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TECHNICAL MEMORANDUM

ON THE DESIGN OF STRUCTURAL COMPONENTS USING MATERIALS
WITH TIME-DEPENDENT PROPERTIES

I. INTRODUCTION

With the increased use of polymer matrix composite materials for aerospace applications,
design engineers are faced with the need for knowledge of environmental effects on the functional
behavior of structures. A variety of epoxies are widely used as a binding agent or matrix for fiber
reinforced composites. Thermoset polymers are often used over thermoplastic polymers because of
their better thermal stability and chemical resistance. A great advantage of thermoset polymers is
their higher resistance to creep and stress relaxation. Typical thermoset matrix materials are
epoxies, polyesters, and vinyl esters. Although they have relatively better creep characteristics than
thermoplastics, they will still “relax” as a function of time, load, temperature, and other environ-
mental factors. The understanding of this viscoelastic behavior when designing with composite
materials is the topic of this report.

During the typical preliminary design phase of composite material structures, basic classical
lamination theory (CLT) solutions are used to obtain stress, strain, deflections, natural frequency,
and buckling strength of the structure analyzed. With the increased emphasis on long-term
aerospace structures (10 to 30 years useful life), it is of great importance that viscoelastic effects
also be included in the early design phase in order to obtain knowledge of the structural/functional
behavior of the hardware after an extended period of time. With analytical representation of the
material characteristics, the composite design could possibly require modification of initial dimen-
sions and geometry in order to meet critical functional requirements at the end of their useful life.

This report presents one of the widely used methods, namely the elastic-viscoelastic corre-
spondence principle, in the analysis of viscoelastic structural materials. For this report, the concern
is with the basic time dependency of the viscoelastic material properties. The goal is to present the
design engincer with an effective method to analyze, in closed form or numerically, and to design
time-dependent structures. The problem investigated is one of the most basic problems in structural
design, “bcams.”

It is the author’s goal to provide information for structural design engineers to consider during
the inception and preliminary design of any structure with time-dependent properties. The methods
presented are proven and widely accepted yet simple to understand and apply.

II. THE ELASTIC BEAM PROBLEM

The classical problem of pure bending of beams with constant cross section is chosen, since
the basic equations for stress, strain, deflection, and natural frequency have been well established.1-3
For purposes of this report, a cantilever beam with a single load applied at its free end will be con-
sidered. The solution derivation will have the usual assumptions. These are:



1. The beam is thin. This implies that the thickness is much smaller than any of the other
physical dimensions.

2. The deflection of the beam in the direction of the applied load is small compared to the
beam thickness. (This assumption has been shown to be applicable even in the case of
relatively large resulting deflections.)?

3. The in-plane strains g, g, and &, are small compared to unity.

4. Transverse shear strains €,

and g,, are negligible.
5. The material obeys Hooke's law.

6. Rotatory inertia terms are negligible.

7. There are no body forces.

8. The material is isotropic.

A. Determination of Stress and Strain

The bending stress in a one-dimensional beam can be determined from the following equa-
tion,

= Mc
o= ()

where M is the bending moment, ¢ is the distance from the neutral axis to the outermost surface,
and [ is the moment of inertia of the beam cross section. For the beam configuration shown in
figure 1, the bending moment can be expressed as:

M=-P(L-x), (la)
where

P=pb
¢ =-t/2 (for the top (tension) surface of the beam)

I=bs3 /12 (for a rectangular cross section).
Substituting these values into equation (1), one obtains:

_6P(L-x)

72 (2

Op

[N R [

Mo

Hm——
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Figure 1. Cantilever beam configuration.

Following Hooke’s, law one can express the axial strain caused by the applied bending
moment by simply dividing equation (2) by the modulus of elasticity (Young’s modulus) of the beam
material. In this manner one obtains:

_ 6P(L-x)

Ebt? G)

Ep

B. Determination of Deflection

The formulation which links the curvature of the central line of the beam cross section with
the applied bending moment is called the Euler-Bernoulli law. This is expressed in differential form
as:

d*w M
dx* EI

C)

With the knowledge that the slope and deflection at the fixed end of the beam are zero, equation (4)
can be integrated twice to yield the following expression for the deflection at the free end of the
beam:

4PL
w= . (6]
Eb? )
C. Determination of Natural Frequency
For the one-dimensional beam problem, classical linear elastic beam theory yields the
following frequency equation in the absence of in-plane forces:
9w 9w
El— + m—5=0 . (6)
dx* or



With the knowledge that the slope and deflection vanish at the fixed end and the shear force and
moment are zero at the free end, this equation can be used to obtain the various bending vibration
modes of the beam. The resulting characteristic equation of the beam is:

cosAL coshAL=-1, @)
where
2
=2 8
7 ®)

