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Summary

This report describes an effort at NASA Lewis Research
Center to use artificial neural networks to automate the align-
ment and control of optical measurement systems. Specifi-
cally, it addresses the use of commercially available neural
network software and hardware to direct alignments of the
common laser-beam-smoothing spatial filter. The report pre-
sents a general approach for designing alignment records and
combining these into training sets to teach optical alignment
functions to neural networks and discusses the use of these
training sets to train several types of neural networks. Neural
network configurations used include the ada 'ive resonance
network, the back-propagation-trained network, and the
counter-propagation network. This work shows that neural
networks can be used to produce robust sequencers. These
sequencers can learn by example to execute the step-by-step
procedures of optical alignment and also can learn adaptively
to correct for environmentally induced misalignment. The
long-range objective is to use neural networks to automate
the alignment and operation of optical measurement systems
in remote, harsh, or dangerous aerospace environments. This
work also shows that when neural networks are trained by a
human operator, training sets should be recorded, training
should be executed, and testing should be done in a manner
that does not depend on intellectual judgments of the human
operator.

Introduction

This report describes an effort at NASA Lewis Research
Center to use neural networks to automate the alignment and
control of optical measurement systems. This project, which
was supported by the Earth-to-Orbit Propulsion Instrumenta-
tion Working Group of NASA, was begun in 1989 because of
a need to make optical measurements near an operating test
bed of the Space Shuttle Main Engine where the environment
is intolerable for humans.

Aerospace measurement environments can be character-
ized in terms of two challenges. The first challenge is the
optical access of areas of interest in the experiment, rig, or
facility. The second challenge, the one that we address in this
report, is that hands-on alignment, adjustment, and control is
often difficult or impossible. Although hands-on adjustment

of these systems is frequently necessary during a test, human
safety considerations often prevent access during testing.
This may mean, for example, that a test must be shut down
for a period in order to do the required adjustments. Obvi-
ously, it would be less costly and far more efficient to auto-
mate these adjustments.

For a typical alignment the usual procedure is for a human
operator to control the illumination of an extended region
visually by using the beam pattern for alignment clues. This
procedure is not necessarily trivial. For example, four mirror
mounts, each with 3 rotational degrees of freedom, have 12!
or 479 001 600 possible orderings of an alignment sequence
involving all 12 degrees of freedom. A human operator, of
course, imposes many constraints to restrict the number of
possible moves. A particular mount can be aligned to center
the beam on another mount and then locked. Several moves
can be made sequentially to move the hot spot of a beam in a
horizontal direction only. Nevertheless, even a simple optical
measurement system may require frequent random adjust-
ments of 3 to 6 degrees of freedom. A recent test of the
simplest off-axis reference-beam holography setup, with
components already laid out, required between 50 and 100
translational and rotational motions to bring the setup into
alignment.

Solving the problem of automated alignment then requires
automating the learned human skill of pattern-directed opera-
tion of a complex system of controls. An approach to this
problem has recently become available. This approach
involves a method of parallel processing referred to as an
artificial neural network (ref. 1). As will be discussed later,
an artificial neural network can learn to map a general set of
input patterns into an appropriate set of patterns of output
control actions.

The advantage of using a neural network is that, like a
human operator, it can learn an alignment procedure,
a control law, or any other mapping by example. It is not
necessary to discover a mathematical representation of the
mapping by human analytic processes. The human operator
need only know by experience a representative set of input
patterns and output control information. Such a set of pat-
terns and information is called a training set. However, the
procedure is not quite that straightforward: the person train-
ing the neural network must know or discover the composi-
tion of the input pattern. Part of this work consisted of
discovering an optical alignment paradigm (ref. 2).



Application of neural networks to the optical alignment
problem consisted of several tasks:

(1) Study of the theory of neural networks and their
application to optical pattern recognition (refs. 3 and 4)

(2) Acquisition of neural network development systems
(refs. 5 to 7)

(3) Selection of a benchmark component for automated
alignment—the spatial filter commonly used for laser
beam smoothing and signal isolation (ref. 8)

(4) Generation of human-directed alignment records to
use for training neural networks or several systems of
neural networks

(5) Testing the systems of neural networks—comparing
neural-network-directed alignments of the spatial filter
with human-directed alignments

The spatial filter was chosen as a benchmark component
because it is a simple component whose alignment is pattern
controlled. Its theory, models, and pattern visualization were
important for this effort, but the neural network procedures
and alignment paradigm that resulted are considered to be
quite generally applicable.

The types of neural networks used included the back-
propagation-trained network (BPN) (ref. 9), the counter-
propagation network (CPN) (ref. 10), the Euclidean
Preclassifier (ref. 11), and the Adaptive Resonance Tech-
nique 2 (ART2) (ref. 12).

This report discusses these networks in the order men-
tioned. The theory of the laser-beam-smoothing spatial filter
is given in appendixes A and B, and a list of symbols is given
in appendix C.

Automation of Optical System
Alignment

Description of Alignment Process

The spatial filter (fig. 1) and its alignment are understood,
in principle, from the science of physical optics. Figure 1 is
a photograph of a disassembled spatial filter of the type used
to clean up laser beams in the laboratory. Figure 2 shows the
assembled spatial filter, which consists of a micro-
scope objective (typically 20x) that focuses a laser beam onto
a pinhole (typically 10 µm in diameter). Scattered light (from
dust particles on the lenses, for example) does not generally
pass through the pinhole. An aligned spatial filter thereby
filters the scattered light from the laser beam.

A person learns how to align these spatial filters with some
practice. There are two alignment procedures required:
(1) centering the laser beam on and making it coaxial with
the microscope objective and (2) aligning the pinhole with
the microscope objective. The first procedure, which is done
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Figure 1.—Disassembled spatial filter assembly.

Figure 2.—Spatial filter assembly.

with the pinhole removed, can be complex; it may require the
adjustment of several mirrors, prisms, or beam elevators.
Only the second procedure is considered for automation in
this report.

For the second procedure, the pinhole is inserted, and the
laser beam is centered and focused onto it. The spatial filter
assembly (figs. 1 and 2) supports the pinhole in an X—Y trans-
lation stage with micrometer adjustments. The microscope
objective is in a separate Z-axis stage for focusing. This
Z-axis stage is the large, knurled cylinder shown in figures 1
and 2. These three controls allow the focal spot (beam waist
for gaussian laser beams) to be centered on the pinhole. If
the first alignment procedure has been done correctly, the X,
Y, and Z controls can independently adjust the X, Y, and Z
coordinates of the focal spot relative to the center of the pin-
hole. On rare occasions, the total Z-motion might be as large
as 1000 µm, and the X- or Y-motion as large as 300 M for the



spatial filter containing a 20x microscope objective and a
10-µm pinhole. Final adjustments, however, might be as
small as 1 µm.

The human approach to executing this second procedure
varies quite a bit. Appendix A contains the theoretical inter-
pretation of the beam pattern observed. For the following
description, which we believe is typical, albeit inexact, fig-
ure 3 shows the appearance of the laser beam at the various
stages of alignment.

Initial appearance	 Region "A"	 Pattern prior to
(focus is	 appearance	 focus adjustment

backed off)	 (diffraction rings)

Typical result after	 Region "B"	 Aligned filter
focus adjustment	 pattern

Figure 3.—Appearance of filtered laser beam at selected stages of
alignment process for spatial filter.

First, the room lights are turned off, and the focus is
backed off toward the laser. This process allows the laser
beam to fill the pinhole. Then the output of the filter is pro-
jected onto a white card for viewing. Internal reflections can
occur, and faint multiple beams might be observed. The
main beam will have a bright spot and a pattern of concentric
rings, but initially this pattern may be too faint to be seen. In
fact, internal reflections may produce beams that are brighter
than the main beam. An experienced person can still tell the
difference between the main beam and the internal reflec-
tions. The region A model of appendix A is an attempt
to describe the pattern of this main beam (region A
and region B are used to designate regions of alignment
space). Typically, the human operator begins centering the
main beam by moving the X or Ycontrol the same direction
that the beam is to move. Usually, the largest X or Yerror is
corrected first. The beam usually brightens considerably dur-
ing these corrections, and the ring pattern becomes visible.
Internal reflections become negligible.

Once the beam is centered, the focus is then moved toward
the viewing card. The beam's reflection from the card nor-
mally will move away from the center during this process,
unless the pinhole is exactly centered on the beam. In addi-

tion, the beam normally will become fainter. The focus or
Z-axis control is operated until the beam is near the edge of
the field of view or until the beam starts becoming too faint.

The centering procedure is then repeated with the X and Y
controls followed by the focusing procedure with the
Z-control. At some point, the appearance of the beam will
change significantly. The pronounced ring pattern may dis-
appear, the beam may become asymmetrical, the central spot
may appear to be larger and softer, or the beam may brighten
substantially. The region B model of appendix A represents
this behavior. Essentially, in this region the beam is too small
to fill the pinhole uniformly. Although the spatial filter is
almost aligned, the beam patterns vary much more for a
given control change than they do in region A. In region B,
beams that are apparently off center or asymmetrical require
slight adjustments in X or Y. Beams that are essentially
circular require slight adjustments of Z. An experienced per-
son learns to recognize the action required by a particular
beam pattern. At some point, the beam will appear the same
as an unfiltered gaussian laser beam. The filter is then
aligned, and the human operator stops making adjustments.

The task of automating the alignment of an optical system
can be approached in various ways. In each, a given input
(expressed as a vector including the present state of the sys-
tem, past alignment actions, and estimates of future output)
produces the output (expressed as a vector including control
settings) that is used to direct the next action by the effector,
which can be human or electromechanical. The object is to
always move closer to the aligned state. The process of
examining the current state of alignment and performing an
appropriate alignment step is repeated until the alignment is
complete.

One way to automate the alignment process would be to
model the process theoretically. Such a model might be used
directly in a control system as a transfer function. Another
approach would be to discover a linear mapping between the
whole range of possible input vectors and corresponding out-
put vectors. A third method would be to store the pairwise
input-output data in a lookup table. The controller would sim-
ply access the desired output control from the table. Severe
difficulties exist with all of these methods. The next sections
briefly detail the methods and describe the difficulties.

Theories and Models of Spatial Filter Alignment

We have a theory and models of the spatial filter
(appendix A) and a model for visualizing the alignment pro-
cess (appendix B). What prevents us from developing align-
ment control systems from these theories and models alone?
There are many reasons, but the key words are "credibility"
and "practical difficulty." Some of the reasons follow:

(1) The models are based on a diffraction integral theory
that ignores coupling between components of the electromag-
netic field.



(2) The diffraction integrals themselves are simplified to a
paraxial or small-angle approximation.

(3) The spatial filter model is assumed to have thin lenses,
zero-thickness apertures, and loss-free, reflection free, inter-
nal surfaces.

(4) The theory (eqs. (Al) to (All)) is ill-posed. The beam
pattern is computed from the control information (misalign-
ment coordinates), whereas the objective is to obtain control
information from the beam pattern.

(5) The models are approximations of the theory itself.
Two distinct alignment regions are proposed, and the nature
of the transition between the two is ignored.

(6) The numerical calculations from the models are com-
plicated and require significant computer time.

(7) The application of the theory assumes linear detectors
(the beam patterns may differ, although the detector readouts
are the same); hysteresis, backlash, and other nonlinear
mechanical errors are not considered.

This discussion applies to the spatial filter, but it is charac-
teristic of all attempts to use physical theories and models to
understand complex systems. Ill-posedness, numerical com-
plexity, nonlinearities, simplifications, and an incomplete
understanding of the human-machine interface greatly
devalue this exercise. Nevertheless, some physical under-
standing of the complex system to be controlled is essential
to train the neural networks discussed in the following
sections. As an example, we show in appendix B that, theo-
retically, the laser beam and spatial filter can be made dimen-
sionless. This discovery suggests that the training sets for the
neural networks can be supplied in dimensionless form,
thereby making the neural networks trained by them appli-
cable to more general laser-beam, spatial-filter combinations.

Linear Mappings and Table Lookup

The process of automating the alignment of a spatial filter
can be considered as executing a sequence of nonlinear map-
pings. Linear mappings and transformations (ref. 13), by
contrast, have numerical evaluations represented by the
matrix equation

b = Wa	 (1)

where a and b are column vectors with numbers of compo-
nents m and n, respectively, and W is an n by m matrix. The
use of equation (1) in science or engineering implies a linear
system or a system that can be linearized.

