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Abstract

This report describes an application of the method of moments to
calculate the electromagnetic scattering from irregularly shaped, thin,

metallic flat plates in free space. In the present technique, an ir-

regularly shaped plate is enclosed by a rectangle on which the surface-

current density is then expressed in terms of subdomain functions by

dividing the rectangle into subsections. A shape function is introduced
to ensure zero current outside the patch. The surface-current density is

determined using the electric field integral equation (EFIE) approach

in conjunction with the method of moments, and from a knowledge

of the surface-current density, the electromagnetic scattering from a

plate is calculated. Using this technique, the electromagnetic scattering
from (1) a hexagonal plate, (2) an equilateral triangular plate, (3) an

equilateral triangular plate with a concentric, equilateral triangular hole
and an inverted, equilateral triangular hole, and (4) a diamond-shaped

plate is computed and compared with the numerical results obtained by
using the Electromagnetic Surface Patch (ESP) code developed by Ohio

State University. The numerical results compare favorably with the
measurements perfo_ned on these shapes in the Langley Experimental

Test Range facility.

Introduction

A knowledge of electromagnetic (EM) scattcring

from a complcx-shaped metallic object is of practical

interest to electromagnetic analysts and engineers.
In recent years, considerable interest has developed

in the EM scattering analysis of polygonal plates
becausc a complex-shaped metallic object can al-

ways be modeled as an interconnection of these poly-
gonal fiat platcs (ref. 1). An EM scattering anal-

ysis of a polygonal, metallic fiat plate can be

accomplished by using various numerical techniques.
One of the widely used techniques is the method

of moments in which a polygonal plate is first seg-
mented into a number of rectangular or nonrectangu-

lar surface patches called subdomains. The unknown

surface-current density on these subdomains is then

determined using thc electric field integral equation

(EFIE) in conjunction with the method of moments.

The early work on polygonal fiat plates (rcf. 2)

consisted of subdividing an irregularly shaped plate
into a collection of curvilinear cells that were rep-

rescntcd numerically as fourth-order polynomials.

However, usc of that method rcquired a knowledge

of the coordinates of a large number of points on the

object, and this made the method unattractive. In
another approach (refs. 3 and 4), a nonrectanguiar

plate was viewed as an interconnection of polygonal

plates. The unknown amplitudes of the surface patch
modes wcre determined by expressing the currents on

the polygonal plates in terms of nonrectangular sur-

face patch modes and using tile EFIE in conjunction
with the method of moments.

An Electromagnetic Surface Patch (ESP) code

was dcvelopcd in 1988 under NASA Grant NSG 1498

by E. H. Newman at the ElectroScience Laboratory,
Ohio State University. (This code is described in
a manual entitled A User's Manual for the Electro-

magnetic Surface Patch Code: ESP Version IV.) The
ESP code was based on the segmentation techniques
described in references 3 and 4. Even though the

segmentation technique used in the ESP codc com-

pletely filled the area of the nonrectangular plate,
extra current modes were required at the intercon-

nections of the polygonal plates to ensure a conti-

nuity of current. Furthermore, when nonrectangular
surface patch modes were used to express the sur-

face current, the resulting matrix would be symmet-
ric but not of a block Toeplitz nature, and hence it

would require more impedance matrix filling .time.

In the present work, a segmentation technique that

is both symmetric and results in a block Toeplitz

impedance matrix is developed to analyze the EM
scattering from polygonal, thin, metallic flat plates.

In the present analysis, an irregularly shaped

platc is assumed to be enclosed by a rectangle with
sides equal to Wx and HTy, the maximum dimen-

sions in the x- and y-directions, respectively. By

dividing 14x into (M + 1) subdivisions and I,Vy into

(N + 1) subdivisions, the surface-current density over



the rectangleis expressedin termsof overlapping
triangularfimctionsin thedirectionof currentflow
andapulsefunctionin theorthogonaldirection.Zero
currentoutsidetheplateisensuredby introducinga
spacefunctionin thecurrent expansion function. (A
space function is equal to 1/0 if tile subdomain lies

inside/outside of the irregular plate.) Selecting the

testing functions to be the same ms the expansion
functions allows the EFIE to be reduced to a matrix

equation that is solved by using standard matrix-
equation solver subroutines. The surface current on

the plate is then used to determine EM scattering due

to the plate. By using this technique, the EM scat-

tering due to several nonrectangular plates is com-

puted and compared with the results obtained from
Newman's ESP code. The results obtained from us-

ing the present method are also compared with the

experimental data measured in the Langley Experi-

mental Test Range (ETR) facility, which is a compact

range specifically designed for microwave scattering
measurements. The ETR is a dual anechoic chamber

with a Greorian reflector system (ref. 5) containing
a 16-ft 2 rolled-edge main reflector.