Solving equation (7) for A L and substituting the results into equation (8) yields the following
expression for the first or natural frequency of the beam:

a)=3.516011f—% . )

HI. THE SINGLE-PHASE VISCOELASTIC BEAM PROBLEM

A. Material Properties Characterization

In order to obtain a solution to any structural design problem where the material analyzed
has time-dependent properties such as plastics, elastomers, and resin-based matrix composite
materials, an analytical expression for the relaxation modulus E(t) and Poisson’s ratio v(¢) must be
developed. The relaxation modulus is obtained from standard’ stress relaxation tests. In these tests,
the viscoelastic material is subjected to a constant strain. Under the influence of this strain, the
material will relax; and the stress will gradually decrease. The stress is measured at specific time
intervals, and the relaxation modulus is plotted as a function of time. These data are then curve fitted
to a function which can be readily manipulated to perform the necessary analysis for the solution of
the problem. A very common function used is the Prony series curve fit due to Gaspard Francois
Clair Marie Riche de Prony (1755-1839). A form of this function is:

f() = A+iB,-e'7" . (10)

i=1

Recent investigations have produced methods for obtaining the coefficients and exponents of this
function automatically with the aid of computers.? ¢ For purposes of this report, the following function
will be used for the relaxation modulus:

E(t)= A+B e ""+Bye~"?+Bse 1% | (a
where

A = 180,000 7 = 1,000

B; = 170,000
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The time-dependent Poisson’s ratio is obtained from the relaxation modulus data and from
the knowledge of the bulk modulus of elasticity of the material. The bulk modulus of elasticity can be
expressed as:

___E® (12)
3(1-2v()
Solving for v(¢) one obtains:
1 E(@)
=== 1
v(t) T (13)

Substituting equation (11) into equation (13) and expanding, one obtains the following expression:

V(1) = Ay3+B 3¢ " +B e V4B eI, (14)
where
1 A B
Ap=--— By, = ——2%
B B
B = —__l B = ___3 )
13 K 3 -

Figures 2 and 3 show plots of the relaxation modulus and Poisson’s ratio for the Prony functions of
equations (11) and (14), respectively.

4e+5

3e+5 4

E, @)

in2
(lblln ) 2e+5 o

te+5 T T TR T T TR T TR T T T Te T TR T Ty
0001 .001 01 N | 1 10 100 1000 10000

Log of time (hours)

Figure 2. Relaxation modulus of a single-phase viscoelastic material.
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Figure 3. Poisson’s ratio of a single-phase viscoelastic material.

B. Elastic-Viscoelastic Correspondence Principle

A very effective method of solution of time-dependent structural problems is obtained by
applying the Laplace transform to the time-dependent functions. This removes the time variable, and
the analysis problem for the viscoelastic body is converted to an “associated elastic” problem. This
method allows the solution of the viscoelastic problem by simply expressing the constitutive equa-
tions and boundary conditions as functions of the Laplace transform parameter s. Once a solution to
the “associated elastic” problem is obtained in the Laplace domain, it can be inverted into the origi-
nal time domain, and a solution to the original viscoelastic problem is developed. For a single-phase
material exhibiting properties that are time dependent, the solution of the beam problem becomes
fairly straightforward. In fact, by using the “associated elastic” problem approach which is officially
known as the “elastic-viscoelastic correspondence principle,” this problem and many others can be
solved in closed form. This method has been successfully used and documented by many authors.”-9
It will be used in this report to demonstrate its simplicity and usefulness to the design engineer
when designing structures with time-dependent materials.

The solutions derived in this report assume linearly viscoelastic materials. This means that,
for any time interval, the time-dependent functions can be assumed proportionally linear to the
applied constant load. Also a material is assumed linearly viscoelastic if the combined effects of two
or more simultaneously applied loads or displacements can be expressed as the sum of the individ-
ual effects when the same loads or displacements are applied separately.

