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PROTEUS TWO-DIMENSION AL
NAVIER-STOKES COMPUTER CODE - VERSION 2.0

Volume 3 - Programmer’s Reference

Charles E. Towne, Jobn R. Schwab, Trong T. Bui

National Aeronautics and Space Administration
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Cleveland, Ohio

SUMMARY

A computer code called Proteus has been developed to solve the two-dimensional planar or
axisymmetnc, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation
law form. The objective in this effort has been to develop a code for aerospace propulsion applications that
is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized.

The governing equations are written in Cartesian coordinates and transformed into generalized
nonorthogonal body-fitted coordinates. They are solved by marching in time using a fully-coupled
alternating-direction-implicit solution procedure with generalized first- or second-order time differencing.
The boundary conditions are also treated implicitly, and may be steady or unsteady. Spatially periodic
" boundary conditions are also available. All terms, including the diffusion terms, are linearized using
second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation
eddy viscosity model.

The program contains many operating options. The governing equations may be solved for two-
dimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations
may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Several time step options are
available for convergence acceleration, including a locally variable time step and global time step cycling.
Simple Cartesian or polar grids may be generated internally by the program. More complex geometnies
require an externally genérated computational coordinate system.

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents
the equations and solution procedure used in Proteus. It describes in detail the governing equations, the
turbulence model, the linearization of the equations and boundary conditions, the time and space differ-
encing formulas, the ADI solution procedure, and the artificial viscosity models. Volume 2 is the User’s
Guide, and contains information needed to run the program. It describes the program’s general features,
the input and output, the procedure for setting up initial conditions, the computer resource requirements,
the diagnostic messages that may be generated, the job control language used to run the program, and se-
veral test cases. Volume 3, the current volume, is the Programmer’s Reference, and contains detailed in-
formation useful when modifying the program. It describes the program structure, the Fortran vanables
stored in common blocks, and the details of each subprogram.

Version 1.0 of the two-dimensional Proteus code was released in late 1989. The current documentation
covers Version 2.0, released in early 1992.
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1.0 INTRODUCTION

Much of the effort in applied computational fluid dynamics consists of modifying an existing program
for whatever geometries and flow regimes are of current interest to the researcher. Unfortunately, nearly
all of the available non-proprietary programs were started as research projects with the emphasis on dem-
onstrating the numerical algorithm rather than ease of use or ease of modification. The developers usually
intend to clean up and formally document the program, but the immediate need to extend it to new ge-
ometries and flow regimes takes precedence.

The result is often a haphazard collection of poorly written code without any consistent structure. An
extensively modified program may not even perform as expected under certain combinations of operating
options. Each new user must invest considerable time and effort in attempting to understand the underlying
structure of the program if intending to do anything more than run standard test cases with it. The user’s
subsequent modifications further obscure the program structure and therefore make it even more difficult
for others to understand.

The Proteus two-dimensional Navier-Stokes computer program is a user-oriented and easily-modifiable
flow analysis program for aerospace propulsion applications. Readability, modularity, and documentation
were primary objectives during its development. The entire program was specified, designed, and imple-
mented in a controlled, systematic manner. Strict programming standards were enforced by immediate peer
review of code modules; Kernighan and Plauger (1978) provided many useful ideas about consistent pro-
gramming style. Every subroutine contains an extensive comment section describing the purpose, mnput
variables, output variables, and calling sequence of the subroutine. With just three clearly-defined ex-
ceptions, the entire program is written in ANSI standard Fortran 77 to enhance portability. A master ver-
sion of the program is maintained and periodically updated with corrections, as well as extensions of general
interest (e.g., turbulence models.)

The Proteus program solves the unsteady, compressible, Reynolds-averaged Navier-Stokes equations in
strong conservation law form. The governing equations are written in Cartesian coordinates and trans-
formed into generalized nonorthogonal body-fitted coordinates. They are solved by marching in time using
a fully-coupled alternating-direction-implicit (ADI) scheme with generalized time and space differencing
(Briley and McDonald, 1977; Beam and Warming, 1978). Turbulence is modeled using either the Baldwin
and Lomax (1978) algebraic eddy-viscosity model or the Chien (1982) two-equation model. All terms, in-
cluding the diffusion terms, are linearized using second-order Taylor series expansions. The boundary
conditions are treated implicitly, and may be steady or unsteady. Spatially periodic boundary conditions
are also available.

The program contains many operating options. The govemning equations may be solved for two-
dimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations
may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Several time step options are
available for convergence acceleration, including a locally variable time step and global time step cycling.
Simple grids may be generated internally by the program; more complex geometries require external gnd
generation, such as that developed by Chen and Schwab (1988).

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents
the equations and solution procedure used in Proteus. It describes in detail the governing equations, the
turbulence model, the linearization of the equations and boundary conditions, the time and space differ-
encing formulas, the ADI solution procedure, and the artificial viscosity models. Volume 2 is the User’s
Guide, and contains information needed to run the program. It describes the program’s general features,
the input and output, the procedure for setting up initial conditions, the computer resource requirements,
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the diagnostic messages that may be generated, the job control language used to run the program, and se-
veral test cases. Volume 3, the current volume, is the Programmer’s Reference, and contains detailed in-
formation useful when modifying the program. It describes the program structure, the Fortran vanables
stored in common blocks, and the details of each subprogram.

Version 1.0 of the two-dimensional Proteus code was released in late 1989 (Towne, Schwab, Benson,
and Suresh, 1990). The current documentation covers Version 2.0, released in early 1992.

The authors would like to acknowledge the significant contributions made by their co-workers. Tom
Benson provided part of the original impetus for the development of Proteus, and did the original coding
of the block tri-diagonal inversion routines. Simon Chen did the original coding of the Baldwin-Lomax
turbulence model, and consulted in the implementation of the nonlinear coefficient artificial viscosity model.
William Kunik developed the original code for computing the metrics of the generalized nonorthogonal gnd
transformation. Frank Molls has created separate diagonalized and patched-grid versions of the code.
Ambady Suresh did the oniginal coding for the second-order time differencing and for the nonlinear coeffi-
cient artificial viscosity model. These people,-along with Dick Cavicchi, Julie Conley, Jason Solbeck, and
Pat Zeman, have also run many debugging and verification cases.
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2.0 PROGRAM STRUCTURE

2.1 FLOW CHART

In this section, a flow chart is presented showing the overall sequence of tasks performed by the two-
dimensional Proteus computer code. Depending on the various options used in a particular run, of course,
some of the elements in the chart may be skipped.

@

| READ & PRINT INPUT |

| READ RESTART FILES RESTART CASE? GET GRID & METRICS |

[ GET METRICS | _ ' [ GET INITIAL FLOWFIELD |

SET POINT—-BY—POINT
BOUNDARY CONDITIONS

l

INITIALIZE PLOT FILES &
PRINT INITIAL FLOWFIELD -

y
| COMPUTE TIME STEP SIZE |

y

RESET BOUNDARY CONDITIONS
IF TIME—DEPENDENT

l e

Figure 2.1 - Flow chart for the 2-D Proteus computer code.
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¢

ADD EXTRA DATA LINE AT N+1
IN SPATIALLY PERIODIC DIRECTIONS

|

¥

['SET UP FORFIRST SWEEP | > SET UP FOR SECOND SWEEP |
y l
COMPUTE COEFFICIENTS COMPUTE COEFFICIENTS
OF GOVERNING EQUATIONS OF GOVERNING EQUATIONS
Y
[ADD BOUNDARY CONDITIONS | [ADD BOUNDARY CONDITIONS |
COMPUTE RESIDUALS WITHOUT [ADD ARTIFICIAL VISCOSITY |
ARTIFICIAL VISCOSITY TERMS
[ PERFORM MATRIX INVERSION |
[ ADD ARTIFICIAL VISCOSITY |
y
COMPUTE RESIDUALS WITH
ARTIFICIAL VISCOSITY TERMS
y
[ PERFORM MATRIX INVERSION |

Figure 2.1 - Continued.
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‘ ?

UPDATE BOUNDARY VALUES
FROM FIRST SWEEP

| UPDATE AUXILIARY VARIABLES |

[UPDATE TURBULENCE PARAMETERS)|

Y
| GENERATE oUTPUT |

CONVERGED OR
LAST TIME STEP?

NO

| GENERATE OUTPUT |

Figure 2.1 - Concluded.
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2.2 SUBPROGRAM CALLING TREE

In this section, the calling sequence for the various subprograms in the Proteus 2-D code is shown using
a tree structure. The subheadings correspond to the elements of the flow chart shown in the previous sec-
tion. The main program, listed in the first column, calls the subprograms in the second column, which in
turn call those in the third column, etc.! For any given case, of course, some of these routines will not be
used. The subprograms needed for a particular case will depend on the combination of input parameters

being used. The individual subprograms are described in detail in Section 4.0.

INITIALIZATION
Read and print input.
MAIN | INPUT | 1IsaMAX
Get grid and metric parameters.
MAIN GEOM PAK ROBTS
CUBIC
METS OUTPUT PRTOUT
Get initial flow field.
MAIN INITC REST METS
INIT
FTEMP
EQSTAT
TURBBL VORTEX
BLOUTI ISAMAX
ISAMIN
ISRCHEQ
BLINI ISRCHEQ
BLOUT2 ISAMAX
ISAMIN
ISRCHEQ
BLIN2 ISRCHEQ
KEINIT TURBBL VORTEX
BLOUT! ISAMAX
ISAMIN
ISRCHEQ
BLINI ISRCHEQ
BLOUT?2 ISAMAX
ISAMIN
ISRCHEQ
BLIN2 ISRCHEQ
YPLUSN VORTEX
PRODCT
YPLUSN VORTEX
Set point-by-point boundary condition values.
MAIN BCSET |

I Throughout this Programmer’s Reference, elements of the Fortran language, such as input variables and subpro-
gram names, are printed in the text using uppercase letters. However, in most implementations, Fortran is case-
insensitive. The Proteus source code itself is written in lowercase.
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Imtialize plot files and print initial or restart flow field.

MAIN PLOT
OUTPUT | VORTEX
PRTOUT
OUTW
SET UP FOR TIME STEP
Compute time step size.
MAIN | TIMSTP | 1ISAMAX | |

Reset boundary conditions if time-dependent.

MAIN | TBC | | |

FILL BLOCK COEFFICIENT MATRIX

Add extra data line at N + 1 if spatially periodic in sweep direction.

MAIN EXEC | PERIOD |
Compute coefficients of governing equations.
MAIN EXEC EQSTAT
COEFC
COEFX
COEFY
COEFE
COEFZ
Add boundary conditions.
MAIN EXEC EQSTAT
BCGEN BCQ BCMET
BCGRAD
BCUVEL BCMET
BCGRAD
BCVVEL BCMET
BCGRAD
BCWVEL BCMET
BCGRAD
BCPRES BCMET
BCGRAD
BCTEMP BCMET
BCGRAD
BCDENS BCMET
BCGRAD
BCVDIR BCMET
BCGRAD
BCF BCFLIN
BCMET
ISRCHEQ
BLKOUT
BCELIM SGEFA
SGESL

Proteus 2-D Programmer’s Reference
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Compute residuals without artificial viscosity terms (sweep 1 only.)

MAIN EXEC RESID SNRM2
ISAMAX
SASUM
Add artificial viscosity.
MAIN EXEC AVISCH BLKOUT
AVISC2 BLKOUT
Compute residuals with artificial viscosity terms (sweep 1 only.)
MAIN EXEC RESID SNRM2
ISAMAX
SASUM
SOLVE DIFFERENCE EQUATIONS
Perform matrix inversion.
MAIN EXEC ADI BLKOUT
BLK3P
BLK3 FILTER ISAMAX
ISRCHEQ
BLKOUT
BLK4P
BLK4 FILTER ISAMAX
ISRCHEQ
BLKOUT
BLKSP
BLKS FILTER ISAMAX
ISRCHEQ
BLKOUT
UPDATE

12 2.2 Subprogram Calling Tree
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Update boundary values from first sweep.

MAIN EXEC

BVUP

EQSTAT
BCGEN

SGEFA
SGESL

BCQ
BCUVEL
BCVVEL
BCWVEL
BCPRES
BCTEMP
BCDENS
BCVDIR
BCF -

ISRCHEQ
BLKOUT

BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCFLIN
BCMET

FINISH TIME STEP AND CHECK RESULTS

Update auxiliary variables.

MAIN EQSTAT
FTEMP
Update turbulence parameters.
MAIN TURBBL VORTEX
BLOUT1 ISAMAX
ISAMIN
ISRCHEQ
BLINI ISRCHEQ
BLOUT2 ISAMAX
ISAMIN
ISRCHEQ
BLIN2 ISRCHEQ
TURBCH YPLUSN VORTEX
PRODCT
EXECT PERIOD
COEFS1
BLK2P
BLK2
COEFS2
BLK2P
BLK2
UPDTKE

Check for convergence, and get CPU time remaining.

MAIN CONV

TREMAIN

ISAMAX

Proteus 2-D Programmer’s Reference
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GENERATE OUTPLT

Print flow field output.

MAIN OUTPUT VORTEX
PRTOUT
OUTW
Write plot and restart files.
MAIN PLOT
REST

Print convergence history.
MAIN PRTHST |

2.3 PROGRAMMING CONVENTIONS AND NOTES

2.3.1 Computer & Language

At NASA Lewis Research Center, Proteus is normally run on a Cray X-MP or Y-MP computer. With
just three known exceptions, it is written entirely in ANSI standard Fortran 77 as described in the CF77
Compiling System, Volume 1: Fortran Reference Manual (Cray Research, Inc., 1990). The first exception
is the use of namelist input. With namelist input, it's relatively easy to create and/or modify input files, to
read the resulting files, and to program default values. Since most Fortran compilers allow namelist input,
its use is not considered a serious problem. The second exception is the use of *CALL statements to in-
clude *COMDECK s, which contain the labeled common blocks, in most of the subprograms. This is a
Cray UPDATE feature, and therefore the source code must be processed by UPDATE to create a file that
can be compiled.? UPDATE is described in the UPDATE Reference Manual (Cray Research, Inc., 1988).
Since using the *CALL statements results in cleaner, more readable code, and since many computer systems
have an analogous feature, the *CALL statements were left in the program. The third exception 1s the use
of lowercase alphabetic characters in the Fortran source code. This makes the code easier to read, and is
a common extensi. 1to Fortran 77.

Several library subroutines are called by Proteus. SGEFA and SGESL are Cray versions of LINPACK
routines. SASUM and SNRM?2 are Cray Basic Linear Algebra Subprograms (BLAS). ISAMAX,
ISAMIN, and ISRCHEQ are Cray search routines. TREMAIN is a Cray Fortran library routine. All of
these routines are described in detail in Section 4.0. In addition, SGEFA and SGESL are described in
Volume 3: UNICOS Math and Scientific Library Reference Manual (Cray Research, Inc., 1989b) and by
Dongarra, Moler, Bunch, and Stewart (1979); SASUM, SNRM2, ISAMAX, ISAMIN, and ISRCHEQ are
described in Volume 3: UNICOS Math and Scientific Library Reference Manual (Cray Research, Inc.,
1989b); and TREMALIN is described in Volume 1: UNICOS Fortran Library Reference Manual (Cray Re-
search, Inc., 1989a).

The Proteus code is highly vectorized for optimal performance on the Cray. The coefficient generation
is vectorized in the ADI sweep direction. Since the coefficient matrix is block tridiagonal, the equations are
solved using the Thomas algorithm. This algorithm is recursive, and therefore cannot be vectorized in the
sweep direction. However, by storing the coefficients and source terms in both coordinate directions, the
algorithm can be vectorized in the non-sweep direction. This increases the storage required by the program,
but greatly decreases the CPU time required for the ADI solution.

2 See the example in Section 8.1 of Volume 2.
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2.3.2 Fortran Variables

Variable Names

In developing Proteus, code readability has been emphasized. We have therefore attempted to choose
Fortran variable names that are meaningful. In general, they either match the notation used in the analysis
description in Volume 1, or are in some way descriptive of the parameter being represented. For example,
RHO, U, V, W, and ET are the Fortran vaniables representing the density p, the velocities v, v, and w, and
the total energy per unit volume Er.

Real and Integer Variables

In general, the type (real or integer) of the Fortran variables follows standard Fortran convention (i.e.,
those starting with I, J, K, L, M, or N are integer, and the remainder are real.) There are, however, several
variables that would normally be integer but are explicitly declared to be real. These are noted in the input
description in Section 3.0 of Volume 2, and in the description of common block variables in Section 3.0
of this volume.

Array Dimensions

Most Fortran arrays are dimensioned using dimensioning parameters. These parameters are set in
COMDECK PARAMSI. This allows the code to be re-dimensioned simply be changing the appropriate
parameters, and then recompiling the entire program. The dimensioning parameters are described in Sec-
tion 6.2 of Volume 2.

[nitialization

All of the input Fortran variables, plus some additional variables, are initialized in BLOCK DATA.
Most of the input variables are initialized to their default values directly, but some are initialized to values
that trigger the setting of default values in subroutine INPUT. On the Cray X-MP and Y-MP at NASA
Lewis, all uninitialized variables have the value zero. There are no. known instances in the Proteus code,
however, in which a varnable is used before it is assigned a value.

Nondimensionalization

In general, Fortran variables representing physical quantities, such as RHO, U, etr., are nondimensional.
Two types of nondimensionalizing factors are used - reference conditions and normalizing conditions. The
factors used to nondimensionalize the governing equations in Section 2.0 of Volume 1 are called normalizing
conditions. These normalizing conditions are defined by six basic reference conditions, for length, velocity,
temperature, density, viscosity, and thermal conductivity, which are specified by the user. The normalizing
conditions used in Proteus are listed in Table 3-1 of Volume 2.

Note that for some variables, like pressure, the normalizing condition is dictated by the form of the
governing equations once the six basic reference conditions are chosen. Unfortunately, some of these may
not be physically meaningful or convenient for use in setting up input conditions. Therefore, some addi-
tional reference conditions are defined from the six user-supplied ones. The reference conditions are listed
in Table 3-2 of Volume 2.

Throughout most of the Proteus code, physical variables are nondimensionalized by the normalizing
conditions. For input and output, however, variables are nondimensionalized by the reference conditions
because they are usually more physically meaningful for the user. The Fortran variables representing the
reference conditions themselves are, of course, dimensional.

One-Dimensional Addressing of Two-Dimensional Arrays

In the solution algorithm used in Proteus, there are several instances in which the same steps must be
followed in both ADI sweep directions. An example is the computation, in the COEFC, COEFX,
COEFY, COEFZ, and COEFE routines, of the submatrices in the block tridiagonal coefficient matrix.
These computations involve various flow variables, such as RHO, U, etc., and metric quantities, such as
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XIX, XIY, etc. These are stored as two-dimensional arrays, with the two subscripts representing, in order,
the indices in the computational ¢ and » directions. For the first ADI sweep, values at various ¢ indices
are needed at a fixed » index. For the second ADI sweep, the reverse is true. In order to use the same
coding for both sweeps, a scheme for one-dimensional addressing of a two-dimensional array has been
used.?

In Fortran, multi-dimensional arrays are actually stored in memory as a one-dimensional sequence of
values, with the first subscript incremented over its range first, then the second subscript, etc. We take ad-
vantage of this in Proteus. As a first step, the two-dimensional array is equivalenced to a one-dimensional
array of the same total length. The one-dimensional array name is derived from the two-dimensional array
name by adding a “1”. Thus, letting F represent a typical two-dimensional array,

dimension f(nlp,n2p),fl(ntotp)
equivalence (f(1,1),f1(1))

where N1P and N2P are dimensioning parameters specifying the dimension size in the ¢ and » directions,
and NTOTP is a dimensioning parameter equal to N1P x N2P. Next, we define a “step factor”, which
depends on the ADI sweep, and a “base index” which depends on the index in the non-sweep direction.
For the first ADI sweep,

istep = 1

do 1000 i2 = 2,npt2-1
iv = 12

ibase = 1 + (12-1)*nlp

1000 continue

And for the second ADI sweep,

istep = nlp

do 2000 il = 2,nptl-1
iv = il

ibase = 1il

2000 continue

In both of the above examples, the loop is in the non-sweep direction and IV therefore represents the index
in the non-sweep direction. Nested inside this loop is a loop in the sweep direction. In this inner loop,
we can compute the equivalent one-dimensional address for a location in a two-dimensional array from the
step factor, the base index, and the index in the sweep direction. Thus, for either ADI sweep, the inner loop
looks like

do 100 i = 2,npts-1

iiml = ibase + istepX*(i-2)
i1 = ibase + istepX(i-1)
iipl = ibase + istep¥*i

100 continue

where I represents the index in the sweep direction. With this coding, for the first sWeep

3 An alternative would be to switch the order of the two subscripts in these arrays after each sweep. Since these
arrays are used in many other areas of the code, this idea was discarded as being unnecessarily confusing. It should
be noted, however, that there are some other arrays in Proteus in which the order of the two subscripts does switch
between sweeps. This is described in the next subsection.
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f1(iiml) = f(il-1,i2)

f1(ii ) = f(il ,12)

f1(1iipl) = f(il+1,i2)
And for the second sweep,

fl(iiml) = f(il1,i2-1)

f1(ii ) = f(il,i2 )

fl(1iipl) = f(il,12+1)

Multi- Dimensional Addressing of One-Dimensional Arrays

As noted in the previous subsection, there are some arrays in Proteus in which the order of the first two
subscripts does switch between ADI sweeps. These are the A, B, C, and S arrays, which represent the co-
efficient submatrices and the source term subvector, and the METX, METY, and METT arrays, which
represent the metric coefficients in the sweep direction. (A, B, and C are actually four-dimensional arrays,
with the third and fourth subscripts representing the equation and dependent vanable, respectively. Simi-
larly, S is actually a three-dimensional array, with the third subscript representing the equation. Only the
first two subscripts switch between sweeps, however.) For these arrays, the first subscript is the index in
the non-sweep direction (i.e., the » direction for the first sweep and the ¢ direction for the second sweep),
and the second is the index in the sweep direction (i.e., ¢ for the first sweep and 5 for the second sweep.)

These multi-dimensional arrays are actually equivalenced to corresponding one-dimensional arrays,
stored in common blocks NUM1 and METRICI1.* The equivalence is done in subroutine EXEC, which
manages the solution of the mean flow equations, and in subroutine EXECT, which manages the solution
of the k-¢ turbulence model equations. The multi-dimensional arrays and the appropriate dimensions,
which depend on the ADI sweep, are then passed into lower level routines via the argument list. In the
lower level routines they can then be referenced as normal, multi-dimensional arrays.

Thus, in subroutine EXEC, we have

dimension a(1,1,1,1),b(1,1,1,1),¢(1,1,1,1),s(1,1,1)

equivalence (amatl(1),a(1,1,1,1)),(bmat1(1),b(1,1,1,1)),
(cmatl(l),c(1,1,1,1)),(svectl(1),s(1,1,1))

dimension metx(1,1),mety(1,1),mett(1,1)

equivalence (metx1(1),metx(1,1)),(metyl(1),mety(1,1)),
(mettl(1l),mett(1,1))

Here METX1, METY1, and METT]1 are one-dimensional arrays of length N1P x N2P stored in common
block METRICI. Similarly, AMAT1, BMATI1, CMAT], and SVECT] are one-dimensional arrays stored
in common block NUM1. AMATI1, BMATI, and CMAT]I are of length N1P x N2P x NEQP x NEQP,
and SVECT]1 is of length N1P x N2P x NEQP.

Using COEFC as an example of a lower level routine, we have

subroutine coefc (a,b,c,s,metx,mety,mett,nvd,nptsd)

dimension a(nvd,nptsd,neqgp,neqap),b(nvd,nptsd,neqp,neqp),
c(nvd,nptsd,neqp,neqp),s(nvd,nptsd,neqgp)

dimension metx(nvd,nptsd),mety(nvd,nptsd),mett(nvd,nptsd)

where NVD and NPTSD are the dimensions in the non-sweep and sweep directions, respectively. For the
fairst sweep, COEFC is thus called from EXEC as

call coefc (a,b,c,s,metx,mety,mett,n2p,nlp)

And for the second sweep, COEFC is called as

4 An alternative would be use the maximum of N1P and N2P as the size for both of the first two dimensions. In fact,
this is what was done in earlier versions of Proteus. However, if N1P is significantly different from N2P, this is
inefficient, requiring much more storage than the current procedure.

Proteus 2-D Programmer’s Reference 2.3 Programming Conventions and Notes 17



call coefc (a,b,c,s,metx,mety,mett,nlp,n2p)

Two-Level Storage

With the Beam-Warming time differencing scheme used in Proteus, the dependent variables RHO, U,
V, W, and ET must be stored at two time levels. For convenience, T is also stored at two time levels. In
the ADI solution procedure, RHO, U, etc. are at the known time level ». The corresponding vanable at
the other time level is denoted by adding an “L” to the variable name. Exactly which time level the “L”
variable is at depends on the stage in the solution procedure. Letting F represent one of these vanables, the
time levels for F and FL are listed in the following table for the different stages of the solution procedure.
Recall that * represents the intermediate time level after the first ADI sweep.

STAGE IN TIME STEP TIME LEVEL TIME LEVEL
FROM LEVEL nTO n+1 FOR F FOR FL
From start to end of sweep 1 n n—1
From end of sweep 1 to end of sweep 2 n *
From end of sweep 2 to update in EXEC n n+1
From update in EXEC to start of next step n+1 n

DUMMY Array

For convenience, a two-dimensional array called DUMMY is stored in common block DUMMY1 and
used as a temporary storage location in several areas of the code. Thus array ts dimensioned N1P by N2P,
the same as the flow variables, metrics, etc. DUMMY is used internally in subroutines CONYV and RESID.
It is also defined in subroutines BLIN2 and BLOUT?2 for use in TURBBL, and in subroutine YPLUSN
for use in subroutines COEFS1 and KEINIT. And finally, it is defined in subroutine OUTPUT and passed
as an argument into subroutine PRTOUT. Details on its use are presented in the subroutine descriptions
in Section 4.0.
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3.0 COMMON BLOCKS

Transfer of data between routines in Proteus is primarily accomplished through the use of labeled
common blocks. Each common block contains variables dealing with a particular aspect of the analysis,
and 1s stored in a separate Cray COMDECK (Cray Research, Inc., 1988). The common block names are
the same as the COMDECK names. These names also correspond to the names of the input namelists.
All the variables in namelist BC are stored in common block BCl, etc. The Fortran variables in each
common block are stored in alphabetical order.

3.1 COMMON BLOCK SUMMARY

Block Name Description

BCl1 Boundary condition parameters for the mean flow equations.

BC2 Boundary condition parameters for the k-¢ equations.

DUMMY1 Scratch array.

FLOWI Varables dealing with fluid properties and the flow being com-
puted.

GMTRY1 Parameters defining the geometric configuration.

IC1 Variables needed for setting up initial conditions.

101 Parameters dealing with program inpﬁt/output requurements.

METRICI1 Metrics of the nonorthogonal grid transformation, plus the
Cartesian coordinates of the grid points.

NUM1 Parameters associated with the numerical method for the mean
flow equations.

NUM2 Parameters associated with the numerical method for the k-¢
equations.

RSTRTI1 Parameters dealing with the restart option.

TIMEI Parameters dealing with the time step selection and convergence
determination. -

TITLEI Descriptive title for case being run.

TURBI1 Turbulence parameters.

TURB20 Parameters and constants associated with the k-¢ equations.

3.2 COMMON VARIABLES LISTED ALPHABETICALLY

In this section all the Proteus Fortran variables stored in common blocks are defined, listed alphabet-
ically by variable name. Those marked with an asterisk are input variables. More details on these variables
may be found in Section 3.1 of Volume 2. The common block each variable is stored in is given in pa-
rentheses at the end of each definition. For subscripted variables, the subscripts are defined along with the
variable, except for the subscripts I1 and 12, which are the indices i and j in the ¢ and 4 directions, respec-
tively, and run from 1 to N, and N,.
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This list also includes the parameters used as array dimensions. These are not actually stored in a
common block, but are stored in the Cray COMDECK PARAMSI. More details may be found in Section

6.2 of Volume 2.

Unless otherwise noted, all variables representing physical quantities are nondimensional. The
nondimensionalizing procedure is described in Section 3.1.1 of Volume 2. The type (real or integer) of the
vaniables follows standard Fortran convention, unless stated otherwise. (L.e., those starting with I, J, K,
L, M, or N are integer, and the remainder are real.)

Fortran
Vanable

A
AMATI(J)

* APLUS

B
BMATI(I)

C
+  CAVS2E(I)

+  CAVS2I(I)

+  CAVS4E(])
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Symbol
A

A+

C

89) Oor K2

¢® or kg

Definition
See AMATL. (NUMI)

Subdiagonal submatrix of coefficients in the block tridiagonal
coefficient matrix. In actual use, this one-dimensional array
is equivalenced to the four-dimensional array A(IV,ISJK).
IS is the grid index in the sweep direction, running from 1 to
N. IV is the grid index in the “vectorized” direction (i.e., the
non-sweep direction in which the "BLK” routines are
vectorized), and runs from 2 to N, — 1. The subscript J =1
to N.,, corresponding to the N,, coupled governing equations,
and K =1 to N, corresponding to the N, dependent van-
ables. (NUMI)

Van Driest damping constant in the inner and outer regions
of the Baldwin-Lomax turbulence model. (TURBI)

See BMATI1. (NUM1)

Diagonal submatrix of coefficients in the block tridiagonal
coefficient matrix. In actual use, this one-dimensional array
is equivalenced to the four-dimensional array B(IV,IS,J.K).
IS is the grid index in the sweep direction, running from 1 to
N. IV is the grid index in the “vectorized” direction (i.., the
non-sweep direction in which the “BLK” routines are
vectorized), and runs from 2 to N, — 1. The subscript J =1
to N.,, corresponding to the N,, coupled governing equations,
and K =1 to N,, corresponding to the N, dependent van-
ables. (NUMI)

See CMATL. (NUM1)

Second-order explicit artificial viscosity coefficient in constant
coefficient model, or user-specified constant in nonlinear co-
efficient model. The subscript I = 1 to N, corresponding to
the N,, coupled governing equations. (NUMI)

Second-order implicit artificial viscosity coefficient in constant
coefficient model. The subscript I =1 to N,,, corresponding
to the N,, coupled governing equations. (NUMI)

Fourth-order explicit artificial viscosity coefficient in constant
coefficient model, or user-specified constant in nonlinear co-
efficient model. The subscript I = 1 to N.,, corresponding to
the N,, coupled governing equations. (NUMI)

Constant used in the formula for the Klebanoff intermittency
factor Fxus in the outer region of the Baldwin-Lomax turbu-
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CCLAU

CCP

CCPl1-4

CFL(I)

CFLMAX
CFLMIN
CHGAVG(I)

CHGMAX(LJ)

CHGI

CHG2

CKLEB

CKMIN

CK1-2

CMATI(})

AQavg

AQmax

CKleb

(CKleb)mm

Ckl = CkZ

C

lence model, and in the inner regon of the Spalding-
Klemstein turbulence model. (TURBI)

Clauser constant used in the outer region of the Baldwin-
Lomax turbulence model. (TURBI)

Constant used m the outer region of the Baldwin-Lomax tur-
bulence model. (TURBI)

Constants in empirical formula for specific heat as a function
of temperature. (FLOW1)

The ratio At/At.; where Ar is the actual time step used in the
implicit calculation and At is the allowable time step based
on the Courant-Friedrichs-Lewy (CFL) cnterion for explicit
methods. I is the time step sequence number, and runs from
1 to NTSEQ. (TIMEL)

Maximum allowed value of the CFL number. (TIMEI)
Minimum allowed value of the CFL number. (TIME])

Maximum change in absolute value of the dependent van-
ables, averaged over the last NITAVG time steps.’ The sub-
script I=1 to VN, comresponding to the N, dependent
vanables. (TIME1)

Maximum change in absolute value of the dependent variables
over a single time step.® The subscript I=1 to N, corre-
sponding to the N, dependent varables, and J=1 to
NITAVG, the number of time steps used in the moving av-
erage option for determining convergence. (TIME]1)

Minimum change, in absolute value, that is allowed in any
dependent variable before increasing the time step.’ (TIME1)

Maximum change, in absolute value, that is allowed in any
dependent variable before decreasing the time step.s (TIME1)

Constant used in the formula for the Klebanoff intermittency
factor Fx.s in the outer region of the Baldwin-Lomax turbu-
lence model. (TURBI)

Constant used in the formula for the Klebanoff intermittency
factor Fx., in the outer region of the Baldwin-Lomax turbu-
lence model. (TURBI)

Constants in émpirical formula for thermal conductivity coef-
ficient as a function of temperature. (FLOW1)

Superdiagonal submatrix of coefficients in the block
tridiagonal coefficient matnix. In actual use, this one-
dimensional array is equivalenced to the four-dimensional ar-
ray C(IV,ISJK). IS 1s the gnd index in the sweep direction,
running from 1 to N. IV is the grid index in the “vectorized”

S For the energy equation, the change in Eris divided by E7, = p,RT,/(y, — 1) + u3/2, so that it is the same order
of magnitude as the other conservation variables.
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* CMUR C,,
CMUI-2 Ca-Cp
* CNA . n
* CNL n
* CONE o
CP(11,12) o
* CTHREE G
* CTWOR . C,
CV(11,12) C
* CVK K
* CWK ka
DEL A& or An
DETA An
DPDET(I) Op|8Er
DPDRHO(I) op{op
DPDRU(I) plo(pu)

direction (i.e., the non-sweep direction in which the “BLK”
routines are vectorized), and runs from 2 to N,— 1. The
subscript J = 1 to N.,, corresponding to the N, coupled gov-
eming equations, and K =1 to N, corresponding to the N,
dependent variables. (NUM1)

Constant used to compute C, in the turbulent viscosity for-
mula for the k-¢ equations. (TURB20)

Constants in empirical formula for laminar viscosity coeffi-
cient as a function of temperature. (FLOW1)

Exponent in the formula used to average the two outer region
u, profiles that result when both boundaries in a coordinate
direction are solid surfaces. (TURBI)

Exponent in the Launder-Priddin modified mixing length
formula for the inner region of the Baldwin-Lomax turbulence
model. (TURBI)

Constant used in the production term of the ¢ equation.
(TURB20)

Specific heat at constant pressure at time level n. (FLOWI)

Constant used to compute C, in the turbulent viscosity for-
mula for the k-¢ equations. (TURB20)

Constant used to compute C; in the dissipation term of the ¢
equation. (TURB20)

Specific heat at constant volume at time level . (FLOW1)

Von Karman mixing length constant used in the inner region
of the Baldwin-Lomax and Spalding-Kleinstein turbulence
models. (TURBI)

Constant used in the formula for Fi.. in the outer region of
the Baldwin-Lomax turbulence model. (TURBI)

Computational grid spacing in the ADI sweep direction.
(NUMI)

Computational grid spacing in the » direction. (NUMI)

The derivative of p with respect to Er, stored as a one-
dimensional array in the sweep direction. The subscript 1
therefore runs from 1to N. (FLOWI)

The derivative of p with respect to p, stored as a one-
dimensional array in the sweep direction. The subscript [
therefore runs from 1to N. (FLOWI1)

The derivative of p with respect to pu, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1to N. (FLOW1)
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*

DPDRV(I)

DPDRW(I)

DT(I)

DTAU(1,12)

DTDET()

DTDRHO(I)

DTDRU(I)

DTDRV()

DTDRW()

DTF1

DTF2

DTMAX

DTMIN

DUMMY(I1,12)

DXI
E(11,12)

EL(I1,12)

EPS(I)

ap[a(pv)

apld(pw)

At

At

dT|0Er

aT|8p

aT|o(pu)

aT/a(pv)

aT13(pw)

AL
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The dernvative of p with respect to pv, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

The derivative of p with respect to pw, stored as a one-
dimensional array in the sweep direction. The subscript |
therefore runs from | to N. (FLOWY)

The time step size, when specified directly as input. 1 is the
time step sequence number, and runs from 1 to NTSEQ.
(TIMEY)

Computational time step size. (TIMEL)

The denvative of T with respect to Er, stored as a one-
dimensional array in the sweep direction. The subscript |
therefore runs from 1 to N. (FLOWI)

The denivative of T with respect to p, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOW1)

The derivative of 7 with respect to pu, stored as a one-
dimensional array in the sweep direction. The subscript 1
therefore runs from | to N. (FLOWI)
The denvative of T with respect to pv, stored as a one-
dimensional array mn the sweep direction. The subscript I
therefore runs from 1 to N. (FLOW]I)
The derivative of T with respect to pw, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

Factor by which the time step is multiplied if the solution
changes too slowly. (TIME1)

Factor by which the time step is divided if the solution
changes too quickly. (TIMEI)

Maximum value that At is allowed to reach, or the maximum
Az used in the time step cycling procedure. (TIME])

Minimum value that At is allowed to reach, or the minimum
At used in the time step cycling procedure. (TIMEI)

Dummy array used for temporary storage in several subrou-
tines. (DUMMY1)

Computational grid spacing in the ¢ direction. (NUMI)
Turbulent dissipation rate at time level 2. (TURB20)

Turbulent dissipation rate at previous or intermediate time
level. (TURB20)

Convergence level to be reached. The subscript =1 to N,,,
corresponding to the N,, dependent variables. (TIME1)
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ER e,

ET(11,12) Er

ETAT(I1,I2) e

ETAX(I1,12) Nx

ETAY(I11,12) n, Of 7,
- ETL(I11,12) Er

* FBCTI1(12,1))

*  FBCT2(I1,1,))

*  FBCI(I12,1.])

+  FBC2(I1,LJ)

*  GAMR Ve
*  GBCTI(L))

*+  GBCT2(1J)

Dimensional reference energy, p.u2. (FLOWI)
Total energy at time level n. (FLOWI)

The dernivative of the computational coordinate n with respect
to untransformed time ¢. (METRICI)

The derivative of the computational coordinate » with respect
to the Cartesian coordinate x. (METRICI)

The derivative of the computational coordinate »n with respect
to the Cartesian coordinate y or cyhndncal coordinate 7.
(METRICI)

Total energy at previous or intermediate time level. (FLOWI)

Point-by-point values used for boundary conditions for the
k-¢ turbulence model on the £ =0 and ¢ = | boundaries.
These are either set in the input, if a point-by-point distrib-
ution is being specified by the user, or by the program itself.
The subscript 1=1 or 2, corresponding to the 4 and &
equations, respectively, and J =1 or 2, corresponding to the
¢ =0 and ¢ = 1 boundanes, respectively. (BC2)

Point-by-point values used for boundary conditions for the
k-¢ turbulence model on the » =0 and »n =1 boundanes.
These are either set in the input, if a point-by-point distrib-
ution 1s being specified by the user, or by the program itself.
The subscript I =1 or 2, corresponding to the k and e
equations, respectively, and J =1 or 2, corresponding to the
n = 0 and » = 1 boundaries, respectively. (BC2)

Point-by-point values used for steady boundary conditions on
the ¢ =0 and ¢ = 1 surfaces. These are either set in the input,
if a point-by-point distribution is being specified by the user,
or by the program itself. I runs from 1 to V,,, corresponding
to the N,, conditions needed, and J =1 or 2, corresponding
to the ¢ = 0 and & = | boundaries, respectively. (BC1)

Point-by-point values used for steady boundary conditions on
the » = 0 and n = 1 surfaces. These are either set in the input,
if a point-by-point distribution 1s being specified by the user,
or by the program itself. I runs from 1 to N, corresponding
to the N, conditions needed, and J =1 or 2, corresponding
to the n = 0 and 5 = | boundaries, respectively. (BCl)

Reference ratio of specific heats, ¢, fc,,. (FLOWI)

Values used for boundary conditions for the k-¢ turbulence
model on the & = 0 and ¢ = 1 boundaries, when specified for
the entire surface. The subscript I = 1 or 2, comresponding to
the k and ¢ equations, respectively, and J=1 or 2, corre-
sponding to the ¢ =0 and ¢ =1 boundanes, respectively.
(BC2)

Values used for boundary conditions for the k-¢ turbulence
model on the n = 0 and y = | boundaries, when specified for
the entire surface. The subscript I = 1 or 2, corresponding to
the k£ and ¢ equations, respectively, and J=1 or 2, corre-

24 3.2 Common Variables Listed Alphabetically Proteus 2-D Programmer’s Reference



+  GBCNIJ)
+  GBCX(L))
GC P

* GTBCIK,LDH

*  GTBC2(K,LJ)

HSTAG Ay
* HSTAGR Ay,
+ JAVZE
+ JAV2I
* IAV4E
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sponding to the » =0 and # =1 boundaries, respectively.
(BC2)

Values used for steady boundary conditions on the ¢ = 0 and
¢ = 1 boundaries, when specified for the entire surface. I runs
from 1 to N, corresponding to the N,, conditions needed, and
J=1 or 2, corresponding to the ¢ = 0 and ¢ = 1 boundaries,
respectively. (BC1)

Values used for steady boundary conditions on the # = 0 and
n = 1 boundaries, when specified for the entire surface. I runs
from 1 to N, corresponding to the ¥,, conditions needed, and
J=1 or 2, corresponding to the # = 0 and 5 = ]| boundaries,
respectively. (BCl)

Dimensional proportionality factor in Newton's second law,
either 32.174 1b.-ft/Ib-sec?, or 1.0 kg-m/N-sec2. (FLOW1)

A variable used to specify the values for unsteady and time-
periodic boundary conditions on the ¢ = 0 and ¢ = 1 bound-
aries. I mms from 1 to N, corresponding to the N,
conditions needed, and J=1 or 2, corresponding to the
¢ =0 and {=1 boundaries, respectively. For general un-
steady boundary conditions, K = 1 to NTBC, cormresponding
to the time levels in the array NTBCA, and GTBC1 specifies
the boundary condition value directly. For time-periodic
boundary conditions, K =1 to 4, and GTBCI1 specifies the
four coefficients in the equation used to determine the
boundary condition value. (BCI)

A variable used to specify the values for unsteady and time-
peniodic boundary conditions on the = 0 and 5 = 1 bound-
aries. I rums from 1 to N, comesponding to the N,,
conditions needed, and J=1 or 2, corresponding to the
n =0 and n=1 boundaries, respectively. For general un-
steady boundary conditions, K = 1 to INTBC, corresponding
to the time levels in the array NTBCA, and GTBC2 specifies
the boundary condition value directly. For time-periodic
boundary conditions, K =1 to 4, and GTBC2 specifies the
four coefficients in the equation used to determine the
boundary condition value. (BCl)

Stagnation enthalpy used with constant stagnation enthalpy
option. (FLOW1])

Dimensional stagnation enthalpy used with constant stag-
nation enthalpy option. (FLOWI1)

Flag for second-order explicit artificial viscosity; 0 for none, 1
for constant coefficient model, 2 for nonlinear coefficient
model. (NUMI)

Flag for second-order implicit artificial viscosity; 0 for none,
1 for constant coefficient model. (NUMI)

Flag for fourth-order explicit artificial viscosity; 0 for none, 1
for constant coefficient model, 2 for nonlinear coefficient
model. (NUM1)
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*  JAXI

IBASE

IBCELM(1J)

+ IBCTI1(12,1J)

+  IBCT2(I1,L))

*+  IBCI(I2,1])

+ IBC2(I1,L))

IBVUP(I)

* ICHECK

ICONV

Flag for two-dimensional planar or axisymmetric flow; 0 for
two-dimensional planar, 1 for axisymmetric. (GMTRY1)

Base index used with ISTEP to compute one-dimensional
index for two-dimensional array. Then, for example, for any
sweep U(I11,12) = UI(IBASE + ISTEP*(1 - 1)) where I 1s the
grid index in the sweep direction. (NUMI)

Flags for elimination of off-diagonal sub-matrices resulting
from gradient or extrapolation boundary conditions: 0 if
elimination is not necessary, 1 if it is. The subscript I =1 or
2 corresponding to the sweep direction, and J =1 or 2 corre-
sponding to the lower or upper boundary in that direction.
(BCY)

Flags specifying, point-by-point, the type of boundary condi-
tions used for the k-¢ turbulence model on the ¢ =0 and
¢ = 1 surfaces. These are either set in the input, if a pomnt-
by-point distribution is specified by the user, or by the pro-
gram itself. The subscript I =1 or 2, corresponding to the &
and ¢ equations, respectively, and J =1 or 2, corresponding
to the & = 0 and ¢ = | boundaries, respectively. (BC2)

Flags specifying, point-by-point, the type of boundary condi-
tions used for the k-¢ turbulence model on the n =0 and
n = 1 surfaces. These are either set in the input, if a point-
by-point distribution is specified by the user, or by the pro-
gram itself. The subscript I =1 or 2, comresponding to the k
and ¢ equations, respectively, and J=1 or 2, corresponding
to the # = 0 and n = | boundaries, respectively. (BC2)

Flags specifying, point-by-point, the type of steady boundary
conditions used on the & =0 and ¢ =1 surfaces. These are
either set in the input, if a point-by-point distribution 1s
specified by the user, or by the program itself. I runs from 1
to N,,, corresponding to the N, conditions needed, and J =1
or 2, corresponding to the ¢ =0 and =1 boundanes, re-
spectively. (BCI)

Flags specifying, point-by-point, the type of steady boundary
conditions used on the n = 0 and n = 1 surfaces. These are
either set in the input, if a point-by-point distribution 1s
specified by the user, or by the program itself. I runs from 1
to N, corresponding to the N,, conditions needed, andJ =1
or 2, corresponding to the » =0 and n =1 boundanes, re-
spectively. (BCI)

Flags for updating boundary values from the first sweep after
the last sweep: 0 if updating is not necessary, 1 if it 1s. Up-
dating is required when gradient or extrapolation boundary
conditions are used. The subscript I = 1 or 2, corresponding
to the lower or upper boundary in the first sweep direction.
(BC1)

Results are checked for convergence every ICHECK'th time
level. (TIMEL)

Convergence flag; 0 if not converged, 1 if converged.
(TIMEI)
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ICTEST

ICVARS

IDEBUG(I)

IDTAU

IDTMOD

IEULER

1IGAM

IGINT(J) _

IHSTAG

ILAMY

ILDAMP

INEG

INNER

IPACK(I)

IPLOT

IPLT

IPLTA(I)
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Flag for convergence criteria to be used. (TIMEI)

Parameter specifying which variables are being supplied as
imtial conditions by subroutine INIT. (FLOW1)

A 20-element array of flags specifying various debug options.
(I01)y

Flag for time step selection method. (TIME]1)

The time step size is modified every IDTMOD’th time step.
(TIME)

Flag for Euler calculation option; 0 for a full time-averaged
Navier-Stokes calculatjon, 1 for an FEuler calculation.
{FLOWI) :

Flag set by method used to select GAMR; 0 if GAMR is de-
faulted (and hence ¢, and ¢, are functions of temperature), 1
f GAMR is specified by user (and hence ¢, and ¢, are con-
stants). (FLOW1)

Flags for grid interpolation requirement; 0 if interpolation is
not needed, 1 if interpolation is needed. The subscript I = |
or 2, corresponding to the ¢ and #n directions, respectively.
(GMTRY1)

Flag for constant stagnation enthalpy option; 0 to solve the
energy equation, 1 to eliminate the enmergy equation by as-
suming constant stagnation enthalpy. (FLOWI)

Flag for computation of laminar viscosity and thermal
conductivity; 0 for constant values, 1 for functions of local
temperature. (FLOW1)

Flag for the Launder-Priddin modified mixing length formula
in the inner region of the Baldwin-Lomax turbulence model.
(TURBI)

Flag indicating non-positive values of pressure and/or tem-
perature: 0 for no non-positive values, 1 for some. (FLOW1)

Flag for type of inner region turbulence model. (TURBI1)

Flags for grid packing option; 0 for no packing, 1 to pack
points as specified by the input array SQ. The subscript
I=1 or 2, corresponding to the ¢ and » directions, respec-
tively. (NUMI)

Flag controlling the creation of an auxiliary file, usually called
a “plot file”, used for later post-processing. (IO1)

Results are written into the plot file every IPLT time levels.
(I0nH '

Time levels at which results are written into the plot file. The
subscript I =1 to 101, the maximum number of time levels
that may be wrtten. (I01)
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* IPRT

* IPRTA()
* IPRTI
* IPRT2

+  IPRTIA(D)

* [PRT2A(I)

* [REST

ISTEP

ISWEEP

* ISWIRL

IT

ITBEG

ITDBC

ITEND
* ITETA

+  ITHIN()

ITSEQ
* ITURB

Results are printed every IPRT time levels. (101)

Time levels at which results are printed. The subscript I =1
to 101, the maximum number of time levels that may be
printed. (I01)

Results are printed at every IPRT1'th mesh point in the ¢
direction. (101)

Results are printed at every IPRT2'th mesh point in the »
direction. (IO1)

¢ indices at which results are printed. The subscript I =1 to
a maximum of N1, the number of grid points in the ¢ direc-
tion. (IO1)

n indices at which results are printed. The subscript =1 to
a maximum of N2, the number of grid points in the » direc-
tion. (101)

Flag controlling the reading and writing of auxiliary files used
for restarting the calculation in a separate run. (RSTRTI)

Multiplication factor used with IBASE to compute one-
dimensional index for two-dimensional array. (NUMI1)

Flag specifying ADI sweep direction; 1 for ¢ direction and 2
for » direction. (NUMI)

Flag for swirl in axisymmetric flow; 0 for no swirl, 1 for swirl.

(FLOW1)

Current time step number, or known time level. Time step
number n updates the solution from time level n to n+ 1.
(TIME1)

The time time step number, or known time level n, at the
beginning of a run. For a non-restart case, ITBEG=1.
(TIME))

Flag for time-dependent boundary conditions; 0 if all bound-
ary conditions are steady, 1 if any general unsteady boundary
conditions are used, 2 if only steady and time-periodic
boundary conditions are used. {(BCl) ’

The final time step number. (TIME1)

Flag for computing turbulent viscosity on constant » lines.
(TURBY1) ’

Flags for thin-layer option; 0 to include 2nd. denvative
viscous terms, 1 to eliminate them. The subscnipt I =1 or 2,
corresponding to the ¢ and » directions, respectively.
(FLOW1)

Current time step sequence number. (TIME1)

Flag for turbulent flow option; 0 for laminar flow, 1 for tur-
bulent flow using the Baldwin-Lomax algebraic turbulence
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ITXI1

IUNITS

v i

IVOUT(])

IWALLI(I)

IWALLX(I)

IWOUT I(I)

IWOUT2(])

11 i
I2 j
JBCTI(LJ)

JBCTX(LJ)

JBCI(LY)

Proteus 2-D Programmer’s Reference

model, 20 for turbulent flow using the Chien two-equation
k-¢ turbulence model. (TURB1)

Flag for computing turbulent viscosity on constant ¢ lines.
(TURBI)

Flag for type of units used to specify reference conditions;
0 for English units, 1 for SI units. (I01)

Gnd point index in the “vectorized” direction (i.e., the non-
sweep direction in which the “BLK” routines are vectorized).
Therefore, IV = for the first sweep and i for the second
sweep. (NUMI)

A 50-element array specifying which variables are to be
printed. (IO1)

Flags indicating type of surfaces in the ¢ direction; O for a free
boundary, 1 for a solid wall. The subscript I = 1 or 2, corre-
sponding to the ¢=0 and ¢ =1 surfaces, respectively.
(TURBI)

Flags indicating type of surfaces in the » direction; 0 for a free
boundary, 1 for a solid wall. The subscript I = 1 or 2, corre-
sponding to the » =0 and # =1 surfaces, respectively.
(TURBI)

Flags specifying whether or not various parameters are to be
printed along the ¢ boundaries; 0 for no printout, 1 for print-
out along the boundary. The subscript I =1 or 2, corre-
sponding to the £ =0 and £ =1 boundarnes, respectively.
(101)

Flags specifying whether or not various parameters are to be
printed along the # boundaries; 0 for no printout, 1 for print-
out along the boundary. The subscipt 1 =1 or 2, corre-
sponding to the n =0 and » =1 boundaries, respectively.
(10D

Grid point index in the ¢ direction. (NUMI)
Grid point index in the » direction. (NUMI)

Flags specifying the type of boundary conditions used for the
k-¢ turbulence model on the £ =0 and & = 1 surfaces, when
specified for the entire surface. The subscript I = 1 or 2, cor-
responding to the & and ¢ equations, respectively, and J =1
or 2, corresponding to the £ =0 and ¢ = 1 boundanes, re-
spectively. (BC2)

Flags specifying the type of boundary conditions used for the
k-¢ turbulence model on the =0 and 4 = 1 surfaces, when
specified for the entire surface. The subscript I = 1 or 2, cor-
responding to the & and ¢ equations, respectively, and J = 1
or 2, corresponding to the # =0 and 5 = 1 boundaries, re-
spectively. (BC2) ‘

Flags specifying the type of steady boundary conditions used
on the £ =0 and ¢ =1 surfaces, when specified for the entire
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*

JBC2A(LJ)

JI(11,12)

JTBCI(L))

JTBC2(L))

KBCPER()

KBC1{J)

KBC2(J)

KE(I11,12)

KEL(I1,12)

KT(I1,12)

KTR

LA(I1,12)

LR

J-torr/!
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surface. I runs from | to N,,, corresponding to the N,; con-
ditions needed, and J = 1 or 2, corresponding to the ¢ = 0 and
& = | boundaries, respectively. (BCI)

Flags specifying the type of steady boundary conditions used
on the n =0 and » = | surfaces, when specified for the entire
surface. I runs from 1 to N, corresponding to the N, con-
ditions needed, and J = 1 or 2, corresponding to the # = 0 and
n = 1 boundaries, respectively. (BCl)

Normally the inverse Jacobian of the non-orthogonal gnd
transformation. For the COEF routines in axisymmetric
flow, it is temporarily redefined as the product of the local
radius and the inverse Jacobian. This is a real variable.
(METRICI)

A variable specifying the type of time dependency for the
boundary conditions on the ¢ =0 and £ =1 boundares. 1
runs from 1 to N,, comesponding to the N, conditions
needed, and J =1 or 2, corresponding to the { = Oand ¢ =1
boundaries, respectively. (BCI)

A variable specifying the type of time dependency for the
boundary conditions on the n =0 and =1 boundaries. 1
runs from 1 to N, comesponding to the N,, conditions
needed, and J =1 or 2, corresponding to the n =0 and n =1
boundaries, respectively. (BCI)

Flags for spatially periodic boundary conditions: 0 for non-
periodic, 1 for periodic. The subscript I =1 or 2, corre-
sponding to the ¢ and » directions, respectively. (BCl)

Flags for type of boundaries in the ¢ direction. The subscript
J=1 or 2, corresponding to the { =0 and { =1 boundanes,
respectively. (BCI)

Flags for type of boundaries in the # direction. The subscript
J=1 or 2, corresponding to the n = 0 and # = 1 boundanes,
respectively. (BCI)

Turbulent Kinetic energy at time level n. This is a real van-
able. (TURB20)

Turbulent kinetic energy at previous or intermediate time
level. This is a real variable. (TURB20)

Effective thermal conductivity coefficient at time level n. This
is a real variable. (FLOW1I)

Dimensional reference thermal conductivity coefficient. This
is a real variable. (FLOWI)

Effective second coefficient of viscosity at time level n (usually
assumed equal to — 2u/3.) This is a real variable. (FLOWI)

Dimensional reference length. This is a real varable.

