) ), the temperature is computed from
\[
T=T_{T}\left(1+\frac{\gamma_{r}-1}{2} M^{2}\right)^{-1}
\]
where \(r_{T}=h_{T} / c_{P}\). The density is
\[
\rho=\frac{p}{R T}
\]

The flow angles are defined by \(\alpha_{\nu}=\tan ^{-1}(v / u)\) and \(\alpha_{w}=\tan ^{-1}(w / u)\). The Mach number is defined by
\[
M=\left(\frac{u^{2}+v^{2}+w^{2}}{\gamma_{r} R T}\right)^{1 / 2}
\]

Solving for \(u\),
\[
u=M\left[\frac{y_{r} R T}{1+(v / u)^{2}+(w / u)^{2}}\right]^{1 / 2}
\]
where \((v / u)^{2}=\tan ^{2} \alpha_{v}\) and \((w / u)^{2}=\tan ^{2} \alpha_{w}\). The remaining velocities are simply
\[
\begin{gathered}
v=u \tan \alpha_{v} \\
w=u \tan \alpha_{w}
\end{gathered}
\]

The total energy is
\[
E_{T}=\rho\left[c_{v} T+\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
\]

\section*{Remarks}
1. If \(T\) is not supplied by INIT, it must be computed from the equation of state. The equation of state contains a specific heat coefficient (either \(c_{p}\) or \(c_{v}\), depending on whether the stagnation enthalpy is assumed constant or not.) The first time \(T\) is computed in INITC, a constant value of specific heat is used, consistent with the reference temperature \(T_{r}\). If the user specified constant specific heat (i.e., a value for \(\gamma_{r}\) was read in), this is not a problem. However, if the temperature-dependent specific heat option is being used (i.e., a value for \(\gamma_{r}\) was not read in), the equation of state and the empirical equation for specific heat are coupled. For this reason \(T\) is recomputed in EQSTAT after the specific heats are computed in FTEMP. Ideally, this coupling would be handled by iteration between FTEMP and EQSTAT. This is not currently done in Proteus, however.
2. For options in which the pressure \(p\) is specified (ICVARS \(=2,4\), and 6 ), the value supplied by INIT is redefined as follows:
\[
p=p \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}
\]

This is necessary because input and output values of \(p\) are nondimensionalized by the reference pressure \(p_{r}=\rho_{r} \bar{R} T_{r}\), while internal to the code itself \(p\) is nondimensionalized by the normalizing pressure \(p_{n}=\rho_{r} u_{r}^{2}\). See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and normalizing conditions.
3. With the ICVARS \(=6\) option, the initial velocity \(u\) will be limited to non-negative values.
4. If non-positive pressures or temperatures were computed in EQSTAT, the Fortran variable INEG will be positive. An error message will be printed, including a table showing the location of the non-positive values. The calculation will stop in INITC.
5. An error message is generated and execution is stopped if an illegal value is specified for ICVARS.
6. An error message is generated and execution is stopped if the value of ITURB does not correspond to an existing turbulence model.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine INPUT } \\
\hline Called by & Calls & Purpose \\
\hline MAIN & ISAMAX & Read and print input, perform various initializations. \\
\hline
\end{tabular}

\section*{Input}

NIN
NTP

NTSEQP
\(\mathrm{N} 1 \mathrm{P}, \mathrm{N} 2 \mathrm{P}\)

\section*{Output}

CKMIN
GAMR
HSTAG, HSTAGR
IGAM

IPRT1A, IPRT2A
ITDBC

LWALL1, LWALL2
LWSET

MACHR
MLR, KTR
NEQ
NPRT1, NPRT2
NRW, NET
NZM, NEN
PR
PRLR
RER, PRR

Unit number for namelist input.
Dimensioning parameter specifying the maximum number of entries in the table of time-dependent boundary condition values.
Dimensioning parameter specifying the maximum number of time step sequences for the time step sequencing option.
Parameters specifying the dimension sizes in the \(\xi\) and \(\eta\) directions.

Constant \(\left(C_{K / t e}\right)_{\text {min }}\) in the Klebanoff intermittency factor.
Reference ratio of specific heats, \(\gamma\).
Dimensionless and dimensional stagnation enthalpy \(h_{T}\) for the constant stagnation enthalpy option.
Flag for constant or variable \(c_{p}, c_{v}\), and \(\gamma ; 0\) if they are to be computed as functions of temperature, 1 if they are to be treated as constant.
Indices for printout in the \(\xi\) and \(\eta\) directions.
Flag for time-dependent boundary conditions; 0 if all boundary conditions are steady, l if any general unsteady boundary conditions are used, 2 if only steady and time-periodic boundary conditions are used.
Flags specifying wall locations for \(\xi\) and \(\eta\) boundaries.
Flags specifying how wall locations are to be determined for the turbulence model; 0 if wall locations are to be found automatically by searching for boundary points where the velocity is zero, 1 if input using the LWALL parameters, 2 if input using the IWALL parameters.
Reference Mach number \(M_{r}\).
Reference viscosity coefficient \(\mu_{r}\) and thermal conductivity coefficient \(k_{r}\).
Number of coupled equations being solved, \(N_{e q}\).
Total number of indices for printout in the \(\xi\) and \(\eta\) directions.
Arráy indices associated with the dependent variables \(\rho w\) and \(E_{T}\).
Array indices associated with the swirl momentum and energy equations.
Reference pressure \(p_{r}\).
Reference laminar Prandtl number \(\mathrm{Pr}_{l_{r}}\).
Reference Reynolds number \(R e_{r}\) and Prandtl number \(P r_{r}\).

RGAS
UR

Gas constant \(R\).
Reference velocity \(u_{r}\).

\section*{Description}

Subroutine INPLT performs various input and initialization functions. It first reads the title and namelist input from the standard input file. Namelist RSTRT is read first, followed by namelist IO. If IUNITS \(=1\), indicating reference conditions will be specified in SI units, various default values and constants are redefined to be consistent with SI units. The remaining namelists are then read.

Next, the flags controlling the time step cycling and the convergence testing method are redefined, if necessary, to be consistent with each other. The number of equations being solved, and the array indices corresponding to the energy and swirl momentum equations, are then determined based on the values of IHSTAG and ISWIRL. A flag is set if time-dependent boundary conditions are being used. If the thinlayer option is being used, the flags ITXI and ITETA used in the Baldwin-Lomax turbulence model are automatically set equal to values consistent with the thin-layer approximation. The LWSET flags, which specify how wall locations are to be determined for the turbulence model, are defined based on the default and input values of the LWALL and IWALL parameters. If the user did not specify a value for \(\left(C_{k t e c}\right)_{\text {min }}\), it is set to the default value, which depends on the turbulence model being used.

Next, if frequency of printout in the \(\xi\) and \(\eta\) directions is being set by the input arrays IPRT1 and IPRT2, the corresponding grid indices are stored in arrays IPRT1A and IPRT2A. The total number of printout locations in each direction is also determined.

A header is then written to the standard output file, followed by the input namelists. Note that, for variables not specified by the user in the input namelists, the values in this printout will be the default values.

Various checks are made for inconsistent or invalid input, and appropriate error or warning messages are written. These are described in Section 7.0 of Volume 2.

Next, any reference or normalizing conditions not already defined are calculated. The reference and normalizing conditions are then written to the standard output file, with the appropriate units. See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and normalizing conditions.

\section*{Remarks}
1. The Cray search routine ISAMAX is used in the input consistency check to determine whether any implicit artificial viscosity coefficients are non-zero.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Function ISAMAX (N,V,INC) } \\
\hline Called by & Calls & Purpose \\
\hline BLOLT1 & & \begin{tabular}{l} 
Find the first index corresponding to the largest absolute value of the \\
BLOLT2
\end{tabular} \\
CONV & & \\
FILTER & & \\
INPUT & & \\
RESID & & \\
TIMSTP & & \\
\hline
\end{tabular}

\section*{Input}

N

V
INC

Number of elements to process in the vector (i.e., \(\mathrm{N}=\) vector length if \(\mathrm{INC}=1, \mathrm{~N}=(\) vector length \() / 2\) if \(\mathrm{INC}=2\), etc.).
Vector to be searched.
Skip distance between elements of V. For contiguous elements, \(\mathrm{INC}=1\).

\section*{Output}

ISA.MAX
First index corresponding to the largest absolute value of the elements of V that were searched.

\section*{Description}

Function ISAMAX finds the first index corresponding to the largest absolute value of the elements of a vector. For a one-dimensional vector, the use of ISAMAX is straightforward. For example,
```

imax = isamax(np,v,l)

```
sets IMAX equal to the index I corresponding to the maximum value of \(V(I)\) for \(I=1\) to NP.
A starting location can be specified, as in
\[
i \max =4+i \operatorname{samax}(n p-4, v(5), 1)
\]
which sets IMAX equal to the index I corresponding to the maximum value of \(V(I)\) for \(I=5\) to \(N P\).
Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimensioned NDIM1 by NDIM2, then
```

imax = isamax(ndiml*ndim2,a,1)

```
sets IMAX equal to the one-dimensional index corresponding to the maximum value of \(A(I, J)\) for all \(I\) and J. The maximum value of A can then be referenced as A(IMAX, 1).

One dimension at a time can also be searched. For example,
```

imax = isamax(ndiml,a(1,5),1)

```
sets IMAX equal to the index I corresponding to the maximum value of \(A(1,5)\) for I varying from 1 to NDIM1. Similarly, by specifying a skip increment,
```

jmax = isamax(ndim2,a(5,j),ndiml)

```
sets JMAX equal to the index \(J\) corresponding to the maximum value of \(A(5, \mathrm{~J})\) for J varying from 1 to NDIM2.

\section*{Remarks}
1. ISAMAX is a Cray search routine (Cray Research, Inc., 1989b).
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Function ISAMIN (N,V,INC) } \\
\hline Called by & Calls & Purpose \\
\hline \begin{tabular}{l} 
BLOLT1 \\
BLOLT2
\end{tabular} & & \begin{tabular}{l} 
Find the first index corresponding to the smallest absolute value of the \\
elements of a Fortran vector.
\end{tabular} \\
\hline
\end{tabular}

\section*{Input}

Number of elements to process in the vector (i.e., \(\mathrm{N}=\) vector length if \(\mathrm{INC}=1, \mathrm{~N}=(\) vector length \() / 2\) if \(\mathrm{INC}=2\), etc.).
Vector to be searched.
Skip distance between elements of V. For contiguous elements, \(\operatorname{INC}=1\).

\section*{Output}

ISAMIN
First index corresponding to the smallest absolute value of the elements of V that were searched.

\section*{Description}

Function ISA.MIN finds the first index corresponding to the smallest absolute value of the elements of a vector. It is used in exactly the same way as ISAMAX.

\section*{Remarks}
1. ISAMIN is a Cray search routine (Cray Research, Inc., 1989b).
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Function ISRCHEQ (N,V,INC,VALUE) } \\
\hline Called by & Calls & Purpose \\
\hline BCGE & & Find the first index in a vector whose element is equal to a specified \\
BLIN1 & & value. \\
BLIN2 & & \\
BLOUT1 & & \\
BLOUT2 & & \\
FILTER & & \\
\hline
\end{tabular}

\section*{Input}

N

V
INC
valle

\section*{Output}

Number of elements to process in the vector (i.e., \(\mathrm{N}=\) vector length if \(\mathrm{INC}=1, \mathrm{~N}=(\) vector length \() / 2\) if \(\mathrm{INC}=2\), etc.).
Vector to be searched.
Skip distance between elements of V. For contiguous elements, \(\mathrm{INC}=1\).
Value to be searched for in the vector V .

First index, of the elements of \(V\) that were searched, whose element is equal to the value V . If the value V is not found, the returned value will be \(\mathrm{N}+1\).

\section*{Description}

Function ISRCHEQ finds the first index in a vector whose element is equal to a specified value. For a cne-dimensional vector, the use of ISRCHEQ is straightforward. For example,
\[
i v a l=i \operatorname{srcheq}(n p, v, l, v a l)
\]
searches \(\mathrm{V}(\mathrm{I})\), for \(\mathrm{I}=1\) to NP , for the value VAL, and sets IVAL equal to the first index I for which \(\mathrm{V}(\mathrm{I})=\mathrm{VAL}\). If the value VAL is not found, IVAL will be equal to \(\mathrm{NP}+1\).

A starting location can be specified, as in
```

ival = 4 + isrcheq(np-4,v(5),l,val)

```
which searches \(\mathrm{V}(\mathrm{I})\), for \(\mathrm{I}=5\) to NP , for the value VAL.
Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimensioned NDIM1 by NDIM2, then
```

ival = isrcheq(ndiml*ndim2,a,l,val)

```
searches \(\mathrm{A}(\mathrm{I}, \mathrm{J})\), for all I and J , for the value VAL, and sets IVAL equal to the corresponding onedimensional index. The desired indices in A can then be recovered from
```

i = mod(ival-l,ndiml) + l
j = (ival-l)/ndiml + l

```

One dimension at a time can also be searched. For example,
```

ival = isrcheq(ndiml,a(l,5),l,val)

```
searches \(A(1,5)\), for \(\mathrm{I}=1\) to NDIM1, for the value VAL. Similarly, by specifying a skip increment, jval \(=\) isrcheq(ndim2,a(5,j),ndiml,val)
searches \(\mathrm{A}(5, \mathrm{~J})\), for \(\mathrm{J}=1\) to NDIM 2 , for the value VAL.
Remarks
1. ISRCHEQ is a Cray search routine (Cray Research, Inc., 1989b).
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine KEINIT } \\
\hline Called by & Calls & Purpose \\
\hline INITC & \begin{tabular}{l} 
PRODCT \\
TURBBL \\
YPLCS.
\end{tabular} & Get user-defined initial conditions for \(k\) and \(\varepsilon\). \\
\hline
\end{tabular}

\section*{Input}

C.MUR

DUMMY
MUT
N1, N2

YPLUSD

\section*{Output}

E, EL
KE, KEL
MUTL

Turbulent dissipation rate \(\varepsilon\) at time levels \(n\) and \(n-1\).
Turbulent kinetic energy \(k\) at time levels \(n\) and \(n-1\).
Turbulent viscosity \(\mu_{t}\) at time level \(n-1\).

\section*{Description}

Subroutine KEINIT supplies the user-defined initial values of the turbulent kinetic energy \(k\) and the turbulent dissipation rate \(\varepsilon\). In general, this subroutine will be tailored to the problem being solved, and supplied by user. Details on the variables to be supplied by KEINIT are presented in Section 5.1 of Volume 2.

A default version of KEINIT is supplied with Proteus that computes the initial values of \(k\) and \(\varepsilon\) using the assumption of local equilibrium (dissipation equals production.) The above list of input and output Fortran variables are for the default version of KEINIT.

The steps involved in the default version of KEINIT are described below.
1. Initialize \(k\) and \(\varepsilon\) to zero.
2. Call TURBBL to compute turbulent viscosity values and to locate solid walls in the computational domain.
3. Call YPLUSN to compute \(y^{+}\)and the minimum distance to the nearest solid wall.
4. Call PRODCT to compute the production rate of turbulent kinetic energy.
5. Compute \(k\) and \(\varepsilon\) using
\[
\begin{gathered}
C_{\mu}=C_{\mu_{r}}\left(1-e^{C_{3} y^{+}}\right) \\
\varepsilon=\left|\frac{P_{k}}{R e_{r} \rho}\right|
\end{gathered}
\]
\[
k=\sqrt{\frac{\mu_{r} \varepsilon}{C_{\mu} \rho}}
\]
6. Set the values of \(k, \varepsilon\), and \(\mu_{t}\) at time level \(n-1\) equal to their values at time level \(n\).