[ 11 1
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Equation (11) can be expressed in the Laplace domain as:

B, , B

E(s)= —+ + . (15)
5 s+ yl s+ YZ S+ Y3
The “associated elastic” expression for the relaxation modulus can be obtained by multiplying
equation (15) by the Laplace parameter s .8 In this manner, one obtains:
EGs) = sE(s)= A+ 8L 4 B2 o B3 (16)
s+ 'yl s+ 72 s+ }'3
Following this same procedure, the expression for the “associated elastic” Poisson’s ratio is
expressed as:
V(s) = sT(s)= Ay +-B1 4 SBas | B (16a)

s+Yl S+)’2 S+Y3 '

C. Determination of Time-Dependent Strain

Any applied loads, either constant or varying with time, must also be transformed into the
Laplace domain. So if, in the time domain, equation (3) is expressed as:

_ S(x)P()
gb(t) - E(t) ’ (17)
where

S(x) = 6(L—x)  (where ¢ is thickness) ,

bt*

then, in the Laplace domain, equation (17) becomes:

S(x)(—P )
— M) = P,
& = %5 S(x)[ﬁi(s)] ' 19

Substituting equation (16) into (18) and combining all terms, one obtains, after some algebraic
manipulations:

3 2
+ f15°+ fos+ f
€ = S(x)P S *h 2 3 ) 19
o(s) ) O(L1s4+L2s3+L3s2+L4s] (19)

where



fi=n+7n+7 fe=n+ys Li=A+B + B+ B

=Y+ Y+ f1= N7 Ly=Afi+ Bify+ Byfg + By fg
HB=nNnnny fs=n+Y2 Ly=Af, + Bifs+ Byf; + By f
fa= 12 +7; fo =172 L, = Af;

fs=7273

The ratio of polynomials in equation (19) can be expressed as:

S+ A+ fs+ fy _ Fa) 20)
s(L1S3 + L2S2 + L3S + L4) SGa(s)
The roots of the cubic equation G,(s) can be obtained, allowing the expression to be written as:
G,(s)=(s+A)(s+A,)(s+43) . (21

It is important to point out that for the physical problem, these roots should never have an imaginary
component. This knowledge can be used as a check to verify that the numerical calculations have
been performed appropriately. In fact, all roots in equation (21) should be real and negative for a
material with a modulus that can be characterized as exponentially decaying.

One should notice that equation (20) is a quotient of two polynomials with no common fac-
tors, and the degree of the numerator is lower than that of the denominator. This is the classical
fraction that can be solved in a straightforward manner by application of Heaviside's partial fraction
expansion.10 Following Heaviside’s procedure, the total derivative of the denominator of equation
(20) can be expressed as:

d _ dG,(9)] | d[s]
ds[sGa(s)] = sm— G,(s) , (22)
or
di[sGa(s)] = 4L;s® +3L,s? +2Lys+ Ly . (23)
§

Equation (20) can now be expressed as a sum of partial fractions as;

Fas) _ My, My . My . M,

= + 24,
5G,(s) s s+A; s+A, s+, @4

where

F,(s)

d
—|sG,
dS[S a(S)] s=0

ot

IR BT

L (N

LT



F,(s)

M, = T
z[sca (S)]

s=21,

F,(s)
da [sG,(9)]

N s=A,

M. = F,(s)
= a8
dd[sGa(s)]

5 s=24,

Substituting equation (24) into equation (19) yields the expression for axial strain due to bending in
the Laplace domain:

M, M. M M
=sp | & 2 3 a_ 1. 25
&) =5(x) o( § +s+ll+s+).2 +s+ﬁ,3] (25)

Taking the inverse transformation of equation (25) yields the final expression for the time-depen-
dent axial strain due to bending:

£,(1) = S(x) PO(MI s Mye M+ Myt +M4e”‘s‘) . (26)

D. Determination of Time-Dependent Deflection
Equation (5) is the expression for maximum deflection of the cantilever beam under study.

Following the same procedure as for the viscoelastic strain calculations, the deflection can be writ-
ten as a function of the time-dependent variables:

w(t)=Q [f—;%] , 27

where

0= i;?- (where ¢ is thickness) .

In the Laplace domain, equation (27) can be written as:

_ol_P
w(s) = Q[szf(s)} . (28)



One should notice that the only difference between equation (28) and equation (18) is in the
replacement of the term S(x) with the constant Q. Since both these terms are independent of time, it
is a straightforward matter to express the time-dependent deflection as in equation (25). This
expression is:

w(t) = OP, (M + Mye™ " + Mye™%s! + M) (29)

IV. THE TWO-PHASE VISCOELASTIC BEAM PROBLEM

The formulation for strain and deflection obtained in section III is applicable for linearly
viscoelastic materials which are isotropic. Although many plastics can be analyzed in this manner,
the majority of the viscoelastic materials used for aerospace structural applications are two phase.
This means that they are composed of one phase that exhibits time- dependent properties and
another phase that does not. This is the case for many composite materials, in particular the epoxy-
or resin-based two-phase systems. For example, graphite/epoxy, boron/epoxy, and silicon-
carbide/epoxy are considered two-phase composites.