One possible solution to a mapping problem is to use a
table lookup procedure to compare an input pattern with a
representative collection of input patterns and to interpolate
in a table of input-output pairs to determine the output con-
trol information. The major drawback with table lookup is
that entries in the table are considered to be independent.
The training and memory requirements can be quite large.

As an example, consider one of the laser-beam, spatial-filter
combinations used for the work reported herein.

This combination consisted of a 30-mW helium-neon laser
and a spatial filter with a 20x microscope objective and
a 10-µm pinhole. As stated before, the total ranges of the
X, Y, and Z mechanical motions were contained in a volume
approximately 300 pm by 300 µm by 1000 M. The mechanical
resolution in X, Y, or Z was about 1 pm, so there were about
90x106 distinct positions. Each position had a beam pattern.
Labeling the beam patterns based on the 1024-pixel, 8-bit
characterizations of the beam patterns (the resolution used in
appendix B for visualization) would require 92.16 GB of
address space. Storing, for example, a 2-bit representation of
the control to be selected for operation (X, Y, or Z) would then
require an additional 23.04 GB of storage space. For
adequate table lookup results, the whole range of input space
would have to be covered with the stored alignment records.

The obvious objections to this method are that no human
operator would ever collect 90x106 training examples for any
system and that memory requirements are unacceptably
large.

The table lookup method can be modified to use less data.
The modifications, which are described in terms of a lookup
table space, wherein input vectors are called points, follow:

(1) Eliminate points that have zero probability.
(2) Divide the space into volume elements that are sized

to be visited with equal probability.
(3) Determine an exemplar for each volume element.
(4) Develop a lookup algorithm that associates a point

with its exemplar.
(5) Read out the output pattern associated with the

exemplar.
(6) Interpolate between outputs, particularly if a point has

a nonzero probability of being associated with more than one
exemplar.

The objection to using this procedure is the same as for
using theories and models: detailed, specialized knowledge
is required.

Artificial Neural Networks

Introduction to neural networks. — Neural networks are a
new approach to a very old problem: extracting and imple-
menting the mapping or transformation of a set of input vec-
tors into a set of output vectors. That operation is expressed
in functional form as

b = f(a)	 (2)

The components of an input vector a might consist of sensor
values and results of operations on sensor values from times
in the past, components of the output vector b or results of
operations on components of the output vector b from times



in the past, and model-derived estimates of future compo-
nents of b. The components of an output vector b might con-
sist of control settings and sensor values. The function f
represents a general combination of processes. In a sense,
discovering or implementing f is a primary task of both
instrumentation and controls personnel. However, measure-
ment errors and noise change the task somewhat: the objec-
tive is to discover or to implement an f that minimizes the

mean-square-error E between the mapping or transformation
and the set of target output vectors. In general, we want to
minimize the expression

E = b — f (a) 2 )	 (3)

where < > represents an expectation value.
The discipline of artificial neural networks does not yet

have standard terminology (ref. 14). However, neural
networks can be viewed as special cases of networks of inde-
pendent, parallel operating, interconnected processors. The
term "parallel distributed processing," which is the title of a
fundamental reference (ref. 3) also describes the discipline.
This report adopts the operational definition that is shown in
figure 4.

Artificial neural networks are biologically inspired
(refs. 15 and 16). The terms "synapse," "axon," and "neu-
ron" are used occasionally as in figures 4 and 5. A neuron, or
node, has weighted inputs or synapses. In software simula-
tions these weights, by convention, are assumed to belong to
the node, and they are part of its local memory. A node sums
its weighted inputs. In addition, during training the node can
be allowed to add a bias term to that sum. A major change
from the linear transformation is that the output or axon value
is a nonlinear function of the weighted sum. The important
property of the nonlinear function (sometimes called an acti-
vation function) is that the network generates internal degrees
of freedom. The nonlinear function used in the work

b	 b2 '*	 OUTPUT VECTOR

INPUT NODES
(NEURONS)

a,	 a,	 a,f INPUT VECTOR

Figure 4.—Linear transformation described by neural network
terminology.
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Figure 5.—Concept of optical realization of figure 4. One output
node shown.

reported herein is deterministic, or reversible. The output
(axon value) usually is transmitted to other nodes, but it also
can be fed back as a weighted input to its own node. It can
have external inputs for resetting it or for applying external
data. Nodes can fire or put out new information synchro-
nously or asynchronously. Interconnections can be fairly
arbitrary.

The internal degree-of-freedom generating ability is
responsible for the very complex behavior of most nonlinear
systems. A nonlinear system with a few input variables acts
like a linear system with a much larger number of variables.
The nonlinear mechanics or fluid dynamics of these systems
is complex because of this phenomenon (ref. 17). Feed-
forward networks use this phenomenon to perform the
general mappings given by equations (2) and (3). The sum-
mations and nonlinear activations constitute an engine, and
the weights constitute the knowledge, control information,
and program for the engine. Calculating the weights effi-
ciently, accurately, and stably is a primary topic of research
and development. This report is concerned with the use of
commercially available neural network systems to learn and
direct optical alignment. The algorithm used to learn the
training set is a weight-calculation algorithm.

The neural-network generalization of the linear mapper
discussed previously is called a feed-forward network. Such

a network (fig. 6) is arranged in layers of nodes, where a
layer receives inputs only from the previous layer and trans-
mits outputs only to the next layer. In addition, unlike the
linear mapper, the feed-forward network uses multiple layers.
There are a number of modifications of this architecture in
use, but the architecture just described allows us to explain
the general value of neural networks.

To cause a neural network to learn, the training program
presents input and output vectors to the network one pair at a
time. For each iteration, the network is allowed to adjust the
connection weights using its particular weight-calculation
algorithm. The abstract objective is to determine weights W

OUTPUT CONNECTIONS
(AXONS)

SUMMING LAYER OF NODES
(NEURONS)

WEIGHTED INPUT CONNECTIONS
(SYNAPSES)



f (w„a, + w„a, + bias)
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t-
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(a) Network.	 (b) Sample neuron in
hidden layer.

Figure 6.—Feed-forward artificial neural network.

that no longer require adjustment as the entire set of input/
output pairs is applied.

Nonlinear differential equations or nonlinear difference
equations (for the discrete time case) can be used to describe
neural networks as functions of iteration number. Equa-
tions (2) and (3) for stable mappings (supposing such map-
pings exist) should be changed to the equations

b = g(a,W)	 (4)

and

E = ( b — g(a, W)I 2 )	 (5)

where W is an array of weights whose values are to be deter-
mined by training. If the weights are varied or stepped,
a differential equation or difference equation replaces equa-
tion (4). The differential equation is given by

db = g(a, 
It
, W, dd , b)	 (6)

where both a and W are allowed to vary with the iteration
number. When b is fed back as an input to the neural net-
work, it becomes an argument of the nonlinear function g.

The problem stated here is an inverse problem; it is gener-
ally ill-posed even for linear systems such as those encoun-
tered in computed tomography (ref. 18). Fortunately, the
accuracy or uniqueness of the weights is not important for the
alignment problem as long as they generate correct output
vectors.

There are two approaches to developing neural-
network architectures and weight-calculation algorithms.
The first and oldest approach is phenomenological: take
clues from biology and cognitive science (the psychology of
learning). This approach is very much aligned with artificial
intelligence. An example is the Adaptive Resonance Tech-
nique 2 (ART2) that we used in our alignment studies and
which we discuss later. References 3 and 15 discuss the psy-
chological and biological viewpoints thoroughly.

The second approach is to apply techniques from the
dynamics of nonlinear systems (ref. 17). The most common
approach defines an energy function (sometimes
referred to as the "cost function” or "Lyapunov function") in
terms of the weights. The objective is to design or discover
an artificial neural network and energy function where the
energy function has minima. Modified steepest-descent tech-
niques are used to determine the weights that correspond to
the energy minima. Feed-forward networks are trained
by minimizing an energy defined as the mean square
error between the generated outputs and the training outputs
as in the expression

	

_ 1	 (b(W) — b,)'_ 
E(7)

	

2	 N

where the sum is over the N samples in the training set. The
vector bt is a training vector, and the vector b is the actual
output vector resulting from weights W and a training input
a t . Topologically, E is imagined to be a surface in a space
whose dimension equals the number of weights. The surface
has dimples or valleys that represent the minima.

There are two possible complications. The first is that E
can have multiple minima, so a solution for W may not repre-
sent the lowest of the minima. The second complication is
that the algorithm may not converge, and the solution may
oscillate wildly. Therefore, the trajectory of a point in the
weight's phase space (the space of W and dW/dt or W and its
increments) may be chaotic (ref. 19). Artistic adjustments are
sometimes necessary to control these complications during a
training procedure. The dynamics of nonlinear systems, in
general, has become a topic of major research interest. The
energy minimization method is the basis for the back-
propagation algorithm. That algorithm was used for our
alignment study and will be discussed later.

The error (eq. (7)) cannot be expected to decrease to zero
for an actual training set, even when convergence is to the
lowest minimum. This phenomenon can be understood in
that training sets, in general, are characterized implicitly by a
joint probability function or joint distribution function P(ba),
where the concatenation ba means that the components of b
and a are the arguments of P. The use of this function
accounts for the facts that (1) human generators of input/
output pairs do not execute exactly the same control actions
b every time they encounter essentially the same input pat-
tern a and (2) that there are groups of scattered input patterns
a which result in essentially the same control action b.

Statistical analysis of training sets can be very compli-
cated. Inputs are not necessarily independent of one another;
outputs are not necessarily independent of one another. Joint
probability distributions of components of a and b are not
necessarily normal. Nevertheless, neural networks trained
with statistically simple training sets perform in a statistically
optimum manner (ref. 6). That is, the neural networks will



(1) Minimize the mean square error of equation (3)

(2) Exhibit Bayesian performance (ref. 4)

(3) Produce outputs with the maximum likelihood
of being correct (ref. 4)

One way to perform a statistically simple test of a neural
network is to generate training sets where the components of
an input a belong to one of several multivariate normal distri-
butions (ref. 20). The bivariate normal density for an input
vector a = (a l , a2) is given by the equation

	

1	 1

	

f(a 1 +a2) =	 2 exp —
2TC6 1 62 1 — p	 2(1 — P2)

( a 1 — u 1) 2	 (al — u l)( a2 — u2)
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	 2	 — 2p
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where 6 1 and 62 are the standard deviations of the two com-
ponents, u  and u 2 are the means of the two components, and
p is the correlation coefficient. The function f is a probability
density function.

Multivariate normal distributions for any number of com-
ponents are defined in reference 20. Output vectors can be
defined in at least two ways. A separate output node can be
associated with each distribution, or the output vector can
contain a binary code of the distribution. For example, the
first and fourth distributions of a four-distribution training
set could be designated with output vectors (1, 0, 0, 0) and
(0, 0, 0, 1) or with output vectors (0, 0) and (1, 1). Training
consists of associating each input vector with its most prob-
able distribution and executing one of the training approaches
discussed earlier. Testing is based on the recognition that
the normal distributions overlap. An input vector has a non-
zero probability of belonging to any distribution. One test
procedure would be to

(1) Use a random number generator to select the compo-
nents of the input vector a.

(2) Compute the probability densities that a belongs to the
various distributions.

(3) Select as Bayes winner the distribution associated with
the largest probability density.

(4) Use the neural network to select a distribution.
(5) Count a difference between the neural network winner

and the Bayes winner as an error.
(6) Repeat this process a large number of times.
(7) Compare the measured number of errors with the num-

ber predicted from the Bayes rule.

If P(a/i) is the probability density that a is associated with

the winning distribution i, then the predicted number of
errors after a large number of tries is given by the sum of
ratios

II	
P( aj

1)	 (9)
Y, iP(alj)

The first sum is over a large number of randomly selected
input vectors a. The Bayes rule is applied by assuming that
the distributions are present with unity probability. We com-
pute the probabilities that a is caused by each distribution,
and we select as winner the distribution with the largest prob-
ability. We then use the Bayes rule to compute the probabil-

ity that given a, the winning distribution is i. We subtract this
result from unity to calculate the probability that the losing
distributions would be caused by a. This process is repeated
for a large number of a values. The sum rounded off is an
estimate of the expected number of errors consistent with the
Bayes rule.