(FLOW1)
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LRMAX(LJ,K)

LWAKE1(I2)

LWAKE2(I1)

* LWALLI1(I2,])

* LWALLX(IL,D)

LWSET(I)

* MACHR M,
METTI(I) $rorm,
METXI(I) ¢ orn,
METY I(I) ¢y or,
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The grid indices corresponding to the location of the maxi-
mum absolute value of the residual. The subscript I=1 or
2, corresponding to the ¢ and 5 directions, respectively, J =1
to »,,, corresponding to the N, coupled governing equations,
and K =1 or 2, corresponding to the residual computed
without and with the artificial viscosity terms. (TIME])

Grid point index in the ¢ direction used as the origin for

‘computing length scales for free turbulent flows. (TURBI)

Gnd point index in the » direction used as the ongin for
computing length scales for free turbulent flows. (TURBI)

Flags indicating, point-by-point, the type of surfaces in the ¢
direction; 0 for a free boundary, 1 for a solid wall. The sub-
script I=1 or 2, comresponding to the £ =0 and ¢ =1
boundaries, respectively. (TURBI)

Flags indicating, point-by-point, the type of surfaces in the n
direction; 0 for a free boundary, 1 for a solid wall. The sub-
script I1=1 or 2, corresponding to the =0 and =1
boundaries, respectively. (TURB1)

Flags specifying how wall locations are determined for the
turbulence model; 0 if wall locations are found automatically
by searching for boundary points where the velocity is zero,
1 if input using the LWALL parameters, 2 if input using the
IWALL parameters. The subscript I =1 to 4, corresponding
tothe £=0, £ =1, 5 =0, and = 1 boundaries, respectively.
(TURBI)

Reference Mach number, u,/(y,R T,)2. This is a real variable.
(FLOWI)

The denvative of the computational coordinate in the ADI
sweep direction with respect to untrans‘ormed time t. In ac-
tual use, this one-dimensional array is equivalenced to the
two-dimensional array METT(IV,IS). 1S is the grid index in
the sweep direction, running from 1 to N. IV is the grid index
in the “vectorized” direction (i.e., the non-sweep direction in
which the "BLK” routines are vectorized), and runs from 2 to
N, — 1. This is a real variable. (METRIC1)

The denvative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate x.
In actual use, this one-dimensional array is equivalenced to
the two-dimensional array METX(IV IS). IS is the grid index
in the sweep direction, running from 1 to N. IV is the grid
index in the “vectorized” direction (i.e., the non-sweep direc-
tion in which the “BLK” routines are vectorized), and runs
from 2 to N, — 1. This is a real variable. (METRICI)

The derivative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate y or
cylindrical coordinate r. In actual use, this one-dimensional
array is equivalenced to the two-dimensional array
METY(IV,IS). IS is the gnd index in the sweep direction,
running from 1 to N. 1V is the grid index in the “vectorized”
direction (i.e., the non-sweep direction in which the “BLK”
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MU(IL,I2) "

* MUR i

MUT(11,12) He

MUTL(11,12) He

NAMAX

NC

* NDTCYC

NEN

NEQ N.,

NEQP

NEQPM

NET

* NGEOM

* NGRID

*  NHIST

*  NHMAX

NIN

* NITAVG

routines are vectorized), and runs from 2to N, — 1. Thisis a
real vaniable. (METRICI)

Effective viscosity coefficient at time level n. This is a real
variable. (FLOWI)

Dimensional reference viscosity coefficient. This 1s a real
vanable. (FLOW1)

Turbulent viscosity coefficient at time level . This is a real
variable. (FLOW1)

Turbulent viscosity coefficient at previous or intermediate
time level. This is a real variable. (TURB20)

A dimensioning parameter equal to the maximum number of
time steps allowed in the moving average convergence test (the
ICTEST-= 2 option). (PARAMSI)

A dimensioning parameter equal to the number of boundary
conditions per equation. (PARAMSI)

Array index associated with the continuity equation.
(NUM1I)

Number of time steps per cycle used in the time step cycling
procedure. (TIMEL)

Array index associated with the energy equation. (NUM1)

The number of coupled governing equations actually being
solved. (NUMI)

A dimensioning parameter equal to the number of coupled
equations allowed. (PARAMSI)

A dimensioning parameter equal to the maximum number of
coupled equations available. (PARAMSI)

Array index associated with the dependent variable E7.
(NUMI)

Flag used to specify type of computational coordinates; 1 for
Cartesian (x,p) coordinates, 2 for polar (7,8 coordinates, and
10 to read the coordinates from unit NGRID. (GMTRY1)
Unit number for reading gnd file. (101)

Unit number for writing convergence history file. (IO1)
Maximum number of time levels allowed in the printout of
the convergence history file (not counting the first two, which
are always prnted.) (101)

Unit number for reading namelist input. (I01)

Number of time steps used in the moving average convergence
test. (TIMEI)
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NMAXP

NOUT
NPLOT

NPLOTX

NPRTI

NPRT2

NPTS N
NPT1 NMor N +1

NPT2 Nror Na+ 1

NR

NRQIN
NRQOUT
NRU

NRV

NRW

NRXIN

NRXOUT

NSCR1
NTBC

NTBCA(I)

NTIME(I)
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A dimensioning parameter equal to the maximum of N1P and
N2ZP. (PARAMSI)

Unit number for writing standard output. (IO1)

Unit number for writing CONTOUR or PLOT3D Q plot file.
(Ion)

Unit number for writing PLOT3D XYZ plot file. (I01)
Total number of indices for printout in the & direction. (I0])
Total number of indices for printout in the » direction. (IO 1)
The number of grid points in the sweep direction. (NUMID)
The number of grid points in the ¢ direction used in com-
puting coefficients: N, for non-periodic boundary conditions;
N1+ 1 for spatially periodic boundary conditions. (NUMI)
The number of grid points in the » direction used in com-
puting coefficients: N, for non-periodic boundary conditions;

N+ 1 for spatially periodic boundary conditions. (NUM1)

Array index associated with the dependent varable p.
(NUMID)

Unit number for reading restart flow field. (RSTRTI)
Unit number for writing restart flow field. (RSTRTI)

Array index associated with the dependent variable pu.
(NUMD)

Array index associated with the dependent variable pv.
(NUMD)

Array index associated with the dependent varable pw.
(NUMID)

Unit number for reading restart computational mesh.
(RSTRTI)

Unit number for writing restart computational mesh.
(RSTRTD)

Unit number for scratch file in subroutine PLOT. (101)

Number of values in the tables of GTBCI and;or GTBC2 vs.
NTBCA for general unsteady boundary conditions. (BC1)

Time levels at which GTBCI and/or GTBC2 are specified for
general unsteady boundary conditions. The subscript I = 1 to
NTBC, cormresponding to the NTBC values in the table.
(BC1)

Maximum numbser of time steps to march. I runs from 1 to
NTSEQP, corresponding to the time step sequence number.
(TIMEI)
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* NTKE
NTOTP

NTP

* NTSEQ

NTSEQP

NXM

NYM

NZM

NI1P

P(11,12)

PONE

PR

* PRLR

PRR

* PRT

PTWO
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N,

z’Vz

Py

P
Prl,

Pr,

Pr,

P,

Number of k-¢ iterations per mean flow iteration. (TURB20)
A dimensioning parameter equal to the total storage required
for a single two-dimensional array (e, N1P x N2P).
(PARAMSI)

A dimensioning parameter equal to the maximum number of
entries in the table of time-dependent boundary condition
values. (PARAMSI)

The total number of time step sequences being used.
(TIMED)

A dimensioning parameter equal to the maximum number of
time step sequences in the time step sequencing option.
{(PARAMSI)

The number of grid points in the “vectorized” direction (1.c.,
the non-sweep direction in which the "BLK” routines are
vectorized). Therefore, NV = N, for the first sweep and N, for
the second sweep. (NUMI)

Array index associated with the x-momentum equation.
(NUMI)

Array index associated with the y or r-momentum equation.
(NUMID)

Array index associated with the swirl momentum equation.
(NUMI)

The number of grid points in the ¢ direction. (NUMI)

A dimensioning parameter equal to the maximum number of
grid points in the ¢ direction. (PARAMSI)

The number of grid points in the # direction. (NUMI)

A dimensioning parameter equal to the maximum number of
grid points in the » direction. (PARAMSI)

Static pressure at time level n. (FLOW1)

Part 1 of the production rate of the turbulent kinetic energy.
(TURB20)

Dimensional reference static pressure, p.RT,|g.. (FLOW1)

Reference laminar Prandtl number, G itrlk,,  Where
Cp, = yrR /(Yr - 1). (FLOWI)

Reference Prandtl number, ./, T,. (FLOWI)

Turbulent Prandtl number, or, if non-positive, a flag indicat-
ing the use of a variable turbulent Prandtl number. (TURBI)

Part 2 of the production rate of the turbulent kinetic energy.
(TURB20)
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PO

RAX(I)

RER

RESAVG(J,K)

RESL2(J,K)

RESMAX(J,K)

REXTI

REXT2

RG
RGAS
RHO(I1,12)

RHOIL(I1,12)

RHOR
RMAX
RMIN
s

SIGE

SIGK

lorr

Re,

RI’IGX

R €x tr

Re,,

=
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Initial static pressure. (IC1)

1 for two-dimensional planar flow, and the local radius r for
axisymmetric flow. Iis the grid index in the sweep direction,
running from 1 to N. (METRICI)

Reference Reynolds number, p.uL,[u,. (FLOWI)

The average absolute value of the residual for the previous
time step. The subscript J =1 to N.,, corresponding to the
N,, coupled governing equations, and K =1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIME])

The L, norm of the residual for the previous time step. The
subscript J = 1 to N,,, corresponding to the N,, coupled gov-
erning equations, and K =1 or 2, corresponding to the resi-
dual computed without and with the artificial viscosity terms.
(TIMEI)

The maximum absolute value of the residual for the previous
time step. The subscnipt J =1 to N, corresponding to the
N., coupled governing equations, and K= 1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIMEI)

Reynolds number at the'beginning of the transition region,
based on maximum total velocity and distance from & = 0, for
flow predominantly in the ¢ direction with a leading edge at
¢=0. (TURBI)

Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from # = 0, for
flow predominantly in the » direction with a leading edge at
n=0. (TURBI)

Dimensional gas constant. (FLOW1)

Nondimensional gas constant. (FLOWI1)

Static density at time level 2. (FLOW1)

Static density at previous or intermediate time level.
(FLOW1)

Dimensional reference den§ity'. (FLOW1)

Maximum 7 coordinate for polar grid option. (GMTRY)
Minimum 7’ coordinate for polar grid option. (GMTRY1)
See SVECT1. (NUMD)

Constant used in the diffusion term of the ¢ equation.
(TURB20)

Constant used in the diffusion term of the k equation.
(TURB20)
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SQLI)

SVECTLI)

T(11,12)
TAU1,12)

TFACT

THC(I)

THE(I)

THKE()

THMAX

THMIN

THX(I)

THY(I)

THZ(I)

TITLE

TL(IL,I2)

TLIM

TR

TO

611 62

91, 921

0., 0:

’
emcx

O min

ely 92’

91 ) 021

gl: 92v

Ty

b

0,

63

6,
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An array controlling the packing of grid points using the
Roberts transformation. The subscript I=1 or 2, corre-
sponding to the ¢ and # directions, respectively. SQ(I,1)
specifies the location of packing, and SQ(I,2) specifies the
amount of packing. (NUMI)

Subvector of source terms in the block tnidiagonal system of
equations. In actual use, this one-dimensional array is equiv-
alenced to the three-dimensional array S(IV,IS,J). IS is the
grid index in the sweep direction, running from 1 to N. IVis
the grid index in the “vectorized” direction (i.¢., the non-sweep
direction in which the “BLK” routines are vectorized), and
runs from 2 to N, — 1. The subscnpt J=1 to N,, corre-
sponding to the N,, coupled governing equations. (NUMI)

Static temperature at time level n. (FLOWI)
Current value of the time marching parameter. (TIMEI)

Factor used 1in computing the k-¢ time step,
A, =TFACT(A7). (TURB20)

A two-element array specifying the time difference centering
parameters used for the continuity equation. (NUMI)

A three-element array specifying the time difference centering
parameters used for the energy equation. (NUMI)

A two-element array specifying the time difference centering
parameters used for the k-¢ equations. (NUM?2)

Maximum &’ coordinate in degrees for polar gnd option.
(GMTRY])

Minimum & coordinate in degrees for polar grid option.
(GMTRY1})

A three-element array specifying the time difference centering
parameters used for the x-momentum equation. (NUM]I)

A three-element array specifying the time difference centering
parameters used for the y or r-momentum equation. (NUMI)

A three-element array specifying the time difference centering
parameters used for the swirl momentum equation. (NUMI)

Title for printed output and CONTOUR plot file, up to 72
characters long. This is a character variable. (TITLEI)

Static temperature at previous or intermediate time level.
(FLOWI)

When the amount of CPU time remaining for the job drops
below TLIM seconds, the calculation is stopped. (TIMEI)

Dimensional reference temperature. (FLOW1)

Initial static temperature. (IC1)
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U(11,12)

UL(1,12)

* UR
* Lo

V(11,12)

VL(11,12)

VORT(I1,12)

VORT(I1,12)

+ V0
W(I1,12)
WL(I1,12)

+ WO
X(11,12)
XIT(11,12)
XIX(11,12)
XIY(I1,12)

+  XMAX

+  XMIN
Y(I1,12)

+  YMAX

*  YMIN
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u’

2|
2]

Vo

&
&

{yoré,

Xmax
Xmin
yorr

Vrmex

ymin

Velocity in the Cartesian x direction at time level n
(FLOWD)

Velocity in the Cartesian x direction at previous or interme-
diate time level. (FLOW1)

Dimensional reference velocity. (FLOW1)
Initial velocity in the Cartesian x direction. (IC1)

Velocity in the Cartesian y direction or cylindrical r direction
at time level n. (FLOW1)

Velocity in the Cartesian y direction or cylindncal 7 direction
at previous or intermediate time level. (FLOW1)

Total vorticity magnitude. (TURBI1)

Production rate of turbulent kinetic energy. (TURBI)

Initial velocity in the Cartesian y direction or cylindrical r di-
rection. (IC1)

Swirl velocity at time level n. (FLOW1)

Swirl velocity at previous or intermediate time level.
(FLOWY)

Initial swirl velocity. (IC1)
Cartesian x coordinate. (METRICI1)

The derivative of the computational coordinate & with respect
to untransformed time ¢. (METRIC1)

The derivative of the computational coordinate ¢ with respect
to the Cartesian coordinate x. (METRIC1)

The derivative of the computational coordinate ¢ with respect
to the Cartesian coordinate y or cylindrical coordinate r.
(METRICY)

Maximum x coordinate for Cartesian grid option.
(GMTRY])

Minimum x coordinate for Cartesian grid option.
(GMTRY1)

Cartesian p coordinate or cylindrical r coordinate.
(METRICI)

Maximum p coordinate for Cartesian gnd option.
(GMTRY])

Minimum y coordinate for Cartesian grid option.
(GMTRY1)
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YPLUSD(I11,12) yr Non-dimensional distance from the nearest sohd wall.
(TURB20)

3.3 COMMON VARIABLES LISTED SYMBOLICALLY

In this section many of the Proteus Fortran variables stored in common blocks are defined, listed sym-
bolically. Note that this list does not include those vanables without symbolic representations, such as
various flags, or those whose meaning depends on other parameters, such as the boundary condition values
and sweep direction metrics. The variables marked with an asterisk are input vanables. More details on
these may be found in Section 3.1 of Volume 2. The common block each variable is stored in is given 1
parentheses at the end of each definition. For subscripted vanables, the subscripts are defined along with
the variable, except for the subscripts I1 and 12, which are the indices i and j in the { and % directions, re-
spectively, and run from 1 to ¥, and N,.

Unless otherwise noted, all varables representing physical quantities are nondimensional. The
nondimensionalizing procedure is described in Section 3.1.1 of Volume 2. The type (real or integer) of the
vaniables follows standard Fortran convention, unless stated otherwise. (l.e., those starting with I, J, K,
L, M, or N are integer, and the remainder are real.)

Fortran
Symbol Vanable Defimtion

* A APLUS Van Driest damping constant in the inner and outer regions
of the Baldwin-Lomax turbulence model. (TURBI)

A AMATI(D) Subdiagonal submatrix of coefficients in the block tridiagonal
coefficient matrix. In actual use, this one-dimensional array
is equivalenced to the four-dimensional array A(IV,IS,J,K).
IS is the grid index in the sweep direction, running from 1 to
N. IV is the grid index in the “vectorized” direction (i.c., the
non-sweep direction in which the “BLK” routines are
vectorized), and runs from 2 to N, — 1. The subscnipt J =1
to N,,, corresponding to the N,, coupled governing equations,
and K =1 to N,, cormresponding to the N,, dependent van-
ables. (NUMI)

* B CB Constant used in the formula for the Klebanoff intermittency
factor Fxu.s in the outer region of the Baldwin-Lomax turbu-
lence model, and in the inner region of the Spalding-
Kleinstein turbulence model. (TURBI)

B BMATI(]) Diagonal submatrix of coefficients in the block tridiagonal
coefficient matrix. In actual use, this one-dimensional array
is equivalenced to the four-dimensional array B(IV,IS.J,K).
IS is the grid index in the sweep direction, running from 1 to
N. IV is the grid index in the “vectorized” direction (i.e., the
non-sweep direction in which the “BLK” routines are
vectorized), and runs from 2 to N, — 1. The subscnpt J =1
to N,,, corresponding to the N,, coupled governing equations,
and K =1 to N,, cormresponding to the ., dependent van-
ables. (NUMI)

(oA CP(11,12) Specific heat at constant pressure at time level n. (FLOW1)
I CV(11,12) Specific heat at constant volume at time level n. (FLOWI)

* G, CCP Constant used in the outer region of the Baldwin-Lomax tur-
bulence model. (TURBI)
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Ccp] - Ccpd
Ckl - Ck2
* CKleb

* (CKleb)mm

G,
Cu - Ca
¥ Cu
G
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£ G
C
€
Er
Er
&
hr
L

r

CCPI-CCP4

CKI1-2

CKLEB

CKMIN

CMUR

CMUI1-2

CWK

CONE

CTWOR

CTHREE

CMATI(I)

ER
ET(I1,12)
ETL(I1,12)
GC

HSTAG

HSTAGR

Il
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Constants in empirical formula for specific heat as a function
of temperature. (FLOW1)

Constants in empirical formula for thermal conductivity coef-
ficient as a function of temperature.

Constant used in the formula for the Klebanoff intermittency
factor Fy., in the outer region of the Baldwin-Lomax turbu-
lence model. (TURBI)

Constant used in the formula for the Klebanoff intermittency
factor Fy.s in the outer region of the Baldwin-Lomax turbu-
lence model. (TURBI)

Constant used to compute C, in the turbulent viscosity for-
mula for the k-¢ equations. (TURB20)

Constants in empirical formula for laminar viscosity coeffi-
cient as a function of temperature. (FLOW1)

Constant used in the formula for F... in the outer region of
the Baldwin-Lomax turbulence model. (TURBI)

Constant‘used in the production term of the ¢ equation.
(TURB20)

Constant used to compute C; in the dissipation term of the ¢
equation. (TURB20)

Constant used to compute C, in the turbulent viscosity for-
mula for the k-¢ equations. (TURB20)

Superdiagonal submatrix of coefficients in the block
tridiagonal coefficient matrix. In actual use, this one-
dimensional array is equivalenced to the four-dimensional ar-
ray C(IV,IS,J K). IS is the grid index in the sweep direction,
running from 1 to N. IV is the grid index in the “vectorized”
direction (i.e., the non-sweep direction in which the "BLK”
routines are vectorized), and runs from 2 to N,~ 1. The
subscript J = 1 to ¥,,, corresponding to the N,, coupled gov-
erning equations, and K = 1 to N,,, corresponding to the N,,
dependent variables. (NUM]1)

Dimensionai reference energy, p,u2. (FLOW1)
Total energy at time level n. (FLOW1I)
Total energy at previous or intermediate time level. (FLOW )

Dimensional proportionality factor in Newton’s second law,
either 32.174 1b,-ft/Ibrsec?, or 1.0 kg-m/N-sec?. (FLOW]I)

Stagnétion enthalpy used with constant stagnation enthalpy
option. (FLOW)

Dimensional stagnation enthalpy used with constant stag-
nation enthalpy option. (FLOW1)

Grid point index in the ¢ direction. (NUMI)
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i, v

j 12
J-1 JI(11,12)
k KT(1,12)
k KE(1,12)
k KEL(I1,12)

* ok, KTR

* K CCLAU

* L, LR

* M, MACHR
n 1T

* n CNA

* n CNL
N NPTS
N NEQ
N, \V

* N N1

Grid point index in the “vectorized” direction (i.€., the non-
sweep direction in which the “BLK” routines are vectonzed).
Therefore, IV = for the first sweep and i for the second
sweep. (NUMI)

Grid point index in the # direction. (NUM]I)

Inverse Jacobian of the non-orthogonal grid transformation.
(For axisymmetric flow, in the COEF routines JI = r/~!, the
product of the local radius and the inverse Jacobian.) This is
a real variable. (METRICI)

Effective thermal conductivity coefficient at time level ». This
is a real variable. (FLOWI)

Turbulent kinetic energy at time level n. This is a real van-
able. (TURB20)

Turbulent kinetic energy at previous or intermediate time
level. This is a real variable. (TURB20)

Dimensional reference thermal conductivity coefficient. This
is a real variable. (FLOW1I)

Clauser constant used in the outer region of the Baldwin-
Lomax turbulence model. (TURBI)

Dimensional reference length. This is a real vanable.
(FLOWI)

Reference Mach number, u,/(-y,E T)V2. This is a real variable.
(FLOW1)

Current time step number, or known time level. Time step
number 7 updates the solution from time level n to n+ 1.
(TIME1)

Exponent in the formula used to average the two outer region
u. profiles that result when both boundaries in a coordinate
direction are solid surfaces. (TURBI)

Exponent in the Launder-Priddin modified mixing length
formula for the inner region of the Baldwin-Lomax turbulence

model. (TURBI)
The number of grid points in the sweep direction. (NUMI)

The number of coupled governing equations actually being
solved. (NUMI)

The number of grid points in the “vectorized” direction (i,
the non-sweep direction in which the “BLK” routines are
vectorized). Therefore, NV = N, for the first sweep and N, for
the second sweep. (NUMI1)

The number of grid points in the ¢ direction. (NUMI)
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M+1

N,

IVZ

N+ 1

D

op|OEr

Op[dp

op[d(pu)

op/9(pv)

op|d(pw)

P

P,

+ Pr,

Pr.

NPTI

NPTI

N2

NPT2

NPT2

P(I1,12)

PR

PO

DPDET(])

DPDRHO())

DPDRU(I)

DPDRV(I)

DPDRW(I)

PONE

PTWO

PRLR

PRR
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The number of grid points in the ¢ direction used in com-
puting coefficients (only for non-periodic boundary condi-
tions.) (NUMI)

The number of grid points in the ¢ direction used in com-
puting coefficients (only for spatially periodic boundary con-
ditions.) (NUMI)

The number of grid points in the » direction. (NUMI)

The number of grid points in the # direction used in com-
puting coefficients (only for non-periodic boundary condi-
tions.) (NUM1)

The number of grid points in the » direction used in com-
puting coefficients (only for spatially periodic boundary con-
ditions.) (NUMI)

Static pressure at time level n. (FLOW1)

Dimensional reference static pressure, p,RT,/g.. (F LOW1)
Initial static pressure. (IC1)

The derivative of p with respect to Er, stored as a one-
dimensional array in the sweep direction. The subscript 1
therefore runs from 1 to N. (FLOW1)

The derivative of p with respect to p, stored as a one-

dimensional array in the sweep direction. The subscript [
therefore runs from 1 to N. (FLOW1)

The derivative of p with respect to pu, stored as a one-
dimensional array in the sweep direction. The subscript 1
therefore runs from 1 to N. (FLOW1)

The derivative of p with respect to pv, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOW1)
The derivative of p with respect to pw, stored as a one-
dimensional array in the sweep direction. The subscript [
therefore runs from 1 to N. (FLOW1)

Part 1 of the production rate of the turbulent kinetic energy.
(TURB20)

Part 2 of the production rate of the turbulent kinetic energy.
(TURB20)

Reference laminar Prandtl number, G.utk,,  where
&, =¥y:R[(y,—1). (FLOWI)

Reference Prandil number, u12/k,T,. (FLOWI)
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*  Pr,

AQaug

AQMQX

R

Rz,

Rmax

PRT

CHGAVG(])

CHGMAX(LJ)

Y(11,12)

RAX(I)

RMAX

RMIN

RESAVG(J.K)

RESL2(J,K)

RESMAX(J,K)

RG
RGAS
RER

REXTI1

Turbulent Prandtl number, or, if non-positive, a flag indicat-
ing the use of a variable turbulent Prandtl number. (TURBI)

Maximum change in absolute value of the dependent varni-
ables, averaged over the last NITAVG time steps.® The sub-
scipt 1=1 to N, corresponding to the N,, dependent
variables. (TIMEI)

Maximum change in absolute value of the dependent variables
over a single time step® The subscript I=1to N, corre-
sponding to the N. dependent variables, and J=1 to
NITAVG, the number of time steps used in the moving av-
erage option for determining convergence. (TIMEI)

Cylindrical r coordinate. (METRICI)

Local radius r for axisymmetric flow. Iis the gnd index in the
sweep direction, running from 1 to N. (METRICI)

Maximum 7 coordinate coordinate for polar gnd option.
(GMTRY1)

Minimum # coordinate coordinate for polar gnd option.
(GMTRYY)

The average absolute value of the residual for the previous
time step. The subscript J =1 t0 NV, corresponding to the
N., coupled governing equations, and K=1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIMEI)

The L, norm of the residual for the previous time step. The
subscript J = 1 to N,,, corresponding to the N,, coupled gov-
erning equations, and K =1 or 2, corresponding to the resi-
dual computed without and with the artificial viscosity terms.
(TIMED)

The maximum absolute value of the residual for the previous
time step. The subscript J =1 to N, corresponding to the
N., coupled governing equations, and K=1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIMEL)

Dimensional gas constant. (FLOW1)

Nondimensional gas constant. (FLOWI)

Reference Reynolds number, paeLJu.. (FLOWI)

Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from ¢ =0, for

flow predominantly in the ¢ direction with a leading edge at
&=0. (TURBI)

6 For the energy equation, the change in Eris divided by Er, = pRT, /(3 — 1) + u}{2, so that it is the same order
of magnitude as the other conservation variables.
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oT|o(pu)

aT|d(pv)
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SVECTI(I)

DT()

T(11,12)
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DTDET(I)
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DTDRW(I)
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Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from » = 0, for
flow predominantly in the » direction with a leading edge at
n=0. (TURBI)

Subvector of source terms in the block tridiagonal system of
equations. In actual use, this one-dimensional array is equiv-
alenced to the three-dimensional array S(IV,IS,J). IS is the
grid index in the sweep direction, running from 1 to N. [V is
the grid index in the “vectorized” direction (i.e., the non-sweep
direction in which the "“BLK” routines are vectorized), and
runs from 2 to N, — 1. The subscript J=1 to N,,, corre-
sponding to the ., coupled governing equations. (NUM1)

The time step size, when specified directly as input. I is the
time step sequence number, and runs from 1 to NTSEQ.
(TIME1)

Static temperature at time level n. (FLOW1)

Static temperature at previous or intermediate time level.
(FLOW1)

The denivative of 7 with respect to Er, stored as a one-
dimensional array in the sweep direction. The subscript |
therefore runs from | to N. (FLOW1I)

The derivative of T with respect to p, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

The denvative of T with respect to pu, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOW1)

‘T'he derivative of 7 with respect to pv, stored as a one-

dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

The denvative of T with respect to pw, stored as a one-
dimensional array in the sweep direction. The subscript 1
therefore runs from 1 to N. (FLOW1I)

Dimensional reference temperature. (FLOW1)

Initial static temperature. (IC1)

Velocity in the Cartesian x direction at time level n.
(FLOWY)

Velocity in the Cartesian x direction at previous or interme-
diate time level. (FLOW1)

Dimensional reference velocity. (FLOW1)
Initial velocity in the Cartesian x direction. (IC1)
Velocity in the Cartesian p direction or cylindrical r direction

at time level n. (FLOWI)
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VL(IL12)

Vo

W(I1,12)
WL(I1,12)

W0
X(IL12)
XMAX

XMIN

Y(11,12)
YMAX

YMIN

YPLUSD(1,12)

EPS(I)

E(11,12)
EL(I1,12)

CAVS2E()

CAVS4E(])

CAVS2K(])

ETAY(I1,12)

METY1()

Velocity in the Cartesian y direction or cylindrical  direction
at previous or intermediate time level. (FLOWI)

Initial velocity in the Cartesian y direction or cylindrical  di-
rection. (ICI)

Swirl velocity at time level n. (FLOW1)

Swirl velocity at previous or intermediate time level
(FLOW1)

Initial swirl velocity. (IC1)
Cartesian x coordinate. (METRICI)

Maximum x coordinate for Cartesian gnd option.
(GMTRY)

Minimum x coordinate for Cartesian gnid option.
(GMTRY1)

Cartesian y coordinate. (METRICI)

Maximum » coordinate for Cartesian grid option.
(GMTRY1)

Minimum y coordinate for Cartesian grid option.
(GMTRY1)

Non-dimensional distance from the nearest sohd wall.
(TURB20)

Convergence level to be reached. The subscript 1 =1 to N,
corresponding to the V., dependent vanables. (TIME1)

Turbulent dissipation rate at time level n. (TURB20)

Turbulent dissipation rate at previous or intermediate time
level. (TURB20)

Second-order explicit artificial viscosity coefficient in constant
coefficient model. The subscript I = 1 to N,,, corresponding
to the N,, coupled governing equations. (NUMI)

Fourth-order explicit artificial viscosity coefficient in constant
coefficient model. The subscript I = 1 to N,,, corresponding
to the V,, coupled governing equations. (NUMI)

Second-order implicit artificial viscosity coefficient in constant
coefficient model. The subscript I = 1 to N,,, corresponding
to the N,, coupled governing equations. (NUMI)

The derivative of the computational coordinate » with respect
to the cylindrical coordinate . (METRICI)

The derivative of the computational coordinate n with respect

to the cylindrical coordinate r (second ADI sweep only.) In
actual use, this one-dimensional array is equivalenced to the
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two-dimensional array METY(IV,IS). IS is the grid index in
the sweep direction, running from 1 to N. IV is the grid index
in the “vectorized” direction (1.e., the non-sweep direction in
which the “BLK” routines are vectorized), and runs from 2 to
N, —1. This is a real vaniable. (METRICI)

The derivative of the compﬁtationa] coordinate y with respect
to untransformed time ¢t. (METRICI)

The derivative of the computational coordinate » with respect
to untransformed time ¢ (second ADI sweep only.) In actual
use, this one-dimensional array is equivalenced to the two-
dimensional array METT(IV,IS). IS 1s the grid index in the
sweep direction, running from 1 to N. IV is the grid index in
the “vectorized” direction (i.e., the non-sweep direction in
which the “BLK” routines are vectorized), and runs from 2 to
N, — 1. This is a real variable. (METRICI)

The derivative of the computational coordinate » with respect
to the Cartesian coordinate x. (METRICI)

The derivative of the computational coordinate » with respect
to the Cartesian coordinate x (second ADI sweep only.) In
actual use, this one-dimensional array is equivalenced to the
two-dimensional array METX(IV,IS). IS is the grid index in
the sweep direction, running from 1 to N. IV is the grid index
in the “vectorized” direction (i.e., the non-sweep direction in
which the "BLK” routines are vectorized), and runs from 2 to
N, —1. This 1s a real vanable. (METRIC1)

The denivative of the computational coordinate » with respect
to the Cartesian coordinate . (METRICI)

The denivative of the computational coordinate » with respect
to the Cartesian coordinate y (second ADI sweep only.) In
actual use, this one-dimensional array is equivalenced to the
two-dimensional array METY(IV,IS). IS is the grid index in
the sweep direction, running from 1 to N. IV is the grid index
in the “vectorized” direction (i.e., the non-sweep direction in
which the "BLK” routines are vectorized), and runs from 2 to
N, — 1. This is a real vanable. (METRIC])

Computational grid spacing in the # direction (second ADI
sweep only.) (NUMI)

Computational gnid spacing in the # direction. (NUMI)

Von Karman mixing length constant used in the inner region
of the Baldwin-Lomax and Spalding-Kleinstein turbulence
models. (TURBI)

User-specified constant in nonlinear coefficient artificial
viscosity model. The subscnpt I = 1 to N, corresponding to
the N, coupled governing equations. (NUM]I)

User-specified constant in nonlinear coefficient artificial

viscosity model. The subscript [ = 1 to N,,, corresponding to
the N,, coupled governing equations. (NUM1)
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GAMR
LA(11,12)

MU(I1,12)

MUR

MUT(I1,12)

MUTL(I1,12)

XIY(I1L,12)

METYI(I)

XIT(11,12)

METTI(I)

XIX(11,12)

METX I(I)

XIY(11,12)

METY I(I)

Reference ratio of specific heats, ¢, /c,,. (FLOWI)

Effective second coefficient of viscosity at time level » (usually
assumed equal to — 2u/3.) This is a real vaniable. (FLOWI)

Effective viscosity coefficient at time level n. This is a real
variable. (FLOWY!)

Dimensional reference viscosity coefficient. This 1s a real
vanable. (FLOW1)

Turbulent viscosity coefficient at time level n. This is a real
vaniable. (FLOW1)

Turbulent viscosity coefficient at previous or intermediate
time level. This is a real variable. (TURB20)

The derivative of the computational coordinate & with respect
to the cylindrical coordinate . (METRICI)

The derivative of the computational coordinate & with respect
to the cylindrical coordinate 7 (first ADI sweep only.) In ac-
tual use, this one-dimensional array is equivalenced to the
two-dimensional array METY(IV,IS). IS i1s the grid index in
the sweep direction, running from 1to N. IV is the grid index
in the “vectorized” direction (i.e., the non-sweep direction in
which the “BLK” routines are vectorized), and runs from 2 to
N, — 1. This is a real varniable. (METRICI)

The derivative of the computational coordinate ¢ with respect
to untransformed time ¢. (METRICI)

The derivative of the computational coordinate £ with respect
to untransformed time ¢ (first ADI sweep only.) In actual use,
this one-dimensional array is equivalenced to the two-
dimensional array METT(IV,IS). IS is the grid index in the
sweep direction, running from 1 to N¥. IV is the grid index in
the “vectorized” direction (i.c., the non-sweep direction in
which the “BLK” routines are vectorized), and runs from 2 to
N, — 1. This is a real variable. (METRICI)

The derivative of the computational coordinate ¢ with respect
to the Cartesian coordinate x. (METRICI)

The derivative of the computational coordinate & with respect
to the Cartesian coordinate x (first ADI sweep only.) In ac-
tual use, this one-dimensional array is equivalenced to the
two-dimensional array METX(IV,IS). IS is the grid index in
the sweep direction, running from 1 to N. IV is the gnd index
in the “vectorized” direction (i.e., the non-sweep direction in
which the “BLK” routines are vectorized), and runs from 2 to
N, — 1. This is a real vanable. (METRIC1)

The derivative of the computational coordinate & with respect
to the Cartesian coordinate y. (METRICI)

The derivative of the computational coordinate ¢ with respect

to the Cartesian coordinate y (first ADI sweep only.) In ac-
tual use, this one-dimensional array is equivalenced to the
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THKE(])

THE(I)

THX(I)
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two-dimensional array METY(IV,IS). IS is the grid index in
the sweep direction, running from 1to N. IV is the grid index
in the “vectorized” direction (i.e., the non-sweep direction in
which the "BLK” routines are vectorized), and runs from 2 to
N,— 1. This is a real variable. (METRIC1)

Computational grid spacing in the ¢ direction (first ADI
sweep only.) (NUMI)

Computational grid spacing in the ¢ direction. (NUMI)
Static density at time level 2. (FLOWI)

Static density at previous or intermediate time level.
(FLOW1)

Dimensional reference density. (F LOWI)

Constant used in the diffusion term of the k equation.
(TURB20)

Constant used in the diffusion term of the ¢ equation.
(TURB20)

Current value of the time marching parameter. (TIMEI)
Computational time step size. (TIMEI)

Maximum 8" coordinate in degrees for polar grid option.
(GMTRY1)

Minimum 6’ coordinate in degrees for polar grid option.
(GMTRY)

A two-element array specifying the time difference centering
parameters used for the continuity equation. (NUM]1)

A two-element array specifying the time difference centering
parameters used for the k-¢ equations. (NUM2)

A three-clement array specifying the time difference centening
parameters used for the energy equation. (NUMI)

A three-element array specifying the time difference centering
parameters used for the x-momentum equation. (NUM]1)

A three-element array specifying the time difference centering
parameters used for the y or r~momentum equation. (NUM 1)

A three-element array specifying the time difference centering
parameters used for the swirl momentum equation. (NUMI)

Total vorticity magnitude. (TURBI)

Production rate of turbulent kinetic energy. (TURBI)
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4.0 PROTEUS SUBPROGRAMS

In this section, each subprogram in Proteus is described, first in summary, then in detail. The summary
is simply a list of the subprograms with a brief description of the purpose of each one. The detailed de-
scription includes, for each subprogram, a list of the subprograms that reference it, and a list of the sub-
programs that it references. The Fortran variables that are input to and output from each subprogram are
defined. And finally, details of the computations being done within each subprogram are presented.

4.1 SUBPROGRAM SUMMARY

The following table presents a brief description of the purpose of each subprogram in the Proteus code.

Proteus Subprogram Summary

Subprogram Purpose

ADI Manage the block tridiagonal inversion.

AVISC1 Compute constant coefficient artificial viscosity.

AVISC2 Compute nonlinear coefficient artificial viscosity.

BCDENS Compute density boundary conditions.

BCELIM Eliminate off-diagonal coefficient submatrices resulting from
three-point boundary conditions.

BCF Compute user-written boundary conditions.

BCFLIN User-supplied routine for linearization of user-supplied boundary
conditions.

BCGEN Manage computation of boundary conditions.

BCGRAD Compute gradients with respect to & and .

BCMET Compute various metric functions for normal gradient boundary
conditions. . :

BCPRES Compute pressure boundary conditions.

BCQ Compute conservation variable boundary conditions.

BCSET Set various boundary condition parameters and flags.

BCTEMP Compute temperature boundary conditions.

BCUVEL Compute x-velocity boundary conditions.

BCVDIR Compute normal and tangential velocity boundary conditions.

BCVVEL Compute y or r-velocity boundary conditions.

BCWVEL Compute swirl velocity boundary conditions.

BLINI Compute inner layer turbulent viscosity along constant ¢ lines.

BLIN2 Compute inner layer turbulent viscosity along constant # lines.

BLKOUT Print coefficient blocks at specified indices in the ¢ and 5 di-
rections.

BLK2 Solve 2 x 2 block tndiagonal system of equations.

BLK2P Solve 2 x 2 periodic block tridiagonal system of equations.

BLK3 Solve 3 x 3 block tridiagonal system of equations.

BLK3P Solve 3 x 3 periodic block tridiagonal system of equations.
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Proteus Subprogram Summary

Subprogram Purpose

BLK4 Solve 4 x 4 block tridiagonal system of equations.

BLK4P Solve 4 x 4 periodic block tridiagonal system of equations.

BLK5 Solve 5 x 5 block tridiagonal systern of equations.

BLKSP Solve 5 x § periodic block tridiagonal system of equations.

BLOCK DATA | Set default values for input parameters, plus a few other parame-
ters.

BLOUTI1 Compute outer layer turbulent viscosity along constant ¢ lines.

BLOUT2 Compute outer layer turbulent viscosity along constant # lines.

BVUP Update first sweep boundary values after second sweep.

COEFC Compute coefficients and source terms for the continuity equation.

COEFE Compute coefficients and source terms for the energy equation.

COEFSI Compute coefficients and source terms for the k and ¢ equations
for the first ADI sweep.

COEFS2 Compute coefficients and source terms for the k and ¢ equations
for the second ADI sweep.

COEFX Compute coefficients and source terms for the x-momentum
equation.

COEFY Compute coefficients and source terms for the y or r-momentum
equation.

COEFZ Compute coefficients and source terms for the swirl momentum
equation.

CONV Test computed flow field for convergence.

CUBIC Interpolation using Ferguson’s parametric cubic.

EQSTAT Use equation of state to compute pressure, temperature, and their
derivatives with respect to the dependent variables.

EXEC Manage solution of the mean flow equations.

EXECT Manage solution of the k-¢ equations.

FILTER Rearrange rows of the boundary condition coefficient submatrices
and the source term subvector to eliminate any zeroes on the di-
agonal.

FTEMP Compute auxiliary variables that are functions of temperature.

GEOM Manage computation of grid and metric parameters.

INIT Get user-defined initial flow field.

INITC Set up consistent initial conditions based on data from INIT.

INPUT Read and print input, perform various initializations.

ISAMAX Find the first index corresponding to the largest absolute value of
the elements of an vector. This is a Cray search routine.

ISAMIN Find the first index corresponding to the smallest absolute value
of the elements of an vector. This is a Cray search routine.

ISRCHEQ Find the first index in an array whose element is equal to a speci-
fied value. This is a Cray search routine.

KEINIT Get user-defined initial conditions for & and «.

MAIN Manage overall solution.

METS Compute metrics of nonorthogonal grid transformation.

4.0
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Proteus Subprogram Summary

Subprogram Purpose

OUTPUT Manage printing of output.

ouTw Compute and print parameters at boundaries.

PAK Manage packing and/or interpolation of grid points.

PERIOD Define extra line of data for use in computing coefficients for spa-
tially periodic boundary conditions.

PLOT Write files for post-processing by CONTOUR or PLOT3D plot-
ting programs.

PRODCT Compute production term for the k-¢ turbulence model.

PRTHST Print convergence history.

PRTOUT Print output.

RESID Compute residuals and write convergence history file.

REST Read and/or write restart file.

ROBTS Pack points along a line using Roberts transformation.

SASUM Compute the sum of the absolute values of the elements of a vec-
tor. This is a Cray BLAS routine.

SGEFA Factor a matrix using Gaussian elimination. This i1s a Cray
LINPACK routine.

SGESL Solve the matrix equation Ax = B or A™x = B using the factors
computed by SGEFA. This is a Cray LINPACK routine.

SNRM2 Compute the L, norm of a vector. This is a Cray BLAS routine.

TBC Set time-dependent boundary condition values.

TIMSTP Set computational time step.

TREMAIN Get CPU time remaining for the job. Ths is a Cray Fortran
routine.

TURBBL Manage computation of turbulence parameters using the
Baldwin-Lomax algebraic model.

TURBCH Manage computation of turbulence parameters using the Chien
k-¢ model.

UPDATE Update flow variables after each ADI sweep.

UPDTKE Update k and ¢ after each time step.

VORTEX Compute magnitude of total vorticity.

YPLUSN Compute the distance to the nearest solid wall.

4.2 SUBPROGRAM DETAILS

The subprograms used in Proteus are described in detail in the remainder of this section. A few addi-
tional words are necessary about the input and output descriptions. The description of the input to each
subprogram includes all Fortran variables actually used by the subprogram that are defined outside the
subprogram. Vanables defined and used inside the subprogram are not listed as input. In addition, com-
mon block variables that are merely passed through to lower level routines are not listed. Variables marked
with an asterisk are user-specified namelist input variables.

Similarly, the output description includes only those variables computed inside the subprogram and used
outside the subprogram. It does not include common block variables computed by lower level routines.
In general, variables defined inside the subprogram that are used by lower level routines are listed as output,
even if they are not needed after control is returned to the calling program.
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Variables entering or leaving a subprogram through an argument list are defined in detail. However,
most of the Fortran variables listed in the input and output descriptions are contained in common blocks,
and are defined in detail in Section 3.0. For that reason, they are defined only briefly in this section.
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Subroutine ADI (A,B,C,S,NVD,NPTSD)
Called by Calls Purpose
EXEC BLKOUT Manage the block tridiagonal mversion.
BLK3
BLK3P
BLK4
BLK4P
BLKS5
BLKS5P
Input
A, B, C Coefficient submatrices A, B, and C.
* IDEBUG Debug flags.
* IPRTIA, IPRT2A Indices for printout in the ¢ and » directions.
ISWEEP Current ADI sweep number.
IT Current time step number ».
KBCPER Flags for spatially periodic boundary conditions in the ¢ and
directions; 0 for non-periodic, 1 for periodic.
NEQ Number of coupled equations being solved, N,,.
* NOUT Unit number for standard output.
NPRTI1, NPRT2 Total number of indices for printout in the ¢ and » directions.
NVD, NPTSD Leading two dimensions for the arrays A, B, C, and S.
S Source term subvector S, and computed solution subvector, Aé'
or AQ~.
Qutput
None.
Description

For each ADI sweep, subroutine ADI calls the appropriate block solver. The choice is determined by
the number of equations being solved, and by the presence or absence of spatially periodic boundary con-

ditions in the sweep direction.

Remarks

1. This subroutine generates the output for the IDEBUG(1), IDEBUG(S), ‘and IDEBUG(6) options.
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Subroutine AVISCI1 (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose
EXEC BLKOUT Compute constant coefficient artificial viscosity.
Input
A B, C Coeflicient submatrces A, B, and C without artificial viscosity.

* CAVSZE, CAVS4E, CAVS2I

DTAU

* TAV2E, IAV4E, IAV2]

* IDEBUG

* IHSTAG

* IPRTIA, IPRT2A
ISWEEP

*  ISWIRL
IT
JI

Artificial viscosity coefficients @, ¢#, and ¢.
Time step Ar.

Flags for second-order explicit, fourth-order explicit, and second-
order implicit artificial viscosity.

Debug flags.

Flag for constant stagnation enthalpy option.
Indices for printout in the ¢ and 5 directions.
Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Current time step number 7.

Inverse Jacobian of the nonorthogonal grid transformation, J- 1.

NC, NXM, NYM, NZM, NEN Array indices associated with the continuity, x-momentum,

* NOUT

NPRTI, NPRT2

NPT1, NPT2

y-momentum (or r-momentum if axisymmetnc), swirl momen-
tum, and energy equations.

Unit number for standard output.
Total number of indices for printout in the ¢ and # directions.

N, and N, for non-periodic boundary conditions, N+ 1 and
N; + 1 for spatially periodic boundary conditions in ¢ and 7.

NR, NRU, NRV, NRW, NET Array indices associated with the dependent vaniables p, pu, pv,

NVD, NPTSD
RHO, U, V, W, ET

S

Output

A /B, C
S

Description

PW, and ET.
Leading two dimensions for the arrays A, B, C, and S.

Static density p, velocities u, v, and w, and total energy Er at time
level n. ’

Source term subvector S without artificial viscosity.

Coefficient submatrices A, B, and C with artificial viscosity.

Source term subvector S with artificial viscosity.

Subroutine AVISC1 adds explicit and/or implicit artificial viscosity to the governing equations, using the
constant coefficient model of Steger (1978), as presented by Pulliam (1986b). The model 1s described in
Section 8.1 of Volume 1. The explicit artificial viscosity may be second and/or fourth order, and 1s added
only during the first ADI sweep. The implicit artificial viscosity is second order, and is added during both

sweeps.
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The fourth-order explicit artificial viscosity is implemented in Fortran by redefining the source term
subvector as

@)
C R A0 + (7,007, ]
i, Ji,j [( & §) ij ( n r,) i,

S S

15

where / and j vary from 3 to NPT1 — 2 and from 3 to NPT2 — 2, respectively. At grid points adjacent to
boundaries the fourth-order differences in the above equation cannot be used, and therefore are replaced
by second-order differences. Thus, at i=2 and at i= NPT — 1, with j varying from 3 to NPT2 — 2,

(507 U
EE DT, 2
Sij=8i;+—5—[VeAQ, ;- (V,4,)°Q; ]
iJ

Similarly, at j = 2 and at j = NPT2 — 1, with i varying from 3 to NPT1 — 1,
4

E(E)ATZ',]' 2

S0 =S+ [ (VA Q4 9,0,Q, ]

The second-order explicit artificial viscosity is implemented in Fortran by redefining the source term
subvector as

DA
E BT 7 )
Sij=S8ij+ =5 (Vp8;Q: ;4 V,4,Q; )

Ly
where i and j vary from 2 to NPT1 — 1 and from 2 to NPT2 — 1, respectively.

The second-order implicit artificial viscosity for the first ADI sweep is implemented in Fortran by re-
defining the coefficient block submatrices as

CIATI'J

A=A ———=Ji_;
¥} 4HJ ‘,i,j i 2]
EIATi,j

Bi,j=Bf,j+2——J_ - jl,j

%)
SIATi’j

C.;=C; 7, T

where i and j vary from 2 to NPT1 — | and from 2 to NPT2 — 1, respectively. Similarly, for the second
sweep,

CIAT- ;

. l’-l
A=A -——L
» 3 1 1
J J j‘,] J
8IATi,j
B, j=B;+2——=J;
L]
SIATI-J
Cj=Cj~—FJi ;41
[

Remarks

1. The sign in front of each artificial viscosity term depends on the sign of the “ij” term in the difference
formula. See Section 8.1 of Volume 1 for details.
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2. The coding to add artificial viscosity to the energy and/or swirl momentum equations is separate from
the coding for the remaining equations, and is bypassed if they are not being solved.

3. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., “vectorized”) direction, and the second subscript is the index in the sweep
direction. For the first sweep (which includes all the explicit artificial viscosity) the order is thus (12,I1),
and for the second sweep the order 1s (I11,12).

4. For spatially periodic boundary conditions in the ¢ direction, fourth-order differences could be used at
i=2and at i= NPT1—1(=N,). Similarly, for the » direction, fourth-order differences could be used
atj=2and at j= NPT2—1(=N;). The logic to do this has not been coded, however, and at these
points second-order differences are still used, as described above.

5. This subroutine generates the output for the IDEBUG(2) option.
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Subroutine AVISC2 (A,B,C.S,NVD,NPTSD)

Called by Calls Purpose
EXEC BLKOUT Compute nonlinear coefficient artificial viscosity.
Input

A B, C Coefficient submatrices A, B, and C.
CAVS2E, CAVS4E User-specified coefficients «; and «a.
CP,CV Specific heats ¢, and ¢, at time level n.
DTAU Time step Ar.
DXI, DETA Computational grid spacing A¢ and A».

