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Distributed Computing Feasibility

in a

Non-Dedicated Homogeneous Distributed System

Scott T. Leutenegger Xian-He Sun

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Abstract

The low cost and availability of clusters of workstations have lead researchers to re-explore dis-

tributed computing using independent workstations. This approach may provide better cost/performance

than tightly coupled multiprocessors. In practice, this approach often utilizes wasted cycles to run

parallel jobs. In this paper we address the feasibility of such a non-dedicated parallel process-

ing environment assuming workstation processes have preemptive priority over parallel tasks. We

develop an analytical model to predict parallel job response times. Our model provides insight

into how significantly workstation owner interference degrades parallel program performance. A

new term task ratio, which relates the parallel task demand to the mean service demand of non

parallel workstation processes, is introduced. We propose that task ratio is a useful metric for

determining how large the demand of a parallel applications must be in order to make efficient use

of a non-dedicated distributed system.

*This research was supported by the National Aeronautics and Space Administration under NASA contract NAS1-

19480 while the authors were in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.





1 Introduction

Most early parallel processing research focused on using distributed systems to speedup computa-

tions. The basic approach was to utilize many computers connected via a local area network (LAN)

to execute a parallel job. We will refer to this environment as distributed computing. With the advent

of multiprocessor architectures the majority of the focus shifted from distributed computing to multi-

processing, the major distinction being the tightly coupled architecture allowing more finely grained

parallelism.

Recently, a significant portion of the parallel community has returned to the distributed processing

approach. Several commercial and noncommercial tools have been developed to support distributed

computing. One widely used tool is the Parallel Virtual Machine (PVM) project [9, 5, 1,2]. According

to the authors, PVM is now being used at more than 100 sites. A major driving force behind

the reevaluation of distributed computing is the high cost of parallel computers. Using a group of

workstations connected via a LAN may provide better cost/performance, or may be the only way to

achieve high performance within budget constraints for some organizations. Another factor in favor

of distributed computing is the availability of many lightly loaded workstations. These otherwise

wasted idle cycles can be used by a distributed computation to provided speedups and/or to solve

large problems that otherwise could not be tackled.

It is clear that many problems are amenable to the distributed computing approach [3]. However,

for some applications, the inherent synchronization requirements, communication/computation ratio,

and the granularity of parallelism may limit the obtained performance. Even for the "good" applica-

tions, a tacit assumption of the expected high performance is that a system of dedicated workstations

are used, which may not be true in practice. In this paper we study the performance of distributed

computing in a non-dedicated system assuming workstation owner processes have preemptive priority

over parallel tasks

We assume the parallel application considered belongs to the class of programs that can run

efficiently in a dedicated distributed computing environment. We do not consider the effects of

synchronization, communication, or granularity of parallelism. Given the program executes efficiently

in a dedicated system, we wish to determine whether we can achieve good performance in a non-

dedicated system.

One factor that must be considered in a non-dedicated system is how intrusive the parallel pro-

grams are to the owners of the workstations and vice versa. The priority of the parallel tasks relative

to the priority of processes initiated by the owner of the workstation can have a significant impact on

the performance of both the parallel job and the owner's serial jobs. We assume that a workstation

owner is not tolerant of other people using their workstation, and hence surmise the most appropriate



modelof sucha systemis to assumeworkstationownerprocesseshavepreemptivepriority overpro-

cessesbelongingto a paralleljob. Hence,useof the workstationwill interferewith parallelprogram
performance.The major goalof this paperis to provideinsight into how significantlyworkstation

ownerinterferencedegradesparallelprogramperformance.Weseekto answerthe question,"When

is distributedcomputingin a non-dedicatedenvironmentwhereworkstationownerprocesseshave
preemptivepriority overparalleltasksa viableapproach?"

An analyticalmodelis developedto predicttheperformanceunderthenon-dedicatedassumption.
The new term task ratio is introduced along with new metrics that incorporate the utilization of

workstations by owner processes. We find that the task ratio plays an important role in the overall

performance, possibly as important as the communication/computation ratio in a dedicated system.

The analytical model provides the relationships between the identified parameters and shows how

these parameters influence the overall response time.

In addition to our analysis, a hypothetical local computation [11] problem is implemented with

PVM on systems with 1 to 12 homogeneous workstations. These initial experimental results confirm

the qualitative results from the analytical model.