One of the neural network development packages used
(ref. 6) provides demonstration examples of this procedure
for several neural network architectures. In every example,
the performances of the neural networks approach that of the
Bayes classifier. However, the training sets used for optical
alignment will be more complex than those used for these
tests. There will be correlations between different output
components as well as different input components. Distribu-
tions frequently will not be normal. The networks will gener-
ate outputs not in the original training set. Nevertheless, we
make the following general comments without formal
mathematical proof.

Neural networks or systems of neural networks exist to
perform the mappings defined by the minimization of equa-
tion (3). The most important property of these networks is
their ability to generate internally, in some sense, enough
degrees of freedom to meet the linear system's requirement
for linearly independent exemplars. These neural networks
are trained by an iterative procedure that minimizes an
energy function. This energy is defined in terms of a training
set of exemplars; it may be the mean square error between
the exemplars and the outputs. For automated optical align-
ment, the training set is generated by a human operator. The
training is influenced by the idiosyncratic and stochastic
behavior of that operator. Hence, isolated output examples of
the neural network may be erroneous. We must design a sys-
tem to depend on the average behavior of a neural network
and to be resistant to, or recoverable from, occasional bad
directions. Because neural networks are complex nonlinear
systems, hard to interpret, sometimes chaotic behavior might
occur during the training process.



The use of neural networks to implement mappings
appears straightforward at this point. However, once the net-
work is trained, there is still the problem of executing the
electrical and mechanical alignment. Before that problem
can be tackled, however, and even before the network can be
trained, the architecture of the training set itself has to be
designed. What clues does a human operator use to select an
alignment step? What output information is necessary to
execute the alignment step? What output information is used
to select a next alignment step? Clearly, knowing something
about optics and optical alignment is important. Neural net-
works cannot replace expert knowledge entirely. The design
of training sets for optical systems, and for optical alignment
in particular, is discussed in the next section.

Although Maxwell's equations are linear in the electric and
magnetic fields, classical optics produces many nonlinear
processes. Examples are

(1) Gain saturation and feedback in optical cavities
(2) Nonlinear constitutive relations
(3) Nonlinear sensors, detectors, and recording materials
(4) Ray tracing
(5) Nonlinear practices in data handling
(6) Alignment, adaptation, and control
(7) Acousto-optic and electro-optic switching
(8) Photometry and physiological optics
(9) Nonlinear mappings from physical causes to optical

effects

Nonlinear processes complicate the use of optics for study-
ing linear phenomena. One viewpoint of neural networks is
that they make nonlinear activities "transparent to the user."

The optical alignment process is a very good test case. It
has the potential to involve all the nonlinearities mentioned
previously. This process also tolerates the property of a
trained neural network being correct on average. Because
alignment is accomplished in a series of steps, a single erro-
neous step need not destroy the entire process.

Back-propagation-trained networks. —Back propagation
refers to a variety of algorithms used to train feed-forward net-
works of the kind shown in figure 6. These algorithms find the
minimum of an energy function expressed in weight coordi-
nates. The method is essentially an incremental steepest-
descent search. Damping in the form of so-called momentum
terms, smoothing terms, or averaging is added to prevent oscil-
latory, or even chaotic, trajectories.

The energy function mentioned is the mean square error
between the actual outputs of a feed-forward network and the
corresponding training outputs. A good derivation of the
unmodified algorithm is provided in reference 4. This algo-
rithm treats weights in the output and hidden layers slightly
differently. The unmodified algorithm is executed one train-
ing record at a time. The notation varies from reference to
reference. The algorithm for updating the weights connect-

ing the output layer with the adjacent hidden layer is given by
the equations

wj = w +(xS i /j 	 (10)

where

Si = Msi) ( bli — bi )	 (11)

and where s i is the total weighted input at output node i, 1j is
the output of node j in the adjacent hidden layer, f is the non-
linear activation function, bi is the output of output node i,

bii is the training output for node i, the superscript t is an it-
eration number, and a is the learning rate. Note that Si
depends on the derivative of the error. The total weighted
input to output node i can include a bias term. The bias term
is thought of as a weight times a unity input.

Equation (12) redefines S for the calculation of weights for
the adjacent hidden layer and subsequent hidden layers:

N

Sk = f ' ( Sk^	 siWik	 (12)
i=1

The 8's in the sum are from the previous layer; the weights
are the old (nonincremented) weights from the layer above.
Note that the learning rate a might vary from one layer to the
next.

The application of the algorithm is summarized as follows:

(1) Apply an input vector.
(2) Calculate the weighted inputs s i to the nodes of the

next layer.
(3) Use the activation function to calculate the outputs Ii

of the nodes.
(4) Calculate the derivatives f '(s) of the activation func-

tion at each node.
(5) Continue until calculations produce an output vector b.
(6) Use equations (10) and (11) and the training vector b,

to calculate Si and the increments in weights.
(7) Substitute the Si calculated in step (6) into equation (12)

to calculate the 6k in the next layer.
(8) Substitute the Sk calculated in step (7) into equation (10)

to calculate the increment in weights.
(9) Repeat steps (7) and (8) to propagate the calculation of

weight increments backward through the network.
(10) Update the weights and execute the process for the

next record.

This bare algorithm may work in some cases, but it is
likely to lead to erratic behavior. One solution is to calculate
the weight increments for all training records and to average
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Figure 7.—Misalignment coordinates for a helium-
neon training set.
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these increments before updating the weights. This approach
constitutes a steepest-descent search for an energy involving
the entire training set and is the correct approach implied by
equation (5). A second solution is to add a momentum term
proportional to the last increment:

r	 r — t	 (	 )7 ( wii — w,
i
	 13

The purpose of these steps is to prevent the weight space
trajectory from deviating drastically from the average; the
trajectory is pulled toward the trend established by the previ-
ous increments. The commercial package identified by refer-
ence 6 uses a slight modification of the momentum principle.
The previous increment is multiplied by a coefficient p, and
the learning coefficient ot is multiplied by 1 — R. This tech-
nique is called smoothing, and p is called the smoothing
coefficient. The commercial package in reference 5 was used
with momentum, and the commercial package in reference 6
was used with smoothing.

When it did give adequate results, the back-propagation
algorithm was slow to converge. Frequently, between 10 000
and 100 000 passes through the training set were used. The
parameters were changed during training. Training might
start with or = 0.4 and P = 0.8 and end with cc = 0.05 and
0 = 0.4. The back-propagation algorithm was able to learn
individual alignments fairly well, but was unable to perform
well when trained with the complete training sets.

Counter-propagation networks.—The counter-
propagation network (CPN) (refs. 6 and 10) attempts to use the
neural network approach to map equation (2) by table lookup.
One version (ref. 6) uses a neural network to adaptively learn
a table, perform lookup, and interpolate. CPN embodies its in-
ventors' philosophy of how table lookup should be executed.

The objectives and operations of CPN can be understood
by adopting a non-Euclidean geometrical viewpoint. We
start with a set of records of the type R = (I, T). The input
vector I has seven elements for the spatial filter example, and
the training vector T has five elements for the spatial filter
example. Now, imagine that we have a seven-dimensional
Cartesian coordinate system. The input vectors can be plot-
ted in this space, and a particular grid point in this

hyperspace may or may not represent a realistic input vector.
This problem was discussed in the Linear Mappings and
Table Lookup section. Figure 7 shows mechanical align-
ment errors for members of a training set. Now, imagine that
we perform the following operations:

(1) Choose a volume in the space of I that contains the
training set.

(2) Note that the volume will contain a finite number N of
grid points and that these points may or may not be close to
training set vectors.

(3) Now, distort the Cartesian grid in the volume.



OUTPUT VECTOR

GROSSBERG NODES

GROSSBERG WEIGHTS

ROHONEN NODES

ROHONEN WEIGHTS

INPUT NODES

(4) Pull each grid point into the midst of a group of input
vector points so that

(a) An input vector belongs to a grid point if its
Euclidean distance from that point is smaller than its
Euclidean distance from any other point.

(b) Each of the N grid points has about the same
number of input vectors.
(5) Now, average the training vectors T associated with

each of the N sets of input vectors tied to a grid point and
associate that average with the grid point.

Steps (1) to (6) create a table. To perform a table lookup

(1) Generate an input vector L
(2) Determine the nearest grid point by Euclidean

measure.

(3) Read the training vector average entered for that grid
point.

The reading in lookup step (3) is the estimate of the
mapping.

This procedure allows only N levels: one for each grid
point. Interpolation can be used to eliminate this quanti-
zation:

(1) Determine the n nearest grid points and their Euclid-
ean distances Si.

(2) Evaluate a weight factor for each grid point given by

e; = 1 -	 1 r	 (14)
Si	 Si

where r is usually equal to "1."
(3) Average the entries at the grid points by using the

weight factors in step (2).

The interpolated value in step (3) is now the estimate of the
mapping.

Essentially, CPN is a neural network that executes these
operations. If we use the geometrical metaphor, each grid
point is represented by a node, or neuron, in a layer called the
Kohonen layer as shown in figure 8. The components of the
grid point associated with a node are represented by a weight
vector W. Every Kohonen node is fully connected to the
input layer because each node must measure its Euclidean
distance JW — ^ from the input vector. The average values of
the training vectors associated with each Kohonen node are
stored in a second layer called a Grossberg layer. The num-
ber of nodes or neurons in a Grossberg layer equals the num-
ber of elements in the training vector T and output vector O.
Each Grossberg node is fully connected to the Kohonen
nodes (as in fig. 8), and each connection is weighted.

tt	
t--*- INPUT VECTOR

Figure 8.--Counter-propagation network (CPN).

The Grossberg layer is a linear layer. Each node has a
vector U of N weight values: one weight value for each
Kohonen node. The Grossberg weights corresponding to a
particular Kohonen node are, of course, the averaged compo-
nents of the training vectors associated with that node. In the
noninterpolative mode, the outputs of the Kohonen nodes are
zeros except for the winner (the least Euclidean distance
node), which produces a "1." In this mode, the dot product
of the vector Z of the Kohonen outputs with each weight vec-
tor U of the Grossberg nodes produces the correct output. In
interpolative mode, several weighted winners are enabled;
their outputs are the signals e; defined earlier. The output of
a Grossberg node is then an average of more than one of its
weights.

The counter-propagation network is trained in two stages.
The Kohonen layer is trained first; then the Grossberg layer
is trained. Or in geometrical terms, the space of the input
vectors is distorted first; then the training vectors associated
with a grid point are averaged. Each training process is
iterative.

The Kohonen layer is adapted to the space of input vec-
tors. Each Kohonen node starts out with a weight vector.
The grid is not necessarily Cartesian as in the earlier concep-
tual discussion. The Euclidean distances JW — 11 are calcu-
lated for each node, and the minimum is selected as winner.
The winner is allowed to change its weights slightly
to reduce the distance slightly. This fractional change is the
winner's learning rate a. This process can be continued, and
the space will be distorted. However, there is a problem.
Some grid points might not be close enough to an input vec-
tor to ever modify the grid points' weights, and contrary to
the objective, some nodes might end up with many more than
their share of input vectors. This "unconscionable" result is
prevented by adding a property called conscience. The win-
ning rates of the nodes are monitored, and a node is shut
down if it has too large a winning rate. Other nodes can win
and adjust their weights. A node is not actually turned off.
Instead, bias terms are added to the distances to increase or
decrease them artificially, thereby imparting a win-rate-
dependent disadvantage or advantage.
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Once all the Kohonen nodes are winning at about the same
rate without the need for conscience, it is time to train the
Grossberg layer. In the package used for this work (ref. 6),
Grossberg training occurs continuously. A fraction a of the
difference between the weight and the corresponding compo-
nent of the training vector is added to the weight. The coef-
ficient a, which is called the Grossberg learning rate, is kept
large while the Kohonen nodes are learning. The Grossberg
nodes then effectively flip from one training value to the
next. Once the Kohonen nodes have learned, the learning rate
a is reduced to a very small value. The Grossberg weights
for a particular Kohonen node then tend to the average of the
components of the member training vectors. For CPN, the
effectiveness of the learning process is determined from a
mean square error.

