
NASA Technical Memorandum 106339 . .?/i_'7

Proteus Two-Dimensional Navier-Stokes

Computer Code-Version 2.0

Volume 3-Programmer's Reference

Charles E. Towne, John R. Schwab, and Trong T. Bui
Lewis Research Center

Cleveland, Ohio

October 1993

(NAqA-TM-I06339) PROTEUS

TWO-UIMENSInNAL NAVIER-STOKES

COMPUTER CODE, VERSION 2.0. VOLUME

3: PROGRAMMCR, S REFERENCE (NASA)

26o p

G3/34

N94-15867

unclas

0191167

NASA

https://ntrs.nasa.gov/search.jsp?R=19940011394 2020-06-16T19:28:01+00:00Z

CONTENTS

SUMMARY ... 3

1.0 INTRODUCTION .. 5

2.0 PROGRAM STRUCTURE ... 7
2.1 FLOW CHART .. 7
2.2 SUBPROGRAM CALLING TREE ... 10
2.3 PROGRAMMING CONVENTIONS AND NOTES 14

2.3.1 Computer & Language .. 14
2.3.2 Fortran Variables .. 15

3.0 COMMON BLOCKS .. 19
3.1 COMMON BLOCK SUMMARY ... 19
3.2 COMMON VARIABLES LISTED ALPHABETICALLY 19
3.3 COMMON VARIABLES LISTED SYMBOLICALLY 38

4.0 PROTEUS SUBPROGRAMS .. 49
4.1 SUBPROGRAM SUMMARY .. 49
4.2 SUBPROGRAM DETAILS : 51

Subroutine ADI ... 53
Subroutine AVISC 1 .. 54
Subroutine AVISC2 .. 57
Subroutine BCDENS ... 60
Subroutine BCELIM ... 63
Subroutine BCF ... 64
Subroutine BCFLIN .. 69
Subroutine BCGEN .. 71
Subroutine BCGRAD .. 73
Subroutine BCMET .. 74
Subroutine BCPRES .. 75
Subroutine BCQ ... 82
Subroutine BCSET ... 85
Subroutine BCTEMP ... 87
Subroutine BCUVEL ... 93
Subroutine BCVDIR .. 97
Subroutine BCWEL .. 106
Subroutine BC'_WEL .. 110
Subroutine BLIN 1 .. 114
Subroutine BLIN2 .. 116
Subroutine BLKOUT .. 117
Subroutine BLK2 ... 118
Subroutine BLK2P .. 120
Subroutine BLK3 ... 122
Subroutine BLK3P .. 124
Subroutine BLK4 ... 126
Subroutine BLK4P .. 127
Subroutine BLK5 128
Subroutine BLKSP .. 129
BLOCK DATA .. 130
Subroutine BLOUT1 .. 132
Subroutine BLOUT2 .. 135

Proteus 2-D Programmer's Reference Contents I

Subroutine BVUP ... 137
Subroutine COEFC ... 139
Subroutine COEFE : 143
Subroutine COEFS 1 ... 151
Subroutine COEFS2 ... 155
Subroutine COEFX ... 158
Subroutine COEFY ... 165
Subroutine COEFZ .. 173
Subroutine CONV .. 178
Subroutine CUBIC .. 180

Subroutine EQSTAT .. 182
Subroutine EXEC ... 184
Subroutine EXECT ... 188
Subroutine FILTER ... 190
Subroutine FTEMP ... 192
Subroutine GEOM .. 195
Subroutine INIT .. 198
Subroutine INITC .. 199
Subroutine INPUT .. 204
Function ISAMAX .. 206
Function ISAMIN .. 208

Function ISRCHEQ ... 209
Subroutine KEINIT ... 211

MAIN Program .. 213
Subroutine METS ... 216
Subroutine OUTPUT .. 218
Subroutine OUTW .. 220
Subroutine PAK .. 223
Subroutine PERIOD ... 225
Subroutine PLOT ... 227
Subroutine PRODCT .. 230
Subroutine PRTHST .. 232
Subroutine PRTOUT .. 233
Subroutine RESID .. 234
Subroutine REST ... 237
Subroutine ROBTS .. 240
Function SASUM ... 242
Subroutine SGEFA .. 243
Subroutine SGESL .. 244
Function SNRM2 ... 245
Subroutine TBC .. 247
Subroutine TIMSTP ... 249
Subroutine TREMAIN ... 253
Subroutine TURBBL .. 254
Subroutine TURBCH .. 257
Subroutine UPDATE .. 259
Subroutine UPDTKE .. 261
Subroutine VORTEX .. 263
Subroutine YPLUSN .. 264

REFERENCES ... 265

2 Contents Proteus 2-D Programmer's Reference

PROTEUSTWO-DIMENSIONAL
NAVIER-STOKESCOMPUTER CODE - VERSION 2.0

Volume 3 - Programmer's Reference

Charles E. Towne, John R. Schwab, Trong T. Bui

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio

SUMMARY

A computer code called Proteus has been developed to solve the two-dimensional planar or
axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation
law form. The objective in this effort has been to develop a code for aerospace propulsion applications that
is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized.

The governing equations are written in Cartesian coordinates and transformed into generalized
nonorthogonal body-fitted coordinates. They are solved by marching in time using a fuUy-coupled
alternating-direction-implicit solution procedure with generalized first- or second-order time differencing.
The boundary conditions are also treated irrfplicitly, and may be steady or unsteady. Spatially periodic

" boundary conditions are also available. All terms, including the diffusion terms, are hnearized using
second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation
eddy viscosity model.

The program contains many operating options. The governing equations may be solved for two-
dimensional planar flow, or axisymmetric flow with or _ithout swirl. The thin-layer or Euler equations
may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Several time step options are
available for convergence acceleration, including a locally variable time step and global time step cycling.
Simple Cartesian or polar grids may be generated internally by the program. More complex geometries
require an externally generated computational coordinate system.

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents
"the equations and solution procedure used in Proteus. It describes in detail the governing equations, the
turbulence model, the linearization of the equations and boundary conditions, the time and space differ-
encing formulas, the ADI solution procedure, and the artificial viscosity models. Volume 2 is the User's
Guide, and contains information needed to run the program. It describes the program's general features,
the input and output, the procedure for setting up initial conditions, the computer resource requirements,
the diagnostic messages that may be generated, the job control language used to run the program, and se-
veral test cases. Volume 3, the current volume, is the Programmer's Reference, and contains detailed in-
formation useful when modifying the program. It describes the program structure, the Fortran variables
stored in common blocks, and the details of each subprogram.

Version 1.0 of the two-dimensional Proteus code was released in late 1989. The current documentation

covers Version 2.0, released in early 1992.

Proteus 2-D Programmer's Reference Summary 3

i.0 _TRODUCTION

Muchof theeffortin appliedcomputationalfluid dynamicsconsistsofmodifyinganexistingprogram
for whatevergeometriesandflow regLmesareof currentinterestto theresearcher.Unfortunately,nearly
all of theavailablenon-proprietaryprogramswerestartedasresearchprojectswith theemphasisondem-
onstratingthenumericalalgorithmratherthaneaseof useor easeofmodification.Thedevelopersusually
intendto cleanupandformallydocumenttheprogram,but theimmediateneedto extendit to newge-
ometriesandflow regimestakesprecedence.

Theresultisoftena haphazard collection of poorly written code without any consistent structure. An
extensively modified program may not even perform as expected under certain combinations of operating
options. Each new user must invest considerable time and effort in attempting to understand the underlying
structure of the program if intending to do anything more than run standard test cases with it. The user's
subsequent modifications further obscure the program structure and therefore make it even more difficult
for others to understand.

The Proteus two-dimensional Navier-Stokes computer program is a user-oriented and easily-modifiable
flow analysis program for aerospace propulsion applications. Readability, modularity, and documentation
were primary objectives during its development. The entire program was specified, designed, and imple-
mented in a controlled, systematic manner. Strict programming standards were enforced by immediate peer
review of code modules; Kemighan and Plauger (1978) provided many useful ideas about consistent pro-
gramming style. Every subroutine contains an extensive comment section describing the purpose, input
variables, output variables, and calling sequence of the subroutine. With just three clearly-defined ex-
ceptions, the entire program is written in ANSI standard Fortran 77 to enhance portability. A master ver-
sion of the program is maintained and periodically updated with corrections, as well as extensions of general
interest (e.g., turbulence models.)

The Proteus program solves the unsteady, compressible, Reynolds-averaged Navier-Stokes equations in
strong conservation law form. The governing equations are written in Cartesian coordinates and trans-
formed into generalized nonorthogonal body-fitted coordinates. They are solved by marching in time using
a fully-coupled alternating-direction-implicit (ADI) scheme with generalized time and space differencing
(Briley and McDonald, 1977; Beam and Warming, 1978). Turbulence is modeled using either the Baldwin
and Lomax (1978) algebraic eddy-viscosity model or the Ckien (1982) two-equation model. All terms, in-
cluding the diffusion terms, are linearized using second-order Taylor series expansions. The boundar3'
conditions are treated implicitly, and may be steady or unsteady. Spatially periodic boundary conditions
are also available.

The program contains many operating options. The governing equations may be solved for two-
dimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations
may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Several time step options are
available for convergence acceleration, including a locally variable time step and global time step cycling.
Simple grids may be generated internally by the program; more complex geometries require external grid
generation, such as that developed by Chen and Schwab (1988).

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents

the equations and solution procedure used in Proteus. It describes in detail the governing equations, the
turbulence model, the linearization of the equations and boundary conditions, the time and space differ-

encing formulas, the ADI solution procedure, and the artificial viscosity models. Volume 2 is the User's
Guide, and contains information needed to run the program. It describes the program's general features,

the input and output, the procedure for setting up initial conditions, the computer resource requirements,

Proteus 2-D Programmer's Reference 1.0 Introduction 5

PI_EU"_DtN_ Dt_" r,, _,,o. _,,-,--..,ru t_l;r_

the diagnostic messages that may be generated, the job control language used to run the program, and se-
veral test cases. Volume 3, the current volume, is the Programmer's Reference, and contains detailed in-
formation useful when modifying the program. It describes the program structure, the Fortran variables
stored in common blocks, and the details of each subprogram.

Version 1.0 of the two-dimensional Proteus code was released in late 1989 (Towne, Schwab, Benson,

and Suresh, 1990). The current documentation covers Version 2.0, released in early 1992.

The authors would like to acknowledge the significant contributions made by their co-workers. Tom

Benson provided part of the original impetus for the development of Proteus, and did the original coding
of the block tri-diagonal inversion routines. Simon Chen did the original coding of the Baldwin-Lomax
turbulence model, and consulted in the implementation of the nonlinear coefficient artificial viscosity model.
William Kunik developed the original code for computing the metrics of the generalized nonorthogonal grid
transformation. Frank Molls has created separate diagonalized and patched-grid versions of the code.

Ambady Suresh did the original coding for the second-order time differencing and for the nonlinear coeffi-
cient artificial viscosity model. These people,.along with Dick Cavicchi, Julie Conley, Jason Solbeck, and
Pat Zeman, have also run many debugging and verification cases.

6 1.0 Introduction Proteus 2-D Programmer's Reference

2.0 PROGRAMSTRUCTURE

2.1 FLOW CHART

In this section, a flow chart is presented showing the overall sequence of tasks performed by the two-
dimensional Proteus computer code. Depending on the various options used in a particular run, of course,
some of the elements in the chart may be skipped.

I READ RESTART FILES _. YES

IGET_csl

I READ & PRINT INPUT I

GET GRID & METRICS I

[GET INITIAL FLOW_"IELD J

[SET POINT-BY-POINT L

_1 BOUNDARY CONDITIONS [-

PRINT INITIAL FLOWFIELD

Ico_uTET,_STEPS,Z_

IF 'FINN-DEPENDENT

Figure 2.1 - Flow chart for the 2-D Proteus computer code.

Proteus 2-D Programmer's Reference 2.1 Flow Chart 7

ADDEXTRADATALINEAT N+ 1 I
IN SPATIALLY PERIODIC DIRECTIONS J

I

{_-_upFoR_m__m i

[ADD BOUNDARY CONDITIONS 1

COMPUTE RESIDUAI_ WITHOUTARTIFICIAL VISCOSITY TERMS I

IADD ARTIFICIAL VISCOSITY 1

COMPUTE RESIDUALS WITHARTIFICIAL VISCOSITY TERMS I

IPZ_Om_ __A.z_I_rZRSIONl

i

--_ SET UP FOR SECOND SWEEP I

COMPUTE COEFFICIENTS IOF GOVERNING EQUATIONS

I_DBOUSD_ZcommonsI

[ADD ARTIFICIAL VISCOSITY 1

IPERFORM MATRIX INVERSION 1

Figure 2.1 - Continued.

8 2.1 Flow Chart Proteus 2-D Programmer's Reference

FROM F]]_STSWEEP

I UPDATE A[DGI,IARY VARIABLES]

{UPDATE TURBULENCE P_,_-_RS]

l GENERATE OUTPUT l

IGE_RATEOUTPUTI

NO

Figure 2.1 - Concluded.

Proteus 2-D Programmer's Reference 2.1 Flow Chart 9

2.2 SUBPROGRAM CALLING TREE

In this section, the calling sequence for the various subprograms in the Proteus 2-D code is shown using
a tree structure. The subheadings correspond to the elements of the flow chart shown in the previous sec-

tion. The main program, listed in the first column, calls the subprograms in the second column, which in
turn call those in the third column, etc. _ For any given case, of course, some of these routines will not be

used. The subprograms needed for a particular case will depend on the combination of input parameters
being used. The individual subprograms are described in detail in Section 4.0.

INTlrlALIZATION

Read and print input.

MAIN" _ INPUT] ISAMAX 1 1 l

Get grid and metric parameters.

MAIN [GEOM PAK CUBIcROBTS [METS OUTPUT PRTOUT

Get initial flow field.

MAIN INITC METSREST
INIT
FTEMP

EQSTAT
TURBBL

KEINIT

YPLUSN

Set point-by-point boundary condition values.

VORTEX
BLOUT1

B LIN 1
BLOUT2

BLIN2
TURBBL

YPLUSN
PRODCT
VORTEX

ISAMAX
ISAMIN
ISRCHEQ
ISRCHEQ
ISAMAX
ISAMIN

ISRCHEQ
ISRCHEQ
VORTEX
BLO UT 1

BLIN1
BLOUT2

BLIN2
VORTEX

ISAMAX
ISAMIN
ISRCHEQ
ISRCHEQ
ISAMAX
ISAMIN

ISRCHEQ
ISRCHEQ

Throughout this Programmer's Reference, elements of the Fortran language, such as input variables and subpro-
gram names, are printed in the text using uppercase letters. However, in most implementations, Fortran is case-
insensitive. The Proteus source code itself is written in lowercase.

10 2.2 Subprogram Calling Tree Proteus 2-D Programmer's Reference

Initialize plot fries and print initial or restart flow field.

MAIN PLOT
OUTPUT

OUTW

VORTEX
PRTOUT

SET UP FOR TIME STEP

Compute time step size.

MAIN TIMSTP ISAMAX

Reset bounda G" conditions if time-dependent.

MAIN TBC

FILL BLOCK COEFFICIENT MATRIX

Add extra data line at N + 1 if spatially periodic in sweep direction.

MAIN EXEC PERIOD

Compute coefficients of governing equations.

MAIN EXEC EQSTAT
COEFC
COEFX
COEFY
COEFE
COEFZ

Add boundary conditions.

MAIN EXEC EQSTAT
BCGEN

BCELIM

BCQ

BCUWEL

BCWEL

BCWVEL

BCPRES

BCTEMP

BCDENS

BCVDIR

BCF

ISRCHEQ
BLKOUT
SGEFA
SGESL

BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCFLIN
BCMET

Proteus 2-D Programmer's Reference 2.2 Subwogram Calling Tree 11

Compute residuals without artificial viscosity terms (sweep 1 only.)

MAIN EXEC RESID SNRM2
ISAMAX
SASUM

Add artificial viscosity.

MAIN EXEC AVISC1 BLKOUT
AVISC2 BLKOUT

Compute residuals with artificial viscosity terms (sweep 1 only.)

MAIN EXEC RESID SNRM2
ISAMAX
SASUM

SOLVE DIFFERENCE EQUATIONS

Perform matrix inversion.

MAIN EXEC ADI

UPDATE

BLKOUT
BLK3P
BLK3

BLK4P
BLK4

BLK5P
BLK5

FILTER

FILTER

FILTER

ISAMAX

ISRCHEQ
BLKOUT

ISAMAX
ISRCHEQ
BLKOUT

ISAMAX

ISRCHEQ
BLKOUT

12 2.2 Sub.rogram Calling Tree Proteus 2-D Programmer's Reference

Update boundary values from first sweep.

MAIN EXEC BVUP EQSTAT
BCGEN

SGEFA
SGESL

BCQ

BCUVEL

BCVVEL

BCWVEL

BCPRES

BCTEMP

BCDENS

BCVDIR

BCF-

ISRCHEQ
BLKOUT

BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCFLIN
BCMET

FINISH TIME STEP AND CHECK RESULTS

Update auxiliary variables.

MAIN EQSTAT
FTEMP

Update turbulence parameters.

MAIN TURBBL

TURBCH

VORTEX
BLOUT1

BLINI
BLOUT2

BLIN2
YPLUSN
PRODCT
EXECT

ISAMAX
ISAMIN

ISRCHEQ
ISRCHEQ
ISAMAX
ISAMIN

ISRCHEQ
ISRCHEQ
VORTEX

PERIOD
COEFS1
BLK2P
BLK2
COEFS2
BLK2P
BLK2
UPDTKE

Check for convergence, and get CPU time remaining.

MAIN CONV ISAMAX
TREMAIN

Proteus 2-D Programmer's Reference 2.2 Subprogram Calling Tree 13

GENERATE OUTPLT

Print flow field output.

MAIN OUTPUT

OUTW

VORTEX
PRTOUT

Write plot and restart fries.

MAIN I PLOTREST

Print convergence history.

MAIN PRTHST

2.3 PROGRAMMING CONWENTIONS AND NOTES

2.3.1 Computer & Lan_zualze

At NASA Lewis Research Center, Proteus is normally run on a Cray X-MP or Y-MP computer. With

just three known exceptions, it is written entirely in ANSI standard Fortran 77 as described in the CF77

Compiling System, Volume 1: Fortran Reference Manual (Cray Research, Inc., 1990). The fu'st exception
is the use of namelist input. With namelist input, it's relatively easy to create and/or modify input fries, to

read the resulting fries, and to program default values. Since most Fortran compilers allow namelist input,

its use is not considered a serious problem. The second exception is the use of *CALL statements to in-
clude *COMDECK's, which contain the labeled common blocks, in most of the subprograms. This is a

Cray UPDATE feature, and therefore the source code must be processed by UPDATE to create a frie that

can be compiled3 UPDATE is described in the UPDATE Reference Manual (Cray Research, Inc., 1988).

Since using the *CALL statements results in cleaner, more readable code, and since many computer systems

have an analogous feature, the *CALL statements were left in the program. The third exception is the use
of lowercase alphabetic characters in the Fortran source code. This makes the code easier to read, and is

a common extensi, 1 to Fortran 77.

Several library subroutines are called by Proteus. SGEFA and SGESL are Cray versions of LINPACK
routines. SASUM and SNRM2 are Cray Basic Linear Algebra Subprograms (BLAS). ISAMAX,

ISAMIN, and ISRCHEQ are Cray search routines. TREMAIN is a Cray Fortran library routine. All of

these routines are described in detail in Section 4.0. In addition, SGEFA and SGESL are described in

Volume 3: UNICOS Math and Scientific Library Reference Manual (Cray Research, Inc., 1989b) and by

Dongarra, Moler, Bunch, and Stewart (1979); SASUM, SNRM2, ISAMAX, ISAMIN, and 1SRCHEQ are
described in Volume 3: UNICOS Math and Scientific Library Reference Manual (Cray Research, Inc.,

1989b); and TREMAIN is described in Volume 1: UNICOS Fortran Library Reference Manual (Cray Re-

search, Inc., 1989a).

The Proteus code is hio_riy vectorized for optimal performance on the Cray. The coefficient generation

is vectorized in the ADI sweep direction. Since the coefficient matrix is block tridiagonal, the equations are

solved using the Thomas algorithm. This algorithm is recursive, and therefore cannot be vectorized in the

sweep direction. However, by storing the coefficients and source terms in both coordinate directions, the

algorithm can be vectorized in the non-sweep direction. This increases the storage required by the program,

but greatly decreases the CPU time required for the ADI solution.

2 See the example in Section 8.1 of Volume 2.

14 2.3 Programming Conventions and Notes Proteus 2-D Programmer's Reference

2.3.2 Fortran Variables

Variable Names

In developing Proteus, code readability has been emphasized. We have therefore attempted to choose
Fortran variable names that are meaningful. In general, they either match the notation used in the analysis
description in Volume 1, or are in some way descriptive of the parameter being represented. For example,
RHO, U, V, W, and ET are the Fortran variables representing the density p, the velocities u, v, and w, and
the total energy per unit volume Er.

Real and Integer Variables

In general, the type (real or integer) of the Fortran variables follows standard Fortran convention (i.e.,
those starting with I, J, K, L, M, or N are integer, and the remainder are real.) There are, however, several
variables that would normally be integer but are explicitly declared to be real. These are noted in the input
description in Section 3.0 of Volume 2, and in the description of common block variables in Section 3.0
of this volume.

Array Dimensions

Most Fortran arrays are dimensioned using dimensioning parameters. These parameters are set in
COMDECK PARAMS1. This allows the code to be re-dimensioned simply be changing the appropriate
parameters, and then recompiling the entire program. The dimensioning parameters are described ixi Sec-
tion 6.2 of Volume 2.

Initialization

All of the input Fortran variables, plus some additional variables, are initialized in BLOCK DATA.
Most of the input variables are initialized to their default values directly, but some are initialized to values
that trigger the setting of default values in subroutine INPUT. On the Cray X-MP and Y-MP at NASA
Lewis, all uninitialized variables have the value zero. There are no. known instances in the Proteus code,
however, in which a variable is used before it is assigned a value.

N ondimensionalization

In general, Fortran variables representing physical quantities, such as RHO, U, ev_., are nondimensional.
Two types of nondimensionalizing factors are used - reference conditions and normalizing conditions. The
factors used to nondimensionalize the governing equations in Section 2.0 of Volume 1 are called normalizing
conditions. These normalizing conditions are defined by six basic reference conditions, for lenph, velocity,
temperature, density, viscosity, and thermal conductivity, which are specified by the user. The normalizing
conditions used in Proteus are listed in Table 3-1 of Volume 2.

Note that for some variables, like pressure, the normalizing condition is dictated by the form of the
governing equations once the six basic reference conditions are chosen. Unfortunately, some of these may
not be physically meaningful or convenient for use in setting up input conditions. Therefore, some addi-
tional reference conditions are defined from the six user-supplied ones. The reference conditions are listed
in Table 3-2 of Volume 2.

Throughout most of the Proteus code, physical variables are nondimensionalized by the normalizing
conditions. For input and output, however, variables are nondimensionalized by the reference conditions
because they are usually more physically meaningful for the user. The Fortran variables representing the
reference conditions themselves are, of course, dimensional.

One-Dimensional Addressing of Two-Dimensional Arrays

In the solution algorithm used in Proteus, there are several instances in which the same steps must be
followed in both ADI sweep directions. An example is the computation, in the COEFC, COEFX,
COEFY, COEFZ, and COEFE routines, of the submatrices in the block tridiagonal coefficient matrix.
These computations involve various flow variables, such as RHO, U, etc., and metric quantities, such as

Proteus 2-D Programmer's Reference 2.3 Programming Conventions and Notes 15

XIX, XIY, etc. These are stored as two-dimensional arrays, with the two subscripts representing, in order,
the indices in the computational _ and ,7 directions. For the first ADI sweep, values at various _ indices
are needed at a fixed r/index. For the second ADI sweep, the reverse is true. In order to use the same
coding for both sweeps, a scheme for one-dimensional addressing of a two-dimensional array has been
used)

In Fortran, multi-dimensional arrays are actually stored in memory as a one-dimensional sequence of

values, with the fu-st subscript incremented over its range first, then the second subscript, etc. We take ad-
vantage of this in Proteus. As a first step, the two-dimensional array" is equivalenced to a one-dimensional
array of the same total length. The one-dimensional array name is derived from the two-dimensional array
name by adding a "1". Thus, letting F represent a typical two-dimensional array,

dimension f(nlp,nZp),fl(nto_p)
equivalence (f(1,1),fl(1))

where NIP and N2P are dimensioning parameters specifying the dimension size in the _ and n directions,
and NTOTP is a dimensioning parameter equal to NIP x N2P. Next, we define a "step factor", which
depends on the ADI sweep, and a "base index" which depends on the index in the non-sweep direction.
For the first ADI sweep,

istep = 1
do 1000 i2 = 2,npt2-1
iv = i2
ibase = 1 + (i2-1)*nlp

1000 continue

And for the second ADI sweep,

istep = nlp
do 2000 il =
iv = il
ibase = il

2,nptl-1

2000 continue

In both of the above examples, the loop is in the non-sweep direction and IV therefore represents the index
in the non-sweep direction. Nested inside this loop is a loop in the sweep direction. In this inner loop,
we can compute the equivalent one-dimensional address for a location in a two-dimensional array from the
step factor, the base index, and the index in the sweep direction. Thus, for either ADI sweep, the inner loop
looks like

do 100 i = 2,np_s-1
iiml = ibase + istep*(i-2)
ii = ibase + istep*(i-1)
iipl = ibase + istep_i

100 continue

where lrepresentsthe index in thesweepdirection. Withthiscoding, _rthefgstsweep

An alternative would be to switch the order of the two subscripts in these arrays after each sweep. Since these
arrays are used in many other areas of the code, this idea was discarded as being unnecessarily confusing. It should
be noted, however, that there are some other arrays in Proteus in which the order of the two subscripts does switch
between sweeps. This is described in the next subsection.

16 2.3 Programming Conventions and Notes Proteus 2-D Programmer's Reference

fl(iiml) = f(il-l,i2)
fl(ii) = f(il ,i2)
fl(iipl) = f(il+l,i2)

And for the second sweep,

fl(iiml) = f(il,i2-1)
fl(ii) = f(il,i2)
fl(iipl) = f(il,i2+l)

Multi-Dimensional Addressing of One-Dimensional Arrays

As noted in the previous subsection, there are some arrays in Proteus in which the order of the first two
subscripts does switch between ADI sweeps. These are the A, B, C, and S arrays, which represent the co-
efficient submatrices and the source term subvector, and the METX, METY, and METT arrays, which
represent the metric coefficients in the sweep direction. (A, B, and C are actually four-dimensional arrays,
with the third and fourth subscripts representing the equation and dependent variable, respectively. Simi-
larly, S is actually a three-dimensional array, with the third subscript representing the equation. Only the
first two subscripts switch between sweeps, however.) For these arrays, the first subscript is the index in
the non-sweep direction (i.e., the r/direction for the ftrst sweep and the _ direction for the second sweep),
and the second is the index in the sweep direction (i.e., _ for the first sweep and r/for the second sweep.)

These multi-dimensional arrays are actually equivalenced to corresponding one-dimensional arrays,
stored in common blocks NUM1 and METRIC1. 4 The equivalence is done in subroutine EXEC, which
manages the solution of the mean flow equations, and in subroutine EXECT, which manages the solution
of the k-e turbulence model equations. The muhi-dimensional arrays and the appropriate dimensions,
which depend on the ADI sweep, are then passed into lower level routines via the argument list. In the
lower level routines they can then be referenced as normal, multi-dimensional arrays.

Thus, in subroutine EXEC, we have

dimension a(1,1,1,1),b(1,1,1,1),c(1,1,1,1),s(1,1,1)
equivalence (ama_l(1),a(1,1,1,1)),(bmatl(1),b(1,1,1,1)),

(ematl(1),c(1,1,1,1)),(svectl(1),s(1,1,1))
dimension metx(l_l),mety(1,1),mett(1,1)
equivalence (metxl(1),metx(1,1)),(metyl(1),mety(1,1)),

(mettlCl),mettCl,1))

Here METX1, METY1, and METT1 are one-dimensional arrays of length N1P x N2P stored in common
block METRICI. Similarly, AMAT1, BMATI, CMAT1, and SVECT1 are one-dimensional arrays stored
in common block NUM1. AMATI, BMATI, and CMAT1 are of length NIP x N2P x NEQP x NEQP,
and SVECTI is of length NIP x N2P x NEQP.

Using COEFC as an example of a lower level routine, we have

subroutine coefc (a,b,c,s,me_x,mety,mett,nvd,nptsd)
dimension a(nvd,nptsd,neqp,neqp),b(nvd,nptsd,neqp,neqp),

$ c(nvd,nptsd,neqp,neqp),s(nvd,nptsd,neqp)
dimension metx(nvd,nptsd),me_y(nvd,nptsd),mett(nvd,nptsd)

where NVD and NPTSD are the dimensions in the non-sweep and sweep directions, respectively. For the
ftrst sweep, COEFC is thus called from EXEC as

call coefc (a,b,c,s,metx,mety,me¢t,n2p,nlp)

And for the second sweep, COEFC is called as

An alternative would be use the maximum of N 1P and N2P as the size for both of the first two dimensions. In fact,

this is what was done in earlier versions of Proteus. However, if NIP is significantly different from N2P, this is
inefficient, requiring much more storage than the current procedure.

Proteus 2-D Programmer's Reference 2.3 Programming Conventions and Notes 17

call coefc (a,b,c,s,metx,mety,mett,nlp,n2p)

Two-Level Storage

With the Beam-Warming time differencing scheme used in Proteus, the dependent variables RHO, U,
V, W, and ET must be stored at two time levels. For convenience, T is also stored at two time levels. In
the ADI solution procedure, RHO, U, etc. are at the known time level n. The corresponding variable at
the other time level is denoted by adding an "L" to the variable name. Exactly which time level the "L"
variable is at depends on the stage in the solution procedure. Letting F represent one of these variables, the
time levels for F and FL are listed in the follow_ag table for the different stages of the solution procedure.

Recall that * represents the intermediate time level after the f_st ADI sweep.

STAGE IN TIME STEP
FROM LEVEL n TO n + 1

From start to end of sweep 1

From end of sweep 1 to end of sweep 2

From end of sweep 2 to update in EXEC

From update in EXEC to start of next step

TIME LEVEL
FOR F

rl

p/

p/

n+l

TIME LEVEL
FOR FL

n-1

n+l

/7

DUMMY Array

For convenience, a two-dimensional array called DUMMY is stored in common block DUMMYI and
used as a temporary storage location in several areas of the code. This array is dimensioned NIP by N2P,
the same as the flow variables, metrics, etc. DUMMY is used internally in subroutines CONV and RESID.
It is also defined in subroutines BLIN2 and BLOUT2 for use in TURBBL, and in subroutine YPLUSN
for use in subroutines COEFS 1 and KEINIT. And fmaUy, it is defined in subroutine OUTPUT and passed

as an argument into subroutine PRTOUT. Details on its use are presented in the subroutine descriptions
in Section 4.0.

18 2.3 Programming Conventions and Notes Proteus 2-D Programmer's Reference

3.0COMMON BLOCKS

Transfer of data between routines in Proteus is primarily ac-comphshed through the use of labeled

common blocks. Each common block contains variables dealing with a particular aspect of the analysis,
and is stored in a separate Cray COMDECK (Cray Research, Inc., 1988). The common block names are

the same as the COMDECK names. These names also correspond to the names of the input namelists.
All the variables in namelist BC are stored in common block BC1, etc. The Fortran variables in each

common block are stored in alphabetical order.

3.1 COMMON BLOCK SUMMARY

Block Name Description

BCI

BC2

DUMMY1

FLOW1

GMTRY1

ICI

101

METRIC 1

NUM1

NUM2

RSTRT1

TIME1

TITLE I

TURB1

TURB20

Boundary condition parameters for the mean flow equations.

Boundary condition parameters for the k-r equations.

Scratch army.

Variables dealing with fluid properties and the flow being com-
puted.

Parameters defining the geometric configuration.

Variables needed for setting up initial conditions.

Parameters dealing with program input/output requirements.

Metrics of the nonorthogonal grid transformation, plus the
Cartesian coordinates of the grid points.

Parameters associated with the numerical method for the mean
flow equations.

Parameters associated with the numerical method for the k-r
equations.

Parameters dealing with the restart option.

Parameters dealing with the time step selection and convergence
determination.

Descriptive title for case being run.

Turbulence parameters.

Parameters and constants associated with the k-r equations.

3.2 COMMON VARIABLES LISTED .ALPHABETICALLY

In this section all the Proteus Fortran variables stored in common blocks are defined, listed alphabet-
icaUy by variable name. Those marked with an asterisk are input variables. More details on these variables

may be found in Section 3.1 of Volume 2. The common block each variable is stored in is given in pa-

rentheses at the end of each definition. For subscripted variables, the subscripts are defined along with the

variable, except for the subscripts I1 and I2, which are the indices i andj in the _ and _/directions, respec-
tively, and run from 1 to Na and N2.

Proteus 2-D Programmer's Reference 3.2 Common Variables Listed Alphabetically 19

This list also includes the parameters used as array dimensions. These are not actually stored in a
common block, but are stored in the Cray COMDECK PARAMS 1. More details may be found in Section
6.2 of Volume 2.

Unless otherwise noted, all variables representing physical quantities are nondimensional. The
nondimensionalizing procedure is described in Section 3.1.1 of Volume 2. The type (real or integer) of the
variables follows standard Fortran convention, unless stated otherwise. (I.e., those starting with I, J, K,
L, M, or N are integer, and the remainder are real.)

Fortran

Variable Symbol Definition

A A See AMAT1. (NUM1)

AMAT 1(I) A Subdiagonal submatrix of coefficients in the block tridiagonal
coefficient matrix. In actual use, this one-dimensional array
is equivalenced to the four-dimensional array A(IV,IS,J,K).
IS is the grid index in the sweep direction, running from 1 to
N. IV is the grid index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to N, - 1. The subscript J = 1
to N,q, corresponding to the A% coupled governing equations,
and K = 1 to A%, corresponding to the N,_ dependent vari-
ables. (NUM 1)

* APLUS A + Van Driest damping constant in the inner and outer regions
of the Baldwin-Lomax turbulence model. (TURB 1)

B B See BMAT1. (NUM1)

BMAT l(I) B Diagonal submatrix of coefficients in the block tridiagonal
coefficient matrix. In actual use, this one-dimensional array
is equivalenced to the four-dimensional array B(IV,IS,J,K).
IS is the grid index in the sweep direction, running from 1 to
N. IV is the grid index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BI_.K" routines are
vectorized), and runs from 2 to A_ - 1. The subscript J = 1
to Neq, corresponding to the Neq coupled governing equations,
and K = 1 to N,q, corresponding to the N,q dependent vari-
ables. (NUM1)

C C See CMATI. -(NUMI)

* CAVS2E(I) _> or _2

* CAVS2I(I) _l

Second-order explicit artificial viscosity coefficient in constant
coefficient model, or user-specified constant in nonlinear co-
efficient model. The subscript I = 1 to Neq, corresponding to
the N,q coupled governing equations. (NUM I)

Second-order implicit artificial viscosity coefficient in constant
coefficient model. The subscript I = I to N,,, corresponding
to the N,q coupled governing equations. (NUM I)

* CAVS4E(I) e_> or ra Fourth-order explicit artificial viscosity coefficient in constant
coefficient model, or user-specified constant in nonlinear co-
effficient model. The subscript I = I to N,_, corresponding to
the N,q coupled governing equations. (NUM1)

* CB B Constant used in the formula for the Klebanoff intermittency
factor Fr+,b in the outer region of the Baldwin-Lomax turbu-

20 3.2 Common Variables Listed Alphabetically Proteus 2-D Programmer's Reference

* CCLAU K

* ccP c,,

CCP1-4 C,p,- C_

* CFL(I)

* CFLMAX

* CFLMIN

CHGAVG(I)

CHGMAX(I,J) AQmo_

* CHG1

* CHG2

* CKLEB Cxub

* CKMIN (CK/,_),.,.

CK1-2 GI - C,2

CMATI(I) C

lence model, and in the inner region of the Spalding-
Kleinstein turbulence model. (TURBI)

Clauser constant used in the outer region of the Baldwin-
Lomax turbulence model. (TURB I)

Constant used in the outer region of the Baldwin-Lomax tur-
bulence model. (TURB1)

Constants in empirical formula for specific heat as a function
of temperature. (FLOW1)

The ratio Az/Azclz where Ar is the actual time step used in the
implicit calculation and Azcj7 is the allowable time step based
on the Courant-Friedfichs-Lewy (CFL) criterion for explicit
methods. I is the time step sequence number, and runs from
1 to NTSEQ. (TIME1)

Maximum allowed value of the CFL number. (TIME 1)

Mimmum allowed value of the CFL number. (TIME1)

Maximum change in absolute value of the dependent vari-
ables, averaged over the last NITAVG time steps. 5 The sub-
script I = 1 to N,_, corresponding to the N,q dependent
variables. (TIME1)

Maximum change in absolute value of the dependent variables
over a single time step. s The subscript I = 1 to N,q, corre-
sponding to the N,q dependent variables, and J = 1 to
NITAVG, the number of time steps used in the moving av-
erage option for determining convergence. (TIME 1)

Minimum change, in absolute value, that is allowed in any
dependent variable before increasing the time step? (TIME 1)

Maximum change, in absolute value, that is allowed in any
dependent variable before decreasing the time step. s (TIME1)

Constant used in the formula for the Klebanoff intermittency
factor Fxt,_ in the outer region of the Baldwin-Lomax turbu-
lence model. (TURB1)

Constant used in the formula for the Klebanoff intermittency
factor Fr_,b in the outer region of the Baldwin-Lomax turbu-
lence model. (TURB 1)

Constants in empirical formula for thermal conductivity coef-
ficient as a function of temperature. (FLOW1)

Superdiagonal submatrix of coefficients in the block
tridiagonal coefficient matrix. In actual use, this one-
dimensional array is equivalenced to the four-dimensional ar-
ray C(IV,IS,J,K). IS is the grid index in the sweep direction,
running from 1 to N. IV is the grid index in the "vectorized"

s For the energy equation, the change in Er is divided by Er, = pt-RTr/(yr - 1) + u2,/2, so that it is the same order
of magnitude as the other conservation variables.

Proteus 2-D Programmer's Reference 3.2 Common Variables Listed Alphabetically 21

CMUR C,,

CMU1-2 CgI- C_2

CNA n

CNL n

CONE G

CP(II,I2) ep

CTHREE C3

CTWOR G,

CV(II,I2) c,

CVK _:

CWK C,,k

DEL A_ or ,St/

DETA A_

DPDET(I) Op/OEr

DPDRHO(I) @lOp

DPDRU(I) OplO(pu)

direction (i.e., the non-sweep direction in which the "BLK"

routines are vectorized), and runs from 2 to N,- 1. The
subscript J = 1 to N,,, corresponding to the N,q coupled gov-

erning equations, and K = 1 to ,,,V,q,corresponding to the N,q
dependent variables. (N U M 1)

Constant used to compute C, in the turbulent viscosity for-
mula for the k-r equations. (TURB20)

Constants in empirical formula for laminar viscosity coeffi-
cient as a function of temperature. (FLOW 1)

Exponent in the formula used to average the two outer region
_z, profiles that result when both boundaries in a coordinate

direction are solid surfaces. (TURB1)

Exponent in the Launder-Priddin modified mixing length
formula for the inner region of the Baldwin-Lomax turbulence
model. (TURBI)

Constant used in the production term of the c equation.
(TURB20)

Specific heat at constant pressure at time level n. (FLOWI)

Constant used to compute C, in the turbulent viscosity for-
mula for the k-, equations. (TURB20)

Constant used to compute C2 in the dissipation term of the
equation. (TURB20)

Specific heat at constant volume at time level n. (FLOW1)

Von Karman mixing length constant used in the inner region
of the Baldwin-Lomax and Spalding-Kleinstein turbulence
models. (TURB1)

Constant used in the formula for Fw_k, in the outer region of

the Baldwin-Lomax turbulence model. (TURB 1)

Computational grid spacing in the ADI sweep direction.

(NUM1)

Computational grid spacing in the _/direction. (N U M 1)

The derivative of p

dimensional array in
therefore runs from 1

with respect to Er, stored as a one-

the sweep direction. The subscript I
to N. (FLOW1)

The derivative of p
dimensional army in
therefore runs from 1

with respect to p, stored as a one-
the sweep direction. The subscript I

to N. (FLOWl)

The derivative of p
dimensional array in
therefore runs from 1

with respect to pu, stored as a one-

the sweep direction. The subscript I
to N. (FLOW1)

22 3.2 Common Variables Listed Alphabetically Proteus 2-D Programmer's Reference

DPDRV(I) Opl0(pv)

DPDRW(I) dp/O(pw)

* DT(I) At

DTAU(I 1,I2) Ar

DTDET(I) OT/OEr

DTDRHO(I) OT/Op

DTDRU(I) OT/O(pu)

DTDRV(I) OT/O(pv)

DTDRW(I) OT/d(pw)

* DTF I

* DTF2

* DTMAX

* DTMIN

DUMMY(I 1,I2)

DXI A¢

E(I 1,I2)

EL(II,I2)

* EPS(I)

The derivative of p with respect to pv, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

The derivative of p with respect to pw, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

The time step size, when specified directly as input. I is the
time step sequence number, and runs from 1 to NTSEQ.
(TIME1)

Computational time step size. (TIMEI)

The derivative of T

dimensional array in
therefore runs from 1

with respect to Er, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of T

dimensional array in
therefore runs from 1

with respect to p, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of T with respect to pu, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from 1 to N. (FLOWI)

The derivative of T

dimensional array in
therefore runs from 1

with respect to pv, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of T

dimensional army in
therefore runs from 1

with respect to pw, stored as a one-
the sweep direction. The subscript I
to N. (FLOWI)

Factor by which the time step is multiplied if the solution
changes too slowly. (TIMED

Factor by which the time step is divided if the solution
changes too quickly. (TIME 1)

Maximum value that Ar is allowed to reach, or the maximum
Az used in the time step cycling procedure. (TIME1)

Minimum value that Ar is allowed to reach, or the minimum
Az used in the time step cycling procedure. (TIMEI)

Dummy array used for temporary storage in several subrou-
tines. (DUMMYI)

Computational grid spacing in the _ direction. (NUM1)

Turbulent dissipation rate at time level n. (TURB20)

Turbulent dissipation rate at predous or intermediate time
level. (TURB20)

Convergence level to be reached. The subscript I = 1 to N,q,
corresponding to the A% dependent variables. (TIME1)

Proteus 2-D Programmer's Reference 3.2 Common Variables Listed Alphabetically 23

ER

ET(II,I2)

ETAT(I 1,I2)

ETAX(II,I2)

ETAY(I 1,I2)

ETL(II,I2)

FBCT l(I2,I,J)

* FBCT2(II,I,J)

* FBCI(I2,I,J)

* FBC2(II,I,J)

* GAMR

* GBCTI(I,J)

* GBCT2(I,J)

¢,

Er

t/t

lzlx

rl._ or 17,

ET

)lr

Dimensional reference energy, p,u2,. (FLOW1)

Total energy at time level n. (FLOW1)

The derivative of the computational coordinate _/with respect
to untransforrned time t. (METRIC1)

The derivative of the computational coordinate rt with respect
to the Cartesian coordinate x. (METRIC1)

The derivative of the computational coordinate _/with respect
to the Cartesian coordinate y or cylindrical coordinate r.
(METRIC1)

Total energy at previous or intermediate time level. (FLOW 1)

Point-by-point values used for boundary conditions for the
k-, turbulence model on the _ = 0 and _ = 1 boundaries.
These are either set in the input, if a point-by-point distrib-
ution is being specified by the user, or by the program itself.
The subscript I = 1 or 2, corresponding to the k and
equations, respectively, and J = 1 or 2, corresponding to the

= 0 and _ = 1 boundaries, respectively. (BC2)

Point-by-point values used for boundary" conditions for the
k-_ turbulence model on the _/= 0 and _/= 1 boundaries.
These are either set in the input, if a point-by-point distrib-
ution is being specified by the user, or by the program itself.
The subscript I = 1 or 2, corresponding to the k and
equations, respectively, and J = 1 or 2, corresponding to the
_/= 0 and r/= 1 boundaries, respectively. (BC2)

Point-by-point values used for steady boundary conditions on
the _ = 0 and _ = I surfaces. These are either set in the input,
if a point-by-point distribution is being specified by the user,
or by the program itself. I runs from 1 to '_Lq,corresponding
to the Neq conditions needed, and J = 1 or 2, corresponding
to the _ = 0 and _ = 1 boundaries, respectively. (BC1)

Point-by-point values used for steady boundary conditions on
the _/= 0 and r/= 1 surfaces. These are either set in the input,
if a point-by-point distribution is being specified by the user,
or by the program itself. I runs from 1 to N_q, corresponding
to the Nq conditions needed, and J = 1 or 2, corresponding
to the r/= 0 and r/= I boundaries, respectively. (BC1)

Reference ratio of specific heats, c_,r/c,r. (FLOW1)

Values used for boundary conditions for the k-c turbulence
model on the _ = 0 and_ = 1 boundaries, when specified for
the entire surface. The subscript I = 1 or 2, corresponding to
the k and , equations, respectively, and J = 1 or 2, corre-
sponding to the _ = 0 and _ = 1 boundaries, respectively.
(BC2)

Values used for boundary conditions for the k-_ turbulence
model on the r/= 0 and _/= 1 boundaries, when specified for
the entire surface. The subscript I = 1 or 2, corresponding to
the k and e equations, respectively, and J = 1 or 2, corre-

24 3.2 Common Variables Listed Alphabetically Proteus 2-D Programmer's Reference

* GBCI(I,J)

* GBC2(I,J)

GC g_

* GTBCI(K,I,J)

* GTBC2(K,I,J)

HSTAG hr

* HSTAGR hr,

* IAV2E

* IAV2I

* IAV4E

sponding to the g = 0 and _ = 1 boundaries, respectively.
(BC2)

Values used for steady boundary conditions on the _ = 0 and
= 1 boundaries, when specified for the entire surface. I runs

from 1 to A%, corresponding to the N,q conditions needed, and
J = 1 or 2, corresponding to the _ = 0 and _ = 1 boundaries,
respectively. (BC1)

Values used for steady boundary conditions on the _7= 0 and
= 1 boundaries, when specified for the entire surface. I runs

from 1 to Nq, corresponding to the ,V,q conditions needed, and
J = 1 or 2, corresponding to the _/= 0 and _/= 1 boundaries,
respectively. (BC1)

Dimensional proportionality factor in Newton's second law,
either 32.174 lbm-ft/lbrsec 2, or 1.0 kg-mlN-sec 2. (FLOW1)

A variable used to specify the values for unsteady and time-
periodic boundary conditions on the _ = 0 and ¢ = 1 bound-
aries. I runs from 1 to N,,, corresponding to the N,q
conditions needed, and J = 1 or 2, corresponding to the

= 0 and _ = I boundaries, respectively. For general un-
steady boundary conditions, K = 1 to NTBC, corresponding
to the time levels in the array NTBCA, and GTBCI specifies
the boundary condition value directly. For time-periodic
boundary conditions,-K = 1 to 4, and GTBC1 specifies the
four coefficients in the equation used to determine the
boundary condition value. (BCI)

A variable used to specify the values for unsteady and time-
periodic boundary conditions on the _/= 0 and rl = 1 bound-
aries. I runs from 1 to N,q, corresponding to the N,q
conditions needed, and J = I or 2, corresponding to the
_/= 0 and _ = 1 boundaries, respectively. For general un-
steady boundary conditions, K = 1 to NTBC, corresponding
to the time levels in the array NTBCA, and GTBC2 specifies
the boundary condition value directly. For time-periodic
boundary conditions, K = 1 to 4, and GTBC2 specifies the
four coefficients in the equation used to determine the
boundary condition value. (BCI)

Sta.gnation enthalpy used with constant stagnation enthalpy
optlon. (FLOW I)

Dimensional stagnation enthalpy used with constant stag-
nation enthalpy option. (FLOW1)

Flag for second-order explicit artificial viscosity; 0 for none, 1
for constant coefficient model, 2 for nonlinear coefficient

model. (NUMI)

Flag for second-order implicit artificial viscosity; 0 for none,

1 for constant coefficient model. (NUM1)

Flag for fourth-order explicit artificial viscosity; 0 for none, 1
for constant coefficient model, 2 for nonlinear coefficient

model. (NUM 1)

Proteus 2-D Programmer's Reference 3.2 Common Variables Listed Alphabetically 25

IAXI

IBASE

IBCELM(Ij)

IBCTI(I2,IJ)

IBCT2(I l,I,J)

IBC l(I2,l,J)

IBC2(II,I,J)

IBVUP(I)

ICHECK

ICONV

Flag for two-dimensional planar or axisymmetric flow; 0 for
two-dimensional planar, 1 for axisymmetric. (GMTRY 1)

Base index used with ISTEP to compute one-dimensional
index for two-dimensional array. Then, for example, for any

sweep U(II,I2) = UI(IBASE + ISTEP*(I - 1)) where I is the
grid index in the sweep direction. (NUMI)

Flags for elimination of off-diagonal sub-matrices resulting
from gradient or extrapolation boundary conditions: 0 if
elimination is not necessary, 1 if it is. The subscript I = 1 or
2 corresponding to the sweep direction, and J = 1 or 2 corre-
sponding to the lower or upper boundary in that direction.
(BCl)

Flags specifying, point-by-point, the type of boundary condi-
tions used for the k-t turbulence model on the _ = 0 and

= 1 surfaces. These are either set in the input, if a point-
by-point distribution is specified by the user, or by the pro-
gram itself. The subscript I = 1 or 2, corresponding to the k
and t equations, respectively, and J = 1 or 2, corresponding
to the _ = 0 and _ = 1 boundaries, respectively. (BC2)

Flags specifying, point-by-point, the type of boundary condi-
tions used for the k-_ turbulence model on the _ = 0 and
n = 1 surfaces. These are either set in the input, if a point-
by-point distribution is specified by the user, or by the pro-
gram itself. The subscript I = 1 or 2, corresponding to the k
and _ equations, respectively, and J = 1 or 2, corresponding
to the _t = 0 and _/= 1 boundaries, respectively. (BC2)

Flags specifying, point-by-point, the type of steady boundary
conditions used on the ¢ = 0 and _ = 1 surfaces. These are
either set in the input, if a point-by-point distribution is
specified by the user, or by the program itself. I runs from 1
to Neq, corresponding to the A% conditions needed, and J = 1
or 2, corresponding to the ¢ = 0 and ¢ = 1 boundaries, re-
spectively. (BCI)

Flags specifying, point-by-point, the type of steady boundary
conditions used on the r/= 0 and _/= 1 surfaces. These are
either set in the input, if a point-by-point distribution is
specified by the user, or by the program itself. I runs from 1
to N,q, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the r/= 0 and _/= 1 boundaries, re-
spectively. (BC1)

Flags for updating boundary values from the first sweep after
the last sweep: 0 if updating is not necessary, 1 if it is. Up-

dating is required when gradient or extrapolation boundary
conditions are used. The subscript I = 1 or 2, corresponding
to the lower or upper boundary" in the first sweep direction.
(BC1)

Results are checked for convergence every ICHECK'th time
level. (TIME1)

Convergence flag; 0 if not converged, 1 if converged.