ETAX, ETAY, ETAT

IAV2E, IAV4E

IDEBUG

IHSTAG

[PRT1A, IPRT2A

ISWEEP

ISWIRL

IT

JI

NC, NXM, NYM, NZM, NEN

NOUT
NPRTI1, NPRT2
NPTI1, NPT2

NVD, NPTSD

P, T

RGAS

RHO, U, V, W, ET

S
XIX, XIY, XIT

Output

S

Metric coefficients #,, n, (or #, if axisymmetnc), and »..
Flags for second-order and fourth-order explicit artificial viscosity.
Debug flags.

‘Flag for constant stagnation enthalpy option.

Indices for printout in the ¢ and # directions.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Current time step number 7.

Inverse Jacobian of the nonorthogonal gnd transformation, J-!.

Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if axisymmetrc), swirl momen-
tum, and energy equations.

Unit number for standard output.

Total number of indices for printout in the ¢ and # directions.

N, and N, for non-periodic boundary conditions, N, + 1 and
N; + 1 for spatially periodic boundary conditions in ¢ and ».

Leading two dimensions for the arrays A, B, C, and S.
Static pressure p and temperature 7T at time.level 7.
Gas constant R.

Static density p, velocities u, v, and w, and total energy E7 at time
level .

Source term subvector S without artificial viscosity.

Metric coefficients &,, &, (or &, if axisymmetric), and £,.

Source term subvector S with artificial viscosity.

Description

Subroutine AVISC2 adds explicit artificial viscosity to the governing equations, using the nonlinear co-
efficient model of Jameson, Schmidt, and Turkel (1981), as presented by Pulliam (1986b). The model is
described in Section 8.2 of Volume 1. Implicit artificial viscosity is not normally used in combination with
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the explicit nonlinear coefficient model. The explicit artificial viscosity is added only during the first ADI
sweep.

The artificial viscosity in the ¢ direction is computed first, at the -indices j=2 to NPT2—1. The
spectral radius term ¢, and the pressure gradient scaling factor o, are computed and stored in local one-
dimensional arrays for i = 1 to NPT1. Special formulas are used to compute o near boundaries, as described
in Section 8.2 of Volume 1.

The second-order artificial viscosity is added first, and is implemented in Fortran by redefining the source

term subvector as
Y ¥ 2
S;,;=Si;t Ve ‘ < 7) + < 7 ) '(8(: ))i,jAgQi,j

i+1,J i

T
+ ( ) (5(§2))i,j(Qi +1,7 7 Qi,j)

i+1,j Lj_]

), (%

| i,j i—1,7]

Or, after evaluating the differences,

RS

S, =S,

z,j+

T

I
—~
RS
N

—

(8(52))1' 0, Qi —Qi_ )

|
<=

SN

where i vanies from 2 to NPT1— 1.

The fourth-order artificial viscosity is added next, and is implemented similarly by redefining the source

term subvector as
¥ Y 4
Si,;j=S:; = V¢ l (7 W7 () AV e8:Q; 5

i+1,) ij
Or, after evaluating the differences,

$i;=5i;- ( % ) * (—‘ﬁ— ) (o5 A2, = 3Qua 1,5+ 3Q;— Q)
- i+1,j i,j:
’ (%) * (T‘pl—) (7)1 AQu 1, = 3Qu +3Qi1, = Qr2,)

i i—1,j_]

where i vanes from 3 to NPT1 — 2. Special formulas are used at i=2and at i= NPT1 — 1, as described
in Section 8.2 of Volume 1.

The artificial viscosity in the # direction is computed next, and is implemented in a manner analogous
to that just described for the artificial viscosity in the ¢ direction.

Remarks
1. The sign in front of each artificial viscosity term depends on the sign of the “ij” term in the difference

formula. See Section 8.1 of Volume 1 for details.

2. The coding to add artificial vis;:bsity to the energy and/or swirl momentum equations is separate from
the coding for the remaining equations, and is bypassed if they are not being solved.

3. The subscripts on the Fortran variable S may be confusing. The first subscript is the index in the
non-sweep (i.., “vectorized”) direction, and the second subscript is the index in the sweep direction.
For the first sweep (which includes all the explicit artificial viscosity) the order is thus (I2,11).

58 4.0 Proteus Subprograms: AVISC2 Proteus 2-D Programmer’s Reference



4. For spatially periodic boundary conditions, the need for special formulas near boundaries could be
eliminated. The logic to do this has not been coded, however.

5. This subroutine generates the output for the IDEBUG(2) option.
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Subroutine BCDENS (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,CS,NVD,NPTSD)

Called by Calls Purpose
BCGEN BCGRAD Compute density boundary conditions.
BCMET
Input
DEL Computational grid spacing in sweep direction.

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX
ISWEEP

v

J1

NOUT

NR

NVD, NPTSD
RHO

Output

A, B, C

Description

conditions in Proteus.”

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(1,J), where I runs from
1 to N,, corresponding to the N,, conditions needed, and J =1
or 2, corresponding to the lower and upper boundares.

Flag specifying boundary; 1 for lower boundary, 2 for upper

boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Index in the “vectonized” direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J- .
Unit number for standard output.

Array index associated with the dependent variable p.

Leading two dimensions for the arrays A, B, C and S.

Static density p at time level n.

Coeflicient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element 1EQ
only). '

Subroutine BCDENS computes coefficients and source terms for density boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular density boundary

7
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In the following description, for the first ADI sweep the dependent variable should have the superscript *, repres-
enting the intermediate solution, and for the second ADI sweep it should have the superscript n, representing the
final solution. For simplicity, however, only the superscript 7 is used. The superscripts on all other variables are

correct as written.

Proteus 2-D Programmer’s Reference



No Change From Initial Conditions, Ap = (

Applying equation (6.3) of Volume 1, and notiﬁg that ag/aé = J8g/dQ, we get simply
J;,j8p7;=0

Specified Static Density, p = f

Applying equation (6.5) of Volume 1,
880 =55 =l

Specified Two-Point Density Gradient in Coordinate Direction, dp [0¢ =f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,
1
— 1801+ o 805 = (A8 + Pl ;= P2
At the ¢ = 1 boundary,
" +1
- JNl - 1-J'Aﬁrfzﬂ - 1yf+JN1’jApgfpj =(a¢ A’;x’j + p’;‘ﬁ -Lj7 p"z‘ll'j

Analogous equations can easily be written for the n boundaries.

Specified Three-Point Density Gradient in Coordinate Direction, Opldd =f

~ Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ng,

+1
- 3j1,jABT,j+ 4j2,jA.3§,j—J3,jA3g,j=2(A5)f1’,zj +3p] ;- 4p; ;i + 3

At the £ = 1 boundary,

An An AR n+1 n . n n
JNl—z,jAle—2,j_4JN]"1,]Ale-l,j+ 3JN1’jAle,j=2(Aé)le,j —le—2,J-‘.4le—l,j_3pN1,j

Analogous equations can easily be written for the » boundaries.

Specified Two-Point Density Gradient in Normal Direction, Vp » 1 = f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

—J1, ;807 j+ 5 ;ARG ;=

AL
/ j

Cxnx + Emy)y 5
n+1 X'tx yiy'l, n n n
™ ; [fu LAY R VAl

where

m=t2+¢}
and 4, 1s the centered difference operator presented in Section 5.0 of Volume 1. At the & = | boundary,

A¢ Cxnx + Emn
An AR _ n+1 1 no n _n
- JNl -1 Ale -1;7* ‘]lejAle,j T my [leJ my,.; 6r7prJ TN —1,j T PN,

Analogous equations can easily be written for the # boundaries.
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Specified Three-Point Density Gradient in Normal Direction, Vpen=f

Applying equation (6.12a) of Volume 1 at the { =0 boundary, and using three-point one-sided differ-

encing,

—3J, ;801 j+ 40, ;805 ;— J3 APy ;=

72% [f{jjfr v G ;]%"”)"j 8,07, ,-:I +3p7 ;= 402,103,
where

m=«/§x2+£y2

and 6, is the centered difference operator presented in Section 5.0 of Volume 1. At the &£ = 1 boundary,

AR An An
Iy, =2, 8PN =2, — Mny =1, 8P N — 1,5 F 3N AP N, =

2A¢ n41 (éxnx_{_é)’r’y)NlJ 5. 0" n a," 3,7
Ty oy — nPNL | = PN -2, PN =1, T PN,

N, j
Analogous equations can easily be written for the » boundaries.

Linear Extrapolation of Static Density

Applying equation (6.14) of Volume 1 at the § = 0 boundary,
Jy ;86T - 2, jADS 4T3 jART j=— P+ 205 ;- P3,j
At the ¢ = 1 boundary,

AR An AR n n n
Tn, =2, 8PN =2, 2N 1, BN — 1, TN, BN = T PN -2t 20N, —1,j " PNLJ
Analogous equations can easily be wntten for the n boundaries.

Remarks -

L.

This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent density boundary condition 1s

specified.
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Subroutine BCELIM (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose
EXEC SGEFA Eliminate off-diagonal coefficient submatrices resulting from three-
- | SGESL point boundary conditions.
Input

A, B, C Coefficient submatrices A, B, and C before eliminating off-
diagonal blocks.

IBCELM Flags for elimination of off-diagonal coefficient submatrices re-
sulting from three-point boundary conditions in the & and » di-
rections at either boundary; 0 if elimination is not necessary, 1 if
it is.

ISWEEP Current ADI sweep number.

v Index in the “vectorized” direction, i,.

'NEQ Number of coupled equations being solved, N.,.

NEQP Dimensioning parameter specifying maximum number of coupled
equations allowed.

NPTS Number of grid points in the sweep direction, N.

NVD, NPTSD Leading two dimensions for the arrays A, B, C, and S.

S Source term subvector S before eliminating off-diagonal blocks.

Output
‘ A,B, C Coefficient submatrices A, B, and C after eliminating off-
diagonal blocks.

S Source term subvector S after eliminating o¥-diagonal blocks.

Description

Subroutine BCELIM eliminates the off-diagonal coefficient submatrices that result from the application
of three-point boundary conditions. This is necessary when three-point gradients are specified in the coor-
dinate or normal direction, and when linear extrapolation is used. The procedure is described in Section

7.2.1 of Volume 1.

Remarks

1. Subroutines SGEFA and SGESL are Cray LINPACK routines. In general terms, if the Fortran arrays
A and B represent A and B, where A is a square N by N matrix and B is a matrix (or vector) with
NCOL columns, and if the leading dimension of the Fortran array A is LDA, then the Fortran se-

quence

call sgefa (a,lda,n,ipvt,info)

do 10 3 = 1,ncol

call sgesl (a,lda,n,ipvt,b(1,3),0)
10 continue

computes A~ !B, storing the result in B.

Proteus 2-D Programmer’s Reference

4.0 Proteus Subprograms: BCELIM 63



Subroutine BCF (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,NPTSD)

Called by Calls Purpose
BCGEN BCFLIN Compute user-written boundary conditions.
BCMET '
Input
DEL Computational grid spacing in sweep direction.

IBASE, ISTEP

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

IBC, FBC Mean flow boundary condition types and values for current sweep
direction, specified as IBC(1,J) and FBC(1J), where I runs from
1 to N,, corresponding to the N,, conditions needed, and J =1
or 2, corresponding to the lower and upper boundaries.

IBOUND Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

IEQ Boundary condition equation number.

IHSTAG Flag for constant stagnation enthalpy option.

IMIN, IMAX Minimum and maximum indices in the sweep direction.

ISWEEP Current ADI sweep number.

ISWIRL Flag for swirl in axisymmetric flow.

IV Index in the “vectorized” direction, i,.

J1 Inverse Jacobian of the nonorthogonal grid transformation, J='.

NOUT Unit number for standard output.

NK, NRU, NRV, NRW, NET

Array indices associated with the dependent variables p, pu, pv,
pPW, and ET.

NVD, NPTSD Leading two dimensions for the arrays A, B, C, and S.
Output
A, B, C Coefficient submatrices A, B, and C at boundary IBOUND (row
1EQ only).
S Source term subvector S at boundary IBOUND (element IEQ
only).
Description

Subroutine BCF computes coefficients and source terms for user-written boundary conditions of the
form AF =0, F=f, 3F|d¢ = f, and VF«n = f. The values of F and its derivatives with respect to the de-
pendent variables must be supplied by the user-written subroutine BCFLIN. The linearized equations for
these types of boundary conditions are developed in Section 6.0 of Volume 1. The following sections ex-
pand these generalized equations in detail *

2 In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
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No Change From Initial Conditions, AF =0

Applying equation (6.3) of Volume 1, and noting that 6g/66 = J3g/6Q, we get simply

J;

n
,)j[aF A A + =25 Aoy + =2 A(owy + -2£ AET:I =0
4

0 8( u) (pv) d(pw) oEs g

Specified Value, F=f

Applying equation (6.5) of Volume 1,

. n
‘]i,j[ ZF AP+ a(aF) A( u) + (aF) A(pv)+ ( W)+ AET] fz:,nj+1 __F[,nj
Lj

oF
9pw)

Specified Two-Point Gradient in Coordinate Direction, 8F[8¢ = [

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,

n
_Jl_j[_g%A,u Sy MEW) + 5 M) + 5 W) + 5 AET]”"’
n
Jz,j[—g%Ah Ap )+a( 5 Al V) + o )A(pAW)+aaTiA§r]2’j=
A + Fl'fj -F;
At the & = 1 boundary,
oF Pa OF pihoys2F ap |
._JNI_IJ[F;A3+0( )A( pu) + = ( ) AGY) + 3w )A(pwH_@E;AET]N,_U+

n
oF A oF oF A
J ——A + A Ty AW + 5 AE -
a5 28 sy 800+ 5L 8050 5 + T]N..j
AN +Fy 1 F g

Analogous equations can easily be written for the » boundaries.

Specified Three-Point Gradient in Coordinate Direction, 8F|3¢ = [

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing,

the final solution. For simplicity, however, only the superscript 7 is used. The superscripts on all other variables
are correct as written.
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O_F_ A JF A oF
3, | Ap+—_6(pu) Alpu) + ( ) A(p )+ ow) Afp W)+ 3E
[ oF 54 0F
[ oF . A oF n F
208" + 3R - 4F) + Fs',‘j
At the ¢ = 1 boundary,
[ OF \n, OF A F oy + 2F
JNI-z,j_ % Ap +——— 3o Alpu) + a( v) Alp M+ o) Alpw) + —— 3E;
OF n oF A dF
4JN’_”L £ Ap +3 ) Alpu) + 25— a( ) Alp v)+—5(pw) A(pw)+'——aET
~ oF F A oF .~ oF oF
3y, 3 Ap 3o Ao+ 50y Al + e Al W) + 2 3E;
2NN~ FR 4 AN 1= 3R

oF

aF

6F

AET

AET

AET

A ]
AE;

.
AE;

-
AE,

Analogous equations can easily be written for the # boundaries.

Specified Two-Point Gradient in Normal Direction, VF » n=f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

n
OF oF (31: oF
-1 ;| 4+ Alp u A W+ A +—AE +
n
OF oF A F oF
Jo il =—Ap+ Alpu Alp +—AE =
(Exne+ Syl
[fl”] — xmljyl,j S, Fi |+~ F2

where

_ /§x2+5y2

and 4, is the centered difference operator presented in Section 5.0 of Volume 1. At the £ = 1 boundary,
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3F F "
-J 4 A A V) + A + AE +
oF . » A OF oF S
JMJI:_AP+ 3o ( u) + 6( }) A(pv) + a(p ) Alp w)+ 3E; AE :lN j_
1+
A¢ n (Exnx + Eyny)’vl J n |
le,j [flvljl le,j 6'7FN J + FN —1 ./ Flvhj

Analogous equations can easily be written for the » boundarnes.

Specified Three-Point Gradient in Normal Direction, VF « n=f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-
encing,

—n

—311,,[%5A8+5(6£) Apr) + = 3 ) AGY) + ( T Alpw )+a‘3§ AET A
412,1.[%&% 5 u) Apu) + a(F) A(oV) + (i)A( W)+ 2L oF AET_:J_
Jz,J[-QfA3+ A1) + 50t o) + 505 A(P%)+§£‘—TA§T-3J=

7n2A1_’§_ [ - Gt ::fjny)l'j S F 1','1] +3F;— 4R+ By

where

and &, is the centered difference operator presented in Section 5.0 of Volume 1. At the ¢ = 1 boundary,

- —n
OF . a oF oF- aF . i
JN1—2,j —a—p—Ap-‘l- ( )A( pu) + 3(pv )A(p)+ oW )A( W)+aE AET -
- —N =2,/
= —n
OF . a oF oF N _OF
4 5| =— AP+ +—=——A(pY) + Apw AE +
Nl ],j— ap P a( u) ( ) ( ) (Pv) (_P ) (P ) aE T—N—lj
—_n
[ oF oF A oF n aF OF , & _
3‘]N1J | 5 Ap + 201 Apu) + 3(ov) A(pv) + o) Ap w)+ 3E; AET_N j_
1

2Af n+1 (5)('1)( + éyrly)N,,J n
Tin, ; [fm /e oy SuFj | = Ny =25+ 4F 8 —1,;— 3N,

Analogous equations can easily be written for the » boundaries.
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Linear Extrapolation

Applying equation (6.14) of Volume 1 at the ¢ = 0 boundary,

an
[ oF aF A oF A oF . oF
7| =—aAp+ A + —A(pV) + ‘A + == AE -
LJ i ap a(pu) (pu) a(pv) (P ) a(p ) ( W) aE T 1.
(OF A, OF N 8F A 3F oF o7
2 5588 + oy B+ MY+ S o) + Ak 1
sy [ O ap 4 -2F a4 =2 ay - =2E— agpwy+ 2E-ak, | -
3,1_ dp d(p u) 6( ) d(pw) 3 T 15,
~ Fj+ 2K - Fy)
At the ¢ = | boundary,
B qn
’ 8F A oF oF A oF A
J/s/l-z,jL 7 Ap + o) A( W+ —=— ( ) ( V) + ow )A(pw)+ 3E; AE; -
N -2,
—aF 3F N 8F T"
2y, 1| g B0+ a( )A( )+a( o AlpY) + o A )+———a}5 AET_N 1j+
1— 1,
_n
oF oF oF A OF . A a
JNxJ_ ER Ap +—— (o) A( )+ ) ( V) + Aow )A(pw)+ aETAET_Nj_
1
—E\’/ll—2,j+2Fan—1,j—EG],j

Analogous equations can easily be written for the n boundaries.
Remarks

1. Thbis subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent user-written boundary condi-
tion is specified.
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Subroutine BCFLIN (IBC,IEQ,IBOUND,IMIN,IMAX,F,DFDRHO,DFDRU,DFDRV,DFDRW,
DFDET ,FBCM,FBCP,FBC)
Called by Calls Purpose
BCF User-supplied routine for linearization of user-supplied boundary con-
ditions.
Input

IBASE, ISTEP

IBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

I1, 12
NiP

Output

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Mean flow boundary condition types for current sweep direction,
specified as IBC(1.J), where I runs from 1 to N,,, corresponding
to the N,, conditions needed, and J = 1 or 2, corresponding to the
lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
undary. :

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Grid indices / and j, in the ¢ and # directions.

Parameter specifying the dimension size in the £ direction.

DFDRHO, DFDRU, DFDRYV, Three-element arrays, specified as DFDRHO(IW), etc., giving

DFDRW, DFDET

F

FBC

FBCM, FBCP

Description

the values of 0F/8p, 0F|d(pu), OF|8(pv), 8F|d(pw), and OF|OFr.

A three-element array specified as F(IW) giving the value of the
function F at the boundary (IW = 1), at the first point away from
the boundary (IW = 2), and at the second point away from the
boundary (IW = 3). Values at IW = 3 are not needed for bound-
ary condition types 91, 92, or — 92. Values at IW = 2 are not
needed for boundary condition type 91.

Boundary condition values for current sweep direction, specified
as FBC(I,J), where I runs from 1 to N,,, corresponding to the N,,
conditions needed, and J = 1 or 2, corresponding to the lower and
upper boundanies. This is only needed if values for GBCI or
GBC2, or FBCI or FBC2, are not specified in the input namelist
BC.

Boundary condition values on the boundary, at the gnid points
“below” and “above” the current boundary point. These are only
needed for boundary condition types + 93.

Subroutine BCFLIN is a user-written routine used in conjunction with subroutine BCF for user-written
boundary conditions of the form AF =0, F=f, 3F/0¢ = f, and VF+n = f. BCFLIN supplies the values of
F and its derivatives with respect to the dependent variables, which are required for writing the linearized
form of the boundary condition.
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The version of BCFLIN supplied with Proteus makes BCF equivalent to BCTEMP, except for the total
temperature options in BCTEMP. Thus F=T, 8F|dp = 8T|dp, etc., where T and its derivatives with re-
spect to the dependent variables are computed using the perfect gas equation of state. (See Section 4.3 of
Volume 1.) This version of BCFLIN 1s intended as an example for use in coding boundary conditions not

already available.
Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. The capability of specifying FBC as an output variable may be useful in writing time-dependent
boundary conditions. It also may be used when specifying boundary conditions involving derivatives
in both coordinate directions. In this case, the derivatives in the non-sweep direction may be lagged
one time step and treated as source terms.
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Subroutine BCGEN (A,B,C.SMETX, METY METT NVD,NPTSD)
Called by Calls Purpose
BVUP BCDENS Manage computation of boundary conditions.
EXEC BCF
BCPRES
BCQ
BCTEMP _
BCUVEL
BCVDIR
BCVVEL
BCWVEL
BLKOUT
ISRCHEQ
Input
A B C Coefficient submatrices A, B, and C.

* FBCl, FBC2

* IBC], IBC2

* IDEBUG

* IPRTIA, IPRT2A
ISWEEP
IT
v

I, 12
METX, METY, METT

NBC

NEQ
* NOUT
NPRTI, NPRT2
NVD, NPTSD
* NI, N2
S

Output
IBC, FBC

IBOUND

Proteus 2-D Programmer’s Reference

Point-by-point mean flow boundary condition values for the ¢
and » directions.

Point-by-point mean flow boundary condition types for the ¢ and
n directions.

Debug flags.

Indices for printout in the ¢ and » directions.
Current ADI sweep number.

Current time étep number 7.

Index in the “vectorized” direction, i,.

Grid indices i and j, in the ¢ and » directions.

Dernvatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and z.

Dimensioning parameter specifying number of boundary condi-
tions per equation.

Number of coupled equations being solved, N,,.

Unit number for standard output.

Total number of indices for printout in the ¢ and # directions.
Leading two dimensions for the arrays A, B, C, and S.
Number of grid points N, and M,, in the ¢ and » directions.

Source term subvector S.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,J), where I runs from
1 to N, corresponding to the N,, conditions needed, and J = |
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.
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1IEQ Boundary condition equation number, from 1 to Ne.

IMIN, IMAX Minimum and maximum indices in the sweep direction.

Description

Subroutine BCGEN manages the computation of coefficients and source terms for the mean flow
boundary conditions. It first loads the NEQ boundary condition types and values from the input arrays
IBC1 and FBC1, or IBC2 and FBC2, depending on the ADI sweep, into the arrays IBC and FBC. This
was done so that the BC routines could be non-sweep dependent. Next the coefficient submatrices and
source term subvectors at the two boundaries in the current sweep direction are initialized to zero. And
finally, the appropriate BC routine is called, depending on the input boundary condition type, for each of
the NEQ boundary conditions at each boundary in the sweep direction.

Remarks

1. An error message is generated and execution is stopped if any of the non-existent boundary condition
types 80-89 is specified, or if the boundary condition type is less than 0 or greater than 99.
The Cray search routine ISRCHEQ is used in determining the grid locations for debug printout.

This subroutine generates the output for the IDEBUG(3) option.
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Subroutine BCGRAD (F, 1, DFD1,DFD2)

Called by Calls Purpose

BCDENS Compute gradients with respect to ¢ and .
BCF
BCPRES
BCQ
BCTEMP
BCUVEL
BCVDIR
BCVVEL
BCWVEL

Input .
DXI, DETA Computational grid spacing A¢ and Ax.

F ‘ A two-dimensional array, specified as F(I,J), containing the func-
tion f whose gradient is to be computed. The subscripts I and J
run from 1 to N, and N,, respectively.

I . Current grid point index in the current sweep direction.
ISWEEP Current ADI sweep number.
11,12 Grid indices  and j, in the ¢ and # directions.
* NI, N2 Number of grid points N, and N,, in the ¢ and » directions.
Output
DFD1, DFD2 First denivatives of f with respect to ¢ and ».
Description

Subroutine BCGRAD computes first derivatives of the function f, with respect to £ and #, at the current
gnd point in the ADI sweep direction. At interior points, the centered difference formula presented in
Section 5.0 of Volume 1 is used. For denvatives with respect to &,

if_ - ﬁ+1,j‘ﬁ—1,j
o ) AL
ij

An analogous formula is used for » denvatives.

At boundary points three-point one-sided formulas are used.

3}
(6_§> o u+é(_3ﬁ,j+4fi,j_/§,j)

1.j

af 1
(%) = Unmas4ns* 30

MLJ

Again, analogous formulas are used for » derivatives.
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Subroutine BCMET (I,LFM0,FMI1,FM2)
Called by Calis Purpose
BCDENS Compute various metric functions for normal gradient boundary con-
BCF ditions.
BCPRES
BCQ
BCTEMP
BCUVEL
BCVDIR
BCVVEL
BCWVEL
Input
ETAX, ETAY Metnc coefficients 7, and n, (or #, if axisymmetric.)
I Current grid point index in the current sweep direction.
ISWEEP Current ADI sweep number.
I1, I2 Grnid indices 7 and j, in the £ and #» directions.
XIX, XIY Metric coefficients &, and &, (or &, if axisymmetric.)
Output
FMO0, FM1, FM2 Various metric functions used for normal derivative boundary
conditions.
Description

Subroutine BCMET computes metric functions used for normal gradient boundary conditions. For the

first ADI sweep,

And for the second sweep,
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FMO=./&+&

FM1=0
FM2= éxnx + 'fy"y

FMO= /7% + 7,
FMI = éx’lx + éy"y
FM2=0
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Subroutine BCPRES (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,5,NVD,NPTSD)

Called by Calls Purpose
BCGEN BCGRAD Compute pressure boundary conditions.
BCMET
Input
Cp, CV Specific heats ¢, and ¢, at time level 7.
DEL Computational gnd spacing in sweep direction.

*

DPDRHO, DPDRU, DPDRYV,
DPDRW, DPDET

DTDRHO, DTDRU, DTDRYV,
DTDRW, DTDET

GC
IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IHSTAG

IMIN, IMAX

ISWEEP

ISWIRL

v

J1

NOUT

NR, NRU, NRV, NRW, NET

NVD, NPTSD
P, T

PR

RGAS

RHO, U, V, W
RHOR, UR

Output

A B, C

Proteus 2-D Programmer’s Reference

Denvatives ép{dp, dp|d{(pu), Op[d(pV), Op{8(pw), and 3p[dFr.
Denvatives 8T /dp, 8T|d(pu), dT|0(pv), 0T|d(pw), and 8T|SET.

Proportionality factor g, in Newton’s second law.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(LJ), where I runs from
1 to N, corresponding to the N,, conditions needed, and J =1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Flag for constant stagnation enthalpy option.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the “vectorized” direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J-!.
Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Leading two dimensions for the arrays A, B, C, and S.
Static pressure p and temperature 7 at time level 7.
Reference pressure p,.

Gas constant R.

Static density p, and velocities &, v, and w, at time level n.

Reference density p, and velocity ..

Coefficient submatnices A, B, and C at boundary IBOUND (row
1EQ only).
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S Source term subvector S at boundary IBOUND (element IEQ
only).

Description

Subroutine BCPRES computes coefficients and source terms for pressure boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular pressure boundary
conditions in Proteus?®

No Change From Initial Conditions, Ap = 0

Applying equation (6.3) of Volume 1, and noting that 6g/66 = Jdg/oQ, we get simply

IV DV N VN B v |
Ji,j[a_p‘AP‘F—a—(;;)-A(Pu)'*‘mA(PV)+3(;W_)A(PW)+FE';AET =0
L

The derivatives dp/dp, 9p{d(pu), etc., depend on the equation of state. They are defined for a perfect gas
in Section 4.3 of Volume 1.

Specified Static Pressure, p=f

Applying equation (6.5) of Volume 1,

n
op A op A ap A ap A op 2 n+1 Prée n
Ju[?azAP+a—<pu—)A(P“’+a—<pv7A<Pv)+WA(PW>+3;;7AET =fyt T T
ij r

Specified Two-Point Pressure Gradient in Coordinate Direction, 0p{é¢ =f

Aprlying equation (6.8) of Volume 1 at the { =0 boundary, and using two-point one-sided differencing,

op op A ap A op
-/ W[TA‘A’ ¥ Fod 2P T ey AP Fow)

A ap A "
A(pw) + —a—é; AET]] . +
’J

n
ap ap A ap A op A op A
Jl,j[TAS +WA(pu) +WA(pV) +WA(pW) +3E_TAET =
. 2.j

Pr,
QO =5+ - P2
Pridy.

At the ¢ = | boundary,

9 In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript 7, representing
the final solution. For simplicity, however, only the superscript z is used. The superscripts on all other vanables
are correct as written.
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n
B A, O A B A Dp i ]
—Jy 4 —Ap + Alpu) + A(pv) + Alpw) + —7— AE +
M—“[ép P ou) (e) d(pv) %) o(pw) (o Ot TN 1J
l-)
n
ap % op ’ P AE =
JMJ[a Ap+6( A(prd) + 3om) ( )+a( ) (pw)+aETAETNj_
1>
Pg
AV 5 5+ P =1~ P

r

Analogous equations can easily be written for the » boundaries.

Specified Three-Point Pressure Gradient in Coordinate Direction, dp/d¢ = [

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing, :

[ A O n p oA p A oa
- -1,j
[ op A op A Op ap p A
4/, ;| — Ap + A(pu) + A +—=——FA w +—AE —
25| By By AP+ Gy A+ Gy A+ iy
[ op . O ap ap a AT
S| m— 80 + 5 Al + + 2 Apw + g AE =
1| B 88+ Gy O+ Gy AN+ iy ) )
200"+ Préc —+3p; ;—4py 4Py
Prur
At the ¢ = | boundary,
— ap N ap A ap A ap A 6p A -n
I 5 il =— Ap + —— A(pu) + AlpY) + —— A(pw) + —— AE —
1~ 4
ap op A 5 6 dp AT
4y _ Ap + Apu ——A w +——AF +
—
Y, ra”A P A+ =L ay + =P Ay + 22 Al
U W =
"o | Bp O B MO0 o) P+ Sy S+ 3 iy
1»
Pg
ABEYR 5 5 = P2y 4PN 1 P
prr

Analogous equations can easily be written for the # boundaries.

Specified Two-Point Pressure Gradient in Normal Direction, Vpen = f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,
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p A dp A dp " ap AT
Jl,j[ 3p Ap + o0 Alpw) + o) A(pv) + 0( ) Apw) + 3E; - AEr 1 .+
7]

- SN Nl
2,J

Pry

A& n+1 Pr&; (EXVIX + éyr’y)l,j n n n
[ LJ 2~ m SpPrj | ¥ P T P2

where

m=\/§x2+§y2

and 6, is the centered difference operator presented in Section 5.0 of Volume 1. At the ¢ = 1 boundary,

6p ap

_p_ o A(p)+ AE]n +
B 2" Bow) AN

p p o~ op A op ap 8
JNl,j[ 3p AP + = 3ow) A(pu) + W Apv) + W_)- Alp w) + — 3E; AET:l =
Nl)j

« & .

Al f"+1 Pr8c _ (fxnx'i‘sy"ly)M,j 5. p" n _n

Mg 2 N, PN | Y PN~ T PN
r-r

Analogous equations can easily be written for the n boundaries.

Specified Three-Point Pressure Gradient in Normal Direction, Vpen=f

Applying equation (6.12a) of Volume 1 at the { =0 boundary, and using three-point. one-sided differ-
encing,

op A dp 6p op 6
=30, - 08p + 5~ Alpw) + 5 Ty Alpw + 35 AE +
[ .. A &p .~ ap AT
47, | =—Ap + ——Alpw) + —— Alpv + A( + AE -
— n
op A ap A 6p 6

2A¢ n+1 Prgc (Exnx + éy")’)l,j n n n n
™ |:1 2 Saprj | +3P1, =42t P
r r

where

_ /Ex2+éy2

and 6, is the centered difference operator presented in Section 5.0 of Volume 1. At the ¢ = 1 boundary,
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-n

% A, Op op dp A
Ini-2i| 35 2%+ 300 Ap) + 5 30o%) Alp¥) + ( )A(p W)+ 5g, Afr -
- _Arl _2"/
[ . dp ap op ap T
31| By 8P+ By M+ MY+ 5 Mlew) + - Ak *
- Nl—li./
[ ap A 5p A 5p A ap A ap A 7"
] o e R T A
L L)
2A§ n+1 Pr8e ({’txnx + é}’rly)vaj n n n n
MmN, [fN’ J p 2 My, j 6’pr1:j PN -2, 4le -Lj 3le’f
(4

Analogous equations can easily be written for the » boundaries.

Linear Extrapolation of Static Pressure

Applying equation (6.14) of Volume 1 at the ¢ = 0 boundary,

op ap op op A op AT
Jl,j[F;A;;"‘ 3o Alpr) + = 3on) Alpy) + o) A(PW)‘*'EAET} -
1,/

o . @ op 3 ap "
2’%1‘[%‘3”*(3—(,% Alp) + 5 Alpw) + oy A6 + 5 S AET] +
2.7

op op A dp A op A dp A "
J3,J[ o0 Ap + 3(om) Apu) + W A(pv) + WA(pW) + EE—TAET ; -—
v
—pri+200 =P
At the ¢ = | boundary,

[ op . A op A dp A op A op AT
2| g 88 Gy SO0 * Gy ANt Gy A0 ¥ g M| -

[ ap . ap A op A op op 8
ZINl—l,j % Ap + EP, Alpu) + o) Apv) +T3(—p——) (p W)+ —— 3E,; AET . .+
L 1= LJ

[ ap ap ap ap o A1
‘/MjLapA p+ ( ) ( )+ ( ) A(p )+ ( )A(p )+ ETAET]Nj"

n n n
—PN,—2,;F 2PN, 1,; T PN, j
Analogous equations can easily be written for the » boundaries.

No Change From Initial Conditions for Tot&l Pressure, Apr=0

The total pressure is defined as

4

-1 =1
Pr=p(l+ ' 3 Mz)y,
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Applying equation (6.3) of Volume 1, we get

where

opr dp ( y—1 2
—L = Z_ {1+ M
dpwy  Apw

pr op ( y—1 z)v-l v( y—1 z)v )
= I+ M +p=— |1+ M —
3pv) ~ Bev) 2 g ) e

a ) - —1 -1 -1 2
PT p (H_Y IMZ)Y +p_7_<l+v M2>7 oM

3(pw)  O(pw) 2 2 a(pw)

_r 1

opr op y—1  a\7r! ¥ y—1 2\ 1 aM>
aET‘aET<1+ 7 M tpy\It—M 3Er

The Mach number is defined by

o L Wt (o)’ + (p¥)’ + (pw)’
- - 2
yRT vRo*T

The derivatives 9M2/dp, etc., can then be derived as
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Specified Total Pressure, pr=[

Applying equation (6.5) of Volume 1, we get

n
pr . a opr * opr A opr " pr 2
J"'fli dp Bp + d(pu) A(pu)+—5mA(pv)+ pw) Alew) + OE+ Afr ij_
¥ n
1 P y—1  o\r1
a2 ) (1425w

Pryr o

ij

where pr, Oprf0p, etc., are defined above as part of the description of the Ap; = 0 boundary condition.
Remarks

This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent pressure boundary condition
1s specified.

3. 'The multiplying factor p,g./p. that appears with specified values of pressure and pressure gradients is
necessary because input values of pressure are nondimensionalized by the reference pressure
p-= p.RT,/g., while interal to the Proteus code itself pressure is nondimensionalized by the normaliz-
ing pressure p, = p.u2. (See Section 3.1.1 of Volume 2.)
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Subroutine BCQ (IBC,FBC,.IEQ,IMI.\",IMAX,IBOUND,A,B,C,S,NVD,.\'PTSD)

Called by Calls Purpose
BCGEN BCMET Compute conservation variable boundary conditions.
Input
DEL Computational grid spacing in sweep direction.
DXI, DETA Computational grid spacing A¢ and Az.

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

ISWIRL

v

11, 12

JI

NC, NXM, NYM, NZM, NEN

NOUT

NVD, NPTSD
NI1P

RHO, U, V, W, ET

Qutput

A B, C

Description

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(1,J) and FBC(1,J), where I runs from
1 to N,, corresponding to the N,, conditions needed, and J =1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for up;;er
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the “vectonized” direction, i,.

Grid indices i and j, in the ¢ and » directions.

Inverse Jacobian of the nonorthogonal grid transformation, J='.

Array indices associated with the continui'y, X-momentum,
y-momentum (or r-momentum if axisymmetrc), swirl momen-
tum, and energy equations.

Unit number for standard output.
Leading two dimensions for the arrays A, B, C, and S.
Parameter specifying the dimension size in the & direction.

Static density p, velocities «, v, and w, and total energy Er at time
level n.

Coeflicient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only). :

Subroutine BCQ computes coefficients and source terms for conservation variable boundary conditions.
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of Volume 1. The following sections apply these generalized equations to the particular conservation vari-
able boundary conditions in Proteus.\® '

No Change From Initial Conditions, AQ = 0

Applying equation (6.3) of Volume 1, and noting that 6g/66 = Jog{0Q, we get simply
An
-/i, J AQ[, = 0
where Q 1s the element of 6 for which this boundary condition is to be applied.

Specified Conservation Variable, O = f

Applying equation (6.5) of Volume 1,
A
T 800 =f5t - of

Specified Two-Point Conservation Variable Gradient in Coordinate Direction, 08¢ =f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,
A A ‘ + 1
—J1 007+ 807 ;= (AEFT T + ori-03;
At the ¢ = 1 boundary,
A A +1
~ N 1,8, -1, I, AOR, =AM 0Ny~ OR
Analogous equations can easily be written for the y boundaries.

Specg‘ﬁéd Three-Point Conservation Variable Gradient in Coordinate Direction, 8Q|3¢ = f

Applying equation (6.8) of Volume 1 at the & = 0 boundary, and using three-point one-sided differenc-
ing,

A A A
= 3J1,;AQ7 j+ 40, ;AQS i~ T ;AQY = 2084" 1 + 307 ;- 405 i+ 0F
At the £ = | boundary,
A A A + 1
=2, AN, — 2,5 = My, 21, 80K, —1,y+ i, AR, =288/ 5 - OF _, i+ 40R - 300
Analogous equations can easily be written for the » boundaries.

Specified Two-Point Conservation Variable Gradient in Normal Direction, VOen=1{

Applying equation (6.122) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

10 In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript 7 is used. The superscripts on all other variables
are correct as written.
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A A 1 (éxnx'}' éy"y)],]

where

m= \/ ¢ xz + éyz
and 4, is the centered difference operator presented in Section 5.0 of Volume 1. At the ¢ = | boundary,

(‘fx’?x + éyny)Nl,j
N,

An An A n+1 n n n
—‘]Nl“1’jAQN1—1,j+JN]’jAQNl’j— le,j le,j - éﬂQij +QN]—1,j—QN1,j

Analogous equations can easily be written for the # boundaries.

Specified Three-Point Conservation Variable Gradient in Normal Direction, VQan=f

Applying equation (6.12a) of Volume 1 at the { =0 boundary, and using three-point one-sided differ-
encing, -

An An An
- 3J1,jAQ1,j+4‘]2,jAQ2,j—‘]3,jAQ3,j=

2A§ 1 (Exnx + Em )
|:f1n ™ 6qQ?,j +307 ;- 407+ 03 ;

where

m= &2+ &)

and &, is the centered difference operator presented in Section 5.0 of Volume 1. At the & = 1 boundary,

An An ‘ , An
JNl—z,jAQNl—Z,j_4JN1—l,jAQNl—1,j+3JN,,jAQNl,j=

2A¢& na 1 (&mx+ éy'ly)Nl,j
/ N, j

n n n n
5nQN1,j] —On —2,; T %N, -1, 32N,)

Analogous equations can easily be written for the 5 boundaries.

Linear Extrapolation of Conservation Variable

Applying equation (6.14) of Volume 1 at the { = 0 boundary,

N IS N
Iy QT = 2 ;805 + 3 AQS j=— Q1 ;+205 ;- o

At the ¢ = 1 boundary,

J A0’ 2/ AQ! Ty AL =—0] 20" n
N =2,j QN, -2, YN -1, QNl —1,Jj 7 YN QNl,j— — N2t QN1 -1Lji7 QNI.J'
Analogous equations can easily be written for the » boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent conservation variable boundary
condition is specified.
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Subroutine BCSET

Called by Calls Purpose
MAIN Set various boundary condition parameters and flags.
Input

*  GBCI1, GBC2

* GBCTI1, GBCT2
* GTBCI, GTBC2

* JHSTAG

* ISWIRL
ITDBC

* ITURB

* JBC1,IBC2

* JBCTI, JBCT2
* JTBCI, JTBC2

* KBCI1, KBC2

NBC
NEQ
* NOUT
* NTBC
* NTBCA
* NI, N2
Output
FBCI, FBC2

FBCTI, FBCT2

IBCELM

Proteus 2-D Programmer’s Reference

Surface mean flow boundary condition values for the ¢ and » di-
rections.

Surface k-¢ boundary condition values for the ¢ and » directions.

Time-dependent surface mean flow boundary condition values for
the ¢ and 4 directions.

Flag for constant stagnation enthalpy option.
Flag for swirl in axisymmetric flow.

Flag for time-dependent mean flow boundary conditions; 0 if all
boundary conditions are steady, 1 if any general unsteady bound-
ary conditions are used, 2 if only steady and time-periodic
boundary conditions are used. '

Flag for turbulent flow option.

Surface mean flow boundary condition types for the & and # di-
rections.

Surface k-¢ boundary condition types for the ¢ and » directions.

Flags for type of time dependency for mean flow boundary con-
ditions in the ¢ and # directions.

Boundary types for the ¢ and » directions.

Dimensioning parameter specifying number of boundary condi-
tions per equation.

Number of coupled equations being solved, ¥,
Unit number for standard output.

Number of values in tables for general unsteady boundary condi-
tions.

Time levels at which general unsteady boundary conditions are
specified.

Number of grid points N, and N, in the ¢ and # directions.

Point-by-point mean flow boundary condition values for the ¢
and » directions.

Point-by-point k-¢ boundary condition values for the ¢ and n di-
rections.

Flags for elimination of off-diagonal coefficient submatrices re-
sulting from three-point boundary conditions in the ¢ and # di-
rections at either boundary; 0 if elimination is not necessary, 1 if
1t is.
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1BC1, IBC2 Point-by-point mean flow boundary condition types for the ¢ and

n directions.

IBCT]1, IBCTZ2 : Point-by-point k-¢ boundary condition types for the £ and n di-’
rections.

IBVUP Flags for updating boundary values from first sweep after second
sweep; 0 if updating is not necessary, 1 if it 1s.

JBC], JBC2 , Surface mean flow boundary condition types for the £ and » di-
rections (only if using the KBC meta flags.)

KBCPER Flags for spatially periodic boundary conditions in the ¢ and »
directions; 0 for non-periodic, | for periodic.

NPTI1, NPT2 N, and N, for non-periodic boundary conditions, N+1 and

N, + 1 for spatially periodic boundary conditions in ¢ and #.

Description

Subroutine BCSET sets various boundary condition parameters and flags. If boundary types are spec-
ified with the KBC meta flags, the appropriate surface boundary condition types are loaded mto the JBC
arrays. Special flags are set if spatially periodic boundary conditions are being used. BCSET also sets NPT1
and NPT?2, the number of grid points in each ADI sweep direction to be used in computing coefficients and
source terms. For spatially periodic boundary conditions in the ¢ direction, NPT1= N1+ 1. Similarly, for
spatially periodic boundary conditions in the n direction, NPT2=N2+ 1. This is done in order to use
central differences at the periodic boundary. (See Section 7.2.2 of Volume 1.)

Next, if the boundary types are being specified using the KBC meta flags, the appropriate J BC mean
flow boundary condition parameters are defined. Then, if the mean flow boundary conditions are being
specified using the JBC and GBC parameters (or the KBC meta flags), the appropriate point-by-point
boundary condition types and values (the IBC and FBC parameters) are loaded with the JBC and GBC
values.

If three-point mean flow boundary conditions are being used at a boundary, a flag is set for eliminating
the resulting off-diagonal coefficient submatrix. If gradient (two-point or three-point) or extrapolation mean
flow boundary conditions are used during the first sweep, a flag is set for updating the £ boundary values
after the second sweep.

Next, for turbulent flow using the k-¢ model, if the k-¢ boundary conditions are being specified using
the JBCT and GBCT parameters, the appropriate point-by-point boundary condition types and values (the
IBCT and FBCT parameters) are loaded with the JBCT and GBCT values.

And finally, the input boundary condition parameters are then written to the standard output file.

Remarks

1. An error message is generated and execution 1s stopped if an invalid boundary type 1s specified with the
KBC meta flags. ,
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Subroutine BCTEMP (IBC . FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,NPTSD)

Called by Calis Purpose
BCGEN BCGRAD Compute temperature boundary conditions.
BCMET
Input
Cp,CV Specific heats ¢, and ¢, at time level n.
DEL Computational grid spacing in sweep direction.

DTDRHO, DTDRU, DTDRY,
DTDRW, DTDET

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IHSTAG

IMIN, IMAX

ISWEEP

ISWIRL

v

JI

NOUT

NR, NRU, NRV, NRW, NET

NVD, NPTSD
P, T

RGAS

RHO, UV, W

Output

AB, C

S

Description

Derivatives 8Tdp, 8T|d(pu), 8T|3(pv), dT|d(pw), and 3T|OEr.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(L,)), where I runs from
1 to N,, corresponding to the N, conditions needed, and J =1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary. .

Boundary condition equation number.

Flag for constant stagnation enthalpy option.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the “vectorized” direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J- 1.
Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
pPW, and Er.

Leading two dimensions for the arrays A, B, C, and S.
Static pressure p and temperature T at time level 7.
Gas constant R.

Static density p, and velocities u, v, and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

Subroutine BCTEMP computes coefficients and source terms for temperature boundary conditions.
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of Volume 1. The following sections apply these generalized equations to the particular temperature
boundary conditions in Proteus.!!

No Change From Initial Conditions, AT =0

Applying equation (6.3) of Volume 1, and noting that ag/aé = J3g|0Q, we get simply

[aTA+ oT A +

Ji dp d(pu)

i,j

oT .. ~. of 2|
6( ) ( V) + oW )A(pw)+———AET:|l =0

oF
T )

The derivatives 8T /8p, 8T/d(pu), etc., depend on the equation of state. They are defined for a perfect gas
in Section 4.3 of Volume 1.

Specified Static Termperatwre, T =f

Applying equation (6.5) of Volume 1,

,-,,-[aTAp+ 8w + = o) +

oT
d ) 3(ow)

n
W+ 2L AE | =gl

oE b
T i\ j

Specified Two-Point Temperature Gradient in Coordinate Direction, 6T|3¢ = [

Applying equation (6.8) of Volume 1 at the £ = 0 boundary, and using two-point one-sided differencing,

aT T A
_Ju[ap Ap+a( o Mo +

n
oT n oT n aT
—— A(pV) + Alpw) + —— AE +
) (ov) 3ow) (pw) 3E; T]l )

— Alp )+

BT ar n

(Aflf]n+l+ Tln,j— T;,j

n
Aow) + 2L AET] -
GEr 7],

oT
a( ) d(pw)

At the ¢ = 1 boundary,

oT aT §
_lj[—_A +a( l() ( )+ ( ) ( )+ ( )A(p )+ E AET]V_1j+

n
oT . a oT * T oT n aT A
JNi,jl:'gp—Ap-i- 3w A(pu)+——A( V) + 3ow) A(pw)+—a—E;AET] =
Ny.J

d(pv)
1
(Ailfz\';; + T;\z/l -1,j" Tg/l,j
Analogous equations can easily be written for the  boundaries.

Specified Three-Point Temperature Gradient in Coordinate Direction, 8T|0¢ = f

 Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing,

Il In the following description, for the first ADI sweep the dependent variables should have the superscript *,
presenting the intermediate solution, and for the second ADI sweep they should have the superscript 7, representmg
the final solution. For simplicity, however, only the superscript 7 is used. The superscripts on all other variables
are correct as written.
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OT pn Ty 20 8T A 8T Ao 0T sp ]
—3J1,j | % Ap + % Alpu) + oY) Afpv) + ow) Alpw) + 3E; AET 1j+
T T . oT T OT Af. |
T or : AEr| -
4J2’J_5p Ap+a( )A( )+a( )A( ov) + Bow )A(p”)+aE r_zj
_ an
T \n, 8T , aT_ . aT_ 1 OT Ap =
2B+ 31T~ 4TS+ T3
At the ¢ = 1 boundary,
N —_n
OT an, 8T A~ T , ° 57 5
Iy _q; AD+ Alpw) + Alpy) + 500y Alew) + Zp— AE -
- —n
oT .~ T T  piow)+ 2T AE
ary | ZEas+ + 5y e + M+ g, AF N
M=1i| T8 P T 800 Alpu) a( ) A(pY Apw) a) Okr T—N -1
[ T A oT » =
My, 5 AP+ 3o A(pu) + ( Alpy) + ( ) Alpw) + 21 aE AET 1, j_
1
Z(Af)fn v T/’:ﬁ —2,;+ 4TN1— i~ 3TK{1J

Analogous equations can easily be written for the n boundaries.

Specified Two-Point Termperature Gradient in Normal Direction, VT «n = f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

oT «n. 3T 7 ofr ~ . ar 2
——_]l’j[Ta?Ap +WA( u) + 0( ) —— Ap ) aow) A(pw)+—5—E—;AET:|]’j+
oT oT "
J A =
“[0 %+ 36 oy P+ Sy AW+ 3 ETL
n (Sxnx + &y, n
[ﬁ F- ml,,y-y” nTlnfiI"T" -1,

where

_ /§x2+§y2

and 6, is the centered difference operator presented in Section 5.0 of Volume 1. At the ¢ = 1 boundary,
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T S V- V- vl |
| S0P+ B+ i A+ B+ g ET]N ¥

. aT Ao o o
JN]JI:—(%-AP-‘—a( )A( )+"‘(—_)‘ ( V) + 3(pw) A(PW)+—af;AET:|Vj=

A¢ f"+.1 _ (fxﬂx'*’ éyﬂy)]\v",j 5 Tn oy Tn _ Tn
IV],./ le'j n Nl:./ N’] - ],j Nl’j

Analogous equations can easily be written for the n boundaries.

Specified Three-Point Temperature Gradient in Normal Direction, VT sn=f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-
encing,

n
[ oT aT oT n 3
=30 | G 8b o A+ gy A0 ¢ gy O+ 3 AET] *
17j
n
aT oT n oT " T . ¢
4.]2']- a A + = 5( ) A(p W+ (o) A(pv) + Apow) A(pw)-l-'gE—T'AET] -
L. 97
— n
aT . » aT ~ aT " oT ¢
J3,j | 5 Ap +——— 2o A(p u) + ( ) A(pv) + (o) Alpw) + 3E, AE,;L j_

my |1 myj

2AL L Gt &y
["* - 5,11 ; +3T{ﬂj—4T;’j+T§‘J

where

= /§x2+§y2

and §, is the centered difference operator presented in Section 5.0 of Volume 1. At the &= 1 boundary,

[ oT T aT aT aT . |
JNl—z,jLapA HE) A(”)J'a( w4 )+ (ow) Atp " SE, AET_N -
1= 4
— n
oT A aT T n aT 6 .
4y il =—Ap+ = A + Av+ Aw+ AE +
. 1= "]
" oT oT aT oT oT & 1 _
3JN, ap Ap + 30 A(p W+ 29 A(p V) + 3ow) Alp w)+ 3E; AET— Nlj_
2AE n+1 (éxrlx + é)"’y)Nl»j n n n n
—;n—lv—l;[fh.],j -_ le’j 6177‘1\1'1,_/‘ - TN‘ — 2,] + 4T[vl _ 1,j - 3T1v1;j

Analogous equations can easily be wnitten for the n boundanes.
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Linear Extrapolation of Static Temperature

Applying equation (6.14) of Volume 1 at the ¢ = 0 boundary,

—_n
aT T T T
Jl,j_apA +a(u)A( )+a( 3 Alp )+ 3w )A(w)+aE AETU
—_— —n
8T ~n 8T T aT
[ a7 oT . VN N
< A*a)A(”mn(M+meWHM%MU”_
At the ¢ = | boundary,

[ o7 aT T A T o |
JNl_z,j_ % Ap +a( )A( pu) + —2— ( ) Alp )+ Bow )A(pw)+——aETAETJNl-2j_
— —n
T aT A oT . ° T A aT . &
le_I,jn P L Ap+ 3o A(pu)+a(Tv)A(pv)+ o) Alpw) + 3E; AET~N 1,~+

1— 5
—_n
T aT A
Ju -F Ap + + = + A W + AE =
]\1,_/_ a a( ) ( ) a( ) ( ) ) ( ) T T—Nl’j
=Ty =2+ 2Th —1,— Thj

Analogous equations can easily be written for the  boundaries.