In general, the two architectures performed equally well,
or equally badly, given the same training sets. CPN is inter-
esting because its table lookup, geometrical viewpoint is dif-
ferent from a viewpoint discussed previously. The previous
viewpoint was that neural networks learn general mappings
because the nonlinear activation function effectively trans-
forms the training vectors into linearly independent forms.
The CPN viewpoint is one of learning discriminants (ref. 4).
A point that is enclosed by a volume defined by discriminant
surfaces in some space is considered to be associated most
likely with the properties of that volume. The properties in
CPN are contained in an average training vector. Another
concept is transforming a space to bring spatially separated
vectors into proximity (ref. 4). In reference 4, the layers of
the neural network move different input vectors with essen-
tially the same output into the same volume of some multi-
dimensional space.

Preelassifiers and systems of neural networks. — From a
practical viewpoint, acceptable alignments of the laser-beam-
smoothing spatial filter required using a preclassifier as a step
in creating a system of neural networks. These systems are
discussed next.

Preclassifiers use so-called unsupervised learning to group
vectors into classes; that is, preclassifiers learn classes of
vectors without being taught by example. This means, of
course, that a classification procedure must be built into the
neural network architecture from the beginning. A Euclidean
preclassifier was used for this work.

The Kohonen layer in CPN is an example of a Euclidean
distance preclassifier. Each class has an exemplar, and each
class member has a minimum Euclidean distance from the
exemplar of that class. Learning consists of setting up the
exemplars for the chosen number of classes, and interroga-
tion consists of classifying a set of vectors. The Kohonen
layer adaptively moves grid points (exemplars) in the space
of the input vectors until the classes (Kohonen nodes) are
uniformly occupied.

For the work discussed herein, classification ended up
being based mainly, but not entirely, on the states of the digital
components of the input vectors. Those components are three

input nodes for the control operated previously and one node
for the pattern class. The control operated previously is none,

Z (focus), X, or Y. The pattern class is region A or B. One sys-
tem, which was trained with the helium-neon training set, con-
tained 13 classes. Those classes are identified in table I.

The training sets constructed from the 13 classes were
used to train 13 BPN's. These feed-forward networks con-
tained a seven-node input layer for the seven-element input
vector, one seven-node hidden layer, and a five-node output
layer for the five-element output vector. A sigmoidal func-
tion, which was used as the nonlinear activation function, is
defined by the equation

f(X) - 1 + 

le
-Ax	

(15)

where A determines the gain. As A increases, the sigmoidal
function approaches the unit step function. Sigmoidal func-
tions were used for all the BPN mappers discussed in this
report.

The commercial package identified in reference 5 per-
formed very well once it was trained. Training times for this
all-software package were very long. Overnight training
sessions were required for some networks. This package is
useful for learning about neural networks. However, the sys-
tems discussed next were trained more rapidly with a
coprocessor-based system (ref. 6).

Back-propagation-trained network and counter-
propagation network using an Adaptive Resonance Theory 2
Preclassifier. — The Adaptive Resonance Theory 2 (ART2)
preclassifier produced classes for the helium-neon training
set that did not differ drastically from the classes produced by
the Euclidean preclassifier. These classes are tabulated in

TABLE l.—CLASSES FOR EUCLIDEAN

PRECLASSIFIER HELIUM—

NEON TRAINING SET

Class Control

operated

last

Pattern

(region)

Number of

training

records,

1 NONE' A 15

2 Y A 78

3 z A 10

4 X A 45

5 z A 28

6 z B 49

7 z A 19

8 Y B 20

9 X B 19

10 NONE" A 16

11 z B 4

12 NONE" A 7
13 X A 37

'Each training record consists of one input vector and one
output vector.

"Beginning of alignment.
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table II. A comparison of table I with table II shows, for exam-
ple, that the Euclidean preclassifier puts all the region A, previ-
ous operation = Y records into a single class of 78 records;
whereas ART2 creates two classes where one class has
57 records and the other has 21 records. Both preclassifiers cre-
ate three classes for region A, previous operation = none records.
The distribution of records between the three classes is slightly
different for ART2 and the Euclidean preclassifiers.

ART2 (refs. 6 and 12) monitors how well input vectors
agree with those supplied in the original training set. It also
embodies a significant philosophy of neural networks. This
philosophy is likely to be important for optical applications;
therefore, ART2 will be discussed briefly even though it was
used only as a preclassifier.

TABLE 11.—CLASSES FOR ART2

PRECLASSIFIER HELIUM—

NEON TRAINING SET

Class Control

operated

last

Pattern

(region)

Number of

training

records'

1 NONE" A 15

2 Y A 21

3 Z A 20

4 Z A 31

5 X A 63

6 Y A 57

7 Z B 53

8 Y B 20

9 X B 19

10 NONE" A 11

11 NONE" A 12

12 X A 9

13 Z A 6
,Each training record consists of one input vector and one

output vector.
"Beginning of alignment.

The following comments might be useful in reading the lit-
erature about the Adaptive Resonance Theory (ART). The
terminology used to describe ART2 in the references differs
from the terminology used so far. As previously mentioned,
nonstandardized terminology is a problem in this field, which
only recently has been used for applications. ART is derived
from ad hoc efforts to combine theories from biology and
cognitive science with artificial neural networks, and its sig-
nificance may be a little hard to understand by those not
versed in neuronal biology. In addition, some people (such
as biologists) may dislike the use of biological terms for arti-
ficial systems.

For example, in ART a layer of nodes with adjustable
weights is called an adaptive filter rather than a layer of neu-
rons, and the nodes are said to use competitive learning.
Competitive learning means that only one node in a group
wins the right to learn during an iteration. In that sense, a
least-Euclidean-distance criterion is competitive learning.
ART attempts to incorporate or emulate in a single system
the formation of a properly scaled short-term memory from

an input, the comparison of that short-term memory with
long-term memory (bottom-up weights), the selection of a
best long-term memory, the generation of an expected value
for the short-term memory from long-term memory (top-
down weights), a comparison between the expected and
actual short-term memories (vigilance), and a decision based
on that comparison. The decision based on vigilance may be
(1) to accept the triggered long-term memory as correct and
to modify it slightly for the new input, (2) to shut down that
memory node and look for a better match, or (3) to shut
down the active memory nodes and select a new node (class)
in the long-term memory. This process is complicated by
analog computation in several loops, by variable gain factors,
and by stabilities that are established independently, with dif-
ferent time scales, and in different loops. In effect, recall,
comparison, and learning occur continuously — but with dif-
ferent time constants.

ART attempts to add two features not used explicitly for
this project—continuous learning or adaptation and the com-
parison of memory-generated expectations with inputs. The
second feature appears implicitly during the alignment of a
spatial filter as is explained later. In contrast, our systems of
neural networks are designed to learn training sets. Once our
systems are trained, they are used to respond to every vector-
generated input, and they generate an output vector in
response to every input vector. There is no attempt to check
the validity of the output. We assume that a good training set
will be inclusive; therefore, input vectors will fall in the
space of the training vectors. We also assume that a slightly
bad move will not be fatal, but will be corrected in the next
move. These assumptions have proven, so far, to be correct
for spatial filter alignments.

Suppose that there is a chance that the nature of our input
vectors will change. Ideally, we would like to detect that
change and to learn the appropriate input-output combination
as rapidly as possible. The following approach could be con-
sidered. Train two feed-forward networks with the training
set. But for the second feed-forward network, reverse the
roles of the input and output vectors. That is, use the training
set output vector as the input and the training set input vector
as the training vector. During operations, an input vector is
applied to the first network. That network generates an out-
put vector, the output vector is applied to the second network,
and a new vector appears at the system input. Then the two
vectors at the system input are compared. A certain agree-
ment is required as specified by an adjustable vigilance
parameter. The system output is used for control if the agree-
ment is good; otherwise the system is halted and learning is
activated. Agreement, within the error set by the vigilance
parameter, is called resonance. Learning is called adapting
the resonance.

There are significant problems with this procedure. One
problem is that mappings are not one-one. Consider a net-
work that is to learn exclusive OR operation (XOR). Both
(0, 0) and (1, 1) map into a zero output. Which pair should
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be used in the reverse direction? The solution is to iterate the
network twice. Train the reverse network to produce a (1, 1).
Then, a zero output will generate that input. Now, feed the
(1, 1) through again. Everything repeats on the second itera-
tion. The processing loop must be stabilized, and there must
be normalization since signal levels will vary. The nature of
discrepancies must be considered in normalization. A large
error in one node might be a reason to halt the network,
whereas the same total error distributed over several nodes
might not be a reason to halt the network.

Unsupervised learning bypasses a problem with supervised
learning (which is based on input-vector, output-vector train-
ing sets). Systems training with supervised learning will fail
if the training set was not designed correctly or if the training
set does not contain enough examples. Unsupervised learn-
ing or pattern classification, on the other hand, is designed to
accept and learn new patterns. ART is intended for pattern
classification.

There are several ART architectures; ART2 consists of two
versions (refs. 6 and 12). This project used ART2 to assign
the training set records to classes. The vigilance parameter p
was used to determine the number of classes. This param-
eter, which is in the range (0, 1), was compared with an
expression containing the cosine of the angle between vectors
derived from the input and the expected input vectors. Good
agreement between these vectors produces an expression
value close to "1." The value decreases as agreement dete-
riorates. A vigilance parameter that is too large produces too
many classes, and a vigilance parameter that is too small pro-
duces too few classes. The helium-neon training set required
p = 0.98 for 13 classes, and one argon-ion training set
required p = 0.99 for 12 classes. These numbers apply to the
training sets in dimensionless form.

Although ART2 was used primarily for preclassification, it
did detect input vectors that deviated significantly from the
training sets. Processing would halt during interrogation if
the input could not be classified at the training vigilance.
However, this problem did not occur often. The solution was
to reduce the vigilance slightly to allow classification to
proceed.

The classes established by ART2 were used to train both
BPN and CPN networks. In general, a system consisting of
the preclassifier and 12 or 13 BPN or CPN mappers could
learn the training set adequately.

Given a trained system of artificial neural networks, the
remaining task is to test that system with an actual alignment
of the beam-smoothing spatial filter or with a model of that
alignment. Those experimental procedures are discussed
next.

The neural networks discussed here embody the ad hoc or
anecdotal viewpoints of their inventors. However, all the
systems of neural networks tested, regardless of the view-
points of their creators, could learn a training set equally
well, if they could learn it at all. We were unable to train any
single, isolated neural network architecture adequately.

Combinations of neural networks were required to learn the
training sets. We suspect that the design of the training set,
which combined digital and analog representations, may have
been partly responsible.

Experimental Setup and Procedures

Development of Training Sets

Some previous work has been done to develop optical
alignment training sets (ref. 2). The inputs of the first train-
ing sets consisted of the control last operated (X, Y, Z, or
none), the xy position of the beam bright spot on a reflector,
and the average brightness. The outputs consisted of the con-
trol to be operated (X, Y, Z, or none), the new xy position of
the beam bright spot, and an estimate of the new brightness.
The network was expected to learn the following sequence:
zero x and y, reduce the focusing error z subject to the beam
remaining on the reflector, and repeat the process until the
beam brightness equals the previously known maximum.
However, nets trained with this training set became locked in
loops. The trained network would direct an alignment proce-
dure that would return again and again to the same unaligned
condition. The problem was that there are at least two
classes of beam patterns (region A and region B in
appendix A). The control to be operated and the expected
behavior are different for the two classes, even though the
other components of the input vector are the same.

The training set written from a human operator's exem-
plars must include the input clues and control actions actually
employed by the human operator. There is a need to discover
what items to include in the input and output vectors and
when to include them.

Models of how human operators anticipate the outcome of
their actions are applicable to adaptive neural networks. The
difference between the anticipated outcome and the actual
outcome is important in adapting the alignment procedure to
different setups. The personal models of a particular human
operator do not even have to be scientifically rational as long
as they work. Defining personal models probably would
involve an interview process similar to that used in develop-
ing the rules for an expert system.

If it is possible for the input and output vectors to include
all the components in the following lists, an adequate neural-
net-controlled alignment should be possible.