(TIME1)

26 3.2 Common Variables Listed Alphabetically Proteus 2-D Programmer's Reference

* ICTEST

* ICVARS

* IDEBUG(I)

* IDTAU

* IDTMOD

* IEULER

IGAM

IGINT(I),

* IHSTAG

* ILAMV

* ILDAMP

INEG

* INNER

* IPACK(I)

* IPLOT

* IPLT

* IPLTA(I)

Flag for convergence criteria to be used. (TIME 1)

Parameter specif_4ng which variables are being supplied as
initial conditions by subroutine INIT. (FLOW1)

A 20-element array of flags specifying various debug options.
(I01)

Flag for time step selection method. (TIME1)

The time step size is modified every IDTMOD'th time step.
(TIME1)

Flag for Euler calculation option; 0 for a full time-averaged
Navier-Stokes calculation, 1 for an Euler calculation.
(FLOW1)

Flag set by method used to select GAMR; 0 if GAMR is de-
faulted (and hence cp and cv are functions of temperature), 1
if GAMR is specified by user (and hence cp and c, are con-
stants). (FLOWI)

Flags for grid interpolation requirement; 0 if interpolation is
not needed, 1 if interpolation is needed. The subscript I = 1
or 2, corresponding to the ¢ and r/ directions, respectively.
(GMTRYI)

Flag for constant stagnation enthalpy option; 0 to solve the
energy equation, 1 to eliminate the energy equation by as-
suming constant stagnation enthalpy. (FLOW1)

Flag for computation of laminar viscosity and thermal
conductivity; 0 for constant values, 1 for functions of local
temperature. (FLOW1)

Flag for the Launder-Priddin modified mixing len_h formula
in the inner region of the Baldwin-Lomax turbulence model.
(TURB1)

Flag indicating non-positive values of pressure and/or tem-
perature: 0 for no non-positive values, 1 for some. (FLOW1)

Flag for type of inner region turbulence model. (TURB 1)

Flags for grid packing option; 0 for no packing, 1 to pack

points as specified by the input array SQ. The subscript
I = 1 or 2, corresponding to the _ and v/ directions, respec-
tively. (NUM1)

Flag controlling the creation of an auxiliary file, usually called
a "plot file", used for later post-processing. (IO 1)

Results are written into the plot file every IPLT time levels.
(I01)

Time levels at which results are written into the plot file. The
subscript I = 1 to 101, the maximum number of time levels
that may be written. (IO1)

Proteus 2-D Programmer's Reference 3.2 Common Variables Listed Alphabetically 27

IPRT

IPRTA(I)

IPRT1

IPRT2

IPRTIA(I)

IPRT2A(I)

IREST

ISTEP

ISWEEP

ISWIRL

IT

ITBEG

ITDBC

ITEND

ITETA

ITHIN(I)

ITSEQ

ITURB

n

Results are printed ever) IPRT time levels. (IO I)

Time levels at which results are printed. The subscript I = 1
to 101, the maximum number of time levels that may be

printed. (IO1)

Results are printed at ever)" IPRTl'th mesh point in the
direction. (IO 1)

Results are printed at every IPRT2'th mesh point in the ,/
direction. (IO1)

indices at which results are printed. The subscript I = 1 to
a maximum of N 1, the number of grid points in the ¢ direc-

tion. (IO1)

t/ indices at which results are printed. The subscript I = 1 to
a maximum of N2, the number of grid points in the n direc-
tion. (IO1)

Flag controlling the reading and writing of auxiliary fries used
for restarting the calculation in a separate run. (RSTRT1)

Multiplication factor used with IBASE to compute one-
dimensional index for two-dimensional array. (NUM 1)

Flag specifying ADI sweep direction; 1 for ¢ direction and 2
for _/direction. (NUM1)

Flag for swirl in axisymmetric flow; 0 for no swirl, I for swirl.
(FLOW1)

Current time step number, or known time level. Time step
number n updates the solution from time level n to n + 1.
(TIME1)

The time time step number, or known time level n, at the

beginning of a run. For a non-restart case, ITBEG = 1.
(TIME1)

Flag for time-dependent boundary conditions; 0 if all bound-
ary conditions are steady, 1 if any general unsteady boundary
conditions are used, 2 if only steady and time-periodic
boundary conditions are used. (BC 1)

The final time step number. (TIMEI)

Flag for computing turbulent viscosity on constant y/ lines.
(TURB1)

Flags for thin-layer option; 0 to include 2nd. derivative
viscous terms, I to eliminate them. The subscript I = 1 or 2,

corresponding to the _ and vl directions, respectively.
(FLOW1)

Current time step sequence number. (TIME1)

Flag for turbulent flow option; 0 for laminar flow, 1 for tur-
bulent flow using the Baldwin-Lomax algebraic turbulence

28 3.2 Common Variables Listed Alphabetically Proteus 2-D Programmer's Reference

* ITXI

* IUNITS

IV /_

* IVOUT(I)

* IWALLI(I)

* IWALL2(I)

* IWOUTI(I)

* IWOUT2(I)

I1 i

I2 j

JBCTI(I,J)

* JBCT2(I,J)

* JBCI(I,J)

model, 20 for turbulent flow using the Chien two-equation
k-t turbulence model. (TURB1)

Flag for computing turbulent viscosity on constant _ lines.
(TURBI)

Flag for type of units used to specify reference conditions;
0 for English units, 1 for SI units. (IO1)

Grid point index in the "vectorized" direction (i.e., the non-

sweep direction in which the "BLK" routines are vectorized).
Therefore, IV =j for the first sweep and i for the second
sweep. (NUMI)

A 50-element array specifying which variables are to be
printed. (IO1)

Flags indicating type of surfaces in the _ direction; 0 for a free
boundary, 1 for a solid wall. The subscript I = 1 or 2, cone=
sponding to the _ = 0 and _ = 1 surfaces, respectively.
(TURB 1)

Flags indicating type of surfaces in the _ direction; 0 for a free

boundary, 1 for a solid wall. The subscript I = 1 or 2, corre-
sponding to the _/=0 and _/= 1 surfaces, respectively.
(TURBI)

Flags specifying whether or not various parameters are to be
printed along the _ boundaries; 0 for no printout, 1 for print-
out along the boundary. The subscript I = 1 or 2, corre-
sponding to the _ = 0 and _ = 1 boundaries, respectively.
(IO1)

Flags specifying whether or not various parameters are to be
printed along the _ boundaries; 0 for no printout, 1 for print-
out along the boundary. The subsc'ipt I = 1 or 2, corre-
sponding to the J7 = 0 and _/= 1 boundaries, respectively.
(IO1)

Grid point index in the _ direction. (NUM1)

Grid point index in the _/direction. (NUM1)

Flags specifying the type of boundary conditions used for the
k-e turbulence model on the _ = 0 and _ = 1 surfaces, when
specified for the entire surface. The subscript I = 1 or 2, cor-
responding to the k and e equations, respectively, and J = 1
or 2, corresponding to the _ = 0 and _ = 1 boundaries, re-
spectively. (BC2)

Flags specifying the type of boundary conditions used for the
k-e turbulence model on the _/= 0 and r/= I surfaces, when
specified for the entire surface. The subscript I = 1 or 2, cor-
responding to the k and s equations, respectively, and J = 1
or 2, corresponding to the r/= 0 and _ = 1 boundaries, re-
spectively. (BC2)

Flags specifying the type of steady boundary conditions used
on the _ = 0 and _ = 1 surfaces, when specified for the entire

Proteus 2-D Programmer's Reference 3.2 Common Variables Listed Alphabetically 29

* JBC2(I,J)

JI(II,I2) j-1 or rJ -x

* JTBC l(I,J)

* JTBC2(I,J)

KBCPER(I)

* KBC l(J)

* KBC2(J)

KE(II,I2) k

KEL(II,I2) k

KT(II,I2) k

* KTR k,

LA(II,I2) 2

* LR L_

surface. I runs from 1 to N,q, corresponding to the .V,q con-
ditions needed, and J = 1 or 2, corresponding to the _ = 0 and

= 1 boundaries, respectively. (BC1)

Flags specifying the type of steady boundary conditions used
on the rt = 0 and rt = 1 surfaces, when specified for the entire
surface. I runs from 1 to A_q, corresponding to the N,q con-
ditions needed, and J = 1 or 2, corresponding to the _ = 0 and
,/= 1 boundaries, respectively. (BC1)

Normally the inverse Jacobian of the non-orthogonal grid
transformation. For the COEF routines in axisymmetric
flow, it is temporarily redefined as the product of the local
radius and the inverse Jacobian. This is a real variable.

(METRIC1)

A variable specifying the t_T_ of time dependency for the
boundary conditions on the _ = 0 and _ = 1 boundaries. I

runs from 1 to N,,, corresponding to the Ne, conditions
needed, and J = 1 or 2, corresponding to the ¢ = 0 and _ = 1
boundaries, respectively. (BC1)

A variable specifying the type of time dependency for the
boundary conditions on the '7 = 0 and r/= 1 boundaries. I
runs from 1 to A%q, corresponding to the Neq conditions
needed, and J = 1 or 2, corresponding to the _/= 0 and _ = 1
boundaries, respectively. (BC 1)

Flags for spatially periodic boundary conditions: 0 for non-
periodic, I for periodic. The subscript I = I or 2, corre-
sponding to the _ and r/directions, respectively. (BC1)

Flags for type of boundaries in the _ direction. The subscript
J -- 1 or 2, corresponding to the _ = 0 and _ -- 1 boundaries,
respectively. (BC 1)

Flags for type of boundaries in the _/direction. The subscript
J = 1 or 2, corresponding to the _ = 0 and ,/= 1 boundaries,
respectively. (BCI)

Turbulent kinetic energy at time level n. This is a real vari-
able. (TURB20)

Turbulent kinetic energy at previous or intermediate time
level. This is a real variable. (TURB20)

Effective thermal conductivity coefficient at time level n. This
is a real variable. (FLOW1)

Dimensional reference thermal conductivity coefficient. This
is a real variable. (FLOW1)

Effective second coefficient of viscosity at time level n (usually
assumed equal to - 2#/3,) This is a real variable. (FLOW1)

Dimensional reference lenph.
(FLOW1)

This is a real variable.

30 3.2 Common Variables Listed Alphabetically Proteus 2-D Programmer's Reference

LRMAX(I,J,K)

LWAKE 1(I2)

LWAKE2(I 1)

* LWALLI(I2,I)

* LWALL2(I 1,I)

LWSET(I)

* MACHR Mr

METTI(I) ¢:, or n,

METXI(I) _ or _/_

METYI(I) Cy or _,

The grid indices corresponding to the location of the maxi-
mum absolute value of the residual. The subscript I = 1 or
2, corresponding to the ¢ and r/directions, respectively, J = I
to N,q, corresponding to the ._ coupled governing equations,
and K = 1 or 2, corresponding to the residual computed
without and with the artificial viscosity terms. (TIME 1)

Grid point index in the ¢ direction used as the origin for
'computing len_h scales for free turbulent flows. (TURB 1)

Grid point index in the r/ direction used as the origL.a for
computing lenph scales for free turbulent flows. (TURBI)

Flags indicating, point-by-point, the type of surfaces in the
direction; 0 for a free boundary', 1 for a solid wall. The sub-
script I=1 or 2, corresponding to the _=0 and _=1
boundaries, respectively. (TURB 1)

Flags indicating, point-by-point, the type of surfaces in the ,/
direction; 0 for a free boundary', 1 for a solid wall. The sub-
script I=l or 2, corresponding to the _/=0 and _/=1
boundaries, respectively. (TURB 1)

Flags specifying how wall locations are determined for the

turbulence model; 0 if wall locations are found automatically
by searching for boundary points where the velocity is zero,
1 if input using the LWALL parameters, 2 if input using the
IWALL parameters. The subscript I = 1 to 4, corresponding
to the _ = 0, _ = l, _/= 0, and _ = l boundaries, respectively.
(TURB1)

Reference Mach number, url(_,,R 7",)1/2. This is a real variable.
(FLOW1)

The derivative of the computational coordinate in the ADI
sweep direction with respect to untransformed time t. In ac-
tual use, this one-dimensional array is equivalenced to the
two-dimensional array METT(IV,IS). 1S is the grid index in
the sweep direction, running from 1 to N. IV is the grid index
in the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to
N, - 1. This is a real variable. (METRIC1)

The derivative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate x.
In actual use, this one-dimensional array is equivalenced to
the two-dimensional array METX(IV,IS). IS is the grid index
in the sweep direction, running from 1 to N. IV is the grid
index in the "vectorized" direction (i.e., the non-sweep direc-
tion in which the nBLK" routines are vectorized), and runs
from 2 to A_ - 1. This is a real variable. (METRIC1)

The derivative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate y or
cylindrical coordinate r. In actual use, this one-dimensional
array is equivalenced to the two-dimensional array
METY(IV,IS). IS is the grid index in the sweep direction,
running from 1 to N. IV is the grid index in the %ectorized n
direction (i.e., the non-sweep direction in which the "BLK"

Proteus 2-D Programmer's Reference 3.2 Common Variables Listed Alphabetically 31

MU(II,I2)

MUR

MUT(II,I2)

MUTL(II,I2)

NAMAX

NBC

NC

NDTCYC

NEN

NEQ

NEQP

NEQPM

NET

NGEOM

NGRID

NHIST

NHMAX

NIN

NITAVG

iz

/--Lr

]-&t

,_/eq

routines are vectorized), and runs from 2 to N, - 1. This is a

real variable. (METRICI)

Effective viscosity coefficient at time level n. This is a real
variable. (FLOW1)

Dimensional reference viscosity coefficient. This is a real

variable. (FLOW1)

Turbulent viscosity coefficient at time level n. This is a real

variable. (FLOW1)

Turbulent viscosity coefficient at previous or intermediate
time level. This is a real variable. (TURB20)

A dimensioning parameter equal to the maximum number of
time steps allowed in the moving average convergence test (the
ICTEST-= 2 option). (PARAMS 1)

A dimensioning parameter equal to the number of boundary
conditions per equation. (PARAMS 1)

Array index associated with the continuity equation.
(NUM1)

Number of time steps per cycle used in the time step cycling
procedure. (TIME 1)

Array index associated with the energy equation. (NUM 1)

The number of coupled governing equations actually being
solved. (NUM1)

A dimensioning parameter equal to the number of coupled
equations allowed. (PARAMS 1)

A dimensioning parameter equal to the maximum number of
coupled equations available. (PARAMS I)

Array index associated with the dependent variable ET.
(NUM1)

Flag used to specify type of computational coordinates; 1 for
Cartesian (xy) coordinates, 2 for polar (r',0') coordinates, and
10 to read the coordinates from unit NGRID. (GMTRY1)

Unit number for reading grid file. (I01)

Unit number for writing convergence history file. (I01)

Maximum number of time levels aUowed in the printout of

the convergence history file (not counting the first two, which
are always printed.) (IO1)

Unit number for reading namelist input. (I01)

Number of time steps used in the moving average convergence
test. (TIME1)

32 3.2 Common Variables Listed Alphabetically Proteus 2-D Programmer's Reference

NMAXP

NOUT

NPLOT

NPLOTX

N PRT 1

NPRT2

NPTS

NPT1

N

N_ or N_ + 1

NPT2 N2 or A½+ 1

NR

* NRQIN

* NRQOUT

NRU

NRV

NRW

* NRXIN

* NRXOUT

* NSCR1

* NTBC

* NTBCA(I)

* NTIME(I)

A dimensioning parameter equal to the maximum of N 1P and
N2P. (PARAMSI)

Unit number for writing standard output. (IOl)

Unit number for writing CONTOUR or PLOT3D Q plot file.
(IO1)

Unit number for writing PLOT3D XYZ plot file. (IO1)

Totul number of indices for printout in the _ direction. (IO1)

Total number of indices for printout in the ,7 direction. (IO 1)

The number of grid points in the sweep direction. (NUM1)

The number of grid points in the _ direction used in com-
puting coefficients: N, for non-periodic boundary conditions;
N_ + 1 for spatially periodic boundary conditions. (NUM 1)

The number of grid points in the _ direction used in com-
puting coefficients: N2 for non-periodic boundary conditions;
N2 + 1 for spatially periodic boundary conditions. (NUMI)

Array index associated with the dependent variable p.
(NUM1)

Unit number for reading restart flow field. (RSTRTI)

Unit number for writing restart flow field. (RSTRT1)

Array index associated with the dependent variable pu.
(NUM1)

Array index associated with the dependent variable pv.
(NUM1)

Array index associated with the dependent variable pw.
(NUM1)

Unit number for reading restart computational mesh.
(RSTRT1)

Unit number for writing restart computational mesh.
(RST.RT1)

Unit number for scratch file in subroutine PLOT. (IO1)

Number of values in the tables of GTBC 1 and/or GTBC2 vs.
NTBCA for general unsteady boundary conditions. (BCI)

Time levels at which GTBC1 and/or GTBC2 are specified for
general unsteady boundary conditions. The subscript I = 1 to
NTBC, corresponding to the NTBC values in the table.
(BCl)

Maximum number of time steps to march. I runs from 1 to
NTSEQP, corresponding to the time step sequence number.
(TIME1)

Proteus 2-D Programmer's Reference 3.2 Common Variables Listed Alphabetically 33

NTKE

NTOTP

NTP

NTSEQ

NTSEQP

NV N,

NXM

NYM

NZM

N1

NIP

N2

N2P

NI

P(I 1,I2) p

PONE Pl

PR

PRLR PG

PRR Pr,

PRT Pr,

PTWO /'2

Number of k-, iterations per mean flow iteration. (TURB20)

A dimensioning parameter equal to the total storage required
for a single two-dimensional array (i.e., N1PxN2P).
(PARAMS 1)

A dimensioning parameter equal to the maximum number of
entries in the table of time-dependent boundary condition
values. (PARAMS 1)

The total number of time step sequences being used.
(TIME1)

A dimensioning parameter equal to the maximum number of
time step sequences i_n the time step sequencing option.
(PARAMS 1)

The number of grid points in the "vectorized" direction (i.e.,
the non-sweep direction in which the "BLK" routines are
vectorized). Therefore, NV = N2 for the first sweep and N_ for
the second sweep. (NUM 1)

Array index associated with the x-momentum equation.
(NUM1)

Array index associated with the y or r-momentum equation.
(SUM1)

Array index associated wkh the swirl momentum equation.
(NUM1)

The number of grid points in the _ direction. (NUM1)

A dimensioning parameter equal to the maximum number of
grid points in the _ direction. (PARAMS1)

The number of grid points in the _ direction. (NUMI)

A dimensioning parameter equal to the maximum number of
grid points in the ,/direction. (PARAMS1)

Static pressure at time level n. (FLOW1)

Part 1 of the production rate of the turbulent kinetic energy.
(TURB20)

?

Dimensional reference static pressure, prRT,/go. (FLOW1)

Reference laminar Prandtl number, cp,_dk,, where

cp,=y,Rl(y,- 1). (FLOW1)

Reference Prandtl number, _z,u}lk, T,. (FLOW1)

Turbulent Prandtl number, or, ff non-positive, a flag indicat-
ing the use of a variable turbulent Prandtl number. (TURB1)

Part 2 of the production rate of the turbulent kinetic energy.
(TURB20)

34 3.2 Common Variables Listed Alphabetically Proteus 2-D Programmer's Reference

* P0 po

RAX(I) 1 or r

* RER Rer

RESAVG(J,K) R._ x

RESL2(J,K) RL_

RESMAX(J,K) R,..x

* REXT1 Rext.

* REXT2 Rex_.

RG

RGAS R

RHO(II,I2) p

RHOL(I 1,I2) p

* RHOR p,

* RMAX r',.°.

* RMIN r'.,_,

S S

* SIGE cr,

* SIGK o,

Initial static pressure. (IC1)

1 for two-dimensional planar flow, and the local radius r for

axisymrnetric flow. I is the grid index in the sweep direction,
running from 1 to N. (METRIC1)

Reference Reynolds number, p,u,L/l_,. (FLOW 1)

The average absolute value of the residual for the previous
time step. The subscript J = 1 to A%, corresponding to the
N,q coupled governing equations, and K = 1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIME1)

The/4 norm of the residual for the previous time step. The
subscript J = 1 to N.q, corresponding to the Ar coupled gov-
erning equations, and K = 1 or 2, corresponding to the resi-
dual computed without and with the artificial viscosity terms.
(TIMEI)

The maximum absolute value of the residual for the previous
time step. The subscript J = 1 to /V,q, corresponding to the
N,q coupled governing equations, and K = 1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIME1)

Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from _ = O, for
flow predominantly in the _ direction with a leading edge at

= O. (TURBI)

Reynolds number at the beginning-of the transition region,
based on maximum total velocity and distance from n = 0, for
flow predominantly in the rt direction with a leading edge at
rt = 0. (TURB1)

Dimensional gas constant. (FLOW 1)

Nondirnensional gas constant. (FLOW1)

Static density at time level n. (FLOW1)

Static density at previous or intermediate time level.
(FLOW1)

Dimensional reference density. (FLOW1)

Maximum r' coordinate for polar grid option. (GMTRY1)

Minimum r' coordinate for polar grid option. (GMTRY1)

See SVECT1. (NUM1)

Constant used in the diffusion term of the _ equation.
(TURB20)

Constant used in the diffusion term of the k equation.
(TURB20)

Proteus 2-D Programmer's Reference 3.2 Common Variables Listed Alphabetically 35

SQ(I,J)

SVECTI(I) S

T(I1,I2) T

TAU(I 1,I2) -r

TFACT

* THC(I) 01, 02

* THE(I) 01, 02, 0s

* THKE(I) 01, 02

* THMAX 0"ox

* THMIN 0"_

* THX(I) 01, 02, 03

* THY(I) 0h 02, 03

* THZ(I) 01, 02, 03

* TITLE

TL(II,I2) T

* TLIM

* TR 7",

* TO To

An array controlling the packing of grid points using the
Roberts transformation. The subscript I = 1 or 2, corre-
sponding to the _ and _ directions, respectively. SQ(I,1)
specifies the location of packing, and SQ(I,2) specifies the
amount of packing. (NUM1)

Subvector of source terms in the block tridiagonal system of

equations. In actual use, this one-dimensional array is equiv-
alenced to the three-dimensional array S(IV,IS,J). IS is the
grid index in the sweep direction, running from 1 to N. IV is
the grid index in the "vectorized" direction (i.e., the non-sweep
direction in which the "BLK" routines are vectorized), and
runs from 2 to N,-1. The subscript J = 1 to N,q, corre-
sponding to the N,¢ coupled governing equations. (NUM 1)

Static temperature at time level n. (FLOW1)

Current value of the time marching parameter. (TIME1)

Factor used in computing the k-e time step,
A-r,., = TFACT(A-r). (TURB20)

A two-element array specifying the time difference centering
parameters used for the continuity equation. (NUM 1)

A three-element array specifying the time difference centering
parameters used for the energy equation. (NUM1)

A two-element array" specifying the time difference centenng
parameters used for the k-e equations. (NUM2)

Maximum 0' coordinate in degrees for polar grid option.
(GMTRY1)

Minimum 0' coordinate in degrees for polar grid optmn.
(GMTRYI)

A three-element array specifying the time difference centering
parameters used for the x-momentum equation. (NUM1)

A three-element array specifying the time difference centering
parameters used for the y or r-momentum equation. (NUM I)

A three-element array specifying the time difference centering
parameters used for the swirl momentum equation. (N UM 1)

Title for printed output and CONTOUR plot file, up to 72
characters long. This is a character variable. (TITLE1)

Static temperature at previous or intermediate time level.
(FLOW1)

When the amount of CPU time remaining for the job drops
below TLIM seconds, the calculation is stopped. (TIME1)

Dimensional reference temperature. (FLOW1)

Initial static temperature. (IC1)

36 3.2 Common Variables Listed Alphabetically Proteus 2-D Programmer's Reference

U(II,I2)

UL(II,I2)

UR

U0

V(I 1,I2)

u,

u0

Y

VL(II,I2)

VORT(II,I2)

VORT(I 1,I2)

V0

61

61
vo

w(Ii,I2)

WL(I 1,I2)

W

W

W0

X(II,I2)

XIT(II,I2)

W0

x

XIX(II,I2) ¢_

XIY(II,I2) _y or _,

* XMAX x,,**

* XMIN x,,u,

Y(II,I2) y or r

* YMAX y,,°,

* YMIN ymin

Velocity in the Cartesian x direction at time level n.
(FLOWI)

Velocity in the Cartesian x direction at previous or interme-
diate time level. (FLOW1)

Dimensional reference velocity. (FLOWI)

Initial velocity in the Cartesian x direction. (ICI)

Velocity in the Cartesian y direction or cylindrical r direction
at time level n. (FLOW1)

Velocity in the Cartesian y direction or cylindrical r direction
at previous or intermediate time level. (FLOW 1)

Total vorticity magnitude. (TURB1)

Production rate of turbulent kinetic energy. (TURB 1)

Initial velocity in the Cartesian y direction or cylindrical r di-
rection. (IC1)

Swirl velocity at time level n. (FLOW1)

Swirl velocity at previous or intermediate time level.
(FLOW1)

Initial swirl velocity. (IC1)

Cartesian x coordinate. (METRIC1)

The derivative of the computational coordinate _ with respect
to untransformed time t. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate x. (METRICI)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate y or cylindrical coordinate r.
(METRIC1)

Maximum x coordinate for Cartesian grid option.
(GMTRY1)

Minimum x coordinate for Cartesian grid option.
(GMTRYI)

Cartesian y coordinate or cylindrical r coordinate.
(METRICI)

Maximum y coordinate for Cartesian grid. option.
(GMTRY1)

Minimum y coordinate for Cartesian grid option.
(GMTRY1)

Proteus 2-D Programmer's Reference 3.2 Common Variables Listed Alphabetically 37

YPLUSD(II,I2) y" Non-dimensional distance from the nearest solid wall.

(TLRB20)

3.3 COMMON VARIABLES LISTED SYMBOLICALLY

In this section many of the Proteus Fortran variables stored in common blocks are defined, listed sym-
bolically. Note that this list does not include those variables without symbolic representations, such as
various flags, or those whose meaning depends on other parameters, such as the boundary condition values
and sweep direction metrics. The variables marked with an asterisk are input variables. More details on
these may be found in Section 3.1 of Volume 2. The common block each variable is stored in is given in
parentheses at the end of each definition. For subscripted variables, the subscripts are defined along with
the variable, except for the subscripts II and I2, which are the indices i andj in the _ and _ directions, re-

spectively, and run from 1 to N_ and N2.

Unless otherwise noted, all variables representing physical quantities are nondimensional. The
nondimensionalizing procedure is described in Section 3.1.1 of Volume 2. The type (real or integer) of the
variables follows standard Fortran convention, unless stated otherwise. (I.e., those starting with I, J, K,

L, M, or N are integer, and the remainder are real.)

Fortran

Symbol Variable

* A ÷ APLUS

Definition

Van Driest damping constant in the inner and outer regions
of the Baldwin-Lomax turbulence model. (TURB 1)

A AMATI(I) Subdiagonal submatrix of coefficients in the block tridiagonal
coefficient matrix. In actual use, this one-dimensional array

is equivalenced to the four-dimensional array A(IV,IS,J,K).
IS is the grid index in the sweep direction, running from 1 to
N. IV is the grid index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to N, - 1. The subscript J = 1
to N,q, corresponding to the N,q coupled governing equations,
and K = 1 to N_, corresponding to the N,_ dependent vari-
ables. (NUM1)

* B CB Constant used in the formula for the Klebanoff intermittency
factor Fx_,b in the outer region of the Baldwin-Lomax turbu-
lence model, and in the inner region of the Spalding-
Kleinstein turbulence model. (TURBI)

B BMATI(I) Diagonal submatrix of coefficients in the block tridiagonal
coefficient matrix. In actual use, this one-dimensional array

is equivalenced to the four-dimensional array B(IV,ISj,K).
IS is the grid index in the sweep direction, running from 1 to
N. IV is the grid index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to N,- 1. The subscript J = 1
to N,q, corresponding to the A% coupled governing equations,
and K = 1 to A_, corresponding to the .V,q dependent vari-
ables. (NUM 1)

cp CP(II,I2)

c, CV(II,I2)

Specific heat at constant pressure at time level n. (FLOW1)

Specific heat at constant volume at time level n. (FLOW1)

* C_p CCP Constant used in the outer region of the Baldwin-Lomax tur-

bulence model. (TURB 1)

38 3.3 Common Variables Listed Symbolically Proteus 2-D Programmer's Reference

CCP1-CCP4

Ckl - Ck2 CK1-2

* CKIe b CKLEB

* (C,..,)_,o CKMIN

* C. CMUR

C_, - C_ CMU1-2

* C., CWK

* C1 CONE

* G. CTWOR

* G CTHREE

C CMATI(I)

e_

Er

Er

g,

ER

ET(II,I2)

ETL(II,12)

GC

]'l T HSTAG

* hTr HSTAGR

i I1

Constants in empirical formula for specific heat as a function
of temperature. (FLOWI)

Constants in empirical formula for thermal conductivity coef-
ficient as a function of temperature.

Constant used in the formula for the Klebanoff intermittency
factor Fxub in the outer region of the Baldwin-Lomax turbu-
lence model. (TURB1)

Constant used in the formula for the Klebanoff interrnittency
factor FK_ in the outer region of the Baldwin-Lomax turbu-
lence model. (TURB1)

Constant used to compute C, in the turbulent viscosity for-
mula for the k-, equations. (TURB20)

Constants in empirical formula for laminar viscosity coeffi-
cient as a function of temperature. (FLOW1)

Constant used in the formula for F,..,. in the outer re,on of
the Baldwin-Lomax turbulence model. (TURB 1)

Constant used in the production term of the _ equation.
(TURB20)

Constant used to compute C2 in the dissipation term of the
equation. (TURB20)

Constant used to comiSute C. in the turbulent viscosity for-
mula for the k-e equations. (TURB20)

Superdiagonal submatrix of coefficients in the block
tridiagonal coefficient matrix. In actual use, this one-
dimensional array is equivalenced to the four-dimensional ar-
ray C(IV,IS,J,K). IS is the grid index in the sweep direction,
running from 1 to N. IV is the grid index in the Hvectofized"
direction (i.e., the non-sweep direction in which the "BLK"
routines are vectorized), and runs from 2 to N,- 1. The
subscript J = 1 to N,q, corresponding to the Neq coupled gov-
erning equations, and K = 1 to N,q, corresponding to the N,q
dependent variables. (NUM 1)

Dimensional reference energy, p,u¢. (FLOW1)

Total energy at time level n. (FLOWI)

Total energy at previous or intermediate time level. (FLOW1)

Dimensional proportionality factor in Newton's second law,
either 32.174 lbm-ft/lbr-sec 2, or 1.0 kg-m/N-sec 2. (FLOWI)

Stagnation enthalpy used with constant stagnation enthalpy
option. (FLOWl)

Dimensional stagnation enthalpy used with constant stag-
nation enthalpy option. (FLOW1)

Grid point index in the _ direction. (NUM1)

Proteus 2-D Programmer's Reference 3.3 Common Variables Listed Symbolically 39

i, IV

j 12

j- l JI(I 1,I2)

k KT(II,I2)

k KE(II,I2)

k KEL(I 1,I2)

* k, KTR

* K CCLAU

* L, LR

* M, MACHR

n IT

* n CNA

* n CNL

N NPTS

N,q NEQ

N, NV

* N1 N 1

Grid point index in the "vectorized" direction (i.e., the non-
sweep direction in which the "BLK" routines axe vectorized).
Therefore, IV =j for the fixst sweep and i for the second

sweep. (NUMI)

Grid point index in the g direction. (NUM1)

Inverse Jacobian of the non-orthogonal grid transformation.

(For axisymmetric flow, in the COEF routines JI = rJ- 1, the
product of the local radius and the inverse Jacobian.) This is
a real variable. (METRIC1)

Effective thermal conductivity coefficient at time level n. This
is a real variable. (FLOW1)

Turbulent kinetic energy at time level n. This is a real vari-

able. (TURB20)

Turbulent kinetic energ3 r at previous or intermediate time
level. This is a real variable. (TURB20)

Dimensional reference thermal conductivity coefficient. This

is a real variable. (FLOW1)

Clauser constant used in the outer region of the Baldwin-

Lomax turbulence model. (TURB 1)

Dimensional reference length. This is a real variable.

(FLOW1)

Reference Mach number, u,/(_,R Tr) 1:2. This is a real variable.

(FLOW1)

Current time step number, or known time level. Time step
number n updates the solution from time level n to n + I.

(TIME1)

Exponent in the formula used to average the two outer region

t_, profiles that result when both boundaries in a coordinate
direction axe solid surfaces. (TURB1)

Exponent in the Launder-Priddin modified mixing len_h
formula for the inner region of the Baldwin-Lomax turbulence

model. (TURBI)

The number of grid points in the sweep direction. (NUM 1)

The number of coupled governing equations actually being

solved. (NUMI)

The number of grid points in the "vectorized" direction (i.e.,
the non-sweep direction in which the "BLK" routines are

vectorized). Therefore, NV = _,_ for the first sweep and N_ for
the second sweep. (NUM 1)

The number of grid points in the _ direction. (NUM1)

40 3.3 Common Variables Listed Symbolically Proteus 2-D Programmer's Reference

NI NPT1

N_+ I NPTI

N2

NPT2

_ + 1 NPT2

p P(II,I2)

p_ PR

Po P0

Op/OEr DPDET(I)

Op/Op DPDRHO(I)

OplO(pu) DPDRU(I)

Op/O(pv) DPDRV(I)

aplc3(pw) DPDRW(1)

Pl PONE

P2 PTWO

* PG PRLR

Pr, PRR

The number of grid points in the ¢ direction used in com-

puting coefficients (only for non-periodic boundary condi-

tions.) (NUMI)

The number of grid points in the _ direction used in com-

puting coefficients (only for spatially periodic boundary con-
ditions.) (NUMI)

The number of grid points in the _ direction. (NUM1)

The number of grid points in the _ direction used in com-

puting coefficients (only for non-periodic boundary condi-

tions.) (NUM1)

The number of grid points in the _/ direction used in com-

puting coefficients (only for spatially periodic boundary con-

ditions.) (NUM1)

Static pressure at time level n. (FLOW1)

Dimensional reference static pressure, p,R T,/gc. (FLOW1)

Initial static pressure. (IC1)

The derivative of p

dimensional array in
therefore runs from 1

with respect to Er, stored as a one-

the sweep direction. The subscript I
to N. (FLOW1)

The derivative of p

dimensional array in
therefore runs from 1

with respect to p, stored as a one-

the sweep direction. The subscript I

to N. (FLOW1)

The derivative of p
dimensional array in
therefore runs from 1

with respect to pu, stored as a one-
the sweep direction. The subscript I

to N. (FLOWI)

The derivative of p
dimensional array in
therefore runs from I

with respect to pv, stored as a one-
the sweep direction. The subscript I

to N. (FLOW1)

The derivative of p

dimensional array in
therefore runs from 1

with respect to pw, stored as a one-

the sweep direction. The subscript I

to N. (FLOW1)

Part 1 of the production rate of the turbulent kinetic ener_'.

(TURB20)

Part 2 of the production rate of the turbulent kinetic ener_'.

(TURB20)

Reference laminar Prandtl number, cpAz,/k,, where

C,, = y,R/(yr - 1). (FLOW1)

Reference Prandtl number, uMlk, T,. (FLOW1)

Proteus 2-D Programmer's Reference 3.3 Common Variables Listed Symbolically 41

* Pr, PRT

AQo,g CHGAVG(1)

AQ,,,_ CHGMAX(I,J)

r Y(II,I2)

r RAX(I)

* r',._l RMAX

* r',,_ RMIN

R m RESAVG(J,K)

RL2 RESL2(J,K)

R,._ RESMAX(J,K)

* R- RG

R RGAS

* Re, RER

* Re,_,, REXT1

Turbulent Prandtl number, or, if non-positive, a flag indicat-
ing the use of a variable turbulent Prandtl number. (TURB1)

Maximum change in absolute value of the dependent vari-
ables, averaged over the last NITAVG time steps. 6 The sub-
script I = 1 to N,,, corresponding to the Nq dependent
variables. (TIME1)

Maximum change in absolute value of the dependent variables
over a single time step? The subscript I = 1 to Neq, corre-
sponding to the N,, dependent variables, and J = 1 to
NITAVG, the number of time steps used in the moving av-
erage option for determining convergence. (TIME I)

Cylindrical r coordinate. (METRIC 1)

Local radius r for axisymmetric flow. I is the grid index in the

sweep direction, running from 1 to N. (METRIC1)

Maximum r' coordinate coordinate for polar grid option.

(GMTRY1)

Minimum r' coordinate coordinate for polar grid option.
(GMTRY1)

The average absolute value of the residual for the previous

time step. The subscript J = 1 to .V,q, corresponding to the
N,q coupled governing equations, and K = 1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIME1)

The La norm of the residual for the previous time step. The
subscript J = 1 to N,q, corresponding to the N,q coupled gov-
erning equations, and K = 1 or 2, corresponding to the resi-
dual computed without and with the artificial viscosity terms.
(TIME1)

The maximum absolute value of the residual for the previous
time step. The subscript J = 1 to N,q, corresponding to the
N,q coupled governing equations, and K = 1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIME1)

Dimensional gas constant. (FLOW1)

Nondimensional gas constant. (FLOW1)

Reference Reynolds number, p,u,L_]u,. (FLOW 1)

Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from _ = O, for

flow predominantly in the _ direction with a leading edge at
=0. (TURB1)

6 For the energy equation, the change in Er is divided by Er, = #,-RTrI(y, - 1) + u2,/2, so that it is the same order
of magnitude as the other conservation variables.

42 3.3 Common Variables Listed Symbolically Proteus 2-D Programmer's Reference

* Rex,, REXT2

S SVECTI(I)

* At DT(I)

T T(II,I2)

T TL(II,I2)

aT[aEr DTDET(I)

OT]Op DTDRHO(I)

OT/O(pu) DTDRU(I)

OT/O(pv) DTDRV(I)

aT[O(pw) DTDRW(I)

* Tr TR

* To TO

u U(II,I2)

u UL(II,I2)

* u, UR

* u0 U0

v V(I 1,I2)

Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from rt = 0, for
flow predominantly in the r/direction with a leading edge at
rt = 0. (TURB1)

Subvector of source terms in the block tridiagonal system of
equations. In actual use, this one-dimensional array is equiv-
alenced to the three-dimensional array S(IV,IS,J). IS is the
grid index in the sweep direction, running from 1 to N. IV is

the grid index in the "vectorized" direction (i.e., the non-sweep
direction in which the "BLK" routines are vectorized), and
runs from 2 to N_- 1. The subscript J = 1 to N_q, corre-
sponding to the ,V,q coupled governing equations. (NUM 1)

The time step size, when specified directly as input. I is the
time step sequence number, and runs from 1 to NTSEQ.
(TIME1)

Static temperature at time level n. (FLOW1)

Static temperature at previous or intermediate time level.
(FLOW1)

The derivative of T

dimensional array in
therefore runs from 1

with respect to Er, stored as a one-
the sweep direction. The subscript I
to N. (FLOWI)

The derivative of T

dimensional array in
therefore runs from 1

with respect to p, stored as a one-
the sweep direction. The subscript I
to N. (FLOWI)

The derivative of T

dimensional array in
therefore runs from 1

with respect to pu, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of T

dimensional array in
therefore runs from 1

with respect to pv, stored as a one-
the sweep direction. The subscript I
to N. (FLOWI)

The derivative of T

dimensional array in
therefore runs from 1

with respect to pw, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

Dimensional reference temperature. (FLOWI)

Initial static temperature. (IC 1)

Velocity in the Cartesian x direction at time level n.
(FLOWI)

Velocity in the Cartesian x direction at previous or interme-
diate time level. (FLOW1)

Dimensional reference velocity. (FLOW 1)

Initial velocity in the Cartesian x direction. (ICI)

Velocity in the Cartesian y direction or cylindrical r direction
at time level n. (FLOWl)

Proteus 2-D Programmer's Reference 3.3 Common Variables Listed Symbolically 43

v VL(II,12)

v0 V0

w W(II,I2)

w WL(I 1,I2)

Velocity in the Cartesian y direction or cylindrical r direction

at previous or intermediate time level. (FLOWl)

Initial velocity in the Cartesian y direction or cylindrical r di-
rection. (IC1)

Swirl velocity at time level n. (FLOW1)

Swirl velocity at previous or intermediate time level.
(FLOW1)

w0 W0 Initial swirl velocity. (IC1)

x X(II,I2) Cartesian x coordinate. (METRIC1)

x,,,_ XMAX Maximum x coordinate for Cartesian grid option.
(GMTRY1)

x,_,_ XMIN Minimum x coordinate for Cartesian grid option.
(GMTRY1)

y Y(I 1,12) Cartesian y coordinate. (METRIC 1)

y_ YMAX Maximum y coordinate for Cartesian grid option.
(GMTRY1)

y,_i_ YMIN Minimum y coordinate for Cartesian grid option.
(GMTRY1)

y+ YPLUSD(II,I2) Non-dimensional distance from the nearest solid wall.
(TURB20)

EPS(I)

E(II,I2)

EL(I 1 ,I2)

_) CAVS2E(I)

_) CAVS4E(I)

_l CAVS2I(I)

_, ETAY(I 1,12)

n, METYI(1)

Convergence level to be reached. The subscript I = 1 to N,q,
corresponding to the N,q dependent variables. (TIME l)

Turbulent dissipation rate at time level n. (TURB20)

Turbulent dissipation rate at previous or intermediate time
level. (TURB20)

Second-order explicit artificial viscosity coefficient in constant
coefficient model. The subscript I = 1 to 3,_, corresponding
to the N,q coupled governing equations. (NUM1)

Fourth-order explicit artificial viscosity coefficient in constant
coefficient model. The subscript I = 1 to N,q, corresponding

to the N,q coupled governing equations. (NUM 1)

Second-order implicit artificial viscosity coefficient in constant
coefficient model. The subscript I = 1 to N,q, corresponding

to the A_ coupled governing equations. (NUM1)

The derivative of the computational coordinate _/with respect
to the cylindrical coordinate r. (METRIC1)

The derivative of the computational coordinate r/with respect
to the cylindrical coordinate r (second ADI sweep only.) In
actual use, this one-dimensional array is equivalenced to the

44 3.3 Common Variables Listed Symbolically Proteus 2-D Programmer's Reference

_t ETAT(II,I2)

METTI(I)

ETAX(I 1,I2)

METX 1(I)

ETAY(I 1,I2)

METYI(I)

A_ DEL

A_ DETA

K CVK

* K2 CAVS2E(I)

* K4 CAVS4E(I)

two-dimensional array METY(IV,IS). IS is the grid index in
the sweep direction, running from 1 to N. IV is the grid index
in the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to
N, - 1. This is a real variable. (METRIC1)

The derivative of the computational coordinate _ with respect

to untransformed time t. (METRIC1)

The derivative of the computational coordinate _ with respect
to untransformed time t (second ADI sweep only.) In actual
use, this one-dimensional array is equivalenced to the two-
dimensional array METT(IV,IS). IS is the grid index in the
sweep direction, running from 1 to N. IV is the grid index in
the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to
N, - 1. This is a real variable. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate x. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate x (second ADI sweep only.) In
actual use, this one-dimensional array is equivalenced to the
two-dimensional array METX(IV, IS). IS is the grid index in
the sweep direction, running from 1 to N. IV is the grid index_
in the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to
N, - 1. This is a real variable. (METRIC1)

The derivative of the computational coordinate r/with respect
to the Cartesian coordinate y. (METRIC1)

The derivative of the computational coordinate r/with respect
to the Cartesian coordinate y (second ADI sweep only.) In
actual use, this one-dimensional array is equivalenced to the
two-dimensional array METY(IV, IS). IS is the grid index in
the sweep direction, running from 1 to N. IV is the grid index
in the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to
N, - 1. This is a real variable. (METRIC1)

Computational grid spacing in the _ direction (second ADI
sweep only.) (NUM1)

Computational grid spacing in the n direction. (NUM1)

Von Karman mixing lenph constant used in the inner region
of the Baldwin-Lomax and Spalding-Kleinstein turbulence
models. (TURB1)

User-specified constant in nonlinear coefficient artificial
viscosity model. The subscript I = 1 to N,q, corresponding to
the N,q coupled governing equations. (NUM 1)

User-specified constant in nonlinear coefficient artificial

viscosity model. The subscript I = 1 to N,q, corresponding to
the N,q coupled governing equations. (NUM 1)

Proteus 2-D Programmer's Reference 3.3 Common Variables Listed Symbolically 45

y, GAMR

2 LA(II,I2)

t_ MU(II,I2)

_r
MUR

u_ MUT(II,I2)

u, MUTL(I 1,I2)

4, XIY(II,I2)

4, METYI(I)

4, XIT(I 1,I2)

3, METTI(1)

_x XIX(II,I2)

_ METX 1(I)

_ XIY(II,I2)

{y METY 1(I)

Reference ratio of specific heats, cp,/c,,. (FLOW1)

Effective second coefficient of viscosity at time level n (usually

assumed equal to - 2M3.) This is a real variable. (FLOW1)

Effective viscosity coefficient at time level n. This is a real

variable. (FLOWI)

Dimensional reference viscosity coefficient. This is a real

variable. (FLOW1)

Turbulent viscosity coefficient at time level n. This is a real

variable. (FLOW1)

Turbulent viscosity coefficient at previous or intermediate
time level. This is a real variable. (TURB20)

The derivative of the computational coordinate _ with respect
to the cylindrical coordinate r. (METRIC 1)

The derivative of the computational coordinate _ with respect
to the cylindrical coordinate r (first ADI sweep only:) In ac-
tual use, this one-dimensional array is equivalenced to the
two-dimensional array METY(IV,IS). IS is the grid index in
the sweep direction, running from 1 to N. IV is the grid index
in the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to
N_ - 1. This is a real variable. (METRIC1)

The derivative of the computational coordinate _ with respect
to untransformed time t. (METRIC1)

The derivative of the computational coordinate _ with respect
to untransformed time t (fast ADI sweep only.) In actual use,
this one:dimensional array is equivalenced to the two-
dimensional array METT(IV,IS). IS is the grid index in the
sweep direction, running from 1 to N. IV is the grid index in
the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to

N_ - 1. This is a real variable. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate x. (METRICI)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate x (fast ADI sweep only.) In ac-
tual use, this one-dimensional array is equivalenced to the
two-dimensional array METX(IV,IS). IS is the _Tid index in
the sweep direction, ruaning from 1 to N. IV is the grid index
in the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to

N, - 1. This is a real variable. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate y. (METRIC1)

The derivative of the computational coordinate ¢ with respect
to the Cartesian coordinate y (fast ADI sweep only.) In ac-

tual use, this one-dimensional array is equivalenced to the

46 3.3 Common Variables Listed Symbolically Proteus 2-D Programmer's Reference

A_ DEL

A¢ DXI

p RHO(I 1,I2)

p RHOL(II,I2)

* p, RHOR

* at SIGK

* a, SIGE

-r TAU(II,I2)

Az DTAU (I 1 ,I2)

0_x THMAX

* 0",. THMIN

* 01, 02 THC(I)

* 0,, 02 THKE(I)

* 01, 02, 83 THE(l)

* 0x, 02, 03 THX(I)

* 01, 02, 03 THY(I)

* 01, 02, 03 THZ(I)

Ifi[VORT(II,12)

Ifil VORT(II,12)

two-dimensional array METY(IV, IS). IS is the grid index in
the sweep direction, running from I to N. IV is the grid index
in the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to
N, - 1. This is a real variable. (METRIC1)

Computational grid spacing in the _ direction (fu-st ADI
sweep only.) (NUM1)

Computational grid spacing in the ¢ direction. (NUM1)

Static density at time level n. (FLOW1)

Static density at previous or intermediate time level.
(FLOW1)

Dimensional reference density. (FLOWI)

Constant used in the diffusion term of the k equation.
(TURB20)

Constant used in the diffusion term of the c equation.
(TURB20)

Current value of the time marching parameter. (TIMEI)

Computational time step size. (TIME1)

Maximum O' coordinate in

(GMTRY1)

Minimum 0' coordinate in

(GMTRY1)

degrees for polar grid option.

degrees for polar grid option.

A two-element array specifying the time difference centenng
parameters used for the continuity equ,,Iion. (NUM 1)

A two-element array specifying the time difference centering
parameters used for the k-e equations. (NUM2)

A three-element array specifying the time difference centering
parameters used for the energy equation. (NUMI)

A three-element array specifying the time difference centering
parameters used for the x-momentum equation. (NUM1)

A three-element array specifying the time difference centering
parameters used for the y or r-momentum equation. (NUM 1)

A three-element array specifying the time difference centering
parameters used for the swirl momentum equation. (NUM 1)

Total vorticity magnitude. (TURB 1)

Production rate of turbulent kinetic energy. (TURB 1)

Proteus 2-D Programmer's Reference 3.3 Common Variables Listed Symbolically 47

p_r

4.0 PROTEUS SUBPROGRAMS

In this section, each subprogram in Proteus is described, first in summary, then in detail. The summary
is simply a list of the subprograms with a brief description of the purpose of each one. The detailed de-
scription includes, for each subprogram, a list of the subprograms that reference it, and a list of the sub-
programs that it references. The Fortran variables that are input to and output from each subprogram are
defined. And fmaUy, details of the computations being done within each subprogram are presented.

4.1 SUBPROGRAM SUM.MARY

The following table presents a brief description of the purpose of each subprogram in the Proteus code.

Proteus Subprogram Summary

Subprogram Purpose

ADI

AVISC 1

AVISC2

BCDENS

BCELIM

BCF

BCFLIN

BCGEN

BCGRAD

BCMET

BCPRES

BCQ

BCSET

BCTEMP

BCUVEL

BCVDIR

BCWEL

BCWVEL

BLINI

BLIN2

BLKOUT

BLK2

BLK2P

BLK3

BLK3P

Manage the block tridiagonal inversion.

Compute constant coefficient artificial viscosity.

Compute nonlinear coefficient artificial viscosity.

Compute density boundary conditions.

Eliminate off-diagonal coefficient submatrices resulting from
three-point boundary conditions.

Compute user-written boundary conditions.

User-supplied routine for linearization of user-supplied boundary
conditions.

Manage computation of boundary conditions.

Compute gradients with respect to _ and ,7.

Compute various metric functions for normal gradient boundary
conditions.

Compute pressure boundary conditions.

Compute conservation variable boundary conditions.

Set various boundary condition parameters and flags.

Compute temperature boundary conditions.

Compute x-velocity boundary conditions.

Compute normal and tangential velocity boundary conditions.

Compute y or r-velocity boundary conditions.

Compute swirl velocity boundary conditions.

Compute inner layer turbulent viscosity along constant _ lines.

Compute inner layer turbulent viscosity along constant q lines.

Print coefficient blocks at specified indices in the _ and _ di-
rections.

Solve 2 × 2 block tridiagonal system of equations.

Solve 2 × 2 periodic block tridiagonal system of equations.

Solve 3 × 3 block tridiagonal system of equations.

Solve 3 x 3 periodic block tridiagonal system of equations.

Proteus 2-D Programmer's Reference
PRECEDING P_.GE _LI';...",IK NOT FtLMEo "0

A Proteus Subprograms 49

Proteus Subprogram Summary

Subprogram Purpose

BLK4

BLK4P

BLK5

BLK5P

BLOCK DATA

BLOUT1

BLOUT2

BVUP

COEFC

COEFE

COEFS1

COEFS2

COEFX

COEFY

COEFZ

CONV

CUBIC

EQSTAT

EXEC

EXECT

FILTER

FTEMP

GEOM

INIT

INITC

INPUT

ISAMAX

ISAMIN

ISRCHEQ

KEINIT

MAIN

METS

Solve 4 x 4 block tridiagonal system of equations.

Solve 4 x 4 periodic block tfidiagonal system of equations.

Solve 5 x 5 block tridiagonal system of equations.

Solve 5 x 5 periodic block tridiagonal system of equations.

Set default values for input parameters, plus a few other parame-
ters.

Compute outer layer turbulent _'iscosity along constant _ lines.

Compute outer layer turbulent viscosity along constant _/lines.

Update first sweep boundary values after second sweep.

Compute coefficients and source terms for the continuity equation.

Compute coefficients and source terms for the energy equation.

Compute coefficients and source terms for the k and e equations
for the first ADI sweep.

Compute coefficients and source terms for the k and e equations
for the second ADI sweep.

Compute coefficients and source terms for the x-momentum
equation.

Compute coefficients and source terms for the y or r-momentum
equation.

Compute coefficients and source terms for the swirl momentum
equation.

Test computed flow field for convergence.

Interpolation using Ferguson's parametric cubic.

Use equation of state to compute pressure, temperature, and their
derivatives with respect to the dependent variables.

Manage solution of the mean flow equations.

Manage solution of the k-r equations.

Rearrange rows of the boundary condition coefficient submatrices
and the source term subvector to elLrninate any zeroes on the di-
agonal.

Compute auxi/Jary variables that are functions of temperature.

Manage computation of grid and metric parameters.

Get user-defined initial flow field.

Set up consistent initial conditions based on data from INIT.

Read and print input, perform ratio.us initializations.

Find the first index corresponding to the largest absolute value of
the elements of an vector. This is a Cray search routine.

Find the fast index corresponding to the smallest absolute value
of the elements of an vector. This is a Cray search routine.

Find the first index in an array whose element is equal to a speci-
fied value. This is a Cray search routine.

Get user-defined initial conditions for k and _.

Manage overall solution.

Compute metrics of nonorthogonal grid transformation.

50 4.0 Proteus Subprograms Proteus 2-D Programmer's Reference

Proteus Subprogram Summary

Subprogram Purpose

OUTPUT

OUTW

PAK

PERIOD

PLOT

PRODCT

PRTHST

PRTOUT

RESID

REST

ROBTS

SASUM

SGEFA

SGESL

SNRM2

TBC

TIMSTP

TREMAIN

TURBBL

TURBCH

UPDATE

UPDTKE

VORTEX

YPLUSN

Manage printing of output.

Compute and print parameters at boundaries.

Manage packing and/or interpolation of grid points.

Define extra line of data for use in computing coefficients for spa-
tially periodic boundary conditions.

Write fdes for post-processing by CONTOUR or PLOT3D plot-
ting programs.

Compute production term for the k-e turbulence model.

Print convergence history.

Print output.

Compute residuals and write convergence history file.

Read and/or write restart file.

Pack points along a line using .Roberts transformation.

Compute the sum of the absolute values of the elements of a vec-
tor. This is a Cray BLAS routine.

Factor a matrix using Gaussian elimination. This is a Cray
LINPACK routine.

Solve the matrix equation Ax = B or Arx = B using the factors
computed by SGEFA. This is a Cray LINPACK routine.

Compute the La norm of a vector. This is a Cray BLAS routine.

Set time-dependent boundary condition values.

Set computational time step.

Get CPU time remaining for the job. This is a Cray Fortran
routine.

Manage computation of turbulence parameters using the
Baldwin-Lomax algebraic model.

Manage computation of turbulence parameters using the Chien
k-e model.

Update flow variables after each ADI sweep.

Update k and e after each time step.

Compute magnitude of total vorticity.

Compute the distance to the nearest solid wall.

4.2 SUBPROGRAM DETAILS

The subprograms used in Proteus are described in detail in the remainder of this section. A few addi-
tional words are necessary about the input and output descriptions. The description of the input to each
subprogram includes all Fortran variables actually used by the subprogram that are defined outside the
subprogram. Variables defined and used inside the subprogram are not listed as input. In addition, com-
mon block variables that are merely passed through to lower level routines are not listed. Variables marked
x_ith an asterisk are user-specified namelist input variables.

Similarly, the output description includes only those variables computed inside the subprogram and used
outside the subprogram. It does not include common block variables computed by lower level routines.
In general, variables defined inside the subprogram that are used by lower level routines are listed as output,

even if they are not needed after control is returned to the calling program.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms 51

Variables entering or leaving a subprogram through an argument list are defined in detail. However,
most of the Fortran variables listed in the input and output descriptions are contained in common blocks,
and are defined in detail in Section 3.0. For that reason, they are defined only briefly in this section.

52 4.0 Proteus Subprograms: ADI Proteus 2-D Programmer's Reference

Subroutine ADI (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

EXEC Manage the block tridiagonal inversion.BLKOUT
BLK3
BLK3P
BLK4
BLK4P
BLK5
BLK5P

A,B,C

* IDEBUG

* IPRTIA, IPRT2A

ISWEEP

IT

KBCPER

NEQ

NOUT

NPRT1, NPRT2

NVD, NPTSD

S

None.

Description

Coefficient submatrices A, B, and C.

Debug flags.

Indices for printout in the _ and r/directions.

Current ADI sweep number.

Current time step number n.

Flags for spatially periodic boundary conditions in the _ and '7
directions; 0 for non-periodic, 1 for periodic.

Number of coupled equations being solved, N,q.

Unit number for standard output.

Total number of indices for printout in the _ and _7directions.

Leading two dimensions for the arrays A, B, C, and S.

Source term subvector S, and computed solution subvector, A(_"

or A(_.

For each ADI sweep, subroutine ADI calls the appropriate block solver. The choice is determined by
the number of equations being solved, and by the presence or absence of spatially periodic boundary con-
ditions in the sweep direction.

Remarks

1. This subroutine generates the output for the IDEBUG(1), IDEBUG(5), and IDEBUG(6) options.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: ADI 53

Subroutine AVISC1 (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

EXEC BLKOUT Compute constant coetficient artificial viscosity.

A,B,C

* CAVS2E, CAVS4E, CAVS2I

DTAU

* IAV2E, IAV4E, IAV2I

* IDEBUG

* IHSTAG

* IPRT1A, IPRT2A

ISWEEP

* ISWIRL

IT

JI

NC, NXM, NYM, NZM, NEN

NOUT

NPRT1, NPRT2

NPT1, NPT2

NR, NRU, NRV, NRW, NET

NVD, NPTSD

RHO, U, V, W, ET

S

A,B,C

S

Description

Coefficient submatrices A, B, and C without artificial viscosity.

Artificial viscosity coefficients _, e_ _, and _1.

Time step Az.

Flags for second-order explicit, fourth-order explicit, and second-

order implicit artificial viscosity.

Debug flags.

Flag for constant stagnation enthalpy option.

Indices for printout in the _ and _r directiong.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Current time step number n.

Inverse Jacobian of the nonorthogonal grid transformation, J- a.

Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations.

Unit number for standard output.

Total number of indices for printout in the _ and _/directions.

N_ and N2 for non-periodic boundary conditions, Nt + 1 and
N2 + 1 for spatially periodic boundary conditions in _ and _7-

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Leading two dimensions for the arrays A, B, C, and S.

Static density p, velocities u, v, and w, and total energy. Er at time
level n.

Source term subvector S without artificial viscosity.

Coefficient submatrices A, B, and C with artificial viscosity.

Source term subvector S with artificial viscosity.

Subroutine AVISC1 adds explicit and/or implicit artificial viscosity to the governing equations, using the
constant coefficient model of Steger (1978), as presented by Pulliam (1986b). The model is described in
Section 8.1 of Volume 1. The explicit artificial viscosity may be second and/or fourth order, and is added

only during the first ADI sweep. The implicit artificial viscosity is second order, and is added during both

sweeps.