The measured data are provided on a floppy disk

for the reader, a description of which is given in the

appendix.

Symbols

A(x, y, z)

Ei

E_ (x, y, z)

Esy

Eso

Eyi

EO_, E¢,

ex(kx, ky, O)

%(kx,ky, O)

F_mn(kx,ky)

magnetic vector potential

incident electric field vector

absolute value of incident electric

field vector

scattered electric field vector

x-component of scattered field Es

y-component of scattered field Es

0-component of scattered field Es

C-component of scattered field Es

x-, y-, and z-components, respec-

tively, of incident electric field

0- and C-components, respec-

tively, of incident electric field

Fourier transform of Esx(x, y, O)

Fourier transform of Esy(X, y, O)

Fourier transform of

P_(x) On(y)

Fymn(kx, ky) Fourier transform of

Qm(x) Pn(y)

{FX} _ sin(kz Ax/2)
-- kx Az/2

{FY} _ sin(k_ Ag/2)
_y A#/2

{FX1} _ sin[(sin 0 i cos ¢,)(k 0 Ax/2)]
-- sin Oi cos ¢i ko(Ax/2)

sin[(sin Oi sin ¢i)(,k.0 Ay/2)]
{FY1} = (sin 0i sin dpi)(k0 Ay/2)

f frequency, GHz

G(x,y,z/x',y') free-space-scalar Green's function

g( kx , ky, z /x _,y') Fourier transform of G( x, y, z /x', y_)

H i incident magnetic field vector

tz(P) complex amplitude of pth x-
directed subdomain current mode

Iy(q) complex amplitude of qth y-
directed subdomain current mode

Js(x, y) induced surface-current density

vector on plate

J.sz (x, y) x-component of Js (x, y)

Jsy(x, y) y-component of Js(x, y)

j = v/Z-] -

js Fourier transform of Js

Jsz x-component of Js

jsy y-component of js

k i propagation vector of plane wave

kz Fouricr transform variable with

respect to x

ky Fourier transform variable with
respect to y

kz complex propagation constant in
z-direction

k 0 propagation constant in free

space

it/+ 1 number of subdivisions in
x-direction

m, n (m, n)th subdomain of induced
current

rn1, n t (m I, nl)th subdomain of induced
current

N + 1 number of subdivisions in

y-direction



P

Pro(x)

P

pl

Q

Qm(y)

Qn(x)

q

q,

Rp ,p_
37X

r

S x (m, n)

v?'

g'

x 'f'

X_ y, Z

X I, yl, Z I

ZVx'J

total number of x-directed sub-

domains on plate

piecewise linear distribution in
x-direction

piecewise linear distribution in

y-direction

equivalent to (m, n)th x-directed
subdomain

equivalent to (m l, n')th x-
directed subdomain

total number of y-directed sub-

domains on plate

pulse distribution in y-direction

pulse distribution in x-direction

equivalent to (m, n)th y-directed
subdomain

equivalent to (m', nr)th y-directed
subdomain

real part of zP'zp'

position vector in direction of
plane wave

shape function for x-directed

current (= 1 or 0)

shape function for y-directed

current (= 1 or 0)

reaction of p'th x-directed sub-

domain testing function with Exi

reaction of q'th y-directed sub-

domain testing function with Ey i

maximum dimension of plate in
x-direction

maximum dimension of plate in

y-direction

imaginary part of zP'xp'