This paper is organized as follows. In Section 2 we present the analytical model and introduce

new parameters and metrics for non-dedicated distributed computing. The results from our analysis

are presented in Section 3. Experimental results with PVM on 12 homogeneous workstations are

presented in Section 4, and our conclusions are in Section 5.

2 Model Description, Analysis and Simulation

In this section we describe our system model, our analysis technique, and simulation model. We

make simplifying assumptions that favor the distributed computing approach. In particular, we

assume a parallel job is composed of W tasks (one per workstation), and the computation is perfectly

balanced among these tasks, in addition, the parallel job is composed of one single parallel phase

with no communication or synchronization requirements other than the final synchronization which

occurs when all of the tasks have completed. Hence, we are assuming perfect parallelism of the

problem. This model is simplistic, but provides the best case scenario for a distributed computing

environment. In addition, by not incorporating communication or synchronization requirements into

the model we are able to attribute all degradation of parallel program performance to workstation

process interference. Since our assumptions are always optimistic, the model predictions provide an

upper bound on expected performance.

We assume there are )4) homogeneous workstations in the system and that there is one owner per

workstation. Workstation owners are in a continuous cycle of thinking (idle time) and then use time.
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Table 1: Notational Definitions

TotM demand of the parallel job.

Number of workstations in the system.

Demand of one parallel task = ,]" / )4;.

Time a owner process uses the workstation.

Utilization of a workstation by owner.

Probability of the owner requesting the

processor during a given time step.

Mean expected task completion time.

Mean expected job completion time.

We assume there is one parallel job being executed on the system at a time.

In table 1 we define our notation used through out the paper. The demand of a job is the total

computing cycles (time) needed for the job.

2.1 Model Description

Our model is a discrete time model. We assume a geometric distribution with mean -_ for the owner

think time, i. e. at each time unit the owner requests the processor with probability P. When an owner

process starts execution an executing parallel task is suspended and the owner process is immediately

started. The owner process executes for O units. Once the owner processes completes execution, the

parallel task restarts execution and is guaranteed to complete at least one unit of work before the

owner may issue another process requesting the processor.

The model guarantees the parallel task will complete in at most T+ (T x O) units. Task execution

time at a single workstation is thus the sum of task demand plus the time to complete any owner

processes that occur during the tasks tenure in the system, i. e.

task time = T+ (n x 0), (1)

where n equals the number of owner process requests. The owner process can make a request after

each unit of time the parallel task uses the processor, hence the number of owner requests is binomially

distributed:

Bin(T'n'P)= ( T)n pn (1 _ p)T-n. (2)



Thus, expected task execution time is equal to

T

E, = T+ _ O.i. Bin(T,i,P). (3)
i=O

The job execution time is the time until the last of the parallel tasks completes execution. Thus,

job completion time is at least T units and at most 7"+ (T x O) units. We first derive the probability

that job execution time equals i and then from these probabilities get the expectation.

Let S[n] equal the probability that an individual task is interrupted by at most n owner processes.

Sin] = _ Bin(T,i,P).
i=0

(4)

Let C[W,n] equal the probability that all parallel tasks are interrupted by at most n owner

processes. By independence,

c[w, n] = (sN) w . (5)

Let Max[W,n] equal the probability that the maximum number of owner process interferences

over all the parallel tasks is equal to n.

Max[W, n] = C[W, n] - C[W, n - 1].

Using these functions, expected job execution time is calculated as:

(6)

T

Ej = 7- + _ O. i. Max[W, n]. (7)
i=0

Owner utilization (/4) can be calculated as:

O

11= O + l/P (8)

For the purposes of analysis we were forced to make some simplifying assumptions. Our model

makes assumptions that favor the distributed computing approach, hence the model provides a lower

bound on expected response time. In particular, the model is optimistic with regards to the three

following points:



• We assumeparallel task timesaredeterministic.Although this is oneof the goalsof parallel

algorithmdesign,in practicethereis oftensomeimbalanceof load.

• Varianceof ownerprocessservicedemands.We haveassumeda deterministicownerprocess

servicedemandwhenin fact typicalprocessesexperienceamuchlargervariance[7]. Assuming
a distribution with morevariancecouldcausesomeparallel tasksto be delayedmuchlonger

than T+ (T × O).

• Guaranteeing the parallel task at least one unit of execution between requests. In a real system

owner processes may be reissued in less time, thus parallel tasks could be delayed longer than

(:r × o).

These assumptions together clearly show that our results are optimistic, and hence actual perfor-

mance could be worse than predicted by our observations.