The input vector should contain:

(1) Previous control action and consequences
(2) Beam coordinates
(3) Beam pattern
(4) Beam brightness
(5) Expected consequences of control actions
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The output vector should contain

(1) Control action to be taken
(2) Characteristics to be set (beam coordinates, beam pat-

tern, or beam brightness)
(3) Characteristics to be estimated (again, the beam coor-

dinates, beam pattern, or beam brightness)

The use of neural networks that incorporate item (5) from
the input vector and item (3) from the output vector is part of
intelligent adaptive control and is an area of substantial ongo-
ing research and development (ref. 21). Input item (5)
requires that physical or procedural models be incorporated
in the network, thereby somewhat compromising the concept
of a human-trained-only system of neural networks. The
work reported herein uses only a subset of the features in
these lists.

Training set design for optical alignment. —A major chal-
lenge when using neural networks is the design of an
appropriate training set. This requirement demands an inti-
mate knowledge of the application. In our study, the devel-
opment of an approach to designing training sets for optical
alignment involved some trial and error. Only the final
designs are discussed here.

First, consider the input vector. The previous control
action and consequences are represented by a three-
component vector containing zeros and ones. The possible
values are (0, 0, 0) for the start of an alignment (no previous
control action), (1, 0, 0) for previous operation of the z-axis
or focus control, (0, 1, 0) for previous operation of the x-axis
control of the pinhole position, and (0, 0, 1) for previous
operation of the y-axis control of the pinhole position.

The beam coordinates consisted of the x and y positions of
the brightest point on the beam. These coordinates were
measured relative to crosshairs drawn on the diffusely
reflecting card. Initially, the pinhole was removed, and the
beam was centered on these crosshairs. This step, as men-
tioned, is not part of the alignment procedure to be auto-
mated. Then, the pinhole was inserted, and the spatial filter
was aligned carefully. The focus control was backed off
about the same distance for each alignment, and the X and Y
controls were set at random values. This procedure initial-
ized an alignment ((0, 0, 0) in the previous paragraph).

Figures 7 and 9 show data for which the beam positions
were not measured so carefully. Hence those data show more
scatter and required more steps per alignment than subse-
quent training sets. It usually is very easy to measure the
beam position in region A because the bright spot is typically
surrounded by diffraction rings (fig. 3). The only exception
is early in the alignment when the beam is faint and internal
reflections can be mistaken for the main beam. Beam coordi-
nates are sometimes difficult to define in region B. The
intensity distribution can appear to be fairly uniform yet not

x Alignment error, µm
(a)z Alignment error versus x alignment

error.

0
-300	 –200	 0	 200	 400

y Alignment error, µm
(b)z Alignment error versus y alignment

error.
Figure 9.—Misalignment coordinates for one

alignment.
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symmetrical. It can have a wispy texture. Sometimes, the
measurement of a beam coordinate is little more than a guess.
Most of the alignment steps occur in region A, but the com-
plexity of region B makes the spatial filter an excellent
benchmark component for testing neural networks.

We characterized the beam pattern by only l bit: a zero
for region A and a "1" for region B. There was little point in
using a more complex characterization in the absence of a
machine vision system. Future work will probably require
more complex characterizations, at least in region B, and per-
haps to handle internal reflections at the beginning of
region A.

The beam brightness was measured as follows. The 1 -cm2
sensor of a power meter was centered on the bright spot, and
the average power in microwatts per centimeter squared was
measured after each control action. The base-10 logarithm of
this power was used as the beam brightness in a somewhat
rudimentary attempt to emulate an operator's visual response.
The brightness was then renormalized easily for different
laser powers and for different distances of the reflecting card.

There was no attempt to anticipate the consequences of the
control actions. It is important to ask to what extent human
operators use a personal mental model of the alignment pro-
cedure to anticipate the consequences of their actions. As a
rule, the outputs of that model should be inputs to the neural
network. Expected consequences of control actions should
be investigated as an input for future research.

Now, consider the output vector. The control action to be
taken is again represented by a three-component vector. The
choices are (0, 0, 0) for no action (the appropriate choice
when the alignment is complete), (1, 0, 0) for operation of
the z-axis or focus control, (0, 1, 0) for operation of the pin-
hole's x-axis position control, and (0, 0, 1) for operation
of the pinhole's y-axis position control. The only character-
istics to be set are the x and y coordinates of the beam's
bright spot. This choice is certainly adequate for region A;
region B alignments eventually might require setting some
beam pattern parameters. Typically, the human operator
zeros x or y when the x or y control action is selected. Both x
and y are allowed to increase when the focus or z-axis control
action is selected. They are allowed to increase until the dis-
tance of the beam bright spot from the center reaches a maxi-
mum permissible value; that maximum is the output value
when selecting the focus control.

Beam brightness is the only characteristic to be estimated.
That characteristic was fed back as an input during simulated
alignments of the spatial filter, which required a model-
generated choice for the beam pattern.

The design of a training set record is then summarized as
follows. There is a seven-component input vector consisting
of three previous-control-action nodes, two beam-coordinate
nodes, one beam-pattern node, and one beam-brightness
node. There is a five-component output vector consisting of
three control-action nodes, one beam-position node, and one

beam-brightness node. A training record then contains
12 elements, and training records are sequenced to form
an alignment. Alignments are executed from random
starting positions to form a training set.

Two slight modifications of this design were investigated:
(1) a training set where the change in brightness was used in
place of the brightness and (2) a training set where the beam
brightness and beam coordinates were made dimensionless.

Dimensionless training sets.—Human operators can align
spatial filters for different gaussian beam parameters, laser
powers, distances of the viewing card, microscope objectives,
pinhole diameters, and mechanical designs of the spatial filter
assembly. The dimensionless training set is a very primitive
attempt to emulate this generality. Learning the general pro-
cedure by example is the ultimate goal.

The beam incident on the viewing card is approximately a
single spatial and single temporal eigenmode of the electro-
magnetic field. Generic eigenmodes are represented in terms
of a limited number of variables, and these variables can be
made dimensionless. Unfortunately, the spatial mode
changes during the alignment process. Dividing the align-
ment process into two regions called A and B in appendix A
greatly simplifies describing alignments, but changes still are
particularly noticeable in region B.

There is not a unique dimensionless training record. The
region A and region B models were used to guide the cre-
ation of the following particular example. The dimensionless
variables differ between regions A and B. Control identifica-
tions, such as (0,1,0) are unaffected, of course. The 1-bit
identification of the beam pattern also is unaffected. The
position coordinates X, Y are replaced by

Xf and Yf in region A
( Z"'s)	 (zw,)

and by

Xfz	 z
X and ^' 

f  
Y 

in region B
(w,2 	 (wS DZ)

The dimensionless coordinates for region A follow from
the geometrical optics interpretation discussed in appendix A.
The coordinate is essentially the angular location (X/Z, Y/Z)
of the bright spot normalized with respect to the polar angle
(wS/f ) of the 1 /e2 edge of the beam. The square of this coordinate
also is the argument of the exponential in equation (A13) in
appendix A after applying the region A assumptions to that
equation. The geometrical optics interpretation does not
depend on the wavelength; therefore, the wavelength does
not appear in the definition of the dimensionless coordinates
for region A. The coordinates refer to a single point (the
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position of the beam bright spot); therefore, D also does not
appear in the definition. The pinhole diameter D does affect
the spread of the diffraction ring pattern about the bright spot.

The dimensionless coordinates for region B are based on
equation (136) in appendix B, but are not as easy to define
because the shape of this mode varies significantly. The
dimensionless groupings in the exponential and in the terms
following the exponential are different. The position of a
bright spot, if one occurs, will be determined by the brack-
eted terms. This suggests using the definition

X Z — q2 X xf 2Y J

(16)
w 2 dA 	w2DZ ' w; DZ

Brightness is a sum of the logarithms of factors such
as those in equation (A13) or (A15) in appendix A or in
equation (136) in appendix B. Hence, normalization (or
renormalization) is accomplished by subtracting these loga-
rithms expressed in dimensionless variables. The first step is
to express the beam power P in terms of the maximum axial
intensity at the reflecting card. The intensity averaged over
the 1/e2 diameter also could be used, but the effect is constant
and not important in dimensional analysis. Equation (A2) is
used for this purpose by substituting

Z in place of 5,

R ==>—

w, => Zws / f

The result is given by

2P _ Zws

n	 f	 Imax	 (17)

This result is substituted in equation (A13) or (A15).
These equations are affected by the mechanical misalignment
variables that are unknown during the formation of a training
set. In particular, w' depends on S Z . If we choose SZ = 0 to
form a dimensionless parameter, the quantity to be subtracted
from the brightness elements in the experimental training sets
is then given by

4 T[2 
d12 

1
2

	

log WJ I 4	 Imax

where

dX = ^ and WJ = f
	

(18)

These transformations are done on the experimental train-
ing set; then the transformed training set is used to train the
neural network. The neural network is interrogated by trans-
forming an input vector, presenting it to the network, and
performing the inverse transformation on the output vector.
In addition, scaling transformations can be performed to use
the full dynamic range available from the networks. These
activities were performed by C-language functions, and the
results were stored internally.

Experimental Procedure for Neural -Net-Directed
Alignments

Apparatus and software.—The experimental setup con-
sisted of the beam-smoothing spatial filter (figs. 1 and 2) with
two combinations of the microscope objective and pinhole; a
helium-neon and an argon ion laser together with mirrors to
direct the laser beams to the spatial filter; a diffusely reflect-
ing card with crosshairs for observing and centering the pat-
terns of the laser beams; a power meter for measuring the
average beam power; several experimentally generated train-
ing sets, which were produced by Kenneth E. Weiland (one
of the authors); commercially supplied neural network hard-
ware and software (refs. 5 to 6), and an AT microcomputer.
Figure 10 is a photograph of the experimental setup. Most of
the experimental work was done with the second package
(ref. 6) of hardware and software. That package included a
coprocessor that was installed in a PC/AT microcomputer.

Figure 10.—Typical experimental setup for acquiring training
sets for the spatial filter alignment.
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The package could be accessed at three levels: a menu-
driven level, a C-language function level, and a compiler
level. The menu-driven level supported two algorithms for
learning mappings: BPN and CPN. The C-language func-
tion level supported 17 algorithms. It also could operate
systems of neural networks by passing the outputs of one net-
work to the inputs of the next. The compiler could create
new neural-network architectures. All three levels were used,
but most of the data reported herein were collected using the
C-language function level.

The package identified in reference 5 also was used to
create systems of neural networks. This package relied
entirely on software, and it required long training times.
Nevertheless, its trained systems of neural networks per-
formed as well as those of the other package. The refer-
ence 5 package also offered a different viewpoint. Recall
that the nonlinear activation functions of networks internally
generate the degrees of freedom needed to handle the map-
pings. In contrast, the reference 5 package can perform non-
linear operations on the input vector and supply the results of
these nonlinear operations as additional inputs. In some
cases, a mapping can be learned by a single-layer network
when this procedure is used (ref. 4).

The experimental procedure is straightforward: select a
format for the training set members or records, execute a
large number of alignments recording the training set record
at each step, select a neural network or combination of neural
networks to learn the training set, execute the training algo-
rithm for the neural networks while monitoring some
measure of learning success, note the difficulty and time for
training, and test the effectiveness of training by using the
neural networks to direct the alignment of a spatial filter. The
experimenter also must learn the architectures and program-
ming languages for the neural computers.

This report discusses neural-network -directed, alignments.
In other words, the trained neural network was used to pass
alignment instructions to a human operator. The human
operator executed the instructions and then passed a vector of
inputs back to the neural network. The neural network then
generated another instruction. This experiment is not a
neural-network- controlled alignment of the spatial filter.
Neural-network-controlled alignments of the spatial filter,
with actuator-driven degrees of freedom, are, of course, the
real goal of the overall research and development effort.

Neural-network-directed alignments of a spatial
filter.— Two kinds of experiments were conducted: neural-
network-directed alignments of actual spatial filters and
neural-network-controlled alignments of a model spatial fil-
ter. The configuration of the neural network and of its
parameters were determined by the designer who monitored
its learning progress.

Neural-network-directed alignments were performed on
the same setups used to create the alignment records for

training. The same person who created the training sets also
executed these alignments as directed by the system of neural
networks.