No Change From Initial Conditions for Total Temperature, ATy = 0

y—1
n_T( _ )

Applying equation (6.3) of Volume 1, we get

The total temperature is defined as

s [T, 0Tr o oy, oTr oTr 1 "_0
Li| g, AP o) (P")+a(pv) (ov) + 3ow) (PW)+——aET r| =
L,/

where
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Ty T 2, v—1 aw2
% "~ op < M)*

éTr aT ( 2) -1 _ aM?
= La?) + T

dpu)  d(pw) 2 2 O(pu)
T aT y=1 o\ v—1_ oM
3y dpv ( 7 M )+ )

) 1+
oTr aT (

= 1
3w W) \

oTr _ aT y—=1 5\, r=1 _ oM
3E; aET<1+ 5 M)+ T3

The Mach number is defined by

y—1 2 y—1 .. aM?
2 M)+ T

2 2 2
P+ v+ w? _ {pw)” + (V)" + (pw)

M= =
yRT przT

The derivatives dM?2/dp, etc., can then be derived as

Specified Total Temperature, Tr=f

Applying equation (6.5) of Volume 1, we get

Op d(pw) a(pv)

y—1 "
-n + 1 _
i) T (l+ 5 M)

ij

LY oTr .- oTr LSV LY t
iil 3 Apt (pw) + (ov) + Ao (pW)+—a§ r| =
3

where Tr, 0T7/dp, etc., are defined above as part of the description of the ATz =0 boundary condition.
Remarks

. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent temperature boundary condi-
tion is specified.
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Subroutine BCUVEL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,NPTSD)

Called by Calls Purpose
BCGEN BCGRAD Compute x-velocity boundary conditions.
BCMET
Input
DEL Computational grid spacing in sweep direction.

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX
ISWEEP

v

JI

NOUT

NR, NRU
NVD, NPTSD
RHO, U

Output

AB, C

Description

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(1,J), where I runs from
1 to N,,, corresponding to the N,, conditions needed, and J = |
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Index in the “vectorized” direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J-!.
Unit number for standard output.

Array indices associated with the dependent variables p and pu.
Leading two dimensions for the arrays A, P, C, and S.

Static density p and velocity u at time level n.

Coefhicient submatrices A, B, and C at boundary IBOUND (row
1EQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

Subroutine BCUVEL computes coefficients and source terms for x-velocity boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 6.0 of
Volume 1. The following sections apply these generalized equations to the particular x-velocity boundary
conditions in Prozeus.!?

12 In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.
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No Change From Initial Conditions, Au = 0

Applying equation (6.3) of Volume 1, and noting that ag/aé = Jog/dQ, we get simply
n
Ji,j[—-g—Aﬁ +-’1)—A(;;\u)] =0
['j

Specified x-Velocity, u=f

Applying equation (6.5) of Volume 1,
U o~ 1l A~ T n+l__ n
Ji,j[_'p_AP"‘"p—A(Pu)]ij:.f;,j - ;

Specified Two-Point x-Velocity Gradient in Coordinate Direction, 8ujo¢ =f

Applying equation (6.8) of Volume 1 at the & = 0 boundary, and using two-point one-sided differencing,

n n

1 A
.+J2,j[——z—Aﬁ+7A(pu)] =
J

U n 1 A
—jl,j[—';Ap +7A(pu)]
2.J

1,

n+1 .n n
(AON,;  +u,j— 4,

At the ¢ = 1 boundary,

n n

J u s+ LA 7 U A%+ L A
—JIn, 1| ~p 8Pt Al + | —p Ap+ 5 AleY)

M-1j NpJ

n+1 n n
(AN, +Un -1, "N
Analogous equations can easily be written for the » boundanies.

Specified Three-Point x- Velocity Gradient in Coordinate Direction, oujop =f

Applying equation (6.8) of Volume 1 at the ¢ = 0-boundary, and using three-point one-sided differenc-
ing,

u 1 N u A, 1l N
_3.]1,1-[—-7A;'\)+—'D—A(pu)]lj+4j2,j[—'7Ap+—p—A(pu)]2j—
n

.]3’1' [ - _pu—A;; + ’,17 A(pu)] = Z(Af)ﬁlrf;— ! + 3“?'1‘— 4“:?,]'*' u;l,j
3,j
At the ¢ = 1 boundary,
u a1 AT uon 1 AT
175 P P , . 1= hJ p P . .
N =27 N -1J
n

U N 1 n +1
M. [ B e A("u)]N i ABQRS = =2, 1,5 3K
1

Analogous equations can easily be wntten for the n boundares.
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Specified Two-Point x-Velocity Gradient in Normal Direction, Vuen = f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

ot tagy] +4, —lAA+iA(Au)]'1 -
l.j P P p (P lj 2,] P P P P 2]_—

Af n+1 (xnx + f)’n}’)lyj n n n
Ty [f] L Ot j | T4, %,

where

m=~ €x2+éy2

and 6, is the centered difference operator presented in Section 5.0 of Volume 1. At the ¢ = | boundary,

n

I YRS YO (A [ Lap+taga] =
1 » P 1J P .
M-1,j NpJ
A& nel_ (&xmx +_§y"y)~l,j +ut .
my N, J my M= 1,77 BN,

Analogous equations can easily be written for the n boundarnies.

Specified Three-Point x-Velocity Gradient in Normal Direction, Vusn = f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-
encing,

n

1 N 1 n
_3jl,j[—%A6 +7A(pu)]l .+4J2’j[—%A3+T)—A(pu)]2 -
+J W

2 AL s Cnmxt &mh,; -
Jz,j[ A P“)] = mlj[ STy v |t

3u1,j— 4"‘2,j+u3,j

where

_ /§X2+§y2

and 4, 1s the centered difference operator presented in Section 5.0 of Volume 1. At the ¢ = | boundary,

n

U A 1 A 7" U A 1 A
JNl—z,j[—TAP‘*‘?A(PU)] "4JNI_1’j|:——[)—Ap+7A(pu)] +
N =2, M—1,)
U A 1 AT _ 2A§ ndl (Exnx + ‘fy'?y)Nl,j n
3J-’V1,j [ - ‘p—‘ AP + —F;‘A(Pll)]N ; - [fhl b le,j 6,7uNl’j -
1>

n n n
uNl -2, + 4uNl - lgj_ 3uN1’j

Analogous equations can easily be written for the n boundaries.
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Linear Extrapolation of x-Velocity

Applying equation (6.14) of Volume 1 at the ¢ = 0 boundary,

1 AT 1 AT
Jljj[—%-A£+7A(pu)] —2.]2,j|:—~g—A3+7A(pu)] +
. Y

At the ¢ = | boundary,

" u o~ 1l N
—ZINI—I,]-[-FAP-*_—p-A(Pu)] +

a1
JNl_z,j[——z—Ap+-FA(pu)]
N —1,)

Ny —2,j
n

U A 1 n n n n
JNl,j[—?Ap +?A(pu)]v j= - uNl_z’j+2uNl_ l,j_ uNl,j
Ny,
Analogous equations can easily be written for the # boundanes.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent x-velocity boundary condition
is specified.
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Subroutine BCVDIR (IBC,FBC,IEQ,IMIN,IMAX IBOUND,A B,C.S METX METY ,NVD,NPTSD)

Called by Calls Purpose
BCGEN BCGRAD Compute normal and tangential velocity boundary conditions.
BCMET
Input
DEL Computational gnd spacing in sweep direction.
DXI, DETA Computational grid spacing Af and As.

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP
* ISWIRL

v

I1, I2

JI

METX, METY

* NOUT

NR, NRU, NRV, NRW

NVD, NPTSD

NIP

RHO, U, V, W

Output
A B, C

S

Description

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(L,J) and FBC(1,J), where I runs from
1 to N, corresponding to the N,, conditions needed, and J = |
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the “vectorized” direction, i,.

Grnid indices i and j, in the ¢ and # directions.

Inverse Jacobian of the nonorthogonal grid transformation, /- 1.

Derivatives of sweep direction computational coordinate with re-
spect to x and p (or r if axisymmetric.)

Unit number for standard output.

Array indices associated with the dependent vanables p, pu, pv,
and pw.

Leading two dimensions for the arrays A, B, C, S, METX, and
METY.

Parameter specifying the dimension size in the ¢ direction.

Static density p, and velocities u, v, and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

Subroutine BCVDIR computes coefficients and source terms for normal and tangential velocity -
boundary conditions. The linearized equations for the various general types of boundary conditions are
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developed in Section 6.0 of Volume 1. The following sections apply these generalized equations to the
particular normal and tangential velocity boundary conditions in Proteus.

Specified Normal Velocity, V, = f

The normal velocity is defined as
Vn = I_; L] ;2.

where 7 is the unit vector normal to the boundary. For a £ boundary,

- V¢ 1,7, 1,7
n=ager = kT sy
where
m= §X2+C‘y2

Therefore, for a & boundary,
A B
n= m \°x y
Note that the unit vector 7 is in the direction of increasing ¢. Therefore ¥, is positive in the direction of
increasing £. Thus, a positive V, at ¢ = 0 implies flow into the computational domain, and a positive V,

at ¢ = 1 implies flow out of the computational domain.
Similarly, for an n boundary,
V= % e+ )=/
where
m=1/ng +mn,’
and V, is positive in the direction of increasing #.

Applying equation (6.5) of Volume 1, the linearized boundary condition at a ¢ boundary becomes

éx n 5 " i n n
—- Blpw) + Ty A(pV)]‘ _ =f5F LV

&)

Ap +

Ji,j I: ) Cxu+§yv

m; j P

An analogous equation can easily be written for the # boundaries.

13 [n the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript 7 is used. The superscripts on all other variables
are correct as written.
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Specified Two-Point Normal Velocity Gradient in Coordinate Direction, oV, jéd = f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,

‘11,}' fxu+§yv A ":x
- [— b +—A(pu)+—A(pv)]
A Eu+éy &
27 ) X » A2+£"—A(pu)+ A(pv =
m 2 Y
QAR + VL = V5
At the ¢ = | boundary,
Iy 1 Eu+ &y & AT
_m”l =/ [_ x 5 Y Ap+ 5" =X Apw) + yA(pV):l +
M=1.j Ny —1,j

n

N X+
M. J [_ St &y Ap +&A(pu)+§—A(pV):| =
N J

my.j p

n+1
(Aé)flj + V)Nl—lf ( )N,j
Analogous equations can easily be written for the # boundaries.

Specified Three-Point Normal Velocity Gradient in Coordinate Direction, 0V,/0¢ =f

_ Applying equation (6.8) of Volume 1 at the £ =0 boundary, and using three-point one-sided differenc-
g,

Jy Eu+ &y ¢,

—3 L [ty Ap + tx A(pu)+ A(pV) +

Li L p _J,j

L [ &u+éy g, 7"
a2t [ ST Ap+é—A(pu)+ Ay | -

m2,J | P _sz

i [ &utéy gx ¢ 7"
m3,j 1 - P Ap A(pu) +—- A(PV)J:; ; =

200K 3V = AV s+ (VS
At the £ = | boundary,

In—2,; [ Eu+ &y ¢ T
] [ A,,+_%A(pu)+ A -
N —2,) p )

- "'zvl—2,j
JN—]j [ Sau+ &y & é 7"
4= Y Ap+ —- Alpw) + - A(py +
v | 7 P+ (o) (p)J;V—lj
Ingi [ S+ &y ¢ Sy T
3 lel,j - Ap +—1A(pu)+ A(pv) =

L _JNl,j

28R = Vi = 2,5+ 4V — 1= 3V

Proteus 2-D Programmer’s Reference 4.0 Proteus Subprograms: BCVDIR 99



Analogous equations can easily be written for the n boundaries.

Specified Two-Point Normal Velocity Gradient in Normal Direction, VVysn=f

Applying equation (6.12a) of Volume 1 at the & = 0 boundary, and using two-point one-sided differ-

encing,

N

S+ &y

Ap

mj

o

[_

St Ly

ﬁx

m,j

-

mlj

|:fln+l

(Exnx+ ‘fy"y)l,j
ml,j

A(pu) + =5 A(pV)]
N A(pV)]

8,(Vl J]+( 1= (Vo

where &, is the centered difference operator presented in Section 5.0 of Volume 1. At the £ = 1 boundary,

Iny—1,j Eau+ &y
1 »J X Y A
— — [— 5 Ap A(pu)-i-——A(pv)]
N —-1.J
In é u+§ v é
= [— 5 A+ A +—A(pv)]
Ny, J P
NiJ
A¢ n+1_ (Exnx + 6)'r’)’)Nl’}'

E

MmNy j

Ny, J

my,,

Analogous equations can easily be written for the » boundaries.

8V, )Nljil+( 1,5~ Vln,j

Specified Three-Point Normal Velocity Gradient in Normal Direction, VV,en=f

Applying equation (6.12a) of Volume I at the ¢ = 0 boundary, and using three-point one-sided differ-

encing,
Joir Gutiéy ¢, 7"
e e - 5" “E A+ Ay |+
1J P o
- —1,J
B [ Sxu+t &vo o, gx & 9"
4 Zowl =X A(p) +— A(pV) -
— 2’j
Ji ;[ Sty ¢ g, 7"
| TP Ap+—5 A(pu) +—A(pv) =
o .
= —3,j
(&xnx + Eymyh
+1 XX y'tyll,j
T [f{‘ e 8 (Vg |+ 3= AV + V3
where 6, is the centered difference operator presented in Section 5.0 of Volume 1. At the ¢ = | boundary,
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-2 [ &ty &
1 2] _ X y A[/; _ELA(Pu) +'—A(pV) —
m/v -2 P
M~/ L “Ny—-2,j
Tty [ Gty & A & A
M-, X Y'oan X 4
4 Ny -1, - P Ap+—P—A(pu)+_p_A(pV) N =1 .+
L “Ny—-1,7
In i T Eatt &y U R
1/ X y A X Y _
S | M+ A A | =
L —Nlr.]
AL w1 Exmx+ &
m,V:J [fA’}l».j - mN]:j ‘ 6”( Vn)’;],,j - (Vn)TIVl - 2).1 + 4( Vn)g’l - l’j - 3( Vn):;lvl'j

Analogous equations can easily be written for the » boundarnies.

Linear Extrapolation of Normal Velocity

Applying equation (6.14) of Volume 1 at the ¢ = 0 boundary,

J],' [~ € u+§yv - é é

| ———ab+ —"A(pu>+——A(pv) -
L L Jy

L, r &Eu+éy & 5 7"

| = ap M + Ay |+
/L =y,

Js ¢utéy ¢ gy 7"
] [ AR+ E A+ Ay | =
3. L ds

- (Vn)’ll,j + 2( Vn).g,j - (Vn)g,j
At the ¢ = 1 boundary,
Iy —a; [ Eutéy - 7"
| = A3+5" Alpr) + == A(pY) -
Nl—2,j L Nl—zj
Iy~ [ Eu+éy ¢ 7"
g Mzl [ SR A+E£MWH~—MW) +
M —1,j P .
- M-
‘]N : T §u+év é 5 "
ol | - oL AR+ A+ LAY | =
N.J L An,j

- (Vn)’;\(l —-2,;t 2(V,,)'1§,l -1,j~ (Vn)g/,,j
Analogous equations can easily be written for the n boundaries.

Specified Tangential Velocity, V,=f

For a ¢ boundary, the tangential velocity is the velocity in the » direction, and is given by

V=V, =i’ +v* =V}

=L (—u+em
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where

m=\/§xz+§y2

Note that this definition for tangential velocity does not include the swirl velocity w in axisymmetric flow.
Separate boundary conditions should be set for w.

Similarly, for an # boundary,
1
Vi= Ve =57 (nyu—nyv)

where

2 2
m=~/ny +ny

Applying equation (6.5) of Volume 1, the linearized boundary condition at a £ boundary becomes

N Sy on £ Nl +1
i 5 8p — 5 AlpY) +-piA(pV):|' .=fi,"j ~ (V2 ;

Ji,j [ éyu—fxv
"J

An analogous equation can easily be written for the » boundanes.
\

Specified Two-Point Tangential Velocity Gradient in Coordinate Direction, 8V [0¢ = f

Applying equation (6.8) of Volume 1 at the { =0 boundary, and using two-point one-sided differencing,

£ ¢ 8

A y al A

Ap —— Blpr) + 7" A(pv)] +
1,j

jl,] éyu—éxv
- 2

Iy Eu—¢v ¢ A & oA "
= [ — Ap——py—A(pu)+7A(pv)]2 =
J

BOR T + (V)L = (Vs

At the £ = | boundary,

T —1,j [ &u—<&v P e
1 »J Y X A y X
- iy 1 [ 5 Ap —TA(pu) +TA('0V)] .+
M-1j
Inyj Su— <& ¢ A ¢ ~ T
N y XA Y X _
N, [ 5 Ap —TA(pu) +TA(pv):]N =
1/

1
Ao L+ V1~ (VN
Analogous equations can easily be written for the  boundaries.

Specified Three-Point Tangential Velocity Gradient in Coordinate Direction, 8V /8¢ = [

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing,
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Ji i [ &u— &gy S S
»J Yy X A y X
-3 oW P Ap—TA(pu)+TA(pv) 1 ‘+
o 1)
Li[&#=4 & & on & AT
4 5 o Ap—'p—A(pu)+-p—A(pv) '—
- —2’1
By éu—4 o~ & on & AT
. 5 Ap — =5 Alpu) + -~ ApY) =
- —3,_/
AMHA" T+ 3T - A5+ (V)5
At the ¢ = | boundary,
JN—2'_‘£u_§v E A f /\—n
1=~ 2,J y A Sy x
vy 2 Bp — 5= Alpw) + = Alp) -
L =N -2,
Ing—1,j [ &u—<&xv ¢y Ex 7
4| 2 Ap——A(pu)+—A(pv) +
M=1s L N -1,
In i [ Eu—Ey ¢ "
3 [y au+ R A | =
MeJ L P A

20805 = VR -0+ 4V 1= 3V,
Analogous equations can easily be written for the n boundanes.

Specified Two-Point Tangential Velocity Gradient in Normal Direction, VV,en = f

Applying equation (6.12a) of Volume 1 at the £ = 0 boundary, and using two-point one-sided differ-
encing,

L[ Eu—¢ ¢ "
-t [ 20 ap - 2 Apw) +§—A(pv)] +
bt ? 1,j
Jz,j §yu - éxv A g 5 8
o [ S AP~ Apw) + == A(pv)]2 -

A¢ 1 (éx"x"" fyny)l_j
my [ 1'z - my ; 6q(VI)?,j + (Vz)T,j - (Vz)g,j

where 4, is the centered difference operator presented in Section 5.0 of Volume 1. At the ¢ = 1 boundary,

Ing=1j [ Su—&xv & A & AT
1 J L3y X A y X
—_ le_]’j[ 2 AP—TA(PH)+—{’—A(pV):| -+
N—1,)
Iy Eu— &y P S
1/ o4 X A y X
le,jI: 3 Ap-—TA(pu)+-p—A(pV)]V ._
N/

A{ 1 (éxr,x + gyny)N,j
[4623 e SV | V1= Vo
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Analogous equations can easily be written for the # boundanes.

Specified Three-Point Tangential Velocity Gradient in Normal Direction, YV« n=f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-
encing,

_3 ;‘1’1 i éyu;gvxv Aﬁ——i—;v—A(pAu)-i-%A(;;\v)—l E
— — Ly
s ;/nzzjj B fyquxv AS—%A(QH)'*‘%A(F:\V)_: -
- 2y
;133], oo AS_%A(ALI)+%A(;V)“: -
- —3,J
o [{f;‘ L éq(Vaﬁ‘,,}+3(V,>T,j—4<V,)£', SR,

where 8, is the centered difference operator presented in Section 5.0 of Volume 1. At the { = 1 boundary,

In a2 [ &u— & ¢ A ¢ AT
1 »J y X A y X
Ny = 2.7 pAp — % AlpW) + 5 Ale) T
- — Ny — 4,
Iy 1) [ &u—¢xv S S
4L | LS AR — = Apw) + - AleY) +
M-t L N -1,
Ing [ &= &xv g n & AT
v Y X A ¥ X
3 Bp—— AW +—-Apv) | =
le,J L 14 P P duj
2A¢ +1 G+ Ema;
m[fﬂj - o 8y (Vs | = Vil =2, + 4V, - 15— 3(VDn,,

Analogous equations can easily be written for the # boundaries.

Linear Extrapolation of Tangential Velocity

Applying equation (6.14) of Volume 1 at the ¢ = 0 boundary,

J'_éu—'év /\5 A é A ]
S| AL+ | -

my P
1,/ | 4y
i T §u—<Eyv ¢ A & AT
»J Y X A y X
2 5 5 Bp —— Alpy) + = AlpY) ) _+
- =2,j
Sy [ &u—&w S S
»J Y X A 24 X _
m T Ap — 5 Alpw) + - AlpY) | =

- 3"}
— (V) j+ 205, — (V)3

At the ¢ = 1 boundary,
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JN —2,j [ $u—¢&xv ¢ A I3 AT
1 sJ y x " Y X
e 2. 5 Ap — 5~ Alpw) + - Alpy) -
— —Nl—-2,j
‘/N—l P [ Su—&w 4 A é A 7"
1 ) 8 4 X A y X
2 T f Ap — > A(pu)+'7)—A(pv) ' '+
— —N-1,j
Ingg [ &u—¢ & A & AT
1J Y X A Y X -
vy o Ap — 5 Alpw) +— AlpY) N =
- RtV

— (V) =2+ 20000 =1, — Vs
Analogous equations can easily be written for the y boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message 1s generated and execution is stopped if a non-existent normal or tangential velocity
boundary condition is specified.
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Subroutine BCVVEL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

BCGEN BCGRAD
BCMET

Compute y or r-velocity boundary conditions.

Input

DEL
IBASE, ISTEP

IBC, FBC

IBOUND

1IEQ

IMIN, IMAX
ISWEEP

v

JI

NOUT

NR, NRU, NRV

NVD, NPTSD
RHO, U,V

Output

A, B, C

Description

boundary conditions in Proteus.'

Computational gnd spacing in sweep direction.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(1,J) and FBC(1,J), where I runs from
1 to N,,, corresponding to the N, conditions needed, and J =1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Index in the “vectorized” direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J-1.
Unit number for standard output.

Array indices associated with the dependent vanables p, pu, and
pv.

Leading two dimensions for the arrays A, B, C, and S.

Static density p, and velocities ¥ and v, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

Subroutine BCVVEL computes coefficients and source terms for y or r-velocity boundary conditions.
The linearized equations for the various general types of boundary conditions are developed in Section 6.0
of Volume 1. The following sections apply these generalized equations to the particular y or r-velocity
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In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables

are correct as written.
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No Change From Initial Conditions, Av =0

Applying equation (6.3) of Volume 1, and noting that ag/aé = J0g/0Q, we get simply

v a1 AT
L7

Specified y or r-Velocity, v=f

Applying equation (6.5) of Volume 1,
bl - was 4 A(pv)] =f

Specified Two-Point y or r-Velocity Gradient in Coordinate Direction, évjd¢ = f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,

v ouon 1 ~ T v oan 1 A T
_.Jl_j[—TAp+7A(pv)]lj+J2,j[—7Ap+FA(pv)]2j=

(Aémn +1 + Vln’j _ v;,j
At the £ = 1 boundary,
n

IaY
+Jy .[—1A3+lA(pv)] -
1/ P P Noj
1

v n l N "
_le_],j[—FAp-F?A(pv)] -
M-1,)
+1
(AN, + VN —1,j = N,.j

Analogous equations can easily be written for the # boundaries.

Specified Three-Point y or r-Velocity Gradient in Coordinate Direction, dvjd¢ = f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ng,

14 A 1 n " 1% N 1 n "
—3.]1,]- —*b—Ap‘f’—p—A(pV) 1j+4J2’j —-p—Ap+7A(pv) 2]-—
Iyl — LA+ Ay ’ 20047 + 3] - w4
= I I N e 3 = ! LT M2,

At the £ = 1 boundary,

n

VoA 1 A
JN1—2,j[—_p—Ap+-ﬁ-A(pv)] o
1—LJ

N =2,/
VoA 1 N n+1 n n n
3./‘\,1 J[_FAP +—‘5_A(pV)]N J— Z(Af)fm1 j —le—2,j+4VN1—1,j—3vl\"1,j
1

Analogous equations can easily be written for the » boundaries.
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Specified Two-Point y or r-Velocity Gradient in Normal Direction, Vven=f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

n

1 N 1 »
—Jl,j[_%A6+7A(pv)]l j+J2,j[—%A£+7A(pv)]2 =
> ’j

A n+1 (fx’lx + ‘fy"y)l,j 5" n n
owl oy | YL T

where
P g 2
m=./¢ xz + 4y
and &, is the centered difference operator presented in Section 5.0 of Volume 1. At the ¢ = | boundary,

V AN 1 A" v oA 1 N
—JNl—l,j —7Ap+7A(Pv) +JN1,]' —-FAp+7A(pv) =

N —-1,) Ny, J
A n+1 (éx’?x + éyr’y)vaj n n n
iy |7 N, N | TN =1 T YN

Analogous equations can easily be written for the n boundaries.

Specified Three-Point y or r-Velocity Gradient in Normal Direction, Vven =f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-
encing,

VoA 1 N VoA 1 AT
_3.]l’j|:—7Ap+7A(pV):|1j+4J2,j[__p“Ap+-p—A(pv)] —

2.
von 1o~ 288 [ a1 Gt Emh oo g
J3,1[—?AP+FA([JV)]3J= ml,j 1,j - ml,j 6,7v17j +

n n n
3V1’j'— 4V2’j+ V3’j

where

m=\/§X2+§y2

and &, is the centered difference operator presented in Section 5.0 of Volume 1. At the £ = 1 boundary,

n

v 1 AT N 1 A
JN,-—2,j[__ﬁ.A;;+7A(Pv)]' ._4JN1-1,j[“7AP+‘,TA(PV)] ) '+
M=2,) N-1J
v A 1 AT _ 2A§ n+l (Exnx‘}‘éyny)]\’bj n
3JN,,j["7AP +7-A(PV)]V j-—-m—N:jT le,j - . Svny i | —
Y1y

n n n
Vi -2, TN -1, T N

Analogous equations can easily be written for the n boundaries.
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Linear Extrapolation of y or r-Velocity

Applying equation (6.14) of Volume 1 at the ¢ = 0 boundary,
VoA 1 ~ 7" VoA 1 N
Jl,j[—To—Ap +?A(pv)]l j— Zfz,j[—7Ap +—p—A(pV)]2 j+

n
Vo o.n 1 n n n n
13,][_7Ap +'p_A(p\')]3 .=—V1'j+2v2,j—V3,j
»J

At the ¢ = ] boundary,

14 A 1 " " v A 1 N "
JNI—Z,j —'p—Ap+'p—A(pV) _ZJNI—l,j —7Ap+—p—A(pV) +
N —=2,j N =1,
VoA 1 N n n n
J‘vl.j[_?AP‘F?A(PV)]N T TN -2,y 1N
1

Analogous equations can easily be written for the n boundaries.

Specified Flow Angle, tan~'(v/u) = f

This boundary condition can be rewritten as
v
= tan f
where fis the specified flow angle. Multiplying by pu,
(tanf)pu—pv=10
Applying equation (6.5) of Volume 1 to the above equation, we get
N N
S [(tan f) A}~ AW} ] =~ (tan )7 + (ov)
Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent y-velocity boundary condition
is specified.
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Subroutine BCWVEL (IBC,FBC,IEQ,IMXN,IMAX,IBOUND,A,B,C,S,.\"VD,NPTSD)

Called by Calls Purpose
BCGEN BCGRAD Compute swirl velocity boundary conditions.
BCMET '
Input
DEL Computational grid spacing in sweep direction.
IBASE, ISTEP Base index and multiplication factor used in computing one-

dimensional index for two-dimensional array.

IBC, FBC Mean flow boundary condition types and values for current sweep
direction, specified as IBC(L.J) and FBC(1,J), where I runs from
1 to N,,, corresponding to the N conditions needed, and J =1
or 2, corresponding to the lower and upper boundaries.

IBOUND Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.
1IEQ Boundary condition equation number.
IMIN, IMAX Minimum and maximum indices in the sweep direction.
ISWEEP Current ADI sweep number.
v Index in the “vectorized” direction, .
J1 Inverse Jacobian of the nonorthogonal grid transformation, J~1.
* NOUT Unit number for standard output.
NR, NRU, NRW Array indices associated with the dependent variables p, pu, and
ow.
NVD, NPTSD Leading two dimensions for the arrays A, B, C, and S.
RHO, U, W Static density p, and velocities and w, at time level n.
Qutput
A, B, C Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).
S Source term subvector S at boundary IBOUND (element IEQ
only).
Description

Subroutine BCWVEL computes coefficients and source terms for swirl velocity boundary conditions.
The linearized equations for the various general types of boundary conditions are developed in Section 6.0
of Volume 1. The following sections apply these generalized equations to the particular swirl velocity
boundary conditions in Proteus.’’

15 In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing

the final solution. For simplicity, however, only the superscript # is used. The superscripts on all other variables
are correct as written.
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No Change From Initial Conditions, Aw =10

Applying equation (6.3) of Volume 1, and noting that ag/aé = J8g[3Q, we get simply
W A 1 N

6/

Specified Swirl Velocity, w=f

Applying equation (6.5) of Volume 1,

1 A
‘]i,j[_%Aﬁ'*"p—A(Pw)] ij

" 1
n-+ n
=f _Wi,j
i

Specified Two-Point Swirl Velocity Gradient in Coordinate Direction, dw[d¢ = [

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,

AN RV WS ¥ AP+ A "
| T At 5 Alew) U_+ 2,j| — 5 Bp + 5 Alew) o

(Af)f{,];r 't wi i —wy
At the £ = 1 boundary,
n

1 A
+JN1,j[—%-A3+7A(pW)] =

J [ LAPY. A(,fw):r
YN -1 T T ry
1 J P P N Ny, Jj

1—1,J
n+41 n n
AN, +WN -1, = WN,j

Analogous equations can easily be written for the » boundaries.

Specified Three-Point Swirl Velocity Gradient in Coordinate Direction, dw[3¢ = [

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing,
A n "
+4Jz,j[——‘;’—Ap+%A(pw)} -
J ' 2,j

W oA 1 N

— 3Jl,j[ - TAP + -b—A(pw)]]

A n
3.J

At the ¢ = 1 boundary,

n

4J Y AD + - A
Nl_lxj

w 1 N
N —2,j
37 waseLagw] =208t —w 4w’ Il
M| T et Alew) N (AN Wiy =2, T N 1= 3N,
]vj

Analogous equations can easily be written for the n boundaries.
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Specified Two-Point Swirl Velocity Gradient in Normal Direction, Vw « n=f

Applying equation (6.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

n

W A 1 A " LA 1 N
_Jl,j _7Ap+—;A(pw) .+J2’j|:——5'Ap+7A(pw)] =

1,Jj 2,j
fn +1 (éx'bc + ﬁyr’)’)l,j swh . |+ wh — W
m1 g1t m_; 71, Li™ ™2j

where
_ 2 2
m= \/ ¢x +¢,
and 6, is the centered difference operator presented in Section 5.0 of Volume 1. Atthe & =1 boundary,

n

~ Ty, ,-[ L. A(pw)] i, ,[ »ap+Lagn] =
./ Nl>j
n+1 (éx’]x + éyny)Nl J n n
fv,, . +WN — 1, T WAL

Analogous equations can easily be written for the # boundares.

Specified Three-Point Swirl Velocity Gradient in Normal Direction, Vw n=f

Applying equation (6.12a) of Volume 1 at the { = 0 boundary, and using three-point one-sided differ-
encing,

n

Lo N
_3J1,j[—%A8+—p—A(pw)] +4J2,j|:—%A£+-p—A(pw)]zj_

1.j
w 1 AT 2A +1 ($x1x + Symh,

n n n
3W1,j— 4W2’J + W3,J
where
2 2
=&+,

and 4, is the centered difference operator presented in Section 5.0 of Volume 1. At the £ = 1 boundary,

I VN

N =2, -1,
w o~ ] A~ T 248 n+1 (Ganx + fyny)N,,j n
3JN[,] [ e 7 Ap + ? A(pW):IN ; = le,j le,j - le’j 6”le,1- —
1

n n n
“Nl—2,j+4le—1,j"3le,j

Analogous equations can easily be written for the » boundaries.
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Linear Extrapolation of Swirl Velocity

Applying equation (6.14) of Volume 1 at the & = 0 boundary,
1 A7 1 A
Jl,j[——b“iAﬁ +7A(pw)]1 j— le,j[—%Aﬁ +7A(pw)]2j+

n
W oA 1 " n n n

At the £ = | boundary,

n
+

w 1 A W ] N
JM_M[—TAS+7A(pw)] —ZJNI_]J[—7A3+7)—A(pw)]
N =2,/ Ny~1,/
J W A 1 NS _ n 27 n
N T AP+ 5 Alew) v M2 M
bt ]

Analogous equations can easily be written for the n boundaries.

Specified Flow Angle, tan-'(w/u) = f

This boundary condition can be rewritten as

w

= tan f
where f'is the specified flow angle. Multiplying by pu,

(tan fpu—pw =0
Applying equation (6.5) of Volume 1 to the above equation, we get
a3 A
Sy [Can )]} A — AW ] = = (tan )7, + (oW,

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent swirl velocity boundary con-
dition is specified.
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Subroutine BLIN1

Called by Calls Purpose
TURBBL ISRCHEQ Compute inner layer turbulent viscosity along constant ¢ hLnes.

CVK

IDEBUG
ILDAMP

INNER

IPRTI1A, IPRT2A

1T
IWALL2
Il
LWALL2
MU
MUT

NOUT

NPRTI, NPRT2
N2

RER

RHO, U, V, W
VORT

X, Y

Qutput

MUT

Description

Van Driest damping constant A~.
Constant B in the Spalding-Kleinstein inner layer model.

Exponent 7 in the Launder-Priddin modified mixing length for-
mula for the inner region of the Baldwin-Lomax turbulence
model.

Von Karman mixing length constant used in the inner region of
the Baldwin-Lomax and Spalding-Kleinstein models.

Debug flags.

Flag for Launder-Priddin modified mixing length formula in the
Baldwin-Lomax inner region model.

Flag for type of inner region model.
Indices for printout in the & and » directions.
Current time step number 7.
Flags indicating whether or not the » boundaries are walls.
Grid index i in the ¢ direction.
Flags specifying wall locations for n boundaries.
. Laminar coefficient of viscosity pu..

Outer layer turbulent viscosity coefficient (uoow.e along constant &
lines.

Unit number for standard output.

Total number of indices for printout in the ¢ and » directions.
Number of grid points N in the » direction.

Reference Reynolds number Re,.

Static density p, and velocities &, v, and w.

Total vorticity magnitude.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Turbulent viscosity coefficient u. along constant ¢ lines.

Subroutine BLIN1 computes the inner layer turbulent viscosity coefficient (i:)une- at a specified ¢ lo-

cation (i.e., due to wall
of Baldwin and Lomax
in Section 9.1.2 of Volume 1.
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(1978), and the model of Spalding (1961) and Kleinstein (1967). These are described
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If both # boundaries are solid walls, (i) is computed separately for each wall, and it is assumed that
the two inner regions do not overlap. For each wall, the computation is done inside a loop starting at the
wall and moving outward. Once the inner region value exceeds the outer region value, the loop 1s exited.
Thus H:= (Il()m.ner until (Ilr)mrw = (Iir)auren then He = (,ux)ou!er-

The distribution of u, across the intersection of the inner and outer regions is smoothed using the fol-
lowing formulas. For the n = 0 wall,

1
(.U»r)jb = 4 [(l-‘z)jb -1t 2(#:)jb + (I»‘z)jb + 1]
1
(udj—1=7% Cd)j, — 2+ 2wy, 1 + (10);,]
where the boundary between the inner and outer regions falls between between j=j; — 1 and j=j;. It

should be noted that the unsmoothed value of (u),, is used in the second smoothing formula, not the
smoothed value from the first formula. Similarly, for the » = 1 wall,

1
(lu'l)jb = Z [(l—‘x)jb +1 + 2(.“[)jb + (#t)jb - 1]
1
mdjy+r1=74 [, 2+ 2edj, 41 + (1))
where the boundary between the inner and outer regions falls between between j = j, + 1 and j=j.

Remarks

1. To avoid the possibility of floating point errors, the value of Ifll used to compute + and u* is set to
a minimum of 10-1°. "

The Cray search routine ISRCHEQ is used in determining the grid locations for debug printout.
3. This subroutine generates output for the IDEBUG(8) option.
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Subroutine BLIN2

Called by Calls

Purpose

TURBBL ISRCHEQ

Compute inner layer turbulent viscosity along constant » lines.

Input

*  APLUS

* CB

* CNL

* CVK
DUMMY

* IDEBUG

*  JLDAMP

*  INNER

* IPRTIA, IPRT2A
IT

* [WALLL
12

* LWALLI
MU

*  NOUT
NPRTI, NPRT2

* NI

* RER
RHO, U, V, W
VORT
X, Y

Output
DUMMY

Description

Van Driest damping constant 4+.
Constant B in the Spalding-Kleinstein inner layer model.

Exponent n in the Launder-Priddin modified mixing length for-
mula for the inner region of the Baldwin-Lomax turbulence
model.

Von Karman mixing length constant used in the inner region of
the Baldwin-Lomax and Spalding-Kleinstein models.

Outer layer turbulent viscosity coefficient (u,)ou.r along constant »
lines.

Debug flags.

Flag for Launder-Prddin modified mixing length formula in the
Baldwin-Lomax inner region model.

Flag for type of inner region model.

Indices for printout in the £ and » directions.

Current time step number 7.

Flags indicating whether or not the ¢ boundaries are walls.
Grid index j in the # direction.

Flags specifying wall locations for ¢ boundaries.

Laminar coefficient of viscosity u,.

Unit number for standard output.

Total number of indices for printout in the ¢ and » directions.
Number of gnd points ¥, in the ¢ direction.

Reference Reynolds number Re..

Static density p, and velocities u, v, and w.

Total vorticity magnitude.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Turbulent viscosity coefficient y, along constant » lines.

Subroutine BLIN2 computes the inner layer turbulent viscosity coefficient (i) at a specified 7 lo-
cation (i.e., due to walls at ¢ =0 andjor ¢ = 1.) The procedure is exactly analogous to that used m sub-

routine BLIN1.
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Subroutine BLKOUT (I1PT,I2PT,A,B,C,S,NVD,NPTSD)
Called by Calls Purpose
ADI Pnnt coefficient blocks at specified indices in the ¢ and y directions.
AVISCI
AVISC2
BCGEN
FILTER
Input
A, B, C Coefficient submatrices A, B, and C
+ IHSTAG Flag for constant stagnation enthalpy option.
ISWEEP Current ADI sweep number.
*  ISWIRL Flag for swirl in axisymmetric flow.
I1PT, I2PT Indices for printout in the ¢ and » directions.

NC, NXM, NYM, NZM, NEN

NEQ

* NOUT
NVD, NPTSD
S

Output

None.

Description

Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations.

Number of coupled equations being solved, N,,.
Unit number for standard output.
Leading two dimensions for the arrays A, B, C, and S.

Source term subvector S.

Subroutine BLKOUT prints the coefficient block submatrices A, B, and C, and the source term sub-
vector S at the grid points specified by 11PT and I2PT. This is the routine that actually prints the output
for the IDEBUG(1) through IDEBUG(4) options.
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Subroutine BLK2 (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose
EXECT Solve 2 x 2 block tridiagonal system of equations.
Input
A B, C Coefficient submatrices A, B, and C
NPTS Number of grid points in the sweep direction, N.
NV Number of grid points in the “vectorized” direction, N,.
NVD, NPTSD Leading two dimensions for the arrays A, B, C, and S.
N Source term subvector S.
Output
S Computed solution subvector.
Description

Subroutine BLK?2 solves a block tridiagonal system of equations with 2 x 2 blocks using the block ma-
trix version of the Thomas algorithm. The algorithm is described in Section 7.2.1 of Volume 1. For clanty,

that description involves additional “new” matrices D, E, and AQ’. In Fortran, however, we can save
storage by overwriting B, C, and S. The following table relates the algorithm as implemented in Fortran
to the notation used in Volume 1, for the first ADI sweep. An exactly analogous procedure is followed for
the second sweep.

Step In Fortran In Volume 1 Notation

1 D,=B;

2a Solve B,E, = C, for E;, stonng result in C; E.=Ds;1C,

2b Solve B,AQj = S, for AQ3, storing result in S, AQ; =D;'S,
Fori=3to N, — 1,

3a Compute B, — AC,_,, stonng result in B, D.=B.—AE _,

3b Compute S, — AS,_,, storing result in S, S, —AAQ .,

3¢ Solve BE; = C, for E,, storing result in C; E.=D;C;

3d Solve B.AQ! =S, for AQ/, storing result in S; AQ! =D; (S, — AAQ_,)

4 AQM -1 = AQ'M -1
Fori=N,—-2t0 2,

5 Compute S,— CS, ., storing result in S, AQ.=AQ, - EAQ;.,

Remarks

1. The notation used in the comments in BLK2 is consistent with the notation used in the description of

the algorithm in Volume I.

However, BLK?2 is actually used to solve the k-¢ turbulence model

equations, and the boundary conditions for these equations are treated explicitly. That’s why the index
in BLK?2 runs from i =2 to N; — 1, instead of from i= 1 to N,. In addition, in BLK2 the matnix D!
is computed directly, rather than by LU decomposition.
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2. The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
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Subroutine BLK2P (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

EXECT

Solve 2 x 2 pertodic block tridiagonal system of equations.

Input

A B, C
NPTS

NV

NVD, NPTSD

S

QOutput
S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the “vectorized” direction, N,.

Source term subvector S.

Leading two dimensions for the arrays A, B, C, and S.

Computed solution subvector.

Description

Subroutine BLK2P solves a periodic block tridiagonal system of equations with 2 x 2 blocks. An effi-
cient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations.
The algorithm is described in Section 7.2.2 of Volume 1. For clarity, that description involves additional

“new” matnces D, E, F, G, and Aé’. In Fortran, however, we can save storage by overwriting A, B, C, and
S. The following table relates the algorithm as implemented in Fortran to the notation used in Volume 1,
for the first ADI sweep. An exactly analogous procedure is followed for the second sweep.

Step In Fortran In Volume 1 Notation
la Dz = Bz
ib F;=Cy
2a Solve B,E; = C; for E,, storing result in C, E.=D;!C,
2b Solve B.G, = A; for G,, storing result in A, G,=Ds7'A,
2c Solve B,AQ5 =S, for AQ3, storing result in S, AQ; =Ds5'S;
Fori=3t0o N, —1,
3a Compute B, — AC,_,, storing result in B; D =B —AE_,
3b Compute S, — AS,_ |, storing result in S, S — AAQ_,
3c Compute — AA, _ ), storing result in A, -—AG;_,
3d Solve BE, = C, for E,, storing result in C; E,=D7!C,
3e Solve B.G; = A, for G,, stonng result in A, G, =D;AG,_,
3f Solve BAQ! = S, for AQ;, storing result in S; AQ! = ll)rl(S, —AAQ L)
3g Compute By, — Cy A, _, storing result in By, By, — S FG,
j=2
=1 A
3h Compute Sy, — Cy,S,_ |, storing result in Sy, Sy — S FAQ;
J=2
3 Compute — Cy,C,_,, stoning result in Cy, F.=-F _E _;
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Step In Fortran

In Volume 1 Notation

4a Compute Ay, -1 + Cy, -, storing result in Ay, _,
4b Compute Ay, + Cy,, storing result in Cy,

Compute By, — Cx Ay, -1, storing result in By,

4d Compute Sy, — Cy, Sy, -1, storing result in Sy,

4f | Solve BNIA(A)’N1 = Sy, for Aé’Nl, storing result in Sy,

GN1—-I = DX',l— 1(CN1 -1 A.vl - 1GN1 -2)
FN} -1= AN[ - FN] —ZENl -2
M -1

DN] = BN1 - Z F:Gi
=2

N -1 ”

SN) - z F,AQ:
=2

Ny -1

AQ =D5i(Sx ~ X FAQ)

Aélﬁ = AQ,Nl

6 Compute Sy, _; — Ax, - 1Sw, storing result in Sy, _;

AQN, -1= AQ'Nl -1 — G;vx - lAQN1

Fori=N,—-2t0 2, .
7 Compute S, — ASy, — CS, ., storing result in S,

AQ. = AQ! — GAQy, — EAQ..,

8 | SetS =Sy

Aél = Aém

Remarks

1. The notation used in the comments in BLK2P is consistent with the notation used in the description
of the algonthm in Volume 1. However, in BLK2P the matrix D-! is computed directly, rather than

by LU decomposition.

2. The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
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Subroutine BLK3 (A,B,C,S,NVD,NPTSD)

| Called by Calls Purpose
ADI FILTER Solve 3 x 3 block tridiagonal system of equations.

Input
A B, C Coefficient submatrices A, B, and C
NPTS Number of grid points in the sweep direction, N.
NV Number of grid points in the “vectorized” direction, N,.
NVD, NPTSD Leading two dimensions for the arrays A, B, C, and S.
S Source term subvector S.

Output
S Computed solution subvector.

Description

Subroutine BLK3 solves a block tridiagonal system of equations with 3 x 3 blocks using the block ma-
trix version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero
values on the diagonal of the submatrix B at the two boundaries. These can occur when mean flow
boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial
conditions and the order of the boundary conditions.

The algorithm is described in Section 7.2.1 of Volume 1. For clarity, that description involves additional

“new” matrices D, E, and A()’. In Fortran, however, storage is saved by overwriting B, C, and S. The
following table relates the algorithm as implemented in Fortran to the notation used in Volume 1, for the
first ADI sweep. An exactly analogous procedure is followed for the second sweep.

Step In Fortran In Volume 1 Notation
1 D, =B,
2a LU decompose By, storing result in B, LU decomposition of D,
2b Solve B,E, = C, for E, using LU decomposition of E, =D;!'C,
B,, storing result in C, ‘
2c Solve B,AQ{ =S, for AQ} using LU decomposition AQ7 =DilS,
of By, storing result in S,
Fori=2to Ny,
3a Compute B, — A,C,_,, storing result in B, D.=B.—AE,_,
3b Compute S, — AS, _,, storing result in S; S — AAQ _,
3c LU decompose B, storing result in B; LU decomposition of D,
3d Solve B.E; = C; for E; using LU decomposition of B, E. = D;1C;
storing result in C;
3e Solve BAQ! =S, for AQ! using LU decomposition AQ; =D7 (S, — AAQ )
of B,, storing result in S,
4 AQn, = AQy
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Step In Fortran In Volume 1 Notation
Fori=N,—1to 1,
5 Compute S, — CS, ., storing result in S; AQ, =AQ! —EAQ;_,
Remarks

1. The notation used in the comments in BLK3 is consistent with the notation used in the description of
the algorithm in Volume 1.

2. The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algonthm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
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Subroutine BLK3P (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

ADI

Solve 3 x 3 periodic block tridiagonal system of equations.

Input

A, B C
NPTS

NV

NVD, NPTSD

S

Output
S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the “vectorized” direction, N,.

Leading two dimenstons for the arrays A, B, C, and S.

Source term subvector S.

Computed solution subvector.

Description

Subroutine BLK3P solves a periodic block tridiagonal system of equations with 3 x 3 blocks. An effi-
cient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations.
The algorithm is described in Section 7.2.2 of Volume 1. For clarity, that description involves additional

“new” matrices D, E, F, G, and A(A)'. In Fortran, however, storage is saved by overwrting A, B, C, and
S. The following table relates the algorithm as implemented in Fortran to the notation used in Volume 1,
for the first ADI sweep. An exactly analogous procedure is followed for the second sweep.

Step In Fortran In Volume 1 Notation
la Dz = Bz
1b FZ = CN1
2a LU decompose B,, storing result in B, LU decomposition of D,
2b Solve B,E, = C; for E, using LU decomposition of .= D31C;
B,, storing result in C;
2c Solve B,G. = A, for G; using LU decomposition of G;=Ds'A;
B,, storing result in A,
2d Solve B,AQ; =S, for AQ3 using LU decomposition AQ; =D7'S;
of B,, storing result n S,
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Step In Fortran In Volume 1 Notation
Fori=3to N, -1,
3a Compute B, — A,C,_, storing result in B; D;=B.— AE,_,
3b Compute S, — AS,_,, storing result in S, S - AAQ_,
3¢ Compute — A A, _,, storing result in A; —AG, _,
3d LU decompose B, storing result in B, LU decomposition of D;
3e Solve BE, = C, for E, using LU decomposition of B, E. = D/ 'C;
storing result in C;
3f Solve B,G, = A, for G; using LU decomposition of B,, G, =D;'AG,_,
storing result in A,
3g Solve BAQ! =S, for AQ! using LU decomposition AQ! =Dr (S, — AAQ_,))
of B, storing result in S, -
3h Compute By, — Cy, A, _,, storing result in By, By.— S FG,
Jj=2
PR A
3 Compute Sy, — Cx,S, -, storing result in Sy, Sy — T FAQ;
Jj=2
3j Compute — Cy,C,_ ), storing result in Cy, F.=-F_E_,
4a Computc AN) 1+ CN] —1s Storing result in ANl -1 GN[ 1= DE"I_ 1(CN1 -1 AN] - 1GN1 _2)
4b Compute Ay, + Cy,, storing result in Cy, Faoi-1=Am — Fy,_2Ewn 2
Ny—1
4c Compute By, — Cy Ay, -1, storing result in By, Dy, =By, — > FG.
i=2
N -1 A
Compute Sy, — Cy,Sy, -1, storing result in Sy, Svm— X FAQ!
(=2
4e LU decompose By,, storing result in By, LU decomposition of Dy,

A A A Ny -1 A
4f Solve By, AQ’y, = Sy, for AQ’y, using LU decompos- | AQ», = Dr{(Syw — 3 FAQ!)
ition of By,, storing result in Sy, i=2

5 AQN] = AQ'N[
6 Compute Sy, .1 — Ay, -1Sx,, storing result in Sy, _, A(A)Nl_, = A(A)’Nl -1 — Gy _IA(AQM
Fori=N,—-2to 2,
7 Compute S, — ASy, — CS,,,, stoning result in S, AQ, = AQ! - GAQy —EAQ,,,
8 | SetS =Sy AQ, = AQy,
Remarks

1. The notation used in the comments in BLK3P is consistent with the notation used in the description
of the algorithm in Volume 1.

2. The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
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Subroutine BLK4 (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose
ADI FILTER Solve 4 x 4 block tridiagonal system of equations.
Input
A B, C Coefficient submatrices A, B, and C
NPTS Number of grid points in the sweep direction, N.
NV Number of grid points in the “vectorized” direction, N,.
NVD, NPTSD Leading two dimensions for the arrays A, B, C, and S.
S Source term subvector S.
Output
S Computed solution subvector.
Description

Subroutine BLK4 solves a block tridiagonal system of equations with 4 x 4 blocks using the block ma-
trix version of the Thomas algorithm. Subroutine FILTER is called in an attempt to elimimnate any zero
values on the diagonal of the submatrix B at the two boundaries. These can occur when mean flow
boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial
conditions and the order of the boundary conditions.

The algorithm is described in Section 7.2.1 of Volume 1. For clanty, that description involves additional

“new” matrices D, E, and Aé'. In Fortran, however, storage is saved by overwriting B, C, and S. The al-
gorithm is identical to that used in subroutine BLK3. See the description of that subroutine for a table
relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

1. The notation used in the comments in BLK4 is consistent with the notation used in the description of
the algorithm in Volume 1.

2. The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or 1V, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
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Subroutine BLK4P (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose
ADI} Solve 4 x 4 periodic block tndiagonal system of equations.
Input
A B C Coefficient submatrices A, B, and C
NPTS Number of grid points in the sweep direction, N.
NV Number of grid points in the “vectorized” direction, N,.
NVD, NPTSD Leading two dimensions for the arrays A, B, C, and S.
S Source term subvector S.
Output
S Computed solution subvector.
Description

Subroutine BLK4P solves a periodic block tridiagonal system of equations with 4 x 4 blocks. An effi-
cient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations.
The algorithm 1s described in Section 7.2.2 of Volume 1. For clarity, that description involves additional

“new” matrices D, E, F, G, and Aé’. In Fortran, however, storage is saved by overwnting A, B, C, and
S. The algorithm is identical to that used in subroutine BLK3P. See the description of that subroutine for
a table relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

1. The notation used in the comments in BLK4P is consistent with the notation used in the description
of the algorithm in Volume 1.