Cartesian coordinates of field

point

Cartesian coordinates of source

point

mutual impedance between pth

and p'th x-directed subdomain
currents

oLo

Ax

Ay

5

r/0

0,¢

Oi, ¢i

b8, _8

A0

#0

O'EH

O'H E

mutual impedance between qth

y-directed and p'th x-directed
subdomain currents

mutual impedance between pth

x-directed and q_th y-directed

subdomain currents

mutual impedance between qth

and qith y-directed subdomain
currents

polar coordinate variables related

to kx, ky

angle between Ei and Oi, deg

_ %_
-- _-V---+ 1

delta function

free-space wave impedance

angles of scattered electro-

magnetic wave

incident angles of electromagnetic
wave

unit vectors along

axes, respectively,

coordinate system

unit vectors along
axes, respectively,

coordinate system

Oi and ¢i

in spherical

Os and ¢s

in spherical

wavelength in free space

magnetic permeability of free

space

total radar cross section

copolarizcd radar cross sec-

tion when E-polarized wave is
transmitted

cross-polarized radar cross

section when E-polarized wave
is transmitted

cross-polarized radar cross

section when H-polarized wave
is transmitted

3



O'HH copolarized radar cross sec-

tion when H-polarized wave is
transmitted

a_ angular frequency, 2rrf

V gradient operator

Abbreviations:

EFIE

EM

ESP

RCS

electric field integral equation

electromagnetic

Electromagnetic Surface Patch

radar cross section

Theory

General Theory

Consider an irregularly shaped, infinitesimally thin plate excited by a plane wave as shown in figure l(a).

By using the representation of reference 6, the incident field with a time variation of e j"n may be written as

Ei(x,y,z ) = (OiEoi + _iEoi) e -jki'r

: (0i IEil cosa0+¢i ]Eil sin a0) e -jkir (1)

where

k i - r =-k 0 sin0 i(x cos ¢i+ysin ¢i)

and k 0 is the free-spacc wave number. From equation (1), the x-, y-, and z-components of the incident field

may be written, respectively, as

Exi = EO_ cos 0icos ¢i - EO i sin ¢i

Eg i = Eoi cos 0isin 0i + EOi cos ¢i (2)

Ezi = -Eoi sin Oi

The corresponding magnetic field components are obtained through

L

Hi = lki x Ei (3)

where _ is the free-space impedance. The incident field with Eo_ _ 0, Ee_ = 0 (i.e., c_0 = 0°) is called the
H-polarized wave and with EOi = 0, Eel _ 0 (i.e., ct0 = 90 °) is called the E-polarized wave.

Let Js(x, y) be the induced surface-current density on the plate. The electromagnetic field due to Js(x, y)

located in the z = 0 plane may be obtained from the magnetic vector potential A(x, y, z) as

H_(x,y,:) iV= x A(x,y,z)
PO

Es(x,y,z) = -j_-'_ {k_ A(x,y,z) + V[V' A(x,y,z)]}

(4)

(5)

where it0 is the permeability of the medium. The vector potential A(x, y, z) in equations (4) and (5) satisfies

the wave equation

v 2 h(_,y,z)+k_ A(_,y,_) -_0 _,yJ (6)

If G(x, y, z/x _,y_) is the free-space-scalar Green's function, the magnetic vector potential A(x, y, z) is obtained
from

P

n(x,y,z) =] ] y') dJ (7)
where G(x, y, z/x I, yl) satisfies

(v 2+ k_) a(_,y,z/_',J) = -.o _(_- _') _(y- y') _(z) (8)



The solution of equation (8) in the (kz, ky) domain may be written as (ref. 7)

oo 0(3

1 ' •

kx=-oc ky=-Oc

where

g( kx , ky, z / x _, J) = -J # -jkxx'-jkyY'e:l=Jkzz
2k---f e

[
and the + and - signs in the exponential are used for z < 0 and z > 0, respectively. Substituting equation (9)

into equation (7) gives the magnetic vector potential

A(x, y, 0) = -(27r)2 dkx 2kz dkxx+JkY y dky
kx=--cx_ ky=-oc

(10)

where
js(kx, ky) = _jsz + _jsy

• (11)

= f dx' f J_(_' y')_-_kxX'-_k# dy'

Substituting equation (12) into equation (5) allows us to write the scattered tangential components of the

electric field over the plate due to the induced currents as

oo oo

_w# 0 • . dky (12)

kx=-ec ky=-_c

(X3

--w#O [

_.(_,_,0)_(_)_0_L_ _ / [(-_) j_(_x,_)+(_0_-_) J_(_,_)]
kg=--o_

x e jkxx+jkyy dky
2kz

Subjecting the total tangential electric field on the plate to zero gives the following equations

Esx + Exi e-j(kcr) = 0

(13)

Esy + Eyie -j(kcr) = 0

Substituting equations (2), (12), and (13) into the above equations gives the following integral equations with

surface current as an unknown variable:

O(3

w#o
(27r)2k_ / dlcx• / [(k2-k2x)jsx(kx, ky)-kxkyjsy(kx,]_y)] ×eJkzx+jkyy dkY --Exi e-3ki'r2._z (14)

kx=-Oo ky=-Oo



oc
cairO

kx=-Oo ky=-Oc

x eJkxx+jky y dk--2-Y= Eyi e-jkir (15)
2kz

With the aid of figure l(b), the surface-current density distributions can bc expressed as

AI N+I

Jsx(x, y)= _ E Sx(m, n) fx(m, n) Pro(x) Qn(y)
m=l n=l

(16a)

and
.AI+I N

J._y(x,y) : _ _ Sy(m, n) s_(,_, _) Qm(x) P,_(v)
m=l n=l

where Iz(m, n) and Iv(m , n) are the unknown current amplitudes and

1 x -x

- _ ((x,n - Ax) < x < x.,)

Pro(x)= 1 _ (_m<___<(_m+Ax))

0 (Otherwise)

(16b)

1Qn(Y) = 0

If the (m, n)th cell lies inside the plate, then

(n-1)Ay<_y_<nAy)

(Otherwise)

Otherwise,

Also,

&(_, _) }Sy(m, n) = 1

&O_,_) }Sy(m, n) = 0

Ax-
M+ 1

,_,_,Xy- mj
N+I

Here, Wz and IVy are the maximum dimensions of the plate in the x- and y-directions, respectively. The

(m, n)th cell is considered to be inside the plate if the area occupied by the plate is more than 50 percent of
the cell area.

Using equation (11) allows us to write the Fourier transform of the patch current as

,_I N+ 1

jsx(kx,ky) = _ _ Sz(m,n) I_(m,n,) Fxmn(kx,ky)
m=l n=l

(17a)

M+I N

m=l n=l
(17b)

6



where

_x_(k_,k_/=ax a_{FY}{rx}_o_prpkx/[Wx2

r_m_(k_,k_)--a_ ay{FY}_{PX}exp[_k_(-__

sin (kx Ax/2)
{rx} =

kx Ax/2

sin (ky Ay/2)
{FY} =

ky Ay/2

With reference to figure l(b), the double summation with respect to m and n in equation (17) can be

represented by a single summation with respect to p or q. If P and Q are the maximum numbers of x- and

y-domain subcells, respectively, on the plate, then equations (17) may be rewritten as

P

jsx(kx, ky) = _ Iz(p) Fzp(kx, ky)
p=l

(18a)

Q

jsy(kx, ky) = E Iy(q) Fyq(kx, ky)
q=l

Substitution of equations (18) into equations (14) and (15) and use of the method of moments yields

(18b)

P Q

Z Ix(p) ZP'xP'+ E ly(q) --xyZq'P'=VzP'

p=l q=l

(19)

P Q

Iz(p) z_)q'+ _ [y(q) Z% q'

p:l q=l

where p_ = 1,2,...P, q' = 1,2,...Q, and

=Vuq' (20)

0(3 5 ¸

k2 _ k 2

Zp}p, - w#o [ f °2-_z Z Fxp(kx,ky) F_p,(kx, ky) dkx dky (21)

, oc i k 0 -- ky Fyq(kx, ky) (kx, ky) dkx dky
zq,q -- CO#O f oc 2 2

(2_)2k_kx -iZ; FL'--YY Joc ky=-oo

VxP' : S S Exie-jki'rPm'(X') Qn'(Y') dx# d9 !

(22)

(23)

(24)

(25)

(26)

7



In equations(21) (24),thesuperscript* indicatesacomplexconjugate.Usingtheexpressionsfor Fzp and Fyq

with the substitutions kz = ko/3 cos a and ky = ko/3 sin a allows equations (21), (22), (23), and (24) to be

written, respectively, in terms of the new variables (a,/3) as

Zp.xp, %k02 A2x A29 1 -/32 cos2a {Fy} 2 {FX} 4

.q=0 a=0 (27)

x cos[kO(Xp.p,) /3 cos c_] cos[ko(Yp,p, ) /3 sin ct] da

where Xp,pt :- Xm -- Xml and yp,pt = Yn - Yn' ,

Zxq,p' "k2 A2xA2y f ' ?2/32coso_sinct {Fy}3{FX}3

/7=0 _=0

× sin[ko(%V ) /3 cos a] sin[k0(Yq,# ) /3 sin _] d_

A
where Xq,ff = Xm - Xm; + z2x_ and yq,p, = Yn - Yn' - __Z,

(28)

Z_j:q'= zq_ p' (29)

and
zc 7r/2

,Toko = rr2 f /3d/3 / 1-/32 sin2a{Fy} 4{FX} 2
_=0 _=o (30)

x cos[ko(xq.q,) /3 cos a] cos[ko(Yq.q,) /3 sin ct] da

where Xq,q, _ X m -- Xmi and yq,qt = Yn -- Yn" In deriving equations (27) (30). the even and odd properties of
the integrands have been utilized.