2.2 Simulation Description

We have simulated the system using the CSIM simulation language [8]. The purpose of the simulation

is solely to validate the coding of our analysis. We intend to use our simulation in future work to

explore other service demand distributions.

All results have confidence intervals of 1 percent or less at a 90 percent confidence level. Confidence

intervals are calculated using batch means [4] with 20 batches per simulation run and a batch size

of 1000 samples. We duplicated the experiment found in figure 1 of this paper and the simulation

results were identical to the analysis thus verifying the correctness of analysis code. We did not plot

the results since they are indistinguishable from the analysis.

3 Analysis Results

In this section we present the results from our analysis. All results in this section assume an owner

process has preemptive priority over a parallel task. We first present results for a fixed size problem,

and then discuss the impact of scaling problem size with the number of workstations.

3.1 Fixed-Size Speedup

We first address the benefit of the distributed computing approach for a fixed-size job. In this

case, the desired goal of paratlelizing the program is to achieve faster execution times, hence we use

expected speedup as our primary metric. Since the standard definition of speedup does not take into



considerationthe cyclesconsumedby the (higherpriority) ownerprocesses,wealsodefinethe metric
weighted-speedup. We also consider the metrics efficiency and weighted-e_ciency to illustrate more

concretely the achieved percent of optimal performance. Specifically, once again let ff equal the total

job demand, W equal the number of workstations, Ej equal the expected job completion time, and

/4 equal the owner process utilization of the workstations. Then:

7
Task Ratio =

Speedup =

Weighted-Speedup = O-u_) E_

Efficiency = _E_

Weigh ted -Effi cien cy

The expected speedup and efficiency metrics are of interest if a user wishes to determine the

benefit of parallelizing the job relative to running the program on a single dedicated machine. The

weighted metrics incorporate utilization to clearly demonstrate how effectively the parallel program

is able to use the idle system cycles. We focus primarily on the weighted metrics since they provide

a better metric for determining how well the distributed computing approach can utilize idle cycles.

In figure 1 we plot speedup versus the number of workstations for workstations utilizations of

1_0, 5%, 10%, and 20% assuming a parallel job demand (,7) equal to 1000 units, and an owner

processes demand (O) equal to l0 units. For a given utilization we assume all workstations have the

same owner process utilization. The top curve is the theoretical optimal speedup, i.e. unitary linear.

The speedup curves are concave increasing, i.e. the benefit of adding more nodes decreases as nodes

are added, despite ignoring overhead for parallelizing the program (synchronization, communication,

non-balanced load, etc). At 100 nodes the speedup for a system with only 1_0 utilization is only 61%

of the optimal speedup, for a 20% utilization the speedup is only 32.5% of the optimal speedup.

To present the efficiency of the system, i.e. how close to optimal speedups are achieved, we plot

efficiency versus number of nodes in figure 2.

In both of the preceding plots we compare the performance of the parallel program executed on

a system of workstations with a given owner utilization to that of the same program executed on a

single node with no owner utilization. To focus on the how effective distributed computing utilizes

wasted cycles we consider the weighted-speedup and weighted-efficiency metrics. In figures 3 and 4 we

plot weighted-speedup and weighted-efficiency versus the number of nodes for the same parameters as



in figures1and2. Notetheweighted-efficiencyisstill only 61.5%(41%)for autilization of 1%(20%).

Hence,evenonceownerutilization is takeninto considerationachievedperformanceis significantly

worsethan optimal.

Onecausefor the degradationof performanceis that theprobability of oneof the workstations

experiencinga transientperiodof highutilization increasesasthe numberof nodesincreases.Since
the para_eljob must wait for eachtask to completeexecution,just oneworkstationexperiencinga

transienthighutilization will slowdowntheentirecomputation,henceperformancedegradesasthe
numberof workstationsincreases.

A secondmoresubtlecauseof performancedegradationresultsfrom a decreasein the ratio of

paralleltask time to ownerprocesstasktime (task ratio). To demonstratethis effectconsiderwhat

happensif weincreasethe paralleljob demandfrom 1K units to 10Kunits. In figure5 and6 weplot

the weighted-speedupandweighted-efficienciesfor thesameexperimentasin figures3 and4, except
job demandequals10K.The weighted-speedupsand weighted-efficienciesfor a job demandof 10K

units aremuchhigherthan their counterpartsin figure3 and4. For J equalto 10K,7" equals100
units for a 100workstationsystem,whereasJ equalto 1K resultsin a 7" equal to 10 units for a

100 workstation system. Tasks of demand 10 units experience a proportionally larger delay by owner

processes than tasks requiring 100 units.