In preparation for the experiment, the spatial filter was
aligned carefully. Then, the focus was backed off typically
about 700 to 900 µm, and X and Y were randomly turned.
The misadjustments of X and Ywere not so large as to make
the beam invisible.

The beam characteristics and previous history were speci-
fied, measured, and used to create input vectors as described
in the Training set design for optical alignment section. The
input vector was then relayed to the computer operator who
then entered the input vector. The AT computer contained the
neural network coprocessor (ref. 6) and its software (refs. 5
and 6). Generally, the system of neural networks responded
immediately with an output vector. Occasionally, an input
vector could not be classified at the same level of vigilance as
was used to prepare the training sets. Then it was necessary
to reduce the vigilance slightly to force classification and
routing of the input vector to a mapper. The output instruc-
tions were then relayed to the person performing the align-
ment as follows:

(1) The control to be operated (Z (focus), X, Y, or none)
(2) If control = X, the new x position
(3) If control = Y, the new y position
(4) If control = Z (focus), the new distance from the center

The control to be operated was selected by rounding off
the first three components of the output vector. The largest
value >0.5 was rounded up to 1.0. A tie was settled by
rounding Z first and X second. All other values were equated
to 0.0. The predicted brightness was recorded for compari-
son with the actual brightness. The predicted brightness was
not used by the person performing the alignment.

The focus adjustment sometimes required a modification
of these output instructions. This modification decreased the
value of the experiment because it required interpretation
after the training was completed. When Z (focus) was
adjusted, the beam could not always be forced to the distance
indicated by the output vector. Hence, action on step (4) of
the procedure was modified as follows:

(4a) If possible, the predicted distance was set.
(4b) If the brightness decreased too much, the distance at

which the beam was barely visible was set.
(4c) If the brightness increased without the predicted

increase in distance, the distance at which the beam stopped
brightening was set.

The person performing the alignment executed the instruc-
tions and then measured a new input vector. Sometimes,
photographs were recorded of the card reflected beam. This
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procedure was continued until the system of neural networks
issued a "halt" or "all-done" output vector defined by
(0, 0, 0) in the first three components.

The person executing the instructions designated the beam
as region A or B and measured the position of the beam
bright spot relative to crosshairs.

The systems of neural networks also were used to align a
model spatial filter as discussed next.

Neural-network-directed alignments of a model spatial
filter. —Some versions of the software contained an option to
complete an alignment from an initial input vector. This
option was used to test the self-consistency of the system of
networks; that is, it determined whether a system of networks
would proceed to an aligned state on the basis of only a string
of its own input and output vectors. In contrast, the align-
ment of an actual spatial filter, as discussed in the previous
section, provided continuous corrections through remeasure-
ments of the input vector. A second application of alignment
completion was used to provide rapid visualization of an
alignment with the procedures discussed in appendix B.

For the self-consistency test, the output vector, the input
vector, and a very coarse model were used to create a new
input vector. The following procedure was used:

(1) The first three components of the new input vector
were created from the first three components of the output
vector by rounding off as defined in the previous section.

(2) If X was selected, the new X value and the old Y value
were selected for the next two components.

(3) If Y was selected, the old X value and the new Y value
were selected for the next two components.

(4) If Z (focus) was selected, then the old X and Y values
were multiplied by the new distance from the center divided
by the old distance from the center, and the results were used
as the next two components.

(5) The beam pattern, given by the next component, was
determined from the brightness. Region B was defined to
occur with an output brightness greater than or equal to 3.39.

(6) The brightness in the new input vector was taken, of
course, from the last component of the output vector.

(7) The new input vector was used to plot the new beam
position and profile.

(8) The new input vector was sent to the system of net-
works for another iteration.

(9) The process was halted when the first three compo-
nents of the output rounded off to (0, 0, 0).

In step (4) there is a danger of division by zero. However, the
original training set and the model training set involved sufficient
errors in zeroing that division by zero never occurred.

Results and Discussion

Comparison of Training the Back-Propagation-Trained
Network and the Counter- Propagation Network

ART2 was used to preclassify the argon ion training set into
12 classes. These classes were then taught to both the back-
propagation-trained network (BPN) and the counter-propaga-
tion network (CPN). The entire training set was rendered
dimensionless, and the individual classes were resealed prior
to training the mappers. Resealing places elements of the vec-
tors in the range (-0.9, 0.9). The two architectures were
equally effective at learning these training sets as can be seen
by examining table III. Table III tabulates mean square errors
for each class for BPN and CPN. The mean square error is
measured after training by performing one more pass through
the training set.

Table IV lists the types of input vectors characterizing the
different classes of table III. The largest mean square errors
appear for the larger classes where X or Ywas the control last
operated. Although the input vectors in a class are character-
ized by the same values of the first three components and of
the sixth component, brightness and positions can vary sub-
stantially. The output vectors can vary in the control to be
operated, the brightness, and the position. Mappers are limited
by a statistically best performance. The fact that two com-
pletely different forms of mappers achieve the same perfor-
mance indicates that this limit has been reached.

BPN and CPN learned the class training sets equally well;
they can be compared according to other criteria. Both net-
works were trained with 12 000 iterations (passes through the

TABLE 111.—COMPARISON OF BPN WITH
CPN: DIMENSIONLESS AND RESCALED

ARGON—ION TRAINING SETS

Class Numbcr of
training

Mean square error

BPN BPN records,

1 50 0.006006 0.004297
2 50 .079269 .072757
3 51 .120310 .123502
4 49 .008547 .002877
5 40 .062840 .084559
6 39 .009437 .000000
7 41 .098409 .090904
8 3 .000000 .000000
9 5 .000001 .000000

10 5 .082420 .081007
11 6 .000002 .000000
12 2 .000000 .0000)0

"Each training record consists of one input and one output
vector.
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TABLE IV.—CHARACTERIZATION
OF TRAINING CLASSES FROM
TABLE III: DIMENSIONLESS
AND RESCALED ARGON-ION

TRAINING SETS

Class Number of
training

Mean square error

BPN BPN 
records"

1 50 NONE A
2 50 Y A
3 51 X A
4 49 Z A
5 40 X A
6 39 Z B
7 41 Y A

8 3 Z B
9 5 X B

10 5 Z B
11 6 Y B
12 2 Z B

'F,ach training record consists of one input and one output
vector.

training sets). The training of CPN was faster, but it required
more frequent adjustments of parameters. The CPN param-
eters (Kohonen learning rate, a parameter called the bias
multiplier, and the Grossberg learning rate) (ref. 6) were
adjusted six times during training. The BPN parameters were
adjusted three times. CPN must be large for large training sets,
whereas the size of BPN does not change. All the BPN nets
had 7 input nodes, 14 nodes in one hidden layer, and
5 output nodes. The CPN network used to learn the third class
contained 2548 bytes. The total sizes of the network files for
the third class contained 1744 bytes for BPN and 4260 bytes
for CPN. One advantage of CPN is its large number
of Kohonen nodes: accuracy increases as the number of
active Kohonen nodes increases. CPN requires somewhat
arbitrary choices of the number of Kohonen nodes to use for
interpolation and of the value of the interpolation exponent r.
The relationship between accuracy and the number and sizes
of hidden layers in BPN is difficult to discern.

Alignment Tests With Neural Network Systems

The test of a trained system of neural networks was
whether that system could direct the alignment of a laser-
beam-smoothing spatial filter. The results of such tests are
discussed in the following section.

The objective for this work is to automate the alignment
and operation of optical measurement systems in inaccessible
aerospace environments. The only acceptable test, therefore,
is to demonstrate alignments of optical components. The fol-
lowing alignment test is representative; it shows some prob-

lems and indicates clearly the required direction for future
work.

The system tested was used to generate tables III and IV.
Figure 11 is a photographic record of the alignment test
(ref. 2) that was recorded with the version of the system that
used CPN as a mapper. A neural network system consists of
a preclassifier and about 10 mappers. CPN was used with the
interpolation technique discussed in the description of the
CPN earlier. Up to six Kohonen nodes were allowed to par-
ticipate in determining the output where the interpolation
exponent was r = 2. These values were chosen by trial and
error tests on the original training set. BPN mappers, which
also successfully directed the alignment of the spatial filter,
do not require these adjustments.

Table V lists the neural net alignment in training set form.
There are three differences between the form of this table and
the form of the typical training set. First, the beam pattern is
listed as "A" or "B" for region A or B rather than as "0" or
"1." Second, the brightness in the output vector generally
differs from the brightness in the subsequent input vector.
The output brightness is predicted, and the input brightness is
measured. Third, the distance predicted for an adjustment of
Z(focus) may not equal the distance achieved because of
limitations in the apparatus as discussed in an earlier section.

Table V can be compared with figure 11, but the following
comments must be kept in mind. Figure 11 contains an
imaging reversal: right is interchanged with left and top is
interchanged with bottom. In addition, saturation makes it
difficult to show the bright spot; therefore, the beam may
appear to be off center when the bright spot is actually cen-
tered. The center of an image must be overexposed to bring
out the ring pattern. The region A versus region B judgment
was made by the human operator actually executing the
alignment instructions. The same human operator recorded
the training sets as stated previously. The person operating
the computer and relaying the instructions was in a different
room.

Figure 11 is to be read in television raster fashion from left
to right and top to bottom. The first three frames of fig-
ure 11, representing the first three lines in table V, clearly are
region A patterns. Multiple diffraction rings are visible in all
three frames. The broken appearances of the diffraction rings
may be caused by spatial variations in the sensitivity of the
film used to record the photographs. They also could be
anomalous diffraction effects from dirt or pinhole imperfec-
tions, because the simple theory applies to a perfectly circu-
lar, undamaged, clean pinhole.

The operator classified the next two frames as region A
frames also. However, the photograph shows them to be
region B frames. Nevertheless, the system of neural net-
works could order essentially correct moves in spite of the
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Figure 11.—Photographic record of neural-net-directed alignment of spatial filter.

TABLE V.—NEURAL—NETWORK--DIRECTED ALIGNMENT IN TRAINING
RECORD FORM FOR ARGON—ION TRAINING SET AND CPN MAPPERS

Input Output

Control Position Pattern Bright- Control Position Bright-

(Z, X, 1) (region) ness (Z, X, 1) (x, y, or
distance)

nessx y

0 0 0 -20.0 -14.0 A -0.744 0 1	 0 0.0 0.560

0 1	 0 .0 -14.0 A .602 0 0	 1 .0 1.338

0 0	 1 •0 .0 A 1.415 1 0	 0 16.0 1.810

1 0	 0 6.0 ,0 A 3.415 0 1	 0 .0 3.504

0 1	 0 .0 ,0 A 3.613 1 0	 0 .0 3.585

1 0	 0 •5 .0 B 3.602 0 1	 0 .0 3.556

0 1	 0 .0 .0 B 3.633 0 0 0 .0 3.574

pattern error. A system of neural networks trained with an
earlier training set did not incorporate pattern information,
yet it could direct complete alignments in many cases. That
system, however, would occasionally get stuck between two
states and oscillate back and forth between them, with some
states in between. It turned out that the second state was
one of a pair of states that had identical input vectors. One
state of this pair produced a region A pattern and the other a
region B pattern. Treating these patterns as identical caused
the system of networks to direct the alignment back to an
earlier state rather than to an aligned state. Hence, we
decided to incorporate 1 bit of pattern information, leading
eventually to the region A, region B theory.

There are two points to be made from the preceding dis-
cussion. The first is that a serial alignment process appears to
be robust in the sense that occasional errors and bad deci-
sions do not destroy the whole process. The second is really
the main point of this whole report: neural nets are intended

to learn by example. They are adapted to learn craftsman-
ship rather than academic knowledge. The need to make
judgments on the basis of physical theories must be regarded
as a defect, and the only way to avoid this defect is to acquire
a training set for a complete system. A complete system for
the spatial filter would consist of a machine vision system
based, for example, on a charge-coupled device (CCD)
camera and frame grabber together with electromechanical
actuators. A complete system would record a training set of
input-output vectors without substantial intervention by the
operator. The operator's only contribution would be skilled
example.

Incidently, a model trained neural network also was fairly
successful at directing the alignment of the laser-beam-
smoothing spatial filter.