2. The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
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Subroutine BLKS (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose
ADI FILTER Solve 5 x 5 block tridiagonal system of equations.
Input
A B, C Coefficient submatrices A, B, and C
NPTS Number of grid points in the sweep direction, V.
NV Number of grid points in the “vectorized” direction, N,.
NVD, NPTSD Leading two dimensions for the arrays A, B, C, and S.
S Source term subvector S.
Output
S Computed solution subvector.
Description

Subroutine BLK 5 solves a block tridiagonal system of equations with 5 x 5 blocks using the block ma-
trix version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero
values on the diagonal of the submatrix B at the two boundaries. These can occur when mean flow
boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial
conditions and the order of the boundary conditions.

The algorithm is described in Section 7.2.1 of Volume 1. For clarity, that description involves additional

“new” matrices D, E, and Aé’. In Fortran, however, storage is saved by overwriting B, C, and S. The al-
gorithm is identical to that used in subroutine BLK3. See the description of that subroutine for a table
relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

1. The notation used in the comments in BLKS5 is consistent with the notation used in the description of
the algorithm in Volume 1.

2. The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algonthm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
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Subroutine BLK5P (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose
ADI Solve 5 x 5 periodic block tridiagonal system of equations.
Input
A B, C Coeflicient submatrices A, B, and C
NPTS Number of grid points in the sweep direction, N.
NV Number of grid points in the “vectorized” direction, N.,.
NVD, NPTSD Leading two dimensions for the arrays A, B, C, and S.
S Source term subvector S.
Output
S Computed solution subvector.
Description

Subroutine BLKSP solves a periodic block tridiagonal system of equations with 5 x 5 blocks. An effi-
cient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations.
The algorithm is described in Section 7.2.2 of Volume 1. For clanty, that description involves additional

“new” matnces D, E, F, G, and Aé’. In Fortran, however, storage is saved by overwriting A, B, C, and
S. The algorithm is identical to that used in subroutine BLK3P. See the description of that subroutine for
a table relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

1. The notation used in the comments in BLKSP is consistent with the notation used in the description
of the algorithm in Volume 1.

2. The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.
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BLOCK DATA Subprogram

Called by Calls Purpose
Set default values for input parameters, plus a few other parameters.
Input
None.
QOutput

All namelist input parameters, plus:

CCPi, CCP2, CCP3, CCP4
CK]1, CK2
CMU1, CMU2

GC
IBCELM

IBVUP

ICONV
IGINT

ITBEG
KBCPER

NC, NXM, NYM, NZM, NEN
NIN

NR, NRU, NRV, NRW, NET
RAX

TAU

PUT.
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Constants in formula for specific heat.
2.065 x 10¢, 7.83 x 108)1¢

Constants in formula for laminar thermal conductivity coefficient.
(7.4907 x 10-3, 350.0)!¢

Constants in formula for laminar viscosity coefficient.
x 10-7, 198.6)1¢

Proportionality factor g, in Newton's second law. (32.174)'¢

(8.53 x 103, 3.12 x 10¢,

(7.3035

Flags for elimination of off-diagonal coefficient submatrices re-
sulting from three-point boundary conditions in the ¢ and » di-
rections at either boundary; 0 if elimination is not necessary, 1 if
it is. (2*0,2*0)

Flags for updating boundary values from first sweep after second
sweep; 0 if updating is not necessary, 1 if it is. (0,0)

Convergence flag; 1 if converged, 0 if not. (0)

Flags for grid interpolation requirement for the ¢ and # directions;
0 if interpolation is not necessary, 1 if it is. (0,0)

The time level  at the beginning of a run. (1)

Flags for spatially periodic boundary conditions in the ¢ and »
directions; 0 for non-periodic, 1 for periodic. (0,0)

Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations. (1,2,3,5,4)

Unit number for standard input. (5)

Array indices associated with the dependent variables p, pu, pv,
pw, and Er. (1,2,3,5,4)

1 for two-dimensional planar flow, and the local radius r for
axisymmetric flow. (NMAXP*1.0)

Initial time value . (NTOTP*0.0)

16 These values are for reference conditions specified in English units. Values for SI units are set in subroutine IN-
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Description

The BLOCK DATA routine is used to set default values for all the input parameters, plus various other
parameters and constants. The defaults for all the input parameters are given as part of the standard input
description in Section 3.1 of Volume 2. The values for the other parameters and constants set in BLOCK
DATA are given in parentheses in the above output description. Note that some of these values assume
English units are being used to specify reference conditions. If SI units are being used, these values are re-
defined in subroutine INPUT.

Remarks

1. Most of the default values are defined directly, but some, like the reference viscosity MUR, are set equal
to zero and defined in subroutine INPUT if not specified by the user.
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Subroutine BLOUT 1

IPRTIA, IPRT2A
1T

IWALL?2

Il

LWALL?2

MU

NOUT

NPRTI, NPRT2
N2

RER

RHO, U, V, W
VORT

X, Y

Output

LWAKE?2

MUT

Description

Called by Calls Purpose
TURBBL ISAMAX Compute outer layer turbulent viscosity, using the algebraic Baldwin-
ISAMIN Lomax model, along constant ¢ lines.
ISRCHEQ
Input
APLUS Van Driest damping constant 4~.
CB Constant B in the Klebanoff intermittency factor.
CCLAU Clauser constant K in the Baldwin-Lomax outer region model.
CCP Constant C,, in the Baldwin-Lomax outer region model.
CKLEB, CKMIN Constants Cys and (Ckues)mi in the Klebanoff intermittency factor.
CNA Exponent n in the formula used to average the two outer region
u. profiles that result when both boundaries in a coordinate di-
rection are solid surfaces.
CWK Constant C. in the Baldwin-Lomax outer region model.
IDEBUG Debug flags.

Indices for printout in the ¢ and » directions.
Current time step number 7.
Flags indicating whether or not the y boundaries are walls.
Grid index i in the & direction.
Flags specifying wall locations for » boundaries.
Laminar coefficient of viscosity p..
Unit number for standard output.
Total number of indices for printout in the ¢ and » directions.
Number of grid points N; in the » direction.
Reference Reynolds number Re,.
Static density p, and velocities u, v, and w.
Total vorticity magmtude.

Cartesian coordinates x and p, or cylindrical coordinates x and r.

Gnd index j in the # direction used as the origin for computing
length scales for free turbulent flows.

Outer layer turbulent viscosity coefficient (u)our along constant &
lines.

Subroutine BLOUT1 computes the outer layer turbulent viscosity coefficient (i )our at a specified &

location (i.e., due to walls at = 0 and/or n = 1, or due to a free turbulent flow in the ¢ direction) using the
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algebraic eddy viscosity model of Baldwin and Lomax (1978). The model is described in Section 9.1 of
Volume 1. The steps performed in BLOUT! are as follows:

Find the values and locations of I V| and | I7l .

ma.

2. Compute the parameter

for wall-bounded flows

ymameax

Fwake = Ymax

Cor Viff?— for free turbulent flows
max

where C.. is a constant taken as 0.25, and

Vdijf: |I7|max_ |;lmin

where 7 is the total velocity vector. The procedure for computing the parameter Fr.. depends on
whether a solid wall exists at n = 0 and/or at n = 1.

3. If, at the current & location, the n = 0 boundary is a solid wall, compute (Fn..): as follows:

3a. For y-indices from the wall to the location of | V' , compute

Fo) =3 Q| (1= €7774)

3b. Get the location of the maximum value of F(y,), calling its x-index L;. Tentatively set

(Lmnx)l = Ll~
3¢. Search outward from this location for a local minimum in F(y,). If one is found, call its n-index
Lopin.

3d. If a local minimum exists, get the location of the next maximum value of F{y,), calling its »n-index
L,. This is the location of the second peak in F(y,). Let

AF, = Fp,), — FOo)L,,
AF, = F(J}n)L2 - F(.Vn)L,,,i,,
Then, if AF; > 0.25AF,, set (L) = L. This test is intended to filter false peaks resulting from
noise, or wiggles, in F(p,).
3e. Set (Freoh = F(ys) at the n-index (Lmei, and set yma equal to the corresponding value of y,.

4. Tf, at the current ¢ location, the # = | boundary is a solid wall, compute (Fn.):. The procedure is ex-
actly analogous to the procedure described in steps 3a-3e for computing (F,...): at the n = 0 wall.

5. If neither » boundary is a solid wall, a free turbulent flow in the ¢ direction is assumed. In this case,
the required value of F,.. is computed as follows:

5a. For n-indices between the locations of I I;I ~and I v , and using the location of | Vv

origin for y,, compute

as the

ma. ma

Fop) =7, | Q|
Get the location of the maximum value of F(y,), and compute F..

5b. Repeat step 5a using the location of | I7| ~ as the ornigin for ..

Sc. Set the final value of F,.. equal to the one from step 5a or 5b that corresponds to the smaller value
Of Yoz Set Luore accordingly.
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6. If a solid wall exists at # = 0 or at » = 1, but not both, or if neither » boundary is a solid wall, compute
(K1) ourer directly.

7. If both 5 boundaries are solid walls, compute (i,),. bY combining the two computed values of F,..
using the averaging formula presented as equation (9.12) of Volume 1.

Remarks

1. The computation of y,, the normal distance to the wall or wake centerline, is approximate. It is actually
the straight-line distance between the interior grid point and the wall or wake centerline grid point.

2. The Cray search routines ISAMAX and ISAMIN are used in computing[, 17,,,‘,, , l IZ,,,,, | ,and F,... The
Cray search routine ISRCHEQ i1s used in determining the grid locations for debug printout.

3. If the maximum and minimum total velocities are equal, indicating a uniform flow along this particular
¢ line, their locations are arbitrarily set equal to the middle » index, and the turbulent viscosity coeffi-
cient (ioower 15 set equal to 0. This normally would occur only durnng the first time step in a case with
uniform tnitial velocity profiles.

4. To avoid the possibility of floating point errors, the values of ] IZ,,,,I ) | IZ,,,-,, [, F..., and y,.. are set to a
minimum of 10-10,

5. This subroutine generates output for the IDEBUG(8) option.
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Subroutine BLOUT?2

Called by Calls Purpose
TURBBL [SAMAX Compute outer layer turbulent viscosity, using the algebraic Baldwin-
ISAMIN Lomax model, along constant » lines.
ISRCHEQ
Input
* APLUS Van Driest damping constant A+.
* CB Constant B in the Klebanoff intermittency factor.
* CCLAU Clauser constant K in the Baldwin-Lomax outer region model.
* CCP Constant C,, in the Baldwin-Lomax outer region model.
* CKLEB, CKMIN Constants Cks and (Cyies)men in the Klebanoff intermittency facter.
* CNA Exponent 7 in the formula used to average the two outer region
u. profiles that result when both boundaries in a coordinate di-
rection are solid surfaces.
* CWK Constant C,, in the Baldwin-Lomax outer region model.
* IDEBUG Debug flags.
* IPRTIA, IPRT2A Indices for printout in the ¢ and » directions.
IT Current time step number 7.
* IWALLI Flags indicating whether or not the ¢ boundaries are walls.
I2 Grd index j in the » direction.
* LWALLI Flags specifying wall locations for ¢ boundaries.
MU Laminar coefficient of viscosity u,.
* NOUT Unit number for standard output.
NPRTI, NPRT2 Total number of indices for printout in the ¢ and # directions.
* NI Number of grid points N, in the ¢ direction.
* RER Reference Reynolds number Re,.
RHO, U, V. W Static density p, and velocities , v, and w.
VORT Total vorticity magnitude.
X, Y Cartesian coordinates x and p, or cylindrical coordinates x and r.
Output -
LWAKEI Gnd index / in the ¢ direction used as the origin for computing
length scales for free turbulent flows.
DUMMY 1?nuter layer turbulent viscosity coefficient (g)our along constant »
es.
Description

Subroutine BLOUT2 computes the outer layer turbulent viscosity coefficient (:)ourer at a specified 5
location (i.e., due to walls at £ = 0 and/or ¢ = 1, or due to a free turbulent flow in the n direction) using the

Proteus 2-D Programmer’s Reference

4.0 Proteus Subprograms: BLOUT2 135



algebraic eddy viscosity model of Baldwin and Lomax (1978). The procedure is exactly analogous to that
used in subroutine BLOUT1.
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Subroutine BVUP (A,B,CS METX METY METT,NVD,NPTSD)
Called by Calls Purpose
EXEC BCGEN Update first sweep boundary values after second sweep.
EQSTAT
SGEFA
SGESL
Input
A, B, C Coefficient submatrices A, B, and C.
DXI Computational grid spacing A¢.
IBVUP Flags for updating boundary values from first sweep after second
sweep; 0 if updating is not necessary, 1 if it is.
* THSTAG Flag for constant stagnation enthalpy option.
* ISWIRL Flag for swirl in axisymmetric flow.
JI Inverse Jacobian of the nonorthogonal grid transformation, J- 1.
KBCPER Flags for spatially periodic boundary conditions in the ¢ and x
directions; 0 for non-periodic, 1 for penodic.
NEQ Number of coupled equations being solved, N,,.
NEQP Dimensioning parameter specifying maximum number of coupled
equations allowed.
NPT1, NPT2 N, and N, for non-periodic boundary conditions, N, + 1 and

NR, NRU, NRV, NRW, NET

NVD, NPTSD
* N1, N2
NIP
RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

S
XIX, X1Y, XIT

Output

DEL
IBASE, ISTEP

ISWEEP
v
METX, METY, METT
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N, + 1 for spatially periodic boundary conditions in £ and .

Array indices associated with the dependent vanables p, pu, pv,
pW, and ET.

Leading two dimensions for the arrays A, B, C, and S.
Number of grid points N, and N, in the ¢ and 5 directions.
Parameter specifying the dimension size in the ¢ direction.

Static density p, velocities u, v, and w, and total energy E£r at time
level n at all grid points.

Static density p, velocities u, v, and w, and total energy £ at time
level n+ 1 at all interior grid points.

Source term subvector S.

Metric coefficients ¢,, &, (or &, if axisymmetric), and ¢,.

Computational grid spacing for the sweep direction being updated.

Base index and multiphication factor used in computing one-
dimensional index for two-dimensional array.

ADI sweep number for sweep direction being updated.
Index in the “vectorized” direction, i,.

Derivatives of computational coordinate, for the sweep direction
being updated, with respect to x, y (or r if axisymmetric), and ¢.
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NPTS Number of grid points N in the sweep direction being updated.
\V Number of grid points in the “vectorized” direction, N,.

RHOL, UL, VL, WL, ETL Static density p, velocities , v, and w, and total energy E7 at time
level n + 1 at boundary points from first sweep.

Description

Subroutine BVUP updates boundary values from the first, or £, sweep after the second, or », sweep.
In general, this is necessary when gradient or extrapolation boundary conditions are used in the ¢ direction.
Some updating is also necessary when spatially periodic boundary conditions are used. The procedure is
described in Section 7.3 of Volume 1 for all cases.

Remarks

1. The comer values of p and Er are updated by linearly extrapolating from the two adjacent points in the
& and 5 directions, and averaging the two results. Note that this extrapolation is done in computational
space. Grid packing in either direction is thus not taken into account. The comner values of the ve-
locities are updated by doing the same type of extrapolation. Instead of averaging, however, the ex-
trapolated velocity whose absolute value is lower is used. This was done to maintain no-slip at duct
inlets and exits.

2. Subroutines SGEFA and SGESL are Cray LINPACK routines. In general terms, if the Fortran arrays
A and S represent A and S, where A is a square N by N matrix and S is a vector with N elements, and
if the leading dimension of the Fortran array A is LDA, then the Fortran sequence

call sgefa (a,lda,n,ipvt,info)
call sgesl (a,lda,n,ipvt,s,0)

computes A~!S, storing the result in S.
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Subroutine COEFC (A,B,C,S, METX,METY METT ,NVD,NPTSD)

Called by Calls Purpose
EXEC Compute coefficients and source term for the continuity equation.
Input
DEL Computational grid spacing in sweep direction.
DTAU Time step Ax.
DXI, DETA Computational grid spacing A¢ and Ayn.
ETAX, ETAY, ETAT Metric coefficients ,, u, (or #, if axisymmetric), and #..

TAXI
IBASE, ISTEP

THSTAG
ISWEEP
ISWIRL
v

I1, I2

JI

METX, METY, METT
NC
NEQ

NPTS
NR, NRU, NRV, NRW, NET

NVD, NPTSD
RAX

RHO, U,V
RHOL
THC

XIX, X1Y, XIT
Y

Output

A /B C
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Flag for axisymmetric flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Flag for constant stagnation enthalpy option.
Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the “vectorized” direction, i,.

Grid indices i and j, in the ¢ and % directions.

Inverse Jacobian of the nonorthogonal gnid transformation, J~!
(timnes the radius r for axisymmetric flow.)

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and 7.

Array index associated with the continuity equation.
Number of coupled equations being solved, N,,.
Number of grid points in the sweep direction, N.

Array indices associated with the dependent vanables p, pu, pv,
pw, and Er.

Leading two dimensions for the arrays A, B, C, S, METX,
METY, and METT.

1 for two-dimensional planar ﬂoW, and the local radius r for
axisymmetric flow.

Static density p, and velocities u and v, at time level n.
Static density p from previous ADI sweep.

Parameters 8, and 8, determining type of time differencing for the
continuity equation.

Metric coefficients &,, &, (or §,' if axisymmetric), and £,.

Radial coordinate 7 for axisymmetric flow.

Coefficient submatrices A, B, and C at interior points (row NC
only).
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S Source term subvector S at interior points (element NC only).

Description

Subroutine COEFC computes the coefficients and source term for the continuity equation. Equations
(7.5a-b) 1 Volume 1 represent, in vector form, the four goveming difference equations for the two ADI
sweeps for 2-D planar flow. The elements of the inviscid flux vectors E and F are given in Section 2.0 of
Volume 1, and the elements of the viscous flux vectors Ey,, Ey,, etc., are given in Appendix A of Volume

1. The Jacobian coefficient matrices 6IAZ/6(A), 6IAZV1/6(A), etc., are given 1n Section 4.0 of Volume 1. Using
all of these equations, the differenced form of the continuity equation for 2-D planar flow may be written
for the two ADI sweeps as!?

Sweep 1 (& direction)

n n

AA; + 91A‘r 5%1 BAY aﬁl Aét
p- . — ry P =
i (l+82)2A§ 86 i+1 aQ i1
i+1 i—1
- SF NP S LI SRS
1486, V1T %) T o
Sweep 2 ( direction)
A n A n
8,At aF,; A oF, A nx
Ap} + 1 ~ AQ | —& AQi_, |=4p
77 (14 6,)2A1 20 J+1 3 /-1
J+1 RS

In the above equations, the subscripts i and j represent grid point indices in the ¢ and » directions. For
notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j.

The vector of dependent vanables is
A 1
Q=—Lp pu pv EA’

The appropnate elements of the flux vectors are given by

>

S N

1 Loud, + pvE, + p&/]

[

Louny + pvy, + o1/l

The elements of the Jacobian coefficient matrix JE/8Q for the continuity equation are

oE,
L[, g g, 0]
2Q

17 These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy Er would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only three elements.
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The Jacobian coefficient matrnx oF 1 /5() has the same form as ai:l/a("), but with & replaced by 7.

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left

hand side for the first sweep. This is the second element of 6_, so using the second element in 6t1 /56 we
get

8,(A7); ;
T Tr oAz CHim1
B(IV,NC,NRU) = 0
,(a7); 5
W(éx)i+ 1,J

A(IV,EINC,NRU) =

C(V,INC,NRU) =

The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetric
continuity equation for the two ADI sweeps is given by

Sweep 1 (£ direction)

n : n
AA’ 4 BIAT l af‘:] Aéx aE] Aét
. —_—_— r . - r— : =
Pi (1 +62)2A§ r 56 i+ 1 06 i~1
i+1 i—1
__Ar 1 A A n 0, An—1
o7 [6:7E)) + 6, (r F)]" + A Ap
Sweep 2 (n direction)
A n A n
8.Ar 1 JF, A oF,; A *
AT ————— | | aQ*,  —| r—+ aQ'_, |=a5
it v oA 7 0 Yerm\" 8 Q1 | =40
- J+1 j—1
where now

A 1 T

Q==5[p pu pv pw Eq]
A 1
E, = 7 Lol + pvé, + p&,]
A 1
Fy =~ Loy + pyn, + pm]

A
oE,
A = [é[ EX ér 0 0]
- 9Q

As in 2-D planar flow, the Jacobian coefficient matrix 6?1/6() has the same form as aﬁ:l(a(), but with &
replaced by #.

18 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum pw would
not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.
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Note that the equations for 2-D planar and axisymmetric flow are very similar. In the axisymmetric
equations, the radius r appears as an additional coefficient in front of the flux vectors E and F, and in front

of the Jacobian coefficient matnces JE,/0Q and JF,/3Q. In addition, 1/# appears in front of every term in
the equation except the Ap terms. In Proteus, the Fortran variables are defined in such a way that, for many
terms, the same coding can be used for both 2-D planar and axisymmetric flow. Unfortunately, this may
make some of the coding a little confusing. It is hoped that this detailed description, when compared with
the source listing, will help make things clear.

In COEFC, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second ADI sweep have exactly the same form as for the first sweep, but with ¢ replaced by 5. By
defining DEL, METX, METY, and METT as the gnd spacing and metric coefficients in the sweep direc-
tion, the same coding can be used for both sweeps. The vanable RAX is equal to 1 for 2-D planar flow,
and the radius 7 for axisymmetric flow. This adds the r in front of the Jacobian coefficient matrices for
axisymmetric flow, but has no effect for 2-D planar flow. The 1/r coefficient in front of each term will be
added later. In this section of code, the coefficient of Ap (part of B(IV,I,NC,NR)) is set equal to r, not 1
as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms. These formulas are presented
in Section 5.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as
1}/, is temporarily redefined as r/J before the COEF routines are called. This automatically accounts for
the r coefficient in front of all the flux vectors in the source term. The 1/r coefficient in front of each term
will be added later. This definition of JI adds an r in front of the Ap*~! term that should not be there.
This will also be corrected later.

The coding for the source term for the second sweep, which consists only of Ap™, comes next. The
definition of JI also adds an r in front of this term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius . This adds the
1/r coefficient where it should be added, and removes the 7 in front of the Ap terms.

Remarks

This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. Th: subscripts on the Fortran variables A, B, C, and S may be confusing. The fust subscript 1s the
index in the non-sweep (i.e., “vectorized”) direction, and the second subscript is the index in the sweep
direction. For sections of the code that apply to both sweeps (1., the imphcit terms and the division
by r at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only
to the first sweep, the first two subscripts are written as (I2,11). For sections that apply only to the
second sweep, they are written as (I1,12). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent vanable for which
A, B, or C is a coefficient.
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Subroutine COEFE (A,B,C,S METX,METY METT ,NVD,NPTSD)

Called by Calls Purpose _
EXEC Compute coefficients and source term for the energy equation.
Input
DEL Computational grid spacing in sweep direction.
gn

*

DPDRHO, DPDRU, DPDRY,
DPDRW, DPDET

DTAU

DTDRHO, DTDRU, DTDRY,
DTDRW, DTDET

DXI, DETA

ETAX, ETAY, ETAT
TIAXI

IBASE, ISTEP

IECLER
ISWEEP
ISWIRL
ITHIN
v

I, 12

J1

METX, METY, METT
MU, LA, KT

NEN

NEQ

NPTS
NR, NRU, NRV, NRW, NET

NVD, NPTSD

P, T
PRR
RAX

RER

Proteus 2-D Programmer’s Reference

Derivatives dp/8p, dp/3(pu), Op/d(pVv), Op/&(pw), and dpfdET.

Time step Ar.
Derivatives 8T/dp, 8T}d(pu), 8T|3(pv), 8T|3(pw), and ST/3Er.

Computational grid spacing A¢ and Ay.

- Metric coefficients 7,, 7, (or #, if axisymmetnic), and »,.

Flag for axisymmetric flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Flag for Euler calculation.

Current ADI sweep number.

Flag for swirl in axisymmetrnc flow.

Flags for thin-layer option.

Index in the “vectorized” direction, i,.

Gnd indices i and j, in the & and » directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-!
(times the radius » for axisymmetric flow.)

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and .

Effective coefficient of viscosity u, effective second coefficient of
viscosity 4, and effective coefficient of thermal conductivity k at
time level 2.

Array index associated with the energy equation.
Number of coupled equations being solved, N.,,.
Number of grid points in the sweep direction, N.

Array indices associated with the dependent vanables p, pu, pv,
pw, and Er.

Leading two dimensions for the arrays A, B, C, S, METX,
METY, and METT.

Static pressure p and temperature 7T at time level n.
Reference Prandtl number Pr..

|l for two-dimensional planar flow, and the local radius r for
axisymmetric flow.

Reference Reynolds number Re,.
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RHO, U, V, W ET Static density p, velocities u, v, and w, and total energy Er at time

level n.
* THE Parameters 8,, 82, and 6; determining type of time differencing for
the energy equation.
TL Static temperature 7 from previous ADI sweep.
UL, VL, WL, ETL Velocities », v, and w, and total energy Er from previous ADI
sweep.
XIX, X1Y, XIT Metric coefficients &,, &, (or & if axisymmetnc), and &,.
Y Radial coordinate 7 for axisymmetric flow.
Output
A B, C Coefficient submatrices A, B, and C at interior points (row NEN
only).
S Source term subvector S at interior points (element NEN only).
Description

Subroutine COEFE computes the coefficients and source term for the energy equation. Equations
(7.5a-b) in Volume 1 represent, in vector form, the four governing difference equations for the two ADI

sweeps for 2-D planar flow. The elements of the inviscid flux vectors E and F are given in Section 2.0 of
Volume 1, and the elements of the viscous flux vectors ﬁyl, fiyz, etc., are given in Appendix A of Volume

]. The Jacobian coefficient matrices 61%/66, 6fiyl/56, etc., are given in Section 4.0 of Volume 1. Using
all of these equations, the differenced form of the energy equation for 2-D planar flow may be written for
the two ADI sweeps as

Sweep 1 (¢ direction)

n

Ag x BIAT 5ﬁ4 Aét aﬁq_ Aét
(Epi + TEYAE 20 P41 -1
i+1 i—1
BIAT

- 15 0,200, [(}}_1+j})"g{’_1A(A2;_1—(fi_, +2ﬁ+ﬁ+1)nginA6:+(fi+ ﬁ+1)ngin+1A6;+1]=
2)AAg

At A & \n At 2 A n
-118; (6:E4 + 6,Fs) 116 [8,(Ev,)a + 6,(Fv,)a)

(1 + 93)AT
1+06,

A A 0.AT A A 7] A
n 3 n—1 2 n-—1
[ég(EV2)4 + én(FVz)‘J T1+6, [5§(EV2)4 + 5’7(FV2)4:‘ + 1+4, AEr
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Sweep 2 ( direction)

AED} +

Ax
AE;

(1 + 6,)2(An)*

A n A n
_ s F AQY, - & A(S’.’
(1+6,)24An 66 J+1 56 J -1
J+1 Jj=1
8,Ar

[(f_,“_1 + ﬁ)ng;z_1A67_1 (f—1+2f+f+l)ngjnAQj +(f+ f+1) gj+1AQj+1:|=

In the above equations, the subscripts i and j represent grid point indices in the ¢ and » directions. For
notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j.

On the left hand side, f is the coefficient of /8¢ (or 8/dn, depending on the sweep) in the af-:y,/a(} (or
6f7V,/6(A)) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following 8/d¢ (or 8/dn)
m the 61::;,1/86 {or 6f7y1 /66) Jacobian coefficient matrix.

The vector of dependent vanables is

A
Q=110 pu o EAT

The appropriate elements of the inviscid flux vectors are given by

Ea = [Er+ piut, + (Er+ e, + Er ]
Fy = [Er+ pung+ (Er+ pony + Erng)

The appropnate elements of the non-cross derivative viscous flux vectors are

: 2
(EV1)4 = % Re, { (i + ) [éx( )g + éy(v )5] +(u + A)éxéy(w)g

+ —;— [fi(ﬂ): + éﬁ(uz)g] + _1;](; (éi + fﬁ)Tf}

2+ A
-3 Rle, { ( “; ) [136), + w5 0), ]+ G + Dy (o),

% k
5 [ni(v2),, + nﬁ(uz),,] + Pr. (2 + nﬁ)T,,}

And the appropriate elements of the cross derivative viscous flux vectors are
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r 1
(E V2)4 =7

e [2#(6,(’7,(”“,1 + ‘fyny y]) + )“‘fx(’lxuu + 'IyW,,) + l&y("lxbu + 'Iywy,)

+ néxlnpvi, + now,) + pl(ny e, + nam,) +5, (éxnx +&m) T, ]
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2 1 1 . ; .
Fr)a= T Re [2“ (18 xtatty + My8y i) + Anx(Extirty + Eyuvg) + Any(E vtz + Cyv)
T

k
+ un(Evis + Eve) + (s + Extve) + Pr s+ nyéy)Tf:I
r
The elements of the Jacobian coefficient matnix 5f§/66 for the inviscid terms in the energy equation are

oE, o\ ap ap op
aé{‘f‘(f”%) G A ) fﬁfl(”mﬂ

where fi = u¢, + v¢, and fo = (Er + p)/p.

The elements of the Jacobian coefficient matrix dEy,/8Q for the viscous terms are

AN

N N A
AEy)s 9Ey, 3Ey, 3Ey,

_ ao_a_( aT )
20 Re, 20 30 20 aF \ OE;
41 42 43
where
aﬁV 6. u? 0 V2 w oT
0 T T Mg (T)"“ﬂ ER (T)_Z“WFE(T)+“° o¢ (737)
41
oy, o (u o (v 8 [ aT
% mro G () a2 (3) + oo (35 )
42
oE,
L _, 0 (u 2 (> o (_or
56 _“xyaé(p>+“yya§(P)+a°6§(5(pv)>
43

tx = Qu + e + nd)’
Gy = nEx + (2u+ L)
Ay = (n+ }-)éx‘fy
w0 =y (&7 + &)

The Jacobian coefficient matrices 5?4/6(3 and a(ﬁyl)c/aé have the same form as 512;/56 and a(ﬁvl)a/a(),
but with ¢ replaced by n.

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left

hand side for the first sweep. This is the second element of Q, so using the second element in OE+[0Q we
get for the inviscid term
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8,(A1); ;
A(IV,LNEN,NRU) = — (A9 (ET+p §x> [(u& )50 u)]

P
(1+92)2A§ i—1,j -1,/
B(IV,INEN,NRU) =
6,(A7); ; Er+p ap
,LNEN,NRU) = .
C(I‘,I, E y R[J) (l + 02)2A§ ( p 51)i+ L (u$x+ VGy) a( u) ey

For the viscous terms on the left hand side, we use the second element in a(i:yl)d/a(“), which is

Rle, [ x aag (5)+ 2 aaz () +2 aaé ( 6(6;)7;) )]

There are three terms in that element. Thus, in tum, f= «../Re,, «,,/Re,, and «o/Re,, and g = u/p, v/p, and
0T |8(pw). To add the viscous contribution to this part of the A coefficient submatrix, we therefore set

i o 6,(A7);
A(IV,,NEN,NRU) = A(IV,NEN,NRU) — —
(1 + 8)2AE) Re,

{[(“xx)z‘—1,j+(°‘xx)i,j](%). .+[(axy),—_l,j-(»(axy),-,j](%). 1j+[(o:o)l_,j+( o):ﬂ(%) }
= i—1,j

i—1,j

Similar equations may be written for the B and C coefficient submatrices.

The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetnc
energy equation for the two ADI sweeps i1s given by"

Sweep 1 (£ direction)

e 6,at oF S 2E; S
(Ep + (1 + 0,248 7 r 56 QH—I_ r 86 Q:-l
i—1

i+ 1 i-

6,4 n_n N n_naA° n_n A
_—(;—_’#;(Anz——lr_[(ri—'lf:—l+rif;')gi—1AQl—-l i YU S 1 i )V EAQ (S i+l)g1+1AQi+1:|=
2
- 1310 L [64r E9) + 6, FOT + 1+9 + {6r €p)s]+ 6 [r Frs])"

) A 8,8 A A N
+ L‘T";_;)ZA_* {8 [r €y )s] +6,[r Fr)s ]}~ #;2 T {odr Evps] +ar @]yt + - Ak

Sweep 2 (n direction)

A n A n
A 0,Ar oF A oF A
n 1 1 5 n S n
MED] + T gyan T (r % ) AQjH—(r " > aQ'_,

j+1 Jj=1

91AT 1 n_n An n_n An
'mT[(’j—1/}—1'*";fj)gj—lAQj-l‘(’j—x-’}-l+2’; i+, +1f;+1)o;AQ +(’f+’+1f}+1)gj+15Q,+1:|=
2

AEy

19 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum pw would
not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.

Proteus 2-D Programmer’s Reference 4.0 Proteus Subprograms: COEFE 147



where now

>

1
=5l pu pv pw EA"

Eg =L (Er+ put, + (Ep+ e, + Eré,]

[(Er+ pyny + (Ex+ p)vm, + Erny]

>
L R

S=

2u+i ~ T
{“} L1200+ E2075] + ( + DEL, ), + 1y~ (207 + o)
+ —%— [E0% + wz)§ + 20 + w2)§] + —P{(Tr &+ 53)7}}

2u+ 4
IR { S (30, + i), ] + (1 + Dmn (e)y + A= (np” o+ m.009)

A
(FVI)5=7 Re 2
:
B2, 2 2 2,2 2 k 2 2
+_2—[’7x(v +w )y,+’7r(u +w );7]+ PI", (’7x+"lr)Tr,}

A 1 1
(EV2)5= J Re
r

2

I:Z#(éxnxuu,, + Emv,) + AL (s, + nawvy) + A (v + mvvy) + Ay = (Eu+ EVyr,
+ l»‘ix(nrvun + Nx¥y, + ﬂxWW,,) + l-‘fr('lruuq + Ny + ’1rWW,,) - P'ér’uj—_
k
+ P_r, (Exnx + ‘fr"lr)Ty,:]

z 1 1
Fr)s= T Re
y

2

[zu(nx§x"u; + ”r'frwg) + Aﬂx(fxuuf + grwg) + 'I’Tr(fxvug + ‘frwg) + l‘fr—:-_ (nxue+ ﬂrv)”g

+ (& + Egwvg + Exwwy) + un (S + Sty + Ewwy) — pn, =

k .
+ _PT, ('Ixéx + nrér)Tg]
The elements of the Jacobian coefficient matrix 01%/6() for the inviscid terms in the axisymmetric form
of the energy equation are
oE 3 8 E) 3 2
s _ | _ 9P /4 P P /4
—[ fl(fi ap ) f2§x+fl a(pu) f2§r +f1 a(pv) fl a(pw) §I+f1<1+ aET )jl

Q
where fi = ué, + v¢, and f; = (Er + p)/p-

The elements of the Jacobian coeflicient matrix JE,/3Q for the viscous terms are

aEv)s ( 3Ey, ) < oy, > ( 3Ey, > < oEy, ) .
A A A 0 ER &k
20 3Q 2Q : r
51 52 53 54

56 Re, 66

where
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oE,
v\ . 8 (u )+, = (=
2Q —a"‘aé(p)Jr“X’aé(P)’L“”Prfﬂoaé(a(f’“))
52
oEy 5 3 o (2L
% s L (B e (3) o e g (3 )
53
oE,
: a w d aT
5 e (3) o d ()
% ) ag(P) 8¢ \ dpw)

axx=(2u+ '1)612 + “érz
‘“rr = /"'éxz +(2u + A)érz
X2z = P~§x2 + F‘frz

Axr = (e + A,

. A
Cxr =7 &4,
, A g2
Ep =7 &
k
% ="p &2+ &9

As in 2-D planar flow, the Jacobian coefficient matrices af-‘s/aé and 6(12‘;/1)5/56 have the same form as
0Es/2Q and 8(Ey,)s/0Q, but with ¢ replaced by 7.

Note that the equations for 2-D planar and axisymmetric flow are very similar. In the axisymmetric
equations there are some additional terms involving the radius 7 in the viscous flux vectors, with corre-
sponding terms in the Jacobian coefficient matrices. The radius 7 appears as an additional coefficient in

front of the flux vectors IA:‘,, fiy,, etc., and in front of the Jacobian coefficient matrices af:s/a(), a(ﬁvl)sléé,

etc. In addition, 1/r appears in front of every term in the equation except the AEr terms. In Proteus, the
Fortran variables are defined in such a way that, for many terms, the same coding can be used for both 2-D
planar and axisymmetric flow. Unfortunately, this may make some of the coding a little confusing. It is
hoped that this detailed description, when compared with the source listing, will help make things clear.

In COEFE, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second ADI sweep have exactly the same form as for the first sweep, but with ¢ replaced by n. By
defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep direc-
tion, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow,
and the radius 7 for axisymmetric flow. This adds the r in front of the Jacobian coefficient matrices for
axisymmetric flow, but has no effect for 2-D planar flow. The 1/r coefficient in front of each term will be

Proteus 2-D Programmer’s Reference 4.0 Proteus Subprograms: COEFE 149



added later. In this section of code, the coefficient of AI;'T (part of B(IV,I,NEN,NET)) is set equal to r, not
1 as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms. These formulas are presented
in Section 5.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as
1//, is temporarily redefined as r/J before the COEF routines are called. This automatically accounts for
the 7 coefficient in front of all the flux vectors in the source term. The 1/r coefficient in front of each term

will be added later. This definition of JI adds an r in front of the A[;A'%"‘ term that should not be there.
This will also be corrected later.

The coding for the source term for the second sweep, which consists only of Aé?, comes next. The
definition of JI also adds an r in front of this term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius . This adds the
1/r coefficient where it should be added, and removes the r in front of the AE7 terms.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., “vectorized”) direction, and the second subscript is the index in the sweep
direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division
by r at the end), the first two subscripts are wntten as (IV,I). For sections of the code that apply only
to the first sweep, the first two subscripts are written as (I12,11). For sections that apply only to the
second sweep, they are written as (I1,12). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which
A, B, or C is a coefficient.

3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is
separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the
coding of coefficients and source terms involving the swirl velocity is separate from the rest of the cod-
ing, and is bypassed if there 1s no swirl.

4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous and heat conduction terms.

5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous and heat conduction terms containing derivatives in the specified direction.
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Subroutine COEFS1 (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

EXECT Compute coefficients and source terms for the k and ¢ equations for
the first ADI sweep.

Input
CMUR Constant C,, in formula for C,.
CTHREE Constant C; in formula for C,.
CTWOR Constant G, in formula for G,.
DTAU Time step At.
DUMMY Distance to the nearest solid wall.
DXI, DETA Computational grid spacing A¢ and Ax.
E,EL Turbulent dissipation rate ¢ at time levels » and n— 1.
ETAX, ETAY Metric coefficients », and #, (or 7, if axisymmetric).
*  JAXI Flag for axisymmetric flow.
J1 Inverse Jacobian of the nonorthogonal grid transformation, J-'.
KE, KEL Turbulent kinetic energy & at time levels n and 7 — 1.
MU Laminar viscosity y, at time level n.
MUT, MUTL Turbulent viscosity u, at time levels » and n — 1.
NPTS Number of grid points in the sweep direction, N.
NV Number of grid points in the “vectorized” direction, N,.
NVD, NPTSD Leading two dimensions for the arrays A, B, C, and S.
* RER . Reference Reynolds number Re,.
RHO, U,V Static density p, and velocities « and v, at time level n.
RHOL Static density p at time level n— 1.
*  SIGE, SIGK Constants o, and o, used in the diffusion term of the ¢ equation.
* TFACT Factor used in computing the k-¢ time step.
* THKE Parameters 8, and 8, determining type of time differencing for the
k-¢ equations.
VORT Production rate of turbulent kinetic energy.
XIX, XIY Metric coefficients ¢, and &, (or ¢, if axisymmetric).
Y Radial coordinate r for axisymmetric flow.
YPLUSD Nondimensional distance y* from the nearest solid wall.
Output
A BC Coefficient submatrices A, B, and C at interior points.
S Source term subvector S at interior points.
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Description

Subroutine COEFS1 computes the coefficients and source terms for the k-£ equations for the first ADI
sweep. Equation (9.40a) in Volume | represents, in vector form, the governing equation for the first ADI
sweep for 2-D planar flow. This equation may be written in difference form as:

A x A x A x
1 - T]Z]] - lelz AW1 All 0 AWI Bll 0 AWl
-T2y 1-TZ s TN Lo dnl g 7% Lo Bal| g B
1421 122 || AW; AW, AW,

A A A A
Ty(6,Fy — 6:F3 ' +6,Gh—6,Ghr ')

+ Ty — (B Fp + 8,8 + 6,FY — (5,),G% + 6,65 +6,Ghy + 8" +T7) + T,aW" !

where

T _ 9‘A‘r

17 1+6,
At

T, =

27 1+6,
6,

3= 1+86,

In the above equation, Z,,, etc., are elements of a matnx Z, definedasZ =M + N, and 4, B, M, and N are
the Jacobian coefficient matrices defined in equations (9.31), (9.32), (9.35), and (9.36) of Volume 1. Also,
(8.)¢ is the first-order upwind difference operator used for the convective terms, and J; is the second-order
central difference operator used for the viscous terms.

The convective term on the left side can thus be expanded as:

_1_[,4“ o] AW, __1_[/1], 0 ] aw, if Eu+tyv>0
. Az Lo Anjlaps| - azLo An ]l Al
6,) [All AO ] a 1 - i i=1
Lo f2llamg 14, o7aw 1[4, o1aw .
A% [0 A22:| v —?[0 AZZ] v feu+ 8y <0
s aw, | 5 aw; |

i+1

In the above equations, and in those to follow, the subscripts i and j represent grid point indices in the ¢
and # directions. For notational convenience, terms without an explicitly written i or j subscnipt are un-
derstood to be at i or j.

The Jacobian coefficient matrix B may be written as:

|y O
0 Jee

The viscous term on the left hand side may thus be expanded as:
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*

Ax A
5 |:B” 0 ] AW, 1 [(f}_1+f9gi_lm) 0 ] AW,

0 Ballaw;| ) 2ac? 0 Vo1 081102 || a1
i=1
A x
(i1 + 25+ fi_ gy ; Nt
i \ o1+ 2+ D8y AL?/;
i
A x
+ (i+foe D84+ 10) X v
| ) i+ ik )8+ 102) Aﬁ’;
i+

On the nght hand side, the convective term (6u)¢f7c is differenced as:

aelFo-Foi)] i gurgr>0

(G)Fe=< A0 v ’
AE [y —(F o)  HEu+Ey<0

An analogous expression may be written for (6,),Gc. The vectors F and Fy, may be written as

£, = &0
| f2r) |

A Pfg i

Fy = (1}
| fen0)

The terms 6¢1A;‘D and 6¢IA“ » are thus differenced as:

sp 1 {[(fi—l‘*'fi)gi—m)] I:(fi4;l+2fz:+f;—1)gi(1)J I:(/E+f;+l)g[+1(1):l}
DT -

+
|1+ A% e + 2+ fi- 08 i+fiv 18410

spo 1 Jis 1, i1+ 1~ & +1,j- D) B St 8o 1~ & -y
M AAA (| fir e &1, D) fic1 o1&, - Do

Analogous expressions may be written for 6,Gp and 6,G.

The k-¢ equations for axisymmetric flow are presented in Appendix B of Volume 1. They may be
written in difference form for the first ADI sweep as:

Az A x A x
[ +-5 (5u)§ ’{ . ] “5§ ’[ . :l

-TZy 1-T\Zy A],'f/; 0 Az AI//I\/; 0 B AI?/;

T A
_rl' (6;7‘1“;’,{ - 6§r%"M“ ! + 6’77'&"{4— (Snré'i{_ 1)

A A A Al A A N N
+ = (= B FE+ 6, F) + 6,Fh, — (62,7 GE + 8,7G +6,7G Yy + 5"+ rT7) + T;aW" !
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where r is the radial coordinate and all other terms are the same as the 2-D planar equations presented

above.

Remarks

1. For the variables A, B, C, and S, the first subscript is the index in the non-sweep (i.e., “vectorized”)
direction, and the second subscript is the index in the sweep direction. Since this subroutine only ap-
plies to the first sweep, the first two subscripts of A, B, C, and S variables are written as (J,D). The third
subscript on A, B, C, and § corresponds to the equation. And, for A, B, and C, the fourth subscnpt
corresponds to the dependent variable for which A, B, or C is a coefficient. ;

2. For axisymmetric flows, the Fortran variables R1J, RIP1J, and RIM1J are the cylindnical 7 coordinates

for the grid points (1)), I+ 1.3), and (I — 1,J), respectively. Similarly, RUPI and RIJM1 are the cy-
lindrical 7 coordinates for the grid points (I,J + 1) and (IJ — 1). For 2-D flows, all of these vanables
are set equal to 1.0.
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Subroutine COEFS2 (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

EXECT Compute coefficients and source terms for the k and ¢ equations for
the second ADI sweep.

Input
DETA Computational grid spacing Ax.
DTAU Time step At.
E,EL : Turbulent dissipation rate ¢ at time levels nand n— 1.
ETAX, ETAY Metric coefficients », and #, (or #, if axisymmetric).
*  JAXI Flag for axisymmetric flow.
JI Inverse Jacobian of the nonorthogonal grid transformation, J-*.
KE, KEL Turbulent kinetic energy & at time levels nand n— 1.
MU Laminar viscosity y, at time level 2.
MUT Turbulent viscosity p. at time level 7.
NPTS Number of grid points in the sweep direction, N.
NV Number of grid points in the “vectorized” direction, N..
NVD, NPTSD Leading two dimensions for the arrays A, B, C, and S.
* RER Reference Reynolds number Re,.
RHO, U,V Static density p, and velocities « and v, at time level 7.
RHOL Static density p at time level n— 1.
S Computed solution subvector from first sweep.
*  SIGE, SIGK Constants o, and o used in the diffusion term of the ¢ equation.
* TFACT . Factor used in computing the k-¢ time step.
* THKE Parameters 6, and 8, determining type of time differencing for the
k-¢ equations.
Y Radial coordinate r for axisymmetric flow.
Output
A B, C Coefficient submatrices A, B, and C at interior points.
S Source term subvector S at interior points.
Description

Subroutine COEFS2 computes the coefficients and source terms for the k-c equations for the second
ADI sweep. Equation (9.40b) in Volume 1 represents, in vector form, the governing equation for the sec-
ond ADI sweep for 2-D planar flow. This equation may be written in difference form as:

A ) A A%
AWT C 0 NAWY D o 1 AWT AW
“; +T1q Gy [ (;1 C22] "]n — 0 [ 0“ D22] S =
AW AW, AWy AW,
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where

GIAT

h=17%,

In the above equation C and D are the Jacobian coefficient matrices defined in equations (9.33) and (5.34)
of Volume 1. Also, (,),1s the first-order upwind difference operator used for the convective terms, and 4,
is the second-order central difference operator used for the viscous terms.

The convective term on the left side can thus be expanded as:

L[Cn Co] AW _.}_[Cn 0] AWy if ,u+ 1,y >0
. an Lo Call Ap~ An L0 Caffapes
wt 2 24
el [ &)1 )= ' =
‘Lo Czllapg __1_[c” 0] AWY __1_[c” o] N/ . 0
Aan Lo G Aﬁ’; An L0 C=2 A ;,'i/; KERR A
j+1 i

In the above equations, and in those to follow, the subscripts i and j represent grid point indices i the-&
and » directions. For notational convenience, terms without an explicitly written i or j subscript are un-
derstood to be at i or j.
The Jacobian coefficient matrix D may be written as:
p=|%an 0
0 fe

The viscous term on the left hand side may thus be expanded as:

A A
Dy 0 ]|aw] 1 -1+ g 111 0 AW}
S [ 11 ] A — Jj—1 J/6] — 1 : N 2
Al o D % 2(82) 0 (i1 + 8- 1(22) AAS. |
i
A
(1 + 25+ £ 081D 0 AWY
i 0 G+ 205 | yjin|
J
Al
[+ 4 108 +1(1D) 0 AWT
+_ 0 (G +54+18+1(22 AW
i+ 1

The k-¢ equations for axisymmetric flow are presented in Appendix B of Volume 1. They may be
written in difference form for the second ADI sweep as:

N AN c. 07 ann D, o 1lawr AW,
+ < (8 H -6 1 =

o r uln 0 ol adn n 0 Dnjlapr o

AW AW? AW} AW,

where 7 is the radial coordinate and all other terms are the same as the 2-D planar equations presented
above.

Remarks
1. For the varables A, B, C, and S, the first subscript is the index in the non-sweep (i.e., “vectorized”)

direction, and the second subscript is the index in the sweep direction. Since this subroutine only ap-
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plies to the second sweep, the first two subscripts of A, B, C, and S variables are written as (1J). The
third subscript on A, B, C, and S corresponds to the equation. And, for A, B, and C, the fourth sub-
script corresponds to the dependent variable for which A, B, or C is a coefficient.

2. For axisymmetric flows, the Fortran variables R1J, RIJP1, and RIJMI are the cylindrical 7 coordinates
for the gnid points (IJ), (I,J + 1), and (I,J — 1), respectively. For 2-D flows, these variables are set equal
to 1.0. :
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Subroutine COEFX (A,B,C.SMETX,METY METT,NVD,NPTSD)

Called by Calls Purpose
EXEC Compute coefficients and source term for the x-momentum equation.
Input
DEL Computational grid spacing in sweep direction.

DPDRHO, DPDRU, DPDRY,
DPDRW, DPDET

DTAU

DXI, DETA

ETAX, ETAY, ETAT
IAXI

IBASE, ISTEP

IEULER
IHSTAG
ISWEEP
ISWIRL
ITHIN
v

I1, 12

JI

METX, METY, METT

MU, LA

NEQ

NPTS

NR, NRU, NRV, NRW, NET

NVD, NPTSD

NXM
P
RAX

RER
RHO, U,V
RHOL, UL, VL
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Derivatives dp[dp, dp]d(puw), dp|d(pVv), Op/(pw), and 3p/0L7.

Time step Ar.

Computational grid spacing A¢ and Az.

Metric coefficients #,, 1, (or 7, if axisymmetric), and #..
Flag for axisymmetric flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Flag for Euler calculation.

Flag for constant stagnation enthalpy option.
Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Flags for thin-layer option.

Index in the “vectorized” direction, .

Gnd indices i and j, in the ¢ and % directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-!
(times the radius r for axisymmetric flow.)

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and ¢.

Effective coefficient of viscosity u and effective second coefficient
of viscosity A at time level n.

Number of coupled equations being solved, N,,.
Number of grid points in the sweep direction, N.

Array indices associated with the dependent vanables p, pu, pv,
pPwW, and ET.

Leading two dimensions for the arrays A, B, C, §, METX,
METY, and METT.

Array index associated with the x-momentum equation.
Static pressure p at time level n.

1 for two-dimensional planar flow, and the local radius r for
axisymmetric flow.

Reference Reynolds number Re,.
Static density p, and velocities v and v at time level 7.

Static density p, and velocities  and v from previous ADI sweep.
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* THX Parameters 6,, 6,, and 8; determining type of time differencing for
the x-momentum equation.

XIX, XIY, XIT Metric coefficients ¢&,, &, (or &, if axisymmetric), and &,
Y " Radial coordinate r for axisymmetric flow.
Output
A, B, C Coefficient submatrices A, B, and C at interor points (row
NXM only).
S Source term subvector S at interior points (element NXM only).
Description

Subroutine COEFX computes the coefficients and source term for the x-momentum equation.
Equations (7.5a-b) in Volume 1 represent, in vector form, the four governing difference equations for the

two ADI sweeps for 2-D planar flow. The elements of the inviscid flux vectors E and F are given in Section
2.0 of Volume 1, and the elements of the viscous flux vectors f‘:yl, f:vz, etc., are given in Appendix A of

Volume 1. The Jacobian coefficient matrices 6ﬁ/66, aﬁ:V,/aé, etc., are given in Section 4.0 of Volume 1.
Using all of these equations, the differenced form of the x-momentum equation for 2-D planar flow may
be written for the two ADI sweeps as?®

Sweep | (¢ direction)

n n
A A
A ¥ HIAT 6E2 A x aE2 A x
Alpu); + AO. _| =2 AQ;
(o) (1+8,)2A¢ 56 Qiv1 56 Q-1
i+1 i—1
614 nyn O n_n,~* n_n Nx
_W[(ﬁ—]+ﬁ) gi—]AQi—l—(fI:—l+2.f[:+f;+1) giAQi +(f;+ fl:-{-l) gi+1AQz'+1:|=
2
At 4 & \n At A A n
146, (6§E2+6"F2) * 1+86, [6§(EV1)2+(5'I(FV1)2]
(1+85)Ar A A n ;A7 A A w1 6, P
1+86, [6§(EV2)2+6'1(FV2)2] T1+6, [6§(EV2)2+5,7(FV2)2:| + [+6, Alpu)

Sweep 2 (y direction)

n n
fal A
GIAT aFZ A n aF2 A
A(PAu); + AQ: = == AQ7_ .
(1+8;)24n 50 I+ 20 J
Q j+1 Q j—1
01AT nn A non.An . An
B (1+0,)2(an) [(j;_] + Y& 18Q 1 — (o + 2+ 4078 8Q7 + (f+ fi40) gj+1AQj+1]=
2
Ay

% These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy Er would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only three elements.
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In the above equations, the subscripts i and j represent grid point indices in the & and 5 directions. For
notational convenience, terms without an explicitly written i or j subscript are understood to be at i or ;.