A. Micromechanics Determination of Material Properties

In order to identify the time-dependent material properties of the two-phase composite, we
must look at the interaction between the time-dependent and time- independent components at a
microscopic level. This heterogeneous look at the composite system is known as micromechanics. In

this report, the classical stiffness approach to micromechanics is used.!! There are some basic
restrictions on the composite material. For example, the composite ply (lamina) resulting from the
constituent parts must be macroscopically homogeneous and macroscopically orthotropic. It must be
linearly viscoelastic and initially stress-free. For the constituents, the fibers are homogeneous,
linearly elastic, isctropic, regularly spaced, and perfectly aligned; the matrix is homogeneous, linearly
viscoelastic, and isotropic. In addition, the bonds between the fibers and the matrix are assumed to
be perfect (no voids). Although these restrictions are seemingly stringent, modern manufacturing

methods combined with material characterization at a macroscopic level (E 11 E22:. G2, etc) can be

used to “back-out” the necessary constituent characteristics ( m(t), E £ V(1) etc.).

The binder or matrix of the composite material used in this report has a relaxation modulus
described by equation (11). In this manner, one has:

E,()=A +Be " +Be " + B | (30)

Following the micromechanics approach to stiffness, a “rule of mixtures” expression for the appar-
ent time-dependent Young’s modulus in the direction of the fibers can be obtained. This is:

E\()=EfV; +E,(1)V,, , (31)

10
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where

E; = Young’s modulus for an isotropic fiber
V; = fiber volume content for the composite material

E,(t) = relaxation modulus for the matrix
V,, = matrix volume content for the composite material.

In the direction transverse to the fibers, the apparent Young’s modulus is expressed as:

E/E,,(1)

. (32)
EVputE, )V,

Eyp(f) =

Several approaches for the accurate determination of the apparent in-plane shear modulus Gy,(?)
have been investigated. Using a variational analysis approach, Foyel? developed an expression for a
square array of fibers in the laminate. This represented the best closed-form estimates of this
orthotropic constant for a unidirectional composite ply. It is expressed, in this report, as follows:

Goylt) = G,(1)| (4-nm)+ wN(1) + 4N(t) 33)
2 4 (4-m)N(t)+ =
where
E, (1)
G,(t) = —8—— , 34
m(® 2[14 v, ()] GY
Go(m+4V, )+ G (0)m—4V,)
N(r)= ; (35)
G(n=4v;)+ G, 0)(m+4V,)
_E
Gy= . (36)
2(1+ v)
Poisson’s ratio for the matrix material will be described by equation (14) or:
Vm(t)=Al3+Bl3e—ylt+Bz3€_7zl+B33e—‘yat . (37)
The major Poisson’s ratio for the unidirectional composite lamina can be written using the rule of
mixtures in the same manner as the time-dependent Young’s modulus E,;(?):
Vi (1) = v,V + v, (), (38)

11



where
v, = Poisson’s ratio for isotropic fibers.

The minor Poisson’s ratio is defined as usual from the symmetric properties of the compliance

matrix:
Ex(t)
E; (1)

va(t) = vio(r) (39)

In order to obtain the time-dependent strain values of the individual plies within the laminated beam,
one can use the elastic viscoelastic correspondence principle. Due to the fact that the determination
of strains in composite laminates is critically dependent on stiffness parameters for each ply, as well
as stiffness parameters for the laminate, a closed-form solution to the time-dependent strains is
considerably more elaborate than what is expressed in equation (26). In fact, one will realize that
even for the simplest problems (cantilever laminated beam), although a closed-form solution is
possible, it is not time nor cost effective to expect a design engineer to obtain them. For more
complex mathematical models, the function to be inverted is often known only for discrete positive
real values of the transform parameter therefore making it very difficult if not impossible to obtain an
exact solution. A more effective approach is the application of numerical inversion methods to obtain
the approximate transformed solution. A widely used and effective method of inversion is the
collocation technique due to Schapery.13

B. The Collocation Method

This numerical inversion technique is readily applicable to a general class of problems that
have a solution of the form:?

f@O)=T+Tyt+5(1) , (40)

where T'; and T, are constants, and g(¢) is the transient component of the solution. The transient
component is normally expressed, approximately, as a sum of exponential functions or:

m
g()=Y he 1)
v=]
where h, and «, are constants.

