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For three decades, physicists have been in search of an elusive phenomenon
predicted by Einstein's general theory of relativity: gravitational radiation. These
weak vibrations of spacetime have, thus far, eluded conclusive Earth-based detection
due in part to insufficient detector sensitivity and noise isolation. The detection of
gravitational waves is crucial for two reasons. It would provide further evidence for
the validity of Einstein's theory of relativity, the presently accepted theory of
gravitation. Furthermore, the ability to identify the location of a source of a detected
gravitational wave event would yield a radical new type of astronomy based on non-
electromagnetic emissions. We continue our study of a lunar-based system [1,2]
which can provide an important complement to Earth-based analysis because it is

completely independent of the geophysical sources of noise on Earth, while
providing an Earth-Moon baseline for pin-pointing burst sources in the Universe.
We also propose for the first time that a simplified version of the LIGO beam detector

optical system, which we will call LLIGO (Lunar LIGO), could be emplaced on the
Moon as part of NASA's robotic lander program [3] now under study (Artemis).

The Earth-based investigation has two major

programs underway. Both involve large interferometer-
type gravitational wave antennas. The incoming waves
cause the lengths of the two arms of the interferometer

to fluctuate at the same frequency but 180 ° out of phase.
Detection occurs via the resulting motion of the

interference fringes at the detector. This type of
antenna is more responsive than the bar antennas used

in early work because signals propagate at the speed of
light rather than the speed of sound. Increasing the
length of the arms increases the sensitivity of the

interferometer to the waves (as _-n-where n is the

number of waves). These programs are the following:
(1) The Laser lnterferometer Gravitational-Wave

Observatory (LIGO) is an MIT/Cal Tech effort to build two
interferometers at different sites in the U.S., each one

having arms four kilometers in length [4 ]. This
antenna will be sensitive to waves down to around 10 Hz.

(2) A similar program to build an antenna with three
kilometer arms, and comparable sensitivity range to
LIGO, called VIRGO, is headed by a group of French and
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Figure 1. Lunar LIGO
using Artemis

Italian investigators [5]. A third proposal is the Laser Gravitational Wave

Observatory in Space (LAGOS), which is a large LIGO-type interferometer antenna
involving three spacecraft in near-circular orbit around the sun [6]. This is a "LIGO

in space" with arms roughly 106 km in length. This antenna would be sensitive in

the range between roughly 10 -5 to 100 Hz. This proposal is in a conceptual stage, is

extremely tedious, and appears unrealistic due to its life-cycle operations cost.
It is our contention that a lunar-based LIGO interferometer antenna (Fig. 1),

in conjunction with these other projects, would provide an important contribution to
this effort in both the physics and astronomy arenas. The reasons are as follows:

(a) The lunar antenna will be sensitive down to 0.25 Hz [1]. This covers most of
the range for which LIGO, VIRGO, and LAGOS are not sensitive (see Fig. 2). This
increased sensitivity is due to smaller noise sources, especially seismic noise (100
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times greater on Earth in the range between 0.25 and 1.0 Hz), gravity gradient noise
(no large moving masses near detector on the Moon), tidal noise, and acoustic noise.

Estimates of photon shot noise tend to be a factor of three higher for the lunar

antenna above about 30 Hz. Cosmic ray noise, a source unique to the space-based

antennas, should not cause significant disruption, except during solar flare events.
Thermal noise should be comparable.

(b) The lunar antenna will not be mechanically or geophysically coupled to

the terrestrial antennas, thus providing a good method of removing spurious seismic
noise via concidencc with terrestrial antennas over their common frequencies. It

will also provide a significant confidence or voting factor for detected events.

(c) The vacuum of the lunar environment provides significant advantages. It
will eliminate the need to maintain a vacuum in the intcrferomcter over the life-

cycle of the antenna [1,2]. A minimal antenna could be placed on the Moon using

three dedicated Artemis landcrs, one containing the laser source/beam-

splitter]detector, and the other two containing the end mirrors (Fig. 1: A 2m Artemis

creates a 5.27 km osculating line-of-sight for a lunar radius of 1738 kin). The lack of arm

enclosures allows the arms to be extremely long, limited only by the Moon's surface

curvature. The arms could be easily altered by moving the landers containing the
end mirrors.

The extreme distance between the Earth and Moon provides a long parallax
baseline with terrestrial antennas for locating the sources of a gravitational wave

event. A factor of 50 times better angular resolution may be obtained in the plane of

the source, the Earth, and the Moon for short-burst sources. For signals which recur

several times during a period of a week or more, and are out of the ecliptic plane, the
accuracy of source localization may bc improved [1].

These arguments provide compelling support for the development of a lunar-

based gravitational wave antenna to complement

development on Earth.

Figure 2. Lunar LIGO & Burst
Sources [Adapted from 4 and 6] day _ hr _OOs
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