\section*{Remarks}
1. The scratch array DUMMY, from the common block DLMMY1, is used to store the values of the minimum distance to the nearest wall. The amay is filled in subroutine YPLUSN.
2. The Fortran array VORT, from the common block TLRB1, is used to store the values of the production rate of turbulent kinetic energy. The array is filled in subroutine PRODCT.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Program MAIN } \\
\hline Called by & Calls & Purpose \\
\hline & BCSET & Manage overall solution. \\
& CONV & \\
& EQSTAT & \\
& EXEC & \\
& FTEMP & \\
& GEOM & \\
& INITC & \\
& INPUT & \\
& OLTPUT & \\
& OLTW & \\
& PLOT & \\
& PRTHST & \\
& REST & \\
& TBC & \\
& TIMSTP & \\
& TREMAIN & \\
& TLRBBL & \\
& \\
& \\
\hline
\end{tabular}

\section*{Input}

None.

\section*{Output}

Current time step number \(n\).
ITEND
Final time step number.
ITSEQ
Current time step sequence number.
TAU
Current time value \(\tau\).

\section*{Description}

The MAIN program is used to manage the overall solution. The steps involved are described below.

\section*{Preliminary Steps}
1. Call INPLT to read and print the input, and perform various initialization procedures.
2. Unless this is a restart case, call GEOM to get the computational coordinates and metric data.
3. Call INITC to get the initial flow field.
4. Call BCSET to set various boundary condition parameters and flags, and to print the input boundary condition types and values.
5. Initialize the plot file, \({ }^{29}\) and, if requested by the user, write the initial or restart flow field into the plot file.
6. If requested by the user, print the initial or restart flow field.

\footnotetext{
29 The initialization procedure depends on the type of plot file being written. See the description of subroutine PLOT.
}
7. Compute NTSUM, the maximum total number of marching steps to be taken, and ITEND, the corresponding final index on the time marching loop. Set the initial values of ITSEQ, the time step sequence number, and ITSWCH, the time index for switching to the next sequence, both to zero.

\section*{Time marching loop}
8. Begin the time marching loop. The loop index IT corresponds to the known time level \(n\). Each iteration of the loop thus corresponds to a step from time level \(n\) to \(n+1\).
9. If at the end of a time step sequence, update ITSEQ, the time step sequence number, and ITSWCH, the time index for switching to the next sequence.
10. For the first time step, and every IDTMOD'th step thereafter, call TIMSTP to compute the new time step \(\Delta \tau\). For every time step update the time value \(\tau\).
11. If time-dependent boundary conditions are being used, call TBC to set the boundary condition values.
12. Call EXEC to solve the equations.
13. Call EQSTAT to compute the pressure \(p\) and temperature \(T\) from the equation of state. If either is non-positive, indicating a non-physical solution, skip forward to step 17.
14. Call FTEMP to compute the laminar viscosities \(\mu_{l}\) and \(\lambda_{l}\), the laminar thermal conductivity \(k_{l}\), and the specific heats \(c_{p}\) and \(c_{v}\).
15. For turbulent flow, call the appropriate subroutines to compute the effective viscosity and thermal conductivity coefficients using the turbulence model specified by the user.
16. Every ICHECK time levels, call CONV to check for convergence.
17. Call TREMAIN to find out how much CPU time remains.
18. If requested by the user, or if the calculation is converged, or if non-positive pressures or temperatures were computed, or if the job is near the CPU time limit, print the flow field at time level \(n+1\).
19. If requested by the user, or if the calculation is converged, or if non-positive pressures or temperatures were computed, or if the job is near the CPU time limit, write the flow field at time level \(n+1\) into the plot file.
20. If non-positive pressures or temperatures were computed, write an error messa;e showing the location of the non-positive values and skip forward to step 25 , ending the calculation.
21. If the calculation is converged, print a message and skip forward to step 24 , ending the calculation.
22. If the job is near the CPU time limit, print a message and skip forward to step 24 , ending the calculation.
23. End of time marching loop. Print a message indicating the calculation did not converge.

\section*{Final Steps}
24. If requested by the user, call REST to write the restart file.
25. If first-order time differencing and steady boundary conditions were used, call PRTHST to print the convergence history.

\section*{Remarks}
1. The starting index for the time marching loop is ITBEG. For a non-restart case ITBEG \(=1\), and thus the initial starting flow field is at time level 1. For a restart case ITBEG \(=n\), where \(n\) is the time level stored in the restart file, and thus the starting flow field is the previously computed flow field at time level \(n\).
2. The ending index for the time marching loop is ITEND \(=\) ITBEG + NTSUM -1 , where NTSLM is the total number of time steps to be taken. For a non-restart case, then, the time marches from level

1 to level \(1+\) NTSUM. For a restart case, the time marches from level ITBEG to level ITBEG + ITSUM.
3. The logic involving \(\triangle T S C M\), ITSEQ, and ITSWCH is used to implement the time step sequencing option. This allows one CFL number or time increment to be used for a specified number of steps, followed by another CFL number or time increment for another specified number of steps, etc. \({ }^{30}\) If this option is not used, NTSLM is simply equal to NTIME(1) and ITSEQ is always 1.
4. An error message is generated and execution is stopped if the value of ITLRB does not correspond to an existing turbulence model.
5. Although the calculation will stop if \(p\) or \(T \leq 0\), as noted above in step 20 , the standard output and plot file will include the time level with the non-positive values, if that is consistent with the IPRT and IPLT input parameters in namelist IO. The restart file will not be written.

\footnotetext{
\({ }^{30}\) See Section 3.1.9 of Volume 2 for details on how to invoke the time step sequencing option.
}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine METS } \\
\hline Called by & Calls & Purpose \\
\hline \begin{tabular}{l} 
GEOM \\
REST
\end{tabular} & OUTPCT & Compute metrics of nonorthogonal grid transformation. \\
\hline
\end{tabular}

\section*{Input}

\section*{DXI, DETA}
* IDEBUG
* IVOUT
* NOUT
* N1, N2

X, Y

Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
Debug flags.
Flags specifying variables to be printed.
Unit number for standard output.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Cartesian coordinates \(x\) and \(y\), or cylindrical coordinates \(x\) and \(r\).

\section*{Output}

ETAX, ETAY, ETAT
IVOUT
JI
XIX, XIY, XIT

Metric coefficients \(\eta_{x}, \eta_{y}\) (or \(\eta_{r}\) if axisymmetric), and \(\eta_{t}\).
Flags specifying variables to be printed (temporarily redefined for debug output of metrics.)
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).


\section*{Description}

Subroutine METS computes the metric coefficients and the Jacobian for the generalized nonorthogonal coordinate transformation. The metric coefficients are defined in terms of the known ( \(x \cdot y\) ) coordinates of the computational mesh as:
\[
\begin{gathered}
\xi_{x}=J y_{\eta} \\
\xi_{y}=-J x_{\eta} \\
\eta_{x}=-J y_{\xi} \\
\eta_{y}=J x_{\xi} \\
\xi_{t}=-x_{\tau} \xi_{x}-y_{\tau} \xi_{y} \\
\eta_{t}=-x_{\tau} \eta_{x}-y_{\tau} \eta_{y}
\end{gathered}
\]
where \(J\) is the Jacobian of the transformation, given by
\[
J=\frac{1}{J^{-1}}=\left(x_{\xi} y_{\eta}-x_{\eta} y_{\xi}\right)^{-1}
\]

The derivatives of \(x\) and \(y\) with respect to the computational coordinates are computed numerically using the same difference formulas as used for the goveming equations. At interior points the centered difference formula presented in Section 5.0 of Volume 1 is used. At boundaries three-point one-sided differencing is used. For \(\xi\)-derivatives at the \(\xi=0\) and \(\xi=1\) boundaries,
\[
\frac{\partial f}{\partial \xi} \simeq \pm \frac{-3 f_{w}+4 f_{w \pm 1}-f_{w \pm 2}}{2 \Delta \xi}
\]
where \(w\) represents the \(\zeta\)-index at the boundary (i.e., either 1 or \(N_{1}\) ). Where a \(\pm\) sign appears, the + sign is used at the \(\xi=0\) boundary, and the - sign is used at the \(\xi=1\) boundary. An analogous formula is used for \(\eta\)-derivatives at the \(\eta=0\) and \(\eta=1\) boundaries.

\section*{Remarks}
1. Since the current version of Proteus is limited to meshes that do not vary with time, the derivatives \(x_{\mathrm{r}}\) and \(y_{\tau}\) are set equal to zero.
2. This subroutine generates the output for the IDEBCG(7) option.
3. An error message is generated and execution is stopped if the grid transformation Jacobian \(J\) changes sign or equals zero. This indicates that the computational mesh contains crossed or coincident grid lines. The error message is followed by a printout of the Cartesian coordinates, the Jacobian, and the metric coefficients.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine OLTPCT (LEVEL) } \\
\hline Called by & Calls & Purpose \\
\hline MAIN & \begin{tabular}{l} 
PRTOLT \\
METS
\end{tabular} & Manage printing of output. \\
\hline
\end{tabular}

\section*{Input}

CP, CV
DTAU
DUMMY
DXI, DETA
E, KE
ETAX, ETAY, ETAT
* GAMR

GC
* IAXI
* ISWIRL
* IVOUT

JI
LEVEL
LWALL1, LWALL2
* MACHR

MU, LA, KT

MUT
* NOLT
* N1, N2

P, T
PR
PRR
* PRT

RGAS
RHO, U, V, W, ET
* RHOR, TR, UR

TAU
X, Y
XIX, XIY, XIT

Specific heats \(c_{p}\) and \(c_{v}\).
Time step \(\Delta \tau\).
A two-dimensional scratch array dimensioned (N1P,N2P).
Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
Turbulent dissipation rate \(\varepsilon\) and kinetic energy \(k\).
Metric coefficients \(\eta_{x}, \eta_{y}\) (or \(\eta_{r}\) if axisymmetric), and \(\eta_{r}\).
Reference ratio of specific heats, \(\gamma_{r}\).
Proportionality factor \(g_{c}\) in Newton's second law.
Flag for axisymmetric flow.
Flag for swirl in axisymmetric flow.
Flags specifying variables to be printed.
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Time level being printed.
Flags specifying wall locations for \(\xi\) and \(\eta\) boundaries.
Reference Mach number \(M_{r}\).
Effective coefficient of viscosity \(\mu\), effective second coefficient of viscosity \(\lambda\), and effective coefficient of thermal conductivity \(k\).
Turbulent viscosity coefficient \(\mu_{r}\).
Unit number for standard output.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Static pressure \(p\) and temperature \(T\).
Reference pressure \(p_{r}\).
Reference Prandtl number Pr \(_{r}\).
Turbulent Prandtl number \(\mathrm{Pr}_{\mathrm{z}}\).
Gas constant \(R\).
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\).
Reference density \(\rho_{r}\), temperature \(T_{r}\), and velocity \(u_{r}\).
Time value \(\tau\).
Cartesian coordinates \(x\) and \(y\), or cylindrical coordinates \(x\) and \(r\).
Metric coefficients \(\xi_{x}, \xi_{y}\) (or \(\xi_{r}\) if axisymmetric), and \(\xi_{r}\).

\section*{Output}

ATITLE
DCMMY

A 20 -character title for variable being printed.
A two-dimensional array containing the variable to be printed.

\section*{Description}

Subroutine OLTPLT manages the printing of the standard output. The variables available for printing are listed and defined in Table 3-3 of Volume 2. The user-specified array IVOLT controls which variables are printed.

Each variable to be printed is stored, in turn, in the scratch array DUMMY, from the common block DUMMY1. The title printed with the variable is stored in the character array ATITLE. Subroutine PRTOUT is then called to execute the actual write statements.

\section*{Remarks}
1. A warning message is printed if a non-existent output variable is requested. The printout will continue with the next requested output variable.
2. For output options \(30,31,34\), and 35 , involving the pressure \(p\), the value stored internally in the Proteus code is redefined as follows:
\[
p=p \frac{\rho_{r} u_{r}^{2}}{p_{r} g_{c}}
\]

This is necessary because input and output values of \(p\) are nondimensionalized by the reference pressure \(p_{r}=\rho_{r} \bar{R} T_{\text {r }}\), while internal to the code itself \(p\) is nondimensionalized by the normalizing pressure \(p_{n}=\rho, u_{r}^{2}\). See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and normalizing conditions.
3. The definitions of \(k_{t}\) and \(k_{t}\) (IVOUT \(=92\) and 102) assume a constant turbulent Prandtl number is being specified in namelist TURB. If the input value of \(\mathrm{PRT} \leq 0\), indicating the use of a variable turbulent Prandtl number, the printed values of \(k_{l}\) and \(k_{t}\) will be incorrect.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine OLTW (LEVEL) } \\
\hline Called by & Calls & Purpose \\
\hline MAN & & Compute and print parameters at boundaries. \\
\hline
\end{tabular}

\section*{Input}

CP
DXI, DETA
ETAX, ETAY
GC
* IWOLT1, IWOLT2

LEVEL
MU, KT
* NOUT
* \(\mathrm{N} 1, \mathrm{~N} 2\)

P, T
PR
PRR
* RER
* RHOR, UR

U, V, W
\(\mathrm{X}, \mathrm{Y}\)
XIX, XIY

Specific heat \(c_{F}\).
Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
Metric coefficients \(\eta_{x}\) and \(\eta_{y}\) (or \(\eta_{r}\) if axisymmetric.)
Proportionality factor \(g_{c}\) in Newton's second law.
Flags specifying for which boundaries parameters are to be printed.
Time level being printed.
Effective coefficients of viscosity \(\mu\), and thermal conductivity \(k\).
Unit number for standard output.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Static pressure \(p\) and temperature \(T\).
Reference pressure \(p_{r}\).
Reference Prandtl number Prr.
Reference Reynolds number \(R e_{r}\).
Reference density \(\rho_{r}\), and velocity \(u_{r}\).
Velocities \(u, v\), and \(w\).
Cartesian coordinates \(x\) and \(y\), or cylindrical coordinates \(x\) and \(r\).
Metric coefficients \(\xi_{x}\) and \(\xi_{y}\) (or \(\xi_{\text {, if axisymmetric.) }}\)

\section*{Output}

None.

\section*{Description}

Subroutine OUTW computes and prints various parameters along the computational boundaries. The variables available for printing are listed and defined in Table \(3-3\) of Volume 2. The user-specified arrays IWOUT1 and IWOUT2 specify at which boundaries parameters are printed, and whether normal derivatives are to be computed using two-point or three-point one-sided differencing.

The parameters printed are the Cartesian coordinates \(x\) and \(y\), the static pressure \(p\), the skin friction coefficient \(c_{f}\), the shear stress \(\tau_{w}\), the static temperature \(T\), the heat transfer coefficient \(h\), the heat flux \(q_{w}\), and the Stanton number St. Note that some of these are meaningful only if the boundary is a solid wall.

The skin friction coefficient is defined as
\[
c_{f}=\frac{\bar{\mu} \frac{\partial \bar{V}_{I}}{\partial \bar{n}}}{\frac{1}{2} \rho_{r} u_{r}^{2}}=\frac{2}{R e_{r}} \mu \frac{\partial V_{I}}{\partial n}
\]
where the overbar denotes a dimensional quantity. In this equation \(\partial V_{i} / \partial n\) represents the normal derivative of the tangential velocity, with the normal vector \(\bar{n}\) directed into the flow field.