The time-dependent axial strain due to bending can be written according to equations (40)
and (41) as:

m
g,(1) = Ty +T 1+ Y he /% 42)

v=]

After the material experiences the creep that is characteristic of viscoelastic materials, it is assumed
that the long-term value of strain is approximately constant. In reality, this long-term strain is not
constant, but for many materials, its rate of change is very small. With this assumption, the linear
time-dependent component of equation (42) vanishes, yielding:
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m
e,(t) =Ty + Y hye /%

v=1

In the Laplace domain, equation (43) can be expressed as:
sEp(s)=sTy(s)+58(s) ,

where

sl"l(s)—s[l;jl Ty,
and
2(s)= Z +1/a)

Equation (44) is now written as:

L sh,

sE (s)=T, + Z Gy

(43)

44)

(45)

In order to try to minimize the error of the approximation given by g(s), the transform of the approx-
imate solution should be equal to the transform of the exact solution, at least at the m discrete

values of s:

g (S )exact g (S ) approx

s=Ya, s=Ya, ’

where
w=1,2,3,...m .

Considering equation (46), equation (45) can be expressed as:

sh,
sE(s)=T+ 2 (—/———:l/a—)

At t =0, equation (43) can be solved for the constant T';. It is written as:

(w=1,2,3..

(46)

.,m) . (CY))

(48)
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Letting s = 1/, on the right-hand side of equation (47) and substituting equation (48) into equation
(47) yields, after rearranging:

St =)
= £,(t,) —5E,(s) 49)
S(+oa,/a,) ° =y,
The expression for ¢ is:?
a; = e%) (G=123...,m) . (50)
Substituting equation (50) into the left-hand side of equation (49) yields:
L h, -
Z['—_z(w—v) =¢&,(t,) =5 Ep(s) GD
v=] 1+ € ] J=1/ll_

All quantities in the set of equations (51) are either known or can be determined at the discrete
values of the Laplace parameter s except the constants h,. Solving for the h,'s gives the necessary
information to evaluate equation (48). A final substitution into equation (43) yields the expression
for the time-dependent strain.

For the problem of a multilayered viscoelastic composite beam, the time-dependent response
is readily obtained using an appropriate numerical method. The collocation method is used in this
section to obtain the axial strain of the cantilever beam due to bending.

For symmetric laminates- under bending loads, the stresses in the k™ ply of the beam can be
expressed as:

= —= (k)
Oy On G2 Qe 1£5
G)’ = Ql 2 —Q-Z?. 626 Yy ’ (52)
Oxy O Oz Oss Yy

where Q,J are the transformed reduced stiffnesses of the ply and y; are the curvatures.!! 14 From the
moment-curvature constitutive relations for bending of composite laminates, one can write:

Yx D D, Dy| |M,

Tyt = |Dia Dy Dy| {M,¢ . (53)

*

Yxy Dy D;6 D;6 M,
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where D,;-‘ are the components of the inverted bending stiffness matrix. For one-dimensional beam
problems, the following assumption is made:

M, =M, =0. | (54)

Expressions for the transformed reduced stiffnesses can be found in Jones!! and Whitney!4 and will
not be repeated here. Substituting equations (53) and (54) into (52) yields the expressions relating
stresses to the ply and laminate stiffnesses, and the applied moment. For the axial direction
(maximum bending stress direction), the stress is expressed as:

o) = :® (g} D}, + B DI, + 01§ Dis) - (55)

From the classical lamination theory, the bending stiffnesses are expressed as:
D.= L3g® (3 - 2 56
ij-32 j (Zk'zk—1)- (56)

Once the stresses have been determined, one can express the strains in terms of the stresses by
transformation of the strain-stress relations from principal material directions to body coordinates.
The resultant expression is:

(k) (k) (k)

5 511 §12 :S-vl6 Ox
et =52 Sn S o) , (57)
€xy Si6 56 Seo Oy

where § j are the components of the transformed compliance matrix for the k™ ply. Once again

expressions for the components of the transformed compliance matrix can be found in Jones!! and
Whitney!4 and will not be repeated here.

Using the elastic-viscoelastic correspondence principle, the solution for the time-dependent
strains can be obtained. The procedure is as follows:

1. Determine the analytical expressions for the time-dependent relaxation modulus and
Poisson’s ratio (equations (30) and (37)).

2. Obtain the Laplace transforms of these functions and determine the associated elastic
expressions (equations (16) and (16a)).

3. Calculate the values of the longitudinal and transverse properties for the unidirectional ply
by transforming equations (31), (32), (33), (38) and (39) into the Laplace domain and
substituting the values from step 2.
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4. Calculate the reduced stiffness matrix, compliance matrix, transformed reduced stiffness
matrix, and transformed compliance matrix in terms of the unidirectional ply properties
from step 3.

5. With the information in step 4, calculate the laminate bending stiffness matrix (equation

(56)).

6. Identify the applied loads (moments) in the Laplace domain. For a constant moment, this
is simply dividing the moment by the Laplace parameter.