To more clearly illustrate the point, we plot weighted-efficiency versus the task ratio for a system

with 60 workstations in figure 7. (The plot for weighted-speedups is identical except the y-axis is

scaled from 0 to 60 instead of 0 to 1.) From the figure we conclude that in order to achieve acceptable

efficiencys, and thus good speedups, we must ensure that the parallel task demand is sufficiently large

relative to the average demand of owner processes, i. e. we must ensure a large task ratio.

In the previous experiment we fixed the number of workstations equal to 60. In figure 8 we

plot the weighted-efficlency versus task ratio for various system sizes for an owner utilization of 10%.

Sensitivity to the task ratio increases with system size.

One of the main conclusions from these experiments is that in order to achieve good speedups for

fixed size problems, it is essential that the task ratio be sufficiently large. Similar to the computation

to communication ratio being an important consideration for parallel computations, the task ratio is

an important factor in non-dedicated distributed computing.

3.2 Scaled Problem Size

We now consider the effect of scaling the problem size with the number of nodes. We assume job

demand scales linearly with the number of workstations. This type of scaling has been called memory-

bounded scaleup [10]. With memory-bounded scaleup and perfect parallelism, ideally, we may be able

7



to complete )IV times the amount of work in the same time as the original problem on a single

workstation by using a system with )4; nodes [12]. In figure 9 we plot job execution time versus the

number of workstations assuming job demand is equal to 100 units times the number of workstations.

Since the problem size scales, the parallel task demand is a constant 100 units, and hence, the task

ratio is fixed at 10. Initially there is a sharp increase in response time as system size increases, but

the increase diminishes as system size becomes large. For system utilizations of l, 5, 10, and 20%, the

response time for a problem using 100 workstations increases by 14, 30, 44, and 71% relative to the

response time for a problem using one workstation with the same owner utilization. In other words,

the distributed computing approach offers the potential to increase the problem size by a factor of

100 and only increase response time by 44% assuming all workstations have a utilization of 10%.

Memory-bounded scaleul 5 exhibits better performance than fixed-size computing since the task

ratio is fixed, while the task ratio in fixed-size computing decreases with an increase in the number of

workstations. We also considered larger job demands and found the increase in response time to be

even less. Hence, we conclude that the distributed computing approach offers significant potential for

scaling of problems even if workstation owner processes are granted preemptive priority over parallel

tasks.

4 Experimental Validation

In this section we present preliminary results from experimental studies to validate the analysis. In

these initial studies we focus only on fixed size problems. We have chosen to implement our parallel

program using the PVM package. We chose the PVM package based on the package being well known

and highly available. We made no attempt to compare the PVM package with any other distributed

computation packages.

To isolate the effects of workstation owner interference we assume the parallel program is a

local computation problem [ll]. That is, the problem has perfect parallelism and no interprocess

communication. The parallel program forks W parallel tasks, one for each workstation in the system,

and each task executes independently. Each parallel task is "niced" (runs _t low priority) granting

workstation owner processes preemptive priority over the parallel tasks.

Our primary metrics are maximum task execution time and speedup. The most common metric

for a study such as this is job response time, i. e. the time from the parallel job is started until it

completes. This metric is influenced by the overhead of the parallel computing package for initiating

the processes and collecting the results. We want to focus only on the interference of workstation

owner processes and thus rejected defining response time in this standard way. Instead, we focus on

the maximum task execution time. This time was obtained by having each task record the system time



whenit startedcomputationandnotingthesystemtimeimmediatelywhencompletingcomputation.
Eachof the paralleltasksthen return their task executiontime to the masterprocesswhichselects

andreports themaximum.By consideringthe maximumtaskexecutiontime weisolatethe impact
of workstationownerprocessinterference.

Wereport the resultsfrom one experiment. Further experiments are currently being conducted.

The system studied is composed of at most 12 Sun ELC Sparcstations. We varied the number of

workstations from 1 to 12, first ensuring that none of the workstations are executing long running

jobs. In general the only interference is from more trivial usage Such as editing files, reading mail,

news, etc. For each number of workstations considered we ran the parallel program 10 times for

each parameter value and calculated the mean of these 10 runs as our metric. Given the number

of workstations, the input parameter to our parallel program is the problem size. We consider five

different problem sizes; 1,2,4,8, and 16 minutes are the service demands of these problems on a single

dedicated machine. No attempt has yet been made to provide confidence intervals or more detailed

statistical analysis.