For a \(\xi\) boundary, the tangential velocity for non-swirl cases is simply
\[
V_{t}=V_{\eta}
\]
where \(V_{n}\) is the velocity in the \(\eta\) direction. For axisymmetric cases with swirl, the tangential velocity on a \(\xi\) boundary is computed as
\[
V_{t}=\sqrt{V_{\eta}^{2}+w^{2}}
\]
where \(w\) is the swirl velocity. From the description of subroutine BCVDIR,
\[
V_{\eta}=\frac{1}{m}\left(-\xi_{y} u+\xi_{x} v\right)
\]
where
\[
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
\]

Using the equations in Section 6.4 of Volume \(1, \partial V_{t} \mid \partial n\) for a \(\xi\) boundary is thus computed as
\[
\frac{\partial V_{t}}{\partial n}= \pm \frac{1}{m}\left[\frac{\partial V_{t}}{\partial \xi}\left(\xi_{x}^{2}+\xi_{y}^{2}\right)+\frac{\partial V_{t}}{\partial \eta}\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)\right]
\]
where the + sign is used at the \(\xi=0\) boundary, and the - sign is used at the \(\xi=1\) boundary.
For an \(\eta\) boundary, the tangential velocity for non-swirl cases is
\[
V_{t}=V_{\xi}
\]
and for axisymmetric cases with swirl, it is computed as
\[
V_{t}=\sqrt{V_{\xi}^{2}+w^{2}}
\]

The \(\xi\) velocity is given by
\[
V_{\xi}=\frac{1}{m}\left(\eta_{y} u+\eta_{x} v\right)
\]
where
\[
m=\sqrt{\eta_{x}^{2}+\eta_{y}^{2}}
\]

Thus, for an \(\eta\) boundary,
\[
\frac{\partial V_{t}}{\partial n}= \pm \frac{1}{m}\left[\frac{\partial V_{t}}{\partial \xi}\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)+\frac{\partial V_{t}}{\partial \eta}\left(\eta_{x}^{2}+\eta_{y}^{2}\right)\right]
\]

The shear stress \(\tau_{w}\) is defined as
\[
\tau_{w}=\mu \frac{\partial V_{I}}{\partial n}
\]
\(\tau_{\omega}\) is thus nondimensionalized by \(\mu_{r} u_{r} / L_{r}\).
The heat flux \(q_{w}\) is defined as
\[
q_{w}=-k \frac{\partial T}{\partial n}
\]
where \(\partial T / \partial n\) represents the normal derivative of the temperature. For a \(\xi\) boundary,
\[
\frac{\partial T}{\partial n}= \pm \frac{1}{m}\left[\frac{\partial T}{\partial \xi}\left(\xi_{x}^{2}+\xi_{y}^{2}\right)+\frac{\partial T}{\partial \eta}\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)\right]
\]
where
\[
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
\]

For an \(\eta\) boundary,
\[
\frac{\partial T}{\partial n}= \pm \frac{1}{m}\left[\frac{\partial T}{\partial \eta}\left(\eta_{x}^{2}+\eta_{y}^{2}\right)+\frac{\partial T}{\partial \xi}\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)\right]
\]
where
\[
m=\sqrt{\eta_{x}^{2}+\eta_{y}^{2}}
\]
\(q_{w}\) is thus nondimensionalized by \(k_{r} T_{r} / L_{r}\).
The heat transfer coefficient \(h\) is defined as
\[
h=\frac{q_{w}}{T-1}=\frac{-k \frac{\partial T}{\partial n}}{T-1}
\]

This is the nondimensional form of the equation
\[
\bar{h}=\frac{\bar{q}_{w}}{\bar{T}-T_{r}}=\frac{-\bar{k} \frac{\partial \bar{T}}{\partial \bar{n}}}{\bar{T}-T_{r}}
\]
\(h\) is thus nondimer ionalized by \(k_{r} / L_{r}\).
The Stanton number \(S t\) is defined as
\[
S t=\frac{\bar{h}}{\rho_{r} u_{r} \bar{C}_{p}}=\frac{h}{c_{p}} \frac{1}{\operatorname{Re}_{r} P r_{r}}
\]
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine PAK (IDIR,NOLDI,NOLD2) } \\
\hline Called by & Calls & Purpose \\
\hline GEOM & \begin{tabular}{l} 
CCBIC \\
ROBTS
\end{tabular} & Manage packing and/or interpolation of grid points. \\
\hline
\end{tabular}

\section*{Input}

IDIR
* IPACK

NOLD1, NOLD2
* NOUT
* N1, N2
* SQ

X, Y

Direction flag; 1 if grid points are being redistributed in the \(\xi\) direction, 2 if in the \(\eta\) direction.
Flags for grid packing option.
Number of grid points in the \(\xi\) and \(\eta\) directions in the original grid.
Unit number for standard output.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\check{\varsigma}\) and \(\eta\) directions in the new grid.
An array specifying the location and amount of packing.
Cartesian coordinates \(x\) and \(y\), or cylindrical coordinates \(x\) and \(r\), in the old grid.

Cartesian coordinates \(x\) and \(y\), or cylindrical coordinates \(x\) and \(r\), in the new grid.

\section*{Description}

Subroutine PAK manages the redistribution of the user-specified points in the computational coordinate system. It is colled whenever grid packing is used. It is also called when interpolation is necessa because the computational coordinates are specified by reading them from a separate file (the NGEOM \(=10\) option in subroutine GEOM), and the number of points in the file is different from the number of points to be used in the calculation. PAK is called once for each direction in which points are being redistributed.

The steps involved in subroutine PAK are described below. For clarity, this discussion assumes IDIR \(=1\) (i.e., we are redistributing points in the \(\xi\) direction.) An exactly analogous procedure is used for \(\operatorname{IDIR}=2\).
1. Set NNEW and NOLD equal to the index limits in the \(\xi\) direction for the new and old grids. Also set NOPP equal to the index limit in the \(\eta\) direction for the old grid.
2. Get \(\left(a_{P}\right)_{i}\), the normalized physical arc length along a coordinate line in the \(\xi\) direction, from the beginning of the line to each grid point in the new grid. The normalizing distance is the total arc length of the line, and thus these arc lengths apply to any coordinate line in the \(\xi\) direction. If the points are not being packed in the \(\zeta\) direction, but only interpolated, then
\[
\left(a_{P}\right)_{i}=\frac{i-1}{\mathrm{NNEW}-1}
\]
for \(i=1\) to NNEW. In the new grid, the points will thus be evenly distributed in physical space along each coordinate line in the \(\xi\) direction. If the grid points are being packed in the \(\xi\) direction, subroutine ROBTS is called to compute \(\left(a_{p}\right)_{i}\) from the packing parameters specified by the user.
3. Begin loop from IOPP \(=1\) to NOPP. This loop thus runs over the points in the \(\eta\) direction in the old grid. We will be redistributing points in the \(\xi\) direction for each \(\eta\) value in the old grid.
4. Get \(\left(a_{U P}\right)\), the normalized physical arc length along a coordinate line in the \(\xi\) direction, from the beginning of the line to each grid point in the old grid. These values are found by first computing the non-normalized arc lengths, as follows:
\[
\begin{gathered}
\left(a_{U P}\right)_{1}=0 \\
\left(a_{U P}\right)_{i}=\left(a_{U P}\right)_{i-1}+\sqrt{\left(x_{i, j}-x_{i-1, j}\right)^{2}+\left(y_{i, j}-y_{i-1, j}\right)^{2}}
\end{gathered}
\]
for \(i=2\) to NOLD1. These values are normalized by setting
\[
\left(a_{U P}\right)_{i}=\frac{\left(a_{U P}\right)_{i}}{\left(a_{U P}\right)_{\mathrm{YOLD} 1}}
\]
for \(i=1\) to NOLD1. To eliminate any problems with roundoff error, \(\left(a_{U P}\right)_{\text {NOLDI }}\) is explicitly set equal to 1 .
5. Given \(x\) and \(a_{U P}\) for the old grid, and \(a_{p}\) for the new grid, call CUBIC to interpolate for \(x\) in the new grid. Similarly interpolate for \(y\).
6. Redefine the Fortran variables X and Y as the \(x\) and \(y\) coordinates in the new grid.
7. End of loop over the points in the \(\eta\) direction in the old grid.

\section*{Remarks}
1. In the Fortran code, the comments sometimes refer to the "packing" direction. This terminology actually means the direction in which grid points are being redistributed, even if they are not being packed but only interpolated. Similarly, references to the "packed" and "unpacked" grid actually mean the new and old grids.
2. An error message is generated and execution is stopped if an invalid grid packing option is requested.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine PERIOD } \\
\hline Called by & Calls & Purpose \\
\hline \begin{tabular}{l} 
EXEC \\
EXECT
\end{tabular} & & \begin{tabular}{l} 
Define extra line of data for use in computing coefficients for spatially \\
periodic boundary conditions.
\end{tabular} \\
\hline
\end{tabular}

\section*{Input}

CP, CV
E, EL
ETAX, ETAY, ETAT
JI
KBCPER
KE, KEL
MU, LA, KT
MUT, MUTL
NPT1, NPT2
* \(\mathrm{N} 1, \mathrm{~N} 2\)

P, T
RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL
TL
XIX, XIY, XIT
Y

Specific heats \(c_{p}\) and \(c_{v}\) at time level \(n\).
Turbulent dissipation rate \(\varepsilon\) at time levels \(n\) and \(n-1\).
Metric coefficients \(\eta_{x}, \eta_{s}\) (or \(\eta_{r}\) if axisymmetric), and \(\eta_{t}\).
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Flags for spatially periodic boundary conditions in the \(\xi\) and \(\eta\) directions; 0 for non-periodic, 1 for periodic.
Turbulent kinetic energy \(k\) at time levels \(n\) and \(n-1\).
Effective coefficient of viscosity \(\mu\), effective second coefficient of viscosity \(\lambda\), and effective coefficient of thermal conductivity \(k\).
Turbulent viscosity \(\mu_{\mathrm{t}}\) at time levels \(n\) and \(n-1\).
\(N_{1}\) and \(N_{2}\) for non-periodic boundary conditions, \(N_{1}+1\) and \(N_{2}+1\) for spatially periodic boundary conditions in \(\xi\) and \(\eta\).
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Static pressure \(p\) and temperature \(T\) at time level \(n\).
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level \(n\).
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) from previous ADI sweep.
Static temperature \(T\) from previous ADI sweep.
Metric coefficients \(\xi_{x}, \xi_{y}\) (or \(\xi_{r}\) if axisymmetric), and \(\xi_{t}\).
Radial coordinate \(r\) for axisymmetric flow.

\section*{Output}

All of the flow and metric-related input parameters listed above, at \(i=N_{1}+1\) for periodic boundary conditions in the \(\xi\) direction, and at \(j=N_{2}+1\) for periodic boundary conditions in the \(\eta\) direction.

\section*{Description}

Subroutine PERIOD adds, in effect, an additional set of points at \(i=N_{1}+1\) for periodic boundary conditions in the \(\xi\) direction, and at \(j=N_{2}+1\) for periodic boundary conditions in the \(\eta\) direction. This allows us to use central differencing in the periodic direction, at \(i=N_{1}\) and/or \(j=N_{2}\), computing the coefficient submatrices and source term subvector in the same way as at the interior points. \({ }^{31}\)

For periodic boundary conditions in the \(\xi\) direction, the extra points are added by setting

\footnotetext{
\({ }^{31}\) See Section 7.2 .2 of Volume 1 for details on the solution procedure for spatially periodic boundary conditions.
}
\[
f_{N_{1}+1, j}=f_{2, j}
\]
where \(j=1\) to \(\lambda_{2}\), and \(f\) represents one of the flow variables or metrics. Similarly, extra points are added at ( \(i, N_{2}+1\) ) for periodic boundary conditions in the \(\eta\) direction.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine PLOT (LEVEL) } \\
\hline Called by & Calls & Purpose \\
\hline MAIN & & \begin{tabular}{l} 
Write files for post-processing by CONTOUR or PLOT3D plotting \\
programs.
\end{tabular} \\
\hline
\end{tabular}

\section*{Input}

CP, CV
ETAX, ETAY
* GAMR

GC
* IPLOT

LEVEL
* LR, UR, RHOR, TR
* MaCHR
* NOUT
* NPLOT
* NPLOTX
* NSCR1
* N1, N2

P, T
PR
* RER
* RG

RGAS
RHO, U, V, W, ET
TAU
* TITLE

X, Y
XIX, XIY

Specific heats \(c_{p}\) and \(c_{r}\).
Metric coefficients \(\eta_{x}\) and \(\eta_{y}\) (or \(\eta_{r}\) if axisymmetric).
Reference ratio of specific heats, \(\gamma_{r}\).
Proportionality factor \(g_{c}\) in Newton's second law.
Flag specifying type of plot file to be written.
Time level to be written into the file ( 0 for initialization, and -1 to read the scratch file and write XYZ and Q files with the IPLOT \(=-3\) option).
Reference length \(L_{r}\), velocity \(u_{r}\), density \(\rho_{r}\), and temperature \(T_{r}\).
Reference Mach number \(M_{r}\).
Unit number for standard output.
Unit number for writing CONTOUR file, or PLOT3D Q file.
Unit number for writing PLOT3D XYZ file.
Unit number for scratch file.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Static pressure \(p\) and temperature \(T\).
Reference pressure \(p_{r}\).
Reference Reynolds number \(R e_{r}\).
Dimensional gas constant \(\bar{R}\).
Dimensionless gas constant \(R\).
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\).
Current time value \(\tau\).
Case title.
Cartesian coordinates \(x\) and \(y\), or cylindrical coordinates \(x\) and \(r\).
Metric coefficients \(\xi_{x}\) and \(\xi_{y}\) (or \(\xi_{\text {r }}\) if axisymmetric).

\section*{Output}

None.

\section*{Description}

Subroutine PLOT writes a file or files, commonly called plot files, for post-processing by the CONTOUR or PLOT3D plotting programs. The type of files written is controlled by the user-specified parameter IPLOT. The format and contents of the different types of plot files are described in detail in Section 4.2 of Volume 2. They are therefore described only briefly here.

\section*{CONTOUR Plot File (IPLOT \(= \pm 1\) )}

If IPLOT \(=1\), a CONTOLR plot file is written with the title and reference conditions included at each time level. The value of \(n\) is written into the header for each time level, but \(\tau\), the time itself, is not written into the file. No initialization step is necessary.

If IPLOT \(=-1\), a CONTOLR plot file is also written, but the title and reference conditions are written only at the beginning of the file. In addition the time \(\tau_{i, j}\) is written into the file at each time level. In this case the initialization step consists of writing the title and reference conditions at the beginning of the file.

\section*{PLOT3D/WHOLE Plot Files (IPLOT = 2)}

If \(\mathrm{IPLOT}=2, \mathrm{XYZ}\) and Q files are written in PLOT3D/WHOLE format. The XYZ file is written only during the initialization step. The Q file is written at each time level requested by the user. The Q file will thus consist of multiple sets of data, each containing the computed results at a single time level. The time \(\tau_{1,1}\) is written into the header for each set of data in the Q file. Since Proteus 2-D is two-dimensional, N3, the number of points in the \(z\) direction in the XYZ and Q files, is set equal to 1 .

\section*{PLOT3D PLANES Plot Files (IPLOT =3)}

If \(\operatorname{IPLOT}=3, \mathrm{XYZ}\) and Q files are written in PLOT3D/PLANES format. Since Proteus 2-D is twodimensional, N 3 , the number of points in the \(z\) direction in the XYZ and Q files, is set equal to 1 . This makes the XYZ and Q files identical to those created using the IPLOT \(=2\) option.

PLOT3D/PLANES Plot Files (IPLOT \(=-3\) )
The files created with this option are similar to those created with the IPLOT \(=3\) option, except the time \(\tau_{i, j}\) is written into the \(z\) slot in the XYZ file, and the number of points in the " \(z\) " direction is set equal to the number of time levels in the XYZ and Q files.

However, because the calculation may converge or become non-physical, the number of time levels that end up being written into the files is not known until the end of the Proteus run. Therefore, as the calculation proceeds the results are actually written into a scratch file. N3, the counter for the number of time levels, is set equal to zero in the initialization step and updated each time a time level is added to the scratch file. At the end of the Proteus run the scratch file is read and the XYZ and Q files are written.