7. Calcﬁlate stresses and strains using equations (52) and (57).

8. Express the calculated strains as the “associated elastic” solution by simply multiplying
the calculated strains from step 7 by the Laplace parameter s.

9. Solve for the constants, k,, from equation (51). In expanded form, equation (51) can be

written as:
[l 1 1 1 1 R =
= | (es(t,) - sE(s) _ s
% 1+1e—2 1+1e_4 l+1e‘6 1+le_8 1+§’—10 ’ =€
1+e2 E 1+e? 1+e? 1+e° 1+ e ? & e (tO) T (S)L:e-a
1 1 1 1 1 1 _
- h Eplt,)—s€,(s) _ .
1+e*  1+¢? 2 l+e?  1+e? 1+ |22 bllo) = 525(5), - ,
1 ! 1 1 ! L h r &y(t,) - 5&,(s)|
1+¢8 1+e* 1+¢2 2 1+e2 1+ || b\e b1 s=e
1 1 1 1 1 1 c (t ) z ( )l
- -3 N 3
1+e8  1+e® 1+ 1462 2 1+e2 || bl b s=e
1 1 1 1 1 1 _
1+el° 1+6® 1+e® 1+¢* 1+ 62 2 hﬁj eb(t") - ssb(s)!ﬂc”
) } { )

10. Calculate the constant I'; from equation (48).
I1. Obtain the final expression for time-dependent strain by substituting the constants from
steps 9 and 10 into equation (43).
D. Determination of Time-Dependent Deflection

For the one-dimensional beam, the Euler-Bernoulli equation for a composite orthotropic
laminate is expressed as:

d? *
-d—xg’ = D;,(OM, . (58)

MoE

[

b e



For a cantilever beam of constant cross section and thickness, the bending stiffness parameter

Di,(r) is independent of x, and intégrating equation (58) twice yields the expression for the deflec-
tion of the beam. In this manner, one obtains:

D;, P, I
S 11(3)0 ' (59)

The procedure to calculate the time-dependent deflection now follows the one described in
section IV.C with the following difference.

After step 7, the load P, like the moment, is divided by the Laplace parameter. Equation (59)
is then calculated for the value of the Laplace parameter. This is repeated for each value of Laplace
parameters chosen for the analysis. Equation (51) is again solved with the values of deflection used
instead of the values of strain. The constants ¢, and h, are again calculated, and a final expression

for the time-dependent deflection is then obtained.

E. Determination of Time-Dependent Natural Frequency

The natural frequency of a one-dimensional composite orthotropic beam can be determined
from the elastic beam frequency equation by simply making the following substitution into equation
(6):

b

__b_ (60)
Dy (1)

El

With this substitution, the resulting expression for natural frequency is:

Dy, ()mL” . 61

Again the steps to obtain the time-dependent natural frequency are the same as in the time-depen-
dent strain and deflection with one exception. Notice that the expression for natural frequency is
independent of applied load. Equation (61), once expressed in the Laplace domain, becomes the

associated elastic expression. In other words, @(s)= w(s). The values of the constants ¢, and h,
are again calculated, and the final expression for time-dependent natural frequency also takes the

form of equation (51).
V. NUMERICAL EXAMPLES
A. Single-Phase Viscoelastic Beam Problem
As a first example of the determination of time-dependent strains and deflection of a can-
tilever beam of a linear viscoelastic material, the case of a single-phase material will be investi-

gated. This problem is by no means a new one. It is presented here to demonstrate a simple appli-
cation of the “correspondence principle” and its usefulness to the design engineer.
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Figures 2 and 3 show plots of the relaxation modulus and Poisson’s ratio, respectively, for
the material described in equations (11) and (14). The constants for both equations are defined in
section ITI.A. The material presented here is a fictitious one, but the curves represent typical ones
for actual viscoelastic materials.

Appendix A. contains the computer program “RELAX” which identifies the step-by-step
procedure to determine the time-dependent strain and deflection of a linear viscoelastic cantilever
beam of constant cross section. For this example, the applied load is 25 Ib at the tip (free end) of the
beam. The length of the beam is 29.25 inches, the width is 5 inches, and the thickness is 1 inch. The
program produces the following results for equations (26) and (29):

A, =—=0.00514282
A, =-986.113154
A5 =-9.859137

M, = 5.555555E—6
M, = —2.698453E -6
M, =-3.911196E -8
M, =-4.023282E -8 -

The plots of strain and deflection from this run of “RELAX” are shown in figures 4 and 5, respec-
tively. “RELAX” also calculates the deflected shape of the beam as a function of time. This shows
how the beam relaxes with time, thus yielding a deflection that increases as time passes. The points
in time selected for the plot are t=0h, =10 h, r=100 h, and ¢ = 1,000 h. This is plotted in figure 6.