54 4.0 Proteus Subprograms: AVISCI Proteus 2-D Programmer's Reference

The fourth-order explicit artificial viscosity is implemented in Fortran by redefining the source term
subvector as

()A_i,-/[(V_A_)2Qi,j + (V,TA,7)2Q/,j]
Si'J = Si'j Ji, j

where i and j vary from 3 to NPT1 - 2 and from 3 to NPT2 - 2, respectively. At grid points adjacent to
boundaries the fourth-order differences in the above equation cannot be used, and therefore are replaced
by second-order differences. Thus, at i = 2 and at i = NPT1 - 1, withj varying from 3 to NPT2 - 2,

Si'J = Si'J + Ji,-----_"[VcArQi,)- (V_Arl)2Qi, j]

Similarly, at j= 2 and atj = NPT2- 1, with/varying from 3 to NPT1 - 1,

()A'ri,:

Si'J = Si'J + Ji,----f--"[- (V_A02Qi'J + VnAnQi'J]

The second-order explicit artificial viscosity is implemented in Fortran by redefining the source term
subvector as

Ji, y
(V¢A_Qi,j + VnA,TQi, j)

where i and j vary from 2 to NPT1 - 1 and from 2 to NPT2 - 1, respectively.

The second-order implicit artificial viscosity for the first ADI sweep is implemented in Fortran by re-
defining the coefficient block submatrices as

_lAZi,j

Ai'j = Ai'j Ji,j Ji- 1,:

_IA'ri j

Bid = Bi, y + 2 _ Ji,j
i,j

elA'ri,j

Ci'J = Ci'J Ji,) J_ + 1,:

where i andj vary from 2 to NPT1 - 1 and from 2 to NPT2 - 1, respectively. Similarly, for the second

sweep,

elAZi'J Ji,j-
Aid = Ai'j Ji, j 1

_IA'ri j

Bi,/= Bij + 2_Ji]
' i,j '

elA'ti, j

Ci,j = C_,1 - j_,j Ji,j + a

Remarks

1. The sign in front of each artificial viscosity term depends on the sign of the "ij" term in the difference
formula. See Section 8.1 of Volume 1 for details.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: AVISC I 55

2. The coding to add artificial viscosity to the energy and/or swirl momentum equations is separate from
the coding for the remaining equations, and is bypassed if they are not being solved.

3. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep
direction. For the first sweep (which includes all the explicit artificial viscosity) the order is thus (I2,I 1),
and for the second sweep the order is (I1,I2).

4. For spatially periodic boundary conditions in the _ direction, fourth-order differences could be used at
i= 2 and at i= NPT1 - I (= N_). Similarly, for the _/direction, fourth-order differences could be used
at j = 2 and at j = NPT2- 1 (= N_). The logic to do this has not been coded, however, and at these
points second-order differences are still used, as described above.

5. This subroutine generates the output for the IDEBUG(2) option.

56 4.0 Proteus Subpcograms: AVISCI Proteus 2-D Programmer's Reference

Subroutine AVISC2 (A,B,C,S,NWD,NPTSD)

Called by Calls Purpose

EXEC BLKOUT Compute nonlinear coefficient artificial viscosity.

A,B,C

* CAVS2E, CAVS4E

CP, CV

DTAU

DXI, DETA

ETAX, ETAY, ETAT

* IAV2E, IAV4E

* IDEBUG

* IHSTAG

* IPRT1A, IPRT2A

ISWEEP

* ISWIRL

IT

JI

NC, NXM, NYM, NZM, NEN

* NOUT

NPRT1, NPRT2

NPT1, NPT2

NVD, NPTSD

P,T

RGAS

RHO, U, V, W, ET

S

XIX, XIY, XIT

O.tp.t

S

Description

Coefficient submatrices A, B, and C.

User-specified coefficients _2 and _:,.

Specific heats cp and c, at time level n.

Time step At.

Computational grid spacing A_ and An.

Metric coefficients _/x, _Ty(or _/, if axisymmetric), and _.

Flags for second-order and fourth-order explicit artificial viscosity.

Debug flags.

Flag for constant stagnation enthalpy option.

Indices for printout in the _ and _/directions.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Current time step number n.

Inverse Jacobian of the nonorthogonal grid transformation, J-t.

Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations.

Unit number for standard output.

Total number of indices for printout in the _ and r/directions.

N_ and N: for non-periodic boundary conditions, N_ +1 and
N2 + 1 for spatially periodic boundary conditions in _ and _/.

Leading two dimensions for the arrays A, B, C, and S.

Static pressure p and temperature T at timeAevel n.

Gas constant R.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Source term subvector S without artificial viscosity.

Metric coefficients _x, _y (or Cr if axisymmetric), and __t"

Source term subvector S with artificial viscosity.

Subroutine AVISC2 adds explicit artificial viscosity to the governing equations, using the nonlinear co-
efficient model of Jameson, Schmidt, and Turkel (1981), as presented by Puniam (1986b). The model is
described in Section 8.2 of Volume 1. Implicit artificial viscosity is not normally used in combination with

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: AVISC2 57

theexplicit nonlinear coefficient model. The explicit artificial viscosity is added only during the first ADI

sweep.

The artificial viscosity in the _ direction is computed first, at the _-indices j = 2 to NPT2- 1. The

spectral radius term 4'_,j and the pressure gradient scaling factor a,,j are computed and stored in local one-
dimensional arrays for i = 1 to NPT1. Special formulas are used to compute a near boundaries, as described
in Section 8.2 of Volume 1.

The second-order artificial viscosity is added first, and is implemented in Fortran by redefining the source
term subvector as

Or, after evaluating the differences,

Si'j = Si'j "+ 7 i + 1,j i,j

- 7)i1+(7)i-1,j_1, ' - -

where i varies from 2 to NPT1 - 1.

The fourth-order artificial viscosity is added next, and is implemented similarly by redefining the source

term subvector as

e,+,, ,,,
Or, after evaluating the differences,

- 1Si,. i = Si, j _ -J + (_4))i, i(Qi + 2,./- 3Qi + I,j + 3Qi,j - Qi- t,j)
i + 1,j i,j

=(_) +(q')7 d'3l(e(4,)i_ _l,j{Qi+,,j-3Qi,y+gQi-],j-Qi-2j)
+ 7 i,j i-1

where i varies from 3 to NPT1 - 2. Special formulas are used at i = 2 and at i = NPT1 - 1, as described

in Section 8.2 of Volume 1.

The artificial viscosity in the _ direction is computed next, and is implemented in a manner analogous

to that just described for the artificial viscosity in the _ direction.

Remarks

1. The sign in front of each artificial viscosity term depends on the sign of the "if term in the difference
formula. See Section 8.1 of Volume 1 for details.

2. The coding to add artificial viscosity to the energy and/or swirl momentum equations is separate from
the coding for the remaining equations, and is bypassed if they are not being solved.

3. The subscripts on the Fortran variable S may be confusing. The first subscript is the index in the
non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep direction.
For the first sweep (which includes all the explidt artificial viscosity) the order is thus (I2,I 1).

58 4.0 Proteus Subprograms: AVISC2 Proteus 2-D Programmer's Reference

4. For spatially periodic boundary conditions, the need for special formulas near boundaries could be
eliminated. The logic to do this has not been coded, however.

5. This subroutine generates the output for the IDEBUG(2) option.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: AVISC2 59

Subroutine BCDENS (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

BCGEN BCGRAD Compute density boundary conditions.
BCMET

DEL

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

IV

JI

* NOUT

NR

NVD, NPTSD

RHO

A,B,C

Description

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-

dimensional index for two-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,J), where I runs from

1 to N_q, corresponding to the Neq conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

-Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J- 1.

Unit number for standard output.

Array index associated with the dependent variable p.

Leading two dimensions for the arrays A, B, C and S.

Static density p at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row

IEQ only).

Source term subvector S at boundary IBOUND (element IEQ

only).

Subroutine BCDENS computes coefficiems and source terms for density boundary conditions. The
linearized equations for the various general types of boundary conditions axe developed in Section 6.0 of

Volume 1. The following sections apply these generalized equations to the particular density boundary
conditions in Proteus. 7

In the following description, for the first ADI sweep the dependent variable should have the superscript *, repres-
enting the intermediate solution, and for the second ADI sweep it should have the superscript n, representing the
final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables are
correct as written.

60 4.0 Proteus Subprograms: BCDENS Proteus 2-D Programmer's Reference

No Change From Initial Conditions, Ap = 0

Applying equation (6.3) of Volume 1, and noting that OglOQ = JOglOQ, we get simply

All

Ji,) APi, y = 0

Specified Static Density, p = f

Appl_fng equation (6.5) of Volume 1,

An t.:.n + 1 n
Ji, j APi.j =Ji,y -- Pi, j

Specified Two-Point Density Gradient in Coordinate Direction, Op/O_ = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

An An n + I n n

-- Jl,j Apl,j + J2,j Ap2,j (A_)_I,j= + Pl,j-- P2,j

At the ¢ = I boundary,

An A/_ /'l -- /'t- .% - _,j'_PN,- _,:+ "%,j aP,v,,j= (a_l,"_,,__+ ,oN,_ _,j p,,,,-,.,,

Analogous equations can easily be written for the _/boundaries.

Specified Three-Point Density Gradient in Coordinate Direction, Op/Oqb = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-
ing,

An Art All /'t-k- 1 /'/ II II

-- 3J 1,j Ap],j + 4J2,j Ap2,j - J3,j Ap3,j --- 2(AsX_fl,j + 3Pl,j -- 4P2,j + P3,j

At the _ = 1 boundary,

A/"/ A/'I A n II . II

JN,- 2,j Ap N,- 2,j -- 4JN, - 1,.i Ap N, -1 ,d + 3JNI,Y Ap N,,] = 2(A¢)f_,, +1 -- P N, -- 2,j -V 4p N, -1 ,j -- 3p N,,y

Analogous equations can easily be written for the _/boundaries.

Specified Two-Point Density Gradient in Normal Direction, Vp • n =f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-
encing,

^. ^,, a¢ [-.. + _ G,,x + Cy,,yhi II -] II .

- JI,jAPt,j+ J2,jAP2,j='-_I,) I .'.111,j - ml, j ' 6,yPl,jJ + PI,j- P2,jL

where

m = _/L, 2+ ¢y2

and 6, is the centered difference operator presented in Section 5.0 of Volume 1. At the _ = 1 boundary,

^n All a_ [_.,+
r-

-- JNI- I'jAPNI- I,j + JNI,JAPNI ,j = mNi,j b 1N1,j

(¢X_X -_ _y_y)Nl, j II 4 " rt

mN,,j ¢SrlPN,,jJ + PN, - l,j -- PNt,j

Analogous equations can easily be written for the _ boundaries.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCDENS 61

Specified Three-Point Density Gradient in Normal Direction, Vp • n = f

Applying equation (6.12a) of Volume I at the ¢ = 0 boundary', and using three-point one-sided differ-
encing,

where

A_I Arl An

-- 3Jl,j_Pl,j + 4J2,jAp2, j -- J3,jApB,j =

2A_ VI:.n +, _ (¢x_lx + ey_y)l,j n .] n _ n n

ml,j :_ m l,j JL I,j 6,TPI,j + 3pI,j 4p2,j + P3,j

m = x/{x 2 + {y2

and 6, is the centered difference operator presented in Section 5.0 of Volume 1. At the _ = I bounda_D',

An ATI A_

JN2 - 2,j ApNj - 2,j -- 4JN 2- 1,j ApN t - l,j + 3J?%j ApN_, j =

mN_,j _.j -- mNl,j 6nP NI,j -- P N_ -2,j + 4P N_ -- 1,j -- 3P NI,j

Analogous equations can easily be wzitten for the _ boundaries.

Linear, Extrapolation of Static Density

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

An A_I Arl _I #'I I'l

Jl,j Apl,j -- 2J2,j Ap2,j + J3,j IXP3,j = - PI,j + 2p2,j - P3,j

At the _ = 1 boundary,

-- An j AAn tl rtJNt- 2,jApnNI- 2,j 2JN1-- I,jApNI- I,] + N1,j PNI,j= -- PN1-- Z,j + 2pnNt-- I,j-- PA],j

Analogous equations can easily be written for the q boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent density boundary condition is
specified.

62 4.0 Proteus Subprograms: BCDENS Proteus 2-D Programmer's Reference

Subroutine BCELIM (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

EXEC SGEFA Eliminate off-diagonal coefficient submatrices resulting from three-
SGESL point boundary conditions.

A,B,C

IBCELM

ISWEEP

IV

. NEQ

NEQP

NPTS

NVD, NPTSD

S

Coefficient submatrices A, B, and C before eliminating off-
diagonal blocks.

Flags for elimination of off-diagonal coefficient submatrices re-
suiting from three-point boundary conditions in the _ and n di-
rections at either boundary; 0 if elimination is not necessary, 1 if
it is.

Current ADI sweep number.

Index ha the "vectorized" direction,/,.

Number of coupled equations being solved, N,q.

Dimensioning parameter specifying maximum number of coupled
equations allowed.

Number of grid points in the sweep direction, N.

Leading two dimensions for the arrays A, B, C, and S.

Source term subvector S before eliminating off-diagonal blocks.

A, B, C Coefficient submatrices A, B, and C after eliminating
diagonal blocks.

S Source term subvector S after eliminating off-diagonal blocks.

Description

off-

Subroutine BCELIM eliminates the off-diagonal coefficient submatrices that result from the application
of three-point boundary conditions. This is necessary when three-point gradients are specified in the coor-
dinate or normal direction, and when linear extrapolation is used. The procedure is described in Section
7.2.1 of Volume 1.

Remarks

Subroutines SGEFA and SGESL are Cray LINPACK routines. In general terms, if the Fortran arrays
A and B represent A and B, where A is a square N by N matrix and B is a matrix (or vector) with
NCOL columns, and if the leading dimension of the Fortran array A is LDA, then the Fortran se-
quence

10

call sgefa (a,lda,n,ipvt,info)
do 10 5 = 1,ncol
call. sgesl (a,lda,n,ipvt,b(1,j),O)
continue

computes A-]B, storing the result in B.

Proteus 2-D Programmer's Reference 4.0 Proteus Subpcograms: BCELIM 63

Subroutine BCF (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

BCGEN BCFLIN Compute user-written boundary conditions.
BCMET

DEL

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

* IHSTAG

IMIN, IMAX

ISWEEP

* ISWIRL

IV

JI

* NOUT

NK, NRU, NRV, NRW, NET

NVD, NPTSD

A,B,C

Description

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,I), where I runs from
1 to N;q, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Flag for constant stagnation enthalpy option.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the "vectorized" direction, iv.

Inverse Jacobian of the nonorthogonal grid transformation, J- 1.

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Leading two dimensions for the arrays A, B, C, and S.

Coefficient submatrices A, B, and C at boundary IBOUND (row

IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

Subroutine BCF computes coefficients and source terms for user-written boundary conditions of the
form AF= O, F =f OF/Off =f and VF. n =f The values of F and its derivatives with respect to the de-
pendent variables must be supplied by the user-written subroutine BCFLIN. The lmearized equations for
these types of boundary conditions are developed in Section 6.0 of Volume 1. The following sections ex-
pand these generalized equations in detail)

s In the following description, for the ftrst ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing

64 4.0 Proteus Subprograms: BCF Proteus 2-D Programmer's Reference

No Change From Initial Conditions, AF = 0

^

Applying equation (6.3) of Volume 1, and noting that Og/OQ = JOg/OQ, we get simply

Ji,j OF OF .,^ , OF .. ^, OF ^ OFAa+ O--?yg"_Pu_+ 0--_ _tpv)+ _ D(pw)+ -_r aEr = 0
i,j

Specified Value F = fl

Applying equation (6.5) of Volume 1,

F OF .^ OF ., ^, OF ^ OF ^ OF n+a n

Ji,y L -_p zoo + 0-_ z_tpu) + _ A(pv) + _ A(pw) + -_T AET = fi,j -- Fi,j
i,)

Specified Two-Point Gradient in Coordinate Direction, OF[O4 = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

F OF .^ OF . ^ OF .,^, OF ^ OF ^rl n
- Jl'JL'-_p zaP + o-_ D(pu) + o-_ atPv) + _ A(Pw) + OE-----TAE" I +

l,j

OF .^ OF ^ OF ..^. OF ^ OF ^rl n

2,j

(m_:; _+ F1"+r", -- 2,j

At the _ = 1 boundary,

• y/

F OF ,^ OF ^ OF .,^, OF ^ OF ._-]

F OF .;, OF ^ OF ., ^, OF ^ OF ^rlnJNs'JL_ "'p+ 0-_ A(pU)+ _-_ _(pv)+ 0--_A(pw) + dE---7 DE.._I =
NI,j

+

(_;,,'_' +F;,_,,_-F;,,_
Analogous equations can easily be written for the _/boundaries.

Specified Three-Point Gradient in Coordinate Direction, OF[O$ = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-

trig,

the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCF 65

I OF . OF ., ^, OF ., ^, OF ., ^. OF ._-]n
- 3J,,j -_pA_+O--_atpu)+o-_atpv)+ a(pw-----_atpw)+ OE----_at.rJ,,j+

4j 2 J [OF A_ OF ^ OF ,, ^, OF ,, ^ . OF . _ -]n, _ + o-yyga(P")+ o-_"tm + O(pw---S"tP_+ os----;a_rj_,j-

I OF OF ^ OF .,^, OF .,"• OF ._l _

2(A_n, +1 + 3F, n,j 4F2n,j+ F n-- 3,j

At the _ = 1 boundary,

F OF . ^ OF ^ OF ^ OF ^ OF "T1 n
JN 1 -- 2.jL_ ''p + o-gyga(p.)+ _ A(R_)+ o-_ A(pw)+-_ AE "aNt-2,j

F OF ,^ OF ,,^, OF ^ OF ^ OF ^ t n
4JN,_, ,j L_ ''p + o-_yg"'_p"_+ _ a(pv)+ o-g(_ A(pw)+ TU/raeT_N,-1u

F OF , ^ OF ., ^ , + OF ^ OF ^ OF ^rl ltl
3Jul'J L ''p + o(pv)A(pv) q- _ A(pw) + _ AE. I =

"J NI,j

2(A _;n,+ 1 F n 4Fnv' _ nN I -- 2,j "q" -- 1,.i 3F_q,y

Analogous equations can easily be written for the rl boundaries.

Specified Two-Point Gradient in Normal Direction, VF. n = f

Applying equation (6.12a) of Volume

encing,

+

1 at the ¢ = 0 boundary, and using two-point one-sided differ-

OF ,^ OF ^ OF ,,^, OF ^ OF ^rl n-], u _ "p +a(-KY£aU,,,)+ _ "tov_+ _ a(pw)+_ ae +
--'l,j

I OF . ^ OF ^ 'F A OI 7 ^ OF ^TlnS2,; _ "p + A(pu) + a(pw)+ aE =

a_ [A.+, (Gn_+¢yn,),,j GF.j]+F..ml ,j ,j -- ml ,j 1,j -- F_,]

where

m = 4¢x 2 + _y2

and 6_ is the centered difference operator presented in Section 5.0 of Volume 1. At the _ = 1 boundary,

66 4.0 Proteus Subprograms: BCF Proteus 2-D Programmer's Reference

[- OF ,^+ OF ^ OF ,, ^. OF ., ^. OF _T In

[OF OF ^ OF ,,^. OF .,^. OF _r]n
•-'Nt,j

mNl'J L toNI' j
l:U,,j 6,rF/_,,l + Fj: _ ,.j F;:,l

+

Analogous equations can easily be written for the _ boundaries.

Specified Three-Point Gradient in Normal Direction, VF. -n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-

encing,

where

[OF.^ or ..^, or ^ + O@Vw or q" +
-- 3Jl'J -_p _P + _ zatPu) + O--_ A(Pv) tP) + OE-----T TJl,j

[OF.^ OF .,^, OF ^ + OF ^ OF ^Tin%,j _,,p + _ ,,tp._+ _ a(p0 oCo.,)a(ow)+ 0e---_-Ae -
2,1

['F . ^ OF . , A , OF ^ + OF ^ OF^TInJ3,j "_p ap + _ zxtpu) + _ A(pv) _ A(pw) + OE--T AE =
3,j

2_' [fln + l ('xrlx + 'yrty)l J 1,. n __ nml,j .J ml, j rlFI.j + 3FI?j 4F2n, j + I:'3,1

m= 4 _x 2 + _y2

and 6, is the centered difference operator presented in Section 5.0 of Volume 1. At the _ = 1 boundary,

I OF^j+ OF ^ OF .,^, OF .. ^, OF ^rl n

F OF^;+ OF ^ OF ^ OF ,,^, OF ^_"
4JN t - 1 ,J *-. _ _ A(pbt) + _ A(p'_) -t- _ 1.3,_.pW) -1- _ A E "JUt_ 1,j

[OFA_+ OF ^ OF ,,^, OF .,^, OF ^r]n3JN,.I _ _ A(pu) + _ zatOv_ + _ atpw) + _ AE =
--'t%l

2A' [f/¢ + l ('xrtx + 'yrly)N' .]' 6 n -F" 4F, t_ nmNl,j l,J raN1, j rlFNI,j N 1 - 2,j + l,j -- 3FNt,j

Analogous equations can easily be written for the _/boundaries.

+

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCF 67

Linear Extrapolation

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

[- OF ,^+ OF ^ OF .,", OF ,,, ^, OF . _ -]n _

F OF .^+ OF ^ _F ,,^, OF ^ OF ^T1 n

2,]

[OF A_ + OF A(p_u) + OF . , " . OF ,,", + ___T A_.TIn =J3u _ o(ou) a-gyff"t°n + o-agYgT"ww_ or
3 ",2

-- Fln,j + 2F2?j- F3n,j

At the _ = 1 boundary,

F OF A_ + OF .,A OF " , OF ,,.^. OF ^rl"
JN,_2,jL Tp _ "_P_+ _ a(pv)._ ,,tpw) + _ ae., -

--'Nl - 2,j

C OFA_+_OF .,^, OF ^ + OF ^ " OF ^rl n
2JN 1 -- 1,j L _ _ "w") + _ a(eO O(pw)A(pw)+ _ ae. , +

-'N 1 -- 1,j

F OF .^ OF ., ^. OF ^ + OF ^ OF "rl _

--'N.j

F n + 2F_r l - F,_.n,v1- 2,j - 1,j ..,,j

Analogous equations can easily be written for the '7 boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as descr;bed in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent user-written boundary condi-

tion is specified.

68 4.0 Proteus Subprograms: BCF Proteus 2-D Programmer's Reference

Subroutine BCFLIN (IBC,IEQ,IBOUND,IMIN,IMAX,F,DFDRHO,DFDRU,DFDRV,DFDRW,
DFDET,FBCM,FBCP,FBC)

Called by Calls Purpose

BCF User-supplied routine for linearization of user-supplied boundary con-
ditions.

IBASE, ISTEP

IBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

I1, I2

N1P

Output

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Mean flow boundary condition types for current sweep direction,
specified as IBC(I,J), where I runs from 1 to N,o, corresponding
to the Ne_ conditions needed, and J = 1 or 2, corresponding to the
lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Grid indices i and j, in the _ and ,7 directions.

Parameter specifying the dimension size in the ¢ direction.

DFDRHO, DFDRU, DFDRV,
DFDRW, DFDET

F

FBC

FBCM, FBCP

Description

Three-element arrays, specified as DFDRHO(IW), etc., giving
the values of OF/Op, OF/O(pu), OF/O(pv), 3F/O(pw), and OF/OEr.

A three-element array specified as F(IW') giving the value of the
function Fat the boundary (IW = 1), at the f_rst point away from
the boundary (IW = 2), and at the second point away from the
boundary (IW = 3). Values at IW = 3 are not needed for bound-
ary condition types 91, 92, or -92. Values at IW = 2 are not
needed for boundary condition type 91.

Boundary condition values for current sweep direction, specified
as FBC(I,I), where I runs from 1 to Neq, corresponding to the Neq

conditions needed, and J = 1 or 2, corresponding to the lower and
upper boundaries. This is only needed if values for GBC1 or
GBC2, or FBCI or FBC2, are not specified in the input namelist
BC.

Boundary condition values on the boundary, at the grid points
"q:_elow" and "above" the current boundary point. These are only
needed for boundary condition types + 93.

Subroutine BCFLIN is a user-written routine used in conjunction with subroutine BCF for user-written

boundary conditions of the form Air = 0, F=f OF]Off =f and VF. n =f BCFLIN supplies the values of
F and its derivatives with respect to the dependent variables, which are required for writing the linearized
form of the boundary condition.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCFLIN 69

The version of BCFLIN supplied with Proteus makes BCF equivalent to BCTEMP, except for the total
temperature options in BCTEMP. Thus F = T, OF/Op = cgTlOp, etc., where T and its derivatives with re-
spect to the dependent variables are computed using the perfect gas equation of state. (See Section 4.3 of
Volume 1.) This version of BCFLIN is intended as an example for use in coding boundary conditions not
already available.

Remarks

.

2.

This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

The capability of specifying FBC as an output variable may be useful in v,_ting time-dependent
boundary conditions. It also may be used when specifying boundary conditions involving derivatives
in both coordinate directions. In this case, the derivatives in the non-sweep direction may be la_ed
one time step and treated as source terms.

70 4.0 Proteus Subprograms: BCFLIN Proteus 2-D Programmer's Reference

Subroutine BCGEN (A,B,C,S,METX,METY,METT,NVD,NPTSD)

Called by Calls Purpose

Manage computation of boundary conditions.BVUP
EXEC

BCDENS
BCF
BCPRES

BCQ
BCTEMP
BCUVEL
BCVDIR
BCVVEL
BCWVEL
BLKOUT

ISRCHEQ

A,B,C

* FBC1, FBC2

IBC1, IBC2

IDEBUG

IPRTIA, IPRT2A

ISWEEP

IT

IV

I1, I2

METX, METY, METT

NBC

NEQ

* NOUT

NPRT1, NPRT2

NVD, NPTSD

* NI, N2

S

IBC, FBC

IBOUND

Coefficient submatrices A, B, and C.

Point-by-point mean flow boundary condition values for the
and ,/directions.

Point-by-point mean flow boundary condition types for the _ and
directions.

Debug flags.

Indices for printout in the _ and _/directions.

Current ADI sweep number.

Current time step number n.

Index in the _vectorized" direction,/_.

Grid indices i and j, in the _ and n directions.

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and t.

Dimensioning parameter specifying number of boundary condi-
tions per equation.

Number of coupled equations being solved, N,q.

Unit number for standard output.

Total number of indices for printout in the _ and _/directions.

Leading two dimensions for the arrays A, B, C, and S.

Number of grid points N_ and N2, in the _ and _/directions.

Source term subvector S.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,J), where I runs from
1 to N,q, corresponding to the N,q conditions needed, and J = I
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCGEN 71

IEQ

IMIN, IMAX

Boundary condition equation number, from 1 to N,_.

Minimum and maximum indices in the sweep direction.

Description

Subroutine BCGEN manages the computation of coefficients and source terms for the mean flow
boundary conditions. It fu'st loads the NEQ boundary condition types and values from the input arrays
IBC1 and FBC1, or IBC2 and FBC2, depending on the ADI sweep, into the arrays IBC and FBC. This
was done so that the BC routines could be non-sweep dependent. Next the coefficient submatrices and
source term subvectors at the two boundaries in the current sweep direction are initialized to zero. And
finally, the appropriate BC routine is called, depending on the input boundary condition type, for each of
the NEQ boundary conditions at each boundary in the sweep direction.

Remarks

1. An error message is generated and execution is stopped if any of the non-existent boundary condition
types 80-89 is specified, or if the boundary condition type is less than 0 or greater than 99.

2. The Cray search routine ISRCHEQ is used in determining the grid locations for debug printout.

3. This subroutine generates the output for the IDEBUG(3) option.

72 4.0 Proteus Subprograms: BCGEN Proteus 2-D Programmer's Reference

Subroutine BCGRAD (F,I,DFD1,DFD2)

Called by Calls Purpose

Compute gradients with respect to ¢ and _/.BCDENS
BCF
BCPRES

BCQ
BCTEMP
BCUVEL
BCVDIR
BCVVEL
BCWVEL

DXI, DETA

F

I

ISWEEP

I1, I2

N1, N2

Computational grid spacing A_ and At/.

A two-dimensional array, specified as F(I,J), containing the func-
tion fwhose gradient is to be computed. The subscripts I and J
run from 1 to N1 and N2, respectively.

Current grid point index in the current sweep direction.

Current ADI sweep number.

Grid indices i and j, in the _ and _7directions.

Number of grid points Nl and N2, in the _ and _/directions.

Output

DFD1, DFD2 First derivatives of f with respect to ¢ and 17.

Description

Subroutine BCGRAD computes ftrst derivatives of the ftmctionf, with respect to _ and 11,at the current
grid point in the ADI sweep direction. At interior points, the centered difference formula presented in
Section 5.0 of Volume 1 is used. For derivatives with respect to _,

'I
o¢ /*,i A_

An analogous formula is used for _/derivatives.

At boundary points three-point one-sided formulas are used.

z_¢ (- 3_.j + 4_. i -_,j)
J

0f) = 1 (f,v_ - 2,) - 4fN_ l,j + 3fN_,j)
-bT ,v,,: 27,¢

Again, analogous formulas are used for _7derivatives.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCGRAD 73

Subroutine BCMET (I,FM0,FM 1,FM2)

Called by Calls Purpose

BCDENS
BCF
BCPRES

BCQ
BCTEMP
BCUVEL
BCVDIR
BCWEL
BC_,WEL

Compute various metric functions for normal gradient boundary con-
ditions.

ETAX, ETAY

I

ISWEEP

II, I2

XIX, XIY

Output

FM0, FM1, FM2

Metric coefficients q, and r/y (or _Trif axisymmetric.)

Current grid point index in the current sweep direction.

Current ADI sweep number.

Grid indices i and j, in the _ and ,/directions.

Metric coefficients _x and _y (or _r if axisymmetric.)

Various metric functions used for normal derivative boundary
conditions.

Description

Subroutine BCMET computes metric functions used for normal gradient boundary conditions. For the

f=st ADI sweep,

FMI = 0

FM2 = _x_x + _yrly

And for the second sweep,

2FM0 = 2 + _y

FMI = *x'lx + _y,ly

FM2 = 0

74 4.0 Proteus Subprograms: BCMET Proteus 2-D Programmer's Reference

Subroutine BCPRES (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

BCGEN BCGRAD Compute pressure boundary conditions.
BCMET

CP, CV

DEL

DPDRHO, DPDRU, DPDRV,
DPDRW, DPDET

DTDRHO, DTDRU, DTDRV,
DTDRW, DTDET

GC

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

* IHSTAG

IMIN, IMAX

ISWEEP

* ISWIRL

IV

JI

* NOUT

NR, NRU, NRV, NRW, NET

NVD, NPTSD

P,T

PR

RGAS

RHO, U, V, W

* RHOR, UR

Output

A,B,C

Specific heats cp and c_ at time level n.

Computational grid spacing in sweep direction.

Derivatives Op/Op, Op/O(pu), _3p/c_(pv), Op[O(pw), and Op/OEr.

Derivatives OT/Op, OT/O(pu), OT/O(pv), OT]O(pw), and OT/OEr.

Proportionality factor gc in Newton's second law.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional army.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,J), where I runs from
1 to N_q, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Flag for constant stagnation enthalpy option.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the "vectorized" direction,/,.

Inverse Jacobian of the nonorthogonal grid transformation, J- L.

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
p w, and Er.

Leading two dimensions for the arrays A, B, C, and S.

Static pressure p and temperature T at time level n.

Reference pressure pr.

Gas constax_lt R.

Static density p, and velocities u, v, and w, at time level n.

Reference density pr and velocity u,.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Proteus 2-D Programmer's Reference 4.0 Proteus Subpcograms: BCPRES 75

S Source term subvector S at boundary IBOUND (element IEQ

only).

Description

Subroutine BCPRES computes coefficients and source terms for pressure boundary conditions. The

linearized equations for the various general types of boundary conditions are developed in Section 6.0 of

Volume 1. The following sections apply these generalized equations to the particular pressure boundary
conditions in Proteus?

No Change From Initial Conditions, Ap = 0

^

Applying equation (6.3) of Volume 1, and noting that Og/OQ = Jdg/aQ, we get simply

FOp ^

T ._li,j

The derivatives dp/Op, OplO(pu), etc., depend on the equation of state. They are defined for a perfect gas
in Section 4.3 of Volume 1.

Specified Static Pressure, p = f

Applying equation (6.5) of Volume 1,

2 Pi,y
i,j prUr

Specified Two-Point Pressure Gradient in Coordinate Direction, _p[Oc_ = f

Applying equation (6.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,

-JI'YF L c3p ^ n
+

OET Jl,j

[OVA _ Op ^ O_pv) A(;v) + o(pw____A(pw) + OE__.___AET] =J2,y _ + _ A(pu) + ap ^ ap ^ _
• 2,j

---7 + P2,j - P2,y
PrUr.

At the _ = 1 boundary,

In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.

76 4.0 Proteus Subwograms: BCPRES Proteus 2-D Programmer's Reference

[Op ,^ Op ^ op ^ o_p a(ew)+OE---T"_TJN_--',J_j_,,_,,_-TY'-'°+o(--b-_-a(P")+o(-Tqa(pv)+ Op .a 3_

op .A ,, of ^]_

2 bPN_ - l,j--PN_,j
PrUr

+

Analogous equations can easily be written for the _ boundaries.

Specified Three-Point Pressure Gradient in Coordinate Direction, Op/& k = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-
ing,

op A_+ op ^ _(;w)+ +
- 3Jl,j _ _ A(pu) + A(pv) + AE

l,j

4J2 j [Op _ + Op A Op A(;V) + O_W) A(pW) + Op A_T1 n --
, -_p _ A(pu) + _ OET J2,j

2(A_))qln? 1 Prgc n n n-----T + 3pl,j - 4p_,j + P3,j
P rUr

At the _ = 1 boundary,

4v,- 2,j _ _ A(p,,)+ _ a(pv)+ a(ow)+ _ ,,,e -
-'Na -- 2,]

FOp A_ + Op ^ Op ^ Op ^ Op ^rl n
4JN,- I')L _ _ A(pu)+ _ A(,o_,)+ _ A(pw)+ _ AE.I +

_N I -- l,j

_ Nl,j

2(A¢)f;;n,+ ,.-,..., Prgc n n n2 PN_ - 2,j + 4P M - 1,j - 3p1%)
P rUr

Analogous equations can easily be "_a-itten for the q boundaries.

Specified Two-Point Pressure Gradient in Normal Direction, Vp • n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-
encing,

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCPRES 77

_l,j

[OpA_q - Op ^O_pv) Op ACoAw)+ Op ^T1 n4,j W _ A(ou)+ ,,,(?,v)+ _ _ ae =
_2,j

A_ _+1 P_gc (_x_x+_yny)l,j 6_1_,j +pln, j_p2, j
m z,j ,J 2 m_,j

P r_r

where

m = x/_x 2 + _y2

and 6, is the centered difference operator presented in Section 5.0 of Volume I. At the _ = 1 boundary,

_Ul --1,j

JN,,i W _ a(p_)+ a(_Cv)+ a(p_)+TEaraE =
--'Nhj

A¢ n+l Prgc (_xrlx+_yrly)N"J 3rrP_c,,j +PN,--I;j--P},,j
mNt, j ,J pr u) mNl,J

Analogous equations can easily be written for the _ boundaries.

Specified Three-Point Pressure Gradient in Normal Direction, Vp • -n=f

Applying equation (6.122) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-
encirlg,

- 3Jl'J I

4J2,) [

OP A A

A(p_)+ _ a(pw)+ TU; -_,J

OP .A

--_-p,.,p+ &' a(")+e(-_u) pu ep ^ or, ,, or, ^ 7"A(pv) + _ aOw) + _ aEr l -
0-_ atpw_ , °or J2,j

J3,i_ ap+ _ A(P_)+ oO,w----;aCow)+ oE---;aE =
3,j

2A_ [f n + 1 Prgc (_x_lx + _YrlY)1 'J 6 n _ n n n

m I .j [_', ,J 2 m l ,j rill 'JA + 3pl 'j - 4p:2'i + P3,jp rUr

where

m=x/_x2+¢y 2

and 6_ is the centered difference operator presented in Section 5.0 of Volume 1. At the ¢ = 1 boundary,

78 4.0 Proteus Subprograms: BCPRES Proteus 2-D Programmer's Reference

. Vop Ol, ^ op ^ op ^ op ^_,
Jx,- 24 L _ A_ + _ A(pu)+ _ A(pv)+ O_pw) _(pw) + _r AE. I

-_Nl- 2,j

4J,v_- 1,j _ +

_N 1 -- l,j

Op A(;_)+ A(p_)+ _ _r},,3K,,I,j _ A_+ OP ^ A(;w)+oeT aE =
J

2A¢ n + l Prgc (_xrlx + _YrlY)N_,J 6,,#pn,j
mNl,j l,J prU2r mNl,j

Analogous equations can easily be written for the _ boundaries.

Linear Extrapolation of Static Pressure

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

Fop A

--'1 ,j --

[Op A_ + Opt, Op ^ Op A Op ^T]nz6,j_ o-_ ,,,(pu)+ _ a(ov) + _ ,',(pw)+ -TUftae +
--'2,j

4,i _ + _ a@0 + _ a(ow)+ W aS =
--'3,j

#1 #'1 #l

- Pl ,j + 21_2,j - 193,j

At the _ = 1 boundary,

op A_ + op ^ A(;V) + 15'T JN,- 2,j

Fop ^ ,,

_Nl,j

n 2 " n
-- PN t - 2,j + "PN 1-- 1,j --PNI,]

+

Analogous equations can easily be written for the i,/boundaries.

No Change From Initial Conditions .for Total Pressure, Apt = 0

The total pressure is defined as

y

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCPRES 79

Applying equation (6.3) of Volume 1, we get

ji, j F @r a_ + OPt ^ @r ^ Opr ^ 3p r ^ _n
L oo o(p_)a(o_)+ _ a(o_)+ _ a(pw)+ -_T aer] = o

i,j

where

O(pu)

OPT

dE r

y 1

The Mach number is defined by

2

M2= u -t-v2-l-w 2

_,RT

(pu)2 + (pv)2+ (pw)_

yRp2T

The derivatives OM2/Op, etc., can then be derived as

OM2 _ M 2 OT

O(pu) rp T O(pu)

OM 2 _ M 2 OT

O(pv) _,p T o(pv)

OM2 2w M 2 OT

O(pw) YP T O(pw)

OM 2 M 20T

JE T T OE T

80 4.0 Proteus Subprograms: BCPRES Proteus 2-D Programmer's Reference

Specified Total Pressure, pr = f

Applying equation (6.5) of Volume 1, we get

Ji, i. F 3Pr ,^ OPT ^ OPt ^ _Pr ^ . Opt . _ 7"

i,j

2 Pi,j 1 + M 2 _ 1

P rUr i j

where Pr, dpr/ap, etc., are defined above as part of the description of the Apt = 0 boundary condition.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent pressure boundary condition
is specified.

3. The multiplying factor p,gdp,u_ that appears with specified values of pressure and pressure gradients is
necessarj because input values of pressure are nondimensionalized by the reference pressure
p, = prR Tdg,, while internal to the Proteus code itself pressure is nondimensionalized by the normaliz-
ing pressure pn = pruL (See Section 3.1.1 of Volume 2.)

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCPRES 81

Subroutine BCQ (IBC,FBC,.IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

BCGEN BCMET Compute conservation variable boundarb r conditions.

DEL

DXI, DETA

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

ISWIRL

IV

I1, I2

JI

NC, NXM, NYM, NZM, NEN

NOUT

NVD, NPTSD

N1P

RHO, U, V, W, ET

o.t .t

A,B,C

Description

Computational grid spacing in sweep direction.

Computational grid spacing A_ and A_/.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(IJ), where I runs from

1 to _,%, corresponding to the A% conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the "vectorized" direction,/,.

Grid indices i and j, in the _ and _ directions.

Inverse Jacobian of the nonorthogonal grid transformation, J- _.

Array indices associated with the continui'y, x-momentum,
y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations.

Unit number for standard output.

Leading two dimensions for the arrays A, B, C, and S.

Parameter specifying the dimension size in the _ direction.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ

only).

Subroutine BCQ computes coefficients and source terms for conservation variable boundary conditions.

The linearized equations for the various general types of boundary conditions are developed in Section 6.0

82 4.0 Proteus Subprograms_ BCQ Proteus 2-D Programmer's Reference

of Volume 1. The follovdng sections apply these generalized equations to the particular conservation vari-
able boundary conditions in ProteusJ °

No Change From Initial Conditions, AQ = 0

Applying equation (6.3) of Volume 1, and noting that ag/8(_ = JOg/OQ, we get simply

where 0 is the element of 1_ for which this boundary condition is to be applied.

Specified Conservation Variable, Q = f"

Applying equation (6.5) of Volume 1,

6..Ar3_. =On. +1 ,7
,j--_.,,j Jt,j -- Qi, j

Specified Two-Point Conservation Variable Gradient in Coordinate Direction, aQl8$ = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

All An n +] n

-JI,jAQI,j+J2,jAQ2,j = (A_)ft,j + Qx,j- Q2,j

At the _ = 1 boundary,

Art Art n + I n _ a n- JN_ - _,J AQN1 - 1,j + Jtc_,j AQN_,j = (A_)f_,j + QN_ - 1,j N_,)

Analogous equations cart easily be written for the r/boundaries.

Specified Three-Point Conservation Variable Gradient in Coordinate Direction, OQ/8$ =.[

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-
ing,

"_n Ar_ An /'t+ | r/ r/

- 3Jl,j AQI,j + 4J2,j AQ2,j - J3,j AQj,j = 2(A¢_,j + 3Q_,j - 4Q2,j + Qj,j

At the _ = I boundary,

A/2 An Art /_ .,'7 n

J,% - 2,j AQN, - 2,j -- 4Ju, - _,j AQN I - l,j + 3JN,,j AQN,,j = 2(a_)f_, + 1 _ Qxt - 2,j + 4QN 1- 1,j - 3Qx,,j

Analogous equations can easily be ,_a'itten for the r/boundaries.

Specified Two-Point Conservation Variable Gradient in Normal Direction, VQ • n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-
encing,

In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCQ 83

where

An ^n A_ [-_-n +

- J_,j :'O2,: + J2,_ AQ2,: = m_,---7[J_': ml ,j Olq t,3n
6,TQ1",j + 1,] - _2,j

/ 2 2
m=x/ _:, + _y

and 67 is the centered difference operator presented in Section 5.0 of Volume 1. At the _ = 1 boundary,

An ^n A_ [fN,+ l ('xrlxW _yrly)Nj,J 1
-- (_ B 3"1 VI

-- JNi - l,j AQ& _ 1,j + JN>j AQNI, j -- raN1, j 1,J mNl,j 'TQxl,J + QN_ - 1,j -- Q,%j

Analogous equations can easily be written for the r/boundaries.

Specified Three-Point Conservation Variable Gradient in Normal Direction, VQ. • -n = f

Appbfng equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-
encing,

^ A A
rt n ?l

-- 3Ji,j AQ1,j + 4J2,y AQ½,7 -- Jx,j AQj,y =

where

2A¢ Fen + 1 (_x_x + Cy_/y),,j n q n n

m_,) _J_L ml 'j J '
I- l,j 6rlQl,j + 3Ql,.i -- 4Q_ j + Q3,j

and 67 is the centered difference operator presented in Section 5.0 of Volume I. At the _ = 1 boundary,

A?I " A/, I

JN 1 - 2,j AQNI - 2,j -- 4JN l - l,j AQ_v 1 - l,j + 3JN v) AQNt,j =

mNh j l,J -- mNl,j 6,TQN1,J - QNt - 2,j + 4QN 1 -- 1,j

Analogous equations can easily be written for the _/boundaries.

Linear Extrapolation of Conservation Variable

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

/'/7 ^ /`_ Y/

J1 ,j AQ1,j - 2J2,j AQ_,j + "/3,1 AQ3,j = - Q_I, I + 2Q_,j - Q3,j

At the { = 1 boundary,

AT] A_ A R

:N 1 - 2,j AQN 1 - 2,j -- 2JN 1 - 1,j AQN, - l,j -- JNi,j AQN1, j

Analogous equations can easily be written for the _/boundaries.

Remarks

1.

2.

= - QnNl - 2,j + 2Q_vI - 1,) - QTv,,j

This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

An error message is generated and execution is stopped if a non-existent conservation variable boundary
condition is specified.

84 4.0 Proteus Subprograms: BCQ Proteus 2-D Programmer's Reference

Subroutine BCSET

Called by Calls Purpose

MAIN Set various boundary condition parameters and flags.

Input

* GBC1, GBC2

* GBCT1, GBCT2

* GTBC1, GTBC2

* IHSTAG

* ISWIRL

ITDBC

* ITURB

* JBCI, JBC2

* JBCT1, JBCT2

* JTBC1, JTBC2

* KBC1, KBC2

NBC

NEQ

* NOUT

* NTBC

* NTBCA

* N1, N2

Output

FBC1, FBC2

FBCT1, FBCT2

IBCELM

Surface mean flow boundary condition values for the ¢ and _/di-
rections.

Surface k-r boundary condition values for the _ and q directions.

Time-dependent surface mean flow boundary condition values for
the _ and n directions.

Flag for constant stagnation enthalpy option.

Flag for swirl in axisymmetric flow.

Flag for time-dependent mean flow boundary conditions; 0 if all
boundary conditions are steady, 1 if any general unsteady bound-
ary conditions are used, 2 if only steady and time-periodic
boundary conditions are used.

Flag for turbulent flow option.

Surface mean flow boundary condition types for the _ and _ di-
rections.

Surface k-r boundary condition types for the _ and _7directions.

Flags for type of time dependency for mean flow boundary con-
ditions in the _ and r/directions.

Boundary types for the _ and _/directions.

Dimensioning parameter specifying number of boundary condi-
tions per equation.

Number of coupled equations being solved, N,q.

Unit number for standard output.

Number of values in tables for general unsteady boundary condi-
tions.

Time levels at which general unsteady boundary conditions are
specified.

Number of grid points Ar_and N2, in the _ and q directions.

Point.by-point mean flow boundary condition values for the
and rt directions.

Point-by-point k-_ boundary condition values for the _ and r/di-
rections.

Flags for elimination of off-diagonal coefficient submatrices re-
sulting from three-point boundary conditions in the _ and _ di-

rections at either boundary; 0 if elimination is not necessary, 1 if
it is.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCSET 85

IBC1, IBC2

IBCT1, IBCT2

IBVUP

JBC1, JBC2

KBCPER

NPTI, NPT2

Point-by-point mean flow boundary condition types for the _ and
,/directions.

Point-by-point k-e boundary condition types for the _ and n di-
rections.

Flags for updating boundary values from first sweep after second
sweep; 0 if updating is not necessary, 1 if it is.

Surface mean flow boundar3" condition types for the _ and _/ di-
rections (only if using the KBC meta flags.)

Flags for spatially periodic boundary conditions in the _ and r/
directions; 0 for non-periodic, 1 for periodic.

Nt and N2 for non-periodic boundary conditions, N_ + 1 and
N2 + 1 for spatially periodic boundary conditions in _ and _.

Description

Subroutine BCSET sets various boundary condition parameters and flags. If boundary types are spec-
ified with the KBC meta flags, the appropriate surface boundary condition types are loaded into the JBC
arrays. Special flags are set if spatially periodic boundary contritions are being used. BCSET also sets NPT1
and NPT2, the number of grid points in each ADI sweep direction to be used in computing coefficients and
source terms. For spatially periodic boundary conditions in the _ direction, NPT1 = N1 + 1. Similarly, for
spatially periodic boundary conditions in the q direction, NPT2 = N2 + 1. This is done in order to use
central differences at the periodic boundary. (See Section 7.2.2 of Volume 1.)

Next, if the boundary types are being specified using the KBC meta flags, the appropriate JBC mean
flow boundary condition parameters are defined. Then, if the mean flow boundary conditions are being
specified using the JBC and GBC parameters (or the KBC meta flags), the appropriate point-by-point
boundary condition types and values (the IBC and FBC parameters) are loaded with the JBC and GBC
values.

If three-point mean flow boundary conditions are being used at a boundary, a flag is set for eliminating
the resulting off-diagonal coefficient submatrix. If gradient (two-point or three-point) or extrapolation mean
flow boundary conditions are used during the first sweep, a flag is set for updating the _ boundary values
after the second sweep.

Next, for turbulent flow using the k-e model, if the k-e boundary conditions are being specified using
the JBCT and GBCT parameters, the appropriate point-by-point boundary condition t_pes and values (the
IBCT and FBCT parameters) are loaded with the JBCT and GBCT values.

And fmaUy, the input boundary condition parameters are then written to the standard output file.

Remarks

1. An error message is generated and execution is stopped if an invalid boundary type is specified with the
KBC meta flags.

86 4.0 Proteus Subprograms: BCSET Proteus 2-D Programmer's Reference

Subroutine BCTEMP (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

BCGEN BCGRAD Compute temperature boundary conditions.
BCMET

CP, CV

DEL

DTDRHO, DTDRU, DTDRV,
DTDRW, DTDET

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

* IHSTAG

IMIN, IMAX

ISWEEP

* ISWIRL

IV

JI

* NOUT

NR, NRU, NRV, NRW, NET

NVD, NPTSD

P,T

RGAS

RHO, U, V, W

Specific heats cp and c_ at time level n.

Computational grid spacing in sweep direction.

Derivatives OT/Op, OT/c?(pu), OT/a(pv), OTla(pw), and OT/OEr.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional army.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,J), where I runs from
I to N,o, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Flag for constant stagnation enthalpy option.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the "vectorized" direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J- t.

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
p w, and Er.

Leading two dimensions for the arrays A, B, C, and S.

Static pressure p and temperature T at time level n.

Gas constant R.

Static density p, and velocities u, v, and w, at time level n.

Output

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

Description

Subroutine BCTEMP computes coefficients and source terms for temperature boundary conditions.
The linearized equations for the various general types of boundary conditions are developed in Section 6.0

Proteus 2-D Programmer's Reference 4.0 Proteus Sublx'ograms: BCTEMP 87

of Volume 1. The following sections apply these generalized equations to the particular temperature

boundary, conditions in ProteusY

No Change From Initial Conditions, AT = 0

Applying equation (6.3) of Volume 1, and noting that dg/OQ = JOg/OQ, we get simply

r OT A_ aT ^ OT ,,^, OT ^ OT AT1 n
Y_.iL_ + a-_ AO_)+ a-_ "w_)+ a-_ aOw)+ aE--T_E.A = o

i,j

The derivatives OT/ep, OT/O(pu), etc., depend on the equation of state. They are defined for a perfect gas
in Section 4.3 of Volume 1.

Specified Static Temperature, T = f

Applying equation (6.5) of Volume 1,

lOT,^ aT ^ aT ^ OT ., ^ , aT ^Tlne,,j--5-_-p,,p+a--_--_-a(p,,)+a(-3-_-,x(p,')+a--_--_-"t_'_+ ,_E----_"E=£.'_+'-_j
i,j

Specified Two-Point Temperature Gradient in Coordinate Direction, (aT/aq_ = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

I OT ,^ aT ^ aT ^ aT ,, ^. OT ^r[n

--1

--'1.j

[OT . ^ OT ^ aT ^ aT ^ OT ^TlnJ2,j _ tap+ _ A(pU) + _ A(pv) + _ A(pw) + _ AE =
"-'2.j

T n _ T_2j(_¢_?? ' + ,,+ ,

At the _ = 1 boundary,

lOT^aT ^ OT ., ^ , + OT ^ OT ^T] n-- JN l - 1,j "_p Ap + _ A(pbl) q- _ _tpV) a(pw) A(pw) -}- OE------TAE q-
NI- 1,j

F OTA_+ aT ^ aT ,,^, aT ^ OT ^T1 n
Ju_,iLOTp a-_ A(p.)+ o-_ ..w.+ _ aOw)+ _ AE._I =

NjI,

(A_" _'" + 1 n ,,ffNl, 1 -1"-T'_ _ l,j- TNI,j

Analogous equations can easily be written for the _ boundaries.

Specified Three-Point Temperature Gradient in Coordinate Direction, OT/aqb = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-

ing,

u In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.

88 4.0 Proteus Subprograms: BCTEMP Proteus 2-D Programmer's Reference

I OT .^ aT ^ OT ^ tOT ^ OT ^r[n

-"11

- 34,i _ "'p + _ aOu) + _ AO0 + OCow)_0'_') + OE----;AS._1 +
1,j

[4^ OT ^
OT .^ OT " OT ^ + cOT A(pw) + _ AE --

4.12, j -_p zap + _ A(pu) + _-_ &(or) c9(pw) 2,j

[aT.^ aT ^ aT" cOT ^ OT ^Tln4,i _ "p + o-_ _(P_)+ o-_ _(o0+ _ A(p_)+ _ ae =
-_3,j

.-n+l 3"-'nj/l n n2(A_)J 1,y + , - 4T_,y + T_,y

At the _ = 1 boundary,

i n
OT A_+ OT ^ OT .,^, OT ., ^,JN,- 2,j (pu)+ + o- "tPw +--if-;A T] -

u't"T J N 1 -- 2,j

lOT .^ aT ^ OT .,^, OT ^ OT ._ I n
4JN, - l,y -_p _P + _ A(pu) + _ zabovI + _ A(pw) + OE-----TAt'TJ N, -- 1j

+

COT .^ aT ^ OT ., ^, COT ., ^ , AE

3JN..y _ zap + _ A(pu) + _ atpv) + _ atpw) + '0 T JNI,j =

n+l n n
2(A{)f_; ,y -- T}, _ 2,y + 4T},_ l,y - 3_,,j

Analogous equations can easily be written for the _/bound_es.

Specified Two-Point Temperature Gradient in Normal Direction VT. n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-

encing,

[°OTA_+ aT ^ cOT ..^. aT .,^. A/_
-J,,J _ 0_-?_ A('_) + 0-_- _tP'J + 07;_ -'tpw_ + +

LT Jl,j

I OT .^ OT ^ OT .. ^, aT ^ COT ._-]n
J2,y _ "'P + _ A(pu) + _ atpvj + _ zX(pw) + aE----_aCrJ2,y

ml,y ,J - ml,j

where

m = 4_x 2 + _y2

and 6, is the centered difference operator presented in Section 5.0 of Volume 1. At the _ = 1 boundary,

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCTEMP 89

[dT A_+ OT ^ OT .,^, OT ^ OT ._-] n
--JNl-l,j "_p O'_-_-A(pu)+_ZM, PV)+_A(pw) + OE---'-_/Xl_TJNI_I, j

[_T A_+ OT ^ o7 ^ OT ^ _T ^3 _JU,,j -_p _ A(pu) + 0--_ A(pv) + _ A(pw) q- _ AE =
_,v,,j

A_ IfN+l (_x_tx'+ _yrly)NI,J n] n nmN_,j _,j mN_,j 6nTNI,j + T_" l - 1,j- TNDj

+

Analogous equations can easily be written for the ,7 boundaries.