\section*{PLOT2D Plot Files (IPLOT \(=4\) )}

If \(\operatorname{IPLOT}=4, \mathrm{XYZ}\) and Q files are written in PLOT3D's 2D format. The XYZ file is written only during the initialization step. The Q file is written at each time level requested by the user. The Q file will thus consist of multiple sets of data, each containing the computed results at a single time level. The time \(\tau_{1,1}\) is written into the header for each set of data in the Q file.

\section*{Remarks}
1. For the CONTOUR plot file, the IPLOT \(=-1\) option is the better one to use. The IPLOT \(=1 \mathrm{op}-\) tion is included only to be consistent with the various PLOT3D options.
2. In defining the pressure to be written into the CONTOUR plot file, the value stored internally in the Proteus code is redefined as follows:
\[
p=p \frac{\rho_{r} u_{r}^{2}}{p_{r} g_{c}}
\]

This is necessary because input and output values of \(p\) are nondimensionalized by the reference pressure \(p_{r}=\rho_{r} \bar{R} T_{n}\), while internal to the code itself \(p\) is nondimensionalized by the normalizing pressure \(p_{n}=\rho_{r} u_{r}^{2}\). See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and normalizing conditions.
3. The current version of PLOT3D does not work for multiple time levels, although future versions might. Thus the IPLOT \(=2,3\), and 4 options, while containing multiple time levels, cannot easily be used to create plots showing the time development of the flow. You can, however, fake it out using the IPLOT \(=-3\) option. With this option, plots can be generated at different time levels by plotting at different PLOT3D "z" stations.
4. Note that the time \(\tau_{1,1}\) written into the Q file header with the IPLOT \(=2,3\), and 4 options is the time at the point \(\xi=\eta=0\). If the input variable IDTAC \(=5\) or \(6, \tau\) will vary in space and therefore \(\tau_{i, j} \neq \tau_{,, 1}\).
5. To save storage, the common variable A.MAT1, which is normally used for the subdiagonal submatrix of coefficients in the block tridiagonal system of equations, is equivalenced to the local threedimensional variable Q used to store the Q variables that are written into the PLOT3D Q file.
6. PLOT3D assumes that velocity is nondimensionalized by the reference speed of sound \(a_{r}=\left(\gamma_{r} \bar{R} T_{r}\right)^{1 / 2}\), and that energy is nondimensionalized by \(\rho_{a} a_{r}^{2}\). In Proteus these variables are nondimensionalized by \(u_{r}\) and \(\rho, u_{r}^{2}\). That is why the reference Mach number \(M_{r}\) appears in the definitions of \(\mathrm{Q}(, 2)\) through \(\mathrm{Q}(, .5)\).
7. An error message is generated and execution is stopped if an illegal plot file option is requested.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine PRODCT } \\
\hline Called by & Calls & Purpose \\
\hline \begin{tabular}{l} 
KEINIT \\
TURBCH
\end{tabular} & & Compute production term for the \(k\) - \(\varepsilon\) turbulence model. \\
\hline
\end{tabular}

\section*{Input}

DXI, DETA
ETAX, ETAY
* IAXI

MUT
* N1, N2
* RER

U, V, W
XIX, XIY
Y

Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
Metric coefficients \(\eta_{x}\) and \(\eta_{y}\) (or \(\eta_{\text {, if axisymmetric). }}\)
Flag for axisymmetric flow.
Turbulent viscosity \(\mu_{\text {; }}\) at time level \(n\).
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Reference Reynolds number \(R e\).
Velocities \(u, v\), and \(w\) at time level \(n\).
Metric coefficients \(\xi_{x}\) and \(\xi_{y}\) (or \(\xi_{\text {, if axisymmetric). }}\)
Radial coordinate \(r\) for axisymmetric flow.

\section*{Output}

PONE, PTWO
VORT

Parts 1 and 2 of the production rate of turbulent kinetic energy.
Production rate of turbulent kinetic energy.

\section*{Description}

Subroutine PRODCT computes the turbulent kinetic energy production rate using
\[
P_{k}=\frac{\mu_{t}}{R e_{r}} P_{1}-\frac{2}{3} \rho k P_{2}
\]
where, for 2-D planar flow,
\[
\begin{gathered}
P_{1}=2\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right]-\frac{2}{3}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^{2} \\
P_{2}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}
\end{gathered}
\]
and for axisymmetric flow,
\[
\begin{gathered}
P_{1}=2\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial r}\right)^{2}+\left(\frac{v}{r}\right)^{2}\right]-\frac{2}{3}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial r}+\frac{v}{r}\right)^{2}+\left(\frac{\partial u}{\partial r}+\frac{\partial v}{\partial x}\right)^{2} \\
+\left(\frac{\partial w}{\partial x}\right)^{2}+\left[r \frac{\partial}{\partial r}\left(\frac{w}{r}\right)\right]^{2} \\
P_{2}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial r}+\frac{v}{r}
\end{gathered}
\]

To evaluate the spatial derivatives, the centered difference formulas presented in Section 5.0 of Volume 1 are used at interior points, and second-order one-sided difference formulas are used at boundary points.

\section*{Remarks}
1. To save storage space, this subroutine uses the Fortran variable VORT to store the turbulent kinetic energy production rate. Care must be taken when this subroutine is used together with subroutine VORTEX.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine PRTHST } \\
\hline Called by & Calls & Purpose \\
\hline MAIN & & Print convergence history. \\
\hline
\end{tabular}

\section*{Input}
\begin{tabular}{|c|c|}
\hline ICHECK & Convergence checking interval. \\
\hline IREST & Flag for restart file; 0 for no restart file, 1 to write a restart file, 2 to read and write a restart file. \\
\hline IT & Last computed time step number \(n\). \\
\hline ITBEG & The time level \(n\) at the beginning of a run. \\
\hline NC, NXM, NYM, NZM, NEN & Array indices associated with the continuity, \(x\)-momentum, \(y\)-momentum (or \(r\)-momentum if axisymmetric), swirl momentum, and energy equations. \\
\hline NEQ & Number of coupled equations being solved, \(N_{\text {eq }}\). \\
\hline NHIST & Unit number for convergence history file. \\
\hline NHMAX & Maximum number of time levels allowed in the printout of the convergence history file (not counting the first two, which are always printed.) \\
\hline NOUT & Unit number for standard output. \\
\hline
\end{tabular}

\section*{Output}

None.

\section*{Description}

Subroutine PRTHST prints the convergence history as part of the standard output. The information is obtained from the unformatted convergence history file written in subroutine RESID. The parameters printed are described in Section 4.1.6 of Volume 2, and the unformatted convergence history file is described in Section 4.3 of Volume 2. To avoid undesirably long tables, the convergence parameters are printed at an interval that limits the printout to NHMAX time levels. As described in Section 4.1.6 of Volume 2, however, they are always printed at the first two time levels.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine PRTOUT (ATITLE,LEVEL,AVAR) } \\
\hline Called by & Calls & Purpose \\
\hline OLTPLT & & Print output. \\
\hline
\end{tabular}

\section*{Input}

ATITLE
AVAR
DTAU
* IDTAU
* IPRT1A, IPRT2A

\section*{LEVEL}
* LR, UR
* NOUT

NPRT1, NPRT2
TAU

A 20 -character title for variable being printed.
A two-dimensional array containing the variable to be printed.
Time step \(\Delta \tau\).
Flag for time step selection method.
Indices for printout in the \(\xi\) and \(\eta\) directions.
Time level to be printed.
Reference length \(L_{r}\) and velocity \(u\).
Unit number for standard output.
Total number of indices for printout in the \(\xi\) and \(\eta\) directions.
Current time value \(\tau\).

\section*{Output}

None.

\section*{Description}

Subroutine PRTOUT performs the actual printing of the standard output file. It prints the variable AVAR, with the title ATITLE. The output is printed in columns running in the \(\eta\) direction. The rows run in the \(\xi\) direction. If the results at every grid point are printed, there will be a total of \(N_{1}\) columns, each wit!' \(N_{2}\) rows. The columns are grouped in super-rows of up to 10 columns each.

The steps involved are as follows:
1. Set the total number of columns, and rows per super-row.
2. Redefine AVAR, the input array containing the variable to be printed, including only the elements requested.
3. Determine the number of super-rows. If NCOL is not exactly divisible by 10 , the last super-row will have less than 10 columns.
4. Print the title for the variable. If the time step is constant in space, the dimensional time \(t\) and time step \(\Delta t\) are printed with the title.
5. Begin loop over the number of super-rows.
6. Set NC 1 and NC 2 equal to the number of the first and last column in this super-row. (I.e, for the first super-row NCl and NC2 will be 1 and 10 , for the second they will be 11 and 20, etc. For the last super-row, NC 2 will be NCOL.)
7. Print the heading for the super-row, labeling each column with the proper \(\xi\) index.
8. Print the super-row itself, labeling each row with the proper \(\eta\) index.
9. End of loop over the number of super-rows.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine RESID (IAVR,S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline EXEC & \begin{tabular}{l} 
ISAMAX \\
SASCM \\
S.SRM2
\end{tabular} & Compute residuals and write convergence history file. \\
\hline
\end{tabular}

\section*{Input}

CHGAVG

CHGMAX

DTAU
DUMMY
* EPS

IAVR
* IAV2E, IAV4E
* ICHECK
* ICTEST
* IDTAU
* IHSTAG
* ISWIRL

IT
ITBEG
* LR, UR

NEQ
* NHIST
* NITAVG

NPT1, NPT2

NTOTP
. IVD, NPTSD
* N1, N2

N1P, N2P

S
TAU

Maximum change in absolute value of the dependent variables, averaged over the last ..ITAVG time steps, \(\Delta \mathbf{Q}_{\text {org }}\).
Maximum change in absolute value of the dependent variables over previous time step (or NITAVG-1 time steps if ICTEST = 2), \(\Delta \mathbf{Q}_{\text {max }}\)
Time step \(\Delta \tau\).
A two-dimensional scratch array.
Convergence level to be reached, \(\varepsilon\).
Flag specifying whether residual is computed without or with the artificial viscosity terms; I for without, 2 for with.
Flags for second- and fourth-order explicit artificial viscosity.
Convergence checking interval.
Flag for convergence criteria to be used.
Flag for time step selection method.
Flag for constant stagnation enthalpy option.
Flag for swirl in axisymmetric flow.
Current time step number \(n\).
The time level \(n\) at the beginning of a run.
Reference length \(L_{r}\) and velocity \(u_{r}\).
Number of coupled equations being solved, \(N_{\varepsilon q}\).
Unit number for convergence history file.
Number of time steps in moving average convergence test.
\(N_{1}\) and \(N_{2}\) for non-periodic boundary conditions, \(N_{1}+1\) and \(N_{2}+1\) for spatially periodic boundary conditions in \(\xi\) and \(\eta\).
Dimensioning parameter specifying the storage required for a full two-dimensional array (i.e., \(\mathrm{N} 1 \mathrm{P} \times \mathrm{N} 2 \mathrm{P}\) ).

Leading two dimensions for the array S .
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Parameters specifying the dimension sizes in the \(\xi\) and \(\eta\) directions.

Source term subvector \(\mathbf{S}\) for first ADI sweep.
Current time value \(\tau\).

\section*{Output}

LRMAX

RESAVG
RESL2
RESMAX
Grid indices \(i\) and \(j\), in the \(\xi\) and \(\eta\) directions, corresponding to the location of RESMAX.
The average absolute value of the residual, \(\mathrm{R}_{\text {erg }}\).
The \(L_{2}\) norm of the residual, \(\mathrm{R}_{L_{2}}\).
The maximum absolute value of the residual, \(\mathrm{R}_{\text {max }}\).

\section*{Description}

Subroutine RESID computes various measures of the residual, and writes the convergence history file.
For problems without artificial viscosity, the steady-state form of the goveming partial differential equations can be written as
\[
0=-\frac{\partial \hat{\mathbf{E}}}{\partial \xi}-\frac{\partial \hat{\mathbf{F}}^{\partial}}{\partial \eta}+\frac{\partial \hat{\mathbf{E}}_{V}}{\partial \xi}+\frac{\partial \hat{\mathbf{F}}_{V}}{\partial \eta}
\]

The residual is defined as the number resulting from evaluating the right hand side of the above equation. For first-order time differencing, this is simply the source term for the first ADI sweep, divided by the time step \(\Delta \tau .{ }^{32}\) The residual at a specific grid point and time level is thus
\[
\mathbf{R}_{i, j}^{n}=\mathbf{S}_{i, j}^{n} /(\Delta \tau)_{i, j}^{n}
\]
where \(S\) is the source term for the first ADI sweep. Separate residuals are computed for each governing equation.

Adding artificial viscosity, however, changes the governing equations. With artificial viscosity, the difference equations actually correspond to the following differential equations at steady state. \({ }^{33}\)
\[
\begin{aligned}
0= & -\frac{\partial \hat{\mathbf{E}}}{\partial \xi}-\frac{\partial \hat{\mathbf{F}}}{\partial \eta}+\frac{\partial \hat{\mathbf{E}}_{V}}{\partial \xi}+\frac{\partial \hat{\mathbf{F}}_{V}}{\partial \eta} \\
& +\frac{\varepsilon_{E}^{(2)}}{J}\left[(\Delta \xi)^{2} \frac{\partial^{2}(J \hat{\mathbf{Q}})}{\partial \xi^{2}}+(\Delta \eta)^{2} \frac{\partial^{2}(J \hat{\mathbf{Q}})}{\partial \eta^{2}}\right] \\
& -\frac{\varepsilon_{E}^{(4)}}{J}\left[(\Delta \xi)^{4} \frac{\partial^{4}(J \hat{\mathbf{Q}})}{\partial \xi^{4}}+(\Delta \eta)^{4} \frac{\partial^{4}(J \hat{\mathbf{Q}})}{\partial \eta^{4}}\right]
\end{aligned}
\]

For cases run with artificial viscosity, therefore, the residual should include the explicit artificial viscosity terms. The implicit terms do not appear, since they difference \(\Delta \hat{Q}\), and in the steady form of the equations \(\Delta \hat{\mathbf{Q}}=0\). Since the explicit artificial viscosity terms are added to the source term for the first ADI sweep, they are automatically included in the residual.

Three measures of the residual are computed for each governing equation - the \(L_{2}\) norm of the residual, the average absolute value of the residual, and the maximum absolute value of the residual. In addition, the \((\xi, \eta)\) indices corresponding to the location of the maximum residual are saved. The \(L_{2}\) norm of the residual is defined as

\footnotetext{
32 See equation (8.5a) in Volume 1. For first-order time differencing, \(\theta_{2}=\theta_{3}=0\).
\({ }^{33}\) These equations represent the use of the constant coefficient artificial viscosity model. The nonlinear coefficient model is more complicated, but the same principle applies.
}
\[
\mathrm{R}_{L_{2}}=\left(\sum\left(\mathrm{R}_{i, j}\right)^{2}\right)^{1 / 2}
\]

In computing the residuals, the summations, maximums, and averages are over all interior grid points, plus points on spatially periodic boundaries.

For cases run with artificial viscosity, subroutine RESID is called from EXEC both before and after the artificial viscosity terms have been added to the equations. The residuals are thus computed both with and without the artificial viscosity terms. This may provide some estimate of the overall error in the solution introduced by the artificial viscosity. Convergence is determined by the residuals with the artificial viscosity terms included.

In addition to computing the residuals, subroutine RESID writes the convergence history file. The contents and format of this file are described in detail in Section 4.3 of Volume 2.