Integrating equations (25) and (26) with respect to x _ and yr gives, respectively.

VP'=AxAyExi{FY1}{FX1}2exp[jkO(Xm , W-Ex)sinOicos¢i]

x exp [jko (Yn, WY2 ? ) sin Oi sin ¢i]

(31)

and

' [ ( Wx AX)sinOicos¢i]vq = Ax A 9 Ey i {FY1} 2{FX1}exp jk 0 xm, " 2

xexp[jko(gn, W_)sinOisin¢i] (32)

where {FX1} is obtained from {FX} by replacing/3 cos ct with sin 0 i cos ¢i, and {FY1} is obtained from

{FY} by replacing/3 sin c_ with sin Oi sin ¢i.

The elements _p'pt _q'pt_,x,--_U , etc., of the coefficient matrix are determined from equations (27) (30) by using

gauss-quadrature numerical integration techniques. The presence of V/1-/32 in the denominators of the

integrands of equations (27) (30) causes numerical difficulty around /3 = 1. However, this is avoided by

splitting the/3 integration into two parts: the first part consists of integration from/3 = 0 to 1, and the second

part consists of integration from/3 = 1 to oo. When/3 is replaced by sin _ in the first part and by cosh ( in

the second part, equation (27) becomes

ZPx'zp' = -_x:clTP'P'+ j XP_P' (33)

• 8



where

G_ '= %ko2a2_a% ,_/z ./2
f sin ( d< f (1-sin 2 ( cos 2 a){FY} 2 {FX} 4

2(7r) 2
_=0 c_=0

xeos[k0(xp,p,)sin ¢ cos_] eos[k0(yp,p,)sin ¢ sin _] do

J_°k_ a2 x a2y _ ,_/2
f cosh ; d4 f (1 -cosh 2 ; cos 2 o){FY} 2 {FX} 4XPS =

2(7r) 2
_=0 _=0

xcos[ko(xp,p,) cosh ( cos a] cos[ko(Pp,p,) cosh ( sin c_] dc_

where {FX} and {FY} in the equations for _P'P' and XPx'xp'• _xx are, as defined earlier, with the appropriate change
of variables.

Similarly, the singularities due to the presence of v/1 - f12 in the denominators of equations (28) (30) are

removed and thus yield expressions analogous to equation (33).

Equations (19) and (20) can now be solved for Ix(p) and Iy(q) either by using the matrix inversion method

or by decomposing the impedance matrix into lower and upper triangular matrices. We show later that the

method of triangular decomposition (ref. 8) is preferred over the matrix inversion method because the former

takes less central processing unit (CPU time.

Radar Cross Section

The radiation field due to the plate is given by (ref. 9)

jko e-jkor
Eo s = [ex(kx, ky, 0) cos ¢ + ey(kx, ky, 0) sin ¢] (34)

0 jkO e -jk°r (35)
Ec_s = [ey(kx, ky,O) cos ¢ - ex(kx,ky,O) sin ¢] cos

where ex(kz, ky, 0) and ey(kx, ky, 0) arc the Fourier transforms of the tangential electric field components at

the interface z = 0 (obtained from eq. (13)) and are given, respectively, as

_x(kx,k_,0) - %_ 2k_

and

k_ 2kz

Substituting equations (36) and (37) into equations (34) and (35) gives, respectively,

(36)

(37)

and

where

-w#
Eso = k--_-0 [jsx(kx, ky) {1} + jsy(kx, ky) {2}] jko27r_____'_-jk°r

-w# jko _jkor
= -- 0 27rr _Es, k2° [jsx(kx, ky) {3} + jsy(kx, ky) {4}] cos --

{_} k_- kx2 k_k_-- cos ¢ sin ¢
2kz 2kz

(38)

(39)