Specified Three-Point Temperature Gradient in Normal Direction, VT. _ = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-

encing,

where

I OT .^ OT ^ OT .,^, OT ., ^, OT ._-]n +
- 3J,,j W z_p + O_pu) A(pu) + d_ z_tPV) + d_pw) txtPW) + OE----_ZXI:'TJI,j

I OTA_+ OT ^ OT .,^, OT ^ OT ._-]n _
4J2'J -_p d_pu) A(pu) + O-O-O-O-O-O-O-O-O-'__(pv) + _ A(pw) + OE'---'-TAI:'TJ2,j

I 3T A_ + OT ^ OT . A, OT ^ OT . _"]n =

2A_x [fln + 1 (_x_tx + _flTy)t,j 6nT_,j] + 3T_ j-4T_,j + T_,jm 1,j ,J - m],j

m = 4_x 2 + _jz

and 6, is the centered difference operator presented in Section 5.0 of Volume I. At the _ = 1 boundary,

^ + OETOT ^TIn
F aT ,^ aT ,,^, aT aT A'_) aE

JN, - 2,J L-_p zaP + O-_ _tPu_ + O-_-_ a(Pv) + O(pw) tp _ & - 2,j

F aT , ^ aT ,, ^ , aT ^ aT ., _' , aT %_]" -

"" N l -- 1,j

^ A_ M

F aT ,^ aT ^ aT ^ OT aT
3Ju") L + + a(o)+o(pw---s (pw)+ OE---; =

Nt J

2A{ [fN+ 1 (_xrlx+'yrly)Nl,j 6,tT_,l,j] - T_rl_2,j+47/._.t_l,j_aT_v.t,jmNh j 1,J -- mN_,j

Analogous equations can easily be written for the _/boundaries.

90 4.0 Proteus Subwograrns: BCTEMP Proteus 2-D Programmer's Reference

Linear Extrapolation of Static Temperature

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

I OT c_T ^ OT ^ OT ^ cOT ^,.[nJ": W a_ + _ AO_)+ _ A(pv)+ _ AOw)+ Tg-_rAS, I --
-"l,j

[aT OT ^ OT ^ OT , , ^ aT ^T]n2J2, j -_p a_ + O_pu) A(pu) + O-O_-_pv)A(pv) + _ atpw) + -_r AS +
_2,j

[aT a_+ aT ^ aT ^ cOT ^ aT ^TIn4,: _ _ a(o_)+ o-Eft :'(P_)+ _ aOw) + ae----?Ae =
3,j

- Tr, j + 2T;_j- T_,j

At the _ = 1 boundaQq

I aT .^ OT ^ OT .,^, aT ., ^, n%- + e7-7 + + +
T IN 1-- 2,j

[aT.,, aT ^ OT .,^, aT ^ aT ^Tin
2JN 1 - I ,j _ _l a "at _ a(pbt) "l- _ Pq, pV) + _ A(pw) q'- _ aE -"*NI -1 ,j

[cOT cOT ^ OT ^ _pTw) cOT ^T-] n
---'N 1,j

-7_v _- 2,j + 2T_._ ,,j _N,,j

Analogous equations can easily be written for the _/boundaries.

No Change From Initial Conditions ['or Total Temperature, A Tr = 0

The total temperature is defined as

TT= T(1 y- 1+ --7-- M2)

Applying equation (6.3) of Volume 1, we get

aT r aT T ^ aT T OT r ^ aT r

Ji,./ _ a_ + _ a(pu) + _ a(pv) + O-_ aOw) + _ aE r = 0
i,j

where

+

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCTEMP 91

Op - OO + TOp

OTT _ BT

a(pu) a(pu) (1 + y____ M2) y-1 0M 2+ _ T O(pu)

_ (_-l)y-1
OTT OT 1 + M 2 OM2

O(pv) O(OV) _ + ----7 T- O(Or)

OTT _ aT

a(pw) O(pw) (_@_)_-1 OM 21 + M 2 + ----f-- T O(pw)

OTT

OE T OE T + TOE T

The Mach number is defined by

M 2 =
2 v 2U -b -4- W 2 (pU) 2 -'k (pV) 2 + (pW) 2

The derivatives OM2/Op, etc., can then be derived as

yRT yRp2T

do = -P- + T Op

OM 2 2u M 2 OT

O(OU) YP T O(pu)

OM 2 2v M 2 OT

O(pv) YP T O(Ov)

OM 2 2w M 2 OT

O(pw) YP T O(pw)

OM 2 M 2 OT

OE T T OE r

Specified Total Temperature, Tr = f

Applying equation (6.5) of Volume 1, we get

OTT OT r ^ OT r ,, OTr ,, OT r ^ --in+ o-Eg + o-EEa(p)+ (pw)+ erji, i

f,,j 1-T7, J l+--f-
i,j

where Tr, OTr/Op, etc., are defined above as part of the description of the ATr = 0 boundary condition.

Remar_

1. Tl_s subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent temperature boundary condi-
tion is specified.

92 4.0 Proteus Subprograms: BCTEMP Proteus 2-D Programmer's Reference

Subroutine BCUVEL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

BCGEN BCGRAD Compute x-velocity boundary conditions.
BCMET

I.put

DEL

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

IV

JI

* NOUT

NR, NRU

NVD, NPTSD

RHO, U

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,I) and FBC(I,J), where I runs from
1 to N,q, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction,/,.

Inverse Jacobian of the nonorthogonal grid transformation, J- 1.

Unit number for standard output.

Array indices associated with the dependent variables p and pu.

Leading two dimensions for the arrays A, P, C, and S.

Static density p and velocity u at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

Description

Subroutine BCUVEL computes coefficients and source terms for x-velocity boundary conditions. The

linearized equations for the various general types of boundary conditions are developed in'Section 6.0 of

Volume 1. The following sections apply these generalized equations to the particular x-velocity boundary
conditions in Proteus. 12

In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCUVEL 93

No Change From Initial Conditions, Au = 0

^

Applying equation (6.3) of Volume 1, and noting that Og/OQ = JOg/OQ, we get simply

- -h--ap + A(pu) = 0
i,j

Specified x- Velocity, u = f

Applying equation (6.5) of Volume 1,

Ji,: a_ + ,',(;,,,) =£,)+ _ "-- --Ui, j
i,j

Specified Two-Point x-Velocity Gradient in Coordinate Direction, OulOd? = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

At the ¢ = 1 boundary,

u A_+ zX(pu) =-- JN l- l,j ---fi- Ap + A(pu) + JNl,) --
:¢_- 1,y N,,j

n n(A_)f;7,,+' +_, _,,j- _,,:

Analogous equations can easily be written for the _7boundaries.

Specified Three-Point x-Velocity Gradient in Coordinate Direction, OulOd? =f

Applying equation (6.8) of Volume 1 at the _ = 0 boundar5,, and using three-point one-sided differenc-

ing,

u A_ + 1 A(pu) + 4Jy,j u ^- ---h- ap + a(pu) -
-- 3Jl'J 7 _ l,j 2,j

e3,j - -y_ A_+ T1a(pu) 3,: = 2(_¢_..7 1+ 3_,: - 4_2,:+ _3,:

At the ¢ = 1 boundary,

[^ in [U^ ___ ^ inU A_ + 1 A(pu) -- 4JN x- 1,) -- --fi-Ap + A(pu)
JN 1- 2,j -- _ "if- N1 - 2,j N1 - l,j

[uAP+ 1 ^]n3JN_,j -- --_ _ A(pu) = 2(A_)f_l,+ ! n 4u_ _ n
-aNl,J -- UNz --2,j + -- 1,j 3Ul%j

+

Analogous equations can easily be written for the 11boundaries.

94 4.0 Proteus Subprograms: BCUVEL Proteus 2-D Programmer's Reference

Specified Two-Point x-Velocity Gradient in Normal Direction, Vu. n =f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-
encing,

u 1 A(pu) =- J',J 7- ap + _- a(pu) + 4,; - 7- a_ + 7
l,j 2,y

A_ [fln+l (_xrlx-I- _YrlY)l J n I n nml,j ,J m l,j ' 6,7u1,j + u],j-- ½,j

where

m = N/¢x 2 + _y2

and 67 is the centered difference operator presented in Section 5.0 of Volume 1. At the _ = 1 boundary,

U ^ _ ^ in 1jWJNI'j [u ^ _ ^ I n-- JN, - l,j -- T AO + A(pu) -- TAp + A(pu) =
N t -- - NI,j

Iff_ - 8l 1 ?t -- 1'1
A_ n + 1 (_x_lx + _YrlY)NI,j 6riUNl,j + UNI _ l,j UN,,j

toni, j ,,J -- myl, j

Analogous equations can easily be written for the _/boundaries.

Specified Three-Point x- Velocity Gradient in Normal Direction, Vu • n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-
encing,

u ^ 1 A(pu) +4J2, j ----fi-Ap+--fi-u^ 1 A(pu) --
- 3J l,j - --fi- Ap + --fi- l,y 2,j

[^in 2A_ Ffln +, ({x_lx+{yrly)l,j6,Tun, j]+^ 1a(p.) =_L 'j - m,,i4o -Tap +7- 3,j
I'Z 1'1

3u'_,j - 4u2, J + u3,J

where

m= 4_x 2 + _y2

and 6_ is the centered difference operator presented in Section 5.0 of Volume 1. At the ¢ = 1 boundary,

[" ÷ I 1u a_ + a(pu) +JN 1 - 2,j -- _ A_ "k- A(pu) -- 4JN 1 - 1,j -- "fi"

N1 -- 2,j .'¢_- 1,j

3J..vt,j[_____A_+4A(;u,] n 2A_ [f_+l (_xrlx+_yrly'Nl,J n]p, AN1,j = raN1,------7 t,J mNl,j 6qtZNl,J --

tl i1 tl

UNl -- 2,j + 4UN l - l,j -- 3UNI,j

Analogous equations can easily be written for the _/boundaries.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCUVEL 95

Linear Extrapolation o[x- Velocity

Applying equation (6.14) of Volume I at the _ = 0 boundary,

U ^ U A q_
Jl ,j - ap + 7- a(p_) - 24,i _p + 7- a(pu)

l,j 2,j

3,j

At the _ = 1 boundary,

^ _ u ^ 1 ,5(pu) +u ,_ + 1 A(pu) - 2J,v_- _,i - -Y ap + 7-
JU t- 2,j --7- 7- N 1- 2,j U l - l,j

I'1" ,'4 + 1 ,,,(p,,) = - "_,- w + 24,_ ,u- "u,u
JNl'J -- _ 7- M,J

Analogous equations can easily be written for the _ boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent x-velocity boundary, condition
is specified.

96 4.0 Proteus Subprograms: BCUafEL Proteus 2-D Programmer's Reference

Subroutine BCVDIR (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,METX,METY,NVD,NPTSD)

Called by Calls Purpose

BCGEN BCGRAD Compute normal and tangential velocity boundary conditions.
BCMET

DEL

DXI, DETA

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

* ISWIRL

IV

I1, 12

JI

METX, METY

* NOUT

NR, NRU, NRV, NRW

NVD, NPTSD

NIP

RHO, U, V, W

A,B,C

S

Description

Subroutine

boundary conditions.

Computational grid spacing in sweep direction.

Computational grid spacing A_ and An.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,J), where I runs from
1 to N,q, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the "vectorized" direction, L.

Grid indices i and j, in the _ and _/directions.

Inverse Jacobian of the nonorthogonal grid transformation, J- 1

Derivatives of sweep direction computational coordinate with re-
spect to x and y (or r if axisymmetric.)

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
and pw.

Leading two dimensions for the arrays A, B, C, S, METX, and
METY.

Parameter specifying the dimension size in the _ direction.

Static density p, and velocities u, v, and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

BCVDIR computes coefficients and source terms for normal and tangential velocity
The linearized equations for the various general t_20es of boundary conditions are

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCVDIR 97

developedin Section6.0of Volume1. Thefollowingsectionsapplythesegeneralizedequationsto the
particularnormalandtangentialvelocityboundaryconditionsin Proteus) 3

Specified Normal Velocity, V_ =f

The normal velocity is defined as

where n is the unit vector normal to the boundary. For a _ boundary,

n- V_ 1 _x- _ + l -
I V_I -- m --m_YJ

where

m = _/¢x 2 + ¢y2

Therefore, for a _ boundary,

1
V n -- _ (_xU + CyV) =f

Note that the unit vector n is in the direction of increasing _. Therefore V, is positive in the direction of

increasing _. Thus, a positive V, at _ = 0 implies flow into the computational domain, and a positive V_

at _ = 1 implies flow out of the computational domain.

Similarly, for an n boundary,

1
v. = _ (,lxu + ,_yV)=f

where

"m -_-N/r/x 2 --I-r/y2

and V_ is positive in the direction of increasing 11.

Applying equation (6.5) of Volume 1, the linearized boundary condition at a _ boundary becomes

7l

"[i,j [#Xgt-b_y v Ap -.I-_(;g/) -q'-_y m(;r)l =f/'_+1 (Vn)in,j
mi'j P P --i,j

An analogous equation can easily be written for the _/boundaries.

In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.

98 4.0 Proteus Subprograms: BCVDIR Proteus 2-D Programmer's Reference

Specified Two-Point Normal Velocity Gradient in Coordinate Direction, 0 V./& k = f

Applying equation (6.8) of Volume 1 at the _ --- 0 bounda_,, and using two-point one-sided differencing,

At the _ = 1 bounda_,,

Jl,j [ml,j
Gu + _yv a_ + G ^ Cy ^ 7"

p -7 A(pu) +--7 A(p_)J +
1,j

_xU + _YV A_ + _x _ ^ In
p -7 A(;u) + A(pv)_,2,j

(a_7 ' + (v_)w- (v.)_,:

¢y ^7"
Gu

l l_j

+ ,yV

mN 1 - 1,j P
-3

N 1 - 1,j

_y ^ 7 _
NI,j

+

1'1 -- n
(A:)f;l,t 1 + (Wn)N 1 -l,j (Wn)Ni,j

Analogous equations can easily be written for the _/boundaries.

Specified Three-Point Normal Velocity Gradient in Coordinate Direction, OVdO _ = f_

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-
ing,

At the ¢ = 1 boundary,

- 3 JI'-----L [ml,j

J2,j [m2-I 7

Gu + _yv a_ + G ^ _y " 7 _• +
p -7 A(pu) + --F- A(pv)]

1)

_xU+_YVA_+ _x # ^ inp _ A(;u) + A(pv) -

2,j

[#v3,s Cx_+¢y_a_+ a(;_)+ a(pO =
m3"j P --fi- 3 ,j

2(A_)fln? I + 3(Vn)7, j -- 4(Vn)_, j + (Vn)_, j

3 JNI'y F

raN, ,j L

Gu + ¢yv a_ G ^ _y ^ 7"

p + --y- a(pu) + -y- a(pv)jv, 2,j

Cy ^ 7 n

-'vi - 1,j

v -E-a(pu) + -b-- a(p_)] =
NI,j

n

2(A¢)-f,_7,t'- (Vn)N_- 2,Y+ 4(Vn)_v,- ,,j- 3(Vn)_,j

+

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCVDIR 99

Analogous equations can easily be written for the _/boundaries.

Specified Two-Point Normal Velocitv Gradient in Normal Direction, VV,. -n = ,f

AppbSng equation (6.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-

encing,

Jl,j Iml,j

rrh,j

a_ [-,-n + 1 (G'Ix + #yny)l,j

m l,j LJ,,J - m t,j

_y ^ qn
cx -Ta(pv)J +p + 7 A(pu) +

1,j

Gu + _yv G ^ Cy A qn
p A_ + --f- A(eu) + -7- A(pv)] =

_2,j

n [n n

(V,,h.;j + (Gh.;- (v,,)2d

where 6, is the centered difference operator presented in Section 5.0 of Volume 1. At the _ = 1 boundary,

JN l - 1,j F

mN_ -- l,j L

JN 1,j

mNbj I

p -7 a(pu) + -7- A(pv)
N_-l,j

p _ A(eu) + --y- A(pv) =
N_.j

+

A_ IfNl + 1 (_xrlx+_y_'ly)Nl,j 6rl(Vn)%l,jl..b(gn)nNl_l,j_(gn)nlv1, jtoni, j ,J -- tuna, j

Analogous equations can easily be written for the r/boundaries.

Specified Three-Point Normal Velocitv Gradient in Normal Direction, VV_ • -n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-

encing,

where 6, is the centered difference operator presented in Section 5.0 of Volume 1. At the _ = 1 boundary,

100 4.0 Proteus Subl_-ograms: BCVDIR Proteus 2-D Programmer's Reference

J Yl - 2,j F
"._---,--=LL

JN 1 - l,j F
4

J_',,___2C[3
mNl, j L

P -7 zX(pu)+ --7 a(Pv)J vl_ =,J

¢_u + _yv al + L¢ ^ _y ^ -1_
p --7 A(pu) + --7 zx(pv)Jx I_ l,j

Cxu -b CyV A_ -1- Cx ^ CY A(;v)] np -7 a_u) + =
P ...aNI,j

mNl,j LSNi,2 -- mNl,j

+

-]
6n

n) n

(VAN,,j] - (v,) ,¢,
n V n-2,j + 4(Vn)N 1- l,j-- 3(n)N,,j

Analogous equations can easily be written for the 1'/boundaries.

Linear Extrapolation of Normal Velocity

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

Jl,j

ml ,j

J2,j

rr_,j

J3,j

m3,j

It

[- _¢_U+_yV a_+ L, " Cy ,,-1
p 7 a(pu)+-7 A(pv)J,u

[_xUW'YVA_ -_--A(;u) _y ^..inp + + --7 A(pv)J2,j +

I't

P P _3,j

- (v_)?u + 2(v_)_,j- (v_)_u

At the _ = 1 boundary,

JN_ - 2.j [_x u +

mN_ - 2,j L P

2 JN,-1,___j [Cxu+mN 1- 1,] P

JNl'J F _xU +

mNl,J L p

+ -fi-a(P_)JNI- 2,j

+ --fi-"A(pv)JN_ - l,j

CY A(pv)] n --
NI,j

(z,)_,_2u+ 2(v,)Vv,__u- (v_)_lu

+

Analogous equations can easily be written for the _/boundaries.

Specified Tangential Velocity, V, =.f

For a _ boundary, the tangential velocity is the velocity in the _ direction, and is given by

I
= -_ (- _yu+ ¢_v)

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCVDIR 101

where

m= N/_x 2 + _y2

Note that this definition for tangential velocity does not include the swirl velocity w in axisymmetric flow.
Separate boundary conditions should be set for w.

where

Similarly, for an 't boundary,

1

m = 4r/x 2 -1- r/y 2

Applying equation (6.5) of Volume 1, the linearized boundary condition at a _ boundary becomes

i,j

An analogous equation can easily be written for the _/boundaries.

Specified Two-Point Tangential Velocity Gradient in Coordinate Direction, O V,/Od? = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

gt

1,j

n

2,j

' + (v,)7,:-(v,)7,j

At the _ = 1 boundary,

JN, - l,j V _yu- _xv

JNI'j V CyU-- _x'_

m.,c,,j L 7

1"l

(A_)f_;n_,+' + (Vt)N t -- 1,j

a; - 7 A(p_) + -_- a(pv)
]

N 1 -- l,j

a_ - A() + _() =

N 1,j

+

Analogous equations can easily be written for the rI boundaries.

Specified Three-Point Tangential Velocity Gradient in Coordinate Direction, 0 VdOd? = f

Appl_Sng equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-

ing,

102 4.0 Proteus Subprograms: BCVDIR Proteus 2-D Programmer's Reference

3 mlJlj,___7I _yu 7--_zv

4 m2,jJ2'J[_yU--p _xv

J3,j [_yU- _v

m3,J L P

A_ -- A(;_,)+ 7 A(._) +
l,j

7_y ^ 7¢x _ 1"a_ - a(p_) + A(p_.) -
2,j

Ag -- A¢_) + 7 A(O_') =
3,j

2(A¢)fln,+ 1 + 3(Vi)w _ 4(Vt)2,y + (VI)3, j

At the _ = 1 boundary,

JN_ - 2,j F _yU - _xv

mN l - 2,j L

JNIzI,j [_yU-- _x v
4 toNi_l, j _ p

3 JN,,J [_Yu-_xv _Y ^ _x ^ intoNi, j p A_ -- 7 A(pu) + ---fi-- A(pv) =
---*N 1,j

2(A¢).fNn,3 1 --(Vt)nN_ - 2,j + 4(Vt)Tvt- 1,)

A_ - -7- g(p_)+ -7- zx(p_)]
N l -- 2,j

A_ - -7 zx(;_)+ 7 A(p_)j +
N 1 --1,j

n

- 3(V,)N_,j

Analogous equations can easily be written for the _ boundaries.

Specified Two-Point Tangential Velocity Gradient in Normal Direction, VV, • -n= f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-
encing,

A_

ml ,j

where 6_ is the centered difference operator presented in Section 5.0 of Volume 1. At the ¢ = 1 boundary,

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCVDIR 103

Analogous equations can easily be written for the _/boundaries.

Specified Three-Point Tangential Velocity Gradient in Normal Direction, V Vr • n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-

encing,

-3 Jl,j Iml ,j

J2,y F

?1

P l,j

2,j
n

m3,---} _ A_ -- A(;u) + A(;v) =
3,y

2A_ [fln + 1 (_xrlx + _yrly)l,j 6.(Vt)_.j] + 3(Vt)_,j - 4(Vt)_,j + (Vt)_, jml,y ,J - ml,y

where 6_ is the centered difference operator presented in Section 5.0 of Volume 1. At the _ = 1 boundary,

jNl_2,j [_yU__xV ____ ___ inm,,'--Z--23 ; - A(?,u)+ ,,(;v) -
Nl -- 2,j

4 mN-----t-- 1,5 _ A_ -- A(;u) + A(;v) +
N1 -- 1,j

lraN,,-------_ P A; -- A(;U) + A(_) =
"-aM, j

2A_ [fN1+l (_xrlx+_yrlY)Nq,J 6n(vt)nN,,j]_(Vt)nN,_2,y+4(vt)nN,_l,y_3(vt)nN,,jmNl,j ,J mNt, j

Analogous equations can easily be written for the _/boundaries.

Linear Extrapolation of Tangential Velocity

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

Jl,j F _yU- _xv

ml,j L P

2 m2,------fJ2'y[_yU -fi-{xV

Y3,j F _yU-_x v

m3,j L P

a_ - T a(p,,)+ _) -
,0 -" l,j

/l

2,j
1,1

3,Y

- (v,)7.i + 2(v,)_.j- (w,)_.j

At the _ = 1 boundary,

104 4.0 Proteus Subprograms: BCVDIR Proteus 2-D Programmer's Reference

JN"-"21--2'J I _yU--_x vmN_ - 2,j P 7_y A 7_x ^ inM, - A(pu)+ A(pv)
N l -- 2,j

n

7 A(p_) +
N l -- 1,j

[_yU--_xV _y ^ _x ^] np a_ -- 7 "(Pu) + 7 _X(pv) =

NI,j

-(Vt)nN,- 2,./+ 2(Vt)_v,- 1,j- (Vt)%,.j

Analogous equations can easily be written for the _ boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent normal or tangential velocity
boundary condition is specified.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCVDIR 105

Subroutine BCV_EL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NW'D,NPTSD)

Called by Calls Purpose

BCGEN BCGRAD Compute y or r-velocity boundary conditions.
BCMET

DEL

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

IV

JI

NOUT

NR, NRU, NRV

NVD, NPTSD

RHO, U, V

Output

A,B,C

S

Description

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,J), where I runs from

1 to N,q, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundar3,; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J- _.

Unit number for standard output.

Array indices associated with the dependent variables p, pu, and

pV.

Leading two dimensions for the arrays A, B, C, and S.

Static density p, and velocities u and v, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row

IEQ only).

Source term subvector S at boundary IBOUND (element IEQ

only).

Subroutine BCWEL computes coefficients and source terms for y or r-velocity boundary conditions.
The linearized equations for the various general types of boundary conditions are developed in Section 6.0
of Volume 1. The following sections apply these generalized equations to the particular y or r-velocity

boundary conditions in Proteus? 4

_4 In the following description, for the first AD! sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as wriuen.

106 4.0 Proteus Sublx'ograms: BCVVEL Proteus 2-D Programmer's Reference

No Change From Initial Conditions, Av = 0

^

Applying equation (6.3) of Volume 1, and noting that Og/OQ = JOg/aQ, we get simply

v a_+ a(pv) =0
J",J - 7- i,j

Specified y or r-Velocity, v = f

Applying equation (6.5) of Volume 1,

Specified Two-Point y or r- Velocity Gradient in Coordinate Direction, OvlOd? =.f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

,q I'1

At the ¢ = 1 boundary,

v ^ 1 A(pv)
-- JN t - l,j ----fi- Ap + _ N1-1,]

F ^ I"1

--fi-v ^ 71 A(pv)-Ij+ JNI, j I I Ap -]'-
L NI,j

e'¢>,7,.3' + ,,j- "Li

Analogous equations can easily be wTitten for the q boundaries.

Specified Three-Point y or r- Velocity Gradient in Coordinate Direction, Ov/Od? = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-
ing,

v ^ 1 A(pv) 4-4.12, j --T A_ + --fi-A(pv) --
- 3J1 ,J -- 7 Ap + --if- l,j 2,]

J3,j -- "-P-VAp^ + --ff'la(pv) 3d = 2(A¢_,,+, 1 + 3vp, j -- 4v_,j + v3n,j

At the _ = 1 boundary,

"IN,- 2,j -- X Ap + 1 k(pv) -- 4J& _ 1,y 7" Ap + 1 k(pv) +
& - =,j ,v_- l,]

V A

3Jvt, j --p--ap + A(pv) 2(A_)f_,,3 1 n n n-- = -- VN 1 -- 2,j + 4vN_ - 1,j - 3vNx,j
NI,j

Analogous equations can easily be written for the ,/boundaries.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCVVEL 107

Specified Two-Point y or r- Velocity Gradient in Normal Direction, Vv • n = ["

Applying equation (6.12a) .of Volume 1 at the _ = 0 boundar3", and using two-point one-sided differ-
encing,

- Jl,j - -'P-- l,j 2,j

a¢ f:+a +¢:)1,i n n
mi.j ml ,j .J Vl'j -- v2, jL I,j -- 6_iVl, j +

where

m = x/_x 2 + ¢y2

and 6_ is the centered difference operator presented in Section 5.0 of Volume 1. At the _ = 1 bounda_ry,

_ v A_+ 1 A(pv) =v ^ 1 a(p) +-/,v,,: 7 T
- JN_ - 1,] - --if- Ap +_ -7 N_- l,j N_,j

A_ n + 1 (¢x_Ix + _YrlY)N| ,) 6_TVNI,j + VN1 _ l,j -- VNl,j
mNl,j t,J -- mNl,j

Analogous equations can easily be written for the rt boundaries.

Specified Three-Point y or r- Velocity Gradient in Normal Direction, Vv • n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-
encing,

- 3J 1,j - 7- -_- A(pv) + 4J2,: - --d- AS + A(pv) --
1,j 2,j

[:' I n 2A_ Ifln+l (_xVlx+_y_ly)lj n 1
v A_+ 1 A(pv) ,j " 6,vl,y +

J3,j - T T 3,j = ml "-'''_ ml 'j

3v_,j -- 4v2, j + v;,j

where

m=x/_x2W_y 2

and 6_ is the centered difference operator presented in Section 5.0 of Volume 1. At the _ = 1 boundary,

_ v 1 A(pv) +v 1 A(pv) -- 4JN l - 1,) -fi- A_ + --_
d:fi - 2,: - -p-- A_ + -h-- x_ - 2,) :fi - 7,j

[v ^ 1A(pv)] n = 2A_.___ rcn+, ('xqx+'YqY)N_,J n 1_3JNl,j -- -_- Ap + --_ .a NI,j mNl,j mNl,JU N_,j 6,TVN_,d

n n 3v_l,jVN_- 2,) + 4VNx- l,j -

Analogous equations can easily be written for the _/boundaries.

108 4.0 Proteus Subfa'ograms: BCWEL Proteus 2-D Programmer's Reference

Linear Extrapolation of y or r-Velocity

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

_,y 2,j

Y3,) - -#-vA_ + A(pv)_,3,j = - vl 'y + 2v2'y - v3'y

At the ¢ = 1 boundary,

[] [V A 1 ^ n v A

JN, - 2,j -- "-fi-Ap + --7 A(pv) -- 2JN, - l,j -- --7 Ap + A(pv)
Nt - 2,j Nl -- 1,j

VA_ + 1 ^ nJN_,y -- --_ _ A(pv) = -- VN_- 2,1 + 2VX_- 1,y -- VNt,y
NI ,J

Analogous equations can easily be written for the _/boundaries.

Specified Flow Angle, tan-I(v]u) = f

This boundary condition can be rewritten as

v tanf
u

where fis the specified flow angle. Multiplying by pu,

(tanf)pu - pv = 0

Applying equation (6.5) of Volume 1 to the above equation, we get

A n PI_,,:[(,an:)_,+'-',,tp-J_,__"" - _(po_,:]= -(tan:)_,:+(p_)_,:

Remarks

1.

2.

+

This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

An error message is generated and execution is stopped if a non-existent y-velocity boundary condition
is specified.

•Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCVVEL 109

SubroutineBCWVEL(IBC,FBC,IEQ,IMIN,IMAX,IBOUND,A,B,C,S,NVD,NPTSD)

C_tlledby Calls Purpose
BCGEN BCGRAD Computeswirlvelocityboundaryconditions.

BCMET

DEL
IBASE,ISTEP

IBC,FBC

IBOUND

IEQ
IMIN, IMAX
ISWEEP
IV
JI
NOUT
NR,NRU, NRW

NVD,NPTSD
RHO,U,W

A,B,C

S

Description

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-

dimensional index for two-dimensional array.

Mean flow boundary condition types and values for current sweep
direction, specified as IBC(I,J) and FBC(I,J), where I runs from
1 to Ne,, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction,/,.

Inverse Jacobian of the nonorthogonal grid transformation, J- 2.

Unit number for standard output.

Array indices associated w_th the dependent variables p, pu, and

pw.

Leading two dimensions for the arrays A, B, C, and S.

Static density p, and velocities u and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ

only).

Subroutine BCWVEL computes coefficients and source terms for swirl velocity boundary conditions.
The linearized equations for the various general types of boundary conditions are developed in Section 6.0
of Volume 1. The following sections apply these generalized equations to the particular swirl velocity
boundary conditions in Proteus? s

is In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.

! I0 4.0 Proteus Subprograms: BCW%_EL Proteus 2-D Programmer's Reference

No Change From Initial Conditions, Aw = 0

Applying equation (6.3) of Volume 1, and noting that OglOQ = JOg/OQ, we get simply

i,j

Specified Swirl Velocity, w = f

Applying equation (6.5) of Volume 1,

4j w a_+ 6(sw) =£,3+' "
-- -P- i,j -- wi'j

Specified Two-Point Swirl Velocity Gradient in Coordinate Direction, Ow[&p = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

[+ [÷WA_+ A(sw) +4y wa_+ _X(sw) =, -- "fi-- Y_,Y -- 7 1,y 2,j

. n+l n n
(k{)]'l ,j + w l ,j -- W2, j

At the _ = 1 boundary,

[] [^ n 1 A(pw) =w A_ + 1 A(pw) + JN,,j -- _-- A_ + --fi--
-- JN a - 1,j -- "-'7 "fi- N 1 -- l,y NI,j

+ WN l -- 1 ,j -- WNI,j

Analogous equations can easily be written for the _/boundaries.

Specified Three-Point Swirl Velocity Gradient in Coordinate Direction, Ow[O_b = f

Applying equation (6.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-

ing,

w ^ w I
_ 3j l'j _ -'if" AS + 1 A(sw) + 4J2,j --p- A_ + _ A(pw) --

1,i 2,Y

[W ^ Pl ?/

Y3,y - T AS + A(pw) = 2(A¢)fln,? I + 3W_,y -- 4W2,y + w3,j
3,j

At the # = 1 boundary,

w w A_ + 1 A(pw) +JNt -- 2,1 -- "7 Ap + A(pw) -- 4JN l - 1,j -- "7
N_- 2,j N_- _,y

[w A_ + A(pw) 2(A_)./-/#,,3 1 n n n-- = -- WN 1 -- 2,j + 4WN l - l,j -- 3WN>j
3JNI,j _ NI,j

Analogous equations can easily be written for the _t boundaries.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BCWVEL 111

Specified Two-Point Swirl Velocity Gradient in Normal Direction, Vw • -n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 bounda_,3', and using two-point one-sided differ-
encing,

Y w ^ 1 zX(pw) +Jz,y w ^-Tat'+ A(pw) =- :,,i L- -z- + ,,i 2,i

A_ n + 1 (_xqx + _yqy)l,j 6_7Wl, j + Wl,j w2,j
mt,j ,J m 1,j

where

m = .x/_x 2 + _y2

and 6 7 is the centered difference operator presented in Section 5.0 of Volume 1. At the _ = I boundary,

[[w A_ + 1 A(pw) =w _^ 1 A(pw) + Ju,4 - _ -k-
-- JN1 - 1,y -- --P- ap + --f Nl - l,Y Nj,y

A_ n + I (_x_Ix + _Yl'IY)NI,J 6rlWNl,j + WNl _ 1,i -- WNI,j
mNa,j 1,J mNl,j

Analogous equations can easily be written for the q boundaries.

Specified Three-Point Swirl Velocity Gradient in Normal Direction, Vw • -n = f

Applying equation (6.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-
encing,

w ^ ^ n w ^ 1 A(pw) -1 A(pw) +4J2,Y -WAP+_-
- 3ja, 1 - -if- Ap + 7 1,1 2,j

^ n 2A_ n + 1 (_xrlx + _YrlY)I,J 6rtw l'j +w ^ 1 A(pw) = ,Y
J3,y - --p--Ap + -_- 3,y ml ,J ml,Y

3w_,j n n-- 4w2, i + w3,j

where

m=_/_x2+_y 2

and 6_ is the centered difference operator presented in Section 5.0 of Volume 1. At the _ = 1 boundary,

a(pw) -4Jy,_,, i
N 1 -- 2,j

3JNt,y _ -fi-wA_ + A(pw)_,_,y = mNvj ,i -- mNt,y 6nw?c_,Y --

t/ /1 tl
WN t - 2,j + 4WN I - 1,j -- 3WN1,j

Analogous equations can easily be written for the _/boundaries.

! 12 4.0 Proteus Subprograms: BCWVEL Proteus 2-D Programmer's Reference

Linear Extrapolation of Swirl Velocity

Applying equation (6.14) of Volume 1 at the _ = 0 boundary,

[w A ^ in [w A l ^ inJl,j - "7- Ap + 1 A(pw) 2J2,J - 7 Ap + _ A(pw) +
l,j-- 2,.]

A A -- W n 17 17
Js,j - --fi- lap + A(pw) = l,j + 2wLj -- w3d

3,j

At the _ = 1 boundary,

_ I_(pw) -zI_;_,,i-_-_ +_-A(pw) +
JN t - 2,j -- --if- Ap 4- --fi- N 1 - 2,j N 1 - 1,j

W A/', n /'t /"/

JNl,j - ---fi- zap + A(pW) = -- WN 1 - 2,j + 2WN 1 -- l,j -- WNI,j
Nt,)

Analogous equations can easily be written for the r/boundaries.

Specified Flow Angle, tan-l(wlu) =.f

This boundary condition can be rewritten as

w=tan I

wherefis the specified flow angle. Multiplying by pu,

(tanf)pu -- pw = 0

Applying equation (6.5) of Volume 1 to the above equation, we get

s_.j[(,an/-);,2,-."-. _ _., _tpuJi, j A(pw)i,j] = - (tanf)_j + (pw)i,j

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent swirl velocity boundary con-
dition is specified.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BC'_WEL ! 13

Subroutine BLIN 1

Called by Calls

TURBBL ISRCHEQ

Purpose

Compute inner layer turbulent viscosity along constant ¢ lines.

* APLUS

* CB

* CNL

* CVK

* IDEBUG

* ILDAMP

* INNER

* IPRT1A, IPRT2A

IT

* IWALL2

II

* LWALL2

MU

MI IT

NOUT

NPRT1, NPRT2

N2

RER

RHO, U, V, W

VORT

X,Y

o.w.t

MUT

Description

Van Driest damping constant A*.

Constant B in the Spalding-Kleinstein inner layer model.

Exponent n in the Launder-Priddin modified mixing length for-
mula for the inner region of the Baldwin-l__omax turbulence
model.

Von Karman mixing length constant used in the inner region of
the Baldwin-Lomax and Spalding-Kleinstein models.

Debug flags.

Flag for Launder-Priddin modified mixing length formula in the
Baldwin-Lomax inner region model.

Flag for type of inner region model.

Indices for printout in the _ and _/directions.

Current time step number n.

Flags indicating whether or not the _/boundaries are waUs.

Grid index i in the _ direction.

Flags specifying wall locations for t/boundaries.

Laminar coefficient of viscosity t_,.

Outer layer turbulent viscosity coefficient (#,)o_,_ along constant
lines,

Unit number for standard output.

Total number of indices for printout in the _ and _/directions.

Number of grid points)_½in the _/direction.

Reference Reynolds number Rer.

Static density p, and velocities u, v, and w.

Total vorticity magnitude.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Turbulent viscosity coefficient _, along constant ¢ lines.

Subroutine BLIN 1 computes the ia'mer layer turbulent viscosity coefficient (/_,),,,_, at a specified _ lo-
cation (i.e., due to walls at _/= 0 and/or n = 1.) Two different inner region models are available - the model
of Baldwin and Lomax (1978), and the model of Spalding (1961) and Kleinstein (1967). These are described
in Section 9.1.2 of Volume 1.

114 4.0 Proteus Subprograms: BLIN1 Proteus 2-D Programmer's Reference

If both r/boundaries are solid walls, (/_,)_,, is computed separately for each wall, and it is assumed that

the two inner regions do not overlap. For each wall, the computation is done inside a loop starting at the
wall and moving outward. Once the inner region value exceeds the outer region value, the loop is exited.
Thus/_ = (/_,)_,, until (#_),,_, >__(#,) then #, = (#,)o_,e,.

The distribution of _, across the intersection of the inner and outer regions is smoothed using the fol-

lowing formulas. For the _7= 0 wall,

1 [(/at)j. _ + 2(,.)j b + (#.)j. + l]= I

1 [(/_t)]_- = + 2(/_t)y_- I + (#,)y_]i = -g-

where the boundary between the inner and outer regions falls between between j =jb- 1 and j =jb. It
should be noted that the unsmoothed value of (#,)Jb is used in the second smoothing formula, not the
smoothed value from the first formula. Similarly, for the _/= 1 wall,

I
(l'tt)jb = _ [(/"tt)jb + I -I- 2(_t)jb + (_t)Jb -- I]

I

where the boundary between the inner and outer regions falls between between j =j_ + 1 and j =jo.

Remarks

1. To avoid the possibility of floating point errors, the value of]_1, used to compute z + and u+ is set to
a minimum of 10 -l°.

2. The Cray search routine ISRCHEQ is used in determining the grid locations for debug printout.

3. This subroutine generates output for the IDEBUG(8) option.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BLLNI 115

Subroutine BLIN2

Called by Calls

TURBBL ISRCHEQ

Purpose

Compute inner layer turbulent _Sscosity along constant _t lines.

* APLUS

* CB

* CNL

* CVK

DUMMY

* IDEBUG

* ILDAMP

* INNER

* IPRT1A, IPRT2A

IT

* IWALL I

I2

* LWALL 1

MII

* NOUT

NPRT1, NPRT2

* N1

* RER

RHO, U, V, W

VORT

X,Y

DUMMY

Description

Van Driest damping constant A ÷

Constant B in the Spalding-Kleinstein inner layer model.

Exponent n in the Launder-Priddin modified mixing len_h for-
mula for the inner region of the Baldwin-Lomax turbulence
model.

Von Karman mixing length constant used in the inner region of
the Baldwin-Lomax and Spalding-Kleinstein models.

Outer layer turbulent viscosity coefficient (_t) along constant _7
lines.

Debug flags.

Flag for Launder-Priddin modified mixing lenph formula in the
Baldwin-Lomax inner region model.

Flag for type of inner region model.

Indices for printout in the _ and _/directions.

Current time step number n.

Flags indicating whether or not the _ boundaries are walls.

Grid index j in the _ direction.

Flags specifying wall locations for _ boundaries.

Laminar coefficient of viscosity t_.

Unit number for standard output.

Total number of indices for printout in the _ and _ directions.

Number of grid points N_ in the _ direction.

Reference Reynolds number Rer.

Static density p, and velocities u, v, and w.

Total vorticity magnitude.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Turbulent viscosity coefficient #t along constant q lines.

Subroutine BLIN2 computes the inner layer turbulent viscosity coefficient (tz,),,_,,, at a specified ,I lo-
cation (i.e., due to walls at _ = 0 and/or _ = 1.) The procedure is exactly analogous to that used in sub-
routine BLIN I.

! 16 4.0 Proteus Subprograms: BLIN2 Proteus 2-D Programmer's Reference

Subroutine BLKOUT (I1PT,I2PT,A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

Print coefficient blocks at specified indices in the _ and _/directions.ADI
AVISC 1
AVISC2
BCGEN
FILTER

A,B,C

* IHSTAG

ISWEEP

* ISWIRL

I 1PT, I2PT

NC, NXM, NYM, NZM, NEN

NEQ

* NOUT

NVD, NPTSD

S

None.

Description

Coefficient submatrices A, B, and C

Flag for constant stagnation enthalpy option.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Indices for printout in the _ and _/directions.

Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations.

Number of coupled equations being solved, Neq.

Unit number for standard output.

Leading two dimensions for the arrays A, B, C, and S.

Source term subvector S.

Subroutine BLKOUT prints the coefficient block submatrices A, B, and C, and the source term sub-

vector S at the grid points specified by I 1PT and I2PT. This is the routine that actually prints the output
for the IDEBUG(I) through IDEBUG(4) options.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BLKOUT 117

Subroutine BLK2 (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

EXECT Solve 2 x 2 block tridiagonal system of equations.

A,B,C

NPTS

NV

NVD, NPTSD

S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N_.

Leading two dimensions for the arrays A, B, C, and S.

Source term subvector S.

S Computed solution subvector.

Description

Subroutine BLK2 solves a block tridiagonal system of equations with 2 x 2 blocks using the block ma-
trix version of the Thomas algorithm. The algorithm is described in Section 7.2. l of Volume 1. For clarity,

that description involves additional "new" matrices D, E, and A(_'. In Fortran, however, we can save

storage by overwriting B, C, and S. The following table relates the algorithm as implemented in Fortran
to the notation used in Volume 1, for the first ADI sweep. An exactly analogous procedure is followed for

the second sweep.

Step

1

2a

2b

3a

3b

3c

3d

4

In Fortran In Volume 1 Notation

D2 = 82

Solve B2E2 = Cl for E2, storing result in C2 E2 = D_ lC2
^ ^ ^

A ' A '=Solve B2 Q2 = $2 for AQ_, storing result in $2 Q2 D_ _$2

For i= 3 to N_- 1,

Compute B_- A, Ci_ a, storing result in B_

Compute S,- A,S__ t, storing result in S,

Solve BiE, = C, for E,, storing result in C_
^ ^

Solve B, AQ: = S, for AQ_, storing result in S_

D, = B, - A,E,- t

Si - A,A(__ 1

Ei = D? tC,

A(_: = D7 t(S, - A,A0',-1)

^ ^

AQ_vl- I = AQ%I - 1

For i= N_ - 2 to 2,
^ ^

Compute S, - C,S, + l, storing result in S, AQ, = AQ_ - E_AQ_ +

Remarks

.
The notation used in the comments in BLK2 is consistent with the notation used in the description of

the algorithm in Volume 1. However, BLK2 is actually used to solve the k-e turbulence model
equations, and the boundary conditions for these equations are treated explicitly. That's why the index
in BLK2 runs from i = 2 to N_ - 1, instead of from i = 1 to NI. In addition, in BLK2 the matrix D-

is computed directly, rather than by LU decomposition.

118 4.0 Proteus Subprograms: BLK2 Proteus 2-D Programmer's Reference

. The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the ftrst, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BLK2 119

Subroutine BLK2P (A,B,C,S,NWD,NPTSD)

Called by

EXECT

Calls Purpose

Solve 2 × 2 periodic block tridiagonal system of equations.

A,B,C

NPTS

NV

NVD, NPTSD

S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N,.

Leading two dimensions for the arrays A, B, C, and S.

Source term subvector S.

Output

S Computed solution subvector.

Description

Subroutine BLK2P solves a periodic block tridiagonal system of equations with 2 x 2 blocks. An effi-
cient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations.
The algorithm is described in Section 7.2.2 of Volume 1. For clarity, that description involves additional

^

"new" matrices D, E, F, G, and AQ'. In Fortran, however, we can save storage by overwriting A, B, C, and
S. The following table relates the algorithm as implemented in Fortran to the notation used in Volume 1,
for the first ADI sweep. An exactly analogous procedure is followed for the second sweep.

Step

la

lb

2a

2b

2c

3a

3b

3c

3d

3e

3f

3g

3h

3i

In Fortran In Volume 1 Notation

D2= B2
F_= C_1

Solve B2E2 = C2 for E2, storing result in C2 E2 = D_ IC2

Solve B2G2 = A2 for G2, storing result in A2 G2 = D_ 1A2
^ ^ ^

At e _Solve 132 Q2 $2 for AQ_, storing result in $2 AQ_ D_ IS2

Fori=3to N1- 1,

Compute B_ - A,C,_ 1, storing result in B_

Compute S, - A,S,_ 1, storing result in S;

Compute - A;A__ 1, storing result in A;

Solve B,E; = C, for E,, storing result in C;

Solve BiG; = A, for G;, storing result in A,
^ ^

Solve B,AQ_ = S; for AQ_, storing result in S,

Compute B_vl - C_-IA,- 1, storing result in B_vl

Compute Sul - C_vIS,- 1, storing result in S_¢_

Compute - C,v1C, _ _, storing result in C_¢l

Di = B, - A,E;_ l
^

S_- A;AQ',._ 1

- AiGi- 1

Ei = D, 1Ci

G; = D7 1AzG,- t
^ ^

AQ' _._D71(S, - A,AQ" _,)

ZEG
)=2

i--1

s,,l- Y
./=2

F,= - E-1K-1

120 4.0 Proteus Subprograms: BLK2P Proteus 2-D Programmer's Reference

Step

4a

4b

4c

4d

4f

5

6

7

8

In Fortran In Volume 1 Notation

Compute AN, - _ + Cz¢1- 1, storing result in Aaq _ x

Compute Az¢l + CN1, storing result in CNI

Compute Bu I - CN_Azq _ 1, storing result in B_v,

Compute S.v_ - CNISN1 _ _, storing result in S_ 1

^ ^

Solve B_IAQ'_. 1 = S_ 1 for AQ% 1, storing result in S_.1

G_I- l = D_l l- l(Cz,'t - 1 - AN1 - iG.v1-2)

F._'l - 1 :- A/el -- FNa - 2E_q - 2
N 1 - 1

D_-I=Bs 1- _ F,G_
i=2

N 1 - 1 ^

S_ 1 - _ F, AQ_
t=2

^ NI - 1 ^

AQ's_ = Dg,_(SNt -- Z EAQ:)
i=2

A ^ ^QNI = AQ'sl

Compute sto g reset in 1 aQ,,,_,= - S.v _
For i = .V_- 2 to 2,

Compute S,- AiS_vt- C,Si+ 1, storing result in Si AQ, = AQ: - G,A(_I- E,AI_,÷I

^ ^

Set Sl = Sul AQ1 = AQ_vL

Remarks

.

The notation used in the comments in BLK2P is consistent with the notation used in the description
of the algorithm in Volume 1. However, in BLK2P the matrix D-1 is computed directly, rather than
by LU decomposition.

The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the ftrst, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BLK2P 121

Subroutine BLK3 (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

ADI FILTER Solve 3 x 3 block tridiagonal system of equations.

A,B,C

NPTS

NV

NVD, NPTSD

S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N,.

Leading two dimensions for the arrays A, B, C, and S.

Source term subvector S.

Computed solution subvector.

Description

Subroutine BLK3 solves a block tridiagonal system of equations with 3 x 3 blocks using the block ma-
trix version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero
values on the diagonal of the submatrix B at the two boundaries. These can occur when mean flow
boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial
conditions and the order of the boundary conditions.

The algorithm is described in Section 7.2.1 of Volume 1. For clarity, that description involves additional

"new" matrices D, E, and A0'. In Fortran, however, storage is saved by overwriting B, C, and S. The

following table relates the algorithm as implemented in Fortran to the notation used in Volume 1, for the
first ADI sweep. An exactly analogous procedure is followed for the second sweep.

Step

1

2a

2b

2c

3a

3b

3c

3d

3e

4

In Fortran In Volume 1 Notation

D1 = BI

LU decompose B_, storing result in B_

Solve B,E1 = C, for E, using LU decomposition of

B_, storing result in C,
^ ^

Solve B,AQ_ = S, for AQ] using LU decomposition
of B_, storing result in S_

For i = 2 to N_,

Compute B_ - A,C__ t, storing result in B,

Compute Si - A,Si_ l, storing result in Si

LU decompose B. storing result in Bi

Solve B_E_ = C_ for E_ using LU decomposition of B,,

storing result in C,
^ ^

Solve B,AQ' = S, for AQ_ using LU decomposition
of B, storing result in S,

LU decomposition of D_

El = Di- 1Ct

^

AQ_ = Di- ISL

Di = B, - A,E__ 1
^

Si - AiAQ" _ l

LU decomposition of D,

Ei = D? 1Ci

^ ^

AQ_ = D? _(S, - A,AQ;_ _)

^ ^

AQ_vt = AQ_I

122 4.0 Proteus Subprograms: BLK3 Proteus 2-D Programmer's Reference

Step In Fortran In Volume 1 Notation

Fori=Nl-lto 1,
^ ^ ^

Compute S, - C,S,. _, storing result in Si AQ, = AQ_ - EiAQ,_

Remarks

.

2.

The notation used in the comments in BLK3 is consistent with the notation used in the description of
the algorithm in Volume 1.

The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorixed in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BLK3 123

Subroutine BLK3P (A,B,C,S,NWD,NPTSD)

Called by

ADI

Calls Purpose

Solve 3 x 3 periodic block tridiagonal system of equations.

A,B,C

NPTS

NV

NVD, NPTSD

S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N,.

Leading two dimensions for the arrays A, B, C, and S.

Source term subvector S.

S Computed solution subvector.

Description

Subroutine BLK3P solves a periodic block tridiagonal system of equations with 3 x 3 blocks. An effi-
cient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations.
The algorithm is described in Section 7.2.2 of Volume 1. For clarity, that description involves additional

"new" matrices D, E, F, G, and A(_'. In Fortran, however, storage is saved by overwriting A, B, C, and

S. The following table relates the algorithm as implemented in Fortran to the notation used in Volume 1,
for the first ADI sweep. An exactly analogous procedure is followed for the second sweep.

Step

la

lb

2a

2b

2c

2d

In Fortran In Volume 1 Notation

D2 = B2

F2 = C_1

LU decompose 112, storing result in I?,2

Solve B2Fa = C2 for E2 using LU decomposition of
I?2, storing result in C2

Solve B2G2 = A2 for G2 using LU decomposition of
B2, storing result in A2

A ^' for A(_ using LU decompositionSolve B2 Q2 = S2
of B2, storing result in $2

LU decomposition of D2

E2 = Dr 'C2

G2 = D_ tA2

^

A 'Q2 = D_ 1S2

124 4.0 Proteus Subprograms: BLK3P Proteus 2-D Programmer's Reference

Step

3a

3b

3c

3d

3e

3f

3g

3h

3i

3i

4a

4b

4c

4d

4e

4f

7

8

Remarks

.

2.

In Fortran

For i= 3 to Nt - 1,

Compute B, - A_C__ 1, storing result in B_

Compute S, - A,S,_ 1, storing result in S,.

Compute - A,A,_ t, storing result in A_

LU decompose B_, storing result in B,

Solve B,E, = C, for Ei using LU decomposition of B.
storing result in C_

Solve BiG, = A, for Gz using LU decomposition of B.
storing result in A_

Solve B,At_I = S_ for AQ' using LU decomposition

of B,, storing result in S,

Compute B,vt - C,vtA_- t, storing result in B_v_

S_'t - CurSe- t, storing result in S_vtCompute

Compute

In Volume 1 .Notation

Di = Bi- AiEi- t

S, - A,AQ__ t

- A,G,_ t

LU decomposition of D_

E, = D;- tC_

Gi = D71A,G,- t

^ ^

AQ_ = Dr _(S_ - A,AQ'_t)

i-I

Bsv- Z FIG;.
j=2

L-I ^

S_, - Y"F,.AQj
j=2

B,vl -- CutAut- 1, storing result in But

S._rt - CN_Sv 1- 1, storing result in S_rl

- C_r_C,_ t, storing result in C m F_ = - F__ _E__a

Compute Aut - t + Ccvt - 1, storing result in A_¢1_ 1 Gat - t = DX.__ t(C_. t _ 1 -- Az¢__ tG_v1-2)

Compute Aut + Cu_, storing result in Cu 1 Fu_ _ t = Aaq - Fut _ _Eu_ _ e
N t - 1

Compute D_vt = B_ - _ F,G,
i=2

N t -- 1 ^

Compute Sul- _ F, AQ_
i=2

LU decompose Bu_, storing result in B_va LU decomposition of Du_

^ ^ ^ _ NI-1 ^

Solve BstAQ'_,_ = S_v_ for AQ%_ using LU decompos- AQ_vt = D_l(S_vt - _ EAQ")
ition of B_, storing result in S_ t _=2

Compute S_q _ t - ANt - _Sut, storing result in S_¢__ t

For i = Nt - 2 to 2,

Compute S, - A,.S_v_-- C,S_ + t, storing result in S,

Set St = S_vt

^ ^

AQs t = AQ_t

^ ^ ^ ^

AQ, = AQ_ - G, AQu, - E,AQ,.

The notation used in the comments in BLK3P is consistent with the notation used in the description

of the algorithm in Volume 1.

The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BLK3P 125

Subroutine BLK4 (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

ADI FILTER Solve 4 x 4 block tridiagonal system of equations.

A,B,C

NPTS

NV

NVD, NPTSD

S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N,.

Leading two dimensions for the arrays A, B, C, and S.

Source term subvector S.

S Computed solution subvector.

Description

Subroutine BLK4 solves a block tridiagonal system of equations with 4 x 4 blocks using the block ma-
trix version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero
values on the diagonal of the submatrix B at the two boundaries. These can occur when mean flow
boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial
conditions and the order of the boundary conditions.

The algorithm is described in Section 7.2.1 of Volume 1. For clarity, that description involves additional

"new" matrices D, E, and A0'. In Fortran, however, storage is saved by overwriting B, C, and S. The al-

gorithm is identical to that used in subroutine BLK3. See the description of that subroutine for a table
relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

.

2.

The notation used in the comments in BLK4 is consistent with the notation used in the description of

the algorithm in Volume 1.

The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the ftrst, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

126 4.0 Proteus Subprograms: BLK4 Proteus 2-D Programmer's Reference

Subroutine BLK4P (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

ADI Solve 4 x 4 periodic block tridiagonal system of equations.

A,B,C

NPTS

NV

NVD, NPTSD

S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N,.

Leading two dimensions for the arrays A, B, C, and S.

Source term subvector S.

O tp t

S Computed solution subvector.