\section*{Remarks}
1. The Cray BLAS routines S.SRM2 and SASUM are used in computing the \(L_{2}\) norm of the residual and the average absolute value of the residual, respectively. The Cray search routine ISAMAX is used in computing the maximum absolute value of the residual.
2. The scratch array DCMMY, from the common block DLMMY1, is used to store the values of the residual at each grid point.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine REST (IOPT) } \\
\hline Called by & Calls & Purpose \\
\hline \begin{tabular}{l} 
INITC \\
MAIN
\end{tabular} & METS & Read and or write restart file. \\
\hline
\end{tabular}

\section*{Input When Reading the Restart File}
* GAMR
* hSTAG
* IHSTAG

IOPT
* ITURB
* NRQIN
* NRXIN

RGAS
Input When Writing the Restart File
E, KE
EL, KEL
IOPT
IT
* ITURB
* MACHR
* NRQOUT
* .NRXOUT
* N1, N2
* RER

RHO, U, V, W, ET
RHOL, UL, VL, WL, ETL
TAU
X, Y

\section*{Output When Reading the Restart File}

DXI, DETA
E, KE

Reference ratio of specific heats, \(\gamma_{r}\).
Stagnation enthalpy \(h_{T}\) used with constant stagnation enthalpy option.
Flag for constant stagnation enthalpy option.
Flag specifying I/O operation; 1 to read, 2 to write.
Flag for turbulent flow option.
Unit number for reading the restart flow field.
Unit number for reading the restart computational mesh.
Dimensionless gas constant \(R\).

Turbulent dissipation rate \(\varepsilon\) and kinetic energy \(k\) at time level \(n+1\).
Turbulent dissipation rate \(\varepsilon\) and kinetic energy \(k\) at time level \(n\).
Flag specifying I/O operation; 1 to read, 2 to write.
Current time step number \(n\).
Flag for turbulent flow option.
Reference Mach number \(M\),
Unit number for writing the restart flow field.
Unit number for writing the restart computational mesh.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Reference Reynolds number \(R e_{r}\).
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level \(n+1\).
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level \(n\).
Computational time \(\tau\) at time level \(n+1\).
Cartesian coordinates \(x\) and \(y\), or cylindrical coordinates \(x\) and \(r\).

Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
Turbulent dissipation rate \(\varepsilon\) and kinetic energy \(k\) at time level ITBEG.

EL, KEL
ITBEG
MACHR
\(\mathrm{N} 1, \mathrm{~N} 2\)
RER
RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL
T, TL
TAU
X, Y

Turbulent dissipation rate \(\varepsilon\) and kinetic energy \(k\) at time level ITBEG-1.
The time level \(n\) at the beginning of the new run.
Reference Mach number \(M_{r}\).
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Reference Reynolds number \(R e_{r}\).
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level ITBEG.

Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level ITBEG-1.
Static temperature \(T\) at time levels ITBEG and ITBEG -1 .
Computational time \(\tau\) at time level ITBEG.
Cartesian coordinates \(x\) and \(y\), or cylindrical coordinates \(x\) and \(r\).

\section*{Output When Writing the Restart File}

None.

\section*{Description}

Subroutine REST reads and/or writes the restart files. Restarting a calculation requires two unformatted files - one containing the computational mesh and one containing the flow field.

If subroutine REST is being used to read the restart files, the computational mesh is first read from unit NRXIN. The grid increments \(\Delta \xi\) and \(\Delta \eta\) are then set, and subroutine METS is called to compute the metric coefficients and the Jacobian of the grid transformation.

The flow field file is read next, from unit NRQIN. It normally contains the results at the last two time levels that were computed during the previous run. If only one level is present in the file, however, the results at level \(n-1\) are set equal to those at level \(n\). If the previous run used the two-equation turbulence model, the turbulence variables are also read from the file. The beginning time level for the time marching loop is set equal to the level stored in the restart file. The flow field variables in the restart file are the conservation variables \(\mathbf{Q}\), nondimensionalized as in the plotting program PLOT3D. \({ }^{34}\) They therefore must be converted into the primitive variables used in Proteus. The temperature is then computed from the perfect gas equation of state, with \(c_{p}\) and \(c_{\nu}\) defined using the input reference conditions.

When writing the restart files, the file containing the computational mesh is written onto unit NRXOUT. The primitive flow variables are then redefined as conservation variables and nondimensionalized as in PLOT3D. They are then written onto unit NRQOUT. If the current run used the two-equation turbulence model, the turbulence variables are also written into the file.

\section*{Remarks}
1. If, in the input namelist RSTRT, NRXOUT and NRQOUT are set equal to NRXIN and NRQIN, respectively, the output restart files will overwrite the input restart files.
2. Except for the turbulence variables and the variables at time level \(n-1\), the restart files have the same format as the XYZ and Q files created using the IPLOT \(=2\) and 3 options. These restart files can thus also be used as XYZ and Q files for the PLOT3D plotting program. Since \(\mathrm{N} 3=1\), the \(n-1\) level will not be read by PLOT3D.

\footnotetext{
34 See Sections 4.2.3 and 4.4 of Volume 2.
}
3. The temperature \(T\) is computed using the equation of state, which contains a specific heat coefficient (either \(c_{p}\) or \(c_{v}\), depending on whether the stagnation enthalpy is assumed constant or not.) In subroutine REST, a constant value of specific heat is used, consistent with the reference temperature \(T_{r}\). If the user specified constant specific heat (i.e., a value for \(\gamma\), was read in), this is not a problem. However, if the temperature-dependent specific heat option is being used (i.e., a value for \(\gamma_{\text {e }}\) was not read in), the equation of state and the empirical equation for specific heat are coupled. For this reason, in INITC (the routine that calls REST), \(T\) is recomputed by calling EQSTAT after the specific heats have been computed in FTEMP. Ideally, this coupling would be handled by iteration between FTEMP and EQSTAT. This is not currently done in Proteus, however.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine ROBTS (NP,A,B,XP) } \\
\hline Called by & Calls & Purpose \\
\hline PAK & & Pack points along a line using Roberts transformation. \\
\hline
\end{tabular}

\section*{Input}

A

B

NP

Parameter \(\alpha\) in Roberts transformation formula specifying location of packing: 0.0 to pack near \(X P=1\) only, 1.0 to pack near \(\mathrm{XP}=0\) only, and 0.5 to pack equally at \(\mathrm{XP}=0\) and 1.0 .
Parameter \(\beta\) in Roberts transformation formula specifying amount of packing. A value approaching 1.0 from above gives denser packing.
Number of grid points along the line.

\section*{Output}

XP
Coordinates of packed grid points along the line.

\section*{Description}

Subroutine ROBTS packs points along a line of length one using a transformation due to Roberts (1971). The basic transformation is given by
\[
x_{P}=\frac{(\beta+2 \alpha) \beta_{r}^{\beta_{x}}-\beta+2 \alpha}{(2 \alpha+1)\left(1+\beta_{r}^{\beta_{x}}\right)}
\]
where
\[
\begin{gathered}
\beta_{r}=\frac{\beta+1}{\beta-1} \\
\beta_{x}=\frac{x_{U P}-\alpha}{1-\alpha}
\end{gathered}
\]
and \(x_{P}\) and \(x_{U P}\) are the packed and unpacked (i.e., evenly spaced) coordinates along the line. The parameter \(\alpha\) determines the packing location. For \(\alpha=0\), the points will be packed only near \(x_{P}=1\), and for \(\alpha=1 / 2\) the points will be packed equally near \(x_{P}=0\) and \(x_{P}=1\). The packing parameter \(\beta\) determines the amount of packing. It is a number greater than 1 , but generally 1.1 or below. The closer \(\beta\) is to 1 , the tighter the packing will be.

It may seem logical to set \(\alpha=1\) to pack points near \(x_{P}=0\). With the basic transformation, however, this doesn't work. In Proteus we get around this problem by replacing \(\alpha\) in the above transformation with \(\alpha_{w}\), where \(\alpha_{w}=\alpha\) if \(\alpha=0\) or \(1 / 2\), and \(\alpha_{w}=0\) if \(\alpha=1\). If \(\alpha=0\) or \(1 / 2\), no further action is necessary. If \(\alpha=1\), however, we must invert the resulting \(x_{P}\) values and re-order the indices. I.e., for \(i=1\) to \(N P\), we set
\[
\left(x_{P l}\right)_{i}=1-\left(x_{P}\right)_{i}
\]

After this operation, the array \(x_{P l}\) will run from 1 to 0 , packed near 1 . To re-order the indices, for \(i=1\) to NP we set
\[
\left(x_{P}\right)_{N P-i+1}=\left(x_{P I}\right)_{i}
\]

After this operation, \(x_{P}\) will run from 0 to 1 , packed near 0 .

Finally, to ensure round-off error doesn't affect the endpoint values, we set \(\left(x_{P}\right)_{1}=0\) and \(\left(x_{P}\right)_{N P}=1\).

\section*{Remarks}
1. The namelist input variable \(\operatorname{SQ}(\operatorname{IDIR}, 1\) ), which is used to specify the packing location in direction IDIR, is actually equal to \(1-\alpha\). Therefore, setting \(S Q(\operatorname{IDIR}, 1)=0\) results in packing near the \(\varsigma\) or \(\eta=0\) boundary, and SQ(IDIR, 1 ) \(=1\) results in packing near the \(\bar{\zeta}\) or \(\eta=1\) boundary.

Function SASLM (N,V,INC)
\begin{tabular}{|l|l|l|}
\hline Called by & Calls & Purpose \\
\hline RESID & & Compute the sum of the absolute values of the elements of a vector. \\
\hline
\end{tabular}

\section*{Input}

N
V
INC

Number of elements in the vector to be summed.
Vector to be summed.
Skip distance between elements of V. For contiguous elements, \(I N C=1\).

\section*{Output}

SASUM
Sum of the absolute values of the elements of V .

\section*{Description}

Function SASUM computes the sum of the absolute values of the elements of a vector. For a onedimensional vector, the use of SASUM is straightforward. For example,
\[
\operatorname{sasum}(n p, v, 1)=\sum_{i=1}^{n p} V_{i}
\]

A starting location can be specified, as in
\[
\operatorname{sasum}(n p-4, v(5), 1)=\sum_{i=5}^{\mathrm{np}} V_{i}
\]

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimensioned KDIM1 by NDIM2, then
\[
\operatorname{sasum}(n d i m 1 * n d i m 2, a, 1)=\sum_{i=1}^{\text {ndim1 }} \sum_{j=1}^{\text {ndim } 2} A_{i, j}
\]

One dimension at a time can also be summed. For example,
\[
\operatorname{sasum}(n d i m l, a(1,5), 1)=\sum_{i=1}^{\text {ndiml }} A_{i, 5}
\]

Similarly, by specifying a skip increment,
\[
\operatorname{sasum}(n \operatorname{dim} 2, a(5,1), \operatorname{ndiml})=\sum_{j=1}^{\text {ndim2 }} A_{5, j}
\]

\section*{Remarks}
1. SASUM is a Cray BLAS (Basic Linear Algebra Subprograms) routine (Cray Research, Inc., 1989b).

Subroutine SGEFA (A,LDA,N,IPVT,INFO)
\begin{tabular}{|l|l|l|}
\hline Called by & Calls & Purpose \\
\hline \begin{tabular}{l} 
BCELIM \\
BVUP
\end{tabular} & ISA.MAX & Factor a matrix using Gaussian elimination. \\
\hline
\end{tabular}

\section*{Input}

A

LDA
N

\section*{Output}

A

IPVT
INFO

An array containing the matrix \(A\) to be factored, dimensioned as A(LDA,N).
The leading dimension of the array A .
The order of the matrix \(A\).

An upper triangular matrix and the multipliers which were used to obtain it. The factorization can be written as \(\mathbf{A}=\mathbf{L U}\), where \(\mathbf{L}\) is a product of permutation and unit lower triangular matrices, and \(\mathbf{U}\) is upper triangular.
A vector of length N containing pivot indices.
An error flag: 0 for normal operation, \(k\) if \(\mathrm{U}_{k k}=0\).

\section*{Description}

Subroutine SGEFA is used in combination with subroutine SGESL to solve the matrix equation \(\mathbf{A x}=\mathbf{B}\). If the Fortran arrays \(\mathbf{A}\) and \(\mathbf{B}\) represent \(\mathbf{A}\) and \(\mathbf{B}\), where \(\mathbf{A}\) is a square N by N matrix and \(\mathbf{B}\) is a matrix (or vector) with NCOL columns, and if the leading dimension of the Fortran array A is LDA, then the Fortran sequence
```

call sgefa(a,lda,n,ipvt,info)
do 10 j = 1,ncol
call sgesl (a,lda,n,ipvt,b(1,j),0)
continue

```
computes \(\mathbf{A}^{-1} \mathbf{B}\), storing the result in \(\mathbf{B}\).

\section*{Remarks}
1. SGEFA is a Cray LINPACK routine (Cray Research, Inc., 1989b; Dongarra, Moler, Bunch, and Stewart, 1979).
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine SGESL (A,LDA,N,IPVT,B,JOB) } \\
\hline Called by & Calls & Purpose \\
\hline \begin{tabular}{l} 
BCELIM \\
BVUP
\end{tabular} & & \begin{tabular}{l} 
Solve the matrix equation \(\mathbf{A x}=\mathbf{B}\) or \(\boldsymbol{A}^{\top} \mathbf{x}=\mathbf{B}\) using the factors com- \\
puted by SGEFA.
\end{tabular} \\
\hline
\end{tabular}

Input
A
The two-dimensional output array A from SGEFA containing the factorization of matrix \(\mathbf{A}\).

B
IPVT
The right-hand side vector \(B\).

JOB
The output array IPVT of pivot indices from SGEFA.
Flag specifying type of matrix equation: 0 to solve \(\mathbf{A x}=\mathbf{B}\); nonzero to solve \(\mathbf{A}^{\mathrm{T}} \mathbf{x}=\mathbf{B}\).

LDA
N
The leading dimension of the array A .
The order of the matrix \(A\).

\section*{Output}

B
\[
\text { The solution vector } \mathbf{x} \text {. }
\]

\section*{Description}

Subroutine SGESL is used in combination with subroutine SGEFA to solve the matrix equation Ax = B. See the description of subroutine SGEFA for details.

\section*{Remarks}
1. SGESL is a Cray LINPACK routine (Cray Research, Inc., 1989b; Dongarra, Moler, Bunch, and Stewart, 1979).

Function S.VRM2 (N,V,INC)
\begin{tabular}{|l|l|l|}
\hline Called by & Calls & Purpose \\
\hline RESID & & Compute the \(L_{2}\) norm of a vector. \\
\hline
\end{tabular}

\section*{Input}

N
V
INC

The number of elements in the vector V .
The vector whose norm is to be computed.
Skip distance between elements of V. For contiguous elements, \(\mathrm{I} . \mathrm{NC}=1\).

\section*{Output}

SNRM2
The \(L_{2}\) norm of the vector V .