On the left hand side, [ is the coefficient of 8/3¢ (or 8/dn, depending on the sweep) n the af:v,/a() (or
9F,/8Q) Jacobian coefficient matnx. Similarly, g is the term in the parentheses following 6/3¢ (or 0/0n)
in the 8Ey,/2Q (or 8Fy,/0Q) Jacobian coefficient matnx.

The vector of dependent variables is
A 1 T
Q=—lp pu pv Erl
The appropriate elements of the inviscid flux vectors are given by
A 1
E=7 [(ptd + D)+ pw&, + put ]
2 1 2
Fy = e + Py + provmy + pun;]

The appropriate elements of the non-cross derivative viscous flux vectors are

A 1 1
Evh=T%; [2u8lus + A& + &) + ndy Gy + &)
r
- 1 1
Fr)2=7F %, [2unas, + Ang(.dty + nyvy) + mny(rytdy + 1)
.

And the appropriate elements of the cross derivative viscous flux vectors are

A 1 1
(Ey)y =7 gg- [l + A& (nxty + V) + 18y + 159,)]
r
& 1 1
(FV2)2 =7 Re [zﬂnxéxug + lnx(éxug + éyvg) + P"'ly(éyug + ‘fxvg)]
r

The elements of the Jacobian coefficient matrix JE/3Q for the inviscid terms in the x-momentum
equation are

Ex—ufl é)"i'.fi.+'u§Jt'*_

aﬁz _[_aﬂ
8Q L%

where f; = ué, + v&,.

ap op op
Sow = T Few ok 5*}

The elements of the Jacobian coefficient matrix dEy,/0Q for the viscous terms are

0Ep) Ey, B (L) 2 (L)
A - A XX Xy
2Q Re, 30 N &\ P 8¢ \ P
where
aﬁVl 0 u v
s =~ xgr (5) = 2057 ()
21
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dpe = 2 + DEL + pd)
agy = (1 + xS,

The Jacobian coefficient matrices 6132/6() and 6(%;,1)2/66 have the same form as 61%;/66 and 5(fiyl)2/66,
but with ¢ replaced by .

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left

hand side for the first sweep. This is the second element of 6, so using the second element in af-:z/a(), and
including the A(pw); term, we get for the inviscid term

. , 0,(A7); . p
A(IV,I,&\X:\/I,I\RU)z—W (C,)i_1’j+(u£x+vgy)i_1,j+(u?,‘x)i_1’j+ —Méx
. i-1,]

B(IV,[NXM,NRU) =1

, . 0,(87);,; op
C(IV,I,L\XM,J\«RU)=W (€Dig1,j+@x+vEy)ip j+ @oip ;+ F(;,T)éx o
i+1,)

For the viscous terms on the left hand side, we use the second element in 3(ﬁy1)2/66, which 1s

L2 (L)
Re, X3t \ P
Thus f= a./Re and g = 1/p. To add the viscous contribution to this part of the A coefficient submatnx,
we therefore set

6,(a7); ;
(14 0,)2(A%)*Re,

A(IV,LNXM,NRU) = A(IV,,NXM,NRU) — Lo — 1, + (@0, j]( % >

i-1,j
Similar equations may be written for the B and C coefficient submatrices.

The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetric
x-momentum equation for the two ADI sweeps is given by

Sweep 1 (& direction)

A n A n
A 0,A7 1 GE, A" 9E, AS
) + (1 +8,24a¢ 7 r 36 Qi —|” 56 Qi

i+1 i-1

elA‘r 1 nn e nn, A" nn I
- ( +92)2(A’)2 T[(ri-lj;_l HrfY & AQ = (i S+ Ui 4 1 S ) &AQ (S H T S ) ngAQH,]:
>
Ar 1 o A At 1 A A
-4 F 6B+ 6,0 P+ 5T T {6dr ®v)+8[r €]}
(1+0A7 ;47 6,

1+6, T {‘si’ (E Vz)Z] * 6q[’ (‘;vz)z]}" “Tye, T {6¢[r (ﬁyz)z] + 6q[r (fyz)z]}" -y o Ay

21 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum pw would
not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.
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Sweep 2 (n direction)

NP LI s (Y UL T B COY e B BV,
i W+ 6280 T 20 j+1 ) -1
J+1

91A? 1 A A n A

T+ 6,200 T B = F 2 j+1)n3/nAQf+(f,fj+rj,lf;—+1)"g,+1AQ;-l]=
2 n

Apu)’

where now
A ] T
Q="Lp pu pv pw Er]

E, =+ [(0 + P+ ot + put]

Ao
b= ((pt? + Py + pwom, + puny]

Ey) = Rle, {Zyéiug 28] Gt + T 20 |+ nEEg + fxvg)}

A 11 2 1
Fv)=5 2 {Z#nxun + inx[nxu,, + m(n'),,] + pn (0,4, + nxvn)}
r

a 1 1 |
(EV2)2 =77 Re {2ﬂ§x’7xur; + ']‘éx[rlxun + rlr(rv)n:l + #ér(’lruq + rlxvr,)}
r

(2 =L {ansan + in 2+ 3 00| + i + 00

The elements of the Jacobian coefficient matrix JE/8Q for the inviscid terms in the axisymmetric form
of the energy equation are

6?12 B o _ op op op ép
2Q - l:ﬁ —ufi S+htusit d(pu) S et a(pv) & Apw) éx OET éx}
where fi = ué, + v&,.

The elements of the Jacobian coefficient matrix JE,/dQ for the viscous terms are

o o () L2 (h) e (B g oo
20 Re, 20 2\ P rE\P e
21

where

2Q —_“"X—az—(%)—axr—%(%)_a;r%,g

e 2 .2
ayx = u+ )¢+ ud,
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ay = (u+ 2), ¢,
A

Wy = ra &xér

As in 2-D planar flow, the Jacobian coefficient matrices 5f:2/56 and a(ﬁyl)z/aé have the same form as
0E2/0Q and d(E+,)./0Q, but with ¢ replaced by ».

Note that the equations for 2-D planar and axisymmetric flow are very similar. In the axisymmetric
equations there are some additional terms involving the radius r in the viscous flux vectors, with corre-
sponding terms in the Jacobian coefficient matrices. The radius r appears as an additional coefficient in

front of the flux vectors E, Ey, etc., and in front of the Jacobian coefficient matrices 0E,/8Q, 0(Ev,),/2Q,
etc. In addition, 1/r appears in front of every term in the equation except the A(pw) terms. In Proteus, the
Fortran variables are defined in such a way that, for many terms, the same coding can be used for both 2-D
planar and axisymmetric flow. Unfortunately, this may make some of the coding a little confusing. It is
hoped that this detailed description, when compared with the source listing, will help make things clear.

In COEFX, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second ADI sweep have exactly the same form as for the first sweep, but with ¢ replaced by ». By
defining DEL, METX, METY, and METT as the gnd spacing and metric coefficients in the sweep direc-
tion, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow,
and the radius r for axisymmetric flow. This adds the 7 in front of the Jacobian coefficient matrices for
axisymmetric flow, but has no effect for 2-D planar flow. The 1/r coefficient in front of each term will be
added later. In this section of code, the coefficient of A(pw) (part of B(IV,,NXM,NRU)) is set equal to 7,
not | as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms. These formulas are presented
mn Section 5.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as
1/J, is temporarily redefined as r// before the COEF routines are called. This automatically accounts for
the 7 coefficient in front of all the flux vectors in the source term. The 1/r coefficient in front of each term
will be added later. This definition of JI adds an r in front of the A(pu)"~! term that should not be there.
This will also be corrected later.

The coding for the source term for the second sweep, which consists only of A(p)*, comes next. The
definition of JI also adds an r in front of this term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius . This adds the
1/7 coefficient where it should be added, and removes the r in front of the A(p%) terms.

Remarks

This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index n the non-sweep (i.e., “vectorized”) direction, and the second subscript is the index in the sweep
direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division
by r at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only
to the first sweep, the first two subscripts are written as (12,I1). For sections that apply only to the
second sweep, they are written as (I1,12). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which
A, B, or C is a coefficient.

3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is
separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the
coding of coefficients and source terms involving the swirl velocity is separate from the rest of the cod-
ing, and is bypassed if there 1s no swirl.

4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous terms.
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S. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous terms containing derivatives in the specified direction.
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Subroutine COEFY (A,B,C,SMETX,METY METT,NVD,NPTSD)

Called by Calls Purpose
EXEC Compute coefficients and source term for the y or r-momentum
equation.
Input
DEL Computational grid spacing in sweep direction.

DPDRHO, DPDRU, DPDRYV,
DPDRW, DPDET

DTAU

DXI, DETA

ETAX, ETAY, ETAT
IAXI

IBASE, ISTEP

IEULER
IHSTAG
ISWEEP
ISWIRL
ITHIN
v

I1, 12

JI

METX, METY, METT
MU, LA

NEQ
NPTS
NR, NRU, NRV, NRW, NET

NVD, NPTSD
NYM

P
RAX

RER
RHO, U,V, W

Proteus 2-D Programmer’s Reference

Derivatives dp/dp, Op/8(pu), dp[d(pv), Op/d(pw), and dp/oEr.

Time step Ar.

Computational grid spacing A¢ and An.

Metric coefficients %,, 1, (or #, if axisymmetric), and #..
Flag for axisymmetric flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Flag for Euler calculation.

Flag for constant stagnation enthalpy option.
Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Flags for thin-layer option.

Index in the “vectorized” direction, .

Gnid indices i and j, in the ¢ and #n directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-!
(times the radius » for axisymmetric flow.)

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and ¢.

Effective coefficient of viscosity u and effective second coefficient
of viscosity 4 at time level n.

Number of coupled equations being solved, N,,.
Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pW, and ET.

Leading two dimensions for the arrays A, B, C, §, METX,
METY, and METT.

Array index associated with the y-momentum (or 7-momentum if
axisymmetric) equation.

Static pressure p at time level n.

1 for two-dimensional planar flow, and the local radius r for
axisymmetric flow.

Reference Reynolds number Re..

Static density p, and velocities u, v, and w, at time level n.

4.0 Proteus Subprograms: COEFY 163



RHOL, UL, VL Static density p, and velocities « and v from previous ADI sweep.

* THY Parameters 6, 82, and 0; determining type of time differencing for
the y-momentum equation.
XIX, X1Y, XIT Metric coefficients ¢,, &, (or &, if axisymmetric), and £,
Y Radial coordinate 7 for axisymmetric flow.
Output
A, B, C Coefficient submatrices A, B, and C at intenior points (row
NYM only).
S Source term subvector S at interior points (element NYM only).
Description

Subroutine COEFY computes the coefficients and source term for the y-momentum equation for 2-D
planar flow, or the 7-momentum equation for axisymmetric flow. Equations (7.5a-b) in Volume 1 repre-
sent, in vector form, the four governing difference equations for the two ADI sweeps for 2-D planar flow.

The elements of the inviscid flux vectors E and F are given in Section 2.0 of Volume 1, and the elements
of the viscous flux vectors lAZy,, fiyz, etc., are given in Appendix A of Volume 1. The Jacobian coefficient

matrices 6122/86, afz,,,/a(), etc., are given in Section 4.0 of Volume 1. Using all of these equations, the
differenced form of the y-momentum equation for 2-D planar flow may be written for the two ADI sweeps
3.522

Sweep 1 (¢ direction)

n n
A(A)‘_{_ BIAT 6E3 Aéx aﬁ3 A(fjx
PY); A ’ i+1 7\ A i—1
LT+ 0,)2A8 20 ‘ 20

_‘"_6 A - AN n n.A* n.n A x
- (1+61)2(A§)2 [(ﬁ—1+ﬁ)"g?_1AQi_1—(j;_1+2j}+j,'~+1) g"AQ; + (fi+ fiyy) gi+lAQi+1]=
2

Az v A \n Az A A n
T 146, (65Es+ 6,F5)" + 1+0, [65(Ey)s + 8,(Fy);]
(14 63)Ar A A n  GiAT A A 1 8, P
1+6, [62(Er)s + 8,(Fu)s ] - 17 8, [6:(Ep)s + 6,(Fy)s]" ™' + 12 5, MY

2 These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy Er would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only three elements.
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Sweep 2 (n direction)

n n
A A
8,At oF; A 5} n
A(,oAv);I + AQi —\ — AQ;_,
(1+8,)24y 6/\ J 6A /
Q j+1 Q ji—1
91AT nn An n n,An n.n n
—m[(fj—l*”fj) g AQT ~ (o + 2+ G AQ + S+ f40"g 4 18Q 1] =
2 n

AW

In the above equations, the subscripts i and j represent grid point indices in the ¢ and » directions. For
notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j.

On the left hand side, f is the coefficient of 8/d¢ (or 8/dn, depending on the sweep) in the 6I::Vl/6(A2 (or
6IATV, /66) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following 8/8¢ (or 0/dn)
in the ali:yl/aé {or 6f-‘yl 18Q) Jacobian coefficient matrix.

The vector of dependent variables is
A1 T
Q= " Lo pu pv Ef]

The approprate elements of the inviscid flux vectors are given by

%[ W+ (o + P)Ey + pVE ]

1
= [pwn.+ oV’ + pin, + pvn,)

i

Jm>

The appropriate elements of the non-cross derivative viscous flux vectors are

1 1
J Re,

A 1 1
(FV1)3= J Re

2vp + A8 &y + ) + uEEyus + Ev)]

(ﬁvl)3 =

2
L 'Z’r] (’7):“ ) Y, ) ' P"Ix(n U, r’er])]
y n yn ¥

And the appropriate elements of the cross derivative viscous flux vectors are

4 1
(EV2)3 TR [2F€y’7yvy7 + )éy(’?xu + vy, )+ ﬂ'fx('ly t+ "xvq)]

2 1
(FV2)3= I Re

'fyvg + A'ly(fxug + éyvg) + F‘nx(‘fyug + éxvf)]

The elements of the Jacobian coefficient matrix JE/JQ for the inviscid terms in the y-momentum
equation are

oE, [ ap p o o
2Q _[ SV VRrgLg Y SWHATL S G gy]

where fi = ué, +v¢,.
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The elements of the Jacobian coefficient matrix 0E,/0Q for the viscous terms are

A A
b [ ey a1y
0 Re, 20 g \ P »waE \ P
31
where
Ias
v\ __. 2 ()2 (2)
A - xy
Q) geAps e e

Gxy = (l-" + A)ixéy
ayy = néx + (Qu + Hg)]

The Jacobian coefficient matnces 01A73/6(A) and a(%y‘)3/aé have the same form as 61:23/0() and 6(fiyl)3/66,
but with ¢ replaced by .

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left

hand side for the first sweep. This is the second element of Q, so using the second element in JE;/0Q, we
get for the inviscid term

. 8,(A1); ; op
A(IV,LNYM,NRU) = ~ U +0;288 [(fo)z— 1,j+< 3o 5)*). ] i|
Y

i —

B(IV,LINYM,NRU) =0

. - el(AT)i,j aP
C(IV,LNYM,NRU) = W[MX)” 1J+( d(pu) §y>_+1 J
I} W

For the viscous terms on tﬁe left hand side, we use the second element in a(fzvl)g/a(), which 1s

L2 (1)
Re, ™ 9\ P
Thus f= «,,/Re, and g = 1/p. To add the viscous contribution to this part of the A coefficient submatnx,
we therefore set
8,(47); ;
(1 + 0,)2A%)*Re,

A(IV,LNYM,NRU) = A(IV,,NYM,NRU) — Hegdi— 1) + (axy) j]< % )

i-1,j
Similar equations may be written for the B and C coefficient submatrices.

The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetric
r-momentum equation for the two ADI sweeps is given by®

23 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum pw would
not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.

168 4.0 Proteus Subprograms: COEFY Proteus 2-D Programmer’s Reference



Sweep | (& direction)

A n A n
AW + 8,A7 1 oE; Aé. JE; Aé.
X —_—— r =1 r .
(PV)1 (1+92)2A§ r 66 - i+1 66 i—1

i+1 i=1

8A nn Ae n ona ~® n_n N
_(T_*_—GI)J(ATT[(’,-lf;_l+’1f;‘)g,_1AQ.‘_1-(’,~_1f,'_1+2"'f,'+r,’+1f,+1)glAQ[+(’i/;+r.'+lﬁ+l)gileQ¢+l]
2
0.0t | of, ey, | o a. A
+ - = - AQ, =~ 6(rE)+6(rF)+H
]+92r|:8Q 20 ] 1+86, [: 3 3 | 3]
. . n oy (46987 » A
sy T ler Evnl+ s rFun]+ Al + = [ r €v)s]+ 6] Frs])

1+ 6, ¥ {or (éVz)S] +6[r (f:Vz)3]}n T 1 izoz At

Sweep 2 (n direction)

A n A n
8,A7 oF A 7} A
ANn 1 1 3 n _ 3 n
AOY T aaAn 7 (r aé) A (r 2Q ) 8¢

9,Ar 1 A
_(1_;?1;_2—@_)27[(5_15_1+rjf,»)"g;‘_,AQj'_1-—(rj_,Jj_,+2r,f, LSy VOB + 0+ 1S4 )88
)28y

6,47 aﬁs a(l:lV)B ",

3Q 2Q
oo e [ oy adiys | s
Alpy)y + T+6, "‘r—['a—é——?] AQ
where now
A 1
Q=-lp pu pv pw EA"
A 1
E;= —J-[puv5x+(pv +p)é, + pvE,]
2, 1
F;= j[puvnx+(pv + p)ny + pvmy)

A 1 1
(EV1)3=J Re

2v§ + 'lérl:zxuf + _’1__ ér(”’);] + l‘fx(érug + éxvg)}

(FV1)3 Re {2#7],1’" + }n],[nxu +- r],(l"v) ] + /“ﬂx(’?ru + )}

(Br)s =5 o {208+ 28 [y + ), + slny 4 n,)
(fV2)3 = .1] Rle ‘fr"g + ;'nr[éxug + —}7 ér(rv)g:l + “'lx(frug + fx"g)}

A 1
H3=7(—P—PW2)
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4 1 1
(HV)3 = 7 Re

r

{ =20 % = 2ean + o) + 4 [y + o), 1}

The H and Hy terms, which do not appear in the 2-D planar form of the equations, result from the non-
conservative form of the axisymmetric equations.

The elements of the Jacobian coefficient matrix JE/dQ for the inviscid terms in the axisymmetric form
of the energy equation are

oE, op
[ &ew & Few) T TEr

66 Er—vfy Vi + o0 & E+ N +HVE+

op op ap
=5 g,
where f = ué, + v¢,.

The elements of the Jacobian coefficient matrix dE,[6Q for the viscous terms are

a(é"l)3 i aé"l d 1 3 1 1
=Re, _— ax,—a—g—(7) a,,?g-('ﬁ-)-i'a,,?rt o 0
31

3Q 2Q
where

A

JE
% f"“*’"a‘af’(%)““"%(%)—«»—:;—rg

ag, = (1 + A)Exé,

Gpr = l‘éxz +(2n+ Z)§r2

As in 2-D planar flow, the Jacobian coefficient matrices 6f73/66 and 6(f7y1)3/6é have the same form as
0E4/0Q and 3(Ey,)»/0Q, but with £ replaced by 7.

The elements of the Jacobian coefficient matrix 5ﬁ/66 are

A
oH, _[ dp 4 ap ap ap ap ]

o L% THed T w2 T

The elements of the Jacobian coefficient matrix 6I:ly/5(A) are

N A IS I
5(Hy)3 _ 1 aHV 6HV 5HV 0 0
Q Re 2Q Q 20
31 32 33

where
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2Q
’ 31
+[2#+).(frrg-}-nrr”)]%_;__{_lm_a%(_})
oH
5 ) ek (3)-nd ()
661'16;/ =— M= a2 (—‘1,—)—[2#+l(§rr§+,1rr’1)]-’1___;__Mr%(%)

33

Note that, except for the additional H and Hy terms, the equations for 2-D planar and axisymmetric flow
are very similar. In the axisymmetric equations there are some additional terms involving the radius r in
the viscous flux vectors, with corresponding terms in the Jacobian coefficient matrices. The radius r appears

as an additional coefﬁcient in front of the flux vectors E, Ey,, etc., and in front of the Jacobian coefficient

matrices 6E3/ aQ a(Ey,)3/ 6Q etc. In addition, 1/ appears in front of every term in the equation except the
A(pv) terms. In Proteus, the Fortran variables are defined in such a way that, for many terms, the same
coding can be used for both 2-D planar and axisymmetric flow. Unfortunately, this may make some of the
coding a little confusing. It is hoped that this detailed description, when compared with the source listing,
will help make things clear.

In COEFY, the coefficients of the left hand side, or implicit, terms are defined first. Note that the im-
plicit terms for the second ADI sweep have exactly the same form as for the first sweep, but with £ replaced
by n. By defiming DEL, METX, METY, and METT as the grid spacing and metric coefficients in the
sweep direction, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D
planar flow, and the radius r for axisymmetric flow. This adds the r in front of the Jacobian coefficient
matrices for axisymmetric flow, but has no effect for 2-D planar flow. The 1/r coefficient in front of each
term will be added later. In this section of code, the coefficient of A(pVv) (part of B(IV,, NYM,NRV)) is
set equal to r, not 1 as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms. These formulas are presented
in Section 5.0 of Volume 1. For axisymmetric flow, the Fortran vanable JI, which is normally defined as
1//, 1s temporarily redefined as r// before the COEF routines are called. This automatically accounts for
the r coefficient in front of all the flux vectors in the source term. The 1/r coefficient in front of each term
will be added later. This definition of JI adds an 7 in front of the A(pv)*~! term that should not be there.
This will also be corrected later.

The coding for the source term for the second sweep comes next. The definition of JI also adds an 7 in
front of the A(pv) term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius r. This adds the
1/r coefficient where it should be added, and removes the r in front of the A(pV) terms.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. The subscripts on the Fortran vanables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., “vectorized”) direction, and the second subscript is the index in the sweep
direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division
by r at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only
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to the first sweep, the first two subscripts are written as (I12,11). For sections that apply only to the
second sweep, they are written as (I1,12). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which
A, B, or C is a coefficient.

3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is
separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the
coding of coefficients and source terms involving the swirl velocity is separate from the rest of the cod-
ing, and is bypassed if there 1s no swirl.

4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous terms.

5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous terms containing derivatives in the specified direction.
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Subroutine COEFZ (A,B,CS METX,METY ,METT,NVD,NPTSD)

Called by Calls Purpose
EXEC Compute coefficients and source term for the swirl momentum
equation.
Input
DEL Computational grid spacing in sweep direction.
DTAU Time step Ar.
DXI1, DETA Computational grid spacing A¢ and Ax.

ETAX, ETAY, ETAT
IBASE, ISTEP

IEULER
THSTAG
ISWEEP
ITHIN
v

11, 12

I

METX, METY, METT

MU

NEQ

NPTS

NR, NRU, NRV, NRW, NET

NVD, NPTSD

NZM

RAX

RER

RHO, U, V, W
RHOL, WL
THZ

XIX, XIY, XIT
Y

Proteus 2-D Programmer’s Reference

Metric coefficients #,, n, (or #, if axisymmetric), and ..

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

'Flag for Euler calculation.

Flag for constant stagnation enthalpy option.
Current ADI sweep number.

Flags for thin-layer option.

Index in the “vectorized” direction, i,.

Grid indices / and j, in the ¢ and » directions.

Inverse Jacobian of the nonorthogonal grid transformation times
the radius, /- 1.

Derivatives of sweep direction computational coordinate with re-
spect to x, r, and ¢.

Effective coefficient of viscosity u at time level 7.
Number of coupled equations being solved, V...
Number of grid points in the sweep direction, N.

Array indices associated with the dependent vanables p, pu, pv,
pPW, and Er.

Leading two dimensions for the arrays A, B, C, S, METX,
METY, and METT. '

Array index associated with the swirl momentum equation.
The local radius .

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w, at time level n.
Static density p and velocity w from previous ADI sweep.

Parameters 8,, 8, and 6; determining type of time differencing for
the swirl momentum equation.

Metnic coefficients &,, &, (or &, if axisymmetric), and £,.

Radial coordinate r.
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Output

A B, C Coefficient submatrices A, B, and C at interior points (row NZM
only).
S Source term subvector S at interior points (element NZM only).
Description

Subroutine COEFZ computes the coefficients and source term for the swirl momentum equation, which
is only valid in axisymmetric flow. The equations for axisymmetric flow are developed in Appendix B of
Volume 1. The swirl momentum equation for the two ADI sweeps is given by#

Sweep 1 (& direction)

n

A(pA ). + 0,At 1 3ﬁ4 A(A)‘ , aéa Aé.
W) o ———— — r L= ]
(1 +88% T 36 i+1 36 1 i—1

i+ 1 i—
6,At A s A n A
_m]T[(’i—lﬁ—l +rfYEl AQ i S RS SV AQ + it Sy g.nHAQ.'H]
A A i .

6,7 1 oH,  dHy), A Ar 1 - 7 P Ar 1 & 2 N T
+ 178, 7[—5——5— AQ;=— T35 T[S D+ 8 Fa+ He]' + 7T +{8r By )a] + 6,7 Frda] + Hya}

(1+647 A - n BiAT ~ A n=1 ) A el

1+6, T{ég[rm%h]*—é”[r(]:%)d]} T1+6, 7{64[’ (EV2)4:|+6'1[’ (FVz)d]} + 1+86, Apw)

Sweep 2 (y direction)

A n A n
A n glAT 1 6F4 Ap aFG A
AW} + =7 | | T —= AQ;_ —|r— aQ;
(1+ 6,24y Q) 2Q »
-
6,47

1 n LY ~ An
T 1+ 82(An) F LSy s T 8Q = O Sy 1+ 2L+ 1 Sy VG AR+ S+ 118180 ]
2

A A n A A n

0,0t 1| M, B, | 4 .. 0ar | By adiy, | A

ATl e e AQ]=A8pw) + T — AQ
2 9Q oQ ) 2 aQ oQ

In the above equations, the subscripts i/ and j represent grid point indices in the ¢ and » directions. For
notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j.

On the left hand side, f is the coefficient of 3/3¢ (or 8/dn, depending on the sweep) in the aﬁy,/aé (or
9Fy,/3Q) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following 8/3¢ (or 9/0n)
in the JE,/0Q (or dFy,/2Q) Jacobian coefficient matrnix. ’

The vector of dependent variables is

Q=—0p pu pv pw EA"

)=

The appropriate elements of the inviscid flux vectors are given by

24 These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy Er would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only four elements.
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A
E,= % [ouwly + pywé, + pwi/]
A 1

a=7 [puwn, + pywn, + pwn,]

The appropriate elements of the non-cross derivative viscous flux vectors are

1

A 1 2 )
(Epo= - (g + uiwy)
r

2 1 1 2 2
(Fy)a = J— (uncwy + wrrwy)
r

And the appropriate elements of the cross derivative viscous flux vectors are

A 1 1
(Ep)s= T Re (#ixnan + uémw, — g, l:— )
r

A 1 1 ’ w
(Fip)a =7 g (wnabsony + nr2wg — won, < )

The extra terms resulting from the non-conservative form of the axisymmetric equations are

) 1 1
(Hy)g = 5= [1&wg + npwy) — 7 |
r

The elements of the Jacobian coefficient matrix JEf3Q for the inviscid terms in the r-momentum
equation are

oE,
—=0—-wh w¢ w G+ 0]
aQ

where fi = ué, + v¢,.

The elements of the Jacobian coefficient matrix 8E,/0Q for the viscous terms are

A N
AT B i 00 « —a'(l> 0
2o Re 20 25z \P
41
where
N
) __, 2 (2)
A - 22 P
Q 41 *

2 2
a,=udy +ud,

The Jacobian coefficient matrices 61:‘4/66 and a(f‘y,)4/a() have the same form as 61:24/6(3 and a(i:yl)a/a(),
but with ¢ replaced by .
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The elements of the Jacobian coefficient matnx 61:1/56 are

oH,
5Q

=[-w 0 w v 0]

The elements of the Jacobian coefficient matnx aﬁy/aé are

N A A
oMy _ 1 oHy 0 0 6Hy
0Q  Re 2Q 2Q
a1 44
where
oH
4 - o (WY Hw_ w
N _.u'éra):(p)_'_rp .u"llar’(p)
oQ
a1
oHy =u§i(¢)_iL+M_5_(i)
20 roE\p rp g \ P

As an example of how these equations are translated mto Fortran, consider the A(pv/J) term on the left
hand side for the first sweep. This is the third element of Q so using the third element in 6E/<3Q and in-
cluding the contribution from the third element of 5H4/ 6Q we get for the inviscid term

A(IV,LNZM,NRV) = — @ 1 - [(rwé ]
( Ia) Ral] ) (l+9)2A§ r (Y’W r)z—lj
! . 6,(87);;
B(IV,I,I\ZM,A\RV) = —1—+‘§2— Tt,—_]_ wi,j
0,(A7);;

CAVINZMNRY) = g5 17— (i1, )

For the A(pv/J) term, there are no viscous terms on the left hand side.

In COEFZ, the coefficients of the left hand side, or implicit, terms are defined first. Note that the im-
plicit terms for the second sweep have exactly the same form as for the first sweep, but with £ replaced by
. By defining DEL, METX, METY, and METT as the grid spacing and metrnic coefficients in the sweep
direction, the same coding can be used for both sweeps. Since COEFZ is only used in axisymmetric flow,
the variable RAX is equal to the radius r. This adds the 7 in front of the Jacobian coefficient matnces.
The 1/r coefficient in front of each term will be added later. In this section of code, the coefficient of
A(pw) (part of B(IV,I,NZM,NRW)) is set equal to r, not 1 as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms. These formulas are presented
in Section 5.0 of Volume 1. For axisymmetrc flow, the Fortran variable JI, which is normally defined as
1/J, is temporarily redefined as 7/J before the COEF routines are called. This automatically accounts for
the r coefficient in front of all the flux vectors in the source term. The 1/r coefficient in front of each term
will be added later. This definition of JI adds an r in front of the A(pw)*~! term that should not be there.
This will also be corrected later.
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The coding for the source term for the second sweep comes next. The definition of JI also adds an 7 in
front of the A(pw)" term that should not be there.

And finally, the entire equation is divided by the local radius . This adds the 1/r coefficient where 1t
should be added, and removes the r in front of the A(pW) terms.

Remarks

This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., “vectorized”) direction, and the second subscript is the index in the sweep
direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division
by 7 at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only
to the first sweep, the first two subscripts are written as (I2,11). For sections that apply only to the
second sweep, they are written as (I1,12). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which
A, B, or C i1s a coefficient.

3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is
separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the
coding of coefficients and source terms involving the swirl velocity is separate from the rest of the cod-
ing, and is bypassed if there is no swirl.

4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous terms.

5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous terms containing derivatives in the specified direction.
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Subroutine CONV

Called by Calls Purpose
MAIN ISAMAX Test computed flow field for convergence.
Input
CHGMAX Maximum change in absolute value of the dependent varnables
from time level n—~ 1 to n (or over the previous NITAVG — 1
time steps if ICTEST = 2), AQ,.x.
DUMMY A two-dimensional scratch array.
* EPS Convergence level to be reached, «.
* GAMR Reference ratio of specific heats, y,.

*  TAVZE, IAV4E

* ICTEST
*  IHSTAG
*  ISWIRL
IT
NEQ
* NITAVG
* NOUT

Flags for second- and fourth-order explicit implicit artificial
viscosity.

Flag for convergence criteria to be used.

Flag for constant stagnation enthalpy option.

Flag for swirl in axisymmetric flow.

Current time step number 2.

Number of coupled equations being solved, N,,.

Numpber of time steps in moving average convergence test.

Unit number for standard output.

NR, NRU, NRV, NRW, NET Array indices associated with the dependent variables p, pu, pv,

NTOTP

* NI, N2
RESAVG
RESL2
RESMAX

RGAS

RHO, U, V, W ET

RHOL, UL, VL, WL, ETL

Output

CHGAVG

CHGMAX

178 4.0 Proteus Subprograms: CONV

pw, and Er.

Dimensioning parameter specifying the storage required for a full
two-dimensional array (i.e., N1P x N2P).

Number of grid points N, and N,, in the ¢ and » directions.
The average absolute value of the residual at time level 7, R.,.
The L, norm of the residual at time level n, Ry,.

The maximum absolute value of the residual at time level n,
RMCX'

Gas constant R.

Static density p, velocities u, v, and w, and total energy £ at time
level n+ 1.

Static density p, velocities u, v, and w, and total energy £r at time
level n.

Maximum change in absolute value of the dependent variables,
averaged over the last NITAVG tiume steps, AQ.,.

Maximum change in absolute value of the dependent variables
from time level n to n+ I (or over the previous NITAVG time
steps if ICTEST = 2), AQpe-
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ICONV Convergence flag; | if converged, 0 if not.

Description

Subroutine CONV checks the computed flow field for convergence. Convergence may be based on: (1)
the absolute value of the maximum change in the dependent vanables over the previous time step; (2) the
absolute value of the maximum change in the dependent variables, averaged over the last NITAVG time
steps; (3) the L, norm of the residual for each equation; (4) the average residual for each equation; or (5)
the maximum residual for each equation. These parameters are defined in Section 4.1.6 of Volume 2.

The convergence criteria to be used and the level to be reached are set by the input parameters ICTEST
and EPS. Each dependent variable or equation is checked separately, and convergence is declared when the
specified level is reached for all of the variables or equations. The same criteria 1s used for each one, but
different levels may be specified.

Subroutine CONY first computes AQ,.., the absolute value of the maximum change in each dependent
variable over all the grid points for the most recent time step. These values are stored in
CHGMAX(IVAR,1), where IVAR varies from 1 to NEQ, the number of dependent variables. If
ICTEST = 2 (the so-called “moving average” convergence test), CHGMAX(IVAR,2) contains the maxi-
mum change for the previous time step, etc.

Then, depending on the value of ICTEST, the chosen convergence criteria is compared with the level
to be reached for each dependent variable or equation, and a flag is set if the calculation is converged.

Remarks

1. For ICTEST =1 or 2,_the change in Eris divided by R/(y, — 1) + 1/2. This is equivalent to dividing
the dimensional value Er by

o 2
_ o RT, + Pri4
T y,— 1 2

This makes the change in total energy the same order of magnitude as the other conservation varnables.

2. For ICTEST = 1 or 2, the convergence test is based on (or includes) the change in dependent vanables
from time level nto n+ 1. For ICTEST = 3, 4, or 5, convergence 1s based on the residual at time level
n, not n+ 1. This is because the residuals at time level » + 1 are not computed until the marching step
from n+ 1 to n+ 2 1s taken.

3. For cases run with artificial viscosity, the residuals are cbmputed and printed both with and without the
artificial viscosity terms. This may provide some estimate of the overall error in the solution introduced
by the artificial viscosity. Convergence is determined by the residuals with the artificial viscosity terms
included. -

4. The Cray search routine ISAMAX is used in computing the absolute value of the maximum change in
dependent vanables.

5. The scratch array DUMMY, from the common block DUMMY, is used to store the values of the
change in dependent variables for use by ISAMAX.

6. A warning message is generated if an illegal convergence critena is specified. ICTEST is reset to 3
(convergence based on the L, norm of the residual), and the calculation will continue.
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Subroutine CUBIC (IDIR,T,G,NOLD, TINT,GINT)

Called by Calls Purpose
PAK Interpolation using Ferguson’s parametric cubic.
Input
G A two-dimensional array containing NOLDI x NOLD2 values
of the function g(¢) to be interpolated.
IDIR Direction flag; 1 if first subscript in G varies, 2 if second subscnipt
varies.
I1, 12 Grid indices i and j, in the ¢ and » directions.
NOLD Number of values in direction IDIR in array G (i.e., NOLDI or
NOLD2))
* NI, N2 Number of grid points ¥; and N2, in the ¢ and # directions.
T A one-dimensional array containing NOLD values of the inde-

pendent varable t.

TINT A one-dimensional array containing N1 or N2 (depending on
IDIR) values of the independent varable =1, at which in-
terpolated values g... = g(t.) are desired.

Output
GINT A one-dimensional array containing N1 or N2 (depending on
IDIR) interpolated values gi. = g(lin)-
Description

Subroutine CUBIC performs interpolation using Ferguson’s parametric cubic polynomial (Faux and
Pratt, 1979). Given the function g(¢) and a value ly, CUBIC computes gin: = g(line)-

The function g(f) is specified by the Fortran arrays G and T. For a general value ¢, let

t—t,
= ty— 1,

where 7, <t <t,. (Le., ¢, and ¢, are the two elements of the amay T that bracket ¢.)
Between #, and 2, assume g can be described by a cubic polynomial in #, as follows:
2 3
g=q + az{f'*' a_—;lf +a‘3{f
Differentiating,

dg 2
g = a, + 2a3t¢ + dayif

XN

Noting that ;=0at ¢t =¢,,and 1 at 7= 1, we get

180 4.0 Proteus Subprograms: CUBIC Proteus 2-D Programmer’s Reference



&u=q
=9
gd=a1+a2+a3+a4

84 =@ + 2a3+ 3q,
Solving for a; through q,
a =g,
Q =gy
a3 =3gs—8,)— 28, — &4
a=2g,—8)+tg, +&y

Plugging these into the cubic polynomial for f and rearranging,
g=21-34"+27) + 434" — 2)
+ 8 (=27 + 1))+ gu(— i + i)
This is the form of the equation used to compute g,,..
Remarks

1. At interior points in the array g, the derivatives g, and g} are computed using a second-order central
difference formula. At the end points, second-order one-sided difference formulas are used.

2. The Fortran variable TINT is actually a one-dimensional array containing N, or N, input values of
tn- Stmilarly, GINT is a one-dimensional array containing N, or N, output values of g.,.

3. The Fortran array G that specifies the input values of g(?) is actually a two-dimensional array. Within
CUBIC, however, only one of the subscripts varies. The input flag IDIR spectfies which one.
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Subroutine EQSTAT (ICALL)

Called by Calls Purpose
BVLUP Use equation of state to compute pressure, temperature, and their de-
EXEC rivatives with respect to the dependent variables.
INITC
MAIN
Input
CP, CV Specific heats ¢, and c,.
*  HSTAG Stagnation enthalpy Ar used with constant stagnation enthalpy

option.
IBASE, ISTEP Base index and multiplication factor used in computing one-

dimensional index for two-dimensional array.

ICALL 0 to get p and T, 1 to get derivatives of p and T with respect to
dependent vaniables.

IHSTAG Flag for constant stagnation enthalpy option.

NPTS Number of grid points in the sweep direction, N.

N1, N2 Number of grid points N; and N, in the £ and » directions.

RGAS Gas constant R.

RHO, U, V, W, ET

Output

DPDRHO, DPDRU, DPDRYV,
DPDRW, DPDET '

DTDRHO, DTDRU, DTDRYV,
DTDRW, DTDET

Static density p, velocities ¥, v, and w, and total energy Er

Derivatives dp/dp, 8p|d(pw), 0p|d(pv), dpld(pw), and Op/Er.

Derivatives 87/3p, 8T|3(p1), 8T[8(pv), 8T|0(p>~), and OT/3Er.

ET Total energy (constant stagnation enthalpy option only.)
INEG Flag for non-positive pressure and/or temperature; 0 if positive, 1
if non-positive.
P, T Static pressure p and temperature 7.
Description

Subroutine EQSTAT computes various quantities that depend on the form of the equation of state. It
actually serves a dual purpose. First, it is called from subroutine INITC and from the MAIN program,
with the input parameter ICALL = 0, to compute the static pressure p and temperature 7 from the initial
or just-computed values of the dependent variables. If the constant stagnation enthalpy option is being used
it also computes a value for the total energy Er. And second, it is called from subroutines BVUP and
EXEC, with ICALL = 1, to compute the denvatives of p and T with respect to the dependent variables.”

The equation of state currently built into Proteus is for a perfect gas. The formulas used to compute
p, T, and their derivatives with respect to the dependent variables are presented in Section 4.3 of Volume
| for two-dimensional planar flow and in Section B.2.3 of Volume 1 for axisymmetnc flow.

2 These are needed for finearization of the governing equations. See Section 4.1 of Volume 1 for details.
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Remarks

1. When used to compute p and 7 (ICALL = 0), this subroutine is called from outside any loops in the
¢ or n directions. When used to compute dp/dp, etc., (ICALL = 1), it is called for each ADI sweep
from inside a loop in the non-sweep direction.

2. When computing dp/8p, etc., this subroutine uses one-dimensional addressing of two-dimensional ar-
rays, as described in Section 2.3.
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Subroutine EXEC

Called by

Calls

Purpose

MAIN

ADI

Manage solution of governing equations.

AVISCl
AVISC2
BCELIM
BCGEN
BVUP
COEFC
COEFE
COEFX
COEFY
COEFZ
EQSTAT
PERIOD
RESID
UPDATE

Input

DXI, DETA
ETAX, ETAY, ETAT
IAV2E, IAV4E, IAV2]

IAXI
IBCELM

ICHECK
IHSTAG
ISWIRL
IT
ITBEG
ITHIN

Ji
KBCPER

NEQP
NPT1, NPT2
NTABC

NTS
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Computational grid spacing A and Ax.
Metric coefficients #,, #, (or 1, if axisymmetric), and #..

Flags for second-order explicit, fourth-order explicit, and second-
order implicit artificial viscosity.

Flag for axisymmetric flow.

Flags for elimination of off-diagonal coefficient submatnces re-
sulting from three-point boundary conditions in the ¢ and # di-
.re(.:tions at either boundary; 0 if elimination is not necessary, 1 if
it is.

Convergence checking interval.

Flag for. constant stagnation enthalpy option.

Flag for swirl in axisymmetric flow.

Current time step number 7.

The time level 7 at the beginning of a run.

Flags for thin-layer option.

Inverse Jacobian of the nonorthogonal grid transformation, J=*.

Flags for spatially periodic boundary conditions in the ¢ and »
directions; 0 for non-periodic, 1 for periodic.

Dimensioning parameter specifying maximum number of coupled
equations allowed.

N, and N, for non-periodic boundary conditions, ¥+ 1 and
N: + 1 for spatially periodic boundary conditions in ¢ and #.

Dimensioning parameter specifying total storage required for the
coefficient submatrices A, B, and C.

Dimensioning parameter specifying total storage required for the
source term subvector S.
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* NI, N2 Number of grid points N, and N, in the ¢ and x directions.

N1P, N2P Parameters specifying the dimension sizes in the ¢ and n di-
rections. .

XIX, XIY, XIT Metric coefficients &,, &, (or &, if axisymmetric), and &..

Y Radial coordinate 7 for axisymmetric flow.

Output

DEL Computational grid spacing in sweep direction.

IBASE, ISTEP Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

ISWEEP Current ADI sweep number.

v Index in the “vectorized” direction, i,.

11,12 Gnid indices i and j, in the ¢ and # directions.

J1 The radius times the inverse Jacobian of the nonorthogonal gnd
transformation, 7/-! (used in COEF routines for axisymmetric
flow only.)

METX, METY, METT Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and ¢.

NPTS Number of grid points in the sweep direction, V.

NV Number of grid points in the “vectorized” direction, N,.

RAX 1 for two-dimensional planar flow, and the local radius r for
axisymmetric flow.

RHO, U, V, W, ET Static density p, velocities u, v, and w, and total energy £r at time
level n+ 1.

RHOL, UL, VL, WL, ETL Static density p, velocities u, v, and w, and total energy Er at time
level n.

TL Static temperature 7T at time level n.

Description

Subroutine EXEC manages the solution of the governing equations. It is called by the MAIN program
during each marching step from time level nto n+ 1. The steps involved in EXEC are described below.

Preliminary Steps

1. If this is the first time step, temporarily set the thin-layer flags to zero.

2. Initialize the coefficient submatrices A, B, and C, and the source term subvector S, to zero.

3. If spatially periodic boundary conditions are being used in either direction, call PERIOD to add the
appropriate extra line(s) of data.

First ADI sweep, & direction

4. Set various sweep-dependent parameters, as follows:

isweep = |

istep =1

del = A¢

npts = Njor N+ 1
nv = N,or N+ 1
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10.

11
12.
13.

14.

15.

16.

17.
18.

19.

20.

2L
22.
23.
24

25

For axisymmetric flow, set JI = r/J at all grid points.

Set metrics in sweep (&) direction at all grid points as follows:

metx(i2,il) = (&,).;
mety(i2,i1) = (&), or (§).;
mett(i2,il) = (&),

Begin loop in non-sweep () direction over interior pomts (j = [2=2to NPT2 - 1).
For axisymmetric flow, set RAX(I1) = 7, ; along the current 5-line at all ¢ grid points.

Call EQSTAT to get the derivatives of p and 7 with respect to p, pu, etc., along the current n-line
at all £ gnd points.

Call the COEF routines to compute the coefficients and source terms for the governing equations
along the current »n-line at all interior ¢ grid points.

End of loop in non-sweep () direction.
For axisymmetric flow, reset JI = 1// at all gnd points.

For non-spatially periodic boundary conditions in the & direction, begin loop in non-sweep (1) direction
over intertor points (j=12=2to NPT2 - 1).

Call EQSTAT to get the derivatives of p and T with respect to p, pu, etc., along the current #-line
at all ¢ gnid pomts.

Call BCGEN to compute the coefficients and source terms for the boundary condition equations
at the end points (i = I1 = 1 and M) of the current #-line.

If three-point boundary conditions were used at either boundary, call BCELIM to eliminate the
resulting off-diagonal coefficient submatrices.

End of loop in non-sweep () direction.

Every ICHECK time steps, call RESID to compute residuals at time level n without the artificial
viscosity terms, and to update the convergence history file.

If artificial viscosity is being used, call AVISC1 or AVISC2 to add the appropriate terms to the coeffi-
cient submatrices and/or the source term subvectors at all mtenor grid points.

Every ICHECK time steps, if artificial viscosity is being used, call RESID to compute residuals at time
level n with the artificial viscosity terms, and to update the convergence history file.

If spatially periodic boundary conditions are being used in the ¢ direction, reset NPTS = V.

Call ADI to solve the system of difference equations.

Begin loop in non-sweep (x) direction over interior points (j = [2=2 to NPT2 - 1).
Call UPDATE to compute the primitive flow variables, Q", from the newly computed conservation
variables in delta form, Aé*, along the current y-line at all ¢ grid points.

. End of loop in non-sweep (») direction.

Second ADI sweep, n direction

26

27

. Set various sweep-dependent parameters, as follows:
isweep = 2
istep = nlp
del = An
npts = N,or N,+1
nv = NorN +1

. For axisymmetnc flow, set JI = r/J at all grid points.
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28. Set metrics in sweep (n) direction at all grid points as follows:

metx(il,i2) = (n,),;
mety(il,i2) = (y,).; or (n.).;
mett(il,i2) = (i),

29. Begin loop in non-sweep (&) direction over interior points (i = I1 =2 to NPT — 1).
30. For axisymmetnic flow, set RAX(I2) =r; ; along the current ¢-line at all » grid points.

31. Call EQSTAT to get the denvatives of p and T with respect to p, pu, etc., along the current &-line
at all # gnid points. :

32. Call the COEF routines to compute the coefficients and source terms for the governing equations
along the current ¢-line at all interior  grid points.

33. End of loop in non-sweep () direction.
34. For axisymmetric flow, reset JI = 1// at all grid points.

35. For non-spatially peniodic boundary conditions in the » direction, begin loop in non-sweep (&) direction
over intenior points {i = Il = 2 to NPT1 - 1).

36. Call EQSTAT to get the derivatives of p and T with respect to p, pu, etc., along the current &-line
at all » grid points.

37. Call BCGEN to compute the coefficients and source terms for the boundary condition equations
at the end points (j = I2 =1 and N,) of the current &-line.

38. If three-point boundary conditions were used at either boundary, call BCELIM to eliminate the
resulting off-diagonal coefficient submatrices.

39. End of loop in non-sweep (&) direction.

40. If implicit artificial viscosity is being used, call AVISCI to add the appropriate terms to the coefficient
submatnces at all mterior gnid points.

41. If spatially periodic boundary conditions are being used in the » direction, reset NPTS = N,.

42. Call ADI to solve the system of difference equations.

43. Begm loop in non-sweep (¢) direction over interior points (i = I1 = 2 to NPT1 — 1).

44. Call UPDATE to compute the primitive flow variables p"+!, u"*!, etc., from the newly computed
conservation varnables in delta form, A(}", along the current ¢-line at all » grid points.

45. End of loop in non-sweep (¢) direction.

Finishing Steps
46. If this is the first time step, reset the thin-layer flags back to their input value.
47. Call BVUP to update the ¢ boundary values, if necessary.

48. For all grid points, shift RHO and RHOL so that RHO = p**! and RHOL = p~. Similarly, shift the
Fortran vanables for &, v, w, and Er. Finally, set TL = 7™.
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Subroutine EXECT
Called by Calls Purpose
TURBCH BLK2 Manage solution of the k-t equations.
BLK2P
COEFS1
COEFS2
PERIOD
UPDTKE
Input
A Coefficient submatrix A.
* CMUR Constant C,, in formula for C,.
* CTHREE Constant C; in formula for C,.
JI Inverse Jacobian of the nonorthogonal grid transformation, J-'.
KBCPER Flags for spatially periodic boundary conditions in the ¢ and #
directions; 0 for non-periodic, 1 for peniodic.
NPT1, NPT2 N, and N, for non-periodic boundary conditions, ¥, + 1 and
N, + 1 for spatially periodic boundary conditions in ¢ and 7.
* N1, N2 Number of grid points N, and V>, in the £ and % directions.
N1P, N2P Parameters specifying the dimension sizes in the ¢ and » di-
rections.
RHO Static density p at time level n.
S Source term subvector S.
YPLUSD Nondimensional distance y* from the nearest solid wall.
Output
E, EL Turbulent dissipation rate ¢ at time levels 7+ 1 and 7.
ISWEEP Current ADI sweep number.
KE, KEL Turbulent kinetic energy k at time levels n+ 1 and £
MUT, MUTL Turbulent viscosity u, at time levels n+ 1 and n.
NPTS Number of grid points in the sweep direction, N.
AV Number of grid points in the “vectorized” direction, N..
S Computed solution subvector AW.
Description

Subroutine EXECT manages the solution of the k-¢ equations. It is called by subroutine TURBCH,
NTKE times per mean flow iteration. The steps involved in EXECT are described below.

Preliminary Steps

1. If spatially periodic boundary conditions are being used in either direction, call PERIOD to add the
appropriate extra line(s) of data.
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First ADI sweep, ¢ direction

Set various sweep-dependent parameters.

Call COEFSI1 to compute the coefficients and source terms for the k-£ equations.

Solve the system of difference equations by calling BLK2 for non-periodic boundary conditions, or
BLK2P for periodic boundary conditions in the ¢ direction.

Second AD/I sweep, v direction

Set vanous sweep-dependent parameters.

Swap indices in the subvector S. The submatnix A is used as a temporary scratch array for this opera-
tion.

7. Call COEFS2 to compute the coefficients and source terms for the k-¢ equations.
Solve the system of difference equations by calling BLK2 for non-periodic boundary conditions, or
BLK2P for peniodic boundary conditions in the » direction.

Finishing Steps
9. For all grid points, set KEL = 4" and EL = ¢

10. Call UPDTKE to compute the primitive flow variables k**! and ¢**! from AW”, the newly computed
conservation variables in delta form.