Description

Subroutine BLK4P solves a periodic block tridiagonal system of equations with 4 x 4 blocks. An effi-
cient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations.
The algorithm is described in Section 7.2.2 of Volume 1. For clarity, that description involves additional

^

"new" matrices D, E, F, G, and AQ'. In Fortran, however, storage is saved by overwriting A, B, C, and
S. The algorithm is identical to that used in subroutine BLK3P. See the description of that subroutine for
a table relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

I.

2.

The notation used in the comments in BLK4P is consistent with the notation used in the description

of the algorithm in Volume 1.

The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BLK4P 127

SubroutineBLK5(A,B,C,S,NVD,NPTSD)

Calledby Calls Purpose
ADI FILTER Solve5x 5blocktridiagonalsystemof equations.

A,B,C
NPTS
NV
NVD, NPTSD
S

CoefficientsubmatricesA, B, andC
Numberof gridpointsin thesweepdirection,N.

Number of grid points in the "vectorized" direction, N,.

Leading two dimensions for the arrays A, B, C, and S.

Source term subvector S.

S Computed solution subvector.

Description

Subroutine BLK5 solves a block tridiagonal system of equations with 5 × 5 blocks using the block ma-
trix version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero
values on the diagonal of the submatrix B at the two boundaries. These can occur when mean flow
boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial
conditions and the order of the boundary conditions.

The algorithm is described in Section 7.2.1 of Volume 1. For clarity, that description involves additional

"new" matrices D, E, and A0'. In Fortran, however, storage is saved by overwriting B, C, and S. The al-

gorithm is identical to that used in subroutine BLK3. See the description of that subroutine for a table
relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

.

2.

The notation used in the comments in BLK5 is consistent with the notation used in the description of

the algorithm in Volume 1.

The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

128 4.0 Proteus Subprograms: BLK5 Proteus 2-D Programmer's Reference

Subroutine BLK5P (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

ADI Solve 5 x 5 periodic block tridiagonal system of equations.

A,B,C

NPTS

NV

NVD, NPTSD

S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N_.

Leading two dimensions for the arrays A, B, C, and S.

Source term subvector S.

O tp t

S

Description

Computed solution subvector.

Subroutine BLK5P solves a periodic block tridiagonal system of equations with 5 x 5 blocks. An effi-
cient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations.
The algorithm is described in Section 7.2.2 of Volume 1. For clarity, that description involves additional

"new" matrices D, E, F, G, and AQ'. In Fortran, however, storage is saved by overwriting A, B, C, and
S. The algorithm is identical to that used in subroutine BLK3P. See the description of that subroutine for
a table relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

.

2.

The notation used in the COlm-nents in BLK5P is consistent with the notation used in the description
of the algorithm in Volume 1.

The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if'the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases

the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BLK5P 129

BLOCK DATA Subprogram

Called by Calls Purpose

Set default values for input parameters, plus a few other parameters.

None.

All namelist input parameters, plus:

CCP1, CCP2, CCP3, CCP4

CK 1, CK2

CMU 1, CMU2

GC

IBCELM

IBVUP

ICONV

IGINT

ITBEG

KBCPER

NC, NXM, NYM, NZM, NEN

NIN

NR, NRU, NRV, NRW, NET

RAX

TAU

Constants in formula for specific heat. (8.53 x 103, 3.12 x 104,

2.065 x 106, 7.83 x]08) z6

Constants in formula for laminar thermal conductivity coefficient.

(7.4907 x 10 -3, 350.0) 16

Constants in formula for laminar viscosity coefficient. (7.3035

x 10-', 198.6) 16

Proportionality factor g¢ in Newton's second law. (32.174) 16

Flags for elimination of off-diagonal coefficient submatrices re-

suiting from three-point boundary conditions in the ¢ and ,/ di-
rections at either boundary; 0 if elimination is not necessary, 1 if
it is. (2*0,2*0)

Flags for updating boundary values from first sweep after second
sweep; 0 if updating is not necessary, 1 if it is. (0,0)

Convergence flag; 1 if converged, 0 if not. (0)

Flags for grid interpolation requirement for the ¢ and ,/ directions;
0 if interpolation is not necessary, 1 if it is. (0,0)

The time level n at the beginning of a run. (1)

Flags for spatially periodic boundary conditions in the _ and ,/
directions; 0 for non-periodic, 1 for periodic. (0,0)

Array indices associated with the continuity, x-momentum,

y-momentum (or r-momentum if axis_Tnmetric), swirl momen-

tum, and energy equations. (1,2,3,5,4)

Unit number for standard input. (5)

Array indices associated with the dependent variables p, pu, pv,

pw, and Er. (1,2,3,5,4)

1 for two-dimensional planar flow, and the local radius r for

axisymmetric flow. (NMAXP* 1.0)

Initial time value -r. (NTOTP*0.0)

16 These values are for reference conditions specified in English units. Values for Sl units are set in subroutine IN-
PUT.

130 4.0 Proteus Subprograms: BLOCK DATA Proteus 2-D Programmer's Reference

Description

The BLOCK DATA routine is used to set default values for all the input parameters, plus various other

parameters and constants. The defaults for all the input parameters are given as part of the standard input
description in Section 3.1 of Volume 2. The values for the other parameters and constants set in BLOCK
DATA are given in parentheses in the above output description. Note that some of these values assume
English units are being used to specify reference conditions. If SI units are being used, these values are re-
defined in subroutine INPUT.

Remarks

1. Most of the default values are defined directly, but some, Likethe reference viscosity MUR, are set equal
to zero and defined in subroutine INPUT if not specified by the user.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BLOCK DATA 131

Subroutine BLOUT 1

Called by Calls Purpose

TURBBL ISAMAX Compute outer layer turbulent viscosity, using the algebraic Baldwin-
ISAMIN Lomax model, along constant _ lines.

ISRCHEQ

i._v_m

* APLUS

* CB

* CCLAU

* CCP

* CKLEB, CKMIN

* CNA

* CWK

* IDEBUG

* IPRTIA, IPRT2A

IT

* IWALL2

I1

* LWALL2

MU

* NOUT

NPRT1, NPRT2

* N2

* RER

RHO, U, V, W

VORT

X,Y

Output

LWAKE2

MUT

Description

Van Driest damping constant A*.

Constant B in the Klebanoff intermittency factor.

Clauser constant K in the Baldwin-Lomax outer region model.

Constant Cop in the Baldwin-Lomax outer region model.

Constants Crl,b and (Crib),,,, in the Klebanoff interrnittency factor.

Exponent n in the formula used to average the two outer region
gt profiles that result when both boundaries in a coordinate di-
rection are solid surfaces.

Constant Cwk in the Baldwin-Lomax outer region model.

Debug flags.

Indices for printout in the _ and _/directions.

Current time step number n.

Flags indicating whether or not the _/boundaries are walls.

Grid index i in the _ direction.

Flags specifying wall locations for _ boundaries.

Laminar coefficient of viscosity g_.

Unit number for standard output.

Total number of indices for printout in the _ and _/directions.

Number of grid points N2 in the _/direction.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w.

Total vorticity magnitude.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Grid index j in the _/direction used as the origin for computing
length scales for free turbulent flows.

Outer layer turbulent viscosity coefficient (_Z,)o_,,, along constant
lines.

Subroutine BLOUT1 computes the outer layer turbulent viscosity coefficient (g,)o_,,, at a specified

location (i.e., due to walls at r/= 0 and/or q = 1, or due to a flee turbulent flow in the _ direction) using the

132 4.0 Proteus Subprograms: BLOL-I'I Proteus 2-D Programmer's Reference

algebraic eddy viscosity model of Baldwin and Lomax (1978). The model is described in Section 9.1 of
Volume 1. The steps performed in BLOUTI are as follows:

t --hi I -'- I

1. Find the values and locations of t Vl_ox and I Vl,-

2. Compute the parameter

_ Yr_a_Fm,_x
Fwake= } c V 2 Yraax

for wall-bounded flows

for free turbulent flows

where C,k is a constant taken as 0.25, and

v ,ii=IVl :x- I?

.

where V is the total velocity vector. The procedure for computing the parameter F,_ox depends on
whether a solid wall exists at r/= 0 and/or at 1/= 1.

If, at the current _ location, the _ = 0 boundary is a solid wall, compute (Fro,=)1 as follows:

3a. For _7-indices from the wall to the location of]V[,_,, compute

ro,°):y.
3b. Get the location of the

(L.,o=h = LI.

3c.

3d.

maximum value of F(y,), calling its _/-index L_. Tentatively set

Search outward from this location for a local minimum in F(y,). If one is found, call its r/-index

Lm_.

If a local minimum exists, get the location of the next maximum value of F(y,), calling its rr-index
/-.2. This is the location of the second peak in FCv,). Let

zXF_= F(YDL, - FCv_)£.._,

z_r 2 = F(yn) za - V(yn) L,,_'

°

5.

Then, if AF2 > 0.25AFt, set (L_,,_)_ = La. This test is intended to filter false peaks resulting from
noise, or wiggles, in F0s,).

3e. Set (F,_o_)_ = FeW) at the _/-index (L_o_)_, and set y_,_ equal to the corresponding value ofy,.

If, at the current _ location, the _/= 1 boundary is a solid wail, compute (Fro,=)2. The procedure is ex-
actly analogous to the procedure described in steps 3a-3e for computing (F_,,)_ at the _/= 0 wall.

If neither _/boundary is a solid wall, a free turbulent flow in the _ direction is assumed. In this case,
the required value of F,,,_ is computed as follows:

5a. For _/-indices between the locations of I 1= and I and using the location of I l.o. as the
origin for y,, compute

Get the location of the maximum value of Fly,), and compute F,_k,.

5b. Repeat step 5a using the location of astheong for y.

5c. Set the final value of F.ok, equal to the one from step 5a or 5b that corresponds to the smaller value

of y Set L_,,, accordingly.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BLOUTI 133

6. If a solidwallexistsatr/= 0orat_/= 1,butnotboth,or if neither_/boundaryisasolidwall,compute
(u_).....directly.

7. If both _1boundaries are solid walls, compute (_,)0_,,, by combining the two computed values of F, ok,
using the averaging formula presented as equation (9.12) of Volume 1.

Remarks

1. The computation ofy,, the normal distance to the wall or wake centerline, is approximate. It is actually
the straiglat-line distance between the interior grid point and the wall or wake centerline grid point.

2. The Cray search routines ISAMAX and ISAMIN axe used in computing] V,,-xl, I and F,,,x. The
Cray search routine ISRCHEQ is used in determining the grid locations for debug printout.

3. If the maximum and minimum total velocities are equal, indicating a uniform flow along this particular
line, their locations are arbitrarily set equal to the middle _ index, and the turbulent viscosity coeffi-

cient (t_,) is set equal to 0. This normally would occur only during the first time step in a case with
uniform initial velocity profiles.

possibility of floating point errors, the values of IP=xl, I and y_, are set to a4. To avoid the
minimum of 10-10

5. This subroutine generates output for the IDEBUG(8) option.

134 4.0 Proteus Subprograms: BLOUTI Proteus 2-D Programmer's Reference

SubroutineBLOUT2

Calledby Calls Purpose
TURBBL ISAMAX Compute outer layer turbulent viscosity, using the algebraic Baldwin-

ISAMIN Lomax model, along constant rt lines.
ISRCHEQ

l._p_m

* APLUS

* CB

* CCLAU

* CCP

* CKLEB, CKMIN

* CNA

* CWK

* IDEBUG

* IPRT1A, IPRT2A

IT

* IWALL1

I2

* LWALL1

MU

* NOUT

NPRT1, NPRT2

* NI

* RER

RHO, U, V, W

VORT

X,Y

DUMMY

Van Driest damping constant A +.

Constant B in the Klebanoff intermittency factor.

Clauser constant K in the Baldwin-Lomax outer region model.

Constant Cop in the Baldwin-Lomax outer region model.

Constants Cx_,_ and (Crt,b),,,, in the Klebanoff intermittency factor.

Exponent n in the formula used to average the two outer region
_, profiles that result when both boundaries in a coordinate di-
rection are solid surfaces.

Constant C,, in the Baldwin-Lomax outer region model.

Debug flags.

Indices for printout in the _ and 17directions.

Current time step number n.

Flags indicating whether or not the _ boundaries are walls.

Grid index j in the _ direction.

Flags specifying wall locations for _ boundaries.

Laminar coefficient of viscosity _.

Unit number for standard output.

Total number of indices for printout in the _ and q directions.

Number of grid points N_ in the _ direction.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w.

Total vorticity magnitude.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

J

Grid index i in the _ direction used as the origin for computing
length scales for free turbulent flows.

Outer layer turbulent viscosity coefficient (t_,)o_,,, along constant
lines.

Description

Subroutine BLOUT2 computes the outer layer turbulent viscosity coefficient (/_,) at a specified
location (i.e., due to walls at _ = 0 and/or _ = 1, or due to a free turbulent flow in the q direction) using the

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BLOUT2 135

algebraic eddy viscosity model of Baldwin and Lomax (1978). The procedure is exactly analogous to that
used in subroutine BLOUT 1.

136 4.0 Proteus Subprograms: BVUP Proteus 2-D Programmer's Reference

Subroutine BVUP (A,B,C,S,METX,METY,METT,NVD,NPTSD)

Called by Calls Purpose

EXEC BCGEN Update first sweep boundar3 T values after second sweep.
EQSTAT
SGEFA
SGESL

A,B,C

DXI

IBVUP

* IHSTAG

* ISWIRL

JI

KBCPER

NEQ

NEQP

NPT1, NPT2

NR, NRU, NRV, NRW, NET

NVD, NPTSD

N1, N2

N1P

RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

S

XIX, XIY, XIT

DEL

IBASE, ISTEP

ISWEEP

IV

METX, METY, METT

Coefficient submatrices A, B, and C.

Computational grid spacing A_.

Flags for updating boundary values from first sweep after second
sweep; 0 if updating is not necessary, 1 if it is.

Flag for constant stagnation enthalpy option.

Flag for swirl in axisymmetric flow.

Inverse Jacobian of the nonorthogonal grid transformation,'J- _.

Flags for spatially periodic boundary conditions in the _ and r/
directions; 0 for non-periodic, 1 for periodic.

Number of coupled equations being solved, N,q.

Dimensioning parameter specifying maximum number of coupled
equations allowed.

N_ and N2 for non-periodic boundary conditions, N_ +I and
3/2 + 1 for spatially periodic boundary conditions in _ and _/.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Leading two dimensions for the arrays A, P,, C, and S.

Number of grid points N_ and N2, in the _ and ,1 directions.

Parameter specifying the dimension size in the _ direction.

Static density p, velocities u, v, and w, and total energy Er at time
level n at all grid points.

Static density p, velocities u, v, and w, and total energy Er at time
level n + 1 at all interior grid points.

Source term subvector S.

Metric coefficients _x, _, (or _, if axisymmetric), and _,.

Computational grid spacing for the sweep direction being updated.

Base index and multipfication factor used in computing one-
dimensional index for two-dimensional army.

ADI sweep number for sweep direction being updated.

Index in the "vectorized" direction,/_.

Derivatives of computational coordinate, for the sweep direction
being updated, with respect to x, y (or r if axisymmetric), and t.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: BVUP ! 37

NPTS

NV

RHOL, UL, VL, WL, ETL

Number of grid points N in the sweep direction being updated.

Number of grid points in the "vectorized" direction, N,.

Static density p, velocities u, v, and w, and total energy Er at time
level n + 1 at bounda_r3 points from first sweep.

Description

Subroutine BVUP updates boundary values from the fixst, or _, sweep after the second, or n, sweep.
In general, this is necessary when gradient or extrapolation boundary conditions are used in the _ direction.
Some updating is also necessary when spatially periodic boundars conditions are used. The procedure is
described in Section 7.3 of Volume 1 for all cases.

Remarks

1. The comer values of p and Er are updated by linearly extrapolating from the two adjacent points in the
and _/directions, and averaging the two results. Note that this extrapolation is done in computational

space. Grid packing in either direction is thus not taken into account. The comer values of the ve-
locities are updated by doing the same type of extrapolation. Instead of averaging, however, the ex-
trapolated velocity whose absolute value is lower is used. This was done to maintain no-slip at duct
inlets and exits.

2. Subroutines SGEFA and SGESL are Cray LINPACK routines. In general terms, if the Fortran arrays
A and S represent A and S, where A is a square N by N matrix and S is a vector with N elements, and
if the leading dimension of the Fortran array A is LDA, then the Fortran sequence

call sgefa (a,lda,n,ipvt,info)
call sgesl (a,lda,n,ipvt,s,O)

computes A- _S, storing the result in S.

138 4.0 Proteus Subprograms: BVUP Proteus 2-D Programmer's Reference

Subroutine COEFC (A,B,C,S,METX,METY,METT,NVD,NPTSD)

Called by Calls Purpose

EXEC Compute coefficients and source term for the continuity equation.

DEL

DTAU

DXI, DETA

ETAX, ETAY, ETAT

* IAXI

IBASE, ISTEP

* IHSTAG

ISWEEP

* ISWIRL

IV

I1, I2

JI

METX, METY, METT

NC

NEQ

NPTS

NR, NRU, NRV, NRW, NET

NVD, NPTSD

RAX

RHO, U, V

RHOL

* THC

XIX, XIY, XIT

Y

A,B,C

Computational grid spacing in sweep direction.

Time step Az.

Computational grid spacing A_ and A_.

Metric coefficients _/x, iT, (or 17, if axisymmetric), and _/,.

Flag for axisymmetric flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Flag for constant stagnation enthalpy option.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the "vectorized" direction, L.

Grid indices i and j, in the _ and _ directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-_

(times the radius r for axisymmetric flow.)

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and t.

Array index associated with the continuity equation.

Number of coupled equations being solved, N,¢.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Leading two dimensions for the arrays A, B, C, S, METX,
METY, and METT.

1 for two-dimensional planar flow, and the local radius r for
axisymmetric flow.

Static density p, and velocities u and v, at time level n.

Static density p from previous ADI sweep.

Parameters 0t and 02 determining type of time differencing for the
continuity equation.

Metric coefficients _., _y (or _, if axisymmetric), and _,.

Radial coordinate r for axisymmetric flow.

Coefficient submatrices A, B, and C at interior points (row NC

only).

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFC 139

Source term subvector S at interior points (element NC only).

Description

Subroutine COEFC computes the coefficients and source term for the continuity equation. Equations
(7.5a-b) in Volume 1 represent, in vector form, the four governing difference equations for the two ADI

sweeps for 2-D planar flow. The elements of the inviscid flux Vectors !_ and [" are given in Section 2.0 of

Volume 1, and the elements of the viscous flux vectors l_v_, I_v2, etc., are given in Appendix A of Volume

I. The Jacobian coefficient matrices OE/OQ., OEv_/OQ, etc., are given in Section 4.0 of Volume 1. Using

all of these equations, the differenced form of the continuity equation for 2-D planar flow may be written
for the two ADI sweeps as iv

Sweep 1 (_ direction)

01AzA*

Ap i +
(1 + 02)2A¢

AT

1 +02

.._0E 1 .^. 0E 1 ^.
"vi + 1 za_i- i06 06

i+1 i-I

^ A 02 A_n - 1
(_E_ + _,TF_)_ _ 1 + O2

Sweep 2 (_/direction)

A n ^ /7

OlAT An 0FI An A*

Ap)
^n + (1 + 02)2A . AQj.+I- 0""T- AQ__I = Ap

0Q //j + 1 j- 1

In the above equations, the subscripts i and j represent grid point indices in the _ and _ directions. For
notational convenience, terms without an explicitly written i orj subscript are understood to be at i orj.

The vector of dependent variables is

1
h=7[p pu pv Er] r

The appropriate elements of the flux vectors are given by

^ 1
El = 7 [pug + pv_y + pC3

^ 1
F 1 = --)--[pUrlx + pVrly + prl t]

^ ^

The elements of the Jacobian coefficient matrix OE/0Q for the continuity equation are

^

OE 1
^ -E_, G _y

OQ
o]

These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy Er would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only three elements.

140 4.0 Proteus Subprograms: COEFC Proteus 2-D Programmer's Reference

^ ^ ^ ^

The Jacobian coefficient matrix 0FdaQ has the same form as OEI/_3Q, but with, replaced by r/.

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left
^ ^ ^

hand side for the first sweep. This is the second element of Q, so using the second element in 0Ed0Q we

get

A(IV,I,NC,NRU) =

B(IV,I,NC,NRU) = 0

C(IV,I,NC,NRU) -

01(Az)i,j

(1 + 02)2A¢ (_x)i- 1,y

01(Ar)i,j

(I + 02)2A¢ (_x)i + l,j

The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetric
continuity equation for the two ADI sweeps is given by TM

Sweep 1 (¢ direction)

A*

Ap i +
^. 0E 1 "_ ^.

01Az 1 r AQi+ -- r =

(I+02)2A _ r 0Q //i+1 1 _ 1

AT 1 A ^ n 02

I+02 r [6_¢EI)+GCF')] + 1--7_ a_"-'

Sweep 2 (r/ direction)

0lAX
+

(1 + 02)2At/

A

1 0F1 ^ n
r r -'---7- AQ_+

0Q
- +1

1
All ^*

-- r AQj_ 1 = Ap

OQ //j-I

where now

=1v Ep pup,, Er]r

AE_ = [pu_ x d- pV_r -t- last]

^ -}tFI = PUrlx + pV_lr + P_t]

^

OE_
--7-= [_
_Q

_X _r 0 0"]

^ ^ ^ ^

As in 2-D planar flow, the Jacobian coefficient matrix OFdOQ has the same form as OEt/0Q, but with
replaced by r/.

ag These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum pw would
not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFC 141

Note that the equations for 2-D planar and axisymmetric flow are very similar. In the a:dsymmetric
^ ^

equations, the radius r appears as an additional coefficient in front of the flux vectors E and F, and in front
^ A A A

of the Jacobian coefficient matrices OE_/_Q and 3Fa/3Q. In addition, I/r appears in front of every term ha
the equation except the At3 terms. In Proteus, the Fortran variables are defined ha such a way that, for many
terms, the same coding can be used for both 2-D planar and axisymmetric flow. Unfortunately, this may
make some of the coding a little confusing. It is hoped that this detailed description, when compared with
the source listing, will help make things clear.

In COEFC, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second ADI sweep have exactly the same form as for the first sweep, but with _ replaced by ,7. By
defining DEL, METX, METY, and METT as the grid spacing and metric coefficients ha the sweep direc-
tion, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow,
and the radius r for axisymmetric flow. This adds the r ha front of the Jacobian coefficient matrices for
axisymmetric flow, but has no effect for 2-D planar flow. The 1/r coefficient in front of each term will be
added later. In this section of code, the coefficient of A_ (part of B(IV,I,NC,NR)) is set equal to r, not 1
as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms. These formulas are presented
ha Section 5.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as
l/J, is temporarily redefined as r/J before the COEF routines are called. This automatically accounts for
the r coefficient in front of all the flux vectors in the source term. The 1/r coefficient in front of each term
will be added later. This definition of JI adds an r ha front of the A_ _- _ term that should not be there.
This will also be corrected later.

The coding for the source term for the second sweep, which consists only of A_*, comes next. The
definition of Jl also adds an r in front of this term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius r. This adds the
1/r coefficient where it should be added, and removes the r in front of the A_ terms.

Remarks

I.

2.

This subroutine uses one-dimensional addressing of two-dimensional arrays, as described ha Section 2.3.

Th; subscripts on the Fortran variables A, B, C, and S may be confusing. The ft_ st subscript is the
index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep
direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division
by r at the end), the ftrst two subscripts are written as (IV,I). For sections of the code that apply only
to the ftrst sweep, the first two subscripts are written as (I2,I1). For sections that apply only to the
second sweep, they are written as (I 1,I2). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which
A, B, or C is a coefficient.

142 4.0 Proteus Subprograms: COEFC Proteus 2-D Programmer's Reference

Subroutine COEFE (A,B,C,S,METX,METY,METT,NVD,NPTSD)

Called by Calls Purpose

EXEC Compute coefficients and source term for the ener_ equation.

DEL

DPDRHO, DPDRU, DPDRV,
DPDRW, DPDET

DTAU

DTDRHO, DTDRU, DTDRV,
DTDRW, DTDET

DXI, DETA

ETAX, ETAY, ETAT

* IAXI

IBASE, ISTEP

* IEULER

ISWEEP

* ISWIRL

* ITHIN

IV

I1, I2

JI

METX, METY, METT

MU, LA, KT

NEN

NEQ

NPTS

NR, NRU, NRV, NRW, NET

NVD, NPTSD

P,T

PRR

RAX

* RER

Computational grid spacing in sweep direction.

Derivatives Op/dp, Op/O(pu), Op/_(pv), Op/_(pw), and Op/aEr.

Time step Az.

Derivatives OT/Op, OT/c?(pu), _T/O(pv), OT/O(pw), and aT/OEr.

Computational grid spacing A_ and A_.

Metric coefficients rtx, _/y (or r/F if axisymmetric), and r/,.

Flag for axisymmetric flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Flag for Euler calculation.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Flags for thin-layer option.

Index in the "vectorized" direction, i_.

Grid indices i and j, in the _ and r/directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-1
(times the radius r for axisymmetric flow.)

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and t.

Effective coefficient of viscosity _z, effective second coefficient of
viscosity 2, and effective coefficient of thermal conductivity k at
time level n.

Array index associated with the energy equation.

Number of coupled equations being solved, N, e.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Leading two dimensions for the arrays A, B, C, S, METX,
METY, and METT.

Static pressure p and temperature T at time level n.

Reference Prandtl number Pr,.

1 for two-dimensional planar flow, and the local radius r for
axisymmetric flow.

Reference Reynolds number Re,.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFE 143

RHO,U, V, W,ET

THE

TL

UL,VL, WL,ETL

XIX, XIY, XIT
Y

Staticdensityp, velocities u, v, and w, and total energy Er at time
level n.

Parameters 81, 02, and 03 determining type of time differencing for

the energy equation.

Static temperature T from previous ADI sweep.

Velocities u, v, and w, and total energy Er from previous ADI

sweep.

Metric coefficients _x, _y (or _, if axisymmetric), and _,.

Radial coordinate r for axisymmetric flow.

A,B,C

S

Coefficient submatrices A, B, and C at interior points (row NEN

only).

Source term subvector S at interior points (element NEN only).

Description

Subroutine COEFE computes the coefficients and source term for the energy equation. Equations

(7.5a-b) in Volume 1 represent, in vector form, the four governing difference equations for the two ADI

sweeps for 2-D planar flow. The elements of the inviscid flux vectors !£ and _7 are given in Section 2.0 of
^ ^

Volume 1, and the elements of the viscous flux vectors Evl, Ev2, etc., are given in Appendix A of Volume
^ ^ ^ ^

1. The Jacobian coefficient matrices c3E/OQ, OEvz/OQ, etc., are given in Section 4.0 of Volume 1. Using

all of these equations, the differenced form of the energy equation for 2-D planar flow may be written for

the two ADI sweeps as

Sweep 1 (¢ direction)

+

_ A n

(1 + 02)2A_ 0(_ 1
. i+I aQ /i--I

rl /'t A¢, r/ r/ A . A .

01Az [(fi_l+ yi)gi_la_i_l_(fi_l+2fi+fi+l)giAQi+(fi+ fi+l)ng_+lAQi+l]=
(1 + 02)2(a,0 2

(1 + 03)Az ^ ^ n 03AT A ^ n 02 %

l+O_ [6_(EO+6_(VOa] 1+0_ [3_(EO+6"(FO] -1+q_7_2 AET-_

144 4.0 Proteus Subprograms: COEFE Proteus 2-D Programmer's Reference

Sweep 2 (r/ direction)

01Az ^n aF4 ^n
A% +1 -- -- A%-I

(1 + 02)2A,7 aQ a6
+I j--I

-- n n /I _ An l'l n An0,At [(fy_,+ fj)gj_,A6]_,--(fT_ I+ 2fy+fj+,)gjAQ) +(f7+ fy+,) gj+,AQ)+,]--
(1 + 02)2(A,02

A.

AE T

In the above equations, the subscripts i and j represent grid point indices in the ¢ and _ directions. For
notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j.

^ ^

On the left hand side, fis the coefficient of 0/0¢ (or O/&l, depending on the sweep) in the OEv,[OQ (or
^ ^

aFv,[aQ) Jacobian coefficient matrix. Similarly, g is the term in the parentheses foUowing 0[0_ (or 0/07)
^ ^ ^ ^

in the OEm/OQ (or aFn/OQ) Jacobian coefficient matrix.

The vector of dependent variables is

1
=-f[# #u #v Er3 r

The appropriate elements of the inviscid flux vectors are given by

^ 1
E4 = 7 [(ET+ P)U_x + (Er + p)vgy + E r _t]

^ I
F4 = -j- [(Er + p)Unx + (Er + p)vny + Er nil

The appropriate elements of the non-cross derivative viscous flux vectors are

^ " I 1 { (2# + 2) [_2x(U2){ + _2(v2)_] + (# + 2)¢x_y(uv)_(EvI)4- J Re r 2

+ +

" 1 1 { (2#+2) 2 2 2 2(Fv')4 - Y Rer 2 [_x(u)n + qy(v)q] + (# + 2)qx_y(UV),7

ly(U)0] prr (nx + py)T.+T[(2).+ : : + k : :

And the appropriate elements of the cross derivative viscous flux vectors are

^ 1
(Ev:h - j

V1

Rer

+ _G(_yv% + _%) + u_y(_yuu. + n_u_.) + _ (G_ + _y_y)T.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFE 145

1 [2U(_x_xUU_+ _y_yW_)+ 2_lx(_xuu¢+ _yuv0 + ;'.qy(_xvu; + _yW0
Re r

+ u,_(_yvu_ + _,_) + _ny(_yUU_+ _uv_) + _ (n_ + _fi)r_

^ ^

The elements of the Jacobian coefficient matrix 8E/0Q for the inviscid terms in the ener_ equation axe

OE4 = -A Op f2_x + fl (_p
a6 -%-; 0(pu)

where f = u_. + vCyand J_ = (Er + P)IP.

a(pv)

^ ^

The elements of the Jacobian coefficient matrix OEvJOQ for the viscous terms are

O(Evl)4 1 O O L O , O aT

OQ Re, OQ OQ aQ a° -_ -_v
41 42 43

where

(-) ()
41

0 _ 0 u 0 v aT

42

()a a
=

43

axx = (2it +).)_x 2 + U_y2

_yv = It_x 2 + (2it + 2)_y 2

axy---- (I t "4- ")')_x_y

k 2
_'0= _ (_, + _y2)

TheJacobiancoefficientmatricesO_o/O0a_aa(fv,)_/a0havethesameformasa&/e0anda(/:_,)_/at),
but with _ replaced by _/.

As an example of how these equations axe translated into Fortran, consider the A(pu/.l) term on the left

hand side for the fu-st sweep. This is the second element of 0, so using the second element in _130 we

get for the inviscid term

146 4.0 Proteus Subprograms: COEFE Proteus 2-D Programmer's Reference

A(IV,I NEN,NRU) =
(1 + 02)2A_ T _x i-- l,j o }

B(IV,I,NEN,NRU) = 0

C(IV,I,NEN,NRU) - {()EliO1(Az)i,j E r + p Op

(1 + 02)2A_ p _x i+l,j+ (u_x + V_y) O_pu) t+ l,j

For the viscous terms on the left hand side, we use the second element in O(Evl)_/OQ, which is

Re r °_xx (--fi-)'_axY_(--fi-) "q-otO O(pU)

There are three terms in that element. Thus, in turn, f= e,x/Re,, axy/Re,, and coo�Re,, and g = u/p, v/p, and
OT/O(pu). To add the viscous contribution to this part of the A coefficient submatrix, we therefore set

O l (A'c)i,j

A(IV,I,NEN,NRU) = A(IV,I,NEN,NRU) - (1 + O2)2(A_)2Rer "

Similar equations may be written for the B and C coefficient submatrices.

The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymrnetric
energy equation for the two ADI sweeps is given by _9

^ .

A(ET), +

Sweep 1 (¢ direction)

L()]01 m'/"] -_ _h;+l ^"(1+02)26 ¢ r r - r aQi-I

i+1 1

(1 + 01Az02)2(A_)2 71 [(ri_.lf - t + rifi)_gi n- 1AQ_- t - (ri - ,fi - l + 2rif + ri + If. l)_g_A(_7 + (rif, ÷ r + lfi * l)n°raot+IA67+ 1] "_-

A¢ I ^ ^ A'r l{6,[r(_vl),]+6__r(_vl)S]}a1 + o_ 7 [ad_ Es)+ a.(_ vg]" + i + o2 _

^ " n- 1 02- A_n - 1
(I+03)Az 1 ^ ^ 03A'c '{6¢,[r(Ev2)S]+6_r(Fv2)S]} *1-_-_2 1"+ ,+o, °

Sweep 2 (_/direction)

01A" 1 a._ AQ_/÷I- • -- _-1

A(ET)7 + (I +O:)2Aq • • -_- 0Q /y 1
1+I

1 n" ^ j, Ifj + I) g) * IAQj + I] =OtA¢ _.F[(ry_ify_l+ryfy) gy_iAQT_l_(rj_tfy_l+2rjfy+rj+ify+l)ngaA6_+(ryf;+r n n n
(! + 02)2(A,0_

^,

AE r

19 These equations are written for the general case with swM. For a non-swM case, the swirl momentum pw would

not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFE 147

wherenow

1
h=Trp pu p_. p_ ET-IT

Es = [(Er+ p)u_x + (ET+ P)V¢r + Er_t]

Fs^ =71 [(Er+ p)unx + (ET+ P)W7r + Er,Tt]

r_1 (2# q-).) [_2(U2)¢ + _(v2)r] -1- (# -t-)c)¢x_r(NT)¢ +)-_r-_ (_r "¢2 + _x Nv)
Re r 2

r._. 2 ¢r2(_2+ _ (G + }+-fLCxtV +w2)¢ + w2)¢] + k 2 Cr2)T:

^ 1 1

r,tFvd 5- J Rer (2u+ ;_)i-,7%ru2_,7+ 2 2 , q . 2rtr(V)rl] + (U -t- ;t)rlxrlr(ZZV)r t h- Arlr--_- l.rlr v _jr_ _lxl.lT)
2 i.. .,*.x l

-2-_' 2 2 2 2 w_, 7,j+ _err 2 2 J]+ [nx(v + w2)rt + nr(u + (nx + nr)T_7

1

J ,[2 vRe r I._(_xrlxUUrl -I- _rrlr'i"Vrl) "l- _x(rlxUr.gq q- rlrU'Vrl) + _r(rlxVUrl "-F rlrVVrl) "4" 2rlr 7 (_xU "1- _rV)?'_

2

-}- , ¢ x(rl rlJt.L_ q" rl xWrl "k- _IxWW rl) q'- l.ZC r(rl rUUrl q- n xUT rl q- nrWWv/) -- #¢r"_-'--

+ p-_r (eX_lx + 'Ylr)Trt3

^ 1
(Fv2) s - j 1 [2l_07x_xUU¢ -'l- rlr_r'lZV_) "4- ,J.r/x(_xU'd¢ -t- _rl..l_) "+ 2_lr(_xvU _ "t- _rVT_) "1" _r _- (rlxU -4- rlrV)r _Re r

2
w

+ mT_(Gvu_+ G_ + Gww_) + mTr(GUU_+ G_ + G_¢) - _'_r r

k (rlx_x + rlr_r)T¢]

The elements of the Jacobian coefficient matrix OF_./OQ for the inviscid terms in the axisymmetric form

of the energy equation are

where f = uG + vG and j_ = (Er + P)IP.

^ ^

The elements of the Jacobian coefficient matrix 3EvflOQ for the viscous terms are

(Ev)._____5=

8_ Re, k aQ s, \ aQ /152 k'-_-Q /s 3 "-'_--Q "]5,

where

148 4.0 Proteus Subprograms: COEFE Proteus 2-D Programmer's Reference

(A) () ()0 0 v2 w 2

51

0 1

aQ
52

= _;_-_- + _;, + _r "7-r_+ _0 a(p_)

(%)) (¢-))O _ u O v v OT
-- = O_xr _ "F O_rr "-_ + O:rr _ r_ "+- O_'rr _ r¢ -+" O_0

OQ 8(pv)
53

(A) ()O(pw)
s4

= = (2u + ,)G 2 + u_r 2

"rr = u_x 2 + (2u +).)_2

%z = _x 2 + t_r 2

'xr= (U+ ,Z)G,.

, 2
%,. = _ G%"

, 2 2
_rr = -'F"_r

k 2
o=(G + ¢ 2)

As in 2-D planar flow, the Jacobian coefficient matrices 8FflOQ and 8(Fvl)slOQ have the same form as

OF_s[OQand 8(Evj)flOQ, but with _ replaced by _/.

Note that the equations for 2-D planar and axisymmetric flow are very similar. In the axisymmetric
equations there are some additional terms involving the radius r in the viscous flux vectors, with corre-
sponding terms in the Jacobian coefficient matrices. The radius r appears as an additional coefficient in

front of the flux vectors !_, Evl, etc., and in front of the Jacobian coefficient matrices o_/a0, o(_;_,)_/a0,

etc. In addition, 1]r appears in front of every term in the equation except the AEr terms. In Proteus, the

Fortran variables are defined in such a way that, for many terms, the same coding can be used for both 2-D
planar and axisymmetric flow. Unfortunately, this may make some of the coding a little confusing. It is
hoped that this detailed description, when compared with the source listing, will help make things clear.

In COEFE, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second ADI sweep have exactly the same form as for the first sweep, but with _ replaced by _/. By
defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep direc-
tion, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow,
and the radius r for axisymmetric flow. This adds the r in front of the Jacobian coefficient matrices for
axisymmetric flow, but has no effect for 2-D planar flow. The l]r coefficient in front of each term will be

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFE 149

^

added later. In this section of code, the coefficient of AEr (part of B(IV,I,NEN,NET)) is set equal to r, not
1 as it should be. This will be corrected later.

The source term, or right hand side, for the fn-st sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms. These formulas are presented
in Section 5.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as

l/J, is temporarily redefined as r/J before the COEF routines are called. This automatically accounts for
the r coefficient in front of all the flux vectors in the source term. The 1/r coefficient in front of each term

will be added later. This definition of JI adds an r in front of the AE_- _ term that should not be there.
This will also be corrected later.

^

The coding for the source term for the second sweep, which consists only of A_r, comes next. The
definition of JI also adds an r in front of this term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius r. This adds the
^

1]r coefficient where it should be added, and removes the r in front of the AEr terms.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep
direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division
by r at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only
to the first sweep, the first two subscripts are written as (I2,I1). For sections that apply only to the
second sweep, they are written as (I1,I2). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which
A, B, or C is a coefficient.

3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is
separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the
coding of coefficients and source terms involving the swirl velocity is separate from the rest of the cod-
ing, and is bypassed if there is no swirl.

4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous and heat conduction terms.

5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous and heat conduction terms containing derivatives in the specified direction.

150 4.0 Proteus Subprograms: COEFE Proteus 2-D Programmer's Reference

Subroutine COEFS1 (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

EXECT Compute coefficients and source terms for the k and _ equations for
the first ADI sweep.

* CMUR

* CTHREE

* C'I3,VO R

DTAU

DUMMY

DXI, DETA

E, EL

ETAX, ETAY

* IAXI

JI

KE, KEL

MU

MUT, MUTL

NPTS

NV

NVD, NPTSD

* RER

RHO, U, V

RHOL

* SIGE, SIGK

* TFACT

* THKE

VORT

XIX, XIY

Y

YPLUSD

O tp t

A,B,C

S

Constant C,,, in formula for C,.

Constant Q in formula for C,.

Constant Q, in formula for C_.

Time step A-r.

Distance to the nearest solid wall.

Computational grid spacing A¢ and A_.

Turbulent dissipation rate r at time levels n and n - 1.

Metric coefficients _x and _/y (or r/, if axisymmetric).

Flag for axisymmetric flow.

Inverse Jacobian of the nonorthogonal grid transformation, J-1.

Turbulent kinetic energy k at time levels n and n- I.

Laminar viscosity/_t at time level n.

Turbulent viscosity t_ at time levels n and n - 1.

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N,.

Leading two dimensions for the arrays A, B, C, and S.

Reference Reynolds number Re,.

Static density p, and velocities u and v, at time level n.

Static density p at time level n- 1.

Constants a, and a, used in the diffusion term of the _ equation.

Factor used in computing the k-_ time step.

Parameters 01 and 02 determining type of time differencing for the

k'_ equations.

Production rate of turbulent kinetic energy.

Metric coefficients _, and _ (or _, if axisymmetric).

Radial coordinate r for axisymmetric flow.

Nondimensional distance y+ from the nearest solid wall.

Coefficient submatrices A, B, and C at interior points.

Source term subvector S at interior points.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFSI 151

Description

Subroutine COEFS 1 computes the coefficients and source terms for the k-_. equations for the first ADI

sweep. Equation (9.40a) in Volume 1 represents, in vector form, the governing equation for the first ADI

sweep for 2-D planar flow. This equation may be written in difference form as:

A A An Art-- 1)T1(6¢F_M- 6¢F_v- 1+ 6.GM-- 6.GM

. ^ . ^ i_) -+ 7.2 ((6u)_nc + 6_.nD + 6¢FnM n . n n _n T, AWn-i_ _ (6u)nG c + onG a + 6,_GM + + +

where

OlA-r
T1

1 +02

In the above equation, ZIp etc., are elements of a matrix Z, defined as Z = M + N, and A, B, M, and N are
the Jacobian coefficient matrices defined in equations (9.31), (9.32), (9.35), and (9.36) of Volume 1. Also,

(6,)¢ is the first-order upwind difference operator used for the convective terms, and 6¢ is the second-order
central difference operator used for the viscous terms.

The convective term on the left side can thus be expanded as:

±D'(E "°o" AW.j/ _ f,l.
(6.)_

T((LO

0 , D' 0nf,',';';]
",:J[.,a.;j-w "=aL,,_.;j,_,
o , r.,, 0 ,r,,,<
,,-,,l/,,_./ -WLO2_i+ I

In the above equations, and in those to follow, the subscripts i and j represent grid point indices in the

and _/directions. For notational convenience, terms without an explicitly written i or j subscript are un-

derstood to be at i or j.

The Jacobian coefficient matrix B may be written as:

fg_(22)

The viscous term on the left hand side may thus be expanded as:

152 4.0 Proteus Subprograms: COEFSI Proteus 2-D Programmer's Reference

On the right hand side, the convective term (6_)¢Fc is differenced as:

^ (Fc)i- (Fc)i- I] if ¢xu + _yV > 0

if Cxu + _yV < 0

^ ^ ^

An analogous expression may be written for (6_)qGc. The vectors Fz_and FM may be written as

The terms 6¢f'D and 6_F_ are thus differenced as:

6¢FD= 2(A¢) 2 _- l +J_)gi- l(2)J - [_+ i+ 2f/+f/_ 1)gi(2)j

^ I

f_'FM= 4A_Ar/
jr./; + ,../e._+ ,,./+, - g_+,.,_ ,)<,>]_ r._-,../Cg__,../+, - g,_ ,.2_ ,)<1,1(

1,j+l--gi+ l.j-- l)(2)J LJ_i l,j_>i--I,j+!--gi--l.j--l)(2)JJ

^ ^

Analogous expressions may be written for 6.Go and 6.GM.

The k-e equations for axisymmetric flow are presented in Appendix B of Volume 1. They may be
written in difference form for the first ADI sweep as:

+-7- - B=jL,,pr;jjj

TI (6_r_M ^ l An ^,'l--l)r ^ - 6f rF_ + 6_rGM- 6_ rog

^ ^ ^ r_._) ^+ -7- -- (3u)fr[_c + 6_rFno + 6¢rFaM- (6u)_rGc + 6,trGD + 6nrGM + + +

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFSI 153

where r is the radial coordinate and all other terms are the same as the 2-D planar equations presented
above.

Remarks

1. For the variables A, B, C, and S, the ftrst subscript is the index in the non-sweep (i.e., Mvectorized")
direction, and the second subscript is the index in the sweep direction. Since this subroutine only ap-
plies _o the fLrst sweep, the ftrst two subscripts of A, B, C, and S variables are written as (J,I). The third
subscript on A, B, C, and S corresponds to the equation. And, for A, B, and C, the fourth subscript
corresponds to the dependent variable for which A, B, or C is a coefficient.

2. For axisymmetric flows, the Fortran variables RIJ, RIP1J, and RIM 1J are the cylindrical r coordinates
for the grid points (I,J), (I + 1,J), and (I - 1,J), respectively. Similarly, RIJP1 and RIJM1 are the cy-
lindrical r coordinates for the grid points (I,J + 1) and (I,.1 - 1). For 2-D flows, all of these variables
are set equal to 1.0.

154 4.0 Proteus Subprograms: COEFSI Proteus 2-D Programmer's Reference

SubroutineCOEFS2(A,B,C,S,NVD,NPTSD)

Calledby Calls Purpose
EXECT Compute coefficients and source terms for the k and z equations for

the second ADI sweep.

DETA

DTAU

E, EL

ETAX, ETAY

* IAXI

JI

KE, KEL

MU

MUT

NPTS

NV

NVD, NPTSD

* RER

RHO, U, V

RHOL

S

* SIGE, SIGK

* TFACT

* THKE

Y

A,B,C

S

Description

Computational grid spacing A_.

Time step Az.

Turbulent dissipation rate _ at time levels n and n - 1.

Metric coefficients _x and _y (or _/r if axisymmetric).

Flag for axisymmetric flow.

Inverse Jacobian of the nonorthogonal grid transformation, J- _.

Turbulent kinetic energy k at time levels n and n - 1.

Laminar viscosity lz_ at time level n.

Turbulent viscosity t_, at time level n.

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N_.

Leading two dimensions for the arrays A, B, C, and S.

Reference Reynolds number Rer.

Static density p, and velocities u and v, at time level n.

Static density p at time level n- 1.

Computed solution subvector from fu-st sweep.

Constants a, and ak used in the diffusion term of the _ equation.

Factor used in computing the k-_ time step.

Parameters 0_ and 02 determining type of time differencing for the
k-_ equations.

Radia/coordinate r for axisymmetric flow.

Coefficient submatrices A, B, and C at interior points.

Source term subvector S at interior points.

Subroutine COEFS2 computes the coefficients and source terms for the k-_ equations for the second
ADI sweep. Equation (9.40b) in Volume 1 represents, in vector form, the governing equation for the sec-
ond ADI sweep for 2-D planar flow. This equation may be written in difference form as:

II 1[b ;J

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFS2 155

where

OIAT

1 +0 2

In the above equation C and D are the Jacobian coefficient matrices defined in equations (9.33) and (9.34)
of Volume 1. Also, (6,)_ is the first-order upwind difference operator used for the convective terms, and 6_
is the second-order central difference operator used for the viscous terms.

The convective term on the left side can thus be expanded as:

tl ,r._:,_,,>,,([_,oirA_l_ --['_' 'S,JL,,_],- ,,_ko ':"Jibe .-, ,.,,,.,,,+,,>,v>o
c,,j[_<])= [_, o1[_¢1 , rq, o_r_ll

(._'' C_JL_J,+,a_Lo c_J[_e]' i.,.-,..,.,+,,.,,,,<o

In the above equations, and in those to follow, the subscripts i and j represent grid point indices in the-_
and ,7 directions. For notational convenience, terms without an explicitly written i or j subscript are un-
derstood to be at i or j.

The Jacobian coefficient matrix D may be written as:

o:b'" 0]fgr/(22)

The viscous term on the left hand side may thus be expanded as:

An -I ^nJjbn D22 AW½ 2(£¢) 2 @ +/Y)gY- 1(22) awl _

- o 4+ ,+ 24+ g- ,)g_(22)//_,Z./
"/"/_ 2..,.]

+[_+4+,;'_+,(") o -l[,'_;'l)o ¢_+g+,)x,+,(22/j[,,@;.].,+,

The k-¢ equations for axisymmetric flow are presented in Appendix B of Volume 1.
written in difference form for the second ADI sweep as:

They may be

}
where r is the radial coordinate and all other terms are the same as the 2-D planar equations presented
above.

Remarks

1. For the variables A, B, C, and S, the first subscript is the index in the non-sweep (i.e., "vectorized')
direction, and the second subscript is the index in the sweep direction. Since this subroutine only ap-

156 4.0 Proteus Subprograms: COEFS2 Proteus 2-D Programmer's Reference

.

plies to the second sweep, the first two subscripts of A, B, C, and S variables are x_a-itten as (I,J). The
third subscript on A, B, C, and S corresponds to the equation. And, for A, B, and C, the fourth sub-
script corresponds to the dependent variable for which A, B, or C is a coefficient.

For axisvalunetric flows, the Fortran variables RIJ, RIJPI, and RIJM1 are the cylindrical r coordinates
for the grid points (I,J), (I,J + 1), and (I,l - 1), respectively. For 2-D flows, these variables are set equal
to 1.0.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFS2 157

Subroutine COEFX (A,B,C,S,METX,METY,METT,NVD,NPTSD)

Called by Calls Purpose

EXEC Compute coefficients and source term for the x-momentum equation.

l._p_m

DEL

DPDRHO, DPDRU, DPDRV,
DPDRW, DPDET

DTAU

DXI, DETA

ETAX, ETAY, ETAT

* IAXI

IBASE, ISTEP

* IEULER

* IHSTAG

ISWEEP

* ISWIRL

* ITHIN

IV

I1, I2

JI

METX, METY, METT

MU, LA

NEQ

NPTS

NR, NRU, NRV, NRW, NET

NVD, NPTSD

NXM

P

RAX

* RER

RHO, U,V

RHOL, UL, VL

Computational grid spacing in sweep direction.

Derivatives Op]Op, Op]O(pu), Op/O(pv), Op/O(pw), and Op/OEr.

Time step Az.

Computational grid spacing A_ and At1.

Metric coefficients rh, _/y (or _r if axisymmetric), and r/,.

Flag for axisymmetric flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Flag for Euler calculation.

Flag for constant stagnation enthalpy option.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Flags for thin-layer option.

Index in the "vectorized" direction, i,.

Grid indices i and j, in the _ and n directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-1
(times the radius r for axisymmetric flow.)

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and t.

Effective coefficient of viscosity _ and effective second coefficient
of viscosity 2 at time level n.

Number of coupled equations being solved, N,q.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Leading two dimensions for the arrays A, B, C, S, METX,
METY, and METT.

Array index associated with the x-momentum equation.

Static pressure p at time level n.

I for two-dimensional planar flow, and the local radius r for

axisymmetric flow.

Reference Reynolds number Rer.

Static density p, and velocities u and v at time level n.

Static density p, and velocities u and v from pre_5ous ADI sweep.

158 4.0 Proteus Subprograms: COEFX Proteus 2-D Programmer's Reference

THX

XIX, XIY, XIT

Y

Parameters OL, 02, and 03 determining type of time differencing for
the x-momentum equation.

Metric coefficients _, _y (or _, if axisyrnmetric), and _.

Radial coordinate r for axisymmetric flow.

A, B, C Coefficient submatrices A, B, and C at interior points (row
NXM only).

S Source term subvector S at interior points (element NXM only).

Description

Subroutine COEFX computes the coefficients and source term for the x-momentum equation.
Equations (7.5a-b) in Volume 1 represent, in vector form, the four governing difference equations for the

two ADI sweeps for 2-D planar flow. The elements of the inviscid flux vectors I_ and I: are given in Section
^ ^

2.0 of Volume 1, and the elements of the viscous flux vectors Eel, Ev2, etc., are given in Appendix A of

Volume 1. The Jacobian coefficient matrices Ol_/aQ, OEm/aQ, etc., are given in Section 4.0 of Volume 1.

Using all of these equations, the differenced form of the x-momentum equation for 2-D planar flow may
be written for the two ADI sweeps as 2°

Sweep 1 (¢ direction)

A

a(pu)i +

+

01A'r ,,. 0E 2 "_ ,,.
AQi + -

(1 + 02)2A_ 1 "_Q)._ I

xY/)./__Af.)'l 11 A .

O,A-c [(fi-l+ fi)ng#-lAQ_-l-(fi-l+2fii+fi+l)gi_vi+(fi+ fi+ 1) gi+ 1AQi+ 17 =
(1 + 02)2(A_) 2

Az ^ n Ar ^ ^ n
l +< ('_:_ +'_.F_)+ _-i-7o7[a_(Ev,)_+ <,(v<)_]

^ ^ n 03A'c ^ ^ n O_____L2
(1 1++03)at0:[6¢(Ev_)2 + 6,#'_',)2] 1 + 02 [6¢(E_:)2 + 6#Vv_)2] -1 + 1 + 02 a(#'On -

Sweep 2 (r/ direction)

OIAZ An -- An

AQ)+, \ aQ AQ)_,
(1 + 02)2At I \ OQ + l 7-,

_ /"?7 _ n An _ /7_ 0,A, [(5 l +/:) ¢-,_%-, - (5-, + 2/j+5+0 gj_% + (/:+ 5+,) ¢+,_67+,] =
(1+ o2)2(a,7)2 -

These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy Er would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only three elements.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFX 159

In theaboveequations,thesubscriptsi and j represent grid point indices in the _ and _ directions. For

notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j.
^ ^

On the left hand side, fis the coefficient of 8/0¢ (or 0/0r/, depending on the sweep) in the OEv2/OQ (or
^ ^

OFv_/OQ) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following 0/a_ (or O/Orl)
^ ^ ^ ^

in the 8En/OQ (or OFvl/OQ) Jacobian coefficient matrix.

The vector of dependent variables is

1
h=TEp pu pv ET] r

The appropriate elements of the inviscid flux vectors are given by

1
=7 [(p_+p)¢x+p_¢y+ pu¢,]

^ I
F2= 7 [(Pu2+p),7_+ pu% + p_,]

The appropriate elements of the non-cross derivative viscous flux vectors are

(Ev1)2^ _ Jl Rerl [2_¢2xU¢ + 2_x(¢xU¢ + _yv_) + I_y(_y_t_ "4- _xV_)]

(Fvt)2^ _ J1 Rerl [2gr/2u_ +).rlx(rlxUrl + _lyV_)+ I_ly(_lyUrl + rlxVrl)]

And the appropriate elements of the cross derivative viscous flux vectors are

^ 1 1

(Eg2) 2 - j Re r [2g_x_xu,7 + 2_x(_lxUn + rlyVn) + IZ_y(rly% 4- rlxVrl)]

(Fv2)2^ _ J1 Rerl [21arlx_xU ¢ + 2rlx(_xu ¢ -t- _yV_) 4- larly(_yU _ 4" _xV{)]

The elements of the Jacobian coefficient matrix OI_/OQ for the inviscid terms in the x-momentum

equation are

^

= _ _x -- llfl _t -I-fl q- UCx -t- O_pU) _x U_y -t- O--_pv) _x OE r Cx
8Q

where jq = u_ + v_y.

^ ^

The elements of the Jacobian coefficient matrix OEr,t/ÜQ for the viscous terms are

O(Evt)2 1 O l 0 1 O

^ - - _- 3- _xy-_- 0
OQ Rer OQ 2_

where

8 _ = O O v

21

160 4.0 Proteus Subprograms: COEFX Proteus 2-D Programmer's Reference

_xx = (2u + 2)_x 2 + u_y2

^ ^ ^ ^

The Jacobian coefficient matrices a_':/dQ and 0(Fvl)2/0Q have the same form as 01_2/a(_ and a(Ev_)2/aQ,

but with _ replaced by _.