{2} -

{3} -

-kxky -
cos¢+-- sin ¢

2kz 2kz

-kxky k_- k_
cos ¢ sin ¢

2kz 2kz

- kxky
{4}- k02 k2 cos¢+ sine

2k z -_z

By substituting kx = ko sin 0 cos ¢ and ky = k0 sin 0 sin ¢, the above equations reduce to

k0

{1}=-_ cosOcos0

k0

{2} = _- sin ¢ cos 0

-k0 sin ¢
{3}- 2 cos 0

{4}-- k0cos¢
2 cos 0

By using tile above expressions, the scattered electric field components arc obtained as

jko _-jkor (40)Es 0 _ -qO cos 0 [jsx(kx, ky) cos ¢ + jsy(kx, ky) sin ¢ ] _r _
2

-qO jko -jkDr (41)
Es_ = _- [jsy(kx, ky) cos ¢- j_x(k_, ky) sin ¢] 2Tie

After substituting for jx and jy and performing a few mathematical manipulations, the scattered field

components are written as

E_o= -Y,oko4.,/-_AxkoAy:'o U k°_2,/_co_0{ [_=_r_(p) Fxp(k_._x£-_k_)

+ [q=_lly(q) FYqZx(:x2:Y)sin ¢1}

cos ¢1
(42)

i

D

4_rx/'-_ 2x/"_ Iy(q) Ax Ay cos ¢ -- Ix(p) Ax Ay sin ¢ (43)
q=l

In equations (42) and (43), Fxp(kx, ky) and F.vq(kz, ky ) are calculated at kx = -ko sin 0 cos ¢ and

ky = -ko sin 0 sin ¢. The radar cross section of the plate, as defined in reference 10, is then obtained
from

a = lim 4rrr 2 IEsl2 (44)

where

lEvi2 = [E_ol2 + IE_I 2

lEil 2 = IE0_l2 + IE¢_I2

The radar cross section defined in equation (44) is the total monostatie radar cross section (RCS) of an

object. However, in most of the measurement, either E-polarized or H-polarized waves are transmitted and the

10



E-polarized and H-polarized scattered far fields are measured separately. In order to compare the calculated
results with the measurement, the radar cross section may be defined as

aHH = lira 47rr2[Es012
rE0 j2 (45a)

CrHE -:-- lira 4_rr 2 [Es¢]2
r_c IE0_[2 (45b)

ere H = lim 47rr 2 [Es0]2
IEo,12 (45c)

aEE = lim 47rr 2 IEsel2
r_c [Eei 12 (45d)

Numerical Results

In this section the RCS of nonrectangular, thin

metallic plates is calculated by using equations (44)
and (45). To validate the present formulation, the

RCS computed by using equation (44) is compared
with (1) the RCS computed by using Newman's

ESP code and (2) the RCS measured ill the Langley
Experimental Test Range facility.

RCS of Hexagonal Plate

As a first example, a hexagonal plate with a =
2.074 cm, as shown in figure 2, is considered. To
study the edge behavior, the induced current densi-

ties along the XX- and YY-planes, as shown in fig-
ure 2, are calculated using the present method and

are plotted in figure 3 for E-polarized (o_0 --- 90 °)

and H-polarized (c_0 = 0°) incident waves. Fig-
ure 3 shows that the normal and tangential com-
ponents of the current to an edge tend to behave

as expected; i.e., the normal component of the cur-

rent to an edge goes to 0 and tile tangential compo-

nent to an edge approaches oc. Figure 3 also shows
that M = N _> 19 gives stable values of the current
densities.

Furthermore, to establish the convergence of the

method, monostatic RCS's of a hexagonal plate using

equation (44) are calculated as a function of angle
of incidence Oi for M = N = 15, 19,21, and 23

and are presented in figure 4. In figure 4(a), 0 ° _<
Oi < 90 ° for ¢i = 0 ° or 180 ° indicates the XZ-

plane. Similarly, in figure 4(c), 0 ° < Oi < 90 ° for

¢i = -90 ° or 90 ° indicates the YZ-planc. Because
all RCS calculations in this report are made for the

XZ-, YZ-, and XY-planes, this notation is followed

throughout in this report. Prom figure 4 we can

conclude that M = N > 19 (which corresponds to

the subdomain size < A0/IO) gives reasonably stable
results.