11. Compute the turbulent viscosity at each gnd point, storing u7*! and u? in MUT and MUTL, respec-
tively.
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Subroutine FILTER (A.B,C,S,NVD,NPTSD)

Called by Calls Purpose .
BLK3 BLKOUT Rearrange rows of the boundary condition coefficient submatrices and
BLK4 ISAMAX the source term subvector to eliminate any zeroes on the diagonal.
BLKS5 ISRCHEQ
Input
A, B, C Coefficient submatrices A, B, and C before rearrangement.
* IDEBUG Debug flags.
* IPRTIA, IPRT2A Indices for printout in the ¢ and # directions.
ISWEEP Current ADI sweep number.
IT Current time step number 7.
v Index in the “vectorized” direction, i,.
NEQ Number of coupled equations being solved, N,,.
*  NOUT Unit number for standard output.
NPRTI1, NPRT2 Total number of indices for printout in the & and #» directions.
NPTS Number of grid points in the sweep direction, N.
NVD, NPTSD Leading two dimensions for the arrays A, B, C, and S.
S Source term subvector S before rearrangement.
Output
A, B, C Coefficient submatrnces A, B, and C after rearrangement.
S Source term subvector S after rearrangement.
Description

Subroutine FILTER rearranges rows of the coefficient block submatrices and the source term subvector,
at the two boundaries in the ADI sweep direction, in an attempt to eliminate any zero values on the diag-
onal of the submatrix B. These zero values may occur when mean flow boundary conditions are specified
using the JBC and/or IBC input parameters, depending on the initial conditions and the order of the
boundary conditions.

For instance, if the specified initial conditions are zero velocity and constant flow properties everywhere
in the flow field, the perfect gas equation of state yields:
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or __Er

& ot
_or__ _oT _,
pu)  Ipv)
o1 __1
0Er &P

If, in addition, the boundary conditions at a given boundary are, in order, specified pressure p = f, no-slip
x- and and y-velocity u=0 and v=0, and specified temperature 7 = f, then the linearization of the
boundary conditions leads to the following B coefficient submatrix for that boundary:

0 0 0 Jy—1
B= 0 Jlp 0 0
- 0 0 Jlp 0

—JEfept 0 0 Jlep

The zero on the diagonal will lead to a divide-by-zero error in subroutine BLK4, even though this is not a
singular matnx.

Subroutine FILTER tries to fix this problem. In this example, it finds a zero at element B,;, searches
column 1 for the largest element in absolute value (in this case — JE7/c,p?), and adds that row to the row
with the zero on the diagonal. Of course, the corresponding rows of A, C, and S must also be added to-
gether. The new B submatrix would be:

~JEfeo’ 0 0 JG—1)+Jep
0 0 0

B= Jlp
0 5 0 Jip 0
—~JE c,p 0 0 Jle,p

Remarks

1. If a column with a zero on the diagonal has no other elements greater than 10~ 19, then it is assumed that
the matrix B is singular, which means the specified boundary conditions are not independent of one
another. An error message is printed and the calculation is stopped.

2. Tt’s probably sufficient to only call this subroutine for the first time step. After the first step, the chances
of u and v both being exactly zero at the same interior grid point are slim. Nevertheless, in the current
version of Proteus, FILTER is called at every time step.

3. The Cray search routine ISAMAX is used in finding the largest element in any column corresponding
to a zero on the matrix diagonal. The Cray search routine ISRCHEQ is used in determining the grid
locations for debug printout.

4. This subroutine generates the output for the IDEBUG(4) option.
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Subroutine FTEMP

Called by Calls Purpose
INITC Compute auxiliary variables that are functions of temperature.
MAIN

Input

CCP1, CCP2, CCP3, CCP4 Constants in formula for specific heat.

CKl, CK2 Constants in formula for laminar thermal conductivity coefficient.

CMU1, CMU2 Constants in formula for laminar viscosity coefficient.

* GAMR Reference ratio of specific heats, y,.

IGAM Flag for constant or varable ¢, ¢, and y; 0 if they are to be
computed as functions of temperature, 1 if they are to be treated
as constant.

* ILAMV Flag for computation of laminar viscosity and thermal
conductivity.

*  NOUT Unit number for standard output.

* NI, N2 Number of grid points N, and N>, in the ¢ and » directions.

RGAS Gas constant R.

T Static temperature 7.

* TR, UR, MUR, KTR Reference temperature 7,, velocity w, viscosity u,, and thermal
conductivity ..
Qutput

CP,CV Specific heats ¢, and c,.

MU, LA, KT Laminar coefficient of viscosity u, laminar second coefficient of
viscosity 4, and laminar coefficient of thermal conductivity ;.

Description

Subroutine FTEMP computes the auxiliary vaniables p;, 4, ki, ¢,, and ¢,. For the laminar viscosities u
and 4, and the laminar thermal conductivity k;, there are two options currently available.

If the input parameter ILAMV = 0 (the default), FTEMP sets the nondimensional values as:

Thus, with this option, the laminar viscosity and thermal conductivity are held constant at ther reference
values. These reference values may be specified by the user, or computed from the reference temperature.
The laminar second coefficient of viscosity 4, is set equal to — 2u,/3.

If ILAMV = 1, y; and k, are computed as functions of temperature using Sutherland’s formula (White,
1974). The formula for the laminar viscosity coefficient y, is
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where the overbar indicates a dimensional value, and y! is the laminar viscosity coefficient at T=T, given
by

N
From Ty,

Depending on the namelist input values of MUR and RER, p; may or may not be equal to u,. These
formulas are valid for air for temperatures from 300 to 3420 °R (167 to 1900 K). The value of the constants
C,, and C,, depend on whether reference values are being specified by the user in English units
(IUNITS = 0) or SI units (IUNITS = 1). The values are presented in Table 4-1. The laminar second co-
efficient of viscosity 4, is set equal to — 2u,/3. The formula for the laminar thermal conductivity coefficient
K 1s

= , — N\ 32
k__kl_kr Tr+Ck2(T>/
1= 7 =7 = 7—

r

where the overbar indicates a dimensional value, and &’ is the laminar thermal conductivity coefficient at

T =T, given by

k =C ———T’3/2
r T vkl Tr+ Ck2

Depending on the namelist input values of KTR and PRLR, &, may or may not be equal to k. These
formulas are valid for air for temperatures from 300 to 1800 °R (167 to 1000 K). The value of the constants
Ca and Ci, depend on whether reference values are being specified by the user in English units
(IUNITS = 0) or SI units (IUNITS = 1). The values are presented in Table 4-1.

There are also two options available for the specific heat coefficients ¢, and ¢,. If the flag IGAM =1, a
value of the specific heat ratio y has been specified by the user. In this case ¢, and ¢, are treated as constants,
and computed from

R
y—1
=c,+R

CV=

%

If IGAM = 0, the user did not specify a value of y. In this case, the specific heat coefficient ¢, 1s computed
as a function of temperature from the empirical formula of Hesse and Mumford (1964), and ¢, is computed
from that value assuming a thermally perfect gas. The ratio y = ¢,/¢, will then vary with temperature. The
equations for ¢, and ¢, are:

I, T F—1/2 = 72
cp=cp_u;2'.=:2’(ccpl— 2T 2= CsT + CaT)
6 =¢—R

This formula is valid for air for temperatures from 540 to 9000 °R (300 to 5000 K). The values of the
constants Ccpl through Cc,‘; are presented in Table 4-1.
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TABLE 4-1. - EMPIRICAL CONSTANTS FOR pu, ki, AND ¢,

e ENGLISH N
CONSTANT CNITS SI UNITS
Ca 7.3035x 10-7 | 1.4582x 10~
C. 198.6 110.3
Cu 7.4907 x 10-3 | 1.8641x 10-3
Ce 350.0 194.4
C.,: 8.53 x 10° 1.4264 x 103
C., 312 104 3.8888 x 10°
C.,s 2.065 x 108 1.9184 x 105
C.ys 7.83 x 108 40413 x 107

Remarks

1. The formulas used with the ILAMYV = 1 option are for air. For other fluids, different formulas should
be used to compute , 4, and k. These could easily be programmed as additional ILAMYV options.
Or, if the flow being computed is such that g, and k, may be considered constant, simply set
ILAMYV = 0 and read in the appropriate values for u, and k. Note, however, that the ILAMV =0
option still sets 4, = — 2u/3.

2. The formula used to compute ¢,, when a value of y is not specified by the user, is for air. For other
gases, a different formula should be programmed. Or, if ¢, and ¢, may be considered constant, a value
of y should be read in.

3. An error message is generated and execution is stopped if an illegal value is specified for ILAMYV.
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Subroutine GEOM

Called by Calls Purpose
MAIN METS Manage computation of grid and metric parameters.
PAK
Input
* IPACK Flags for grid packing option.
* NGEOM Flag for type of computational coordinates.
* NGRID . Unit number for ihput mesh file.
* NOUT Unit number for standard output.
* NI, N2 Number of grid points N, and N, in the ¢ and » directions.
N1P, N2P Parameters specifying the dimension sizes in the ¢ and » di-
rections.
*  RMIN, RMAX Minimum and maximum 7’-coordinates for polar grid.
*  THMIN, THMAX Minimum and maximum §’-coordinates for polar grid.
*  XMIN, XMAX Minimum and maximum x-coordinates for Cartesian grid.
*  YMIN, YMAX Minimum and maximum y-coordinates for Cartesian gnid.
Output
DXI, DETA Computational grid spacing A¢ and Ay.
X, Y : Cartesian coordinates x and y, or cylindrical coordinates x and r.
Description

Subroutine GEOM manages the computation of the grid and metric parameters. There are currently
three coordinate system options built into Proteus, as follows: '

NGEOM Computational Coordinates

1 Cartesian (x-y)
2 Polar (r-8")
10 Read from separate file.

Subroutine GEOM first computes the grid spacing in computational space in the ¢ and » directions as
A =1/(Mi—1) and Ay = 1/(N; — 1). Note that grid points in computational space are always evenly dis-
tributed along the (£-x) coordinate lines.

Cartesian (x-y) Coordinates (NGEOM = 1)

For the Cartesian coordinate option, an evenly spaced set of physical Cartesian (x-y) coordinates are
related to the computational (¢-1) coordinates by '

X = Xpin + Xpax — Xmin)é

Y =Ymin + Omax = Vmin)0

These equations also apply to axisymmetric flow, with p representing the radius ». If grid packing is used,
subroutine PAK is called to redistribute these points according to the packing parameters specified by the
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user, and to interpolate to get the new physical Cartesian (x-y) coordinates in the computational mesh.
Subroutine METS is then called to numerically compute the gnd transformation metnics and Jacobian.

Polar (r-0’) Coordinates (NGEOM = 2)

For the polar coordinate option, an evenly spaced set of physical polar (#’-8") coordinates are related to
the computational (¢-y) coordinates by
0" =0in + Omax — Omin )¢
Y =Vmin + Tpax — Tmin 1

The Cartesian (x-p) coordinates are simply given by

x=7r cosb’
y=rsmé’

The above equations also could be used in axisymmetric flow, with y representing the radius r. As in the
NGEOM = 1 option, if grid packing is used, subroutine PAK is called to redistribute these points according
to the packing parameters specified by the user, and to interpolate to get the new physical Cartesian (x-y)
coordinates in the computational mesh. Subroutine METS is then called to numencally compute the grid
transformation metrics and Jacobian."

Coordinates Read From Separate File (NGEOM = [0)

The third option for specifying the computational coordinate system is to read it from a separate file,
as described in Section 3.2 of Volume 2. The computational (¢-1) coordinate system is determined by a
set of Ng x Ng, points whose physical Cartesian (x-p) coordinates are specified. Here Ng, and Ng, are the
number of points in the ¢ and » directions used to specify the computational coordinate system. Note that
they do not have to be equal to N, and N,, the number of points in the computational mesh used for the
finite-difference method.? Note also that the points do not have to be equally distributed in physical space
along the ¢ and » coordinate lines.

If grid packing is being used, subroutine PAK is called to distribute N, x N; computational mesh points
in physical space according to the packing parameters SQ specified by the user, and to interpolate among
the Ng; x Ng2 points in the input computational coordinate system to get the new physical Cartesian coor-
dinates of the points in the computational mesh.

If grid packing is not being used, but N and N, are not equal to N, and N, respectively, then sub-
routine PAK is still called. In this case, however, PAK distributes the N, x N; computational mesh points
evenly in physical space and then interpolates among the Ng, x Ng; points in the input computational co-
ordinate system to get the new physical Cartesian coordinates of the points in the computational mesh.

In either case, subroutine METS is then called to numerically compute the gnd transformation metrics
and Jacobian.

Remarks

1. There may be some confusion between the axisymmetric flow option and the polar coordinate system
option, or between the axisymmetric radius r and the polar coordinate 7. They are not the same thing.
The governing flow equations were originally developed by writing them in Cartesian (x-y) coordinates,
then transforming them into generalized (£-n) coordinates. Therefore, any computational coordinate
system that is used, including the polar coordinate system, must be related to the original Cartesian
system through the transformation metrics and Jacobian. The parameters 7 and &' are-used only to
initially define the coordinates in the NGEOM = 2 option. Now, if the (x-y) coordmnates, no matter
how they are obtained, are rotated about the Cartesian x axis, the result i1s a cylindrical coordinate co-

26 The distinction between the computational coordinate system and the computational mesh is described in Section
2.2 of Volume 2.
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ordinate system with p representing the radius . Thus, the axisymmetric flow option can be used with
any of the coordinate system options. The polar coordinate option would be useful, for instance, for
flow over a sphere.

2. An error message is generated and execution is stopped if an illegal coordinate system option is speci-
fied.

3. With the NGEOM = 10 option, an error message is generated and execution is stopped if A and or
Ng, are greater than the dimensioning parameters N1P and'or N2P.
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Subroutine INIT

Called by Calls | Purpose
INITC Get user-defined initial flow field.
Input
* JCVARS Flag specifying which variables are being supplied as initial con-
ditions by subroutine INIT.
NIN Unit number for namelist input.
*  NOUT Unit number for standard output.
* NI, N2 Number of grid points N, and N, in the ¢ and # directions.
Output
P,T,U,V,W Initial flow field values of static pressure p, static temperature T,

and velocities u, v, and w.

Description

Subroutine INIT supplies the user-defined initial flow field. In general, this subroutine will be tailored
to the problem being solved, and supplied by the user. Details on the varables to be supplied by INIT are
presented in Section 5.1 of Volume 2.

A default version of INIT is supplied with Proteus that specifies uniform flow with constant properties
everywhere in the flow field. The above list of input and output Fortran varables are for the default version
of INIT. The default version assumes ICVARS = 2 (the default value), and reads values of py, o, Vo, Wo,
and T, from namelist IC. The defaults for these parameters are 1.0, 0.0, 0.0, 0.0, and 1.0, respectively, re-
sulting in an initial flow field with p = p, u=v=w= 0,and T =T,

Remaris

1. If a value for ICVARS other than 2 is set in the input, a warning message is generated and ICVARS
is reset to 2.

2. Subroutine INIT is a convenient place to specify point-by-point boundary condition types and values.
It’s often easier to do this using Fortran coding rather than entering each value into the namelist input
file.
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Subroutine INITC
Called by Calls Purpose ‘
MAIN EQSTAT Set up consistent initial conditions based on data from INIT.
FTEMP
INIT
KEINIT
REST
TURBBL
YPLUSN
Input
* CMUR Constant C,_ in formula for C,.
* CTHREE Constant C; in formula for C,.
*  GAMR Reference ratio of specific heats, y..

GC Proportionality factor g. in Newton’s second law.

* HSTAG Stagnation enthalpy Ar used with constant stagnation enthalpy
option.

* ICVARS Flag specifying which variables are being supplied as initial con-
ditions by subroutine INIT.

* THSTAG Flag for constant stagnation enthalpy option.

* IREST Flag for reading restart file. .

ITBEG The time level n at the beginning of a run.

* ITURB Flag for turbulent flow option.

* KBCI, KBC2 Boundary types for the ¢ and » directions.

LWSET Flags specifying how wall locations are to be determined for the
turbulence model; 0 if wall locations are to be found automatically
by searching for boundary points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the IWALL
parameters. .

* NI, N2 Number of grid points N, and N,, in the ¢ and » directions.

PR Reference pressure p.,.

RGAS Gas constant R.

* RHOR, UR Reference density p, and velocity ..

INITIAL FLOW FIELD

Output

Proteus 2-D Programmer’s Reference

LWALLI, LWALL2

MUT, MUTL
RHO, U, V, W, ET

From the user-suppled or default version of subroutine INIT.
The combination of vanables supplied by INIT is specified by
ICVARS. See Section 5.0 of Volume 2 for details.

Flags specifying wall locations for ¢ and » boundaries, if not set
in input.

Turbulent viscosity u, at time levels n and n— 1.

Imtial flow field values of static density p, velocities u, v, and w,
and total energy Er at time level n.
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RHOL, UL, VL, WL, ETL Initial flow field values of static density p, velocities «, v, and w,
and total energy Er at time level n— 1.

TL Static temperature 7T at time level n — 1.

Description

Subroutine INITC sets up consistent initial flow field conditions based on the data supplied by sub-
routine INIT. For restart cases, subroutine REST is called to read the computational mesh and the initial
flow field. Otherwise, the data supplied by INIT are used to obtain the density p, the velocities u, v, and
w, and the temperature 7.2" It then calls FTEMP to compute the laminar viscosity coefficients p, and 4, the
laminar thermal conductivity coefficient k;, and the specific heat coefficients ¢, and ¢,. EQSTAT is called
next to compute the pressure p and to recompute the temperature 7.2 For turbulent flow, the appropriate
subroutines are called to compute the effective viscosity and thermal conductivity coefficients using the
turbulence model specified by the user. And finally, for non-restart cases, the values of the dependent var-
iables at time level n — 1 are set equal to the values at level 1.

The flag ICVARS is used to specify which combination of variables are being supplied by INIT. The
calculation of p, u, v, w, and T is described below for the different values of ICVARS. In all of the equations
below, the specific heats are defined by

&= =1

G=R+c,
where y, is either specified by the user or computed from the reference temperature 7..
ICVARS =/

With this option, the density p, the momentum components pu, pv, and pw, and if [HSTAG = 0 the
total energy Er, are supplied by INIT. Thus, the velocity components are simply

pu
“="p

PV
V="

pw
=75

If the energy equation is being eliminated by assuming constant stagnation enthalpy (IHSTAG = 1), the
temperature is computed. from

1 1
T=C—p [hT—7(u2 +V2+W2)]

27 The calculation of T at this point may be approximate. See Remark 1.

28 See Remark 1.
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ICVARS = 2
With this option, the pressure p and the velocities «, v, and w are supphied by INIT. If the energy

equation is being solved (IHSTAG = 0), the temperature 7T is also supplied by INIT. If it is being elimi-
nated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed from

T= % I:h;-—— —;—- (u2 + v2 4 wz)]
The density is then given by
P
P =RT
and the total energy is
Er= p[ch+ % @ +v: + w2)]

ICVARS = 3

With this option, the density p and the velocities &, v, and w are supplied by INIT. If the energy
equation is being solved (IHSTAG = 0), the temperature 7 is also supplied by INIT. If it is being elimi-
nated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed from

1 1 2, .2 2
T=-§[h7~——-2—(u +vi+w )]
The total energy is then
Er= p[ch+ % W +vt + wz):l

ICVARS = 4

With this option, the pressure p and the velocities %, v, and w are supplied by INIT. If the energy
equation is being solved (IHSTAG = 0), the density p is also supplied by INIT. If it is being eliminated
by assuming constant stagnation enthalpy (IHSTAG = 1), this option 1s the same as the ICVARS = 2 op-
tion. If the energy equation is being solved, then, the temperature is

P

T=7)7{—

The total energy is then
Er= p[cyT+ % (u2 +v7 4+ w2)]

ICVARS = 5
With this option, the static pressure coefficient ¢, and the velocities u, v, and w are supplied by INIT.
If the energy equation is being solved (IHSTAG = 0), the temperature T is also supplied by INIT. Ifit is

being eliminated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed
from

T=—Cl;[hr—%(u2+v2+w2)]

The pressure coefficient is defined by
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@ - pg.
p=—"""7F—
P (2

The nondimensionalized pressure p = pg./p.u? is thus

P8

2
Py

c
=2
or, since p, = p,R T,|g. and the nondimensionalized gas constant R = R T/,
¢
=_F
pP=- + R
The density 1s then

P=TRT

and the total energy 1s
Er= pl:ch+ —;— (u2 +7 + w2)]

ICVARS = 6

With this option, the pressure p, Mach number M, and flow angles «, and «, are supplied by INIT. If
the energy equation is being solved (IHSTAG = 0), the temperature 7 is also supphed by INIT. it is
being eliminated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed
from

-1
-1
T=TT(1+ o M2>
where Tr = hz/c,. The density is |

-7
RT

The flow angles are defined by «, = tan~'(v/u) and a, = tan~'(w/u). The Mach number is defined by

W+ v+ w? 12
o)

112
v RT
U= le: 5 3 ]
1+ (vfw)" + (w/u)

where (v/u)? = tan?x, and (w/u)? = tan’a,. The remaining velocities are simply

Solving for v,

v=utanq,
w=utana,,

The total energy 1s
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Ep= ,>[ch+%(142 +v? +w2)]

Remarks

1. If T is not supplied by INIT, it must be computed from the equation of state. The equation of state
contains a specific heat coefficient (either ¢, or ¢,, depending on whether the stagnation enthalpy is as-
sumed constant or not.) The first time T is computed in INITC, a constant value of specific heat 1s
used, consistent with the reference temperature 7,. If the user specified constant specific heat (ie., a
value for y, was read in), this is not a problem. However, if the temperature-dependent specific heat
option is being used (i.e., a value for y, was not read in), the equation of state and the empirical equation
for specific heat are coupled. For this reason 7 is recomputed in EQSTAT after the specific heats are
computed in FTEMP. Ideally, this coupling would be handled by iteration between FTEMP and
EQSTAT. This is not currently done in Proteus, however.

2. For options in which the pressure p is specified (ICVARS = 2, 4, and 6), the value supplied by INIT
1s redefined as follows:

Pr8e¢

p=p 2
Py

This is necessary because input and output values of p are nondimensionalized by the reference pressure
p.= p.RT, while intemal to the code itself p is nondimensionalized by the normalizing pressure
P. = pd?. See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and nor-
malizing conditions.

3. With the ICVARS = 6 option, the initial velocity « will be limited to non-negative values’.

If non-positive pressures or temperatures were computed in EQSTAT, the Fortran vanable INEG will
be positive. An error message will be printed, including a table showing the location of the non-positive
values. The calculation will stop in INITC.

5. An error message is generated and execution is stopped if an illegal value is specified for ICVARS.

An error message is generated and execution is stopped if the value of ITURB does not correspond to
an existing turbulence model.
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Subroutine INPUT

Called by Calls Purpose
MAIN ISAMAX Read and print input, perform various initializations.
Input
NIN Unit number for namelist input.
NTP Dimensioning parameter specifying the maximum number of en-
tries in the table of time-dependent boundary condition values.
NTSEQP Dimensioning parameter specifying the maximum number of time
step sequences for the time step sequencing option.
NI1P, N2P Parameters specifying the dimension sizes in the ¢ and # di-
rections.
Output
CKMIN Constant (Cks)mn in the Klebanoff intermittency factor.
GAMR Reference ratio of specific heats, y,.

HSTAG, HSTAGR

IGAM

IPRTIA, IPRT2A
ITDBC

LWALLI], LWALL2
LWSET

MACHR
MUR, KTR

NEQ

NPRTI, NPRT2
NRW, NET
NZM, NEN

PR
PRLR
RER, PRR

Dimensionless and dimensional stagnation enthalpy Ar for the
constant stagnation enthalpy option.

Flag for constant or vanable ¢, ¢, and y; 0 if they are to be
computed as functions of temperature, 1 if they are to be treated
as constant.

Indices for printout in the ¢ and » directions.

Flag for time-dependent boundary conditions; 0 if all boundary
conditions are steady, 1 if any general unsteady boundary condi-
tions are used, 2 if only steady and time-periodic boundary con-
ditions are used.

Flags specifying wall locations for ¢ and » boundaries.

Flags specifying how wall locations are to be determined for the
turbulence model; 0 if wall locations are to be found automatically
by searching for boundary points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the IWALL
parameters.

Reference Mach number M,.

Reference viscosity coefficient u, and thermal conductivity coeffi-
cient k.

Number of coupled equations being solved, N,,.
Total number of indices for printout in the ¢ and » directions.
Array indices associated with the dependent variables pw and £7.

Array indices associated with the swirl momentum and energy
equations.

Reference pressure p,.
Reference laminar Prandtl number Pr;,.

Reference Reynolds number Re, and Prandtl number Pr,.
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RGAS Gas constant R.

UR Reference velocity ..

Description

Subroutine INPUT performs various input and initialization functions. It first reads the title and
namelist input from the standard input file. Namelist RSTRT is read first, followed by namelist 10. If
IUNITS = 1, indicating reference conditions will be specified in SI units, various default values and con-
stants are redefined to be consistent with SI units. The remaining namelists are then read.

Next, the flags controlling the time step cycling and the convergence testing method are redefined, if
necessary, to be consistent with each other. The number of equations being solved, and the array indices
corresponding to the energy and swirl momentum equations, are then determined based on the values of
[HSTAG and ISWIRL. A flag is set if time-dependent boundary conditions are being used. If the thin-
layer option is being used, the flags ITXI and ITETA used in the Baldwin-Lomax turbulence model are
automatically set equal to values consistent with the thin-layer approximation. The LWSET flags, which
specify how wall locations are to be determined for the turbulence model, are defined based on the default
and input values of the LWALL and IWALL parameters. If the user did not specify a value for (Cies)min,
it 1s set to the default value, which depends on the turbulence model being used.

Next, if frequency of printout in the ¢ and x directions is being set by the input arrays IPRT1 and
IPRT2, the corresponding grid indices are stored in arrays IPRTIA and IPRT2A. The total number of
printout locations in each direction is also determined.

A header is then written to the standard output file, followed by the input namelists. Note that, for
variables not specified by the user in the input namelists, the values in this printout will be the default val-
ues.

Various checks are made for inconsistent or invalid input, and appropriate error or warning messages
are written. These are descnibed in Section 7.0 of Volume 2.

Next, any reference or normalizing conditions not already defined are calculated. The reference and
normalizing conditions are then written to the standard output file, with the appropriate units. See Section
3.1.1 of Volume 2 for a discussion of the distinction between reference and normalizing conditions.

Remarks

1. The Cray search routine ISAMAX is used in the input consistency check to determine whether any
implicit artificial viscosity coefficients are non-zero.

Proteus 2-D Programmer’s Reference 4.0 Proteus Subprograms: INPUT 205



Function ISAMAX (N,V,INC)
Called by Calls Purpose
BLOLTI Find the first index corresponding to the largest absolute value of the
BLOLUT2 elements of a Fortran vector.
CONV
FILTER
INPUT
RESID
TIMSTP
Input
N Number of elements to process in the vector (ie.,
N = vector length if INC =1, N = (vector length)/2 if INC = 2,
etc.).
A% . Vector to be searched.
INC Skip distance between elements of V. For contiguous elements,
INC=1.
Qutput
ISAMAX First index corresponding to the largest absolute value of the ele-

ments of V that were searched.

Description

Function ISAMAX finds the first index corresponding to the largest absolute value of the elements of
a vector. For a one-dimensional vector, the use of ISAMAX is straightforward. For example,

imax = isamax(np,v,1l)
sets IMAX equal to the index I corresponding to the maximum valtue of V(I) for I =1 to NP.
A starting location can be specified, as in
imax = § + isamax(np-4,v(5),1)
which sets IMAX equal to the index I corresponding to the maximum value of V(I) for I=351t0 NP.
Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored 1n
memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimen-

sioned NDIM1 by NDIM2, then

imax = isamax(ndiml*¥ndim2,a,l)

sets IMAX equal to the one-dimensional index cofresponding to the maximum value of A(L,J) for all I and
J. The maximum value of A can then be referenced as A(IMAX,1).

One dimension at a time can also be searched. For example,

imax = isamax{(ndiml,a(1,5),1)

sets IMAX equal to the index I corresponding to the maximum value of A(1,5) for I varying from 1 to
NDIMI. Similarly, by specifying a skip increment,

206 4.0 Proteus Subprograms: ISAMAX Proteus 2-D Programmer’s Reference



Jmax = isamax(ndim2,a(5,3),ndiml)

sets JMAX equal to the index J corresponding to the maximum value of A(5,J) for J varying from 1 to
NDIM2.

Remarks

1. ISAMAX is a Cray search routine (Cray Research, Inc., 1989b).
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Function ISAMIN (N,V,INC)

Called by Calls Purpose
BLOUTI1 Find the first index corresponding to the smallest absolute value of the
BLOUT?2 elements of a Fortran vector.
Input
N Number of elements to process 1 the vector (ie.,
N = vector length if INC =1, N = (vector length)/2 if INC =2,
etc.).
v Vector to be searched.
INC Skip distance between elements of V. For contiguous elements,
INC=1.
Output
ISAMIN First index corresponding to the smallest absolute value of the el-

ements of V that were searched.

Description

Function ISAMIN finds the first index cormresponding to the smallest absolute value of the elements of
a vector. It is used in exactly the same way as ISAMAX.

Remarks

1. ISAMIN is a Cray search routine (Cray Research, Inc., 1989b).
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Function ISRCHEQ (N,V,INC,VALUE)
Called by Calls Purpose
BCGEN Find the first index in a vector whose element is equal to a specified
BLINI value.
BLIN2
BLOUTI1
BLOUT?2
FILTER
Input
N Number of elements to process in the vector (ie,
N = vector length if INC =1, N = (vector length)/2 if INC =2,
etc.).
v Vector to be searched.
INC Skip distance between elements of V. For contiguous elements,
INC=1.
VALUE Value to be searched for in the vector V.
Output
ISRCHEQ First index, of the elements of V that were searched, whose ele-

ment is equal to the value V. If the value V is not found, the re-
turned value will be N + 1.

Description

Function ISRCHEQ finds the first index in a vector whose element is equal to a specified value. For
a cne-dimensional vector, the use of ISRCHEQ is straightforward. For example,

ival = isrcheq(np,v,1,val)

searches V(I), for I=1 to NP, for the value VAL, and sets IVAL equal to the first index I for which
V(I) = VAL. If the value VAL is not found, IVAL will be equal to NP + 1.

A starting location can be specified, as in

ival = 4 + isrcheq(np-4,v(5),1,val)
which searches V(I), for [ = 5 to NP, for the value VAL.

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A 1s an array dimen-
sioned NDIM1 by NDIM2, then

ival = isrcheq(ndiml*ndimZ ;a,1l,val)

searches A(LJ), for all I and J, for the value VAL, and sets IVAL equal to the corresponding one-
dimensional index. The desired indices in A can then be recovered from

mod(ival-1,ndiml) + 1
(ival-1)/ndiml + 1

i
3
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One dimension at a time can also be searched. For example,

ival = isrcheq{ndiml,a(l,5),1,val)

searches A(I,5), for I = 1 to NDIMI, for the value VAL. Similarly, by specifying a skip increment,

jval = isrcheq(ndim2,a(5,3),ndiml,val)
searches A(5,]), for J =1 to NDIM2, for the value VAL.
Remarks

1. ISRCHEQ is a Cray search routine (Cray Research, Inc., 1989b).
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Subroutine KEINIT

Called by Calls Purpose
INITC PRODCT Get user-defined initial conditions for £ and .
TURBBL
YPLUSN
Input
* CMUR Constant C,, in formula for C,.
* CTHREE Constant C; in formula for C,.
DUMMY Distance to the nearest sohd wall.
MUT Turbulent viscosity u, at time level 7.
* N1, N2 Number of grid points N, and N,, in the ¢ and 5 directions.
VORT Production rate of turbulent kinetic energy.
YPLUSD Nondimensional distance y* from the nearest solid wall.
Output
E,EL Turbulent dissipation rate ¢ at time levels n and n— 1.
KE, KEL Turbulent kinetic energy k at time levels nand n— 1.
MUTL Turbulent viscosity u, at time level n — 1.
Description

Subroutine KEINIT supplies the user-defined imatial values of the turbulent kinetic energy & and the
turbulent dissipation rate e. In general, this subroutine will be tailored to the problem being solved, and
supplied by user. Details on the variables to be supplied by KEINIT are presented in Section 5.1 of Volume
2.

A default version of KEINIT is supplied with Proteus that computes the initial values of k and ¢ using
the assumption of local equilibrium (dissipation equals production.) The above list of input and output
Fortran variables are for the default version of KEINIT.

The steps involved in the default version of KEINIT are described below.

Initialize £ and ¢ to zero.

2. Call TURBBL to compute turbulent viscosity values and to locate solid walls in the computational
domain.

Call YPLUSN to compute y* and the minimum distance to the nearest solid wall.
Call PRODCT to compute the production rate of turbulent kinetic energy.

Compute & and ¢ using

C,= C/"(l - ecsy+)

Py
Rep

£ =
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HE

Cup

k=

6. Set the values of k, £, and g, at time level n — 1 equal to their values at time level n.
Remarks

1. The scratch array DUMMY, from the common block DUMMY], is used to store the values of the
minimum distance to the nearest wall. The array is filled in subroutine YPLUSN.

2. The Fortran array VORT, from the common block TURBI, is used to store the values of the pro-
duction rate of turbulent kinetic energy. The array is filled in subroutine PRODCT.
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Program MAIN
Called by Calls Purpose
BCSET Manage overall solution.
CONV
EQSTAT
EXEC
FTEMP
GEOM
INITC
INPUT
OLUTPUT
OUTW
PLOT
PRTHST
REST
TBC
TIMSTP
TREMAIN
TURBBL
TURBCH
Input
None.
Output
IT Current time step number 7.
ITEND Final time step number.
ITSEQ Current time step sequence number.
TAU Current time value .
Description

The MAIN program is used to manage the overall solution. The steps involved are described below.

Preliminary Steps

1

2.
3.
4

Call INPUT to read and print the input, and perform vanous initialization procedures.

Unless this is a restart case, call GEOM to get the computational coordinates and metric data.
Call INITC to get the initial flow field.
Call BCSET to set various boundary condition parameters and flags, and to print the input boundary

condition types and values.

Initialize the plot file,® and, if requested by the user, write the initial or restart flow field into the plot

file.

If requested by the user, print the initial or restart flow field.

2 The initialization procedure depends on the type of plot file being written. See the description of subroutine PLOT.
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7. Compute NTSUM, the maximum total number of marching steps to be taken, and ITEND, the cor-
responding final index on the time marching loop. Set the initial values of ITSEQ, the time step se-
quence number, and ITSWCH, the time index for switching to the next sequence, both to zero.

Time marching loop

8. Begn the time marching loop. The loop index IT corresponds to the known time level n. Each iter-
ation of the loop thus corresponds to a step from time level nto n+ 1.

9. If at the end of a time step sequence, update ITSEQ, the time step sequence number, and
ITSWCH, the time index for switching to the next sequence.

10. For the first time step, and every IDTMOD'th step thereafter, call TIMSTP to compute the new
time step Ar. For every time step update the time value 7.

11 If time-dependent boundary conditions are being used, call TBC to set the boundary condition
values.

12. Call EXEC to solve the equations.

13. Call EQSTAT to compute the pressure p and temperature 7 from the equation of state. If either

is non-positive, indicating a non-physical solution, skip forward to step 17.

14. Call FTEMP to compute the laminar viscosities u, and 4, the laminar thermal conductivity &;, and .
the specific heats ¢, and ¢..

15. For turbulent flow, call the appropriate subroutines to compute the effective viscosity and thermal
conductivity coefficients using the turbulence model specified by the user.

16. Every ICHECK time levels, call CONV to check for convergence.
17. Call TREMAIN to find out how much CPU time remains.

18. If requested by the user, or if the calculation is converged, or if non-positive pressures or temper-
atures were computed, or if the job is near the CPU time limit, print the flow field at time level
n+ 1.

19. If requested by the user, or if the calculation is converged, or if non-positive pressures or temper-

atures were computed, or if the job is near the CPU time limit, write the flow field at time level
n+ 1 into the plot file.

20. If non-positive pressures or temperatures were computed, write an error message showing the lo-
cation of the non-positive values and skip forward to step 25, ending the calculation.

21. If the calculation is converged, print a message and skip forward to step 24, ending the calculation.

22. If the job is near the CPU time limit, print a message and skip forward to step 24, ending the cal-
culation.

23. End of time marching loop. Print a message indicating the calculation did not converge.

Final Steps

24. If requested by the user, call REST to write the restart file.

25. If first-order time differencing and steady boundary conditions were used, call PRTHST to print the
convergence history.

Remarks

1. The starting index for the time marching loop is ITBEG. For a non-restart case ITBEG = 1, and thus
the initial starting flow field is at time level 1. For a restart case ITBEG = n, where 7 is the time level
stored in the restart file, and thus the starting flow field is the previously computed flow field at time
level n.

2. The ending index for the time marching loop is ITEND = ITBEG + NTSUM — 1, where NTSUM 1s
“the total number of time steps to be taken. For a non-restart case, then, the time marches from level
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1 to level 1+ NTSUM. For a restart case, the time marches from level ITBEG to level
ITBEG + NTSUM.

3. The logic involving NTSUM, ITSEQ, and ITSWCH is used to implement the tume step sequencing
option. This allows one CFL number or time increment to be used for a specified number of steps,
followed by another CFL number or time increment for another specified number of steps, etc. If this
option is not used, NTSUM is simply equal to NTIME(1) and ITSEQ is always 1.

4. An error message is generated and execution is stopped if the value of ITURB does not correspond to
an existing turbulence model.

5. Although the calculation will stop if p or T < 0, as noted above in step 20, the standard output and plot
file will include the time level with the non-positive values, if that is consistent with the IPRT and IPLT
input parameters in namelist 0. The restart file will not be wnitten.

30 See Section 3.1.9 of Volume 2 for details on how to invoke the time step sequencing option.
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Subroutine METS

Called by Calls Purpose
GEOM OUTPUT Compute metrics of nonorthogonal gnid transformation.
REST
Input
DXI1, DETA Computational grid spacing A£ and An.
* IDEBUG Debug flags.
* IVOUT Flags specifying variables to be printed.
* NOUT Unit number for standard output.
* N1, N2 Number of gnd points N; and N, in the ¢ and # directions.
X, Y Cartesian coordinates x and p, or cylindrical coordinates x and .
Output
ETAX, ETAY, ETAT Metric coefficients #,, 5, (or », if axisymmetric), and 7%,.
IVOUT Flags specifying variables to be printed (temporarily redefined for
debug output of metrcs.)
I1 Inverse Jacobian of the nonorthogonal grid transformation, J- 1.
XIX, XIY, XIT Metric coefficients &,, ¢, (or &, if axisymmetric), and £&,.
Description

Subroutine METS computes the metric coefficients and the Jacobian for the generalized nonorthogonal
coordinate transformation. The metric coefficients are defined in terms of the known (x ) coordinates of
the computational mesh as:

$x=Ty,
&y =—JIx,
Nx= —Jy§

ny = Jxg

Sr=—xx —yréy
N=—XMx VMY

where J 1s the Jacobian of the transformation, given by
J= B (xzp,, — X, P8 !
= &'n Xt

The denivatives of x and y with respect to the computational coordinates are computed numerically us-
ing the same difference formulas as used for the governing equations. At interior points the centered dif-
ference formula presented in Section 5.0 of Volume 1 is used. At boundaries three-point one-sided
differencing is used. For &-derivatives at the ¢ = 0 and ¢ = 1 boundaries,
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_g- ~ + —3fw+4fwi1_fwi2
8¢ T - 2A¢

where w represents the ¢-index at the boundary (i.e., either 1 or N,). Where a + sign appears, the + sign
15 used at the ¢ = 0 boundary, and the — sign is used at the ¢ = 1 boundary. An analogous formula is used
for n-denvatives at the n = 0 and » = 1 boundanes.

Remarks

1. Since the current version of Proteus is limited to meshes that do not vary with time, the derivatives x,
and y, are set equal to zero.
This subroutine generates the output for the IDEBUG(7) option.

An error message is generated and execution is stopped if the grid transformation Jacobian J changes
sign or equals zero. This indicates that the computational mesh contains crossed or coincident grid
lines. The error message is followed by a printout of the Cartesian coordinates, the Jacobian, and the
metric coefficients.
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Subroutine OUTPUT (LEVEL)

Called by Calls Purpose
MAIN PRTOUT Manage printing of output.
METS VORTEX
Input
CP, CV Specific heats ¢, and c,.
DTAU Time step Ar.
DUMMY A two-dimensional scratch array dimensioned (N1P,N2P).
DXI, DETA Computational grid spacing A¢ and An.
E,KE Turbulent dissipation rate ¢ and kinetic energy k.
ETAX, ETAY, ETAT Metric coefficients 1., 1, (o1 #, if axisymmetric), and #..
*  GAMR Reference ratio of specific heats, y,.
GC Proportionality factor g, in Newton’s second law.
*  JAXI Flag for axisymmetric flow.
*  ISWIRL Flag for swirl in axisymmetric flow.
*  IVOUT Flags specifying variables to be printed.
J1 Inverse Jacobian of the nonorthogonal grid transformation, J-'.
LEVEL Time level being printed.
LWALLIL, LWALL2 Flags specifying wall locations for ¢ and # boundaries.
* MACHR Reference Mach number M..
MU, LA, KT Effective coefficient of viscosity y, effective second coefficient of
viscosity 4, and effective coefficient of thermal conductivity k.
MUT Turbulent viscosity coefficient u,.
* NOUT Unit number for standard output.
* N1, N2 Number of gnd points N; and N,, in the £ and # directions.
P, T Static pressure p and temperature 7.
PR Reference pressure p,.
PRR Reference Prandtl number Pr..
* PRT Turbulent Prandtl number Pr,.
RGAS Gas constant R.
RHO,U,V, W, ET Static density p, velocities u, v, and w, and total energy Er.
* RHOR, TR, UR Reference density p,, temperature T,, and velocity u.
TAU Time value 7.
X, Y Cartesian coordinates x and y, or cylindrical coordinates x and r.
XIX, X1Y, XIT Metric coefficients ¢&,, &, (or ¢, if axisymmetric), and ¢..
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Output

ATITLE A 20-character title for vanable being printed.
DUMMY A two-dimensional array containing the vanable to be printed.
Description

Subroutine OUTPUT manages the printing of the standard output. The vanables available for printing
are listed and defined in Table 3-3 of Volume 2. The user-specified array IVOUT controls which vanables
are printed.

Each variable to be printed is stored, in turn, in the scratch array DUMMY, from the common block
DUMMY1. The title printed with the vanable is stored in the character array ATITLE. Subroutine
PRTOUT is then called to execute the actual wnte statements.

Remarks

1. A warning message is printed if a non-existent output variable is requested. The printout will continue
with the next requested output vanable.

2. For output options 30, 31, 34, and 35, mvolvmg the pressure p, the value stored internally in the
Proteus code is redefined as follows:
2
P
P=pP Pr&e

This 1s_necessary because input and output values of p are nondimensionalized by the reference pressure
p. = p.RT,, while internal to the code itself p is nondimensionalized by the normalizing pressure
p.= pau?. See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and nor-
malizing conditions.

3. The definitions of k; and k, (IVOUT =92 and 102) assume a constant turbulent Prandtl number is
being specified in namelist TURB. If the input value of PRT < 0, indicating the use of a variable tur-
bulent Prandtl number, the printed values of &, and 4, will be incorrect.
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Subroutine OUTW (LEVEL)

Called by Calls Purpose
MAIN Compute and print parameters at boundanies.
Input
Cp Specific heat ¢,.
DXI, DETA Computational grid spacing A¢ and Ay.
ETAX, ETAY Metric coefficients 7, and #, {(or %, if axisymmetnc.)
GC Proportionality factor g. in Newton’s second law.

IWOLUT]I, IWOUT?2

Flags specifying for which boundaries parameters are to be

printed.
LEVEL Time level being printed.
MU, KT Effective coefficients of viscosity u, and thermal conductivity k.
NOUT Unit number for standard output.
N1, N2 Number of grid points N, and N, in the ¢ and # directions.
P, T Static pressure p and temperature 7.
PR Reference pressure p,.
PRR Reference Prandtl number Pr,.
RER Reference Reynolds number Re,.
RHOR, UR Reference density p,, and velocity w..
U, Vv, w Velocities u, v, and w.
X, Y Cartesian coordinates x and y, or cylindrical coordinates x and r.
XIX, XIY Metric coefficients &, and &, (or ¢, if axisymmetnc.)
Output
None.
Description

Subroutine OUTW computes and prints various parameters along the computational boundaries. The
variables available for printing are listed and defined in Table 3-3 of Volume 2. The user-specified arrays
IWOUT! and IWOUT?2 specify at which boundaries parameters are printed, and whether normal deriva-
tives are to be computed using two-point or three-point one-sided differencing.

The parameters printed are the Cartesian coordinates x and y, the static pressure p, the skin friction
coefficient ¢, the shear stress 7, the static temperature 7, the heat transfer coefficient A4, the heat flux g4,
and the Stanton number Sz. Note that some of these are meaningful only if the boundary is a solid wall.

The skin friction coefficient 1s defined as

_ 3,
oA _ 2 OV
771 2 Re #on
S Pr
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where the overbar denotes a dimensional quantity. In this equation 8V./0n represents the normal denvative
of the tangential velocity, with the normal vector 7 directed into the flow field.

For a ¢ boundary, the tangential velocity for non-swirl cases is simply

V.=V,

where V, is the velocity in the » direction. For axisymmetnic cases with swirl, the tangential velocity on a

& boundary is computed as

where w is the swirl velocity. From the description of subroutine BCVDIR,
1
Vnzﬁ(_’ éyu+ ixv)

where

=J&+g

Using the equations in Section 6.4 of Volume 1, 8V,/dn for a £ boundary is thus computed as

i

v 1
6!1[ iT,n—l: a; (éx éy)+ (6x’7x+§y’7y):|

where the + sign is used at the ¢ = 0 boundary, and the — sign is used at the ¢ = 1 boundary.

For an 5 boundary, the tangential velocity for non-swirl cases is

VI bl V§
and for axisymmetric cases with swirl, it is computed as
Vi=/V; +W
The ¢ velocity is given by
1
Vg = m (nyu + 1Y)

where

2 2
m=\/’7x+’7y

Thus, for an n boundary,
ov, 1 av, ov, ., 2
W': i?"l_[—b-é_(fxnx‘*- 5y’1y)+-5;‘(’lx+ ny)

The shear stress 1, is defined as

av,
W=

7., is thus nondimensionalized by p.u/L,.

The heat flux g, is defined as
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aT
on

gp=—k
where 97/dn represents the normal derivative of the temperature. For a £ boundary,
Lo [%% 2+ +%:—(5an+ fyny)]
where
m= &+
For an # boundary, |
—==% % [% (rx + ) + % (Exnx + fyrry)]
where
m=~ '13: + Vl)z»
4. 1s thus nondimensionalized by k.7,/L..

The heat transfer coefficient A is defined as

2T
ho= 9w = on
T-1 T-1
This is the nondimensional form of the equation
- oT
Gw Bl

h=-— =—
T-T, T-T,

h is thus nondimer ~ionalized by k,/L..

The Stanton number St is defined as
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Subroutine PAK (IDIR,NOLD1,NOLD?2)

Called by Calls Purpose
GEOM CUBIC Manage packing and/or interpolation of grid points.
ROBTS
Input
IDIR Direction flag; 1 if grid points are being redistributed in the ¢ di-
rection, 2 if in the # direction.
* [PACK Flags for grid packing option.
NOLDI1, NOLD2 Number of grid points in the ¢ and # directions in the original
gnd.
* NOUT Unit number for standard output.
* N1, N2 Number of grid points N} and N, in the ¢ and # directions in the
new gnd. ,
* 8Q An array specifying the location and amount of packing.
X, Y Cartesian coordinates x and y, or cylindrical coordinates x and r,
in the old gnd.
Output
X, Y Cartesian coordinates x and y, or cylindrical coordinates x and r,

in the new gnd.

Description

Subroutine PAK manages the redistribution of the user-specified points in the computational coordinate

system. It is cn'led whenever grid packing is used. It is also called when interpolation is necessa-v because
the computational coordinates are specified by reading them from a separate file (the NGEOM = ,0 option
in subroutine GEOM), and the number of points in the file is different from the number of points to be
used in the calculation. PAK is called once for each direction in which points are being redistributed.

The steps involved in subroutine PAK are described below. For clarity, this discussion assumes

IDIR = 1 (i.e., we are redistributing points in the ¢ direction.) An exactly analogous procedure is used for
IDIR = 2.

1.

Set NNEW and NOLD equal to the index limits in the ¢ direction for the new and old gnds. Also set
NOPP equal to the index limit in the 5 direction for the old gnd.

Get (ap);, the normalized physical arc length along a coordinate line in the ¢ direction, from the begin-
ning of the line to each grid point in the new grid. The normalizing distance is the total arc length of
the line, and thus these arc lengths apply to any coordinate line in the ¢ direction. If the points are not
being packed in the ¢ direction, but only interpolated, then

(ap);= i=1_
Plé™ NNEW — 1
for i=1to NNEW. In the new grid, the points will thus be evenly distributed in physical space along

each coordinate line in the & direction. If the grid points are being packed in the ¢ direction, subroutine
ROBTS is called to compute (ap); from the packing parameters specified by the user.

Begin loop from IOPP = 1 to NOPP. This loop thus runs over the points in the direction in the old
grid. We will be redistributing points in the ¢ direction for each # value in the old gnd.
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6.

Get (ayr),, the normalized physical arc length along a coordinate line in the ¢ direction, from the
beginning of the line to each grid point in the old grid. These values are found by first computing
the non-normalized arc lengths, as follows:

(ayp), =

/ 2 2
(ayp)i=(ayp)i -1+~ (X j =X ) + 0= Yoy )
for i=2to NOLDI. These values are normalized by setting

(ayp); = _ (aypi
YPH (ayp)noLpr

for i=1to NOLDI. To eliminate any problems with roundoff error, (ave)xorp: 1s explicitly set
equal to 1.

Given x and ayp for the old gnd, and a, for the new grid, call CUBIC to interpolate for x in the
new grid. Similarly interpolate for y.

Redefine the Fortran variables X and Y as the x and p coordinates in the new grid.

7. End of loop over the points in the » direction in the old grid.

1.

Remarks

In the Fortran code, the comments sometimes refer to the “packing” direction. This terminology ac-
tually means the direction in which gnd points are being redistributed, even if they are not being packed
but only interpolated. Similarly, references to the “packed” and “unpacked” grid actually mean the new
and old gnds.

2. An error message is generated and execution i1s stopped if an invalid grid packing option is requested.
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Subroutine PERIOD

Called by Calls Purpose
EXEC Define extra line of data for use in computing coefficients for spatially
EXECT periodic boundary conditions.
Input
CP,CV Specific heats ¢, and ¢, at time level n.
E,EL Turbulent dissipation rate ¢ at time levels » and n — 1.
ETAX, ETAY, ETAT Metric coefficients »,, #, (or », if axisymmetnc), and 7..
J1 Inverse Jacobian of the nonorthogonal grid transformation, J-1.
KBCPER Flags for spatially periodic boundary conditions in the ¢ and #

directions; 0 for non-peniodic, 1 for periodic.

KE, KEL Turbulent kinetic energy k at time levels nand n— 1.

MU, LA, KT Effective coefficient of viscosity u, effective second coefficient of
viscosity 4, and effective coefficient of thermal conductivity k.

MUT, MUTL Turbulent viscosity y, at time levels n and n— 1.

NPTI1, NPT2 N, and N, for non-periodic boundary conditions, N, + 1 and

’»+ 1 for spatially periodic boundary conditions in ¢ and #.
N1, N2 Number of grid points N, and N, in the ¢ and » directions.
P, T Static pressure p and temperature 7 at time level 7.

RHO, U, V, W, ET

Static density p, velocities u, v, and w, and total energy £r at time

level n.

RHOL, UL, VL, WL, ETL Static density p, velocities u, v, and w, and total energy Er from

previous ADI sweep.

TL Static temperature T from previous ADI sweep.
XIX, XIY, XIT Metric coefficients £&,, &, (or &, if axisymmetric), and £,.
Y Radial coordinate r for axisymmetric flow.

Output

All of the flow and metric-related input parameters listed above, at i =N, + 1 for periodic boundary
conditions in the ¢ direction, and at j = N, + 1 for periodic boundary conditions in the # direction.

Description

Subroutine PERIOD adds, in effect, an additional set of points at i= N, + 1 for periodic boundary
conditions in the ¢ direction, and at j = N, + 1 for periodic boundary conditions in the » direction. This
allows us to use central differencing in the periodic direction, at i = N, and/or j = N,, computing the coeffi-
cient submatrices and source term subvector in the same way as at the intertor points.3!

For periodic boundary conditions in the ¢ direction, the extra points are added by setting

31 See Section 7.2.2 of Volume 1 for details on the solution procedure for spatially periodic boundary conditions.
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Sy +1,i=h;

where j= 1 to N;, and frepresents one of the flow variables or metrics. Similarly, extra points are added
at (i, N, + 1) for periodic boundary conditions in the » direction.
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Subroutine PLOT (LEVEL)

Called by Calls Purpose
MAIN Write files for post-processing by CONTOUR or PLOT3D plotting
programs.
Input
CP, CV Specific heats ¢, and ¢,.
ETAX, ETAY Metric coefficients », and #, (or », if axisymmetric).
* GAMR Reference ratio of specific heats, y,.
GC Proportionality factor g, in Newton’s second law.
* IPLOT Flag specifying type of plot file to be written.
LEVEL Time level to be written into the file (0 for initialization, and — 1

* LR, UR, RHOR, TR

* MACHR
* NOUT
* NPLOT
* NPLOTX
* NSCRI1
* NI, N2
P, T
PR
* RER
* RG
RGAS

RHO, U, V, W ET
TAU
* TITLE
X, Y
XIX, XIY

Output

None.