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left
^ ^ ^

hand side for the first sweep. This is the second element of Q, so using the second element in OE2/OQ, and

including the A(p_u)_ term, we get for the inviscid term

A(IV,I,NXM,NRU) =

B(IV,I,NXM,NRU) = 1

Ol(AZ)i,j

C(IV,I,NXM,NRU) = (1 + 02)2A_

(1 + 02)2A_ (_t)i--I'j+(u_xWV_y)i--I'jW(u_x)i--I'J+ O-_-_x i--l,j

(_)i + 13 + (u_x + V_y)i + _,j + (uG)i + l,y + _ G
i+ 1,y

^ ^

For the viscous terms on the left hand side, we use the second element in O(Ev_)2/0Q, which is

1 0

Thus f= _/Re, and g = lip. To add the viscous contribution to this part of the A coefficient submatrix,
we therefore set

A(IV,I,NXM,NRU) = A(IV,I,NXM,NRU) -
Ol(Az)i,j

(1 + 02)2(A_)2Rer [(_=);- _,; + (_=);,/ 7- ;- t,J

Similar equations may be wxitten for the B and C coefficient submatrices.

The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetric

x-momentum equation for the two ADI sweeps is given by 2_

Sweep 1 (_ direction)

atAz 1^ •

A(pu), +
(1 +02)2A_ r [(,)],,. O 2 A ^"

• AQi+I -- • Qi-I

0Q -i+ 1 -i- 1

n n A ^e n rt ^* i1 n ^lO1Az 1 [(ri-lf- +r.fi) gi-I Qi- -(ri-lfi- +2r, f,+ri+lfi+l) giAQi+(rJi+ri+lfi+l)gi+lAQi+l] =
(I + 02)2(A_,)2 _ 1 1 1

A_ 1 " ^ Az 1 "

(I +03)Az 1 ^ ^ 03Az 1 " 02

1 +19 2 -# (6'[r(Ev2)2]+6"[r(Fv2)2]} --I'-I-0 2 "_ {6'[r(Ev2)2]+ " n-I ^ n-
+

21 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum pw would
not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFX 161

Sweep 2 (17direction)

[((Y 10tA': I r A(_.I - r 0F2 A(_?_ 1

a_)] + (1+ 0_)2a_r oQ/: +, 06/j_,

01A'c 1 n n "n " n n "n
IJj+I/o: "_j +(9fj+r:*lfj*l) gj+laQ:-l] =

(1 + 02)2(A_) 2 -7- [(_ - If) - 1 + r)fj) gj _ IAQj _ 1 -- (rj _ lfj- 1 + 2rjfj + Fj ÷ f 'nonAIfln

a¢,,)"

where now

1
= ---f [p 107d pV pW ST] T

1

A 1

(Ev,)2"_ Jl Rerl {2/.Z#2xU¢+)._x[,xU_+ + _r(_.)¢] + lZ¢r(,rU_+ ,xV¢)}

" 11{2 [I] }(Fv_)2 = 7 Re_ 2UnxUn+ kn_ n_u,7+ -7- nr(rV),7 + t'n_('7_u,7+ nx%)

(E ' l }(Ev_)2:'- .j1Rerl 2_#_n._u,7+)'_x 'Txu,7+ 7- nr(rV),7+ UG(nr%+ '_._%)

^ 1 1 (21Zrlx,xU¢+2rlx[,xu¢+l¢r(rV)¢]+_rlr(,rU¢+,xV¢)}(Fv2)2- j Re r

The elements of the Jacobian coefficient matrix 01£/a(_ for the inviscid terms in the axisyrnmetric form

of the energ_y equation are

a_ [ap . Op at, OP _x Op 1
aQ

where 25= u_, + v_,.

The elements of the Jacobian coefficient matrix OEv_/OQ for the viscous terms are

o_,,,,__, o.¼(_) o._(__)+,,:,_,,oo
06 Re, \ aQ 2,

where

c_ 1 0 v , v
- = - _x_-_- -_xr _ -_,r _r_

0Q
21

_xx = (2it +).)¢x 2 +/.Z_r 2

162 4.0 Proteus Subprograms: COEFX Proteus 2-D Programmer's Reference

_xr = (U + ;')_xG

•),

^ ^

As in 2-D planar flow, the Jacobian coefficient matrices 0_'2/01_ and O(Fvl)2/OQ have the same form as
^ a ^ ^

c?E2/OQ and O(Ev,)2/OQ, but with _ replaced by r/.

Note that the equations for 2-D planar and axisymmetric flow are very similar. In the axisymmetric
equations there are some additional terms involving the radius r in the viscous flux vectors, with corre-
sponding terms in the Jacobian coefficient matrices. The radius r appears as an additional coefficient in

^ ^ ^ ^

front of the flux vectors l_, l_Vl, etc., and in front of the Jacobian coefficient matrices OE2/OQ, O(Evt)2/OQ,
etc. In addition, l/r appears in front of every term in the equation except the A(p_u) terms. In Proteus, the
Fortran variables are defined in such a way that, for many terms, the same coding can be used for both 2-D
planar and axisyrmnetric flow. Unfortunately, this may make some of the coding a little confusing. It is
hoped that this detailed description, when compared with the source listing, will help make things clear.

In COEFX, the coefficients of the left hand side, or implicit, terms are defined fn'st. The implicit terms
for the second ADI sweep have exactly the same form as for the ftrst sweep, but with _ replaced by _/. By
defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep direc-
tion, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow,
and the radius r for axisymmetric flow. This adds the r in front of the Jacobian coefficient matrices for
axisymmetric flow, but has no effect for 2-D planar flow. The 1/r coefficient in front of each term will be
added later. In this section of code, the coefficient of A(p"u) (part of B(IV,I,NXM,NRU)) is set equal to r,
not 1 as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms. These formulas are presented
in Section 5.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as
l/J, is temporarily redefined as r/J before the COEF routines are called. This automatically accounts for
the r coefficient in front of all the flux vectors in the source term. The 1/r coefficient in front of each term
will be added later. This definition of JI adds an r in front of the A(p_u)_- _ term that should not be there.
This will also be corrected later.

The coding for the source term for the second sweep, which consists only of A(p_u) *, comes next. The
definition of JI also adds an r in front of this term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius r. This adds the
l/r coefficient where it should be added, and removes the r in front of the A(p_u) terms.

Remarks

I. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., %ectofized") direction, and the second subscript is the index in the sweep
direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division

by r at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only
to the fa-st sweep, the first two subscripts are written as (I2,I1). For sections that apply only to the
second sweep, they are written as (I 1,I2). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which
A, B, or C is a coefficient.

3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is
separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the
coding of coefficients and source terms involving the swirl velocity is separate from the rest of the cod-
ing, and is bypassed if there is no swirl.

4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous terms.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFX 163

5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous terms containing derivatives in the specified direction.

164 4.0 Proteus Subprograms: COEFX Proteus 2-D Programmer's Reference

Subroutine COEFY (A,B,C,S,METX,METY,METT,NVD,NPTSD)

Called by Calls Purpose

EXEC Compute coefficients and source term for the y or r-momentum

equation.

DEL

DPDRHO, DPDRU, DPDRV,
DPDRW, DPDET

DTAU

DXI, DETA

ETAX, ETAY, ETAT

* IAXI

IBASE, ISTEP

* IEULER

* IHSTAG

ISWEEP

* ISWIRL

* ITHIN

IV

I1, I2

JI

METX, METY, METT

MU, LA

NEQ

NPTS

NR, NRU, NRV, NRW, NET

NVD, NPTSD

NYM

P

RAX

* RER

RHO, U, V, W

Computational grid spacing in sweep direction.

Derivatives Op/Op, Op/O(pu), Op[O(pv), Op/O(pw), and _p/OEr.

Time step Az.

Computational grid spacing A_ and An.

Metric coefficients _/_, _/y (or rb if axisymmetric), and _/l.

Flag for axisymmetric flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Flag for Euler calculation.

Flag for constant stagnation enthalpy option.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Flags for thin-layer option.

Index in the "vectorized" direction,/,.

Grid indices i and j, in the _ and _/directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-
(times the radius r for axisymmetric flow.)

Derivatives of sweep direction computational coordinate with re-

spect to x, y (or r if axisymmetric), and t.

Effective coefficient of viscosity/_ and effective second coefficient
of viscosity 2 at time level n.

Number of coupled equations being solved, N,q.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Leading two dimensions for the arrays A, B, C, S, METX,
METY, and METT.

Array index associated with the y-momentum (or r-momentum if
axisymmetric) equation..

Static pressure p at time level n.

1 for two-dimensional planar flow, and the local radius r for

axisymmetric flow.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w, at time level n.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFY 165

RHOL, UL, VL

THY

XIX, XIY, XIT

Y

Static density p, and velocities u and v from previous ADI sweep.

Parameters 01, 02, and 03 determining type of time differencing for

the y-momentum equation.

Metric coefficients ¢_, _y (or _, if axisymmetric), and _,.

Radial coordinate r for axisymmetric flow.

Coefficient submatrices A, B, and C at interior points (row

NYM only).

Source term subvector S at interior points (element NYM only).

Description

Subroutine COEFY computes the coefficients and source term for the y-momentum equation for 2-D

planar flow, or the r-momentum equation for axisymmetric flow. Equations (7.5a-b) in Volume 1 repre-
sent, in vector form, the four governing difference equations for the two ADI sweeps for 2-D planar flow.

The elements of the inviscid flux vectors 1_ and _" are given in Section 2.0 of Volume 1, and the elements

of the viscous flux vectors l_v_, Ev2, etc., are given in Appendix A of Volume 1. The Jacobian coefficient

matrices OE./OQ., OEvJOQ, etc., are given in Section 4.0 of Volume l. Using all of these equations, the

differenced form of the y-momentum equation for 2-D planar flow'may be written for the two ADI sweeps

as 22

Sweep 1 (_ direction)

+

](1 + 02)2A_ 0Q //i+ 1 k, OQ i- t

01AT (f/--'t -- n nA^* n n
(1+02)2(&_)2 [+fi)ngin--1At;-'--(fi l+2f/+f/+l) gi Qi+(fi+fi+,)gi+lAQ;+l] =

A A A F/

+0.L)°+ l+o-----71+02

A A n 03A'r A A ?1 0 2 A /'1 -- l

(1 + 03)Az [6_(Ev2) 3 + 6,7(Fv2)3] [6¢(Ev2) 3 + 6,7(Fv2)3] - 1 + _ A(pv)
1 + 02 1 +02

22 These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,

the total energy ET would not appear as a dependent variable, and the Jacobian coefficient matrices would have

only three elements.

166 4.0 Proteus Subprograms: COEFY Proteus 2-D Programmer's Reference

Sweep 2 (n direction)

A n 01A'r An _ A(_n

A(pv)) + (1 + 02)2At/ \ OQ AQ) + 1 j - 1
L s+_ i-_

O,Az [(fj 1 + fj)ngjn_,A(_;_l-(f d ,+ 2fy+f)+ .n n_Xn n n "n- l) gya_y +(fj+ fy+,)gy+,AQ5+,] =
(1 + 02)2(An) 2 -

a(dC

In the above equations, the subscripts i and j represent grid point indices in the _ and r7 directions. For
notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j.

^ ^

On the left hand side, f is the coefficient of 3]0_ (or O[&l, depending on the sweep) in the OEvdOQ (or

O_'vl/OQ) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following 0/O_ (or O]&l)

in the cgEv_/Oh (or afv, lah) Jacobian coefficient matrix.

The vector of dependent variables is

^ 1
Q = T EP pu pv Er] r

The appropriate elements of the inviscid flux vectors are given by

^ 1
E 3 = --)--[puv_ x + (pu2 + P)¢y + pv_t]

^ 1
1_3= 7- [P_'_+ (:2 + p),Ty+ p_t]

The appropriate elements of the non-cross derivative viscous flux vectors are

^ 1
(Evl)3- j

^ 1
(FvI)3- j

1 [2uCy2v¢ + 2¢y(_xU ¢ + _yv¢) + _x(_yU¢ + _xV¢)]
Rer

I [2._. + 2,y(n:.. + ,TyV.)+ u,_(,:.. + ,7;,.)]
Rer

And the appropriate elements of the cross derivative viscous flux vectors are

A 1 1

(Ev2)3 = 7 Re r [2_y'IyV'7 + 2_Y(nxU'7 + rlYVn)+ U_x(nyU'7 + _Ixvn)]

^ 1 1

(Fgz)3 = --f B----_-r [2.U.ny_yV{+ 2_ly(_xU¢ + _yV_) + U_Ix(_yU¢ + _xV_)]

The elements of the Jacobian coefficient matrix OE/OQ for the inviscid terms in the y-momentum

equation are

_r +.It + V_y + _y aE r _y

where f = uG + vG.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFY 167

^ ^

The elements of the Jacobian coefficient matrix OEvdOQ for the viscous terms are

0(E v_)3 1 a 0 0 1

06 -- Rer OQ °_xY_ ayy _ --fi- 0
31

where

O _ 0 <9 v- =-
OQ 31

%y = _,G2 + (2u + ;.)_y2

^ ^ ^ ^ ^ ^

The Jacobian coefficient matrices 0FdaQ and 0(Fv0dSQ have the same form as 01_d0 _ and _(Evi)daQ,

but with _ replaced by _/.

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left
^

hand side for the first sweep. This is the second element of Q, so using the second element in OE3]OQ, we

get for the inviscid term

A(IV,I,NYM,NRU) = E t+tl(I+ 02)2A¢ (V_x)i- I,j "+ _Y i-- 1,j

B(IV,I,NYM,NRU) = 0

01(A'r)i,j
C(IV,I,NYM,NRU) -

(1 + 02)2A_

^ ^

For the viscous terms on the left hand side, we use the second element in O(Evt)dOQ, which is

1 0(+)Re r axY

Thus f= o:,,dRer and g = lip. To add the viscous contribution to this part of the A coefficient submatrix,
we therefore set

A(IV,I,NYM,NRU) = A(IV,I,NYM,NRU) - (I)
(1 + 02)2(A_)ZRer i- 1,j

Similar equations may be written for the B and C coefficient submatrices.

The equations for axis}wnmetric flow are developed in Appendix B of Volume 1. The axisymmetric

r-momentum equation for the two ADI sweeps is given by 2s

23 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum pw would
not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.

168 4.0 Proteus Subprograms: COEFY Proteus 2-D Programmer's Reference

Sweep 1 (¢ direction)

^ •

:'(pv), + 01:'¢ 1 0E3 :" ^" -- r --

aQ /i-,- I _Q i-1 -

81A': 1 [(ri_i/__i+rj_)ng._IA6[_l_(r i lf_l+2ri_+ri + . _ ^" %,,,:,+,)g,Ao,.+(,:,+r,+,:,.+,)o;.,:'6L,]_.

01Az OH3 O(Hv)3 :'Qi = 1+02 7 [61(rE3)+d,_(rF3)+{-13]

Az 1 ^ ^ -
+ (H03t + 1+ 02 ?1 +02 7 [6¢[r(Ev'l)3]+6__r(_'Vl)3] ^ _ (1 +03)Az 1 {6¢[r(Ev2)3]+6rt[r(Fv2)3]}

03:''r 1 ^ ^ 02

I +02 _ {6¢[r(Ev2)3]+6_-r(Fv2)3]}"-' + I"i"-_2 :'(p^v)'_-̀

(1 + 02)2:'_ r

(I +02)2(:'_)2

Sweep 2 (_/direction)

O1:'z 1

A(:v)_+ 0 + o2)2:_ 7

01Az

(I + 02)2<:'q) 2

r _/j+IAQ/..,.1- @Q /j_I:'Q_-I

] n n ^ n ;I ^a n n ^a

"F [(rj _ 14 -1 + rj4) gj- IAQ: - , -- (rj _ i/j-1 + 2rjfj + rj + 14 + 1) g: AQj + (rjfj + r,+ lfj + 1) gj + 1AQj * 1]

o,:'_ _(_)' :,6:=

^ • 01:'z 1 0H3 0(Hv)3 6"

:'(:'_)+ i+0_7 e6 _6

where now

_= 1-]-[p pu pv pw Er] r

^' 1
E3 = -]" [PUV_x + (P v2 + P)¢r + PVCt]

^ I
F3 : -]" [PU_x + (P v2 + P)11r + P_It]

^ I
(EvI)3- j

^ 1
(Fv,)3 = j

Rerl {2U_2rv_+ 2_r[_xU_ -k-"7-1_r(rl:)_] _F iX_x(_rU _}- _xV_)}

{ 2 1 rir(n,)rl] + .nx(rlrUrlq_ rlxVrl)}1 2l_rlrV, 7 + 2_lrE_ixUr r + "-/-
Rer

^ 1
(Ev2)3- j

^ 1
(Fv2)3- j

| {2#_rnrV_ + A_rEnxU_+ l _Ir(rv)n] + UCxOlrUn+ 'lxV,7)}Re r 7-

l {2#rlr_rV¢ +).rlr[_xu_ + l _r(rV)¢] + Urlx(_rU_ + _xVO}t_er -7-

^ 1
H3 = 7 (- P - pW2) -

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFY 169

^ 1 1 f v). }(Hv)3 I Re r - 2_ "7" -)'(_xu¢ + _lxU,7) + 7 [_r(rV)_ + r/r(rV)r/]

The 121and ItIv terms, which do not appear in the 2-D planar form of the equations, result from the non-

conservative form of the axisymmetric equations.

The elements of the Jacobian coefficient matrix Old/00 for the inviscid terms in the axisymmetric form

of the ener_" equation are

A

0(_ _ _r- Vfl V_x q- _r
_t + fl + V_r q- _r O(pW) 6aET _r

where f = u_x + v_,.

^ ^

The elements of the Jacobian coefficient matrix OEvl/OQ for the viscous terms are

where

0 1

0Q
= -- °_xr-_ -'fi- -- O_rr 0--_- -P- -- Ctrr --ff- r_

31

,=(u+2),

Ctrr =- /z_x 2 nt- (2/_ + 2)_r 2

^ ^ ^ ^

As in 2-D planar flow, the Jacobian coefficient matrices 0Fa/0Q and O(Fvl)3/OQ have the same form as
^ ^ ^ ^

OE3/OQ and O(Ev_)3/OQ, but with _ replaced by q.

The elements of the Jacobian coeffÉcient matrix OH/OQ are

/k

o_ - _ + w o(ou) o(pv) O(ow) Oer

^ ^

The elements of the Jacobian coefficient matrix OHv/OQ are

0(Hv)3 _ I OHv .0 0

OQ Rer O_
31 32 33

where

170 4.0 Proteus Subprograms: COEFY Proteus 2-D Programmer's Reference

t ^ 1 u 0

• 31

1 V -

aQ 32

t,)
33

Note that, except for the additional I2I and 12Iv terms, the equations for 2-D planar and axisymmetric flow
are very similar. In the axisymmetric equations there are some additional terms involving the radius r in
the viscous flux vectors, with corresponding terms in the Jacobian coefficient matrices. The radius r appears

as an additional coefficient in front of the flux vectors !_, l_va, etc., and in front of the Jacobian coefficient
^ ^ ^ ^

matrices 0E3/OQ, O(Evi)3/OQ, etc. In addition, 1/r appears in front of every term in the equation except the
A(p_v) terms. In Proteus, the Fortran variables are defined in such a way that, for many terms, the same
coding can be used for both 2-D planar and axisymmetric flow. Unfortunately, this may make some of the
coding a little confusing. It is hoped that this detailed description, when compared with the source listing,
will help make things clear.

In COEFY, the coefficients of the left hand side, or implicit, terms are defined fu'st. Note that the im-
plicit terms for the second ADI sweep have exactly the same form as for the ftrst sweep, but with _ replaced
by 7- By defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the
sweep direction, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D
planar flow, and the radius r for axisymmetric flow. This adds the r in front of the Jacobian coefficient
matrices for axisymmetric flow, but has no effect for 2-D planar flow. The I/r coefficient in front of each
term will be added later. In this section of code, the coefficient of A(p_v) (part of B(IV,I,NYM,NRV)) is
set equal to r, not 1 as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms. These formulas are presented
in Section 5.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as
l/J, is temporarily redefined as r/J before the COEF routines are called. This automatically accounts for
the r coefficient in front of all the flux vectors in the source term. The 1/r coefficient in front of each term
will be added later. This definition of JI adds an r in front of the A(_v)"- J term that should not be there.
This will also be corrected later.

The coding for the source term for the second sweep comes next. The definition of JI also adds an r in
front of the A(p_v)" term that should not be there.

And finally, for axisymmetric flow, the entire equation is dMded by the local radius r. This adds the
1/r coefficient where it should be added, and removes the r in front of the A(_v) terms.

Remarks

.

2.

This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep
direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division
by r at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFY 171

to the first sweep, the first two subscripts are written as (I2,I1). For sections that apply only to the
second sweep, they are written as (I1,12). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which
A, B, or C is a coefficient.

3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is
separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the
coding of coefficients and source terms involving the swirl velocity is separate from the rest of the cod-
rag, and is bypassed if there is no swirl.

4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous terms.

5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous terms containing derivatives in the specified direction.

172 4.0 Proteus Subprograms: COEFY Proteus 2-D Programmer's Reference

Subroutine COEFZ (A,B,C,S,METX,METY,METT,NVD,NPTSD)

Called by Calls Purpose

EXEC Compute coefficients and source term for the swirl momentum
equation.

l.p.m

DEL

DTAU

DXI, DETA

ETAX, ETAY, ETAT

IBASE, ISTEP

* IEULER

* IHSTAG

ISWEEP

* ITHIN

IV

I1, I2

JI

METX, METY, METT

MU

NEQ

NPTS

NR, NRU, NRV, NRW, NET

NVD, NPTSD

NZM

RAX

* RER

RHO, U, V, W

RHOL, WL

* THZ

XIX, XIY, XIT

Y

Computational grid spacing in sweep direction.

Time step A-r.

Computational grid spacing A_ and Art.

Metric coefficients _, _t, (or _/, if axisymmetric), and _/f.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

'Flag for Euler calculation.

Flag for constant stagnation enthalpy option.

Current ADI sweep number.

Flags for thin-layer option.

Index in the "vectofized" direction, it.

Grid indices i and j, in the _ and q directions.

Inverse Jacobian of the nonorthogonal grid transformation times
the radius, rJ-1.

Derivatives of sweep direction computational coordinate with re-
spect to x, r, and t.

Effective coefficient of viscosity _ at time level n.

Number of coupled equations being solved, N,q.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Leading two dimensions for the arrays A, B, C, S, METX,
METY, and METT.

Array index associated with the swirl momentum equation.

The local radius r.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w, at time level n.

Stati_ density p and velocity .w from previous ADI sweep.

Parameters 01, 02, and 03 determining type of time differencing for
the swirl momentum equation.

Metric coefficients _x, _, (or _r if axisymmetric), and ¢,.

Radial coordinate r.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFZ 173

CoefficientsubmatricesA, B, andCatinteriorpoints(rowNZM
only).
SourcetermsubvectorS atinteriorpoints(elementNZM only).

Description

Subroutine COEFZ computes the coefficients and source term for the swirl momentum equation, which
is only valid in axisymmetric flow. The equations for axisymmetric flow are developed in Appendix B of
Volume I. The swirl momentum equation for the two ADI sweeps is given by 24

Sweep 1 (_ direction)

^. OE a ^.

^ • 81Az 1 AQ_+t- r _ AQ/_l
A(pw), + (1 +02)2A,r r r 0Q ,] +t ,-1

O]A'r 1 [(ri_lf_]+rif)ngn_,Ar:_ _(ri_tfi_l+2rji+r,+lf,.l) gAQ,,,,, ^'+(rif,+ri+,fi+])g,÷lAQi+]],: n ^"
(1 + 0z)2(A_) = 7

. 81A------_--x 0Ha 8(l-[Oa A6; _. 1 ^ _'4)+I_la] n+ i+82 7 {6I[rOEvI)a]+6.[rOFvI)a]+(IHv)a} n+ 1+ 82 06 o6 1+ 82 [6 (rE,)+ 60(r a, 1 ^ ^

(I +83)A'r I {6,[r_2v2)¢]+6,1[r ^ n 83Ax 1 " ^ 02 " n-+ I +02 7 (FV2)4]} --I +02 7 {6,[r(Ev2)4]+6,_[r(Fv2)4]} n-l+_A('°w) 1

Sweep 2 (7 direction)

^ 0F4 ^ n

^ n 81A'r l r _ AQ;_I-- r -_-J AQ]'÷I
A(pw)) + (1 +02)2A,7 _ OQ J-_ J+]

n n an n n ^n ntl ^n

O1Ax I [(r_-_f_-_+ryf_)g_-_AQ1-_-(r_-_fJ-_+2r_f_+rJ+_fy_)g_AQj+(r,ify+_J_,_fJ+_)gJ-_AQl+_]
(] + 02)2(Aq)2

.]o81Az I 3Ha 0(Hv)4 ^ n ^ ' 81Az I OH4 0(Hv)4 A6 °

+] +82 r 06 8Q jAQj=A(pw) + 1 +82 r 06 06

In the above equations, the subscripts i and j represent grid point indices in the _ and q directions. For
notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j.

^ ^

On the left hand side, fis the coefficient of OlO¢ (or 0/0q, depending on the sweep) in the OEv_/OQ (or

OFv_/Ol_) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following 0[0¢ (or O/Oft)

in the (_EvI/O _ (or OFv_/OQ) Jacobian coefficient matrix.

The vector of dependent variables is

1
 =7[p pu pv pw ET] T

The appropriate elements of the inviscid flux vectors are given by

These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy Er would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only four elements.

174 4.0 Proteus Subprograms: COEFZ Proteus 2-D Programmer's Reference

E4= [p_ + p_, + pw_,]

174= z_Ix + PvW_lr + P'_t]

The appropriate elements of the non-cross derivative viscous flux vectors are

^ l 1 2 _2
+ #_rW_)(Eel) 4- j Re r

^ 1 1 2 2
- (U_xWn + .rlrWn)(FvI)4 J Re r

And the appropriate elements of the cross derivative _5scous flux vectors are

(Ev2)4^ J1 Rerl (#_xrlxW,7 + #_r,lrW, 7_/_r w)

_ W

(Vv2)4^ J1 Rerl (.rlx_x_V_ -t- Iarlr_rW_ grl" W)

The extra terms resulting from the non-conservative form of the axisyrnmetric equations are

(He)4^ J1 Rerl[It(_rW¢+rlrWrl)--1_-_-]

The elements of the Jacobian coefficient matrix aE/OQ for the inviscid terms in the r-momentum

equation are

A

OE4
--=[-wA
06

W_x W_r _t + fl O]

where f = u_ + v_..

^ ^

The elements of the Jacobian coefficient matrix aEvdaQ for the viscous terms are

a(Ev, h 1 aEv_
0 0 O:zz-_ 0

OQ Rer a_
41

where

()aEv, a

41

Ctzz = la_x 2 + l_r 2

^ ^ ^ ^ ^ ^

The Jacobian coefficient matrices aF4/OQ and O(Fvl),/OQ have the same form as _/OQ and a(EvO4/OQ,

but with _ replaced by _.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFZ 175

The elements of the Jacobian coefficient matrix 0£-I10 _ are

A

OH4
-- _ E -- 1/'147

A

0Q
0 w v 0]

The elements of the Jacobian coefficient matrix OHv/OQ are

A I(A (A)I0(Hv)4 _ 10Hv OHv

06 Rer 06 0 0 (?Q-2 0
41 44

where

OHv w

o4
41

r p t_/r 7

() ()
OHv O 1 _ 1 0 1

-; = UCr-g(7- -TW+U'Tr-g " "-Y"
OO

44

As an example of how these equations are translated into Fortran, consider the A(pv]J) term on the left

hand side for the first sweep. This is the third element of 0, so using the third element in OF:_]O(_, and in-
^ ^

eluding the contribution from the third element of OI-h[OQ, we get for the inviscid term

01(Az)i,J 1 [(rW_r)i - 1 j]
A(IV,I,NZM,NRV) = - (1 + 02)2A_ ri,j

Ol(A_)i,J 1

B(IV,I,NZM,NRV) - 1 + 02 ?'i,j wi'j

Ol (A'r)i,J 1

C(IV,I,NZM,NRV) = (1 + 02)2A_ ri,j [(rW_r)i+ 1,j]

For the A(pv/J) term, there are no viscous terms on the left hand side.

In COEFZ, the coefficients of the left hand side, or implicit, terms are defmed ftrst. Note that the im-

plicit terms for the second sweep have exactly the same form as for the first sweep, but with _ replaced by
_. By defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep
direction, the same coding can be used for both sweeps. Since COEFZ is only used in axisymmetric flow,

the variable RAX is equal to the radius r. This adds the r in front of the Jacobian coefficient matrices.
The 1/r coefficient in front of each term will be added later. In this section of code, the coefficient of
A(p_w) (part of B(IV,I,NZM,NRW)) is set equal to r, not 1 as it should be. This will be corrected later.

The source term, or rig!at hand side, for the ftrst sweep is defined next. The difference formulas used to

compute the source term are the same as those used for the implicit terms. These formulas are presented
in Section 5.0 of Volume 1. For axisymmetfic flow, the Fortran variable JI, which is normally defined as

1]J, is temporarily redefined as r/J before the COEF routines are called. This automatically accounts for
the r coefficient in front of all the flux vectors in the source term. The 1/r coefficient in front of each term
will be added later. This definition of JI adds an r in front of the A(p_w) "- a term that should not be there.
This will also be corrected later.

176 4.0 Proteus Subprograms: COEFZ Proteus 2-D Programmer's Reference

The coding for the source term for the second sweep comes next. The definition of Jl also adds an r in
front of the A(p_v)" term that should not be there.

And finally, the entire equation is divided by the local radius r. This adds the 1/r coefficient where it
should be added, and removes the r in front of the A(p_w) terms.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep
direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division
by r at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only
to the first sweep, the first two subscripts are written as (I2,I1). For sections that apply only to the
second sweep, they are written as (I 1,I2). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which
A, B, or C is a coefficient.

3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is
separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the
coding of coefficients and source terms involving the swirl velocity is separate from the rest of the cod-
ing, and is bypassed if there is no swirl.

4. The Euler option is implemented sirn, ply by skipping the calculation of the coefficients and source terms
for the viscous terms.

5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous terms containing derivatives in the specified direction.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: COEFZ 177

Subroutine CONV

Called by

MAIN

Calls Purpose

ISAMAX Test computed flow field for convergence.

CHGMAX

DUMMY

* EPS

* GAMR

* IAV2E, IAV4E

* ICTEST

* IHSTAG

* ISWIRL

IT

NEQ

* NITAVG

* NOUT

NR, NRU, NRV, NRW, NET

NTOTP

* N1, N2

RESAVG

RESL2

RESMAX

RGAS

RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

Output

CHGAVG

CHGMAX

Maximum change in absolute value of the dependent variables
from time level n- 1 to n (or over the previous NITAVG- 1
time steps if ICTEST = 2), AQ

A two-dimensional scratch array.

Convergence level to be reached, e.

Reference ratio of specific heats, yr.

Flags for second- and fourth-order explicit implicit artificial
viscosity.

Flag for convergence criteria to be used.

Flag for constant stagnation enthalpy option.

Flag for swirl in axisymmetric flow.

Current time step number n.

Number of coupled equations being solved, N,q.

Number of time steps in moving average convergence test.

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Dimensioning parameter specifying the storage required for a full
two-dimensional array (i.e., N1P x N2P).

Number of grid points Nl and 3[2, in the _ and _7directions.

The average absolute value of the residual at time level n, R,,g.

The _ norm of the residual at time level n, RL2.

The maximum absolute value of the residual at time level n,
R rfl_rx •

Gas constant R.

Static density p, velocities u, v, and w, and total energy Er at time
level n + 1.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Maximum change in absolute value of the dependent variables,
averaged over the last NITAVG time steps, AQ,_ v

Maximum change in absolute value of the dependent variables
from time level n to n + 1 (or over the previous NITAVG time
steps if ICTEST = 2), AQ

178 4.0 Proteus Subprograms: CONV Proteus 2-D Programmer's Reference

ICONV Convergenceflag;1 if converged, 0 if not.

Description

Subroutine CONV checks the computed flow field for convergence. Convergence may be based on: (1)
the absolute value of the maximum change in the dependent variables over the previous time step; (2) the
absolute value of the maximum change in the dependent variables, averaged over the last NITAVG time
steps; (3) the/4 norm of the residual for each equation; (4) the average residual for each equation; or (5)
the maximum residual for each equation. These parameters are defined in Section 4.1.6 of Volume 2.

The convergence criteria to be used and the level to be reached are set by the input parameters ICTEST
and EPS. Each dependent variable or equation is checked separately, and convergence is declared when the
specified level is reached for all of the variables or equations. The same criteria is used for each one, but
different levels may be specified.

Subroutine CONV first computes AQ the absolute value of the maximum change in each dependent
variable over all the grid points for the most recent time step. These values are stored in
CHGMAX(IVAR,1), where IVAR varies from 1 to NEQ, the number of dependent variables. If
ICTEST = 2 (the so-called "moving average" convergence test), CHGMAX(IVAR,2) contains the maxi-
mum change for the previous time step, etc.

Then, depending on the value of ICTEST, the chosen convergence criteria is compared with the level
to be reached for each dependent variable or equation, and a flag is set if the calculation is converged.

Remarks

, For ICTEST = 1 or 2,_the change in Er is divided by R/(_, - 1) + 1/2.
the dimensional value Er by

pr-RTr prU2r
ET,=ST=-F_1 +- T -

This is equivalent to dividing

This makes the change in total energy the same order of magnitude as the other conservation variables.

2. For ICTEST = 1 or 2, the convergence test is based on (or includes) the change in dependent variables
from time level n to n + 1. For ICTEST = 3, 4, or 5, convergence is based on the residual at time level
n, not n + 1. This is because the residuals at time level n + 1 are not computed until the marching step
from n + 1 to n + 2 is taken.

3. For cases run with artificial viscosity, the residuals are computed and printed both with and without the

artificial viscosity terms. This may provide some estimate of the overall error in the solution introduced
by the artificial viscosity. Convergence is determined by the residuals with the artificial viscosity terms
included.

4. The Cray search routine ISAMAX is used in computing the absolute value of the maximum change in
dependent variables.

5. The scratch array DUMMY, from the common block DUMMY1, is used to store the values of the
change in dependent variables for use by ISAMAX.

6. A warning message is generated if an illegal convergence criteria is specified. ICTEST is reset to 3
(convergence based on the 14 norm of the residual), and the calculation will continue.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: CONV 179

Subroutine CUBIC (IDIR,T,G,NOLD,TINT,GINT)

Called by

PAK

Calls Purpose

Interpolation using Ferguson's parametric cubic.

G

IDIR

I1, I2

NOLD

* NI, N2

T

TINT

A two-dimensional array containing NOLDI x NOLD2 values

of the function g(t) to be interpolated.

Direction flag; 1 if first subscript in G varies, 2 if second subscript
varies.

Grid indices i and j, in the _ and _ directions.

Number of values in direction IDIR in array G (i.e., NOLD1 or

NOLD2.)

Number of grid points N1 and N2, in the _ and _ directions.

A one-dimensional array containing NOLD values of the inde-

pendent variable t.

A one-dimensional array containing N 1 or N2 (depending on

IDIR) values of the independent variable t= t_ at which in-

terpolated values g_, = g(t,_.,) are desired.

GINT A one-dimensional array containing N1 or N2 (depending on

IDIR) interpolated values g_,, = g(t_,).

Description

Subroutine CUBIC performs interpolation using Ferguson's parametric cubic polynomial (Faux and

Pratt, 1979). Given the function g(t) and a value t_,,, CUBIC computes g_,, = g(t_,).

The function g(t) is specified by the Fortran arrays G and T. For a general value t, let

where t_ < t < ta. (I.e., t, and td axe the two elements of the array T that bracket t.)

Between t_ and td, assume g can be described by a cubic polynomial in tI, as follows:

g = al + a29+ a392 + a493

Differentiating,

g' - d9 - + 2=/r+

Noting that q = 0 at t = t_, and 1 at t = td, we get

180 4.0 Proteus Subprograms: CUBIC Proteus 2-D Programmer's Reference

Soh,ing for a_ through a4,

gu = a 1

g_ = oa
ga=al+a2+a3+a4

g'd = a2 + 2a3 + 3aa

al =gu

a2= _

a3 = 3(ga- gu) - 2g'u - g'a

a4= 2(g,,_- ge)+ g'_ + g'd

Plugging these into the cubic polynomial for land rearranging,

g = gu(l- 3_ 2 + 2_ 3) + ga_3tr2 - 2_))

This is the form of the equation used to compute gu,,.

Remarks

1. At interior points in the array g, the derivatives g" and g_ are computed using a second-order central
difference formula. At the end points, second-order one-sided difference formulas are used.

2. The Fortran variable TINT is actually a one-dimensional array containing N, or _½ input values of
t=. Similarly, GINT is a one-dimensional array containing N, or/_,½ output values ofg_,.

3. The Fortran array G that specifies the input values of g(t) is actually a two-dimensional array. Within
CUBIC, however, only one of the subscripts varies. The input flag IDIR specifies which one.

Proteus 2-D Programmer's Reference 4.0 Proteus Sublgograms: CUBIC 181

Subroutine EQSTAT (ICALL)

Called by Calls Purpose

BVUP Use equation of state to compute pressure, temperature, and their de-
EXEC rivatives with respect to the dependent variables.
INITC
MAIN

CP, CV

HSTAG

IBASE, ISTEP

ICALL

IHSTAG

NPTS

N1, N2

RGAS

RHO, U, V, W, ET

Specific heats cp and c,.

Stagnation enthalpy hr used with constant stagnation enthalpy
option.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

0 to get p and T, 1 to get derivatives of p and T with respect to
dependent variables.

Flag for constant stagnation enthalpy option.

Number of grid points in the sweep direction, N.

Number of grid points N_ and N2, in the _ and _/directions.

Gas constant R.

Static density p, velocities u, v, and w, and total energy Er.

DPDRHO, DPDRU, DPDRV,
DPDRW, DPDET

DTDRHO, DTDRU, DTDRV,
DTDRW, DTDET

ET

INEG

P,T

Derivatives Op/Op, Op/O(pu), Op/O(pv), Op/O(pw), and OplOEr.

Derivatives OTlOp, OT/O(pu), OTlO(pv), 3TlO(pw), and OT]c_Er.

Total energy (constant stagnation enthalpy option only.)

Flag for non-positive pressure and/or temperature; 0 if positive, 1
if non-positive.

Static pressure p and temperature T.

Description

Subroutine EQSTAT computes various quantities that depend on the form of the equation of state. It
actually serves a dual purpose. First, it is called from subroutine INITC and from the MAIN program,
with the input parameter ICALL = 0, to compute the static pressure p and temperature T from the initial
or just-computed values of the dependent variables. If the constant stagnation enthalpy option is being used
it also computes a value for the total energy Er. And second, it is called from subroutines BVUP and
EXEC, with ICALL = 1, to compute the derivatives ofp and T with respect to the dependent variables. _

The equation of state currently built into Proteus is for a perfect gas. The formulas used to compute
p, T, and their derivatives with respect to the dependent variables are presented in Section 4.3 of Volume
1 for two-dimensional planar flow and in Section B.2.3 of Volume 1 for axisymmetric flow.

These are needed for linearization of the governing equations. See Section 4.1 of Volume 1 for details.

182 4.0 Proteus Subprograms: EQSTAT Proteus 2-D Programmer's Reference

Remarks

1. When used to compute p and T (ICALL = 0), this subroutine is called from outside any loops in the
or n directions. When used to compute Op/Op, etc., (ICALL = 1), it is called for each ADI sweep

from inside a loop in the non-sweep direction.

2. When computing Op/Op, etc., this subroutine uses one-dimensional addressing of two-dimensional ar-
rays, as described in Section 2.3.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: EQSTAT 183

Subroutine EXEC

Called by

MAIN

Calls

ADI
AVISC 1
AVISC2
BCELIM
BCGEN
BVUP
COEFC
COEFE
COEFX
COEFY
COEFZ

EQSTAT
PERIOD
RESID
UPDATE

Purpose

Manage solution of governing equations.

I._m!

DXI, DETA

ETAX, ETAY, ETAT

* IAV2E, IAV4E, IAV2I

* IAXI

IBCELM

* ICHECK

* IHSTAG

* ISWIRL

IT

ITBEG

* ITHIN

JI

KBCPER

NEQP

NPT1, NPT2

NTABC

NTS

Computational grid spacing A_ and A T.

Metric coefficients r/r, _/y (or r/, if axisymmetric), and m.

Flags for second-order explicit, fourth-order explicit, and second-
order implicit artificial viscosity.

Flag for axisymmetric flow.

Flags for elimination of off-diagonal coefficient submatrices re-
suiting from three-point boundary conditions in the ¢ and n di-
rections at either boundary; 0 if elimination is not necessary', 1 if
it is.

Convergence checking interval.

Flag for constant stagnation enthalpy option.

Flag for swirl in axisymmetric flow.

Current time step number n.

The time level n at the beginning of a run.

Flags for thin-layer option.

Inverse Jacobian of the nonorthogonal grid transformation, J- _.

Flags for spatially periodic boundary conditions in the _ and r/
directions; 0 for non-periodic, 1 for periodic.

Dimensioning parameter specifying maximum number of coupled

equations allowed.

N_ and A_ for non-periodic boundary conditions, N_ + 1 and
Nz + 1 for spatially periodic boundary conditions in _ and _/.

Dimensioning parameter specifying total storage required for the
coefficient submatrices A, B, and C.

Dimensioning parameter specifying total storage required for the
source term subvector S.

184 4.0 Proteus Subprograms: EXEC Proteus 2-D Programmer's Reference

N1, N2

N1P, N2P

XIX, XIY, XIT

Y

Number of grid points N_ and N2, in the _ and ,/ directions.

Parameters specifying the dimension sizes in the ¢ and _ di-
rections.

Metric coefficients _, _y (or _r if axisymmetric), and _t.

Radial coordinate r for axisymmetric flow.

O.tp.t

DEL

IBASE, ISTEP

ISWEEP

IV

I1, I2

JI

METX, METY, METT

NPTS

NV

RAX

RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

TL

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Current ADI sweep number.

Index in the "vectorized" direction,/,.

Grid indices i and j, in the _ and ,i directions.

The radius times the inverse Jacobian of the nonorthogonal grid

transformation, rJ-1 (used in COEF routines for axisymmetric
flow only.)

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and t.

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N,.

1 for two-dimensional planar flow, and the local radius r for
axisymmetric flow.

Static density p, velocities u, v, and w, and total energy Er at time
level n + 1.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Static temperature T at time level n.

Description

Subroutine EXEC manages the solution of the governing equations. It is called by the MAIN program
during each marching step from time level n to n + 1. The steps involved in EXEC are described below.

Preliminary Steps

1. If this is the first time step, temporarily set the thin-layer flags to zero.

2. Initialize the coefficient submatrices A, B, and C, and the source term subvector S, to zero.

3. If spatially periodic boundary conditions are being used in either direction, call PERIOD to add the
appropriate extra fine(s) of data.

First ADI sweep, _ direction

4. Set various sweep-dependent parameters, as follows:

isweep = 1
is_ep = l
del = A_
npts = Nl or,'Vl+ 1
nv = N2 or N2+ 1

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: EXEC 185

5. For axisymmetricflow,setJI = r/J at all grid points.

6. Set metrics in sweep (_) direction at all grid points as follows:

metx(i2,il) = (¢,),,j
mety(i2,il) = (_y)_,j or (_,)_,j
mett(i2,il) = (_)_,j

7. Begin loop in non-sweep ('7) direction over interior points (/= I2 = 2 to NPT2 - 1).

8. For axisymrnetric flow, set RAX(II) = r,,j along the current v-line at all _ grid points.

9. Call EQSTAT to get the derivatives ofp and T with respect to p, pu, etc., along the current r/-line
at all _ grid points.

10. Call the COEF routines to compute the coefficients and source terms for the governing equations
along the current _7-1ine at all interior _ grid points.

11. End of loop in non-sweep 01) direction.

12. For axisymmetric flow, reset JI = l/J at all grid points.

13. For non-spatially periodic boundary conditions in the _ direction, begin loop in non-sweep (_/) direction
over interior points (j = I2 = 2 to NPT2 - 1).

14. Call EQSTAT to get the derivatives ofp and T with respect to p, pu, etc., along the current _/-line

at all _ grid points.

15. Call BCGEN to compute the coefficients and source terms for the boundary condition equations
at the end points (i = I1 = 1 and N]) of the current v-line.

16. If three-point boundary conditions were used at either boundary, call BCELIM to eliminate the

resulting off-diagonal coefficient submatrices.

17. End of loop in non-sweep (,1) direction.

18. Every ICHECK time steps, call RESID to compute residuals at time level n without the artificial
viscosity terms, and to update the convergence history file.

19. If artificial viscosity is being used, call AVISC1 or AVISC2 to add the appropriate terms to the coeffi-
cient submatrices and/or the source term subvectors at all interior grid points.

20. Every ICHECK time steps, if artificial viscosity is being used, call RESID to compute residuals at time
level n with the artificial viscosity terms, and to update the convergence history file.

21. If spatially periodic boundary conditions are being used in the _ direction, reset NPTS = N].

22. Call ADI to solve the system of difference equations.

23. Begin loop in non-sweep (_/) direction over interior points (j = I2 = 2 to NPT2 - 1).

24. Call UPDATE to compute the primitive flow variables, Q*, from the newly computed conservation

variables in delta form, A(_*, along the current '1-line at all _ grid points.

25. End of loop in non-sweep (_) direction.

Second ADI sweep, '1 direction

26. Set various sweep-dependent parameters, as follows:

isweep = 2

istep = nlp
de1 = _
npts = _ or _+ 1
nv = _ or Nx + 1

27. For axisymmetric flow, set JI = r[J at all grid points.

186 4.0 Proteus Subprograms: EXEC Proteus 2-D Programmer's Reference

28. Set metrics in sweep (,7) direction at all grid points as follows:

metxCil,i2) = (_/x)_,j
mety(il, i2) = (r/y)_,jor (_/,),j
mei_(il, i2) = (r/:)_,j

29. Begin loop in non-sweep (4) direction over interior points (i = I1 = 2 to NPT1 - 1).

30. For axisymmetfic flow, set RAx(I2) = r,.j along the current _-Ene at all n grid points.

31. Call EQSTAT to get the derivatives ofp and T with respect to p, pu, etc., along the current i-line
at all n grid points.

32. Call the COEF routines to compute the coefficients and source terms for the governing equations
along the current _-line at all interior J7 grid points.

33. End of loop in non-sweep (_) direction.

34. For axisymmetric flow, reset JI = 1/J at all grid points.

35. For non-spatially periodic boundary conditions in the _ direction, begin loop in non-sweep (4) direction
over interior points (i = I1 = 2 to NPTI - 1).

36. Call EQSTAT to get the derivatives ofp and T with respect to p, pu, etc., along the current _-line
at all n grid points.

37. Call BCGEN to compute the coefficients and source terms for the boundary condition equations
at the end points (j = I2 = 1 and N2) of the current _-line.

38. If three-point boundary conditions were used at either boundary, call BCELIM to eliminate the
resulting off-diagonal coefficient submatrices.

39. End of loop in non-sweep (_) direction.

40. If implicit artificial viscosity is being used, call AVISC 1 to add the appropriate terms to the coefficient
submatrices at all interior grid points.

41. If spatially periodic boundary conditions are being used in the _ direction, reset NPTS = N2.

42. Call ADI to solve the system of difference equations.

43. Begin loop in non-sweep (4) direction over interior points (i = I1 = 2 to NPT1 - 1).

44. Call UPDATE to compute the primitive flow variables p_ ÷ _, tr ÷ _, etc., from the newly computed

conservation variables in delta form, A_, along the current _-line at all _/grid points.

45. End of loop in non-sweep (4) direction.

Finishing Steps

46. If this is the f_rst time step, reset the thin-layer flags back to their input value.

47. Call BVUP to update the _ boundary values, if necessary.

48. For all grid points, shift RHO and RHOL so that RHO = p"+_ and RHOL =p". Similarly, shift the
Fortran variables for u, v, w, and Er. Finally, set TL = T".

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: EXEC 187

Subroutine EXECT

Called by Calls Purpose

TURBCH Manage solution of the k-_ equations.BLK2
BLK2P
COEFS 1
COEFS2
PERIOD
UPDTKE

A

* CMUR

* CTHREE

JI

KBCPER

NPT1, NPT2

* N1, N2

NIP, N2P

RHO

S

YPLUSD

Coefficient submatrix A.

Constant C_r in formula for C_.

Constant C3 in formula for C_.

Inverse Jacobian of the nonorthogonal grid transformation, J- _.

Flags for spatially periodic boundary conditions in the _ and
directions; 0 for non-periodic, 1 for periodic.

N_ and N2 for non-periodic boundary conditions, N_ + 1 and
N2 + 1 for spatially periodic boundary conditions in _ and _/.

Number of grid points N_ and N2, in the _ and _ directions.

Parameters specifying the dimension sizes in the _ and _ di-
rections.

Static density p at time level n.

Source term subvector S.

Nondimensional distance y+ from the nearest solid wall.

E, EL

ISWEEP

KE, KEL

MUT, MUTL

NPTS

NV

Turbulent dissipation rate e at time levels n + 1 and n.

Current ADI sweep number.

Turbulent kinetic energy k at time levels n + 1 and n.

Turbulent viscosity t_, at time levels n + 1 and n.

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N,.

Computed solution subvector A_ _.

Description

Subroutine EXECT manages the solution of the k-_ equations. It is called by subroutine TURBCH,

NTKE times per mean flow iteration. The steps involved in EXECT are described below.

Preliminary Steps

1. If spatially periodic boundary conditions are being used in either direction, call PERIOD to add the
appropriate extra line(s) of data.

188 4.0 Proteus Subprograms: EXECT Proteus 2-D Programmer's Reference

First ADI sweep, _ direction

2. Set various sweep-dependent parameters.

3. Call COEFS 1 to compute the coefficients and source terms for the k-e equations.

4. Solve the system of difference equations by calling BLK2 for non-periodic boundar3: conditions, or

BLK2P for periodic boundary" conditions in the _ direction.

Second ADI sweep, _1direction

5. Set various sweep-dependent parameters.

6. Swap indices in the subvector S. The submatrix A is used as a temporary, scratch array for this opera-
tion.

7_ Call COEFS2 to compute the coefficients and source terms for the k-e equations.

8. Solve the system of difference equations by calling BLK2 for non-periodic boundary conditions, or
BLK2P for periodic boundary conditions in the _/direction.

Finishing Steps

9. For all grid points, set KEL = k" and EL = _".
^

10. CaLl UPDTKE to compute the primitive flow variables k "+ _and _"+ _ from AW-, the newly computed
conservation variables in delta form.

1 I. Compute the turbulent viscosity at each grid point, storing #7 + _ and #7 in MUT and MUTL, respec-
tively.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: EXECT 189

Subroutine FILTER (A,B,C,S,NVD,NPTSD)

Called by Calls Purpose

BLK3 BLKOUT Rearrange rows of the boundary condition coefficient submatrices and
BLK4 ISAMAX the source term subvector to eliminate any zeroes on the diagonal.
BLK5 ISRCHEQ

A,B,C

* IDEBUG

* IPRT1A, IPRT2A

ISWEEP

IT

IV

NEQ

* NOUT

NPRT1, NPRT2

NPTS

NVD, NPTSD

S

A,B,C

S

Description

Coefficient submatrices A, B, and C before rearrangement.

Debug flags.

Indices for printout in the _ and _/directions.

Current ADI sweep number.

Current time step number n.

Index in the "vectorized" direction, i,.

Number of coupled equations being solved, N,q.

Unit number for standard output.

Total number of indices for printout in the _ and _/directions.

Number of grid points in the sweep direction, N.

Leading two dimensions for the arrays A, B, C, and S.

Source term subvector S before rearrangement.

Coefficient submatrices A, B, and C after rearrangement.

Source term subvector S after rearrangement.

Subroutine FILTER rearranges rows of the coefficient block submatrices and the source term subvector,
at the two boundaries in the ADI sweep direction, in an attempt to eliminate any zero values on the diag-
onal of the submatrix B. These zero values may occur when mean flow boundary conditions are specified

using the JBC and/or IBC input parameters, depending on the initial conditions and the order of the

boundary conditions.

For instance, if the specified initial conditions are zero velocity and constant flow properties everywhere
in the flow field, the perfect gas equation of state yields:

Er= pc.eT

p = (_, - 1)E r

Op Op Op
Op O(ou) O(pv)

-0

0p
_=),-- 1
OE T

190 4.0 Proteus Subprograms: FILTER Proteus 2-D Programmer's Reference

OT ET

_P CvP2

OT OT

O(pu) O(pv)

OT 1

OE T q,P

-0

If, in addition, the boundary conditions at a given boundary are, in order, specified pressure p =f, no-slip

x- and and y-velocity u = 0 and v = 0, and specified temperature T=f, then the linearization of the
boundary conditions leads to the following B coefficient submatrix for that boundary:

[0 00 1B = 0 J/p 0
0 0 J/p

- JET/cvp 2 0 0 J/cvp j

The zero on the diagonal will lead to a divide-by-zero error in subroutine BLK4, even though this is not a
singular matrix.

Subroutine FILTER tries to fix this problem. In this example, it finds a zero at element Bn, searches
column 1 for the largest element in absolute value (in this case - JEr/c, p2), and adds that row to the row
with the zero on the diagonal. Of course, the corresponding rows of A, C, and S must also be added to-
gether. The new B submatrix would be:

- JET[cvp 2
0

B=
0

-- JET]cvp 2

q
0 0 J(e - 1)+Jlcvp|

J/p 0 J

0 J/p

0 0 J/cvp

Remarks

1. If a column with a zero on the diagonal has no other elements greater than 10- _o, then it is assumed that
the matrix B is singular, which means the specified boundary conditions are not independent of one
another. An error message is printed and the calculation is stopped.

2. It's probably sufficient to only call this subroutine for the first time step. After the first step, the chances
of u and v both being exactly zero at the same interior grid point are slim. Nevertheless, in the current
version of Proteus, FILTER is called at every time step.

3. The Cray search routine ISAMAX is used in finding the largest element in any column corresponding
to a zero on the matrix diagonal. The Cray search routine ISRCHEQ is used in determining the grid
locations for debug printout.

4. This subroutine generates the output for the IDEBUG(4) option.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: FILTER 191

Subroutine FTEMP

Called by Calls Purpose

INITC Compute auxiliar3" variables that are functions of temperature.
MAIN

CCP1, CCP2, CCP3, CCP4

CK 1, CK2

CMU1, CMU2

* GAMR

IGAM

* ILAMV

* NOUT

* NI, N2

RGAS

T

* TR, UR, MUR, KTR

Output

CP, CV

M U, LA, KT

Description

Constants in formula for specific heat.

Constants in formula for laminar thermal conductivity coefficient.

Constants in formula for laminar viscosity coeffÉcient.

Reference ratio of specific heats, y,.

Flag for constant or variable cp, c_, and _; 0 if they are to be
computed as functions of temperature, 1 if they axe to be treated
as constant.

Flag for computation of laminar viscosity and thermal
conductivity.

Unit number for standard output.

Number of grid points N1 and 3,_, in the _ and _/directions.

Gas constant R.

Static temperature T.

Reference temperature T,, velocity u,, viscosity ta,, and thermal
conductivity k_.