\section*{Description}

Function SNRM2 computes the \(L_{2}\) norm of a vector. For a one-dimensional vector, the use of SNR.M2 is straightforward. For example,
\[
\operatorname{snrm} 2(n p, v, 1)=\left(\sum_{i=1}^{\mathrm{np}} V_{i}^{2}\right)^{1 / 2}
\]

A starting location can be specified, as in
\[
\operatorname{snrm} 2(n p-4, v(5), 1)=\left(\sum_{i=5}^{n p} V_{i}^{2}\right)^{1 / 2}
\]

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimensioned NDIM1 by NDIM2, then
\[
\operatorname{snrm} 2(n d i m 1 * n d i m 2, a, 1)=\left(\sum_{i=1}^{\text {ndim1 }} \sum_{j=1}^{\text {ndim } 2} A_{i, j}^{2}\right)^{1 / 2}
\]

One dimension at a time can also be summed. For example,
\[
\operatorname{snrm} 2(\operatorname{ndiml}, a(1,5), 1)=\left(\sum_{i=1}^{\text {ndim } 1} A_{i, 5}^{2}\right)^{1 / 2}
\]

Similarly, by specifying a skip increment,
\[
\operatorname{snrm} 2(\operatorname{ndim} 2, a(5,1), \operatorname{ndim} 1)=\left(\sum_{j=1}^{\text {ndim2 }} A_{5, j}^{2}\right)^{1 / 2}
\]

\section*{Remarks}
1. SNR.M2 is a Cray BLAS (Basic Linear Algebra Subprograms) routine (Cray Research, Inc., 1989b).
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Subroutine TBC } \\
\hline Called by & Calls & Purpose \\
\hline MAIN & & Set time-dependent boundary condition values. \\
\hline
\end{tabular}

\section*{Input}
* GTBC1, GTBC2

IT
ITBEG
ITEND
* JBCl, JBC2
* JTBC1, JTBC2

NBC
NEQ
* NOUT
* NTBC
* NTBCA
* N1, N2

\section*{Output}

FBC1, FBC2
\(\mathrm{GBC1}, \mathrm{GBC} 2\)

Time-dependent surface mean flow boundary condition values for the \(\xi\) and \(\eta\) directions.
Current time step number \(n\).
The time level \(n\) at the beginning of a run.
Final time step number.
Surface mean flow boundary condition types for the \(\zeta\) and \(\eta\) directions.
Flags for type of time dependency for mean flow boundary conditions in the \(\xi\) and \(\eta\) directions.
Dimensioning parameter specifying number of boundary conditions per equation.
Number of coupled equations being solved, \(N_{e q}\).
Unit number for standard output.
Number of values in tables for general unsteady boundary conditions.
Time levels at which general unsteady boundary conditions are specified.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\zeta\) and \(\eta\) directions.

Point-by-point mean flow boundary condition values for the \(\xi\) and \(\eta\) directions.
Surface mean flow boundary condition values for the \(\xi\) and \(\eta\) directions.

\section*{Description}

Subroutine TBC sets time-dependent mean flow boundary condition values. Two types of time dependency are allowed - general and periodic.

\section*{General Time-Dependent Boundary Conditions}

General time-dependent boundary conditions are set using linear interpolation on an input table of boundary condition values vs. time level. Thus, the boundary condition value is
\[
g^{n+1}=g_{t}^{i}+\frac{n+1-n_{t}^{i}}{n_{t}^{i+1}-n_{t}^{i}}\left(g_{t}^{i+1}-g_{t}^{i}\right)
\]

Here \(n\) is the current known time level in the time marching scheme, \(g_{t}\) and \(n_{t}\) represent the input table of boundary condition values vs. time level, and \(i\) is the index in the table for which
\[
n_{t}^{i} \leq n+1<n_{t}^{i+1}
\]

If \(n+1<n_{t}^{1}\), then \(g^{n+1}\) is set equal to the first value in the table, \(g_{t}^{1}\). Similarly, if \(n+1>n_{f}^{N}\), where \(N\) is the index of the last entry in the table, then \(g^{n+1}\) is set equal to the last value in the table, \(g^{N}\).

In Fortran, \(g=\mathrm{GBCl}\) or \(\mathrm{GBC} 2, g_{t}=\mathrm{GTBCl}\) or \(\mathrm{GTBC} 2, n_{t}=\mathrm{NTBCA}\), and \(N=\mathrm{NTBC}\).

\section*{Time-Periodic Boundary Conditions}

Time-periodic boundary conditions (not to be confused with spatially periodic boundary conditions) are of the form
\[
g^{n+1}=g_{t}^{1}+g_{t}^{2} \sin \left[g_{t}^{3}(n+1)+g_{t}^{4}\right]
\]
where \(g_{!}^{1}\) through \(g_{t}^{4}\) are given by the first four elements of GTBC1 or GTBC2.

\section*{Remarks}
1. An error message is generated and execution is stopped if an invalid type of unsteadiness is requested for the boundary values.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine TIMSTP } \\
\hline Called by & Calls & Purpose \\
\hline MAIN & ISAMAX & Set computational time step. \\
\hline
\end{tabular}

\section*{Input}
* CFL
* CFLMIN, CFLMAX

CHGMAX
* CHG1, CHG2

CP, CV
* DT

DTAU
* DTF1, DTF2
* DTMIN, DTMAX

DXI, DETA
ETAX, ETAY, ETAT
* IDTAU

IT
ITSEQ
MU
* NDTCYC

NEQ
* NOUT
* \(\mathrm{N} 1, \mathrm{~N} 2\)
* RER

RGAS
RHO, U, V
T
XIX, XIY, XIT

CFL number in IDTAU \(=1,2,5,6,8\), and 9 options.
Minimum and maximum CFL numbers allowed in IDTAU \(=2\) and 6 options.

Maximum change in absolute value of the dependent variables over previous time step (or NITAVG-1 time steps if \(\operatorname{ICTEST}=2), \Delta \mathbf{Q}_{\text {max }}\).
Minimum and maximum change, in absolute value, that is allowed in any dependent variable before increasing or decreasing \(\Delta \tau\) in IDTAU \(=2,4\), and 6 options.
Specific heats \(c_{p}\) and \(c_{\nu}\) at time level \(n\).
Time step \(\Delta \tau\) in IDTAU \(=3\) and 4 options.
Old computational time step \(\Delta \tau\).
Factors multiplying or dividing \(\Delta \tau\) if solution changes too slowly or quickly in IDTAU \(=2,4\), and 6 options.
Minimum and maximum \(\Delta \tau\) allowed in IDTAU \(=4\) option, or used in IDTAU \(=7\) option.
Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
Metric coefficients \(\eta_{x}, \eta_{y}\) (or \(\eta_{r}\) if axisymmetric), and \(\eta_{\text {. }}\).
Flag for time step selection method.
Current time step number \(n\).
Current time step sequence number.
Effective coefficient of viscosity \(\mu\) at time level \(n\).
Number of time steps per cycle for IDTAU \(=7\) option.
Number of coupled equations being solved, \(N_{e q}\).
Unit number for standard output.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Reference Reynolds number Rer.
Gas constant \(R\).
Static density \(\rho\), and velocities \(u\) and \(v\), at time level \(n\).
Static temperature \(T\) at time level \(n\).
Metric coefficients \(\xi_{x}, \xi_{y}\) (or \(\xi_{r}\) if axisymmetric), and \(\xi_{t}\).

\section*{Output}

CFL
DTAU

New CFL number in IDTAU \(=2\) and 6 options.
New computational time step \(\Delta \tau\).

\section*{Description}

Subroutine TIMSTP computes the time step size \(\Delta \tau\). The following sections describe the various methods currently available for setting and or modifying \(\Delta \tau\).

IDTAU \(=1\)
This option sets a global (i.e., constant in space) time step \(\Delta \tau\) equal to the minimum of the values at each grid point computed from the input parameter CFL(ITSEQ). I.e.,
\[
\Delta \tau=(\mathrm{CFL}) \min _{i, j}\left(\Delta \tau_{c f l}\right)
\]
where \(\Delta \tau_{c f t}\) is the inviscid CFL limit, given in generalized two-dimensional coordinates as (Shang, 1984).
\[
\Delta \tau_{c f l}=\left\{\left|\frac{U}{\Delta \xi}\right|+\left|\frac{V}{\Delta \eta}\right|+a\left[\left(\frac{\xi_{x}}{\Delta \xi}+\frac{\eta_{x}}{\Delta \eta}\right)^{2}+\left(\frac{\xi_{y}}{\Delta \xi}+\frac{\eta_{y}}{\Delta \eta}\right)^{2}\right]^{1 / 2}\right\}^{-1}
\]

Here \(U=\xi_{t}+\xi_{x} u+\xi_{y} v\) and \(V=\eta_{t}+\eta_{x} u+\eta_{y} v\) are the contravariant velocities without metric normalization, and \(a=\sqrt{\gamma R T}\) is the speed of sound.

\section*{\(I D T A U=2\)}

For the first time step, this option is identical to the IDTAU \(=1\) option. After the first time step, however, CFL is modified to keep \(\Delta \mathbf{Q}_{\text {max }}\), the maximum change in absolute value of the dependent variables, within user-specified limits. The rules used to increase or decrease CFL may be summarized as follows:
\[
\begin{aligned}
\Delta Q_{\max }<\mathrm{CHG} 1 & \Rightarrow \mathrm{CFL}=\min [(\mathrm{DTF} 1)(\mathrm{CFL}), \mathrm{CFLMAX}] \\
\Delta Q_{\max }>\mathrm{CHG} 2 & \Rightarrow \mathrm{CFL}=\max [C F L / \mathrm{DTF} 2, \mathrm{CFLMI}] \\
\Delta Q_{\max }>0.15 & \Rightarrow \mathrm{CFL}=\mathrm{CFL} / 2
\end{aligned}
\]

The time step \(\Delta \tau\) is then set using the same formulas as in the IDTAU \(=1\) option.

\section*{\(I D T A U=3\)}

This option sets a global (i.e., constant in space) time step \(\Delta \tau\) equal to the input parameter DT(ITSEQ).

\section*{\(\underline{I D T A U}=4\)}

For the first time step, this option is identical to the IDTAU \(=3\) option. After the first time step, however, \(\Delta \tau\) is modified to keep \(\Delta Q_{\text {max }}\), the maximum change in absolute value of the dependent variables, within user-specified limits. The rules used to increase or decrease \(\Delta \tau\) may be summarized as follows:
\[
\begin{aligned}
\Delta \mathrm{Q}_{\max }<\mathrm{CHGl} & \Rightarrow \Delta \tau=\min [(\mathrm{DTF} 1) \Delta \tau, \mathrm{DTMAX}] \\
\Delta \mathrm{Q}_{\max }>\mathrm{CHG} 2 & \Rightarrow \Delta \tau=\max [\Delta \tau /(\mathrm{DTF} 2), \text { DTMIN }] \\
\Delta \mathrm{Q}_{\max }>0.15 & \Rightarrow \Delta \tau=\Delta \tau / 2
\end{aligned}
\]

\section*{\(\underline{I D T A U}=5\)}

This option sets a local (i.e., varying in space) time step \(\Delta \tau\) computed at each grid point from the input parameter CFL(ITSEQ). l.e., at each grid point,
\[
\Delta \tau=(\mathrm{CFL}) \Delta \tau_{c f}
\]
where \(\Delta \tau_{c f}\) is given above in the description of the IDTAU \(=1\) option.

\section*{\(\underline{I D T A U}=6\)}

For the first time step, this option is identical to the IDTAU \(=5\) option. After the first time step, however, CFL is modified to keep \(\Delta \mathbf{Q}_{\text {max }}\), the maximum change in absolute value of the dependent variables, within user-specified limits. The rules used to increase or decrease CFL are the same as in the IDTAU \(=2\) option.

\section*{IDTAU \(=7\)}

This option sets a global (i.e., constant in space) time step \(\Delta \tau\) with logarithmic cycling. The formula used is
\[
\Delta \tau=\Delta \tau_{\min }\left(\frac{\Delta \tau_{\max }}{\Delta \tau_{\min }}\right)^{N /\left(N_{c y c}-1\right)}
\]
where \(N=\bmod \left(n-1, N_{c y c}\right)\) and \(n\) is the current known time level. The time step \(\Delta \tau\) is thus cycled repeatedly between \(\Delta \tau_{\min }\) and \(\Delta \tau_{\max }\) every \(N_{c y c}\) time steps. The values of \(\Delta \tau_{\min }, \Delta \tau_{\text {max }}\), and \(N_{c y c}\) are given by the input parameters DTMIN, DTMAX, and NDTCYC.

IDTAU \(=8\)
This option sets a local (i.e., varying in space) time step \(\Delta \tau\) computed at each grid point using the procedure of Knight and Choi (1989). The inviscid CFL limit \(\Delta \tau_{c / f}\) is first computed separately for each computational coordinate direction. Thus, at each grid point,
\[
\begin{aligned}
& \left(\Delta \tau_{c f}\right)_{\xi}=\left[\left|\frac{U}{\Delta \xi}\right|+a \frac{\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}}{\Delta \xi}\right]^{-1} \\
& \left(\Delta \tau_{c f}\right)_{\eta}=\left[\left|\frac{V}{\Delta \eta}\right|+a \frac{\sqrt{\eta_{x}^{2}+\eta_{y}^{2}}}{\Delta \eta}\right]^{-1}
\end{aligned}
\]

Here \(U=\xi_{t}+\xi_{x} u+\xi_{y} v\) and \(V=\eta_{t}+\eta_{x} u+\eta_{y} v\) are the contravariant velocities without metric normalization, and \(a=\sqrt{\gamma R T}\) is the speed of sound.

A preliminary value of \(\Delta \tau\) is then defined at each grid point using the input parameter CFL(ITSEQ).
\[
\left.\Delta \tau_{0}=(\mathrm{CFL}) \min \left[\left(\Delta \tau_{c f}\right)\right)_{\xi},\left(\Delta \tau_{c f}\right)_{\eta}\right]
\]

The final value of \(\Delta \tau\) is then defined at each grid point as
\[
\Delta \tau=\max \left[\Delta \tau_{0},\left(\Delta \tau_{c f}\right)_{\xi}\right]
\]

Knight and Choi found that using this definition for \(\Delta \tau\), rather than simply setting \(\Delta \tau=\Delta \tau_{0}\), resulted in faster convergence for problems with refined grid regions. This formulation assumes that flow is generally in the \(\xi\) direction.
\(\underline{I D T A U}=9\)
This option is similar to the IDTAU \(=8\) option. The only difference is a viscous correction added to the definitions of the inviscid CFL limits, similar to that used by Cooper (1987). The inviscid CFL limits are now defined at each grid point as:
\[
\begin{aligned}
& \left(\Delta \tau_{c f l}\right)_{\xi}=\left[\left|\frac{U}{\Delta \xi}\right|+a \frac{\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}}{\Delta \xi}+\frac{2}{R e_{r}} \frac{\mu}{\rho} \frac{\xi_{x}^{2}+\xi_{y}^{2}}{(\Delta \xi)^{2}}\right]^{-1} \\
& \left(\Delta \tau_{c f l}\right)_{\eta}=\left[\left|\frac{V}{\Delta \eta}\right|+a \frac{\sqrt{\eta_{x}^{2}+\eta_{y}^{2}}}{\Delta \eta}+\frac{2}{R e_{r}} \frac{\mu}{\rho} \frac{\eta_{x}^{2}+\eta_{y}^{2}}{(\Delta \eta)^{2}}\right]^{-1}
\end{aligned}
\]

The rest of the procedure for computing \(\Delta \tau\) is the same as in the IDTAU \(=8\) option.

\section*{Remarks}
1. In \(\Delta \mathbf{Q}_{\text {max }}\), used in the IDTAU \(=2,4\), and 6 options, the change in \(E_{T}\) has been divided by \(R /\left(y_{r}-1\right)+1 / 2\). This is equivalent to dividing the dimensional value \(E_{T}\) by
\[
E_{T_{r}}=\frac{\rho_{r} \bar{R} T_{r}}{y_{r}-1}+\frac{\rho_{r} u_{r}^{2}}{2}
\]

This makes the change in total energy the same order of magnitude as the other conservation variables.
2. An error message is generated and execution is stopped if an illegal time step selection option is requested.
3. A warning message is printed with the IDTAU \(=2,4\), and 6 options if \(\Delta \tau\) or the CFL number is cut in half because \(\Delta Q_{\text {max }}>0.15\).
4. The Cray search routine ISAMAX is used in computing the maximum value of \(\Delta \mathbf{Q}_{\max }\) for all the equations.

\section*{Subroutine TREMAIN (CPUREM)}
\begin{tabular}{|l|l|l|}
\hline Called by & Calls & Purpose \\
\hline MAIN & & Get CPU time remaining for the job. \\
\hline
\end{tabular}

\section*{Input}

None.

\section*{Output}

CPUREM
Amount of CPU time remaining, in seconds.

\section*{Description}

Subroutine TREMAIN computes the amount of CPU time remaining for the current job, in seconds.

\section*{Remarks}
1. TREMAIN is a Cray Fortran library routine (Cray Research, Inc., 1989a).