Table VI contains an alignment sequence in which BPN
was the mapper. The alignment with BPN started from the
same point as with CPN and followed nearly the same path.
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TABLE VI.—NEURAL—NETWORK—DIRECTED ALIGNMENT IN TRAINING
RECORD FORM FOR ARGON—ION TRAINING SET AND BPN MAPPERS

Input Output

Control Position Pattern Bright- Control Position Bright-
(Z, X, 1) (region) ness (Z, X, 1) (x, y, or

distance)
nessx y

0 0 0 -20.0 -14.0 A -0.744 0 1	 0 0.0 0.442
0 1	 0 .0 -14.0 A .602 0 0	 1 .0 1.354
0 0	 1 .0 .0 A 1.415 1 0	 0 16.0 1.892
0 0	 1 6.0 .0 A 3.415 0 1	 0 .0 3.584
0 1	 0 .0 .0 A 3.613 1 0	 0 .0 3.594
1 0	 0 .5 .0 B 3.602 0 1	 0 .0 3.570
0 1	 0 .0 .0 B 3.633 0 0 0 .0 3.570

The result in the previous section was that BPN and CPN
learned the 12 sets of training vectors equally well. The most
noteworthy observation is that line 4 of table IV contains

an experimental error. In this line, Ywas entered as the last
control operated rather than Z, as indicated by the previous
output vector. The BPN network, which was erroneously
consulted, still directed the correct move. The argon-ion
trained network was trained to precisely zero x or y whenever
one or the other occurred with a nonzero value. The helium-
neon training set is different. That training set was originally
constructed by measuring errors in the mechanical drives
for each alignment step. Crosshairs were not used to zero
the beam coordinates.

Figures 7 and 9 were constructed from this original train-
ing set. Later, the beam coordinates were recovered by mak-
ing a second pass through the training set. The precision of
that procedure was limited, because of the nonlinear effects
in the mechanical drives. The helium-neon training set gives
results closer to human alignment, yet it is less efficient.
Another point is that CPN learned the helium-neon training
set better than BPN. With CPN, we can choose any number
of Kohonen nodes, up to the maximum. In effect, we can
have one node for each training entry. Generally, we need
Kohonen nodes equal to one-third or more of the training
entries.

Concluding Remarks

An important conclusion drawn from this work is that a
neural -network-controlled alignment process should be
trained and tested in its entirety. Ideally, the environment for
training and testing will be the environment for the final
application. Training and testing should be nonverbal. The
alignment expert should view the light pattern on a monitor
attached to the machine vision system used by the network.
The alignment expert should perform alignment actions via
the actuators used by the network, and the training set should
be recorded automatically. Then the trained system should be
tested by how well it completes alignments without human

intervention. Any procedure that programs a network with
weights learned in a laboratory is a weak procedure.

The neural-network-directed alignments of the spatial fil-
ter described herein do not meet this standard. The training
sets were designed to be recorded by the alignment expert,
and they incorporated the human expert's interpretation of
the beam pattern. The alignment tests also required human
interpretation and human translation of the output vectors
into mechanical actions. The discussion of tables V andVI
shows how imperfect interpretations can be.

Nevertheless, the neural-network-directed alignments pro-
duced some important conclusions and some motivations for
additional work. The approach mandated in the first para-
graph of this section is one conclusion. Another conclusion
is that neural-network-controlled sequencers are very robust
in the sense that they tolerate mistakes. The alignment path
has an excellent chance of recovering from an erroneous
move and proceeding to an aligned state. This single prop-
erty is a good reason for continuing the development of
neural networks for alignment.

This work also points out the importance of adaptive sys-
tems. The long-range goal for such systems is the control of
adaptive optics. A more realistic near-term project is to
develop and test a system to correct for misalignment
induced by the environment. Vibrationally induced misalign-
ment is an example. This project is consistent with the pro-
gram objective of automating alignments in remote, harsh,
and dangerous environments and can probably be demon-
strated with commercially available equipment. The objec-
tive is quite different from the spatial filter alignment
discussed in this report. The alignment of the spatial filter
requires proceeding in steps from a misaligned state to an
aligned state. The adaptive system would need to learn,
detect, and correct for transitions from aligned to misaligned
states.

The adaptive resonance theory (ART) discussed in this
report is one system for using unsupervised learning to detect
and classify new states of misalignment. Learning to respond
correctly to these new states of misalignment is the essence
of adaptation. This type of learning is one step removed
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from the training algorithms already discussed. Essentially,
the system of neural networks must learn how to learn the
correct response to the misalignment. The textbook approach
is to have a separate network that contains and implements a
model of learning. A primitive approach might consist of
interrupting the experiment when a new state is detected and
classified. (As discussed in this report, ART2 does this auto-
matically via the vigilance parameter.) A human operator
would then teach the networks a correct response, and the
experiment (actually the network development) would con-
tinue. As mentioned, some people consider the creation of
full adaptation to be the most important area for research.
The use of neural networks to compensate for environmen-
tally caused misalignment in a component used in the field
would be an ideal demonstration project.

This is a very appropriate point to recite some conclusions
about the current resources for implementing neural net-
works. The current software and hardware are slow, and they
have comparatively small memories (in relation to their
human operator counterparts). The project suggested in the
previous paragraph might require or benefit from some cus-
tomized, front-end hardware for rapid acquisition and classi-
fication of misalignment states. It is a mistake, however, to
claim that present neural network demonstrations are not real
because they use digital computers. The neural network
architectures are quite real, but the d;gital computer cannot
take advantage of the ability of groups of identical neurons to
be updated at the same time. The digital computer essentially
updates these neurons one at a time. The conceptual diffi-
culty is easily eliminated by recognizing that true neural net-
works also update neurons one at a time, if a short enough
time interval is selected. Certainly, neural network applica-
tions will benefit from the development of parallel hardware.

The comparison of BPN and CPN suggests some interest-
ing conclusions about resources and technologies. CPN is
fully equivalent to table lookup when the number of
Kohonen nodes or neurons equals the number of entries. The
Grossberg layer performs weighted interpolation. CPN per-
formed as well as BPN for the relatively small training sets
that were used for the experiments.

The advantage of CPN is that the number of weighted con-
nections increases in proportion to the size of the training set,
whereas the number of weighted connections. in BPN
increases in proportion to a power of the size of the input
vector. This effect did not create a problem for the seven-
element input vectors used for the spatial filter alignments. It
certainly will create a problem for input vectors containing
tens of thousands of elements, as discussed in connection
with the use of neural networks for processing optical data.

One conclusion is that CPN is the network of choice for
small data sets. A more important conclusion is that table
lookup may be a significant, superior alternative to neural
networks for a long time. Large memories are becoming
inexpensive and algorithms such as CPN are available for
learning and organizing tables. The role of table lookup in
mapping and directing the alignment of spatial filters was
discussed with figures 7 and 9. Effective competition from
existing technologies is always a factor in developing new
technologies.

Neural networks should have a significant role in process-
ing optical data. A nonlinear network has the ability to
reconstitute a compressed data set. In effect, feed-forward
networks have unlimited internal degrees of freedom that can
store and resupply missing data, provided that the data can be
reconstituted by some definite rule. The neural network, of
course, learns the rule implicitly, transparently, and by
example. It will simply classify the inputs in the Bayesian
sense, at best, if it cannot discover a rule. Neural networks
offer an efficient way to study data compression. The payoff
can be enormous in the aerospace field. A current system
uses holograms that must be recorded through windows. The
hologram must be processed; then the information is meas-
ured comparatively slowly from 29 different views. A data
compression to three views, followed by reconstitution,
would allow holography to be replaced by high-speed elec-
tronic interferometry. The retention of all the views, but with
a few measurements per view, would permit the use of fiber-
optic interferometry, thereby eliminating the need for win-
dows and solving the optical access problem in the aerospace
field.

Finally, a fully automated spatial filter alignment must be
demonstrated. Neural networks are indeed the expert sys-
tems of craftsmanship. They learn by example. Only the
complete system can avoid the need for the verbal intercourse
that spoils this example learning. A person with an optical
systems background will feel very comfortable with neural
networks. It works very well for pattern-based processes, is
well constructed for research in adaptive optics, and has
potential for processing optical data. The development of
supporting technologies and competition from existing tech-
nologies will set the timetable for applications of neural
networks.

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135, May 1993
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Appendix A —Theory and Models for
Beam-Smoothing Spatial Filter

The derivation of the Fresnel diffraction theory (ref. 22) of
the beam-smoothing spatial filter is straightforward, but the
theory is hard to use for calculations. This difficulty should
not be surprising because the patterns observed in the step or
two before alignment is achieved are complex. In this appen-
dix, the diffraction theory is used to generate easy-to-handle
approximate models of the alignment of a spatial filter. This
appendix has three sections: the general diffraction theory of
the spatial filter, a model of the alignment process when the
filter is out of focus, and a model of the alignment process
when the filter is focused or nearly focused.

Fresnel Diffraction Theory

This discussion (fig. 12) assumes the use of a gaussian
laser beam (ref. 23) that is coaxial with the optical axis of the
spatial filter assembly. A thin lens of focal length f replaces
the microscope objective commonly used to focus the laser
beam, and aberrations are ignored. The pinhole, or spatial
filter, is assumed to be in the xy plane at z = 0. The center of
the circular pinhole is assumed to be misaligned with (x,y)
coordinates 6x and Sy, and the center of the beam waist is
assumed to be misfocused with the z-coordinate 6, The
result of a successful alignment is to zero or nearly zero these
coordinates. The remaining parameters are the pinhole
diameter D, the distance (z-coordinate) Z at which the beam
pattern is observed or measured, and the laser-beam
characteristics.

The laser-beam characteristics are defined as follows. The
laser beam has a wavelength k and a 1/e2 radius ws at the lens
aperture, the beam waist appears at the focus at distance f
from the lens, and the vignetting effect of the lens is ignored.

The beam waist then has a 1/e 2 radius given by

W = kf	 (Al)
7E WS

The beam power is called P.
We obtain a formal expression for the beam pattern by

mathematically propagating the beam to the pinhole, multi-
plying the pattern by the pinhole aperture function, and then
mathematically propagating the apertured beam to the view-
ing plane at distance Z. Constant phase factors are not
retained because they cancel in evaluating the intensity.

The field at the pinhole plane z = 0, minus constant phase
factors, is given by

u(p)=F̂
T

 1 e—Ap2	 (A2)
 w

where
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Figure 12.—Simplified diagram of spatial filter setup.
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where
nD2

F^-m, - m; 2; - —^
B

F = X
AZ

This field (eq. (A2)) is multiplied by a circular aperture
function C(x - 8, y - 8y) that is centered on the pinhole and
is unity inside the pinhole and zero outside the pinhole. The
Fraunhofer diffraction integral is then used to represent the
field at the observation plane. Capital letters X, Y, Z represent
the coordinates of the observation plane. The scalar field in
the observation plane is then given by

U(X)_V
k̂n_
 1 1 f e-AP2
 w' XZ J

X OP - 8)e-i(27E /)Lz)(x'p)dp

where

P = (x ,Y)	 (A7)

8 = (5,5y)

X = (X, Y)

Equation (A7) is evaluated in part by applying the shift
and convolution theorems of Fourier transformations
(ref. 22). The result is given by

U X = 2P 1
	 1 irD r e- i 21rF ' S

( )	 it w' .1Z 2A J

X 
J  (7rF D) e- l

/rz2 /A)(F - F')2 dF'	 (A8)
F' 

U(X) =

V̂T

	 1 1 71 1-D e-(n2/A)F2

 w' V A

In2/AlF,2

	

X f e 1	 //	 1O (BF')J t (7tF'D) dF'	 (A9)

0

where

B	
4n4 F

2 - 4n282 	
8n3 

d-F

	

A 2	A

The symbol 1„ represents a modified Bessel function where
10(x) = Jp( jx). The exponential preceding the integral sign
represents the beam profile in the absence of the filter. The
integral itself is interpreted as a beam-profile, beam-position
modification factor; it represents the main effect of filter mis-
alignment.

The integral in equation (A9) can be evaluated formally,
and the result is given by

U(X) 

-V̂T_Pc 

1 1 r<D 2 e _(n z /A)F z ^, 1 / B2A lm

 w' 7Z 4	 mL-0m 4n2 /II

2 )x F -m, - m; 2; - \ B )
	

(A10)

where

F = JFI

The symbol J„ represents a Bessel function of the first kind
of order n. Integrals are evaluated over the entire domain of
the variable of integration.