If figure 10 we plot the maximum task execution time versus the number of workstations for the

five different job demands assuming a fixed problem size. The solid lines are the measured values

from our experiment. The dashed lines are predictions from our analytical model where the input

parameter for workstation owner utilization is set to 3%. We obtained the 3% value by computing

the mean of the machine utilizations (by using the unix uptime command) over two working days

when no PVM programs were executing. The models qualitative and quantitative predictions are in

close agreement with the measured results.

In figure 11 we plot the speedup versus the number of workstations. The values plotted were

obtained from measurement of the system. In this case we define speedup as the ratio of the max-

imum task execution time using one workstation over the maximum task execution time using }IV

workstations. The utilization of the machines is very low and thus there is not significant degrada-

tion of parallel program performance. In a more heavily loaded system we would expect much more

degradation. Focusing on the 8 and 12 workstation cases we see that the speedup decreases as the job

demand decreases, i.e. the speedup for a job demand of 1 is lower than the speedup for a job demand

of 16. This is because the task ratio is smaller for a job demand of 1 than it is for a job demand of

16. This experiment thus qualitatively validates the analysis. Note that the analysis shows a more

significant drop in speedup as system size increases. Unfortunately we only have 12 homogeneous

workstations with which to validate our results and hence can not experimentally validate this result.

9



5 Conclusions and Discussion

In this paper we have developed an abstract model of a distributed computing system to determine

the feasibility of using distributed computing in a non-dedicated system assuming workstation owner

processes have preemptive priority over parallel tasks. The model is an abstraction of a parallel

program ignoring communication and synchronization overheads. We assume the targeted parallel

programs execute efficiently on a dedicated distributed system, hence we can ignore these overheads

and focus on the impact of a non-dedicated environment. The purpose of considering a non-dedicated

system is to determine if idle (wasted cycles) workstations can be utilized to reduce execution time

and to solve large problems.

For fixed-size problems we have found that good speedups can be achieved, but only if the

amount of work allocated to each machine is sufficiently large compared to the mean service demand

of workstation processes. Hence, for non-dedicated systems where the workstation owner processes

have preemptive priority over parallel tasks, the parallel task demand to owner task demand ratio

(task ratio) is a determining factor in performance of the parallel program. In particular, we find that

the task ratio should be at least 8 for a parallel job to achieve 80 percent of the possible speedup, even

adjusting for system utilization, for a system in which each homogeneous workstation has a utilization

of 5 percent. In addition, the task ratio needed to achieve 80 percent of the possible speedup increases

with system utilization. At a utilization of 10 percent the task ratio must be 13 or higher, and at a

utilization of 20 percent the task ratio must be 20 or greater.

The model proposed in this paper assumes local workstation processes have deterministic service

requirements. This assumption implies that results presented in this paper is conservative. Hence,

even larger task ratios are likely to be necessary to achieve good performance. Thus, based on our

study, distributed computing in a non-dedicated environment where workstation owner processes have

preemptive priority over parallel tasks is a viable approach only if the task ratio is sufficiently large.

The exact size of the ratio needed is both application and environment dependent.

For scaled problems under a non-dedicated environment, we have found that distributed comput-

ing offers significant potential for the efficient execution of scaled problems. In particular, assuming

each workstation in the system has a utilization of 5 percent (20 percent), mean job response time

is only increased by 30 percent (71 percent) when comparing the response time of a scaled prob-

lem using 100 workstations relative to that of problem using one workstation with a 5 percent (20

percent) utilization. The performance difference between fixed-size and scaled problems is due to

the fact that the task ratio of scaled problems is fixed, while the task ratio of fixed-size problems

decreases as the number of workstation increases. Note that the results are based on our idealized

assumption and hence are optimistic. The actual response time of these problems would be dependent

: 10



on communication bandwidth requirements which are ignored in our model.

We assume the workload of the non-dedicated environment is light and the effect of long running

workstation owner jobs is not considered. How to provide reasonable execution times for parallel jobs

in a non-dedicated system with long running workstation owner jobs must be solved if distributed

computing is to be feasible in a non-dedicated environment. Currently our model only provides some

initial insights into the general problem of distributed computing in a non-dedicated system. In the

future we intend to extend the model to handle more complex workloads. In addition, we are currently

pursuing further experimental validation of our model.
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