Large values of M and N are required to obtain

stable results when a flat plate is illuminated by a
plane wave at the grazing angle because of a rapid

variation of the phase of incident electric field along
the plate surface. To get the quantitative estimation

of the stability for grazing incidence, thc RCS of the

hexagonal plate shown in figure 2 is calculated as a

flmction of ¢i for 0 i = 90 ° and is shown in figure 5.

The validity and accuracy of the present formu-
lation are compared with measured results and with

the results obtained by the Electromagnetic Surface
Patch (ESP) code in figure 6 for parametric values

given in the figure. For the measurement of the RCS,

a hexagonal plate with dimensions shown in figure 2
with a thickness equal to 0.16 cm was fabricated and

the RCS was measured in the Langley Experimental
Test Range facility. "While using the ESP code, the

number of modes selected was equal to 511, whereas
the number of modes used for the present method
was 524. Figures 3 6 show that the RCS calcula-

tions of this paper compare reasonably well with the
measurements and numerical results obtained from
the ESP code.

Figure 7 shows the RCS of the hexagonal plate

that was calculated for grazing incidence by using tim
present formulation along with the measured data

and results obtained using the ESP code. According

to figure 7, the present method shows good agree-
ment with the measured data for the incidence an-

gles normal to the edges of the plate. However,

for incidence angles along the corners of a plate, a
disagreement occurs betwcen the two results which

may be attributed to inadequate modeling of the
corners.

11
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RCS of Equilateral Triangular Plate

As a second example, an equilateral triangular

plate with a ---- 5.08 cm is considered, as shown in

figure 8. Monostatic RCS's of the plate are calcu-
lated as a function of the angle of incidence 0i and

are shown in figure 9 for parametric values given in

this figure. From this figure, we again conclude that

M -= N > 19 gives stable results for the triangular

plate. From these values of M and N and because

the hexagonal and equilateral triangular plates con-
sidered so far in this paper have dimensions around

2A0, one also can conclude that a subcell size of

approximately A/10 is sufficient for obtaining sta-
ble results. Also, because all the plates considered

in this paper have maximum dimensions of approxi-

mately 2A0, all future calculations are performed us-

ing M = N = 19. However, for larger sized plates

(larger than 2,_0), larger values of M and N are re-
quired for convergence in accord with the _/10 sub-
cell criterion.

For parametric vahms given in figure 10, the RCS

of the triangular plate is calculated by using the

present method and is compared both with the RCS
computed by using the ESP code and with the RCS
measured in the Langley Experimental Test Range

facility. The RCS of the triangular plate for grazing
incidence is also calculated and presented in figure 11.

From these figures we can conclude that the RCS

predicted by the present method is in good agreement
with both the measured data and the results obtained

from the ESP code. Note in the results shown

above that the number of modes selected for the

ESP code was 312, whereas the number of modes

P + Q for the present method was 324. Because
of the unavailability of measured data, the results

in figures 10(a) and 11 cannot be compared with

measurements.

To validate the present technique over a wide

frequency band, monostatic RCS's of the triangular

plate shown in figure 8 are calculated for a fixed angle
of incidence as a function of frequency, and these are

presented in figure 12 along with the measured data
and tile results obtained using the ESP code. The

results obtained by using both methods (the ESP

code and the present method) compare verywc!l with

the measurements.

RCS of Equilateral Triangular Plate With

Concentric_ Equilateral Triangular Hole

An equilateral triangular plate with a concentric,

equilateral triangular hole as shown in figure 13 with
a = 5.08 cm and b = 2.54 cm is considered here as

a third example. For the parametric values given

12

in figures 14 and 15, the RCS's of this plate are
calculated by using the present method along with

the results obtained from the ESP code and the

measured data. One can observe that the present

method gives RCS estimates that are comparable
with the measured data and with the ESP-code

calculation.

To compare frequency dependencies, the mono-
static RCS's of the plate shown in figure 13 are cal-

culated for two angles of incidence (Oi = 90 °, ¢i = 90°

and Oi = 90°,¢i = -90°) as a function of fre-

quency, and these data are presented in figure 16
along with measured and calculated results from
the ESP code. For the incidence angle Oi = 90 °,

¢i = 90° (the incidence on the tip), the predicted
RCS's are comparable with the other results. How-

ever, for the incidence angle Oi = 90°,¢i = -90°

(the edge on incidence), the nulls and peaks pre-

dicted by the present method are shifted in frequency
from those observed in the measured data and in

the results obtained from the ESP code. . Note in
these calculations that the number of modes used

for the present method was 217 and the number of
modes used for the ESP code was marginally smaller

than 217.