B. Two-Phase Viscoelastic Beam Problem

Many composite materials have, as constituents, a time-dependent component (polymer
matrix) and fibers or particulates that are made from materials that have properties that are rela-
tively insensitive to creep or relaxation (graphite, boron, silicone-carbide, etc.). In these cases, the -
problem of determining the time-dependent response to applied loads becomes more involved, and in
many cases, closed-form solutions are not available. The intent of this section is to use the corre-
spondence principle and apply the collocation method!3 to a laminated composite cantilever beam
loaded at the free end to determine the strain, deflection, and natural frequency as a function of time.
The application of the procedure to different problems has been well documented.8? The approach is

given in section IV and is applied and explained in a step-by-step manner in the computer program
“VISCOBM” found in appendix B.
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Figure 4. Time-dependent bending strain for a single-phase viscoelastic beam.
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Figure 5. Time-dependent deflection for a single-phase viscoelastic beam.
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Figure 6. Deflected shape of a single-phase viscoelastic cantilever beam at various times.

One will notice, when using the collocation method, that the accurate determination of the
initial response (¢ =0) is critical to the proper solution of the viscoelastic problem. For this purpose,
a computer program “VIST0” is included in appendix C. This program is nothing more than
“VISCOBM?” at time ¢=0. It is important to point out that it is not necessary to create a separate
program for this condition since running “VISCOBM” at ¢ =0 would accomplish the same results. It
is done this way here as a means of simply demonstrating the. method.

Figure 7 shows the calculated time-dependent strain for various ply lay-up angles of a four-
ply symmetric beam. It is interesting to see how the lay-up angle plays a significant role in the long-
term strain values. Figure 8 shows the same trends for deflection. Figure 9 illustrates that increas-
ing the fiber content of the composite not only increases the stiffness of the beam but it also reduces
the long-term effects of relaxation in the beam. Figure 10 shows the significant drop in natural
frequency of the beam as a function of time.

VI. LIMITATIONS OF THE CORRESPONDENCE PRINCIPLE

A very important limitation to the application of the correspondence principle must be
explained. The knowledge of the state of the boundary conditions must be known in order to apply
this method effectively.15

If the interface between the surfaces where the stress is prescribed and where the displace-
ments are prescribed changes with time, the correspondence principle is not applicable. The condi-
tions of each surface, however, can be time-dependent. The illustration in figure 11 shows how the
shaded area (interface boundary area) in a viscoelastic medium changes as a function of time for a
spherical indentor. For a cylindrical indentor, the interface boundary does not change. An example of
a changing interface boundary is the increasing inner diameter of a solid propellant motor as it is
consumed during operation.
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Figure 7. Time-dependent bending strain of outer ply in a two-phase viscoelastic cantilever beam
for various laminate configurations.
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Figure 11. Difference between time-dependent and time-independent boundary conditions.
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VII. CONCLUSIONS

The elastic-viscoelastic correspondence principle is a very effective and straightforward tool
for determining the time-dependent response of viscoelastic structures to applied loads. The design
engineer can use this knowledge to optimize parameters such as ply lay-up angle, fiber volume
content, and configuration variables. This can help to minimize or maximize the effects of creep or
relaxation depending on the functional use of the hardware designed. The examples presented offer
the design engineer the capability to understand the effect that a viscoelastic material can have on
the performance of structures.

~—

Although not included here, temperature and exposure to environmental effects (ultraviolet
light, ozone, atomic oxygen, etc.) can play an important role in the degradation of the material
properties. These effects should be included in the development of the basic material properties such
as the relaxation modulus, creep compliance, and Poisson’s ratio.

As composite materials become more widely used in aerospace applications, the effects of
long-term exposure to the space environment can become a significant factor in the geometry and
specifications of the hardware. With the method presented here, the design engineer has the tools
necessary to alter initial designs which have not taken into consideration the time-dependency
factor. This will provide for more structurally sound and efficient structures.
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c***********************************************************************

C R E L A X
R e A R R A A e A A A AL e s et
C PROGRAM TO DETERMINE THE TIME DEPENDENT STRAIN AND

C DEFLECTIONS OF A SINGLE PHASE VISCOELASTIC

C CANTILEVER BEAM

c***********************************************************************

IMPLICIT DOUBLE PRECISION{A-H,O0-2)}

DIMENSION XL{4),XLMD(3),RI(3),FA(3)},GA(3),XM(3)
OPEN(UNIT=7, FILE="'C:\FORTRAN\RELAX .DAT')
OPEN(UNIT=8, FILE="'C:\FORTRAN\STRAIN.DAT')