Equation (A8) can be evaluated formally with the assis-
tance of a table of integrals (ref. 24). The first step is to inte-
grate with respect to the polar angle. The result is given by

1 + m

	
m!m!	 - n2D2	 (All)I i,(i + 1)!(m - 1)!	 B2

Equations (Al) to (A11) represent the diffraction theory of
the process of aligning a spatial filter. It is more convenient
in this report to use approximate models based on the theory.
The model discussed next represents the alignment process
when the filter is well out of focus.
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Region A Model—Filter Out of Focus

Most alignment steps occur when the spatial filter is sub-
stantially out of focus. For example, for typical values,

f = 8,300 µm

A = 0.5145 M

WS = 1,750 W

the beam We e diameter will exceed a typical pinhole diam-
eter of 10 pm when SZ = 20 pm. Because the misfocus can
be as large as 1000 pm at the start of an alignment process,
the beam diameter can exceed the pinhole diameter over
98 percent of the focus adjustment range.

A model of this region can be generated with equa-
tion (A7). First the equation is transformed to the center of
the pinhole, and then the remaining quadratic exponential
under the integral is assumed to deviate negligibly from 1.0.
The resulting integral is easily evaluated to yield the follow-
ing result:

SAS_ X

	

U X	
2P 1 1 D e–AS' J, nDl Ir	 1,Z

	

( )	 V ^r w' ^,Z 2	 jAS X
n ZZ

(Al2)

The model is especially simple if the imaginary terms in
the argument of the Bessel function and in the denominator
of equation (Al2) are ignored. The result is given by

	

2	 2Jt ( irD S _ X J)
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	 VI—Pr

11 rrD 	 _A 5 2	 ,.Z R
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w' AZ 4 e
	

irD SD X

AZ R

(A13)

Choosing R = 8, produces an especially simple result. The
center of the diffraction ring pattern is then located at

X = SX Z
SZ

Y = Sy Z	 (A14)
z

This center is exactly that determined from geometrical
optics by drawing a line from the center of the waist, through
the center of the pinhole, to the observation plane.

Equations (A13) and (A14) define the region A model for
a beam that is out of focus. It is equally easy to produce a
model when the beam is nearly focused. That model is dis-
cussed next.

Region B Model — Filter Focused or Nearly Focused

The model is developed directly from equation (A9). As
stated, the exponential in front of the integral is the beam
profile with the pinhole removed, and the integral can be
thought of as a shape modification factor. In region B, Ip is
assumed to vary slowly in comparison with J 1 . It is removed
from the integral with an argument evaluated at the first
maximum of J 1 , which occurs at

rcDF' = 1.8

The integral remaining is approximately DA/41r, and the
overall result is given by the equation

U X = 
F̂I_Pr  

1 1 irD2 e_( yr2 /A)FZ 
I0 

1.8B 1

O	 w' ^Z 4	 l irD l

(A15)

The Ip in equation (A15) constitutes a complex shape func-
tion and also permits the intensity maximum to occur off
axis as is sometimes observed in region B. Equation (A15)

is the region B model.
The models, like the diffraction theory, are approximate.

Criteria for switching from region A to region B are some-
what arbitrary. Nevertheless, neural networks trained with
these models perform well.
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Appendix B — Visualization of Spatial
Filter Alignment

A person who aligns a spatial filter looks at and is guided
by the diffuse reflection of the filtered and diverging laser
beam. The subjective appearance of that beam depends on
the beam shape and beam parameters discussed in appen-
dix A. The appearance also depends on the beam power, the
properties of the diffuser, room lighting, and nonideal effects
such as escaping reflections that originate inside the filter
assembly.

Similar comments apply to any other visualization method
such as a camera and a monitor. Definite, although occasion-
ally erroneous, decisions must be made on the basis of such
subjective visualizations. This alignment example requires
that the observer (human or mechanical) decide on a value of
beam position, on whether the beam pattern resembles the
region A model or region B model, and on some estimate of
brightness. Even the choice of the position of the diffuser is
a somewhat arbitrary decision.

The interpretation of visual information is a good subject
for neural networks. The work reported in this report used
visualization for demonstrations only; standardization was
used to reduce arbitrariness.

Standardization

The standardization is defined as follows:

(1) The beam pattern shall be presented in a 32- by 32-
pixel format.

(2) The unfiltered beam shall be centered in the 32- by 32-
pixel window when the spatial filter (pinhole) is removed.

(3) The overall magnification of the beam recording sys-
tem shall be set such that the 32- by 32-pixel window is 4w'
on a side, where w' is the 1/e2 radius of the unfiltered laser
beam.

(4) The value of a pixel shall be based on the logarithm of
irradiance (intensity) or a corresponding photometric quan-
tity. The radius w' in item (3) can be estimated by replacing
SZ in equation (A4) with Z, which is the distance from the
aligned pinhole to the diffuser.

Example of Visualization Process

There are many ways to display the beam pattern in a man-
ner consistent with the standard described in the previous
section. The following method was used to display a sche-
matic representation of the filtered laser beam during neural-
network-directed alignments of the spatial filter.

A C-language function was created to be used with EGA
graphics software. The function was designed either to plot
an externally supplied 32- by 32-pixel array or to compute

and plot such an array from a seven-element input vector of
the kind discussed in the Development of Training Sets
section.

Inputs to the function were (1) a pointer to the seven-
element input array, (2) a pointer to the array of pixels,
(3) the 1/e 2 radius ws of the laser beam at the lens, (4) the
wavelength a, of the laser beam, (5) an estimate of the maxi-
mum logarithm of intensity encountered during the align-
ment, (6) an estimate of the minimum logarithm of intensity
encountered during the alignment, (7) the distance Z to the
diffuser, (8) the diameter D of the pinhole, (9) the focal
length f of the lens, and (10) a flag indicating whether the
array of pixels was to be supplied externally or calculated
internally.

Element 5 of the input vector (in C-language, the first ele-
ment is indexed as zero) decided the form of the internal cal-
culation if one was called for. Equation (A13) in appendix A
was adopted if element 5 = 0, indicating a region A pattern of
rings. Positions on the diffuser were expressed in units of Z,
and the 1/e 2 radius ws was made dimensionless in units off,
as in

W f = 2LIL 	(Bl)

The pinhole diameter D was made dimensionless in units of
wavelength k, as in

dt = D	 (132)

The logarithm of intensity at the center of the pattern was
estimated as element 6. In the experiments, element 6 was
computed from an average intensity measured over a fairly
large detector size. The main effect of ignoring that fact is
equivalent to adding the same offset to all region A values.
The Bessel function was computed with a commercially
available software package. The 32-by-32 pixels were
stepped out horizontally and vertically from —2wf to 2wfin

the normalized x and y position variables.
A much more complex region B pattern must be calculated

when element 5 = 1. An already simplified expression for
this pattern is given by equation (A15) in appendix A. This
expression was simplified further to provide a convenient
expression for visualization. However, the dimensionless
groupings defined by equations (131) to (134) are applicable to
the full region A and region B models. These groupings also
suggest the training of neural networks using dimensionless
inputs. A dimensionless position and a dimensionless xy
misalignment are defined by the equations

XZ = Z	 (B3)

and
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S	 The intensity for both regions A and B is proportional to the

	

Sp = D	 (B4)	 field times its complex conjugate:

Equation (A15) is replaced by a proportionality with the first
two terms of a small-argument approximation of the Bessel
function substituted. That proportionality is given by

where the assumptions near focus are

The proportionality expressed in the dimensionless vari-
ables of equations (B1) to (B4) is given by

I(XZ) - U * (XZ) U (XZ )

The position of the beam bright spot (elements 3 and 4)
and the logarithm of intensity (element 6) are combined with
equations (136) and (B7) to derive the components of 6.
These components of 8 are substituted in equation (136), and
the array of pixels is calculated as for region A.

The array of pixels was represented on an EGA monitor by
associating a 4-by-5 array of screen pixels with each of the
calculated pixels. The four vertical pixels and the five hori-
zontal pixels correspond to the aspect ratio of the screen. The
actual emulation of the beam on the monitor is somewhat
arbitrary —the color (red, green, blue, or yellow) is chosen
from the wavelength. The logarithm of intensity at the beam
bright spot ranges between the minimum and maximum val-
ues supplied to the C-function; however, an actual camera
would have a variable iris whose setting might range from
fully opened at the minimum brightness to nearly closed at
the maximum brightness. The iris effect was inserted as a
brightness-dependent offset to the logarithm of the intensity
at the bright spot. The brightness of a calculated pixel was
represented by the number of screen pixels illuminated in the
4-by-5 representation of the calculated pixel. The iris correc-
tion and the order of illumination of the screen pixels were
adjusted by trial and error in an effort to create the visual
effect of an actual alignment of the spatial filter.

Final Comments on Visualization

The C-function just described takes many seconds to com-
pute and display a beam profile, in spite of the simplifica-
tions, standardization, and artistic license mentioned. The
fact that a beam profile can be represented with dimension-
less variables is the most important finding of appendix B. A
neural network trained with dimensionless inputs is intended
to work for any spatial filter and laser beam combination.

U(X) 
« expl r F2)[1  + 4 ` 

1 D )2 J
	 (B5)
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Appendix C —Symbols

Lengths, including wavelength, are normally expressed in
millimeters and occasionally in micrometers. Vectors and
matrices are denoted by bold faced type.

A area of iris aperture, or coefficient in sigmoid
function (eq. (15)), or complex coefficient in
gaussian exponent (eq. (A3)), or in reference
to region A model

a input vector (eq. (2))

B coefficient (eq. (A9)), or in reference to region
B model

b output vector (eq. (2))

bt training vector (eq. (7))

C() circular aperture function

D diameter of pinhole (spatial filter)

da , D/X

E mean square error (eq. (3))

ei weight for Kohonen node i when CPN is used
with interpolation

F (X/).Z, Y/7Z)

F(a, b; c; x) hypergeometric function

f effective focal length of microscope objective

f( ) mapping function (eq. (2))

I another expression for input vector

1( ) irradiance or intensity function

Ii output of node j

Imax maximum irradiance in unfiltered beam as
measured at white card

Io() modified Bessel function

J„() Bessel function of the first kind and order n

N number of training records

O another symbol for output vector

P probability density, or beam power

P(a/i) conditional probability or probability density
(eq. (9))

R radius of curvature of gaussian beam wave
front (eq. (A5))

R training record (I, T) where I is an input vector
and T is a training vector

r exponent used in formula for calculating
weight factors when CPN is used in interpola-
tion mode

Si Euclidean distance between vector and grid
point i

S weighted input at node

S i total weighted input at node i

T training vector

t time, or iteration index

U vector of Grossberg weights in CPN

U() scalar field

U mean value (eq. (8))

aO scalar field at pinhole (eq. (A2))

W linear mapping or transformation matrix
(eq. (1)) or matrix of neural network weights
(eq. (4))

W gaussian beam waist (eq. (Al))

W, gaussian beam 1/e2 radius (eq. (A4))

W f WS/f

wi/ weight at node i for signal from node j

ws We 	 radius of laser beam at microscope
objective

X Cartesian x-coordinate of beam bright spot, or
x-position control on spatial filter assembly
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S (Sx, 80
X (X, Y)

So 81D
Xz (X/Z, Y/Z)

S; error used in back-propagation algorithm
X x-position in pinhole plane (eq. (10))

Y Cartesian y-coordinate of beam bright spot, or SX x displacement of pinhole from optical axis
y-position control on spatial filter assembly

Sy y displacement of pinhole from optical axis

Y y-position in pinhole plane
SZ focus error

Z Cartesian z-coordinate, or distance from
pinhole (spatial filter) to white card, or focus X wavelength of laser beam
control

p correlation coefficient (eq. (8)), or vigilance
Z Kohonen outputs in CPN parameter used by ART2, or radial distance in

plane of pinhole (eqs. (A2) and (A6))
a learning rate (eq. (10))

P (x, Y)
p smoothing coefficient; replaces momentum

coefficient in one version of back-propagation a standard deviation (eq. (8))
algorithm

absolute value or magnitude of enclosed terms

'Y momentum coefficient (back-propagation
algorithm) < > statistical expectation value of enclosed terms
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