Subroutine TURBBL
\begin{tabular}{|l|l|l|}
\hline Called by & Calls & Purpose \\
\hline INITC & BLIN1 & Manage computation of turbulence parameters using Baldwin-Lomax \\
KEINIT & BLIN2 & algebraic model. \\
MAI: & BLOUT1 & \\
& BLOUT2 & \\
& VORTEX & \\
\hline
\end{tabular}

\section*{Input}

CP
* ITETA, ITXI
* \(\mathrm{KBCl}, \mathrm{KBC} 2\)
* LWALL1, LWALL2

LWSET

MU, LA, KT
* NOUT
* N1, N2

PRR
* PRT
* RER
* REXT1, REXT2

RHO, U, V, W
X, Y

\section*{Output}

LWALL1, LWALL2

MU, LA, KT

MUT

Specific heat \(c_{p}\).
Flags for computation of turbulent viscosity along constant \(\eta\) and \(\xi\) lines.
Boundary types for the \(\xi\) and \(\eta\) directions.
Flags specifying wall locations for \(\xi\) and \(\eta\) boundaries.
Flags specifying how wall locations are to be determined for the turbulence model; 0 if wall locations are to be found automatically by searching for boundary points where the velocity is zero, 1 if input using the LWALL parameters, 2 if input using the IWALL parameters.
Laminar coefficient of viscosity \(\mu_{k}\), laminar second coefficient of viscosity \(\lambda_{l}\), and laminar coefficient of thermal conductivity \(k_{l}\).
Unit number for standard output.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Reference Prandtl number \(P_{r}\).
Turbulent Prandtl number \(P r_{i}\), or, if \(P R T \leq 0\), a flag indicating the use of a variable turbulent Prandtl number.
Reference Reynolds number \(R e_{r}\).
Transition Reynolds numbers \(R e_{x_{t r}}\) in the \(\xi\) and \(\eta\) directions.
Static density \(\rho\), and velocities \(u, v\), and \(w\).
Cartesian coordinates \(x\) and \(y\), or cylindrical coordinates \(x\) and \(r\).

Flags specifying wall locations for \(\xi\) and \(\eta\) boundaries, if not set in input.
Effective coefficient of viscosity \(\mu\), effective second coefficient of viscosity \(\lambda\), and effective coefficient of thermal conductivity \(k\).
Turbulent viscosity coefficient \(\mu_{r}\).

\section*{Description}

Subroutine TURBBL manages the computation of the effective coefficient of viscosity, second coefficient of viscosity, and coefficient of thermal conductivity using the algebraic eddy viscosity model of Baldwin and Lomax (1978). It is called from MAIN during each step from time level \(n\) to \(n+1\), but after the governing flow equations have been solved. The Fortran variables RHO, U, etc., are thus at the \(n+1\)
level. The effective viscosity coefficient to be computed will therefore also be at the \(n+1\) level. This, of course, becomes the known \(n\) level for the next time step.

The steps involved in computing the effective coefficients are as follows:
1. Initialize the arrays for storing the turbulent viscosity \(\mu_{t}\) on constant \(\xi\) and \(\eta\) lines to zero.
2. Call VORTEX to compute \(|\vec{\Omega}|\), the magnitude of the total vorticity vector.
3. At each \(\xi\) location, compute \(\mu_{t}\) due to walls at \(\eta=0\) and/or \(\eta=1\), or due to a free turbulent flow in the \(\xi\) direction, using steps \(3 \mathrm{a}-3 \mathrm{c}\). The result will be stored in the Fortran array MUT. If bypassing the calculation on constant \(\xi\) lines, skip to step 4 to compute \(\mu_{\text {: }}\) on constant \(\eta\) lines.
3a. Determine wall locations by checking for zero velocity at the \(\eta\) boundaries, unless wall locations are user-specified via the input LWALL or IWALL parameters, or unless boundary types are specified using the KBC parameters.
3b. Call BLOUT1 to compute \(\left(\mu_{t}\right)_{\text {outer, }}\), at the current \(\xi\) location, for \(\eta=0\) to 1 .
3c. Call BLIN1 to compute \(\left(\mu_{\text {}}\right)_{\text {onere }}\), at the current \(\xi\) location, within the inner region for a solid wall at \(\eta=0\) and/or \(\eta=1\).
4. At each \(\eta\) location, compute \(\mu_{\mathrm{r}}\) due to walls at \(\xi=0\) and/or \(\xi=1\), or due to a free turbulent flow in the \(\eta\) direction, using steps \(4 a-4 c\). The result will be stored in the Fortran array DUMMY. If bypassing the calculation on constant \(\eta\) lines, skip to step 5 .
4a. Determine wall locations by checking for zero velocity at the \(\xi\) boundaries, unless wall locations are user-specified via the input LWALL or IWALL parameters, or unless boundary types are specified using the KBC parameters.
4b. Call BLOUT2 to compute \(\left(\mu_{r}\right)_{\text {outerer }}\), at the current \(\eta\) location, for \(\xi=0\) to 1 .
4c. Call BLIN2 to compute \(\left(\mu_{\mathrm{r}}\right)_{\text {inner }}\), at the current \(\eta\) location, within the inner region for a solid wall at \(\xi=0\) and/or \(\xi=1\).
5. If the input is such that the computation of \(\mu_{r}\) is bypassed in both directions, write an error message and stop.
6. If \(\mu_{t}\) is being computed on constant \(\xi\) lines only, then MUT \(=\mu_{t}\), so skip to sten 9 .
7. If \(\mu_{t}\) is being computed on constant \(\eta\) lines only, then \(\operatorname{DUMMY}=\mu_{t}\), so set MUT \(=\) DUMMY and skip to step 9.
8. If \(\mu_{\mathrm{t}}\) is being computed both on constant \(\xi\) lines and constant \(\eta\) lines, compute a single \(\mu_{t}\) value at each grid point using the averaging formula presented in equation (9.13) of Volume 1.
9. If specified in the input, modify \(\mu_{t}\) to account for laminar-turbulent transition using a model based on one given by Cebeci and Bradshaw (1984). This model is described in Section 9.1.4 of Volume 1.
10. Define the necessary effective coefficients as follows:
\[
\begin{aligned}
& \mu=\mu_{l}+\mu_{t} \\
& \lambda=\lambda_{l}+\lambda_{t} \\
& k=k_{t}+k_{t}
\end{aligned}
\]
where \(\lambda_{t}=-2 \mu_{t} / 3\), and \(k_{t}\) is computed using Reynold's analogy as
\[
k_{t}=\frac{\mu_{t} c_{p}}{P r_{t}} P r_{r}
\]

The turbulent Prandtl number is either a constant specified in the input, or a variable computed using equation (9.19) of Volume 1.

\section*{Remarks}
1. In the averaging formula used when \(\mu_{\mathrm{r}}\) is computed both on constant \(\xi\) lines and constant \(\eta\) lines, the Fortran variables F1 and F2 are
\[
\begin{aligned}
& \mathrm{F} 1=\frac{\left(y_{n}\right)_{2}}{\left[\left(y_{n}\right)_{1}^{2}+\left(y_{n}\right)_{2}^{2}\right]^{1 / 2}} \\
& \mathrm{~F} 2=\frac{\left(y_{n}\right)_{1}}{\left[\left(y_{n}\right)_{1}^{2}+\left(y_{n}\right)_{2}^{2}\right]^{1 / 2}}
\end{aligned}
\]

If \(\left(y_{n}\right)_{1}\) and \(\left(y_{n}\right)_{2}\) are both close to zero, F1 and F2 are set equal to \(1 / \sqrt{2}\), which is the limiting value in the above equations as \(\left(y_{n}\right)_{1}\) and \(\left(y_{n}\right)_{2}\) approach zero.
2. The exponent in the definition of \(\gamma_{t r}\) is limited to 20 .
3. In the Fortran equation for the effective thermal conductivity, the factor \(P R R=P r\), is necessary for proper nondimensionalization of \(k_{t}\).
4. The distance used in the formula for \(y_{t r}\) is a straight-line distance from one point to another. It would probably be better to compute a curvilinear distance along the coordinate line.
5. The scratch array DUMMY, from the common block DUMMY1, is used to store the value of the turbulent viscosity along constant \(\eta\) lines. The array is filled in subroutines BLIN2 and BLOLT2.
6. If ITXI and ITETA are both zero, indicating the turbulent viscosity computation is to be bypassed for both coordinate directions, an error message is generated and execution is stopped.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine TLRBCH } \\
\hline Called by & Calls & Purpose \\
\hline MAIN & \begin{tabular}{l} 
EXECT \\
PRODCT \\
YPLCSN
\end{tabular} & \begin{tabular}{l} 
Manage computation of turbulence parameters using the Chien \(k-\varepsilon\) \\
model.
\end{tabular} \\
\hline
\end{tabular}

\section*{Input}

\section*{CP}
* \(\mathrm{KBCl}, \mathrm{KBC} 2\)
* LWALL1, LWALL2

LWSET

MU, LA, KT

MUT
* NTKE
* N1, Ni2

PRR
* PRT
\[
\mathrm{U}, \mathrm{~V}, \mathrm{~W}
\]

\section*{Output}

LWALL1, LWALL2

MU, LA, KT

MUT

Specific heat \(c_{p}\).
Boundary types for the \(\xi\) and \(\eta\) directions.
Flags specifying wall locations for \(\xi\) and \(\eta\) boundaries.
Flags specifying how wall locations are to be determined for the turbulence model; 0 if wall locations are to be found automatically by searching for boundary points where the velocity is zero, 1 if input using the LWALL parameters, 2 if input using the IWALL parameters.
Laminar coefficient of viscosity \(\mu_{l}\), laminar second coefficient of viscosity \(\lambda_{l}\), and laminar coefficient of thermal conductivity \(k_{l}\).
Turbulent viscosity \(\mu_{r}\) at time level \(n\).
Number of \(k-\varepsilon\) iterations per mean flow iteration.
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Reference Prandtl number \(P r_{r}\).
Turbulent Prandtl number \(P r_{\text {: }}\), or, if \(P R T \leq 0\), a flag indicating the use of a variable turbulent Prandtl number.
Velocities \(u, v\), and \(w\) at time level \(n\).

Flags specifying wall locations for \(\xi\) and \(\eta\) boundaries, if not set in input.
Effective coefficient of viscosity \(\mu\), effective second coefficient of viscosity \(\lambda\), and effective coefficient of thermal conductivity \(k\).

Turbulent viscosity \(\mu_{r}\) at time level \(n\).

\section*{Description}

Subroutine TURBCH manages the computation of the effective coefficient of viscosity, second coefficient of viscosity, and coefficient of thermal conductivity using the low Reynolds number \(k-\varepsilon\) two-equation turbulence model of Chien (1982). The \(k-\varepsilon\) equations are uncoupled from the mean flow equations, lagged in time and solved separately. This allows maximum modularity in turbulence modeling.

For each step from time level \(n\) to \(n+1\), the mean flow equations are solved first, using a time step \(\Delta \tau\). The \(k-\varepsilon\) equations are then solved, using NTKE time steps with a time step size of TFACT( \(\Delta \tau)\).

The steps involved in computing the effective coefficients are as follows:
1. Determine wall locations by checking for zero velocity at the boundaries, unless wall locations are user-specified via the input LWALL or IWALL parameters, or unless boundary types are specified using the KBC parameters.
2. Call YPLLS.N to compute the minimum distance to the nearest solid wall and \(y^{+}\). To save storage, the minimum distance is returned in the Fortran variable DCMMY.
3. Call PRODCT to compute the production rate of turbulent kinetic energy. To save storage space, the production rate is returned in the Fortran variable VORT.
4. Call EXECT to advance the \(k-\varepsilon\) equations in time using a time step of TFACT \((\Delta \tau)\).
5. Repeat steps 3-4 NTKE times.
6. Define the necessary effective coefficients as follows:
\[
\begin{aligned}
& \mu=\mu_{l}+\mu_{t} \\
& \lambda=\lambda_{l}+\lambda_{t} \\
& k=k_{l}+k_{t}
\end{aligned}
\]
where \(\lambda_{t}=-2 \mu_{t} / 3\), and \(k_{t}\) is computed using Reynold's analogy as
\[
k_{t}=\frac{\mu_{t} c_{p}}{P r_{t}} P r_{r}
\]

The turbulent Prandtl number is either a constant specified in the input, or a variable computed using equation (9.19) of Volume 1.

\section*{Remarks}
1. The scratch array DUMMY, from the common block DUMMY1, is used to store the values of the minimum distance to the nearest wall. The array is filled in subroutine YPLUSN.
2. The Fortran array VORT, from the common block TURB1, is used to store the values of the production rate of turbulent kinetic energy. The array is filled in subroutine PRODCT.
3. For equal mean flow and \(k-\varepsilon\) time steps, use TFACT \(=1 /\) NTKE.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine LPDATE (S,NVD,NPTSD) } \\
\hline Called by & Calls & Purpose \\
\hline EXEC & & Lpdate flow variables after each ADI sweep. \\
\hline
\end{tabular}

\section*{Input}

IBASE, ISTEP
* IHSTAG
* ISWIRL

IV
JI
NPTS
NR, NRU, NRV, NRW, NET
IVD, NPTSD
RHO, U, V, W, ET

S

Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Flag for constant stagnation enthalpy option.
Flag for swirl in axisymmetric flow.
Index in the "vectorized" direction, \(i_{v}\).
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Number of grid points in the sweep direction, \(N\).
Array indices associated with the dependent variables \(\rho, \rho u, \rho v\), \(\rho w\), and \(E_{T}\).
Leading two dimensions for the array S .
Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at time level \(n\).

Computed solution subvector, \(\Delta \hat{\mathbf{Q}}\).

\section*{\(\underline{\text { Output }}\)}

RHOL, UL, VL, WL, ETL Static density \(\rho\), velocities \(u, v\), and \(w\), and total energy \(E_{T}\) at end of current ADI sweep.

\section*{Description}

Subroutine UPDATE computes the primitive flow variables from the dependent variables \(\Delta \hat{\mathbf{Q}}\) after each ADI sweep. For the first sweep the formulas are
\[
\begin{gathered}
\rho^{*}=\rho^{n}+J \Delta \hat{Q}_{1}^{*} \\
u^{*}=\frac{1}{\rho^{*}}\left(\rho^{n} u^{n}+J \Delta \hat{Q}_{2}^{*}\right) \\
v^{*}=\frac{1}{\rho^{*}}\left(\rho^{n} v^{n}+J \Delta \hat{Q}_{3}^{*}\right) \\
w^{*}=\frac{1}{\rho^{*}}\left(\rho^{n} w^{n}+J \Delta \hat{Q}_{4}^{*}\right) \\
E_{T}^{*}=E_{T}^{n}+J \Delta \hat{Q}_{5}^{*}
\end{gathered}
\]
where \(\Delta \hat{Q}_{1}\) through \(\Delta \hat{Q}_{5}\) are the dependent variables in delta form for the five governing equations. \({ }^{35}\) For the second ADI sweep, the superscript * should be changed to \(n+1\) on \(\rho, u, v, w\), and \(E_{T}\), and to \(n\) on \(\Delta \hat{Q}\).