G e mmmmmm e mmmm—mm e md e e e ——— e mhmmmm————————
C IDENTIFY BEAM GEOMETRY AND APPLIED LOAD
c _______________________________________________________________________
P = 25.00
XLTH = 29.25
WIDE = 5.00
THK = 1.00
C -----------------------------------------------------------------------
C CALCULATE MOMENT OF INERTIA AND SPECIFIC CONSTANTS
Corm et mm e mm e m——mee—emeeemeaeme—— e eememm e ——————————
XINRT = (WIDE*(THK**3))/12.
F1XZ = 12*P*XLTH*(THK/2)/(WIDE*(THK**3))
Q = 4.*P*(XLTH**3)/(WIDE* (THK**3))
T = 0.0001 o
Cmmmm e mmmmeem e m e mm e e mm— e eeemmmmmmeeee————————
C IDENTIFY MATERIAL CONSTANTS FOR RELAXATION MODULUS FUNCTION
e e e e e e e e e - - - e . - e - e h e e ———————————
A = 180000.
Bl = 5000.
B2 = 5000.
B3 = 170000.
GAMA1l = 1000.
GAMA2 = 10.
GAMA3 = .01
Cmmmm e e e e e ————— - = e — e mame=————
C CALCULATE RELAXATION MODULUS
Cemm e e e e et e m e e mmm e ———— e —————————————
DO 20 I = 1,1301
E = A + B1*EXP(-GAMA1*T) + B2*EXP{-GAMA2*T) + B3*EXP(-GAMA3*T}
WRITE(7,*)T,E
T=T+ 1
20 CONTINUE
Crmmm e e e e c e e e e e e e e e e e e N N e e e — S - - e e —— - —w—————
c CALCULATE CONSTANTS FOR CALCULATION OF STRAIN AND
C DEFLECTION IN THE LAPLACE DOMAIN
Coemrrermerr e e e e e e e e m st e m e e e e e e e e e e T e —mmC S SC e e s ————————

F1 = GAMA1l + GAMA2 + GAMA3

F2 = GAMA1*GAMA2 + GAMA2*GAMA3 + GAMA3*GAMAl
F3 = GAMA1*GAMA2*GAMA3

F4 = GAMA2 + GAMA3

F5 = GAMA2*GAMA3

F6 = GAMAl + GAMA3

F7 = GAMA1*GAMA3
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F8 = GAMAl + GAMA?2

F9 = GAMA1*GAMA2

XL{(1) = A + Bl + B2 + B3

XL(2) = A*F1 + B1*F4 + B2*F6 + B3*F8
XL(3) = A*F2 + B1*F5 + B2*F7 + B3*F9
XL{4) = A*F3

CALL CUBIC (XL, XLMD,RI)
WRITE(7,10)XLMD(1),XLMD(2), XLMD(3)

10 FORMAT (' THE REAL ROOTS OF Ga{s) ARE',63E12.5)
WRITE(7,11)RI(1),RI{2),RI(3)

11 FORMAT(' THE IMAGINARY ROOTS OF Ga(s) ARE',b3E12.5)

C _______________________________________________________________________
C CALCULATE THE "M" CONSTANTS OF EQUATION (24) BY HEAVISIDE'S
C PARTIAL FRACTION EXPANSION THEOREM
C _______________________________________________________________________
XMO = F3/XL(4)
XXMO0 = F3/XXL(4)
N WRITE(7,12)XM0
12 FORMAT (' THE CONSTANT Mo IS',E12.5)
DO 21 1 =1,3
FA(I) = XLMD(I)**3+F1*XLMD(I)**2+F2*XLMD(I)+F3
GA(I) = 4.*XL(1)*XLMD(I)**3+3.*XL(2)*XLMD(I)**2+2.*XL{(3)*XLMD(I)+
*XL(4)
XM(I) = FA{I)/GA(I)
WRITE(7,13)I,XM(I)
13 FORMAT(' M',I1,' =',6El2.5)
21 CONTINUE
C _______________________________________________________________________
C CALCULATE THE TIME DEPENDENT STRAIN PER EQUATION (26)
G e e e e e e e e e ———————— e e e e
T = .0001
DO 22 I = 1,2500,5
STRN = F1XZ* (XM(1) *EXP(XLMD{1)*T)+XM(2) *EXP{(XLMD{2) *T) +
*XM(3) *EXP(XLMD(3) *T) +XM0)
£ o o e e e e e —————————————