Specific heats cp and c,.

Laminar coefficient of viscosity ta_, laminar second coefficient of
viscosity 2t, and laminar coefficient of thermal conductivity k_.

Subroutine FTEMP computes the auxiliary variables tat, 2_, k_, cp, and c_. For the laminar viscosities ta_

and 2_, and the laminar thermal conductivity k_, there are two options currently available.

If the input parameter ILAMV = 0 (the default), FTEMP sets the nondimensional values as:

tat= 1

21 = - 2/3

kl= 1

Thus, with this option, the laminar viscosity and thermal conductivity are held constant at their reference
values. These reference values may be specified by the user, or computed from the reference temperature.

The laminar second coefficient of viscosity).z is set equal to - 2tad3.

ff ILAMV = I, tar and kt are computed as functions of temperature using Sutherland's formula (White,

1974). The formula for the laminar viscosity coefficient/z_ is

192 4.0 Proteus Subprograms: FTEMP Proteus 2-D Programmer's Reference

T,+%(7)

where the overbar indicates a dimensional value, and _ is the laminar viscosity coefficient at T = T,, _ven

by

Depending on the namelist input values of MUR and RER, _', may or may not be equal to _,. These

formulas are valid for air for temperatures from 300 to 3420 °R (167 to 1900 K). The value of the constants

C,1 and C,2 depend on whether reference values are being specified by the user in English units

(IUNITS = 0) or SI units (IUNITS = 1). The values are presented in Table 4-1. The laminar second co-

efficient of viscosity)4 is set equal to - 2_d3. The formula for the laminar thermal conductivity coefficient
kl is

k; r,+ck:(7" mk'- kr - F + ck2 T)

where the overbar indicates a dimensional value, and k', is the laminar thermal conductivity coefficient at

T = T,, given by

Depending on the namelist input values of KTR and PRLR, k'_ may or may not be equal to k,. These
formulas are valid for air for temperatures from 300 to 1800 °R (167 to 1000 K). The value of the constants

Ck_ and Ca depend on whether reference values are being specified by the user in English units

(IUNITS = 0) or SI units (IUNITS = 1). The values axe presented in Table 4-1.

There are also two options available for the specific heat coefficients cp and c,. If the flag IGAM = 1, a

value of the specific heat ratio y has been specified by the user. In this case q and c, are treated as constants,

and computed from

R

cv=y_ 1

cp= c_ + R

If IGAM = 0, the user did not specify a value of y. In this case, the specific heat coefficient cp is computed

as a function of temperature from the empirical formula of Hesse and Mumford (1964), and c, is computed

from that value assuming a thermally perfect gas. The ratio ? = cp]c, will then vary with temperature. The

equations for cp and c, are:

L

ur ur

q, =cp-R

This formula is validfor air for temperatures from 540 to 9000 °R (300 to 5000 K).

constants C, pl through Cw, are presented in Table 4-1.

The values of the

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: VrEMP 193

TABLE 4-1. - EMPIRICAL CONSTANTS FOR _z_,k¢, AND cp

CONSTANT

C_I

ENGLISH

UNITS

7.3035 x 10 -7

198.6

7.4907 x 10 -3

350.0

8.53 x 103

3.12x 104

2.065 x 106

7.83 x 108

SI UNITS

1.4582 x 10-6

110.3

1.8641 x 10 .3

194.4

1.4264 x 103

3.8888 x 103

1.9184 x 1@

4.0413 x 107

Remarks

1. The formulas used with the ILAMV = 1 option are for air. For other fluids, different formulas should

be used to compute _, 2t, and k_. These could easily be programmed as additional ILAMV options.
Or, if the flow being computed is such that _ and k_ may be considered constant, simply set
ILAMV = 0 and read in the appropriate values for _z, and k,. Note, however, that the ILAMV = 0

option still sets 2_ = - 2t_d3.

2. The formula used to compute cp, when a value of y is not specified by the user, is for air. For other
gases, a different formula should be programmed. Or, if cp and c, may be considered constant, a value
of 7 should be read in.

3. An error message is generated and execution is stopped if an illegal value is specified for ILAMV.

194 4.0 Proteus Subprograms: VI'EMP Proteus 2-D Programmer's Reference

Subroutine GEOM

CaUed by Calls Purpose

MAIN METS Manage computation of grid and metric parameters.
PAK

i._p_m

* IPACK

* NGEOM

* NGRID

* NOUT

* N1, N2

NIP, N2P

* RMIN, RMAX

* THMIN, THMAX

* XMIN, XMAX

* YMIN, YMAX

DXI, DETA

X,Y

Description

Flags for grid packing option.

Flag for type of computational coordinates.

Unit number for input mesh file.

Unit number for standard output.

Number of grid points N_ and N2, in the _ arid '1 directions.

Parameters specifying the dimension sizes in the _ and
rections.

Minimum and maximum r'-coordinates for polar grid.

Minimum and maximum 0'-coordinates for polar grid.

Minimum and maximum x-coordinates for Cartesian grid.

Minimum and maximum y-coordinates for Cartesian grid.

di-

Computational grid spacing A_ and A_.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Subroutine GEOM manages the computation of the grid and metric parameters. There are currently
three coordinate system options built into Proteus, as follows:

NGEOM Computational Coordinates

1 Cartesian (x-y)
2 Polar (r'-0')
10 Read from separate file.

Subroutine GEOM frrsI computes the grid spacing in computational space in the _ and _ directions as
A¢ = 1/(N1 - 1) and A n = 1/(/_½ -- 1). Note that grid points in computational space are always evenly dis-
tributed along the (_-n) coordinate lines.

Cartesian (x-F) Coordinates (NGEOM = 1)

For the Cartesian coordinate option, an evenly spaced set of physical Cartesian (x-y) coordinates are
related to the computational (_-q) coordinates by

x = xmi n + (Xmax - x,,,i,,)_

Y = Ymin + (Ymax - Ymin)11

These equations also apply to axisymmetric flow, with y representing the radius r. If grid packing is used,
subroutine PAK is called to redistribute these points according to the packing parameters specified by the

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: GEOM 195

user, and to interpolate to get the new physical Cartesian (x-y) coordinates in the computational mesh.
Subroutine METS is then called to numerically compute the grid transformation metrics and Jacobian.

Polar (/-0',) Coordinates (NGEOM = 2)

For the polar coordinate option, an evenly spaced set of physical polar (r'-0') coordinates are related to
the computational (_-_/) coordinates by

• 0 tO' = Omin + (O,,,ax - O,_i_)_

The Cartesian (x-y) coordinates are simply given by

x--- r' cos 0"

y= r' sin O'

The above equations also could be used in axisymmetric flow, with y representing the radius r. As in the
NGEOM = 1 option, if grid packing is used, subroutine PAK is called to redistribute these points according
to the packing parameters specified by the user, and to interpolate to get the new physical Cartesian (x-y)
coordinates in the computational mesh. Subroutine METS is then called to numerically compute the grid
transformation metrics and Jacobian."

Coordinates Read From Separate File (NGEOM = 10)

The third option for specifying the computational coordinate system is to read it from a separate fde,
as described in Section 3.2 of Volume 2. The computational (_-_/) coordinate system is determined by a
set of Na_ x Na2 points whose physical Cartesian (x-y) coordinates are specified. Here Nc_, and Na2 are the
number of points in the _ and g directions used to specify the computational coordinate system. Note that
they do not have to be equal to N_ and N2, the number of points in the computational mesh used for the
finite-difference method2 6 Note also that the points do not have to be equally distributed in physical space
along the _ and _/coordinate lines.

If grid packing is being used, subroutine PAK is called to distribute N, x N2 computational mesh points
in physical space according to the packing parameters SQ specified by the user, and to interpolate among
the Na_ x N_ points in the input computational coordinate system to get the new physical Cartesian coor-
dinates of the points in the computational mesh.

If grid packing is not being used, but N_I and N_ are not equal to N_ and N2 respectively, then sub-
routine PAK is still called. In this case, however, PAK distributes the N_ x N2 computational mesh points

evenly in physical space and then interpolates among the N_, x N_ points in the input computational co-
ordinate system to get the new physical Cartesian coordinates of the points in the computational mesh.

In either case, subroutine METS is then called to numerically compute the grid transformation metrics
and Jacobian.

Remarks

. There may be some confusion between the axisylnmetric flow option and the polar coordinate system
option, or between the axisymmetric radius r and the polar coordinate r'. They are not the same tiling.
The governing flow equations were originally developed by writing them in Cartesian (x-y) coordinates,
then transforming them into generalized (_-p/) coordinates. Therefore, any computational coordinate
system that is used, including the polar coordinate system, must be related to the original Cartesian
system through the transformation metrics and Jacobian. The parameters r' and 0' are-used only to
initially define the coordinates in the NGEOM = 2 option. Now, if the (x-y) coordinates, no matter
how they are obtained, are rotated about the Cartesian x axis, the result is a cylindrical coordinate co-

26 The distinction between the computational coordinate system and the computational mesh is described in Section
2.2 of Volume 2.

196 4.0 Proteus Subprograms: GEOM Proteus 2-D Programmer's Reference

.

3.

ordinate system with y representing the radius r. Thus, the axisymmetric flow option can be used with

any of the coordinate system options. The polar coordinate option would be useful, for instance, for
flow over a sphere.

An error message is generated and execution is stopped if an illegal coordinate system option is speci-
fied.

With the NGEOM = 10 option, an error message is generated and execution is stopped if]V_ and/or
N_ are greater than the dimensioning parameters N 1P andor N2P.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: GEOM 197

Subroutine INIT

Called by Calls

INITC

Purpose

Get user-defined initial flow field.

NIN

* NOUT

* N1, N2

Flag specifying which variables are being supplied as initial con-
ditions by subroutine INIT.

Unit number for namelist input.

Unit number for standard output.

Number of grid points N_ and N2, in the _ and n directions.

Initial flow field values of static pressure p, static temperature T,

and velocities u, v, and w.

Description

Subroutine INIT supplies the user-defined initial flow field. In general, this subroutine will be tailored

to the problem being solved, and supplied by the user. Details on the variables to be supplied by INIT are
presented in Section 5.1 of Volume 2.

A default version of INIT is supplied with Proteus that specifies uniform flow with constant properties
everywhere in the flow field. The above list of input and output Fortran variables are for the default version
of INIT. The default version assumes ICVARS = 2 (the default value), and reads values of p0, u0, v0, w0,
and To from narnelist IC. The defaults for these parameters are 1.0, 0.0, 0.0, 0.0, and 1.0, respectively, re-

sulting in an initial flow field with fi = p,, u = v = w = 0, and T = 7",.

Remarks

1. If a value for ICVARS other than 2 is set in the input, a warning message is generated and ICVARS
is reset to 2.

2. Subroutine INIT is a convenient place to specify point-by-point boundaxy condition types and values.
It's often easier to do this using Fortran coding rather than entering each value into the namelist input

file.

198 4.0 Proteus Subprograms: IN'IT Proteus 2-D Programmer's Reference

Subroutine INITC

Called by Calls Purpose

MAIN Set up consistent initial conditions based on data from INIT.EQSTAT
FTEMP
INIT
KEINIT
REST
TURBBL
YPLUSN

* CMUR

* CTHREE

* GAMR

GC

* HSTAG

* ICVARS

* IHSTAG

* IREST

ITBEG

* ITURB

* KBC1, KBC2

LWSET

* N1, N2

PR

RGAS

* RHOR, UR

INITIAL FLOW FIELD

LWALL1, LWALL2

MUT, MUTL

RHO, U, V, W, ET

Constant C,, in formula for C_.

Constant C3 in formula for C,.

Reference ratio of specific heats, y,.

Proportionality factor gc in Newton's second law.

Stagnation enthalpy hr used with constant stagnation enthalpy
option.

Flag specifying which variables are being supplied as initial con-
ditions by subroutine INIT.

Flag for constant stagnation enthalpy option.

Flag for reading restart fde.

The time level n at the beginning of a run.

Flag for turbulent flow option.

Boundary types for the _ and _ directions.

Flags specifying how wall locations are to be determined for the
turbulence model; 0 if wall locations are to be found automatically
by searching for boundary points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the IWALL
parameters.

Number of grid points N1 and N2, in the _ and q directions.

Reference pressure p,.

Gas constant R.

Reference density p, and velocity u,.

From the user-suppled or default version of subroutine INIT.
The combination of variables supplied by INIT is specified by
ICVARS. See Section 5.0 of Volume 2 for details.

Flags specifying wall locations for _ and ,7 boundaries, if not set
m input.

Turbulent viscosity u, at time levels n and n - 1.

Initial flow field values of static density p, velocities u, v, and w,
and total energy Er at time level n.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: L-NTI'C 199

RHOL,UL,VL, WL,ETL

TL

Initialflow fieldvaluesof staticdensityp, velocities u, v, and w,

and total energy Er at time level n - 1.

Static temperature T at time level n - 1.

Description

Subroutine INITC sets up consistent initial flow field conditions based on the data supplied by sub-
routine INIT. For restart cases, subroutine REST is called to read the computational mesh and the initial

flow field. Otherwise, the data supplied by INIT are used to obtain the density p, the velocities u, v, and

w, and the temperature T?" It then calls FTEMP to compute the laminar viscosity coefficients _ and 2_, the
laminar thermal conductivity coefficient k_, and the specific heat coefficients cp and c,. EQSTAT is called

ne:ct to compute the pressure p and to recompute the temperature T. 28 For turbulent flow, the appropriate
subroutines are called to compute the effective viscosity and thermal conductivity coefficients using the

turbulence model specified by the user. And fmaUy, for non-restart cases, the values of the dependent var-
iables at time level n- 1 are set equal to the values at level 1.

The flag ICVARS is used to specify which combination of variables are being supplied by INIT. The
calculation of p, u, v, w, and Tis described below for the different values of ICVARS. In all of the equations

below, the specific heats are defined by

R

cp= R + cv

where y, is either specified by the user or computed from the reference temperature T,.

ICVARS = I

With this option, the density p, the momentum components pu, pv, and pw, and if IHSTAG = 0 the
total energy" Er, are supplied by INIT. Thus, the velocity components are simply

pu
u__. w

p

,OV

P

IOW
W _w

p

If the energy equation is being solved (IHSTAG = 0), the temperature is computed from

I EET 1 (u2+v2+w2)]T=---_ p 2

If the energy equation is being eliminated by assuming constant stagnation enthalpy (IHSTAG = 1), the

temperature is computed from

T= 1 v2 ihT 1 2 w2,]-T(u + +

2, The calculation of T at this point may be approximate. See Remark 1.

2s See Remark 1.

200 4.0 Proteus Subprograms: LNITC Proteus 2-D Programmer's Reference

ICVARS = 2

With this option, the pressure p and the velocities u, v, and w are supplied by INIT. If the energy
equation is being solved (IHSTAG = 0), the temperature T is also supplied by INIT. If it is being elimi-
nated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed from

1 [1 (u2+v2]T = -_p hr- -y + w 2)

The density is then given by

and the total energy is

ET=plcvT+ 1-_-(u2+v 2+w2)]

ICVARS = 3

With this option, the density p and the velocities u, v, and w are supplied by INIT. If the energy.
equation is being solved (IHSTAG = 0), the temperature T is also supplied by INIT. If it is being elimi-
nated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed from

1 1 (u2+v2 w2)]T = "-_p [h r - "-f +

The total energy is then

ET= p[cvT+ 1-_-(u2 + v 2 + w2)l

ICVARS = 4

With this option, the pressure p and the velocities u, v, and w are supplied by INIT. If the energy
equation is being solved (IHSTAG = 0), the density p is also supplied by INIT. If it is being eliminated
by assuming constant stagnation enthalpy (IHSTAG = 1), this option is the same as the ICVARS = 2 op-
tion. If the energy equation is being solved, then, the temperature is

P
T_m

pR

The total energy is then

ET= p[cvT+ 1-_(u2 + v 2 + w2)]

ICVARS = 5

With this option, the static pressure coefficient cp and the velocities u, v, and w are supplied by INIT.
If the energy equation is being solved (IHSTAG = 0), the temperature T is also supplied by INIT. If it is
being eliminated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed
from

_(u+ +T = _ h r - w 2)

The pressure coefficient is defined by

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: ILNITC 201

The nondimensionalized pressure p = figc/p,u 2, is thus

Cp Prgc
p =-T +---T

P rUr

or, since p, = p,RT,/gc and the nondimensionalized gas constant R = -RT,/u2,,

The density is then

P
P- RT

and the total energy is

1 Q wZ)]Er= p[%T + -_ (u2 + +

ICVARS = 6

With this option, the pressure p, Mach number M, and flow angles _, and =. are supplied by INIT. If
the energy equation is being solved (IHSTAG = 0), the temperature T is also supplied by INIT. If it is
being eliminated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed
from

where Tr = hr/cp. The density is

P
P- RT

The flow angles are defmed by _ = tan- X(v/u) and _. = tan- _(w/u). The Mach number is defmed by

U2 V2 W2)1/2
M= + +

yrRT

Solving for u,

1/2I yrR T
u=]14

1 + (v/u) 2 + (w/u) 2

where (v/u): = tan2a, and (w/u) 2 = tan:a,. The remaining velocities are simply

Y = /A tan _v

w= u tan a w

The total energy is

202 4.0 Proteus Subprograms: IN1TC Proteus 2-D Programmer's Reference

Remarks

1. If T is not supplied by INIT, it must be computed from the equation of state. The equation of state
contains a specific heat coefficient (either G or c_, depending on whether the stagnation enthalpy is as-
sumed constant or not.) The first time T is computed in INITC, a constant value of specific heat is
used, consistent with the reference temperature 7",. If the user specified constant specific heat (i.e., a
value for y, was read in), this is not a problem. However, ff the temperature-dependent specific heat
option is being used (i.e., a value for _, was not read in), the equation of state and the empirical equation
for specific heat are coupled. For this reason T is recomputed in EQSTAT after the specific heats are
computed in FTEMP. Ideally, this coupling would be handled by iteration between FTEMP and
EQSTAT. This is not currently done in Proteus, however.

2. For options in which the pressure p is specified (ICVARS = 2, 4, and 6), the value supplied by INIT
is redefined as follows:

.

4.

,

6.

Prgc
P=P 2

prUr

This is__necessary because input and output values ofp are nondimensionalized by the reference pressure
p, = p,RT,, while internal to the code itself p is nondimensionalized by the normalizing pressure
p_ = p,uL See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and nor-
malizing conditions.

With the ICVARS = 6 option, the initial velocity u will be limited to non-negative values.

If non-positive pressures or temperatures were computed in EQSTAT, the Fortran variable INEG will
be positive. An error message will be printed, including a table showing the location of the non-positive
values. The calculation wSJ1 stop in INITC.

An error message is generated and execution is stopped if an illegal value is specified for ICVARS.

An error message is generated and execution is stopped if the value of ITURB does not correspond to
an existing turbulence model.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: LNITC 203

Subroutine INPUT

Called by

MAIN

Calls Purpose

ISAMAX Read and print input, perform various initializations.

NIN

NTP

NTSEQP

NIP, N2P

CKMIN

GAMR

HSTAG, HSTAGR

IGAM

IPRT 1A, IPRT2A

ITDBC

LWALL 1, LWALL2

LWSET

MACHR

MUR, KTR

NEQ

NPRT1, NPRT2

NRW, NET

NZM, NEN

PR

PRLR

RER, PRR

Unit number for namelist input.

Dimensioning parameter specif)_ng the maximum number of en-
tries in the table of time-dependent boundary condition values.

Dimensioning parameter specifying the maximum number of time
step sequences for the time step sequencing option.

Parameters specifying the dimension sizes in the _ and r/ di-
rections.

Constant (Cm,s),._, in the Klebanoff intermittency factor.

Reference ratio of specific heats, y,.

Dimensionless and dimensional stagnation enthalpy hr for the
constant stagnation enthalpy option.

Flag for constant or variable cp, c,, and _; 0 if they are to be
computed as functions of temperature, 1 if they are to be treated
as constant.

Indices for printout in the _ and _/directions.

Flag for time-dependent boundary conditions; 0 if all boundary
conditions are steady, 1 if any general unsteady boundary condi-
tions are used, 2 if only steady and time-periodic boundary con-
clitions are used.

Flags specifying wall locations for _ and rt boundaries.

Flags specifying how wall locations are to be determined for the
turbulence model; 0 if wall locations are to be found automatically
by searching for boundary points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the IWALL

parameters.

Reference Mach number M,.

Reference viscosity coefficient ur and thermal conductivity coeffi-
cient k,.

Number of coupled equations being solved, ._,%.

Total number of indices for printout in the _ and _/directions.

Arrfiy indices associated with the dependent variables pw and Er.

Array indices associated with the sw_l momentum and energy
equations.

Reference pressure p,.

Reference laminar Prandtl number Pr_,.

Reference Reynolds number Re, and Prandtl number Pr,.

204 4.0 Proteus Subprograms: IN'PUT Proteus 2-D Programmer's Reference

RGAS Gas constant R.

UR Reference velocity u,.

Description

Subroutine INPUT performs various input and initialization functions. It first reads the title and
namelist input from the standard input file. Namelist RSTRT is read first, foUowed by namelist IO. If
IUNITS = 1, indicating reference conditions will be specified in SI units, various default values and con-
stants are redefined to be consistent with SI units. The remaining narnelists are then read.

Next, the flags controlling the time step cycling and the convergence testing method are redefined, if
necessary, to be consistent with each other. The number of equations being solved, and the array indices
corresponding to the energy and swirl momentum equations, are then determined based on the values of
IHSTAG and ISWlRL. A flag is set if time-dependent boundary conditions are being used. If the thin-
layer option is being used, the flags ITXI and ITETA used in the Baldwin-Lomax turbulence model are
automatically set equal to values consistent with the thin-layer approximation. The LWSET flags, which
specify how wall locations are to be determined for the turbulence model, are defined based on the default
and input values of the LWALL and IWALL parameters. If the user did not specify a value for (Ck_,_),,i°,
it is set to the default value, which depends on the turbulence model being used.

Next, if frequency of printout in the _ and r/ directions is being set by the input arrays IPRTI and
IPRT2, the corresponding grid indices are stored in arrays IPRT1A and IPRT2A. The total number of
printout locations in each direction is also determined.

A header is then written to the standard output file, followed by the input namelists. Note that, for
variables not specified by the user in the input namelists, the values in this printout will be the default val-
ues.

Various checks are made for inconsistent or invalid input, and appropriate error or warning messages
are written. These are described in Section 7.0 of Volume 2.

Next, any reference or normalizing conditions not already defined are calculated. The reference and
normalizing conditions are then written to the standard output file, with the appropriate units. See Section
3. I. 1 of Volume 2 for a discussion of the distinction between reference and normalizing conditions.

Remarks

1. The Cray search routine ISAMAX is used in the input consistency check to determine whether any
implicit artificial viscosity coefficients are non-zero.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: ENPUT 205

Function ISAMAX (N,V,INC)

Called by Calls Purpose

BLOUT1
BLOUT2
CONV
FILTER
INPUT
RESID
TIMSTP

Find the first index corresponding to the largest absolute value of the
elements of a Fortran vector.

N

V

INC

Number of elements to process in the vector (i.e.,
N = vector length if INC = 1, N = (vector length)/2 if INC = 2,

etc.).

Vector to be searched.

Skip distance between elements of Y. For contiguous elements,
INC = 1.

ISAMAX First index corresponding to the largest absolute value of the ele-
ments of V that were searched.

Description

Function ISAMAX finds the first index corresponding to the largest absolute value of the elements of
a vector. For a one-dimensional vector, the use of ISAMAX is straightforward. For example,

imax = isaraax(np, v, 1)

sets IMAX equal to the index I corresponding to the maximum value of V(I) for I = 1 to NP.

A starting location can be specified, as in

imax = _ + isamax(np-_,v(5),l)

which sets IMAX equal to the index I corresponding to the maximum value of V(I) for I = 5 to NP.

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector len_h and skip distance. For instance, if A is an array dimen-
sioned NDIM1 by NDIM2, then

imax = isamax(ndiml_ndim2,a,1)

sets IMAX equal to the one-dimensional index corresponding to the maximum value of A(I,J) for all I and
J. The maximum value of A can then be referenced as A(IMAX,1).

One dimension atatimecanalso be _arched. Forexample,

imax = isamax(ndiml,a(1,5),l)

sets IMAX equal to the index I corresponding to the maximum value of A(I,5) for I var3ing from 1 to
NDIM 1. Similarly, by specifying a skip increment,

206 4.0 Proteus Subwograms: ISAM.-LX Proteus 2-D Programmer's Reference

jmax = isamax(ndim2,a(5,j),ndiml)

sets JMAX equal to the index J corresponding to the maximum value of A(5,J) for J varying from 1 to
NDIM2.

Remarks

1. ISAMAX is a Cray search routine (Cray Research, Inc., 1989b).

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: ISAMAX 207

Function ISAY, IIN (N,V,INC)

Called by Calls Purpose

BLOUT 1 Find the first index corresponding to the smallest absolute value of the
BLOUT2 elements of a Fortran vector.

N

V

INC

Number of elements to process in the vector (i.e.,
N = vector len_h if INC = 1, N = (vector len_h)/2 if INC = 2,
etc.).

Vector to be searched.

Skip distance between elements of V. For contiguous elements,
INC = I.

Outo t

ISAMIN First index corresponding to the smallest absolute value of the el-
ements of V that were searched.

Description

Function ISAMIN finds the fn-st index corresponding to the smallest absolute value of the elements of
a vector. It is used in exactly the same way as ISAMAX.

Remar_

1. ISAMIN is a Cray search routine (Cray Research, Inc., 1989b).

208 4.0 Proteus Subprograms: ISAMIN Proteus 2-D Programmer's Reference

Function ISRCHEQ (N,V,INC,VALUE)

Called by Calls Purpose

BCGEN
BLIN1
BLIN2
BLOUT 1
BLOUT2
FILTER

Find the first index in a vector whose element is equal to a specified
value.

N

V

INC

VALUE

Number of elements to process in the vector (i.e.,
N = vector length if INC = 1, N = (vector lenph)/2 if INC = 2,

etc.).

Vector to be searched.

Skip distance between elements of V. For contiguous elements,.
INC = 1.

Value to be" searched for in the vector V.

ISRCHEQ First index, of the elements of V that were searched, whose ele-
ment is equal to the value V. If the value V is not found, the re-
turned value will be N + 1.

Description

Function ISRCHEQ finds the first index in a vector whose element is equal to a specified value.
a c.ne-dimensional vector, the use of ISRCHEQ is straightforward. For example,

For

ival = isrcheq(np,v, 1,wal)

searches V(I), for I = 1 to NP, for the value VAL, and sets IVAL equal to the first index I for which
V(I) = VAL. If the value VAL is not found, IVAL will be equal to NP + 1.

A starting location can be specified, as in

ira1 = _ + isrcheq(np-q,v(5),l,val)

which searches V(1), for I = 5 to NP, for the value VAL.

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimen-
sioned NDIM 1 by NDIM2, then

ival = isrcheq(ndiml_ndim2, a, 1, val)

searches A(Ij), for all I and J, for the value VAL, and sets IVAL equal to the corresponding one-
dimensional index. The desired indices in A can then be recovered from

i = mod(ival-l,ndiml) + 1
j = (ival-l)/ndiml + i

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: ISRCHEQ 209

One dimension at a time can also be searched. For example,

ival = isrcheq(ndiml,a(1,5),l,val)

searches A(I,5), for I = 1 to NDIMI, for the value VAL. Similarly, by specifying a skip increment,

jval = isrcheq(ndim2,a(5,j),ndiml,val)

searches A(5,J), for J = 1 to NDIM2, for the value VAL.

Remarks

1. ISRCHEQ is a Cray search routine (Cray Research, Inc., 1989b).

210 4.0 Proteus Subprograms: ISRCHEQ Proteus 2-D Programmer's Reference

Subroutine KEINIT

Called by Calls

INITC PRODCT
TURBBL
YPLUSN

Purpose

Get user-defined initial conditions for k and _.

l._ny_m

* CMUR

* CTHREE

DUMMY

MUT

* N1, N2

VORT

YPLUSD

E, EL

KE, KEL

MUTL

Description

Constant C,, in formula for C,.

Constant C3 in formula for C,.

Distance to the nearest solid wall.

Turbulent viscosity #, at time level n.

Number of grid points N_ and A½, in the _ and _/directions.

Production rate of turbulent kinetic energy.

Nondimensional distance y" from the nearest solid wall.

Turbulent dissipation rate r at time levels n and n- 1.

Turbulent kinetic energy k at time levels n and n - 1.

Turbulent viscosity/at at time level n - 1.

Subroutine KEINIT suppfies the user-defined initial values of the turbulent kinetic energy k and the
turbulent dissipation rate _. In general, this subroutine will be tailored to the problem being solved, and
supplied by user. Details on the variables to be supplied by KEINIT are presented in Section 5.1 of Volume
2.

A default version of KEINIT is supplied with Proteus that computes the initial values of k and e using
the assumption of local equilibrium (dissipation equals production.) The above list of input and output
Fortran variables are for the default version of KEINIT.

The steps involved in the default version of KEINIT are described below.

1. Initialize k and _ to zero.

2. Call TURBBL to compute turbulent viscosity values and to locate solid walls in the computational
domain.

3. Call YPLUSN to compute y+ and the minimum distance to the nearest solid wall.

4. Call PRODCT to compute the production rate of turbulent kinetic energy.

5. Compute k and e using

c +

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: KEEN'IT 211

6. Set the values of k, e, and ta, at time level n - 1 equal to their values at time level n.

Remarks

1. The scratch array DUMMY, from the common block DUMMY1, is used to store the values of the
minimum distance to the nearest wall. The array is filled in subroutine YPLUSN.

2. The Fortran array VORT, from the common block TURB1, is used to store the values of the pro-
duction rate of turbulent kinetic energy. The array is filled in subroutine PRODCT.

212 4.0 Proteus Subprograms: KEENIT Proteus 2-D Programmer's Reference

Program MAIN

Called by Calls Purpose

Manage overall solution.BCSET
CONV

EQSTAT
EXEC
FTEMP
GEOM
INITC
INPUT
OUTPUT
OUTW
PLOT
PRTHST
REST
TBC
TIMSTP
TREMAIN
TURBBL
TURBCH

None.

o._m

IT

ITEND

ITSEQ

TAU

Description

Current time step number n.

Final time step number.

Current time step sequence number.

Current time value -r.

The MAIN program is used to manage the overall solution. The steps involved are described below.

Preliminary Steps

I. Call INPUT to read and print the input, and perform various initialization procedures.

2. Unless this is a restart case, call GEOM to get the computational coordinates and metric data.

3. Call INITC to get the initial flow field.

4. Call BCSET to set various boundary condition parameters and flags, and to print the input boundary
condition types and values.

5. Initialize the plot file,29 and, if requested by the user, write the initial or restart flow field into the plot
file.

6. If requested by the user, print the initial or restart flow field.

29 The initialization procedure depends on the type of plot file being written. See the description of subroutine PLOT.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: MAIN 213

. Compute NTSUM, the maximum total number of marching steps to be taken, and ITEND, the cor-

responding final index on the time marching loop. Set the initial values of ITSEQ, the time step se-
quence number, and ITSWCH, the time index for switching to the next sequence, both to zero.

Time marching loop

8. Begin the time marching loop. The loop index IT Corresponds to the known time level n. Each iter-
ation of the loop thus corresponds to a step from time level n to n + 1.

9. If at the end of a time step sequence, update ITSEQ, the time step sequence number, and
ITSWCH, the time index for switching to the next sequence.

10. For the frrst time step, and every IDTMOD'th step thereafter, call TIMSTP to compute the new
time step At. For every time step update the time value z.

11. If time-dependent boundary conditions are being used, call TBC to set the boundary condition
values.

12. Call EXEC to solve the equations.

13. Call EQSTAT to compute the pressure p and temperature T from the equation of state. If either
is non-positive, indicating a non-physical solution, skip forward to step 17.

14. Call FTEMP to compute the laminar viscosities t_ and _l_,the laminar thermal conductivity k_, and
the specific heats cp and cv.

15. For turbulent flow, call the appropriate subroutines to compute the effective viscosity and thermal
conductivity coefficients using the turbulence model specified by the user.

16. Every ICHECK time levels, call CONV to check for convergence.

17. Call TREMAIN to fred out how much CPU time remains.

18. If requested by the user, or if the calculation is converged, or if non-positive pressures or temper-
atures were computed, or if the job is near the CPU time limit, print the flow field at time level
n+l.

19. If requested by the user, or if the calculation is converged, or if non-positive pressures or temper-
atures were computed, or if the job is near the CPU time limit, write the flow field at time level
n + 1 into the plot file.

20. If non-positive pressures or temperatures were computed, write an error message showing the lo-
cation of the non-positive values and skip forward to step 25, ending the calculation.

21. If the calculation is converged, print a message and skip forward to step 24, ending the calculation.

22. If the job is near the CPU time limit, print a message and skip forward to step 24, ending the cal-
culation.

23. End of time marching loop. Print a message indicating the calculation did not converge.

Final Steps

24. If requested by the user, call REST to write the restart file.

25. If first-order time differencing and steady boundary conditions were used, call PRTHST to print the
convergence history.

Remarks

.

.

The starting index for the time marching loop is ITBEG. For a non-restart case ITBEG = 1, and thus
the initial starting flow field is at time level 1. For a restart case ITBEG = n, where n is the time level
stored in the restart fde, and thus the starting flow field is the previously computed flow field at time
level n.

The ending index for the time marching loop is ITEND = ITBEG + NTSUM - 1, where NTSUM is
the total number of time steps to be taken. For a non-restart case, then, the time marches from level

214 4.0 Proteus Subprograms: 5LAIN Proteus 2-D Programmer's Reference

1 to level 1 + NTSUM. For a restart case, the time marches from level ITBEG to level

ITBEG + NTSUM.

3. The logic involving NTSUM, ITSEQ, and ITSWCH is used to implement the time step sequencing
option. This allows one CFL number or time increment to be used for a specified number of steps,
foUowed by another CFL number or time increment for another specified number of steps, etc) ° If this

option is not used, NTSUM is simply equal to NTIME(1) and ITSEQ is always I.

4. An error message is generated and execution is stopped if the value of ITURB does not correspond to
an existing turbulence model.

5. Although the calculation will stop ifp or T < 0, as noted above in step 20, the standard output and plot
fde will include the time level with the non-positive values, if that is consistent with the IPRT and IPLT

input parameters in namelist IO. The restart fde will not be written.

30 See Section 3.1.9 of Volume 2 for details on how to invoke the time step sequencing option.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: MAI_ 215

Subroutine METS

Called by Calls Purpose

GEOM OUTPUT Compute metrics of nonorthogonal grid transformation.
REST

DXI, DETA

* IDEBUG

* IVOUT

* NOUT

* N1, N2

X,Y

Output

ETAX, ETAY, ETAT

IVOUT

JI

XIX, XIY, XIT

Description

Computational grid spacing A_ and At/.

Debug flags.

Flags specifying variables to be printed.

Unit number for standard output.

Number of grid points N1 and N2, in the _ and _/directions.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Metric coefficients _/_, _/y (or _/, if axisymmetric), and r/,.

Flags specifying variables to be printed (temporarily redefined for
debug output of metrics.)

Inverse Jacobian of the nonorthogonal grid transformation, J-1.

Metric coefficients _,, _y (or _, if axisymmetric), and _.

Subroutine METS computes the metric coefficients and the Jacobian for the generalized nonorthogonal
coordinate transformation. The metric coefficients are defined in terms of the known (xy) coordinates of
the computational mesh as:

_ =- Jx_

7:, = - JY_

_t = - Xz_x -- Y_y

rlz = - X_x - y_y

where J is the Jacobian of the transformation, _ven by

j= 1
j__my= (x¢y,7_ x4, O-

The derivatives of x and y with respect to the computational coordinates axe computed numerically us-
hag the same difference formulas as used for ttie governing equations. At interior points the centered dif-

ference formula presented in Section 5.0 of Volume 1 is used. At boundaries three-point one-sided
differencing is used. For _-derivatives at the ¢ = 0 and _ = 1 boundaries,

216 4.0 Proteus Subwograms: METS Proteus 2-D Programmer's Reference

of -3fw + 4f _+1-fw_+2
w_q-
8_ 2A_

where w represents the _-index at the boundary (i.e., either 1 or N_). Where a _+ sign appears, the + sign
is used at the _ = 0 boundary, and the -sign is used at the _ = 1 boundary. An analogous formula is used
for _-derivatives at the _ = 0 and r/= 1 boundaries.

Remarks

I. Since the current version of Proteus is limited to meshes that do not vary with time, the derivatives x,
and y, are set equal to zero.

2. This subroutine generates the output for the IDEBUG(7) option.

3. An error message is generated and execution is stopped if the grid transformation Jacobian J changes
sign or equals zero. This indicates that the computational mesh contains crossed or coincident grid
lines. The error message is followed by a printout of the Cartesian coordinates, the Jacobian, and the
metric coefficients.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: METS 217

Subroutine OUTPUT (LEVEL)

Called by Calls Purpose

MAIN PRTOUT Manage printing of output.
METS VORTEX

l._m!

CP, CV

DTAU

DUMMY

DXI, DETA

E, KE

ETAX, ETAY, ETAT

* GAMR

GC

* IAXI

* ISWIRL

* IVOUT

JI

LEVEL

LWALL1, LWALL2

* MACHR

M U, LA, KT

MUT

* NOUT

* N1, N2

P,T

PR

PRR

* PRT

RGAS

RHO, U, V, W, ET

* RHOR, TR, UR

TAU

X,Y

XIX, XIY, XIT

Specific heats cp and c,.

Time step AT.

A two-dimensional scratch array dimensioned (NIP,N2P).

Computational grid spacing A_ and At/.

Turbulent dissipation rate e and kinetic energy k.

Metric coefficients _/_, _/y (or _/, if axisymmetric), and r/_.

Reference ratio of specific heats, yr.

Proportionality factor gc in Newton's second law.

Flag for axisymmetric flow.

Flag for swirl m axisymmetric flow.

Flags specifying variables to be printed.

Inverse Jacobian of the nonorthogonal grid transformation, J- 1.

Time level being printed.

Flags specifying wall locations for _ and _/boundaries.

Reference Mach number M,.

Effective coefficient of viscosity tz, effective second coefficient of
viscosity 2, and effective coefficient of thermal conductivity k.

Turbulent viscosity coefficient t_t.

Unit number for standard output.

Number of grid points N1 and ?v_, in the _ and n directions.

Static pressure p and temperature T.

Reference pressure p,.

Reference Prandtl number Prr.

Turbulent Prandtl number Pr,.

Gas _:onstant R.

Static density p, velocities u, v, and w, and total energy Er.

Reference density p,, temperature T,, and velocity ur.

Time value z.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Metric coefficients _, _y (or _, if axisymmetric), and _.

218 4.0 Proteus Subprograms: OL'TPUT Proteus 2-D Programmer's Reference

ATITLE
DUMMY

A 20-character title for variable being printed.

A two-dimensional array containing the variable to be printed.

Description

Subroutine OUTPUT manages the printing of the standard output. The variables available for printing
are listed and defined in Table 3-3 of Volume 2. The user-specified array IVOUT controls which variables
are printed.

Each variable to be printed is stored, in turn, in the scratch array DUMMY, from the common block
DUMMY1. The title printed with the variable is stored in the character array ATITLE. Subroutine
PRTOUT is then called to execute the actual write statements.

Remarks

1. A warning message is printed if a non-existent output variable is requested. The printout will continue
with the next requested output variable.

2. For output options 30, 31, 34, and 35, involving the pressure p, the value stored internally in the
Proteus code is redefined as follows:

2
P rUr

P = P Prgc

This is_necessary because input and output values ofp are nondimensionalized by the reference pressure
pr = p,RT,, while internal to the code itself p is nondimensionalized by the normalizing pressure
p, = p,u?. See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and nor-
malizing conditions.

3. The definitions of k_ and k, (IVOUT = 92 and 102) assume a constant turbulent Prandtl number is
being specified in namelist TURB. If the input value of PRT _< 0, indicating the use of a variable tur-
bulent Prandtl number, the printed values of k_ and kt will be incorrect.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: OUTPUT 219

Subroutine OUTW (LEVEL)

Called by Calls

MAIN

Purpose

Compute and print parameters at boundaries.

CP

DXI, DETA

ETAX, ETAY

GC

* IWOUT1, IWOUT2

LEVEL

MU, KT

* NOUT

* N1, N2

P,T

PR

PRR

* RER

* RHOR, UR

U,V,W

X,Y

XIX, XIY

None.

Description

Specific heat cp.

Computational grid spacing A_ and An.

Metric coefficients _ and _y (or r/, if axisyrn_metric.)

Proportionality factor gc in Newton's second law.

Flags specifying for which boundaries parameters are to be
printed.

Time level being printed.

Effective coefficients of viscosity _, and thermal conductivity k.

Unit number for standard output.

Number of grid points NI and N2, in the _ and r/directions.

Static pressure p and temperature T.

Reference pressure p,.

Reference Prandtl number Pr,.

Reference Reynolds number Re,.

Reference density p,, and velocity u,.

Velocities u, v, and w.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Metric coefficients G and G (or ¢, if axisymmetric.)

Subroutine OUTW computes and prints various parameters along the computational boundaries. The
variables available for printing are listed and defined in Table 3-3 of Volume 2. The user-specified arrays
IWOUT1 and IWOUT2 specify at which boundaries parameters are printed, and whether normal deriva-
tives are to be computed using two-point or three-point one-sided differencing.

The parameters printed are the Cartesian coordinates x and y, the static pressure p, the skin friction
coefficient c/, the shear stress z., the static temperature T, the heat transfer coefficient h, the heat flux q.,
and the Stanton number St. Note that some of these are meaningful only if the boundars' is a solid wall.

The skin friction coefficient is defined as

_aVt
u O_

9=--i- 2
-f p,u,

220 4.0 Proteus Subprograms: OUTW Proteus 2-D Programmer's Reference

where the overbar denotes a dimensional quantity_ In this equation O VdOn represents the normal derivative
of the tangential velocity, with the normal vector n directed into the flow field.

For a _ boundary, the tangential velocity for non-swirl cases is simply

=v

where V, is the velocity in the _ direction. For axisymmetric cases with swirl, the tangential velocity on a
boundary is computed as

2Vt= N +W

where w is the swirl velocity. From the description of subroutine BCVDIR,

V 1,7= _ (- _yu + Gv)

where

Using the equations in Section 6.4 of Volume 1, OVdOn for a _ boundary is thus computed as

0----;= + _ (_ + _) + _ <_ + _)

where the + sign is used at the _ = 0 boundary, and the - sign is used at the _ = 1 boundary.

For an _t boundary, the tangential velocity for non-swirl cases is

v,= v_

and for axisymmetric cases with swirl, it is computed as

Vt = _ V_ + w 2

The ¢ velocity is given by

where

Thus, for an _t boundary,

1
v¢ = _ (,Tyu+ ,Txv)

_q2 x 2m= +_y

or, I F or, oG 2]

The shear stress z_ is deemed as

z. is thus nondimensionalized by t_,udL.

The heat flux q. is defined as

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: OUTW 221

where OT/On represents the normal derivative of the temperature. For a ¢ boundary,

OTo__._-= _+ 1[OT_ _tj_ (_2x + _)_+c3T(_x_ix+_yrly)lo_l

where

For an_ boundary,

where

q. is thus nondimensionalized by k,T,/L,.

The heat transfer coefficient h is defmed as

h

OT
k

qw On

T-1 T-I

This is the nondimensional form of the equation

T- T_

_?, oT
O_

T- T_

h is thus nondimer-ionalized by k,/L_.

The Stanton number St is defined as

St-
h 1

PrUr'_p Cp RerPrr

222 4.0 Proteus Subprograms: OLTW Proteus 2-D Programmer's Reference

SubroutinePAK (IDIR,NOLDI,NOLD2)

Calledby Calls Purpose
GEOM CUBIC Managepackingand/orinterpolationof gridpoints.

ROBTS

IDIR

IPACK
NOLD1,NOLD2

NOUT
N1,N2

SQ
X,Y

Direction flag; 1 if grid points are being redistributed in the ¢ di-
rection, 2 if in the _/direction.

Flags for grid packing option.

Number of grid points in the ¢ and n directions in the original
grid.

Unit number for standard output.

Number of grid points N, and 1_½, in the ¢ and _/directions in the
new grid.

An array specifying the location and amount of packing.

Cartesian coordinates x and y, or cylindrical coordinates x and r,
in the old grid.

X,Y Cartesian coordinates x and y, or cylindrical coordinates x and r,
in the new grid.

Description

Subroutine PAK manages the redistribution of the user-specified points in the computational coordinate
system. It is c_11ed whenever grid packing is used. It is also called when interpolation is necessa_: because
the computational coordinates are specified by reading them from a separate fde (the NGEOM = _0 option
in subroutine GEOM), and the number of points in the file is different from the number of points to be
used in the calculation. PAK is called once for each direction in which points are being redistributed.

The steps involved in subroutine PAK are described below. For clarity, this discussion assumes
IDIR = 1 (i.e., we are redistributing points in the _ direction.) An exactly analogous procedure is used for
IDIR = 2.

1. Set NNEW and NOLD equal to the index limits in the _ direction for the new and old grids. Also set
NOPP equal to the index limit in the _t direction for the old grid.

2. Get (ae);, the normalized physical arc length along a coordinate line in the _ direction, from the begin-
ning of the line to each grid point in the new grid. The normalizing distance is the total arc length of
the line, and thus these arc lengths apply to any coordinate line in the _ direction. If the points are not
being packed in the _ direction, but only interpolated, then

i-1
(al')i = NNEW- 1

for i = 1 to NNEW. In the new grid, the points will thus be evenly distributed in physical space along
each coordinate line in the _ direction. If the grid points are being packed in the _ direction, subroutine
ROBTS is called to compute (ae); from the packing parameters specified by the user.

3. Begin loop from IOPP = 1 to NOPP. This loop thus runs over the points in the _ direction in the old
grid. We will be redistributing points in the _ direction for each _/value in the old grid.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: PAK 223

4. Get (auv),, the normalized physical arc length along a coordinate line in the _ direction, from the

beginning of the line to each grid point in the old grid. These values are found by ftrst computing
the non-normalized arc lengths, as follows:

(ave) 1= 0

2 2
(auP)i = (aue)i - 1 + N� (xi, j -- xi -- 1,j) + (Yi,j -- Yi - 1,j)

for i = 2 to NOLD1. These values are normalized by setting

(auP) i

(aup)i- (aUP)NOLD1

for i = 1 to NOLD1. To eliminate an), problems with roundoff error, (a_'p)YOLO_ is explicitly set
equal to 1.

5. Given x and au_, for the old grid, and ap for the new grid, call CUBIC to interpolate for x in the
new grid. Similarly interpolate for y.

6. Redefine the Fortran variables X and Y as the x and y coordinates in the new grid.

7. End of loop over the points in the)1 direction in the old grid.

Remarks

1. In the Fortran code, the comments sometimes refer to the "packing" direction. This terminology ac-
tually means the direction in which grid points are being redistributed, even if they are not being packed
but only interpolated. Similarly, references to the "packed" and "unpacked" grid actually mean the new
and old grids.

2. An error message is generated and execution is stopped if an invalid grid packing option is requested.

224 4.0 Proteus Subprograms: PAK Proteus 2-D Programmer's Reference

Subroutine PERIOD

Called by Calls Purpose

EXEC Define extra line of data for use in computing coefficients for spatially

EXECT periodic boundary conditions.

CP, CV

E, EL

ETAX, ETAY, ETAT

JI

KBCPER

KE, KEL

MU, LA, KT

MUT, MUTL

NPT1, NPT2

N1, N2

P,T

RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

TL

XIX, XIY, XIT

Y

Specific heats cp and c, at time level n.

Turbulent dissipation rate _ at time levels n and n - 1.

Metric coefficients _/x, _%.(or r/, if axisymmetric), and r/t.

Inverse Jacobian of the nonorthogonal grid transformation, j-t.

Flags for spatially periodic boundary conditions in the _ and r/
directions; 0 for non-periodic, 1 for periodic.

Turbulent kinetic energy k at time levels n and n - 1.

Effective coefficient of viscosity u, effective second coefficient of
viscosity 2, and effective coefficient of thermal conductivity k.

Turbulent viscosity u, at time levels n and n - 1.

N_ and ,_ for non-periodic boundary conditions, N_ + 1 and
A_ + 1 for spatially periodic boundary conditions in, and _/.

Number of grid points Nl and N2, in the _ and _/directions.

Static pressure p and temperature T at time level n.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Static density p, velocities u, v, and w, and total energy Er from
previous ADI sweep.

Static temperature T from previous ADI sweep.

Metric coefficients ix, _y (or _, if axisymmetric), and _.

Radial coordinate r for axisymmetric flow.

All of the flow and metric-related input parameters listed above, at i = Nt + 1 for periodic boundary

conditions in the _ direction, and at j = N2 + 1 for periodic boundary conditions in the _/direction.

Description

Subroutine PERIOD adds, in effect, an additional set of points at i = :V_ + 1 for periodic boundary
conditions in the _ direction, and at j = N2 + 1 for periodic boundary conditions in the r/direction. This
allows us to use central differencing in the periodic direction, at i = N_ and/orj = A_, computing the coeffi-
cient submatrices and source term subvector in the same way as at the interior points, st

For periodic boundary conditions in the _ direction, the extra points are added by setting

at See Section 7.2.2 of Volume 1 for details on the solution procedure for spatially periodic boundary conditions.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: PERIOD 225

fv, + 1,2=f2,j

where j = 1 to N_,, and f represents one of the flow variables or metrics.
at (i, N2 + 1) for periodic boundary conditions in the _ direction.

Similarly, extra points are added

226 4.0 Proteus Subprograms: PERIOD Proteus 2-D Programmer's Reference

Subroutine PLOT (LEVEL)

Called by Calls Purpose

MAIN Write files for post-processing by CONTOUR or PLOT3D plotting
programs.

CP, CV

ETAX, ETAY

* GAMR

GC

* IPLOT

LEVEL

* LR, UR, RHOR, TR

* MACHR

* NOUT

* NPLOT

* NPLOTX

* NSCR1

* N1, N2

P,T

PR

* RER

* RG

RGAS

RHO, U, V, W, ET

TAU

* TITLE

X,Y

XIX, XIY

None.

Description

Specific heats cp and c,.

Metric coefficients _7_and _Ty(or)7, if axisymmetric).

Reference ratio of specific heats, yr.

Proportionality factor gc in Newton's second law.

Flag specifying type of plot file to be written.

Time level to be written into the file (0 for initialization, and - 1
to read the scratch file and write XYZ and Q files with the
IPLOT = - 3 option).

Reference length L,, velocity u,, density p,, and temperature Tr.

Reference Mach number Mr.

Unit number for standard output.

Unit numb.er for writing CONTOUR file, or PLOT3D Q file.

Unit number for writing PLOT3D XYZ Rle.

Unit number for scratch file.

Number of grid points Na and N2, in the _ and n directions.

Static pressure p and temperature T.

Reference pressure pr.

Reference Reynolds number Rer.

Dimensional gas constant R.

Dimensionless gas constant R.

Static density p, velocities u, v, and w, and total energy Er.

Current time value r.

Case title.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Metric coefficients _x and _y (or Cr if axisymmetric).

Subroutine PLOT writes a file or files, commonly called plot files, for post-processing by the CON-
TOUR or PLOT3D plotting programs. The type of files written is controlled by the user-specified pa-
rameter IPLOT. The format and contents of the different types of plot files are described in detail in Section
4.2 of Volume 2. They are therefore described only briefly here.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: PLOT 227

CONTOUR Plot File (IPLOT = + 1)

If IPLOT = 1, a CONTOUR plot file is written with the title and reference conditions included at each
time level. The value of n is written into the header for each time level, but r, the time itseff, is not written

into the frie. No initialization step is necessar3'.

If IPLOT = - 1, a CONTOUR plot file is also written, but the title and reference conditions are written
only at the beginning of the frie. In addition the time ri, j is written into the frie at each time level. In this
case the initialization step consists of writing the title and reference conditions at the beginning of the frie.

PLOT3D/WHOLE Plot Files (IPLOT = 2)

If IPLOT = 2, XYZ and Q fries are written in PLOT3D/WHOLE format. The XYZ frie is written only
during the initialization step. The Q frie is written at each time level requested by the user. The Q fde will
thus consist of multiple sets of data, each containing the computed results at a sin_e time level. -The time
"r1.1is written into the header for each set of data in the Q fde. Since Proteus 2-D is two-dimensional, N3,
the number of points in the z direction in the XYZ and Q files, is set equal to 1.

PLOT3D/PLANES Plot Files (IPLOT = 3)

If IPLOT = 3, XYZ and Q fdes are written in PLOT3D/PLANES format. Since Proteus 2-D is two-
dimensional, N3, the number of points in the z direction in the XYZ and Q fdes, is set equal to 1. This
makes the XYZ and Q flies identical to those created using the IPLOT = 2 option.

PLOT3D/PLANES Plot Files (1PLOT = - 3)

The fries created with this option are similar to those created with the IPLOT = 3 option, except the
time zi, j is written into the z slot in the XYZ frie, and the number of points in the "z" direction is set equal
to the number of time levels in the XYZ and Q fries.

However, because the calculation may converge or become non-physical, the number of time levels that
end up being written into the fries is not "known until the end of the Proteus run. Therefore, as the calcu-
lation proceeds the results are actually written into a scratch file. N3, the counter for the number of time
levels, is set equal to zero in the initialization step and updated each time a time level is added to the scratch
frie. At the end of the Proteus run the scratch fde is read and the XYZ and Q fdes are written.

PLOT2D Plot Files (IPLOT = 4)

If IPLOT = 4, XYZ and Q fries are written in PLOT3D's 2D format. The XYZ frie is written only
during the initialization step. The Q fde is written at each time level requested by the user. The Q fde will
thus consist of multiple sets of data, each containing the computed results at a single time level. The time
z_._ is written into the header for each set of data in the Q fde.

Remarks

1. For the CONTOUR plot fde, the IPLOT = - 1 option is the better one to use. The IPLOT = 1 op-
tion is included only to be consistent with the various PLOT3D options.

2. In defining the pressure to be written into the CONTOUR plot fde, the value stored internally in the
Proteus code is redefined as follows:

2
PrUr

P = P Prgc

This isnecessar3 because input and output values ofp are nondimensionalized by the reference pressure
p, = p,R T,, while internal to the code itself p is nondimensionalized by the normalizing pressure

p, = p,ul. See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and nor-
malizing conditions.

228 4.0 Proteus Subprograms: PLOT Proteus 2-D Programmer's Reference

3. The current version of PLOT3D does not work for multiple time levels, although future versions might.
Thus the IPLOT = 2, 3, and 4 options, while containing multiple time levels, cannot easily be used to

create plots showing the time development of the flow. You can, however, fake it out using the
IPLOT = - 3 option. With this option, plots can be generated at different time levels by plotting at
different PLOT3D "z" stations.

4. Note that the time zu written into the Q file header with the IPLOT = 2, 3, and 4 options is the time
at the point ¢ = r/= 0. If the input variable IDTAU = 5 or 6, z will vary in space and therefore

"r,,j _ z1,,.

5. To save storage, the common variable AMATI, which is normally used for the subdiagonal submatrix
of coefficients in the block tridiagonal system of equations, is equivalenced to the local three-
dimensional variable Q used to store the Q variables that are written into the PLOT3D Q Rle.