\section*{Remarks}
1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

\footnotetext{
35 These formulas are written for the most general case - axisymmetric flow with swirl and non-constant stagnation enthalpy. For simpler cases there may be only three or four equations.
}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine UPDTKE } \\
\hline Called by & Calls & Purpose \\
\hline EXECT & & Lpdate \(k\) and \(\varepsilon\) after each ADI sweep. \\
\hline
\end{tabular}

\section*{Input}

\section*{DXI, DETA}

E
FBCT1, FBCT2
IBCT1, IBCT2

JI
KBCPER
KE
NPT1, NPT2
RHO
S

\section*{Output}

E, EL
KE, KEL

Computational grid spacing \(\Delta \xi\) and \(\Delta \eta\).
Turbulent dissipation rate \(\varepsilon\) at time level \(n\).
Point-by-point \(k\) - \(\varepsilon\) boundary condition values for the \(\xi\) and \(\eta\) directions.
Point-by-point \(k\) - \(\varepsilon\) boundary condition types for the \(\xi\) and \(\eta\) directions.
Inverse Jacobian of the nonorthogonal grid transformation, \(J^{-1}\).
Flags for spatially periodic boundary conditions in the \(\xi\) and \(\eta\) directions.
Turbulent kinetic energy \(k\) at time level \(n\).
\(N_{1}\) and \(N_{2}\) for non-periodic boundary conditions, \(N_{1}+1\) and \(N_{2}+1\) for spatially periodic boundary conditions in \(\xi\) and \(\eta\).
Static density \(\rho\) at time level \(n\).
Computed solution subvector \(\Delta \hat{\mathbf{W}}\).

Turbulent dissipation rate \(\varepsilon\) at time levels \(n+1\) and \(n\).
Turbulent kinetic energy \(k\) at time levels \(n\lrcorner \cdot 1\) and \(n\).

\section*{Description}

Subroutine UPDTKE computes the primitive flow variables \(k\) and \(\varepsilon\) from the dependent variables \(\Delta \hat{\mathbf{W}}^{n}\) after a complete time step. The formulas are
\[
\begin{aligned}
& k^{n+1}=\frac{1}{\rho^{n+1}}\left(\rho^{n+1} k^{n}+J \Delta \hat{W}_{1}^{n}\right) \\
& \varepsilon^{n+1}=\frac{1}{\rho^{n+1}}\left(\rho^{n+1} \varepsilon^{n}+J \Delta \hat{W}_{2}^{n}\right)
\end{aligned}
\]
where \(\Delta \hat{W}_{1}\) and \(\Delta \hat{W}_{2}\) are the dependent variables in delta form for the \(k-\varepsilon\) equations.
Subroutine UPDTKE also explicitly computes the \(k\) and \(\varepsilon\) values on the computational boundaries using the specified boundary conditions, as described below.

\section*{No Change From Initial Conditions, \(\Delta k=0\) and or \(\Delta \varepsilon=0\)}

Values for \(k\) and \(\varepsilon\) are simply not updated. Therefore, their values on the boundaries remain the same as their initial or restart values.

Specified values, \(k=f\) and or \(\varepsilon=f\)
Values of \(k\) and \(\varepsilon\) are simply set equal to the specified values.
Specified Two-Point Gradient in Coordinate Direction, \(\partial k / \partial \phi=f\) and or \(\partial \varepsilon / \partial \phi=f\)
Applying \(\partial k / \partial \phi=f\) at the \(\xi=0\) boundary, and using two-point one-sided differencing, gives
\[
k_{1, j}=k_{2, j}-f \Delta \zeta
\]

At the \(\xi=1\) boundary,
\[
k_{N_{1}, j}=k_{N_{1}-1, j}+f \Delta \xi
\]

Analogous equations can easily be written for the \(\eta\) boundaries, and for \(\partial \varepsilon / \partial \phi=f\).
Specified Three-Point Gradient in Coordinate Direction, \(\partial k / \partial \phi=\) fandior \(\partial \varepsilon / \partial \phi=f\)
Applying \(\partial k / \partial \phi=f\) at the \(\xi=0\) boundary, and using three-point one-sided differencing, gives
\[
k_{1, j}=\frac{\left(4 k_{2, j}-k_{3, j}-2 f \Delta \xi\right)}{3}
\]

At the \(\xi=1\) boundary,
\[
k_{N_{1}, j}=\frac{\left(k_{N_{1}-1, j}-k_{N_{1}-2, j}+2 f \Delta \xi\right)}{3}
\]

Analogous equations can easily be written for the \(\eta\) boundaries, and for \(\partial \varepsilon / \partial \phi=f\).

\section*{Linear Extrapolation}

Linearly extrapolating from the interior points for \(k\) at the \(\xi=0\) boundary gives
\[
k_{1, j}=2 k_{2, j}-k_{3, j}
\]

At the \(\xi=1\) boundary,
\[
k_{N_{1}, j}=2 k_{N_{1}-1, j}-k_{N_{1}-2, j}
\]

Analogous equations can easily be written for the \(\eta\) boundaries, and for linear extrapolation of \(\varepsilon\).

\section*{Remarks}
1. The "no change from initial conditions" boundary condition is applied simply by non-execution of the other boundary conditions.
2. Periodic boundary conditions are updated by setting the values of \(k\) and \(\varepsilon\) at the lower boundary equal to the corresponding values at the upper boundary.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine VORTEX } \\
\hline Called by & Calls & Purpose \\
\hline \begin{tabular}{l} 
OUTPLT \\
TURBBL \\
YPLUSN
\end{tabular} & & Compute magnitude of total vorticity. \\
\hline
\end{tabular}

\section*{Input}

DXI, DETA
ETAX, ETAY
* N1, N2

U, V, W
XIX, XIY
Y

Computational grid spacing \(\Delta_{\xi}^{\xi}\) and \(\Delta \eta\).
Metric coefficients \(\eta_{x}\) and \(\eta_{y}\) (or \(\eta_{\text {, if axisymmetric.) }}\)
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\check{\zeta}\) and \(\eta\) directions.
Velocities \(u, v\), and \(w\).
Metric coefficients \(\xi_{x}\) and \(\xi_{y}\) (or \(\xi\), if axisymmetric.)
Radial coordinate \(r\) for axisymmetric flow.

\section*{Output}

VORT Total vorticity magnitude.

\section*{Description}

Subroutine VORTEX computes the magnitude of the total vorticity vector. For two-dimensional planar flow this is defined as
\[
|\stackrel{\rightharpoonup}{\Omega}|=\left|\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right|
\]
and for axisymmetric flow,
\[
|\stackrel{\rightharpoonup}{\Omega}|=\left[\left(\frac{\partial w}{\partial r}+\frac{w}{r}\right)^{2}+\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial r}\right)^{2}\right]^{1 / 2}
\]

Note that, for flow without swirl, the definition for axisymmetric flow is the same as for two-dimensional planar flow.

Using the chain rule, these can be rewritten in generalized nonorthogonal coordinates. For twodimensional planar flow,
\[
|\vec{\Omega}|=\left|\left(\xi_{x} v_{\xi}+\eta_{x} v_{\eta}\right)-\left(\xi_{y} u_{\xi}+\eta_{y} u_{\eta}\right)\right|
\]
and for axisymmetric flow,
\[
|\vec{\Omega}|=\left[\left(\xi_{r} w_{\xi}+\eta_{r} w_{\eta}+\frac{w}{r}\right)^{2}+\left(\xi_{x} w_{\xi}+\eta_{x} w_{\eta}\right)^{2}+\left(\xi_{x} v_{\xi}+\eta_{x} v_{\eta}-\xi_{r} u_{\xi}-\eta_{r} u_{\eta}\right)^{2}\right]^{1 / 2}
\]

At interior points, the centered difference formula presented in Section 5.0 of Volume 1 is used to numerically compute the derivatives in the above equations. At boundary points, second-order one-sided difference formulas are used.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Subroutine YPLLS: } \\
\hline Called by & Calls & Purpose \\
\hline INITC & VORTEX & Compute the distance to the nearest solid wall. \\
KEINIT & & \\
TCRBCH & & \\
\hline
\end{tabular}

\section*{Input}
* LWALL1, LWALL2

MU
* N1, N2
* RER

RHO
VORT
X, Y

Flags specifying wall locations for \(\xi\) and \(\eta\) boundaries.
Effective coefficient of viscosity \(\mu\).
Number of grid points \(N_{1}\) and \(N_{2}\), in the \(\xi\) and \(\eta\) directions.
Reference Reynolds number \(R e_{r}\).
Static density \(\rho\) at time level \(n\).
Total vorticity magnitude.
Cartesian coordinates \(x\) and \(y\), or cylindrical coordinates \(x\) and \(r\).

Distance to the nearest solid wall.
Nondimensional distance \(y^{+}\)from the nearest solid wall.

\section*{Description}

Subroutine YPLUSN computes the minimum distance to the nearest solid wall and \(y^{+}\)for every grid point in the computational domain. The steps involved are as followed:
1. Call VORTEX to compute total vorticity magnitude .
2. For every grid point in the computational domain,
3. Compute the shortest distance to each solid wall, and the corresponding wall values of the total vorticity magnitude, laminar viscosity, and density.
4. Identify the nearest solid wall and select the corresponding minimum distance to the wall \(y_{n}\), the wall total vorticity magnitude \(\left|\Omega_{\text {wall }}\right|\), the wall laminar viscosity \(\mu_{\text {well }}\), and the wall density \(\rho_{\text {well }}\).
5. Compute \(y^{+}\)using
\[
y^{+}=y_{n} \sqrt{\frac{R e_{r}\left|\Omega_{\text {wall }}\right| \rho_{\text {wall }}}{\mu_{\text {wall }}}}
\]

\section*{Remarks}
1. The scratch array DLMMY, from the common block DLMMY1, is used to store the minimum distance to the nearest solid wall.

\section*{REFERENCES}

Baldwin, B. S., and Lomax, H. (1978) "Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows," AIAA Paper 78-257.

Beam, R. M., and Warming, R. F. (1978) "An Implicit Factored Scheme for the Compressible NavierStokes Equations," AIAA Journal, Vol. 16, No. 4, pp. 393-402.

Briley, W. R., and McDonald, H. (1977) "Solution of the Multidimensional Compressible Navier-Stokes Equations by a Generalized Implicit Method," Journal of Computational Physics, Vol. 24, pp. 373-397.

Cebeci, T., and Bradshaw, P. (1984) Physical and Computational Aspects of Corvective Heat Transfer, Springer-Verlag, New York.

Chen, S. C., and Schwab, J. R. (1988) "Three-Dimensional Elliptic Grid Generation Technique with Application to Turbomachinery Cascades," NASA TM 101330.

Chien, K. Y. (1982) "Prediction of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model," AIAA Joumal, Vol. 20, No. 1, pp. 33-38.

Cooper, G. K. (1987) "The PARC Code: Theory and Usage," AEDC-TR-87-24.
Cray Research, Inc. (1988) UPDATE Reference Manual, Publication Number SR-0013.
Cray Research, Inc. (1989a) Volume 1: UNICOS Fortran Library Reference Manual, Publication Number SR-2079.

Cray Research, Inc. (1989b) Volume 3: UNICOS Math and Scientific Library Reference Manual, Publication Number SR-2081.

Cray Research, Inc. (1990) CF77 Compiling System, Volume 1: Fortran Reference Manual, Publication Number SR-3071.

Dongarra, J. J., Moler, C. B., Bunch, J. R., and Stewart, G. W. (1979) LINPACK User's Guide SIAM, Philadelphia.

Faux, I. D., and Pratt, M. J. (1979) Computational Geometry for Design and Manufacture, Ellis Horwood Limited, John Wiley \& Sons, Chichester, England.

Hesse, W. J., and Mumford, N. V. S. (1964) Jet Propulsion for Aerospace Applications Pitman Publishing Corporation, New York.

Jameson, A., Schmidt, W., and Turkel, E. (1981) "Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes," AIAA Paper 81-1259.

Kemighan, B. W., and Plauger, P. J. (1978) The Elements of Programming Style, McGraw-Hill Book Company, New York.

Kleinstein, G. (1967) "Generalized Law of the Wall and Eddy-Viscosity Model for Wall Boundary Layers," AIAA Journal, Vol. 5, No. 8, pp. 1402-1407.

Knight, C. J., and Choi, D. (1989) "Development of a Viscous Cascade Code Based on Scalar Implicit Factorization," AIAA Journal, Vol. 27, No. 5, pp. 581-594.

Launder, B. E., and Priddin, C. H. (1973) "A Comparison of Some Proposals for the Mixing Length Near a Wall," International Journal of Heat and Mass Transfer, Vol. 16, pp. 700-702.

Pulliam, T. H. (1986b) "Artificial Dissipation Models for the Euler Equations," AIAA Journal, Vol. 24, No. 12, pp. 1931-1940.

Roberts, G. O. (1971) "Computational Meshes for Boundary Layer Problems," Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 8, Springer-Verlag, New York, pp. 171-177.

Shang, J. S. (1984) "Numerical Simulation of Wing-Fuselage Aerodynamic Interaction," AIAA Journal, Vol. 22, No. 10, pp. 1345-1353.

Spalding, D. B. (1961) "A Single Formula for the Law of the Wall," Joumal of Applied Mechanics, Vol. 28, pp. 455-457.

Steger, J. L. (1978) "Implicit Finite-Difference Simulation of Flow about Arbitrary Two-Dimensional Geometries," AIAA Journal, Vol. 16, No. 7, pp. 679-686.

Towne, C. E., Schwab, J. R., Benson, T. J., and Suresh, A. (1990) "PROTEUS Two-Dimensional Navier-Stokes Computer Code - Version 1.0, Volumes 1-3," NASA TM's 102551-3.

White, F. M. (1974) Viscous Fluid Flow, McGraw-Hill Book Company, New York.
\begin{tabular}{|c|c|}
\hline REPORT DOCUMENTATION PAGE & Form Approved OMB No. 0704-0188 \\
\hline \multicolumn{2}{|l|}{Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources. gathering and maintaining the data needed, and completing and reviewing the coilection of intormation. Send comments regarding this burden estimate or any other aspect of this coliection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Projeca ( 0704 -0188), Washington, DC 20503.} \\
\hline 1. AGENCY USE ONLY (Leave blank) \({ }^{\text {2. REPORT DATE }}\) ( October 1993 & DATES COVERED chnical Memorandum \\
\hline \begin{tabular}{l}
4. TITLE AND SUBTITLE \\
Proteus Two-Dimensional Navier-Stokes Computer CodeVolume 3-Programmer's Reference
\end{tabular} & 5. FUNDING NUMBERS \\
\hline \begin{tabular}{l}
6. AUTHOR(S) \\
Charles E. Towne, John R. Schwab, and Trong T. Bui
\end{tabular} & - \(505-62-52\) \\
\hline \begin{tabular}{l}
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) \\
National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135-3191
\end{tabular} & 8. PERFORMNNG ORGANIZATION REPORT NUMBER
E-8108 \\
\hline \begin{tabular}{l}
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) \\
National Aeronautics and Space Administration Washington, D.C. 20546-0001
\end{tabular} & \begin{tabular}{l}
10. SPONSORING/MONITORING AGENCY REPORT NUMBER \\
NASA TM-106339
\end{tabular} \\
\hline \begin{tabular}{l}
11. SUPPLEMENTARY NOTES \\
Responsible person, Charles E. Towne, (216) 433-5851.
\end{tabular} & \\
\hline \begin{tabular}{l}
12a. DISTRIBUTION/AVAILABILTTY STATEMENT \\
Unclassified - Unlimited \\
Subject Category 34
\end{tabular} & 12b. DISTRIBUTION CODE \\
\hline
\end{tabular}
13. ABSTRACT (Maximum 200 words)

A computer code called Proteus \(2 D\) has been developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Programmer's Reference, and contains detailed information useful when modifying the program. It describes the program structure, the Fortran variables stored in common blocks, and the details of each subprogram.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{14. SUBJECT TERMS}} & 15. NUMBER OF PAGES \\
\hline & & & 268 \\
\hline \multicolumn{3}{|l|}{Navier-Stokes; Computational fluid dynamics, Viscous flow; Compressible flow} & 16. PRICE CODE \\
\hline 17. SECURTTY CLASSIFICATION OF REPORT & 18. SECURTTY CLASSIFICATION OF THIS PAGE & 19. SECURITY CLASSIFICATION OF ABSTRACT & 20. LIMITATION OF ABSTRACT \\
\hline Unclassified & Unclassified & Unclassified & \\
\hline
\end{tabular}```