Description

to read the scratch file and wnte XYZ and Q files with the
IPLOT = — 3 option).

Reference length L,, velocity u,, density p,, and temperature 7,.
Reference Mach number M,.

Unit number for standard output.

Unit number for writing CONTOUR file, or PLOT3D Q file.
Unit number for writing PLOT3D XYZ file.

Unit number for scratch file.

Number of grid points N, and N, in the ¢ and » directions.
Static pressure p and temperature 7.

Reference pressure p..

Reference Reynolds number Re,.

Dimensional gas constant R.

Dimensionless gas constant R.

Static density p, velocities , v, and w, and total energy £r.
Current time value .

Case title.

Cartesian coordinates x and y, or cylindrcal coordinates x and 7.

Metric coeffictents ¢, and ¢, (or &, if axisymmetric).

Subroutine PLOT writes a file or files, commonly called plot files, for post-processing by the CON-
TOUR or PLOT3D plotting programs. The type of files written is controlled by the user-specified pa-
rameter IPLOT. The format and contents of the different types of plot files are described in detail in Section
4.2 of Volume 2. They are therefore described only briefly here.
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CONTOUR Plot File (IPLOT = + 1)

If IPLOT =1, a CONTOUR plot file is wntten with the title and reference conditions included at each
time level. The value of n is written into the header for each time level, but =, the time itself, is not written
into the file. No initialization step is necessary.

If IPLOT = — 1,a CONTOUR plot file is also written, but the title and reference conditions are written
only at the beginning of the file. In addition the time r, ; is written into the file at each time level. In this
case the initialization step consists of wnting the title and reference conditions at the beginning of the file.

PLOT3D/WHOLE Plot Files ({IPLOT =2)

If IPLOT = 2, XYZ and Q files are wntten in PLOT3D/WHOLE format. The XYZ file is written only
during the initialization step. The Q file is written at each time level requested by the user. The Q file will
thus consist of multiple sets of data, each containing the computed results at a single time level. - The time
7y, 1s wrntten into the header for each set of data in the Q file. Since Proteus 2-D is two-dimensional, N3,
the number of points in the z direction 1n the XYZ and Q files, is set equal to 1.

PLOT3D/PLANES Plot Files (IPLOT = 3)

If IPLOT = 3, XYZ and Q files are wrntten in PLOT3D/PLANES format. Since Proteus 2-D is two-
dimensional, N3, the number of points in the z direction in the XYZ and Q files, is set equal to 1. This
makes the XYZ and Q files identical to those created using the IPLOT = 2 option.

PLOT3D!PLANES Plot Files (IPLOT = —3)

The files created with this option are similar to those created with the IPLOT = 3 option, except the
time 7, ; is written into the z slot in the XYZ file, and the number of points in the “z” direction is set equal
to the number of time levels in the XYZ and Q files.

However, because the calculation may converge or become non-physical, the number of time levels that
end up being written into the files is not known until the end of the Proteus run. Therefore, as the calcu-
lation proceeds the results are actually written into a scratch file. N3, the counter for the number of time
levels, 1s set equal to zero in the initialization step and updated each time a time level is added to the scratch
file. At the end of the Proteus run the scratch file is read and the XYZ and Q files are written.

PLOT2D Plot Files {PLOT = 4)

If IPLOT =4, XYZ and Q files are wrtten in PLOT3D’s 2D format. The XYZ file is written only
during the initialization step. The Q file is written at each time level requested by the user. The Q file will
thus consist of multiple sets of data, each containing the computed results at a single time level. The time
7, 1s written into the header for each set of data in the Q file.

Remarks
1. For the CONTOUR plot file, the IPLOT = — 1 option is the better one to use. The IPLOT =1 op-
tion 1s included only to be consistent with the various PLOT3D options.

2. In defining the pressure to be written into the CONTOUR plot file, the value stored internally in the
Proteus code is redefined as follows:

2
P
p=p Pr&c

This is necessary because input and output values of p are nondimensionalized by the reference pressure
p.=p.RT,, while internal to the code itself p is nondimensionalized by the normalizing pressure
P.= pad. See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and nor-
malizing conditions.
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3. The current version of PLOT3D does not work for multiple time levels, although future versions might.
Thus the IPLOT = 2, 3, and 4 options, while containing multiple time levels, cannot easily be used to
create plots showing the time development of the flow. You can, however, fake it out using the
IPLOT = — 3 option. With this option, plots can be generated at different time levels by plotting at
different PLOT3D “z” stations.

4. Note that the time ,, written into the Q file header with the IPLOT = 2, 3, and 4 options is the time
at the point ¢ =% =0. If the input variable IDTAU =5 or 6, 7 will vary in space and therefore

Ti,j #* Tt~

5. To save storage, the common variable AMAT 1, which is normally used for the subdiagonal submatrix
of coefficients in the block tridiagonal system of equations, is equivalenced to the local three-
dimensional variable Q used to store the Q variables that are written into the PLOT3D Q file.

6. PLOT3D assumes that velocity is nondimensionalized by the reference speed of sound a, = (v.RTH?,
and that energy is nondimensionalized by p,a?. In Proteus these variables are nondimensionalized by
% and pZ2. That is why the reference Mach number M, appears in the definitions of Q(,,2) through

Q(.,3)-

7.  An error message is generated and execution is stopped if an illegal plot file option is requested.
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Subroutine PRODCT

| Called by Calls Purpose :
KEINIT Compute production term for the k-¢ turbulence model.
TURBCH
Input
DXI, DETA Computational gnd spacing A¢ and Ay.
ETAX, ETAY Metric coefficients #, and #, (or », if axisymmetric).
*  JAXI Flag for axisymmetric flow.
MUT Turbulent viscosity g, at time level n.
* NI, N2 Number of grid points N, and N,, in the ¢ and » directions.
* RER Reference Reynolds number Re,.
C,V,W Velocities w, v, and w at time level n.
XIX, XIY Metric coefficients £, and ¢, (or &, if axisymmetnic).
Y Radial coordinate r for axisymmetric flow.
Output
PONE, PTWO Parts 1 and 2 of the production rate of turbulent kinetic energy.
VORT Production rate of turbulent kinetic energy.
Description

Subroutine PRODCT computes the turbulent kinetic energy production rate using

H 2
Py= R; Py =3 pkP;

r

where, for 2-D planar flow,
ouN (| 2fow o\ (o, &\
- ou o e[ U oV ou | oV
Pl—z[(ax>+(6y)j| 3<6x+6y)+(6y+6x)
and for axisymmetric flow,

()
() [0
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To evaluate the spatial derivatives, the centered difference formulas presented in Section 5.0 of Volume 1
are used at interior points, and second-order one-sided difference formulas are used at boundary points.

Remarks

1. To save storage space, this subroutine uses the Fortran variable VORT to store the turbulent kinetic

energy production rate. Care must be taken when this subroutine is used together with subroutine
VORTEX.
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Subroutine PRTHST

Called by Calls Purpose
MAIN Print convergence history.
Input
* ICHECK Convergence checking interval.
* IREST Flag for restart file; 0 for no restart file, 1 to write a restart file, 2
to read and wnte a restart file.
IT Last computed time step number .
ITBEG The time level n at the beginning of a run.

NC, NXM, NYM, NZM, NEN

NEQ
*  NHIST
*  NHMAX
*  NOUT
Output
None.
Description

Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations.

Number of coupled equations being solved, N.,.
Unit number for convergence history file.

Maximum number of time levels allowed in the printout of the
convergence history file (not counting the first two, which are al-
ways printed.)

Unit number for standard output.

Subroutine PRTHST prnts the convergence history as part of the standard output. The information
1s obtained from the unformatted convergence history file written in subroutine RESID. The parameters
printed are described in Section 4.1.6 of Volume 2, and the unformatted convergence history file is described
i Section 4.3 of Volume 2. To avoid undesirably long tables, the convergence parameters are printed at
an interval that limits the printout to NHMAX time levels. As described in Section 4.1.6 of Volume 2,
however, they are always printed at the first two time levels.
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Subroutine PRTOUT (ATITLE,LEVEL,AVAR)

Called by Calls Purpose
OUTPLT Print output.
Input
ATITLE A 20-character title for vanable being printed.
AVAR A two-dimensional array containing the variable to be printed.
DTAU Time step Ar.
* IDTAU Flag for time step selection method.
* JPRTIA, IPRT2A Indices for printout in the ¢ and # directions.
LEVEL Time level to be printed.
* LR, UR Reference length L, and velocity ..
* NOUT Unit number for standard output.
NPRTI1, NPRT2 Total number of indices for printout in the ¢ and » directions.
TAU Current time value 7.
Qutput
None.
Description

Subroutine PRTOUT performs the actual printing of the standard output file. It prints the variable
AVAR, with the title ATITLE. The output is printed in columns running in the » direction. The rows
run in the & direction. If the results at every grid point are printed, there will be a total of N, columns, each
with N, rows. The columns are grouped in super-rows of up to 10 columns each.

The steps involved are as follows:

Set the total number of columns, and rows per super-row.

2. Redefine AVAR, the input array containing the variable to be printed, including only the elements re-

quested.

3. Determine the number of super-rows. If NCOL is not exactly divisible by 10, the last super-row will

have less than 10 columns.

4. Print the title for the variable. If the time step is constant in space, the dimensional time ¢ and tume step

At are printed with the title.

5. Begin loop over the number of super-rows.

Set NC1 and NC2 equal to the number of the first and last column in this super-row. (l.e, for the
first super-row NCI1 and NC2 will be 1 and 10, for the second they will be 11 and 20, etc. For the
last super-row, NC2 will be NCOL.)

Print the heading for the super-row, labeling each column with the proper ¢ index.

Print the super-row itself, labeling each row with the proper # index.

End of loop over the number of super-rows.
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Subroutine RESID (IAVR,S,NVD,NPTSD)

Called by Calls Purpose
EXEC ISAMAX Compute residuals and write convergence history file.
SASUM
SNRM2
Input
CHGAVG Maximum change in absolute value of the dependent vanables,
averaged over the last NITAVG time steps, AQ.,.
CHGMAX Maximum change in absolute value of the dependent vanables
over previous time step (or NITAVG —1 time steps if
ICTEST =2), AQ....
DTAU Time step Az.
DUMMY A two-dimensional scratch array.
* EPS Cbnvergence level to be reached, «.
IAVR . Flag specifying whether residual is computed without or with the

* JAVZE, IAV4E

* ICHECK

* ICTEST

* IDTAU

* IHSTAG

* ISWIRL
IT
ITBEG

* LR, UR
NEQ

*  NHIST

* NITAVG
NPT, NPT2
NTOTP
NVD, NPTSD

* NI N2
N1P, N2P
S
TAU

artificial viscosity terms; 1 for without, 2 for with.

Flags for second- and fourth-order explicit artificial viscosity.
Convergence checking interval.

Flag for convergence criteria to be used.

Flag for time step selection method.

Flag for constant stagnation enthalpy option.

Flag for swirl in axisymmetric flow.

Current time step number 7.

The time level n at the beginning of a run.

Reference length L, and velocity «,.

Number of coupled equations being solved, N,,.

Unit number for convergence history file.

Number of time steps in moving average convergence test.

N, and N, for non-periodic boundary conditions, N;+ 1 and
N, + 1 for spatially periodic boundary conditions in ¢ and #.

Dimensioning parameter specifying the storage required for a full
two-dimensional array (i.e., N1P x N2P).

Leading two dimensions for the array S.
Number of grid points N, and N, in the ¢ and # directions.

Parameters specifying the dimension sizes in the ¢ and n di-
rections.

Source term subvector S for first ADI sweep.

Current time value 7.
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Output

LRMAX Grid indices i and j, in the ¢ and » directions, corresponding to the
location of RESMAX.
RESAVG The average absolute value of the residual, Ra,.
RESL2 The L, norm of the residual, R,,.
RESMAX The maximum absolute value of the residual, R ..
Description

Subroutine RESID computes various measures of the residual, and writes the convergence history file.

For problems without artificial viscosity, the steady-state form of the goveming partial differential
equations can be written as
A A Ia)
aF 5EV (?FV

A
oF
T o T on

0=-—a?"‘

The residual is defined as the number resulting from evaluating the right hand side of the above equation.
For first-order time differencing, this 1s simply the source term for the first ADI sweep, divided by the time
step At.3 The residual at a specific grid point and time level is thus

RY, = S7,/6%,
where S is the source term for the first ADI sweep. Separate remduals are computed for each governing
equation.

Adding artificial viscosity, however, changes the governing equations. With artificial viscosity, the dif-
ference equations actually correspond to the folowing differential equations at steady state.®

o ok o ok, oFy
& on o On
KONl &
5 (a8’ (Q) + (An)? (Q)
i o0&t o’
] g TR (Q)
J | act on’ i

For cases run with artificial viscosity, therefore, the residual should include the explicit artificial viscosity
terms. The implicit terms do not appear, since they difference AQ, and in the steady form of the equations

Af) = 0. Since the explicit artificial viscosity terms are added to the source term for the first ADI sweep,
they are automatically included in the residual.

Three measures of the residual are computed for each governing equation - the L, norm of the residual,
the average absolute value of the residual, and the maximum absolute value of the residual. In addition,
the (£,5) mdices corresponding to the location of the maximum residual are saved. The L; norm of the
residual 1s defined as

32 See equation (8.5a) in Volume 1. For first-order time differencing, 8; = 83 = 0.
33 These equations represent the use of the constant coefficient artificial viscosity model. The nonlinear coefficient
model is more complicated, but the same principle applies.

Proteus 2-D Programmer’s Reference 40 Proteus Subprograms: RESID 235



1/2
RLZ = <Z(Ri,j)2)

In computing the residuals, the summations, maximums, and averages are over all interior grid points, plus
points on spatially periodic boundanes.

For cases run with artificial viscosity, subroutine RESID is called from EXEC both before and after the
artificial viscosity terms have been added to the equations. The residuals are thus computed both with and
without the artificial viscosity terms. This may provide some estimate of the overall error in the solution
introduced by the artificial viscosity. Convergence is determined by the residuals with the artificial viscosity
terms ncluded.

In addition to computing the residuals, subroutine RESID writes the convergence histof‘y file. The
contents and format of this file are described in detail in Section 4.3 of Volume 2.

Remarks

1. The Cray BLAS routines SNRM2 and SASUM are used in computing the L, norm of the residual and
the average absolute value of the residual, respectively. The Cray search routine ISAMAX is used in
computing the maximum absolute value of the residual.

2. The scratch array DUMMY, from the common block DUMMY], is used to store the values of the
residual at each grid point.

236 4.0 Proteus Subprograms: RESID Proteus 2-D Programmer’s Reference



Subroutine REST (IOPT)

Called by Calls Purpose
INITC METS Read and,or write restart file.
MAIN

Input When Reading the Restart File

* GAMR

* HSTAG

*+ IHSTAG
IOPT

* ITURB

* NRQIN

+ NRXIN
RGAS

Input When Writing the Restart File

E, KE
EL, KEL
IOPT
IT
* ITURB
* MACHR
* NRQOUT
*  NRXOUT
* NI, N2
* RER

RHO, U, V, W, ET
RHOL, UL, VL, WL, ETL

TAU
XY

Output When Reading the Restart File

DXI, DETA
E, KE

Proteus 2-D Programmer’s Reference

Reference ratio of specific heats, y,.

Stagnation enthalpy Ar used with constant stagnation enthalpy
option.

Flag for constant stagnation enthalpy option.

Flag specifying I/O operation; 1 to read, 2 to write.

Flag for turbulent flow option.

Unit number for reading the restart flow field.

Unit number for reading the restart computational mesh.

Dimensionless gas constant R.

Turbulent dissipation rate ¢ and kinetic energy & at time level
n+ 1.

Turbulent dissipation rate ¢ and kinetic energy k at time level n.
Flag specifying I/O operation; 1 to read, 2 to write.

Current time step number 2.

Flag for turbulent flow option.

Reference Mach number M,.

Unit number for writing the restart flow field.

Unit number for writing the restart computational mesh.
Number of grid points N, and N, in the ¢ and » directions.
Reference Reynolds number Re..

Static density p, velocities u, v, and w, and total energy Fr at time
level n+ 1.

Static density p, velocities u, v, and w, and total energy Fr at time
level n.

Computational time = at time level » + 1.

Cartesian coordinates x and p, or cylindrical coordinates x and r.

Computational gnd spacing A¢ and Ay.

Turbulent dissipation rate ¢ and kinetic energy k at time level
ITBEG.
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EL, KEL Turbulent dissipation rate ¢ and kinetic energy & at time level

ITBEG - 1.

ITBEG The time level n at the beginning of the new run.

MACHR Reference Mach number M,.

N1, N2 Number of grid points N, and V;, in the ¢ and » directions.

RER Reference Reynolds number Re,.

RHO, U, V, W, ET Static density p, velocities u, v, and w, and total energy Er at time
level ITBEG.

RHOL, UL, VL, WL, ETL Static density p, velocities «, v, and w, and total energy £ at time
level ITBEG — 1. ) _

T, TL Static temperature 7 at time levels ITBEG and ITBEG — 1.

TAU Computational time 7 at time level ITBEG.

X, Y Cartesian coordinates x and y, or cylindncal coordinates x and r.

Output When Writing the Restart File

None.

Description

Subroutine REST reads and/or writes the restart files. Restarting a calculation requires two unformatted
files - one containing the computational mesh and one containing the flow field.

If subroutine REST is being used to read the restart files, the computational mesh is first read from unit
NRXIN. The grd increments A¢ and Axn are then set, and subroutine METS 1is called to compute the
metric coefficients and the Jacobian of the grid transformation.

The flow field file is read next, from unit NRQIN. It normally contains the results at the last two time
levels that were computed during the previous run. If only one level is present in the file, however, the re-
sults at level n— 1 are set equal to those at level n. If the previous run used the two-equation turbulence
model, the turbulence variables are also read from the file. The beginning time level for the time marching
loop is set equal to the level stored in the restart file. The flow field variables in the restart file are the
conservation variables Q, nondimensionalized as in the plotting program PLOT3D.* They therefore must
be converted into the primitive variables used in Protews. The temperature is then computed from the
perfect gas equation of state, with ¢, and ¢, defined using the mnput reference conditions.

When writing the restart files, the file containing the computational mesh is written onto unit
NRXOUT.  The primitive flow variables are then redefined as conservation varables and
nondimensionalized as in PLOT3D. They are then written onto unit NRQOUT. If the current run used
the two-equation turbulence model, the turbulence variables are also written nto the file.

Remarks

1. If, in the input namelist RSTRT, NRXOUT and NRQOUT are set equal to NRXIN and NRQIN,
respectively, the output restart files will overwrite the input restart files.

2. Except for the turbulence variables and the variables at time level 7 — 1, the restart files have the same
format as the XYZ and Q files created using the IPLOT = 2 and 3 options. These restart files can thus
also be used as XYZ and Q files for the PLOT3D plotting program. Since N3 = 1, the n — 1 level will
not be read by PLOT3D.

34 See Sections 4.2.3 and 4.4 of Volume 2.
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3. The temperature T is computed using the equation of state, which contains a specific heat coefficient
(either ¢, or ¢,, depending on whether the stagnation enthalpy is assumed constant or not.) In sub-
routine REST, a constant value of specific heat is used, consistent with the reference temperature 7.
If the user specified constant specific heat (i.e., a value for y, was read in), this is not a problem.
However, if the temperature-dependent specific heat option is being used (i.e., 2 value for y. was not
read in), the equation of state and the empirical equation for specific heat are coupled. For this reason,
in INITC (the routine that calls REST), T is recomputed by calling EQSTAT after the specific heats
have been computed in FTEMP. Ideally, this coupling would be handled by iteration between
FTEMP and EQSTAT. This is not currently done in Proteus, however.
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Subroutine ROBTS (NP,A,B,XP)

Called by Calis Purpose
PAK Pack points along a line using Roberts transformation.
Input
A Parameter « in Roberts transformation formula specifying lo-

cation of packing: 0.0 to pack near XP = | only, 1.0 to pack near
XP = 0 only, and 0.5 to pack equally at XP =0 and 1.0.

B Parameter § in Roberts transformation formula specifying amount
of packing. A value approaching 1.0 from above gives denser
packing.

NP Number of grid points along the line.

Output
XP Coordinates of packed grid points along the hine.
Description

Subroutine ROBTS packs points along a line of length one using a transformation due to Roberts
(1971). The basic transformation is given by

(B + 2P — p + 2
(22 + 1)(1 + BF%)

where
B+1
ﬁr— ﬁ“l
XUP—d
Bx= 1—«

and xp and x5 are the packed and unpacked (i.e., evenly spaced) coordinates along the line. The parameter
a determines the packing location. For a = 0, the points will be packed only near xp = 1, and for « = 1/2
the points will be packed equally near x, = 0 and x, = 1. The packing parameter § determunes the amount
of packing. It is a number greater than 1, but generally 1.1 or below. The closer § is to 1, the tighter the
packing will be.

It may seem logical to set « = 1 to pack points near xp = 0. With the basic transformation, however,
this doesn’t work. In Proteus we get around this problem by replacing « in the above transformation with
au, where o, =a if a =0 or 1/2, and a«, =0 if a =1. If « =0 or 1/2, no further action is necessary. If
« = 1, however, we must invert the resulting x» values and re-order the indices. le., fori=1to NP, we set

(xppi=1—(xp)

After this operation, the array xp; will run from 1 to 0, packed near 1. To re-order the indices, for i= 1 to
NP we set

(xXplwp—i+1 = (Xpi

After this operation, xp will run from 0 to 1, packed near 0.
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Finally, to ensure round-off error doesn’t affect the endpoint values, we set (xp), = 0 and (xp)yr = 1.
Remarks
1. The namelist input variable SQ(IDIR,1), which is used to specify the packing location in direction

IDIR, is actually equal to 1 — «. Therefore, setting SQ(IDIR,1) = 0 results in packing near the { or
n = 0 boundary, and SQ(IDIR,1) = 1 results in packing near the ¢ or # = 1 boundary.
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Function SASUM (N,V,INC)

Called by Calls Purpose
RESID Compute the sum of the absolute values of the elements of a vector.
Input
N Number of elements in the vector to be summed.
A\ Vector to be summed.
INC Skip distance between elements of V. For contiguous elements,
INC=1.
Output
SASUM Sum of the absolute values of the elements of V.
Description

-Function SASUM computes the sum of the absolute values of the elements of a vector. For a one-
dimensional vector, the use of SASUM is straightforward. For example,
np
sasum(np,v,1) = Z V;

i=1
A starting location can be specified, as in

np
sasum(np-4,v(5),1) = z V;

i=5

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimen-
sioned NDIMI1 by NDIM2, then

ndim1 ndim2
sasum(ndiml*ndim2,a,1) = A ;
i=1 j=1

One dimension at a time can also be summed. For example,

ndim!
sasum(ndiml ,a(1,5),1) = Z A;s
i=1
Similarly, by specifying a skip increment,
ndim2

sasum(ndim2,a(5,1),ndiml) = Z As
i=1

oJ

Remarks

1. SASUM is a Cray BLAS (Basic Linear Algebra Subprograms) routine (Cray Research, Inc., 1989b).
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Subroutine SGEFA (A, LDA,N,IPVT,INFO)

Called by Calls Purpose
BCELIM ISAMAX Factor a matrix using Gaussian elimination.
BVUP
Input
A An array containing the matrix A to be factored, dimensioned as
A(LDA,N).
LDA The leading dimension of the array A.
N The order of the matrix A.
Qutput
A An upper triangular matrix and the multipliers which were used
to obtain it. The factorization can be written as A = LU, where
L is a product of permutation and unit lower triangular matrices,
and U is upper tnangular.
IPVT A vector of length N containing pivot indices.
INFO An error flag: 0 for normal operation, k& if Uy, = 0.
Description

Subroutine SGEFA is used in combination with subroutine SGESL to solve the matrix equation
Ax = B. If the Fortran arrays A and B represent A and B, where A is a square N by N matrix and B is a
matrix (or vector) with NCOL columns, and if the leading dimension of the Fortran array A is LDA, then
the Fortran sequence

10

call sgefa (a,lda,n,ipvt,info)

do 10 3 = 1,ncol

call sgesl (a,lda,n,ipvt,b(1,3),0)
continue

computes A-'B, storing the result in B.

Remarks

1. SGEFA is a Cray LINPACK routine (Cray Research, Inc., 1989b; Dongarra, Moler, Bunch, and
Stewart, 1979). :
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Subroutine SGESL (A,LDA,N,IPVT,B,JOB)

Called by Calls Purpose
BCELIM ~ Solve the matrix equation Ax = B or ATx = B using the factors com-
BVUP puted by SGEFA.
Input
A The two-dimensional output array A from SGEFA containing the
factorization of matrix A.
B The right-hand side vector B.
IPVT The output array IPVT of pivot indices from SGEFA.
JOB Flag specifying type of matrix equation: 0 to solve Ax = B; non-
zero to solve ATx = B.
LDA The leading dimension of the array A.
N The order of the matnix A.
Output
B The solution vector X.
Description

Subroutine SGESL is used in combination with subroutine SGEFA to solve the matrix equation

Ax = B. See the description of subroutine SGEFA for details.

Remarks

1. SGESL is a Cray LINPACK routine (Cray Research, Inc., 1989b; Dongarra, Moler, Bunch, and
Stewart, 1979).
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Function SNRM2 (N,V,INC)

Called by Calls Purpose
RESID Compute the L, norm of a vector.
Input
N The number of elements in the vector V.
v The vector whose norm is to be computed.
INC Skip distance between elements of V. For contiguous elements,
INC=1.
QOutput
SNRM2 The L, norm of the vector V.
Description

Function SNRM2 computes the L, norm of a vector. For a one-dimensional vector, the use of SNRM2
is straightforward. For example,

op 112

snrm2(np,v,1) = E sz

i=1

A starting location can be specified, as in

172
np !

snrm2(np-6,v(5),1) = E Viz

i=>5

Multi-dimensional érrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimen-
sioned NDIM1 by NDIM2, then

112
ndim! ndim2

snrm2(ndiml*¥ndim2,a,1) = E E Afj

i=1 j=1

One dimension at a time can also be summed. For example,

1/2
ndim!

snrm2(ndiml,a(1,5),1) = EA’?’S

i=1

Similarly, by specifying a skip increment,
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) 1/2
ndim2

snrm2(ndim2,a(5,1) ,ndiml) = ZASJ

j=1

Remarks

I. SNRM2is a Cray BLAS (Basic Linear Algebra Subprograms) routine (Cray Research, Inc., 1989b).
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Subroutine TBC

Called by Calls Purpose
MAIN Set time-dependent boundary condition values.
Input
* GTBCIL, GTBC2 Time-dependent surface mean flow boundary condition values for
the & and # directions.
IT Current time step number 7.
ITBEG The time level » at the beginning of a run.
ITEND Final time step number.
* JBCl1, JBC2 Surface mean flow boundary condition types for the & and » di-
rections.
* JTBCIi, JTBC2 Flags for type of time dependency for mean flow boundary con-
ditions in the ¢ and » directions.
NBC Dimensioning parameter specifying number of boundary condi-
tions per equation.
NEQ Number of coupled equations being solved, N,
*  NOUT Unit number for standard output.
* NTBC Number of values in tables for general unsteady boundary condi-
tions.
* NTBCA Time levels at which general unsteady boundary conditions are
specified.
* NI, N2 Number of grid points N, and N,, in the ¢ and # directions.
Output
FBC1, FBC2 Point-by-point mean flow boundary condition values for the &
and »n directions.
GBCl1, GBC2 Surface mean flow boundary condition values for the ¢ and » di-
rections.

Description

Subroutine TBC sets time-dependent mean flow boundary condition values. Two types of time de-
pendency are allowed - general and periodic.

General Time-Dependent Boundary Conditions

General time-dependent boundary conditions are set using linear interpolation on an input table of
boundary condition values vs. time level. Thus, the boundary condition value 1s

i
n+1 pontl=—m iy i
& =st— & —&)
o =N

Here n is the current known time level in the time marching scheme, g, and n, represent the input table of
boundary condition values vs. time level, and i is the index in the table for which

Proteus 2-D Programmer’s Reference 4.0 Proteus Subprograms: TBC 247



m<n+l<nt’

If n+ 1 < n}, then g"+11s set equal to the first value in the table, g!. Similarly, if n+ 1 > n¥, where N is the
index of the last entry in the table, then g7+!is set equal to the last value in the table, g¥.

In Fortran, g = GBC! or GBC2, g, = GTBCI or GTBC2, n.= NTBCA, and N = NTBC.

Time-Periodic Boundary Conditions

Time-penodic boundary conditions (not to be confused with spatially pentodic boundary conditions) are
of the form

n

2 3
g =g +g sinfg/(n+ 1) +g]
where g! through g# are given by the first four elements of GTBCI1 or GTBC2.
Remarks

1. An error message is generated and execution is stopped if an invalid type of unsteadiness i1s requested
for the boundary values.
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Subroutine TIMSTP

Called by Calls Purpose
MAIN ISAMAX Set computational time step.
Input
* CFL CFL number in IDTAU =1, 2, 5, 6, 8, and 9 options.

*

CFLMIN, CFLMAX

CHGMAX

CHGI1, CHG2

CP, CV

DT

DTAU
DTFI1, DTF2

DTMIN, DTMAX

DXI, DETA
ETAX, ETAY, ETAT
IDTAU

IT

ITSEQ

MU

NDTCYC

NEQ

NOUT

N1, N2

RER

RGAS

RHO, U, V

T

XIX, XIY, XIT

Output

CFL
DTAU

Proteus 2-D Programmer’s Reference

Minimum and maximum CFL numbers allowed mn IDTAU =2
and 6 options.

Maximum change in absolute value of the dependent variables
over previous time step (or NITAVG —1 time steps if
ICTEST = 2), AQ,....

Mimnimum and maximum change, in absolute value, that is al-
lowed in any dependent vaniable before increasing or decreasing
At in IDTAU =2, 4, and 6 options.

Specific heats ¢, and ¢, at time level n.
Time step Az in IDTAU = 3 and 4 options.
Old computational time step Az.

Factors multiplying or dividing Ar if solution changes too slowly
or quickly in IDTAU = 2, 4, and 6 options.

Minimum and maximum Az allowed in IDTAU = 4 option, or
used in IDTAU = 7 option.

Computational grid spacing A¢ and An.

Metric coefficients 7., », (or #, if axisymmetric), and ..
Flag for time step selection method.

Current time step number 2.

Current time step sequence number.

Effective coefficient of viscosity u at time level n.
Number of time steps per cycle for IDTAU = 7 option.
Number of coupled equations being solved, N,,.

Unit number for standard output.

Number of grid points N, and N, in the ¢ and » directions.
Reference Reynolds number Re,.

Gas constant R.

Static density p, and velocities u and v, at time level n.
Static temperature T at time level n.

Metnc coefficients ¢,, &, (or &, if axisymmetric), and ¢&..

New CFL number in IDTAU = 2 and 6 options.

New computational time step Ax.
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Description

Subroutine TIMSTP computes the time step size Ar. The following sections describe the various
methods currently available for setting and,’or modifying Ar.

IDTAU = 1

This option sets a global (i.e., constant in space) time step At equal to the minimum of the values at
each grid point computed from the input parameter CFL(ITSEQ). le.
Az = (CFL) min(At,p)
. i

where At is the inviscid CFL limit, given in generalized two-dimensional coordinates as (Shang, 1984).

}: 2 é 2 1/2
_JlU v Sx o, Mx NG
Brn=4 | A% +‘Anl+a[(A€+An)+<Ai+An>]

Here U= & + &udt &v and V =y, + n.u + n,v are the contravariant velocities without metric normaliza-
tion, and a = /yRT is the speed of sound.

-1

IDTAU = 2

For the first time step, this option is identical to the IDTAU = 1 option. After the first time step,
however, CFL is modified to keep AQ,.,, the maximum change in absolute value of the dependent varn-
ables, within user-specified imits. The rules used to increase or decrease CFL may be summarnzed as fol-
lows:

AQ,..<CHGl = CFL=min[(DTF1)CFL), CFLMAX]
AQ,,,>CHG2 = CFL =max[CFL/DTF2, CFLMIN]
AQ,..>0.15 = CFL=CFL/2

The time step Az is then set using the same formulas as in the IDTAU = 1 option.
IDTAU = 3

This option sets a global (i.e., constant in space) time step Az equal to the input parameter DTITSEQ).
IDTAU = 4

For the first time step, this option is identical to the IDTAU = 3 option. After the first time step,

however, At is modified to keep AQ.., the maximum change in absolute value of the dependent variables,
within user-specified limits. The rules used to increase or decrease Az may be summarized as follows:

AQ,..<CHGl = Ar=min[(DTF1)Az, DTMAX]
AQ,,.>CHG2 = Az=max[A7/(DTF2), DTMIN]
AQ, >0.15 = Ar=Az)2

IDT4U =5

This option sets a local (i.e., varying in space) time step A7 computed at each grid point from the input
parameter CFL(ITSEQ). le., at each grid point,

At = (CFL)Arq

where Az, is given above in the description of the IDTAU = 1 option.
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IDTAU = 6

For the first time step, this option is identical to the IDTAU = 5 option. After the first time step,
however, CFL is modified to keep AQ.,.., the maximum change in absolute value of the dependent vari-
ables, within user-specified limits. The rules used to increase or decrease CFL are the same as in the
IDTAU = 2 option.

IDT4AU =7

This option sets a global (i.e., constant in space) time step Ar with logarithmic cycling. The formula
used 1s

ATpin

NN, -1
! :( cyc )
At = ATmm

where N = mod(n — 1, N,.) and » is the current known time level. The time step At is thus cycled repeat-
edly between A7, and At every N, time steps. The values of Atmn, ATma:, and N, are given by the
input parameters DTMIN, DTMAX, and NDTCYC.

IDTAU = 8
This option sets a local (i.e., varying in space) time step At computed at each grid point using the pro-

cedure of Knight and Choi (1989). The inviscid CFL limit Az, is first computed separately for each
computational coordinate direction. Thus, at each grid point,

-1
U téy
| [ |+
| v NETE
= | a7 | + 4

Here U= ¢, 4+ {u+ &v and V =, + nu+ n,v are the contravanant velocities without metric normaliza-
tion, and a = ./yRT is the speed of sound.

A preliminary value of At is then defined at each gnid point using the input parameter CFL(ITSEQ).
Ay = (CFL) min[(A1,p);, (A7p),,]
The final value of Az is then defined at each gnid point as
At = max[Arg, (At )]

Knight and Choi found that using this definition for Az, rather than simply setting At = Ax,, resulted in
faster convergence for problems with refined grid regions. This formulation assumes that flow is generally
in the & direction.

IDTAU = 9
This option is similar to the IDTAU = 8 option. The only difference is a viscous correction added to

the definitions of the inviscid CFL limits, similar to that used by Cooper (1987). The inviscid CFL limits
are now defined at each grid point as:
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_ —=1
[2 . 2 )
(8e.) U |, TR L2 Gté
T = —_— —_
| .
B 2. 2 2 27!
(At = | | +a\/nX+ny +-2 AR
n 1| Ay Ay Re, P (pn)?

The rest of the procedure for computing Az is the same as in the IDTAU = 8 option.
Remarks

1. In AQ,. used in the IDTAU =2, 4, and 6 options, the change in Er has been divided by
R/(y. — 1)+ 1/2. This is equivalent to dividing the dimensional value £r by

o 2
_ PrR Tr + Prty
Ty, -1 2

This makes the change in total energy the same order of magnitude as the other conservation variables.

2. An error message is generated and execution is stopped if an illegal time step selection option 1s re-
quested.

3. A warning message is printed with the IDTAU = 2, 4, and 6 options if Az or the CFL number 1s cut
in half because AQ,... > 0.15.

4. The Cray search routine ISAMAX is used in computing the maximum value of AQp., for all the
equations.
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Subroutine TREMAIN (CPUREM)

Called by

Calls

Purpose

MAIN

Get CPU time remaining for the job.

Input

None.

Output
CPUREM

Description

Amount of CPU time remaining, in seconds.

Subroutine TREMAIN computes the amount of CPU time remaining for the current job, in seconds.

Remarks

1. TREMAIN is a Cray Fortran library routine (Cray Research, Inc., 1989a).
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Subroutine TURBBL
Called by Calls Purpose
INITC BLIN1 Manage computation of turbulence parameters using Baldwin-Lomax
KEINIT BLIN2 algebraic model.
MAIN BLOUT!
BLOUT2
VORTEX
Input
CP Specific heat c,.

* ITETA, ITXI

* KBCI, KBC2
* LWALLI, LWALL2
LWSET

MU, LA, KT

* NOUT

* NI, N2
PRR

*  PRT

* RER

* REXTI1, REXT2
RHO, U, V, W
X, Y

Output

LWALLL, LWALL2
MU, LA, KT
MUT

Description

Flags for computation of turbulent viscosity along constant y and
¢ lines.

Boundary types for the ¢ and » directions.
Flags specifying wall locations for ¢ and # boundaries.

Flags specifying how wall locations are to be determined for the
turbulence model; 0 if wall locations are to be found automatically
by searching for boundary points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the IWALL
parameters.

Laminar coefficient of viscosity u, laminar second coefficient of
viscosity 4;, and laminar coefficient of thermal conductivity 4.

Unit number for standard output.
Number of grid points N; and N, in the ¢ and # directions.
Reference Prandtl number Pr,.

Turbulent Prandtl number Pr,, or, if PRT < 0, a flag indicating the
use of a variable turbulent Prandtl number.

Reference Reynolds number Re,.
Transition Reynolds numbers Re,, in the ¢ and » directions.
Static density p, and velocities », v, and w.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Flags specifying wall locations for ¢ and # boundaries, if not set
n input.

Effective coefficient of viscosity u, effective second coefficient of
viscosity 4, and effective coefficient of thermal conductivity k.

Turbulent viscosity coefficient u,.

Subroutine TURBBL manages the computation of the effective coefficient of viscosity, second coefhi-
cient of viscosity, and coefficient of thermal conductivity using the algebraic eddy viscosity model of
Baldwin and Lomax (1978). It is called from MAIN during each step from time level 7 to n + 1, but after
the governing flow equations have been solved. The Fortran variables RHO, U, etc., are thus at the n+ 1
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level. The effective viscosity coefficient to be computed will therefore also be at the n+ 1 level. This, of
course, becomes the known 7 level for the next time step.

10.

The steps involved in computing the effective coefficients are as follows:

Initialize the arrays for storing the turbulent viscosity u. on constant ¢ and » lines to zero.

Call VORTEX to compute |£3 |, the magnitude of the total vorticity vector.

At each ¢ location, compute y, due to walls at y =0 and/or n = 1, or due to a free turbulent flow in
the ¢ direction, using steps 3a - 3c. The result will be stored in the Fortran array MUT. If bypassing
the calculation on constant & lines, skip to step 4 to compute p, on constant # lines.

3a. Determnine wall locations by checking for zero velocity at the » boundanes, unless wall locations
are user-specified via the input LWALL or IWALL parameters, or unless boundary types are
specified using the KBC parameters.

3b. Call BLOUTI to compute (i), at the current ¢ location, for n =0 to 1.

3c. Call BLIN1 to compute (i), at the current & location, within the inner region for a solid wall
at n = 0 and/or y = 1.

At each n location, compute u, due to walls at ¢ = 0 and/or ¢ = 1, or due to a free turbulent flow in
the » direction, using steps 4a - 4c. The result will be stored in the Fortran array DUMMY. If by-
passing the calculation on constant » lines, skip to step 5.

4a. Determine wall locations by checking for zero velocity at the ¢ boundanes, unless wall locations
are user-specified via the input LWALL or IWALL parameters, or unless boundary types are
specified using the KBC parameters.

4b. Call BLOUT2 to compute (i,)ourer, at the current » location, for £ =0 to 1.

4c. Call BLIN2 to compute ()i, at the current 5 location, within the inner region for a solid wall
at £ =0 andjor ¢ = 1.

If the input is such that the computation of p, is bypassed in both directions, wnite an error message
and stop.

If 4. is being computed on constant ¢ lines only, then MUT = y,, so skip to sten 9.

If u, is being computed on constant n lines only, then DUMMY = u,, so set MUT = DUMMY and
skip to step 9.

If u, is being computed both on constant ¢ lines and constant » lines, compute a single . value at each
grid point using the averaging formula presented in equation (9.13) of Volume 1.

If specified in the input, modify p, to account for laminar-turbulent transition using a model based on
one given by Cebeci and Bradshaw (1984). This model is described in Section 9.1.4 of Volume 1.

Define the necessary effective coefficients as follows:

p= gty
o=+ 4,
k=k+k,
where 4, = — 2u,/3, and k, is computed using Reynold’s analogy as
HCp
kl = _P_r,_ PT’,

The turbulent Prandtl number is either a constant specified in the input, or a variable computed using
equation (9.19) of Volume 1.
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Remarks

1. In the averaging formula used when u. is computed both on constant ¢ lines and constant # lines, the
Fortran variables F1 and F2 are

(yrz)Z
Fl =
[0 + O3]
(yn)l
F2 =
[0} + B3]

If (y.): and (3.); are both close to zero, F1 and F2 are set equal to 1/\/5 , which is the limiting value in
the above equations as (p.); and (y.); approach zero.

The exponent in the definition of y.. is limited to 20.

In the Fortran equation for the effective thermal conductivity, the factor PRR = Pr, is necessary for
proper nondimensionalization of k..

4. The distance used in the formula for y,, is a straight-line distance from one point to another. It would
probably be better to compute a curvilinear distance along the coordinate line.

5. The scratch array DUMMY, from the common block DUMMY], is used to store the value of the
turbulent viscosity along constant » lines. The array is filled in subroutines BLIN2 and BLOUT2.

6. If ITXI and ITETA are both zero, indicating the turbulent viscosity computation is to be bypassed for
both coordinate directions, an error message is generated and execution is stopped.
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Subroutine TURBCH

Called by Calls Purpose
MAIN EXECT Manage computation of turbulence parameters using the Chien k-¢
PRODCT model.
YPLUSN
Input
Cp Specific heat c,.

* KBCI, KBC2
+ LWALLL, LWALL2

LWSET Flags specifying how wall locations are to be determined for the
turbulence model; 0 if wall locations are to be found automatically
by searching for boundary points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the IWALL

Boundary types for the ¢ and # directions.
Flags specifying wall locations for £ and » boundaries.

parameters.
MU, LA, KT Laminar coefficient of viscosity u,, laminar second coefficient of
viscosity 4;, and laminar coefficient of thermal conductivity ;.
MUT Turbulent viscosity u, at time level 2.
NTKE Number of k-¢ iterations per mean flow iteration.
N1, N2 Number of grid points N; and ¥;, in the ¢ and » directions.
PRR Reference Prandtl number Pr,.
PRT Turbulent Prandtl number Pr,, or, if PRT < 0, a flag indicating the
use of a variable turbulent Prandtl number.
UV, W Velocities u, v, and w at time level n.
Output
LWALLI, LWALL2 Flags specifying wall locations for ¢ and » boundanes, if not set
in input.
MU, LA, KT Effective coefficient of viscosity u, effective second coefficient of
viscosity 4, and effective coefficient of thermal conductivity k.
MUT Turbulent viscosity u, at time level n.
Description

Subroutine TURBCH manages the computation of the effective coefficient of viscosity, second coeffi-
cient of viscosity, and coefficient of thermal conductivity using the low Reynolds number k-¢ two-equation
turbulence model of Chien (1982). The k-¢ equations are uncoupled from the mean flow equations, lagged
in time and solved separately. This allows maximum modularity in turbulence modeling.

For each step from time level n to n+ 1, the mean flow equations are solved first, using a time step
Az. The k-¢ equations are then solved, using NTKE time steps with a time step size of TFACT(A7).

The steps involved in computing the effective coefficients are as follows:
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Determine wall locations by checking for zero velocity at the boundaries, unless wall locations are
user-specified via the input LWALL or IWALL parameters, or unless boundary types are specified
using the KBC parameters.

2. Call YPLUSN to compute the minimum distance to the nearest solid wall and y~. To save storage, the
minimum distance is returned in the Fortran variable DUMMY.
3. Call PRODCT to compute the production rate of turbulent kinetic energy. To save storage space, the
production rate is returned in the Fortran vanable VORT.
4. Call EXECT to advance the k-¢ equations in time using a time step of TFACT(A7).
Repeat steps 3-4 NTKE times.
Define the necessary effective coefficients as follows:
po= gyt
/]. = ;‘I =+ ;‘[
k=k+k,
where A, = — 2u,/3, and &, is computed using Reynold’s analogy as
KCp
kl = P_r, Pr,
The turbulent Prandtl number is either a constant specified in the input, or a variable computed using
equation (9.19) of Volume 1.
Remarks
1. The scratch array DUMMY, from the common block DUMMY], is used to store the values of the
minimum distance to the nearest wall. The array is filled in subroutine YPLUSN.
2. The Fortran array VORT, from the common block TURBI, is used to store the values of the pro-
duction rate of turbulent kinetic energy. The array is filled in subroutine PRODCT.
3. For equal mean flow and k- time steps, use TFACT = 1/NTKE.
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Subroutine UPDATE (S,NVD,NPTSD)

Called by Calls Purpose
EXEC Update flow variables after each ADI sweep.
Input

IBASE, ISTEP

* IHSTAG
* ISWIRL
v
J1
NPTS

NR, NRU, NRV, NRW, NET

NVD, NPTSD
RHO, U, V, W, ET

S

Qutput
RHOL, UL, VL, WL, ETL

Description

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Flag for constant stagnation enthalpy option.

Flag for swirl in axisymmetric flow.

Index in the “vectonized” direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J-1.
Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Leading two dimensions for the array S.

Static density p, velocities «, v, and w, and total energy Fr at time
level n.

Computed solution subvector, AQ.

Static density p, velocities u, v, and w, and total energy Er at end
of current ADI sweep.

Subroutine UPDATE computes the primitive flow variables from the dependent variables Aé after each
ADI sweep. For the first sweep the formulas are
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p =p +JAQ,

=L oM+ 1805
P

v =L (o Ja0;)
3

w =L ("W + JAD)

P

Ey=E}+ JAQS
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where AQAX through AQS are the dependent vanables in delta form for the five governing equations.* For the
second ADI sweep, the superscript * should be changed to n+ 1 on p, u, v, w, and Er, and to non AQ.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

3 These formulas are written for the most general case - axisymmetric flow with swirl and non-constant stagnation
enthalpy. For simpler cases there may be only three or four equations.
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Subroutine UPDTKE

Called by Calls

Purpose

EXECT Update k and ¢ after each ADI sweep.
Input
DXI, DETA Computational grid spacing A¢ and A#.
E Turbulent dissipation rate z at time level n.

FBCTI, FBCT2
IBCT]1, IBCT2

JI
KBCPER

KE
NPT1, NPT2

RHO
S

Output

E,EL
KE, KEL

Description

Point-by-point &-¢ boundary condition values for the £ and » di-
rections.

Point-by-point k-¢ boundary condition types for the ¢ and » di-
rections.

Inverse Jacobian of the nonorthogonal grid transformation, J-1.

Flags for spatially periodic boundary conditions in the ¢ and #
directions.

Turbulent kinetic energy k at time level n.

N and N, for non-peniodic boundary conditions, N, + 1 and
N; + 1 for spatially periodic boundary conditions in ¢ and #.

Static density p at time level n.

Computed solution subvector AW.

Turbulent dissipation rate ¢ at time levels n+ 1 and ».

Turbulent kinetic energy & at time levels n-- 1 and n.

Subroutine UPDTKE computes the primitive flow variables X and ¢ from the dependent variables

AW after a complete time step. The formulas are

= 1 (pn+lkn+jAI//£/1n)

n+1

]
n+1_ 1 n+1n o
€ ——p"+1 ("7 e+ JAW,)

where AI/f/, and AVi’z are the dependent variables in delta form for the 4-¢ equations.

Subroutine UPDTKE also explicitly computes the & and ¢ values on the computational boundaries
using the specified boundary conditions, as described below.

No Change From Initial Conditions, Ak =0 andjor Ae =0

Values for k and ¢ are simply not updated. Therefore, their values on the boundaries remain the same

as their initial or restart values.
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Specified values, k= fand or e = f

Values of k and ¢ are simply set equal to the specified values.

Specified Two-Point Gradient in Coordinate Direction, 0k[3¢ = f and or 3/ =

Applying 8k/3¢ = fat the ¢ = 0 boundary, and using two-point one-sided differencing, gives
kyj=ky ;= JAS
At the ¢ = | boundary,
ky,j=kn —1,;+ 1A
Analogous equations can easily be written for the » boundaries, and for é¢/3¢ = f.

Specified Three-Point Gradient in Coordinate Direction, 0k/3¢ = f and'or 0¢[/d¢ = [

Applving 8k/3¢ = fat the ¢ = 0 boundary, and using three-point one-sided differencing, gives
3 (8ky j— k3 ; — 2/A&)

ky .
At the ¢ = 1 boundary,
(kN] —_ l,j - k]vl _2,1 + 2fA§)
klej = 3

Analogous equations can easily be written for the n boundaries, and for 9:/8¢ = f.

Linear Extrapolation

Linearly extrapolating from the interior points for & at the ¢ = 0 boundary gives
kl,j = 2k2,J— k3,]

At the ¢ = | boundary,

kN‘],j=2kN1 kNl

"1)j_ _Zv./

Analogous equations can easily be written for the  boundaries, and for linear extrapolation of &.
Remarks

1. The “no change from initial conditions” boundary condition is applied simply by non-execution of the
other boundary conditions.

2. Periodic boundary conditions are updated by setting the values of k and ¢ at the lower boundary equal
to the corresponding values at the upper boundary.
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Subroutine VORTEX

Called by Calls Purpose
OUTPLT Compute magnitude of total vorticity.
TURBBL
YPLUSN
Input
DXI, DETA Computational grid spacing A and Ay.
ETAX, ETAY Metric coefficients », and #, (or 5, if axisymmetric.)
* NI, N2 Number of grid points ¥, and A, in the ¢ and » directions.
U, V, W Velocities u, v, and w.
XIX, XIY Metric coefficients &, and £, (or &, if axisymmetric.)
Y Radial coordinate r for axisymmetnc flow.
Output
VORT Total vorticity magnitude.
Description

Subroutine VORTEX computes the magnitude of the total vorticity vector. For two-dimensional
planar flow this is defined as

and for axisymmetric flow,

— ow o N ey e\
Nfow  w ow v du
B[ () () (23]

Note that, for flow without swirl, the definition for axisymmetric flow is the same as for two-dimensional
planar flow.

Using the chain rule, these can be rewrtten in generalized nonorthogonal coordinates. For two-
dimensional planar flow,

|Q| = 12w + mv) — Gt + M)
and for axisymmetric flow,
- w \2 5 5 1/2
IQI = [(g’,w§ + W, + T) + (éxw: + r/an) + (éxv§ + Ny, — E,ug = 1,ly) ]

At intenior points, the centered difference formula presented in Section 5.0 of Volume 1 is used to nu-
mencally compute the derivatives in the above equations. At boundary points, second-order one-sided
difference formulas are used.
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Subroutine YPLUSN

Called by Calls Purpose
INITC VORTEX Compute the distance to the nearest solid wall.
KEINIT
TURBCH
Input
*+ LWALLI, LWALL2 Flags specifying wall locations for ¢ and » boundaries.
MU Effective coefficient of viscosity u.
* NI, N2 Number of grid points N, and N, in the ¢ and n directions.
* RER Reference Reynolds number Re,.
RHO Static density p at time level n.
VORT Total vorticity magnitude.
XY Cartesian coordinates x and y, or cylindrical coordinates x and r.
Output
DUMMY Distance to the nearest solid wall.
YPLUSD Nondimensional distance y* from the nearest solid wall.
Description

Subroutine YPLUSN computes the minimum distance to the nearest solid wall and y* for every gnd
point in the computational domain. The steps involved are as followed:
1. Call VORTEX to compute total vorticity magnitude .
2. For every grid point in the computational domain,

3. Compute the shortest distance to each solid wall, and the corresponding wall values of the total
vorticity magnitude, laminar viscosity, and density.

4. Identify the nearest solid wall and select the corresponding minimum distance to the wall y,, the
wall total vorticity magnitude |Q,q|, the wall laminar viscosity i.e, and the wall density pu.r-

+_ . Re, | Qyay! pwau
Y = Hwall

1. The scratch array DUMMY, from the common block DUMMY1, is used to store the minimum dis-
tance to the nearest solid wall.

5. Compute y~ using

Remarks
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