6. PLOT3D assumes that velocity is nondimensionalized by the reference speed of sound a, = (yrRT,) 1/_,

and that energy is nondimensionalized by p,a2,. In Proteus these variables are nondimensionalized by
ur and p,uL That is why the reference Mach number Mr appears in the definitions of Q(,,2) through

Q(,,5).

7. An error message is generated and execution is stopped if an illegal plot file option is requested.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: PLOT 229

SubroutinePRODCT

Calledby Calls Purpose
KEINIT Computeproductiontermforthek-e turbulence model.
TURBCH

DXI, DETA

ETAX, ETAY

* IAXI

MUT

* NI, N2

* RER

U,V,W

XIX, XIY

Y

PONE, PTWO

VORT

Description

Computational grid spacing A¢ and Aq.

Metric coefficients q, and qy (or _/_if axisymmetric).

Flag for axisymmetric flow.

Turbulent viscosity/a, at time level n.

Number of grid points N_ and l_½, in the _ and _7directions.

Reference Reynolds number Re,.

Velocities u, v, and w at time level n.

Metric coefficients _, and _y (or _, if axisymmetric).

Radial coordinate r for axisymmetric flow.

Parts 1 and 2 of the production rate of turbulent "kinetic energy.

Production rate of turbulent kinetic energy.

Subroutine PRODCT computes the turbulent kinetic energy production rate using

lat 2

Pg = tXer--ff:Y-"P1 - -_- pkP2

where, for 2-D planar flow,

Ou Ov

P2 = W +- -_-y

and for axisymmetric flow,

w w+w+--; + w+w

(w)]'
au ____+ v_

P2 =-_-x + Or r

230 4.0 Proteus Subprograms: PRODCT Proteus 2-D Programmer's Reference

To evaluate the spatial derivatives, the centered difference formulas presented in Section 5.0 of Volume 1
are used at interior points, and second-order one-sided difference formulas are used at boundary points.

Remarks

. To save storage space, this subroutine uses the Fortran variable VORT to store the turbulent kinetic
ener=w production rate. Care must be taken when this subroutine is used together with subroutine
VORTEX.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: PRODCT 231

Subroutine PRTHST

Called by

MAIN

Calls Purpose

Print convergence history.

I._p.m

ICHECK

IREST

IT

ITBEG

NC, NXM, NYM, NZM, NEN

NEQ

NHIST

NHMAX

NOUT

Convergence checking interval.

Flag for restart file; 0 for no restart file, 1 to write a restart file, 2
to read and write a restart file.

Last computed time step number n.

The time level n at the beginning of a run.

Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations.

Number of coupled equations being solved, A',q.

Unit number for convergence history" file.

Maximum number of time levels allowed in the printout of the
convergence history file (not counting the first two, which are al-
ways printed.)

Unit number for standard output.

Output

None.

Description

Subroutine PRTHST prints the convergence history as part of the standard output. The information
is obtained from the unformatted convergence history file written in subroutine RESID. The parameters
printed are described in Section 4.1.6 of Volume 2, and the unformatted convergence history' file is described
in Section 4.3 of Volume 2. To avoid undesirably long tables, the convergence parameters are printed at
an interval that limits the printout to NHMAX time levels. As described in Section 4.1.6 of Volume 2,
however, they are always printed at the first two time levels.

232 4.0 Proteus Subprograms: PRTHST Proteus 2-D Programmer's Reference

Subroutine PRTOUT (ATITLE,LEVEL,AVAR)

Called by Calls Purpose

OUTPUT Print output.

ATITLE

AVAR

DTAU

* IDTAU

* IPRT1A, IPRT2A

LEVEL

* LR, UR

* NOUT

NPRTI, NPRT2

TAU

None.

Description

A 20-character title for variable being printed.

A two-dimensional array containing the variable to be printed.

Time step A-r.

Flag for time step selection method.

Indices for printout in the _ and ,1 directions.

Time level to be printed.

Reference length L, and velocity u,.

Unit number for standard output.

Total number of indices for printout in the _ and r/directions.

Current time value _.

Subroutine PRTOUT performs the actual printing of the standard output fde. It prints the variable
AVAR, with the title ATITLE. The output is printed in columns running in the ,7 direction. The rows
run in the _ direction, ff the results at every grid point are printed, there will be a total of Nt columns, each
with N_ rows. The columns are grouped in super-rows of up to I0 columns each.

The steps involved axe as follows:

1. Set the total number of columns, and rows per super-row.

2. Redefine AVAR, the input array containing the variable to be printed, including only the elements re-
quested.

3. Determine the number of super-rows. If NCOL is not exactly divisible by 10, the last super-row will
haveless than 10 columns.

4. Print the title for the variable. If the time step is constant in space, the dimensional time t and time step
At are printed with the title.

5. Begin loop over the number of super-rows.

6. Set NC 1 and NC2 equal to the number of the first and last column in this super-row. (I.e, for the
first super-row NCI and NC2 will be 1 and 10, for the second they will be 11 and 20, etc. For the
last super-row, NC2 will be NCOL.)

7. Print the heading for the super-row, labeling each column with the proper ¢ index.

8. Print the super-row itself, labeling each row with the proper q index.

9. End of loop over the number of super-rows.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: PRTOLq[" 233

Subroutine RESID (IAVR,S,NWD,NPTSD)

Called by Calls Purpose

EXEC ISAMAX Compute residuals and write convergence history" file.
SASUM
SNRM2

CHGAVG

CHGMAX

DTAU

DUMMY

* EPS

IAVR

* IAV2E, IAV4E

* ICHECK

* ICTEST

* IDTAU

* IHSTAG

* ISWIRL

IT

ITBEG

* LR, UR

NEQ

* NHIST

* NITAVG

NPT1, NPT2

NTOTP

NVD, NPTSD

* N1, N2

NIP, N2P

S

TAU

Maximum change in absolute value of the dependent variables,
averaged over the last NITAVG time steps, AQo, v

Maximum change in absolute value of the dependent variables
over previous time step (or NITAVG-1 time steps if
ICTEST = 2), AQ

Time step Az.

A two-dimensional scratch array.

Convergence level to be reached, e.

Flag specifying whether residual is computed without or with the
artificial viscosity terms; I for without, 2 for with.

Flags for second- and fourth-order explicit artificial viscosity.

Convergence checking interval.

Flag for convergence criteria to be used.

Flag for time step selection method.

Flag for constant stagnation enthalpy option.

Flag for swirl in axisymmetric flow.

Current time step number n.

The time level n at the beginning of a run.

Reference length L, and velocity u,.

Number of coupled equations being solved, N,q.

Unit number for Convergence history file.

Number of time steps in moving average convergence test.

N_ and A½ for non-periodic boundary conditions, N_ + 1 and
N2 + 1 for spatially periodic boundary conditions in ¢ and _/.

Dimensioning parameter specifying the storage required for a full
two-dimensional array (i.e., NIP x N2P).

Leading two dimensions for the array S.

Number of grid points N_ and .V2, in the _ and _7directions.

Parameters specifying the dimension sizes in the _ and _/ di-
rections.

Source term subvector S for first ADI sweep.

Current time value z.

234 4.0 Proteus Subprograms: RESID Proteus 2-D Programmer's Reference

LRMAX

RESAVG

RESL2

RESMAX

Grid indices i and j, in the _ and _tdirections, corresponding to the
location of RESMAX.

The average absolute value of the residual, R,,s.

The/..2 norm of the residual, RL2.

The maximum absolute value of the residual, R

Description

Subroutine RESID computes various measures of the residual, and writes the convergence history fde.

For problems without artificial viscosity, the steady-state form of the governing partial differential
equations can be written as

O_

d: of v
O_ On _-_ + 0,7

The residual is defined as the number resulting from evaluating the right hand side of the above equation.
For first-order time differencing, this is simply the source term for the first ADI sweep, divided by the time
step AT. 32The residual at a specific grid point and time level is thus

R n = S_,j[(Az)_,ji,j

where S is the source term for the first ADI sweep. Separate residuals are computed for each governing
equation.

Adding artificial viscosity, however, changes the governing equations. With artificial viscosity, the dif-
ference equations actually correspond to the following differential equations at steady state) 3

-- on +-b-U + on

+ -'7" (A_)2 O (JQ.____)+ (Aq) 2 O (JQ)
O_ 2 On 2

S (A_)a 04(JQ-------_)+ (A_/)a Oa(SQ_)
O_4 On a

For cases run with artificial viscosity, therefore, the residual should include the explicit artificial viscosity

terms. The implicit terms do not appear, since they difference AI_, and in the steady form of the equations

A0 = 0. Since the explicit artificial viscosity terms are added to the source term for the first ADI sweep,

they are automatically included in the residual.

Three measures of the residual are computed for each governing equation - the/4 norm of the residual,
the average absolute value of the residual, and the maximum absolute value of the residual. In addition,
the (¢,_/) indices corresponding to the location of the maximum residual are saved. The/_.2 norm of the
residual is defined as

32 See equation (8.5a) in Volume 1. For first-order time differencing, 02 = 03 = O.

33 These equations represent the use of the constant coefficient artificial viscosity model. The nonlinear coefficient
model is more complicated, but the same principle applies.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: RESID 235

In computing the residuals, the summations, ma:dmums, and averages are over all interior grid points, plus
points on spatially periodic boundaries.

For cases run with artificial viscosity, subroutine RESID is called from EXEC both before and after the
artificial viscosity terms have been added to the equations. The residuals are thus computed both with and
without the artificial viscosity terms. This may provide some estimate of the overall error in the solution
introduced by the artificial viscosity. Convergence is determined by the residuals with the artificial viscosity
terms included.

In addition to computing the residuals, subroutine RESID writes the convergence histo_ file. The
contents and format of this file are described in detail in Section 4.3 of Volume 2.

Remarks

I. The Cray BLAS routines SNRM2 and SASUM are used in computing the/-a norm of the residual and
the average absolute value of the residual, respectively. The Cray search routine ISAMAX is used in
computing the maximum absolute value of the residual.

2. The scratch array DUMMY, from the common block DUMMY1, is used to store the values of the
residual at each grid point.

236 4.0 Proteus Subprograms: RESID Proteus 2-D Programmer's Reference

Subroutine REST (IOPT)

Called by Calls Purpose

INITC METS Read and/or write restart file.
MAIN

Input When Reading the Restart File

* GAMR

* HSTAG

* IHSTAG

IOPT

* ITURB

* NRQIN

* NRXIN

RGAS

Input When Writing the Restart Hie

E, KE

EL, KEL

IOPT

IT

* ITURB

* MACHR

* NRQOUT

* NRXOUT

* N1, N2

* RER

RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

TAU

X,Y

Output When Reading the Restart File

DXI, DETA

E, KE

Reference ratio of specific heats, y,.

Stagnation enthalpy hr used with constant stagnation enthalpy
option.

Flag for constant stagnation enthalpy option.

Flag specifying I/O operation; 1 to read, 2 to write.

Flag for turbulent flow option.

Unit number for reading the restart flow field.

Unit number for reading the restart computational mesh.

Dimensionless gas constant R.

Turbulent dissipation rate e and kinetic energy k at time level
n+l.

Turbulent dissipation rate e and kinetic energy k at time level n.

Flag specifying I/O operation; 1 to read, 2 to write.

Current time step number n.

Flag for turbulent flow option.

Reference Mach number M,.

Unit number for writing the restart flow field.

Unit number for writing the restart computational mesh.

Number of grid points N_ and N2, in the (and r/directions.

Reference Reynolds number Re,.

Static density p, velocities u, v, and w, and total energy Er at time
level n + 1.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Computational time r at time level n + 1.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Computational grid spacing A_ and A_/.

Turbulent dissipation rate e and kinetic energy k at time level
ITBEG.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: REST 237

EL, KEL

ITBEG

MACHR

N1, N2

RER

RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

T, TL

TAU

X,Y

Turbulent dissipation rate _ and kinetic ener_ k at time level
ITBEG- 1.

The time level n at the beginning of the new run.

Reference Mach number M,.

Number of mid points N1 and N2, in the _ and r/directions.

Reference Reynolds number Re,.

Static density p, velocities u, v, and w, and total energ3" Er at time
level ITBEG.

Static density p, velocities u, v, and w, and total energy Er at time
level ITBEG- 1.

Static temperature T at time levels ITBEG and ITBEG - 1.

Computational time r at time level ITBEG.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Output "_en Writing the Restart File

None.

Description

Subroutine REST reads and/or writes the restart files. Restarting a calculation requires two unformatted
files - one containing the computational mesh and one containing the flow field.

If subroutine REST is being used to read the restart files, the computational mesh is first read from unit
NRXIN. The grid increments A_ and A_ are then set, and subroutine METS is called to compute the
metric coefficients and the Jacobian of the grid transformation.

The flow field file is read next, from unit NRQIN. It normally contains the results at the last two time
levels that were computed during the previous run. If only one level is present in the file, however, the re-
sults at level n- 1 are set equal to those at level n. If the previous run used the two-equation turbulence
model, the turbulence variables are also read from the file. The beginning time level for the time marching
loop is set equal to the level stored in the restart file. The flow field variables in the restart file are the
conservation variables Q, nondimensionalized as in the plotting program PLOT3D. u They therefore must
be converted into the primitive variables used in Proteus. The temperature is then computed from the
perfect gas equation of state, with cp and c, defined using the input reference conditions.

When writing the restart fries, the file containing the computational mesh is written onto unit
NRXOUT. The primitive flow variables are then redefined as conservation variables and
nondimensionalized as in PLOT3D. They are then written onto unit NRQOUT. If the current run used
the two-equation turbulence model, the turbulence variables are also written into the file.

Remarks

.

2.

If, in the input namelist RSTRT, NRXOUT and NRQOUT are set equal to NRXIN and NRQIN,
respectively, the output restart fries will overwrite the input restart fries.

Except for the turbulence variables and the variables at time level n - 1, the restart files have the same
format as the XYZ and Q files created using the IPLOT = 2 and 3 options. These restart files can thus
also be used as XYZ and Q files for the PLOT3D plotting program. Since N3 = 1, the n - 1 level will

not be read by PLOT3D.

34 See Sections 4.2.3 and 4.4 of Volume 2.

238 4.0 Proteus Subprograms: REST Proteus 2-D Programmer's Reference

. The temperature T is computed using the equation of state, which contains a specific heat coefficient
(either cp or c,, depending on whether the stagnation enthalpy is assumed constant or not.) In sub-
routine REST, a constant value of specific heat is used, consistent with the reference temperature T,.

If the user specified constant specific heat (i.e., a value for _, was read in), this is not a problem.
However, if the temperature-dependent specific heat option is being used (i.e., a value for -y, was not
read in), the equation of state and the empirical equation for specific heat are coupled. For this reason,
in INITC (the routine that calls REST), T is recomputed by calling EQSTAT after the specific heats
have been computed in FTEMP. Ideally, this coupling would be handled by iteration between
FTEMP and EQSTAT. This is not currently done in Proteus, however.

Proteus 2-D Programmer's Reference 4.0 Proteus Subla'ograms: REST 239

Subroutine ROBTS (NP,A,B,XP)

Called by CaLls Purpose

PAK Pack points along a line using Roberts transformation.

A

B

NP

Parameter c_ in Roberts transformation formula specifying lo-
cation of packing: 0.0 to pack near XP = 1 only, 1.0 to pack near
XP = 0 only, and 0.5 to pack equally at XP = 0 and 1.0.

Parameter 3 in Roberts transformation formula specifying amount
of packing. A value approaching 1.0 from above gives denser
packing.

Number of grid points along the line.

Coordinates of packed grid points along the line.

Description

Subroutine ROBTS packs points along a line of lenph one using a transformation due to Roberts
(1971). The basic transformation is given by

Xp--

(fl + 2_)fl_ _ -/? + 2a

(2_ + 1)(I +/_r #_)

where

Xup -- cL

and xp and xvp are the packed and unpacked (i.e., evenly spaced) coordinates along the line. The parameter
a determines the packing location. For a = 0, the points will be packed only near xp = 1, and for a = 1/2
the points will be packed equally near x? = 0 and xp = 1. The packing parameter fl determines the amount
of packing. It is a number greater than 1, but generally 1.1 or below. The closer fl is to 1, the tighter the
packing will be.

It may seem logical to set e = 1 to pack points near xe = 0. With the basic transformation, however,
this doesn't work. In Proteus we get around this problem by replacing a in the above transformation with
c_, where c_, = c_ if a = 0 or 1/2, and _, = 0 if _ = 1. If • = 0 or 1;2, no further action is necessary. If

= 1, however, we must invert the resulting xp values and re-order the indices. I.e., for i = 1 to NP, we set

(Xpl)i = 1 -- (xp) i

After this operation, the array xpl will run from 1 to 0, packed near 1. To re-order the indices, for i = 1 to
N P we set

(Xp) NP- i+ I = (XpI)i

After this operation, x? will run from 0 to 1, packed near 0.

240 4.0 Proteus Subprograms: ROBTS Proteus 2-D Programmer's Reference

Finally,to ensure round-off error doesn't affect the endpoint values, we set (xp)l = 0 and (xe),_'e = I.

Remarks

. The namelist input variable SQ(IDIR,1), which is used to specify the packing location in direction
IDIR, is actually equal to 1 - _. Therefore, setting SQ(IDIR,I) = 0 results in pac "ldng near the _ or
_?= 0 boundary, and SQ(IDIR,1) = 1 results in packing near the _ or _/= 1 boundary.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: ROBTS 241

Function SASUM (S,V,IYC)

Called by Calls Purpose

RESID Compute the sum of the absolute values of the elements of a vector.

N

V

INC

Number of elements in the vector to be summed.

Vector to be summed.

Skip distance between elements of V. For contiguous elements,
INC = 1.

Output

SASUM Sum of the absolute values of the elements of V.

Description

.Function SASUM computes the sum of.the absolute values of the elements of a vector.
dimensional vector, the use of SASUM is straig_htforward. For example,

np

sasum(np,v,1) = L Vi

i=1

For a one-

A starting location can be specified, as in

np

sasum(np-4,v(5),l) = Z Vi

i=5

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector len_h and skip distance. For instance, if A is an array dimen-
sioned NDIM1 by NDIM2, then

ndirnl ndim2

sasum(ndiml_ndim2,a,1)= Z Z Ai,j

i=1 j=l

One dimension at a time can also be summed. For example,

ndirn 1

sasum(ndiml,a(1,5),l) = Z Ai,5

i=1

Similarly, by specifying a skip increment,

ndim2

sasum(ndim2,a(5,1),ndiml) = Z As,j

j=l

Remarks

1. SASUM is a Cray BLAS (Basic Linear Algebra Subprograms) routine (Cray Research, Inc., 1989b).

242 4.0 Proteus Subprograms: SASUM Proteus 2-D Programmer's Reference

Subroutine SGEFA (A,LDA,N,IPVT,INFO)

Called by Calls Purpose

BCELIM ISAMAX Factor a matrix using Gaussian elimination.
BVUP

A

LDA

N

An array containing the matrix A to be factored, dimensioned as
A(LDA,N).

The leading dimension of the array A.

The order of the matrix A.

IPVT

INFO

An upper triangular matrix and the multipliers which were used
to obtain it. The factorization can be written as A = LU, where

L is a product of permutation and unit lower triangular matrices,
and U is upper triangular.

A vector of length N containing pivot indices.

An error flag: 0 for normal operation, k if Ukk = 0.

Description

Subroutine SGEFA is used in combination with subroutine SGESL to solve the matrix equation
Ax = B. If the Fortran arrays A and B represent A and B, where A is a square N by N matrix and B is a
matrix (or vector) with NCOL columns, and if the leading dimension of the Fortran array A is LDA, then
the Fortran sequence

l0

call sgefa (a,lda,n,ipvt,info)
do 10 5 = 1,ncol
call sges1 (a,lda,n,ipvt,b(1,j),O)
continue

computes A- IB, storing the result in B.

Remarks

1. SGEFA is a Cray LINPACK routine (Cray Research, Inc., 1989b; Dongarra, Moler, Bunch, and
Stewart, 1979).

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: SGEFA 243

Subroutine SGESL (A,LDA,N,IPVT,B,JOB)

Called by Calls Purpose

BCELIM Solve the matrix equation Ax = B or ATx = B using the factors com-
BVUP puted by SGEFA.

B

IPVT

JOB

LDA

N

The two-dimensional output array A from SGEFA containing the
factorization of matrix A.

The right-hand side vector B.

The output array IPVT of pivot indices from SGEFA.

Flag specifying type of matrix equation: 0 to solve Ax = B; non-
zero to solve ATx = B.

The leading dimension of the array A.

The order of the matrix A.

B The solution vector x.

Description

Subroutine SGESL is used in combination with subroutine SGEFA to solve the matrix equation

Ax = B. See the description of subroutine SGEFA for details.

Remarks

1. SGESL is a Cray LINPACK routine (Cray Research, Inc., 1989b; Dongarra, Moler, Bunch, and
Stewart, 1979).

244 4.0 Proteus Subprograms: SGESL Proteus 2-D Programmer's Reference

Function SNRM2 (N,V, INC)

Called by Calls Purpose

RESID Compute the L2 norm of a vector.

N

V

INC

The number of elements in the vector V.

The vector whose norm is to be computed.

Skip distance between elements of V. For conti_maous elements,
INC = 1.

SNRM2 "I*he 1-.2norm of the vector V.

Description

Function SNRM2 computes the La norm of a vector. For a one-dimensional vector, the use of SNRM2
is straightforward. For example,

snrm2(np,v, I) =

A starting location can be specified, as in

snrm2(np-_,v(5),l) =

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimen-
sioned NDIM 1 by NDIM2, then

snrm2(ndimlWndim2,a,1) =

1/2(ndim2
One dimension at a time can also be summed. For example,

snrm2(ndiml,a(1,5),l) =

I12
\

i=] '/

Similarly, by specifying a skip increment,

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: SN'P._M2 245

snrm2(ndim2,a(5,1),ndiml) =

I/2

Remarks

1. SNRM2 is a Cray BLAS (Basic Linear Algebra Subprograms) routine (Cray Research, Inc., 1989b).

246 4.0 Proteus Subprograms: SNRM2 Proteus 2-D Programmer's Reference

Subroutine TBC

Called by Calls Purpose

MAIN Set time-dependent boundary condition values.

i._p.m

* GTBC 1, GTBC2

IT

ITBEG

ITEND

* JBC1, JBC2

* JTBCI, JTBC2

NBC

NEQ

* NOUT

* NTBC

* NTBCA

* N1, N2

Time-dependent surface mean flow boundary condition values for
the ¢ and vt directions.

Current time step number n.

The time level n at the beginning of a run.

Final time step number.

Surface mean flow boundary condition types for the ¢ and _/di-
rections.

Flags for type of time dependency for mean flow boundary con-
ditions in the _ and _ directions.

Dimensioning parameter specifying number of boundary condi-
tions per equation.

Number of coupled equations being solved, N,q.

Unit number for standard output.

Number of values in tables for general unsteady boundary condi-
tions.

Time levels at which general unsteady boundary conditions are
specified.

Number of grid points N_ and N_, in the ¢ and _/directions.

FBC1, FBC2

GBC1, GBC2

Point-by-point mean flow boundary condition values for the
and v/directions.

Surface mean flow boundary condition values for the _ and n di-
rections.

Description

Subroutine TBC sets time-dependent mean flow boundary condition values.

pendency are allowed - general and periodic.

Two types of time de-

General Time-Dependent Boundar F Conditions

General time-dependent boundary conditions are set using linear interpolation on an input table of
boundary condition values vs. time level. Thus, the boundary condition value is

gn+l g[+ n+I-n[i+1 i= (gt - gt)
n_+1 n_

Here n is the current known time level in the time marching scheme, g, and n, represent the input table of

boundary condition values vs. time level, and i is the index in the table for which

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: TBC 247

i i+1
nt<n+ l <n t

If n + 1 < nL then g"- _ is set equal to the first value in the table, gl. Similarly, if n + 1 > n__, where N is the
index of the last entry in the table, then g_ * _ is set equal to the last value in the table, g_.

In Fortran, g = GBC1 or GBC2, g_ = GTBC1 or GTBC2, n_= NTBCA, and N = NTBC.

Time-Periodic Boundary Conditions

Time-periodic boundary conditions (not to be confused with spatially periodic boundary conditions) are
of the form

gn+l=g_ + g2 sin[gt3(n + 1)+ gta]

where g,_ through _ are given by the first four elements of GTBC1 or GTBC2.

Remarks

1. An error message is generated and execution is stopped if an invalid type of unsteadiness is requested
for the boundary values.

248 4.0 Proteus Subprograms: TBC Proteus 2-D Programmer's Reference

Subroutine TIMSTP

Called by Calls Purpose

MAIN ISAMAX Set computational time step.

* CFL

* CFLMIN, CFLMAX

CHGMAX

* CHG1, CHG2

CP, CV

* DT

DTAU

* DTF 1, DTF2

* DTMIN, DTMAX

DXI, DETA

ETAX, ETAY, ETAT

* IDTAU

IT

ITSEQ

MU

* NDTCYC

NEQ

* NOUT

* N1, N2

*, RER

RGAS

RHO, U, V

T

XIX, XIY, XIT

CFL

DTAU

CFL number in IDTAU = 1, 2, 5, 6, 8, and 9 options.

Minimum and maximum CFL numbers allowed in IDTAU = 2

and 6 options.

Maximum change in absolute value of the dependent variables
over previous time step (or NITAVG-1 time steps if
ICTEST = 2), AQ

Minimum and maximum change, in absolute value, that is al-
lowed in any dependent variable before increasing or decreasing
Ar in IDTAU = 2, 4, and 6 options.

Specific heats cp and c_ at time level n.

Time step A_ in IDTAU = 3 and 4 options.

Old computational time step A-r.

Factors multiplying or dividing A-r if solution changes too slowly
or quickly in IDTAU = 2, 4, and 6 options.

Minimum and maximum Az allowed in IDTAU = 4 option, or
used in IDTAU = 7 option.

Computational grid spacing A_ and An.

Metric coefficients ,Tx, qy (or _/, ff axisymmetric), and _r.

Flag for time step selection method.

Current time step number n.

Current time step sequence number.

Effective coefficient of viscosity # at time level n.

Number of time steps per cycle for IDTAU = 7 option.

Number of coupled equations being solved, ,_%.

Unit number for standard output.

Number of grid points N_ and N2, in the _ and ,7 directions.

Reference Reynolds number Re,.

Gas constant R.

Static density p, and velocities u and v, at time level n.

Static temperature T at time level n.

Metric coefficients _, _y (or _, ff axis_a'nmetric), and _r.

New CFL number in IDTAU = 2 and 6 options.

New computational time step Az.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: TLMSTP 249

Description

Subroutine TIMSTP computes the time step size At.
methods currently available for setting and/or modifying Az.

The following sections describe the various

IDTA U = 1

This option sets a _obal (i.e., constant in space) time step Az equal to the minimum of the values at
each grid point computed from the input parameter CFL(ITSEQ). I.e.,

Az = (CFL) mig(Azct7)
LJ

where Arci_ is the inviscid CFL limit, given in generalized two-dimensional coordinates as (Shang, 1984).

f U

-I

Here U = _t + _ _yv and V = 17,+ _7,u + _yv are the contravariant velocities without metric normaliza-
tion, and a = _/_,RT is the speed of sound.

IDTAU = 2

For the f_st time step, this option is identical to the IDTAU = 1 option. After the Rrst time step,
however, CFL is modified to keep AQ the maximum change in absolute value of the dependent vari-
ables, within user-specified limits. The rules used to increase or decrease CFL may be summarized as fol-
lows:

AQmax < CHG1

AQmax > CHG2

A Qmax > O. 15

CFL = min[(DTF I)(CFL), CFLMAX]

CFL = max[CFL/DTF2, CFLMIN]

CFL = CFL/2

The time step Az is then set using the same formulas as in the IDTAU = 1 option.

IDTA U = 3

This option sets a global (i.e., constant in space) time step Az equal to the input parameter DT(ITSEQ).

IDTAU = 4

For the ftrst time step, this option is identical to the IDTAU = 3 option. After the fLrst time step,
however, Ar is modified to keep AQ the maximum change in absolute value of the dependent variables,
within user-specified limits. The rules used to increase or decrease Az may be summarized as follows:

AQmax< CHG1 =_ Az = min[(DTF1)Az, DTMAX]

AQmax > CHG2 =_ Az = max[Az/(DTF2), DTMIN]

AQmax>O.15 _ AT=Az/2

IDTA U = 5

This option sets a local (i.e., varying in space) time step Az computed at each grid point from the input
parameter CFL(ITSEQ). l.e., at each grid point,

Az = (CFL)A'rcfl

where Az,p is given above in the description of the IDTAU = 1 option.

250 4.0 Proteus Subprograms: "I_ISTP Proteus 2-D Programmer's Reference

IDTAU = 6

For the ftrst time step, this option is identical to the IDTAU = 5 option. After the first time step,
however, CFL is modified to keep AQ the maximum change in absolute value of the dependent vari-

ables, within user-specified limits. The rules used to increase or decrease CFL are the same as in the

IDTAU = 2 option.

IDTA U = 7

This option sets a global (i.e., constant in space) time step AT with logarithmic cycling. The formula
used is

)h'/(._'_y,- 1)

_Tmax

A-r = A'rmi n A'rmin

where N = mod(n - 1, Ncyc) and n is the current known time level. The time step A'r is thus cycled repeat-
edly between Az,,,, and Az_,o, every Ncyc time steps. The values of Az,,,,, Az and Ncy, are given by the
input parameters DTMIN, DTMAX, and NDTCYC.

IDTAU = 8

This option sets a local (i.e., varying in space) time step Ar computed at each grid point using the pro-

cedure of Knight and Choi (1989). The inviscid CFL limit Az,a is first computed separately for each
computational coordinate direction. Thus, at each grid point,

-1

-1

A_

Here U = ¢, + _._.+_ _v and V = _, + _/,u + _bv are the contravariant velocities without metric normaliza-
tion, and a = x/yRT is the speed of sound.

A preliminary value of A-r is then defined at each grid point using the input parameter CFL(ITSEQ).

Az o = (CFL) min[(ATc.tT)¢, (A%tT)n]

The final value of Az is then defined at each grid point as

Ar = max[AT o, (Arcf/)¢]

Knight and Choi found that using this definition for A-r, rather than simply setting A-: = A-c0, resulted in

faster convergence for problems with refined grid regions. This formulation assumes that flow is generally
in the _ direction.

IDTAU = 9

This option is similar to the IDTAU = 8 option. The only difference is a viscous correction added to

the definitions of the inviscid CFL limits, similar to that used by Cooper (1987). The inviscid CFL limits

axe now defined at each grid point as:

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: TIMSTP 251

_ --1

(a_n) ¢ = + a _ _ Re_ p (a¢)2

(A_c.,q),7

1

E r22 22l-V N/r/x + r/y 2 /2 _/x + r/y

= _ + a A,7 + ,_e_ P (A,7)2

The rest of the procedure for computing Az is the same as in the IDTAU = 8 option.

Remarks

. In AQ used in the IDTAU =2, 4, and 6 options, the change in Er has been divided by
R/(yr - 1) + 1/2. This is equivalent to di_5ding the dimensional value Er by

ET'-- Yr--1 + 2

This makes the change in total energy the same order of magnitude as the other conservation variables.

2. An error message is generated and execution is stopped if an illegal time step selection option is re-

quested.

3. A warning message is printed with the IDTAU = 2, 4, and 6 options if Az or the CFL number is cut
in hal/" because AQmox > 0.15.

4. The Cray search routine ISAMAX is used in computing the maximum value of AQ,_o_ for all the
equations.

252 4.0 Proteus Subprograms: TI_ISTP Proteus 2-D Programmer's Reference

SubroutineTREMAIN (CPUREM)

Called by Calls Purpose

MAIN Get CPU time remaining for the job.

None.

CPUREM

Description

Amount of CPU time remaining, in seconds.

Subroutine TREMAIN computes the amount of CPU time remaining for the current job, in seconds.

Remarks

I. TREMAIN is a Cray Fortran library routine (Cray Research, Inc., 1989a).

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: TREMAL-N 253

Subroutine TURBBL

Called by Calls Purpose

INITC

KEINIT
MAIN

BLIN1
BLIN2
BLOUT1
BLOUT2
VORTEX

Manage computation of turbulence parameters using Baldwin-Lomax
algebraic model.

CP

* ITETA, ITXI

* KBC1, KBC2

* Lx,VALL 1, LX,VALL2

LWSET

MU, LA, KT

* NOUT

* NI, N2

PRR

* PRT

* RER

* REXT1, REXT2

RHO, U, V, W

X,Y

Output

LWALL1, LWALL2

MU, LA, KT

MUT

Description

Specific heat cp.

Flags for computation of turbulent viscosity along constant _ and
lines.

Boundary types for the _ and 1,1directions.

Flags specifying wall locations for _ and 1,/boundaries.

Flags specifying how wall locations are to be determined for the
turbulence model; 0 if wall locations are to be found automatically
by searching for bounda_ry points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the IWALL

parameters.

Laminar coefficient of viscosity /_, laminar second coefficient of
viscosity 2/, and laminar coefficient of thermal conductivity k_.

Unit number for standard output.

Number of grid points N_ and N2, in the _ and ,7 directions.

Reference Prandtl number Pr,.

Turbulent Prandtl number Pr,, or, if PRT <_ 0, a flag indicating the
use of a variable turbulent Prandtl number.

Reference Reynolds number Rer.

Transition Reynolds numbers Rex,, in the _ and _ directions.

Static density p, and velocities u, v, and w.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Flags specifying wall locations for _ and _7boundaries, if not set
in input.

Effective coefficient of viscosity u, effective second coefficient of
viscosity 2, and effective coefficient of thermal conductivity k.

Turbulent viscosity coefficient #t.

Subroutine TURBBL manages the computation of the effective coefficient of viscosity, second coeffi-
cient of viscosity, and coefficient of thermal conductivity using the algebraic eddy viscosity model of

Baldwin and Lomax (1978). It is called from MAIN during each step from time level n to n + t, but after
the governing flow equations have been solved. The Fortran variables RHO, U, etc., are thus at the n + 1

254 4.0 Proteus Subprograms: TURBBL Proteus 2-D Programmer's Reference

level. The effective viscosity coefficient to be computed will therefore also be at the n + 1 level.

course, becomes the known n level for the next time step.

This, of

The steps involved in computing the effective coefficients are as follows:

1. Initialize the arrays for storing the turbulent viscosity _ on constant _ and _/lines to zero.

2. Call VORTEX to compute [_[, the magnitude of the total vorticity vector.

3. At each _ location, compute g_ due to walls at i/= 0 and/or _ = 1, or due to a free turbulent flow in

the _ direction, using steps 3a - 3c. The result will be stored in the Fortran array MUT. If bypassing
the calculation on constant _ lines, skip to step 4 to compute _ on constant _/lines.

3a. Determine wall locations by checking for zero velocity at the _/boundaries, unless wall locations

are user-specified via the input LWALL or IWALL parameters, or unless boundary types are
specified using the KBC parameters.

3b. Call BLOUT1 to compute (/_,)o,t,,, at the current _ location, for r/= 0 to 1.

3c. Call BLIN1 to compute (/z,)_,, at the current _ location, within the inner region for a solid wall
at _/= 0 and/or _/= 1.

4. At each r/location, compute/_, due to walls at _ = 0 and/or _ = 1, or due to a free turbulent flow in
the _/ direction, using steps 4a - 4c. The result will be stored in the Fortran array DUMMY. If by-

passing the calculation on constant _/lines, skip to step 5.

4a. Determine wall locations by checking for zero velocity at the _ boundaries, unless wall locations
are user-specified via the input LWALL or IWALL parameters, or unless boundary types are
specified using the KBC parameters.

4b. Call BLOUT2 to compute (/_,)o_t,,, at the current _/location, for _ = 0 to 1.

4c. Call BLIN2 to compute (_)_,_, at the current r/location, within the inner region for a solid wall
at _=0and/or¢= 1.

5. If the input is such that the computation of _ is bypassed in both directions, write an error message
and stop.

6. If _, is being computed on constant _ lines only, then MUT = _z,, so skip to ste,_ 9.

7. If/_ is being computed on constant 31lines only, then DUMMY = _,, so set MUT = DUMMY and
skip to step 9.

8. If u, is being computed both on constant _ lines and constant q lines, compute a single _ value at each
grid point using the averaging formula presented in equation (9.13) of Volume 1.

9. If specified in the input, modify g, to account for laminar-turbulent transition using a model based on

one given by Cebeci and Bradshaw (1984). This model is described in Section 9.1.4 of Volume 1.

10. Define the necessary effective coefficients as follows:

/z =/z I + Pt

2-= 2 l + 2 t

k = k t + k t

where 2, = - 21_d3, and k, is computed using Reynold's analogy as

utcp

k t - pr r Prr

The turbulent Prandtl number is either a constant specified in the input, or a variable computed using

equation (9.19) of Volume 1.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: TUqRBBL 255

,

Remarks

In the averaging formula used when t_, is computed both on constant _ lines and constant _ lines, the
Fortran variables F 1 and F2 are

FI=
(Yn)2

/,, _2-11/2

CvA1
F2=

+

If (y_)_ and (Y.)2 are both close to zero, F1 and F2 are set equal to l/x/2-, which is the limiting value in
the above equations as (y,)_ and (Yn)2approach zero.

2. The exponent in the definition of y_, is limited to 20.

3. In the Fortran equation for the effective thermal conductivity, the factor PRR _ Pr, is necessary for
proper nondimensionalization of k,.

4. The distance used in the formula for y,, is a straight-line distance from one point to another. It would
probably be better to compute a curvilinear distance along the coordinate line.

5. The scratch array DUMMY, from the common block DUMMY1, is used to store the value of the
turbulent viscosity along constant _/lines. The array is fiUed in subroutines BLIN2 and BLOUT2.

6. If ITXI and ITETA are both zero, indicating the turbulent viscosity computation is to be bypassed for
both coordinate directions, an error message is generated and execution is stopped.

256 4.0 Proteus Subprograms: TURBBL Proteus 2-D Programmer's Reference

Subroutine TURBCH

Called by Calls Purpose

MAIN EXECT Manage computation of turbulence parameters using the Chien k-_
PRODCT model.
YPLUSN

I.put

CP

* KBC1, KBC2

* LWALL1, LWALL2

LWSET

MU, LA, KT

MUT

* NTKE

* NI, N2

PRR

* PRT

U,V,W

Output

LWALL1, LWALL2

MU, LA, KT

MUT

Description

Specific heat cp.

Boundary types for the _ and _/directions.

Flags specifying wall locations for _ and _ boundaries.

Flags specifying how wall locations are to be determined for the
turbulence model; 0 if wall locations are to be found automatically

by searching for boundary points where the velocity is zero, 1 if
input using the LWALL parameters, 2 if input using the IWALL
parameters.

Laminar coefficient of viscosity _/, laminar second coefficient of
viscosity 2z, and laminar coefficient of thermal conductivity kt.

Turbulent viscosity #, at time level n.

Number of k-e iterations per mean flow iteration.

Number of grid points N1 and N2, in the _ and _/directions.

Reference Prandtl number Prr.

Turbulent Prandtl number Pr, or, if PRT < 0, a flag indicating the
use of a variable turbulent Prandtl number.

Velocities u, v, and w at time level n.

Flags specifying wall locations for _ and _/ boundaries, if not set
in input.

Effective coefficient of viscosity _, effective second coefficient of

viscosity 2, and effective coefficient of thermal conductivity k.

Turbulent viscosity _, at time level n.

Subroutine TURBCH manages the computation of the effective coefficient of viscosity, second coeffi-

cient of viscosity, and coefficient of thermal conductivity using the low Reynolds number k-_ two-equation
turbulence model of Chien (1982). The k-e equations are uncoupled from the mean flow equations, lagged

in time and solved separately. This allows maximum modularity in turbulence modeling.

For each step from time level n to n + 1, the mean flow equations are solved first, using a time step
Az. The k-e equations are then solved, using ,NTKE time steps with a time step size of TFACT(Az).

The steps involved in computing the effective coefficients are as follows:

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: TURBCH 257

1. Determine wall locations by checking for zero velocity at the boundaries, unless wall locations are

user-specified via the input LWALL or IWALL parameters, or unless boundar)' types are specified
using the KBC parameters.

2. Call YPLUSN to compute the minimum distance to the nearest solid wall and y-. To save storage, the
rnmimum distance is returned in the Fortran variable DUMMY.

3. Call PRODCT to compute the production rate of turbulent kinetic energy. To save storage space, the
production rate is returned in the Fortran variable VORT.

4. Call EXECT to advance the k-e equations in time using a time step of TFACT(Az).

5. Repeat steps 3-4 NTKE times.

6. Define the necessary" effective coefficients as follows:

kt =/Jl + P-t

2 =)-t +).t

k = kl + k t

where 2, = - 2tz,/3, and k, is computed using Reynold's analogy as

mcp
k t - pr t Prr

The turbulent Prandtl number is either a constant specified in the input, or a variable computed using

equation (9.19) of Volume 1.

Remarks

1. The scratch array DUMMY, from the common block DUMMY1, is used to store the values of the
minimum distance to the nearest wall. The array is ftlled in subroutine YPLUSN.

2. The Fortran array VORT, from the common block TURB1, is used to store the values of the pro-
duction rate of turbulent kinetic energy. The array is fdled in subroutine PRODCT.

3. For equal mean flow and k-_ time steps, use TFACT = 1/NTKE.

258 4.0 Proteus Subprograms: TURBCH Proteus 2-D Programmer's Reference

Subroutine UPDATE (S,NVD,NPTSD)

Called by Calls Purpose

EXEC Update flow variables after each ADI sweep.

I._p_m

IBASE, ISTEP

* IHSTAG

* ISWIRL

IV

JI

NPTS

NR, NRU, NRV, NRW, NET

NVD, NPTSD

RHO, U, V, W, ET

S

o.w t

RHOL, UL, VL, WL, ETL

Description

Base index and multiplication factor used in computing one-

dimensional index for two-dimensional array.

Flag for constant stagnation enthalpy option.

Flag for swirl in axisymmetric flow.

Index in the "vectorized" direction, iv.

Inverse Jacobian of the nonorthogonal grid transformation, j-l.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,

pw, and Er.

Leading two dimensions for the array S.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Computed solution subvector, A0.

Static density p, velocities u, v, and w, and total energy Er at end

of current ADI sweep.

Subroutine UPDATE computes the primitive flow variables from the dependent variables AO after each

ADI sweep. For the ftrst sweep the formulas are

* 1 ^*
u = -'-i- (P nun + JAQ2)

P

* 1
v = -'-7 (P nvn + JAO;)

P

* 1 ^*
w = _ (pnwn + JAQa)

P

E;= E_ + JAQ;

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: L']PDATE 259

^ ^

where AQ_ through AQs are the dependent variables in delta form for the five governing equations, as For the

second ADI sweep, the superscript * should be changed to n + 1 on p, u, v, w, and Er, and to n on A{_.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

35 These formulas are written for the most general case - axisymmetric flow with swirl and non-constant stagnation
enthalpy. For simpler cases there may be only three or four equations.

260 4.0 Proteus Subprograms: UPDATE Proteus 2-D Programmer's Reference

Subroutine UPDTKE

Called by Calls Purpose

EXECT Update k and _ after each ADI sweep.

DXI, DETA

E

FBCT1, FBCT2

IBCT1, IBCT2

JI

KBCPER

KE

NPT1, NPT2

RHO

Computational grid spacing A_ and Art.

Turbulent dissipation rate r at time level n.

Point-by-point k-r boundary condition values for the _ and _/di-
rections.

Point-by-point k-r boundary condition types for the ¢ and _ di-
rections.

Inverse Jacobian of the nonorthogonal grid transformation, J- :.

Flags for spatially periodic boundary conditions in the _ and n
directions.

Turbulent kinetic energy k at time level n.

N_ and A'2 for non-periodic boundary conditions, N_ + 1 and
N2 + 1 for spatially periodic boundary conditions in _ and _/.

Static density p at time level n.
^

Computed solution subvector AW.

E, EL

KE, KEL

Turbulent dissipation rate e at time levels n + 1 and n.

Turbulent kinetic energy k at time levels n _- 1 and n.

Description

Subroutine UPDTKE computes the primitive flow variables k and e from the dependent variables
^

AW _ after a complete time step. The formulas are

k n + 1 1 + lk n A- JAW_)n+l (pn +

P

n+l _ t +In
= n+l Kpn +JA"2)

P

^ ^

where AW_ and AW2 are the dependent variables in delta form for the k-c equations.

Subroutine UPDTKE also explicitly computes the k and e values on the computational boundaries
using the specified boundary conditions, as described below.

No Change From Initial Conditions, Ak = 0 and�or At = 0

Values for k and _ are simply not updated. Therefore, their values on the boundaries remain the same
as their initial or restart values.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: UPDTKE 261

Specified values, k = f and or s = f

Values of k and s are simply set equal to the specified values.

Specified Two-Point Gradient in Coordinate Direction, Ok]Od? = land�or Os[O 4) = f

Applying 8k/04) =fat the _ = 0 boundary, and using two-point one-sided differencing, gives

kl, j = k2, j --fA_

At the _ = 1 boundary,

kx,,j = ks, - 1,j +fAG

Analogous equations can easily be written for the '7 boundaries, and for Or/0_b =f

Specified Three-Point Gradient in Coordinate Direction, Ok�Off = f and,'or Os]Odp = f

Applying Ok�Off =fat the _ = 0 boundary, and using three-point one-sided differencing, gives

(4k2, j - k3,) - 2fA_)

k] ,j = 3

At the ¢ = 1 boundary,

(kN, - 1,j -- kN l - 2,j + 2fA_)

kNl'J = 3

Analogous equations can easily be written for the _ boundaries, and for O_]O(o =f

Linear Extrapolation

Linearly extrapolating from the interior points for k at the _ = 0 boundary gives

kl,j = 2k2, j - k3, j

At the _ = 1 boundary,

kN_,j = 2kq, _ _,j - kN, _ 2,j

Analogous equations can easily be written for the _/boundaries, and for linear extrapolation of s.

Remarks

1. The "no change from initial conditions" boundary condition is applied simply by non-execution of the
other boundary conditions.

2. Periodic boundary conditions are updated by setting the values of k and s at the lower boundary equal
to the corresponding values at the upper boundary.

262 4.0 Proteus Subprograms: UPDTKE Proteus 2-D Programmer's Reference

Subroutine VORTEX

Called by Calls Purpose

OUTPUT Compute magnitude of total vorticity.
TURBBL
YPLUSN

DXI, DETA

ETAX, ETAY

* N1, N2

U,V,W

XlX, XIY

Y

ojmp_m

VORT

Description

Computational grid spacing A_x and A_/.

Metric coefficients rh and _/, (or _7, if axisymmetric.)

Number of grid points N_ and A2, in the _ and _/directions.

Velocities u, v, and w.

Metric coefficients _ and _y (or _, if axisymmetric.)

Radial coordinate r for axis3_maetric flow.

Total vorticity magnitude.

Subroutine VORTEX computes the magnitude of the total vorticity vector.
planar flow this is defined as

and for axisymmetric flow,

For two-dimensional

Note that, for flow without swirl, the definition for axisyrnmetric flow is the same as for two-dimensional
planar flow.

Using the chain rule, these can be rewritten in generalized nonorthogonal coordinates.
dimensional planar flow,

=] (_xV_ + _TxV,7)- (_yU¢ + _/yUn)t

For two-

and for axisyrnmetric flow,

--[/ w;1_ _rW_, W rlrWrl +'--_ + (¢xW_ -t- VlxWrl)2 W (¢xV_ + rlxVrl-- ¢rU: -- VlrU_7)2] 1/2

At interior points, the centered difference formula presented in Section 5.0 of Volume 1 is used to nu-
merically compute the derivatives in the above equations. At boundary points, second-order one-sided
difference formulas are used.

Proteus 2-D Programmer's Reference 4.0 Proteus Subprograms: VORTEX 263

Subroutine YPLUSN

Called by Calls Purpose

INITC VORTEX Compute the distance to the nearest solid wall.
KEINIT
TURBCtt

l._p_m

* LWALL1, LWALL2

MU

* N1, N2

* RER

RHO

VORT

X,Y

DUMMY

YPLUSD

Description

Flags specifying wall locations for _ and rt boundaries.

Effective coefficient of viscosity _.

Number of grid points N_ and A_, in the _ and _/directions.

Reference Reynolds number Re,.

Static density p at time level n.

Total vorticity magnitude.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Distance to the nearest solid wall.

Nondimensional distance y* from the nearest solid wall.

Subroutine YPLUSN computes the minimum distance to the nearest solid wall and y+ for every grid
point in the computational domain. The steps involved are as followed:

1. Call VORTEX to compute total vorticity magnitude .

2. For every grid point in the computational domain,

3. Compute the shortest distance to each solid wall, and the corresponding wall values of the total
vorticity magnitude, laminar viscosity, and density.

4. Identify the nearest solid wall and select the corresponding minimum distance to the wall y,, the
wall total vorticity magnitude I f_w,_l, the wall laminar viscosity #,,Jl, and the wall density pw_.

5. Compute y" using

N/ Rerl _waUlPwatlY+ = Yn btwall

Remarks

. The scratch array DUMMY, from the common block DUMMY1, is used to store the minimum dis-
tance to the nearest solid wall.

264 4.0 Proteus Subprograms: YPLUSN Proteus 2-D Programmer's Reference

REFERENCES

Baldwin, B. S., and Lomax, H. (1978) "qqain Layer Approximation and Algebraic Model for Separated
Turbulent Flows," AIA.A Paper 78-257.

Beam, R. M., and Warming, R. F. (1978) "An Implicit Factored Scheme for the Compressible Navier-
Stokes Equations," AIAA Journal, Vol. 16, No. 4, pp. 393-402.

Briley, W. R., and McDonald, H. (1977)"Solution of the Multidimensional Compressible Navier-Stokes
Equations by a Generalized Implicit Method," Journal of Computational Physics, Vol. 24, pp. 373-397.

Cebeci, T., and Bradshaw, P. (1984) Physical and Computational Aspects of Convective Heat Transfer,
Springer-Verlag, New York.

Chen, S. C., and Schwab, J. R. (1988) "Three-Dimensional Elliptic Grid Generation Technique with Ap-
plication to Turbomachinery Cascades," NASA TM 101330.

Chien, K. Y. (1982) "Prediction of Channel and Boundary-Layer Flows with a Low-Reynolds-Number
Turbulence Model," AIA.A Journal, Vol. 20, No. 1, pp. 33-38.

Cooper, G. K. (1987) "The PARC Code: Theory and Usage," AEDC-TR-87-24.

Cray Research, Inc. (1988) UPDATE Reference Manual Publication Number SR-0013.

Cray Research, Inc. (1989a) Volume 1: UNICOS Fortran Library Reference Manual, Publication Number
SR-2079.

Cray Research, Inc. (1989b) Volume 3: UNICOS Math and Scientific Library Reference Manual, Publica-
tion Number SR-2081.

Cray Research, Inc. (1990) CF77 Compiling System, Volume 1: Fortran Reference Manual, Publication
Number SR-3071.

Dongarra, J. J., Moler, C. B., Bunch, J. R., and Stewart, G. W. (1979) LINPACK User'-s Guide SIAM,
Philadelphia.

Faux, I. D., and Pratt, M. J. (1979) Computational Geometry for Design and Manufacture, Ellis Horwood
Limited, John Wiley & Sons, Chichester, England.

Hesse, W. J., and Mumford, N. V. S. (1964) Jet Propulsion for Aerospace Applications Pitman Publishing
Corporation, New York.

Jameson, A., Sch.midt, W., and Turkel, E. (1981) "Numerical Solutions of the Euler Equations by Finite
Volume Methods Using Runge-Kutta Time-Stepping Schemes," AIAA Paper 81-1259.

Kemighan, B. W., and Plauger, P. J. (1978) The Elements of Programming Style, McGraw-Hill Book
Company, New York.

Kleinstein, G. (1967) "Generalized Law of the Wall and Eddy-Viscosity Model for Wall Boundary Layers,"
AIAA Journal, Vol. 5, No. 8, pp. 1402-1407_

Knig_ht, C. J., and Choi, D. (1989) "Development of a Viscous Cascade Code Based on Scalar Implicit

Factorization," AIAA Journal, Vol. 27, No. 5, pp. 581-594.

Proteus 2-D Programmer's Reference References 265

Launder, B. E., and Priddin, C. H. (1973) "A Comparison of Some Proposals for the Mixing Lenph Near
a Wall," International Journal of Heat and Mass Transfer, Vol. 16, pp. 700-702.

Pulliam, T. H. (1986b) "Artificial Dissipation Models for the Euler Equations," AIAA Journal, Vol. 24,

No. 12, pp. 1931-1940.

Roberts, G. O. (1971) "Computational Meshes for Boundar3" Layer Problems," Proceedings of the Second
International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 8,

Springer-Verlag, New York, pp. 171-177.

Shang, J. S. (1984) "Numerical Simulation of Wing-Fuselage Aerodynamic Interaction," AIAA Journal,
Vol. 22, No. 10, pp. 1345-1353.

Spalding, D. B. (1961) "A Sin#e Formula for the Law of the Wall," Journal of Applied Mechanics, Vol.
28, pp. 455-457.

Steger, J. L. (1978) "Implicit Finite-Difference Simulation of Flow about Arbitrar3 _Two-Dimensional Ge-
ometries," AIAA Journal, Vol. 16, No. 7, pp. 679-686.

Towne, C. E., Schwab, J. R., Benson, T. J., and Suresh, A. (1990) "PROTEUS Two-Dimensional
Navier-Stokes Computer Code - Version 1.0, Volumes 1-3/' NASA TM's 102551-3.

White, F. M. (1974) Viscous Fluid Flow, McGraw-Hill Book Company, New York.

266 References Proteus 2-D Programmer's Reference

Form Approved
REPORT DOCUM ENTATION PAG E OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and rewewing the collection of irdormation. Send comn_nts regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Sewices, Directorate for Information Operations and Reports. 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORTDATE 3. REPORT TYPE AND DATES COVERED

October 1993 Technical Memorandum
5. FUNDING NUMBERS4. TITLE AND SUBTITLE

Proteus Two-Dimensional Navier-Stokes Computer Code-Version 2.0
Volume 3-Programmer's Reference

6. AUTHOR(S)

Charles E. Towne, John R. Schwab, and Trong T. Bui

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSEES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

WU-505-62-52

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-8108

10. SPONSORING/MON_ORING
AGENCY REPORT NUMBER

NASA TM- 106339

11. SUPPLEMENTARY NOTES

Responsible person, Charles E. Towne,(216)433-5851.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -Unlimited

Subject Category 34

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum200 words)

A computer code called Proteus 2D has been developed to solve the two-dimensional planar or axisymmetric,

Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective

in this effort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify.

Code readability, modularity, and documentation have been emphasized. The governing equations are solved in

generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution proce-

dure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using

second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy

viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by

the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step

options are available for convergence acceleration. The documentation is divided into three volumes. This is the

Programmer's Reference, and contains detailed information useful when modifying the program. It describes the

program structure, the Fortran variables stored in common blocks, and the details of each subprogram.

14. SUBJECT TERMS

Navier-Stokes; Computational fluid dynamics, Viscous flow; Compressible flow

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OFPAGES

268
16. PRICE CODE

A12

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