RCS of Equilateral Triangular Plate With

Inverted, Equilateral Triangular=_I-iole : .

An equilateral triangular plate with an inverted,

equilateral triangular hole as shown in figure 17 is
considered next. Monostatic RCS's computed using

the present method for various angles of incidence
and polarization are presented in figures 18 and 19

and compared with the results obtained from the
ESP code. The number of modes used in both
methods was the samc. The agreement between the

two methods was reasonably good. Because of the

unavailability of experimental results for this case,

the results shown in figures 18 and 19 could not be

compared with the measured data.

The monostatic RCS's of the equilateral triangu-

lar plate with an inverted equilateral triangular hole
as a function of frequency for a given angle of in-

cidence are calculated by using the present method

and are presented in figure 20 along with the results
obtained from the ESP code. Good agreement was
observed between the results of both methods.

RCS of Diamond-Shaped Plate

By using the present formulation, the RCS's of
a diamond-shaped plate as Shown =in figure 2i are

calculated and presented in figures 22 and 23 along

with measured data and the results obtained from

-=_

rz:



the ESP code. Again, the agreement among the

techniques and measurements is quite good. The
number of modes for the two methods was again
selected to be the same.

Comparison of CPU Time

From the results presented so far, the present

method predicts the RCS of a polygonal plate with

reasonable accuracy. The number of modes required
to achieve this accuracy is slightly higher than the

number of modes required by the ESP code for the

same accuracy. This agreement is due to the fact

that the edge conditions on the surface currents

are not explicitly taken into account in the present
formulation. To see the merits of the present method,

one must compare the CPU time required to run the

present code with the CPU time required by the ESP
code. For a CPU time comparison, the RCS of the

hexagonal plate shown in figure 2 is calculated by

using the ESP code and the present method. The
CPU time required by both methods is calculated as
a function of the number of patch current modes and

is plotted in figure 24. For these time comparisons,
both codes were run on a Sun SPARCstation.

As seen in figure 24, the present method with tri-

angular decomposition techniques takes considerably
less CPU time than the ESP code. This is mainly due

to the block Toeplitz nature of the impedance matrix

in the present method. Because the edge conditions

on the surface currents are not explicitly taken into

account, the present method requires more modes
than the ESP code for reasonably accurate results.

However, from the earlier comparisons of the results

obtained by both methods, the difference between
the number of modes used for the present method

and the ESP code is marginal. (The present method

requires 524 modes as compared with 511 modes re-

quired by the ESP code.) The marginal increase in
the number of modes for the present method may

still be preferred from the CPU time consideration.

Figure 24 also gives the CPU time in seconds as

required by the present method using the matrix in-

version method and the matrix triangular decompo-

sition method. Figure 24 shows that the matrix in-
version method takes a much longer CPU time than

that taken by the matrix decomposition method.

Concluding Remarks

The method of moments has been described to

determine the monostatic radar cross section (RCS)

of irregularly shaped, thin, metallic flat plates in free
space. The surface-current density on an irregularly

shaped plate has been expressed in terms of rectangu-

lar subdomain functions by enclosing the plate by a

rectangle and dividing the rectangle into rectangular
subdomains. A shape function has bccn used to en-

sure zero current outside the arbitrarily shaped plate.

The electric field integral equation (EFIE) has been

used in conjunction with the method of moments to
determine the surface-current density on the irregu-

larly shaped plate. The monostatic RCS's of (1) a
hexagonal plate, (2) an equilateral triangular plate,

(3) an equilateral triangular plate with a concentric,
equilateral triangular hole and an inverted, equilat-

eral triangular hole, and (4) a diamond-shaped plate

have been compared with measured data and with
the results obtained by using the Electromagnetic

Surface Patch (ESP) code. From these comparisons,
one can conclude that the present method calculates

the RCS's of these geometries with good accuracy.
Because an irregularly shaped plate is divided into

identical rectanglar subdomains in the present formu-

lation, the resulting impedance matrix in the moment

method is not only symmetrical but also of block
Toeplitz nature. This effect is shown to result in

a considerable time savings in filling the impedance

matrix without sacrificing accuracy.

NASA Langley Research Center
Hampton, VA 23681-0001
July 26, 1993
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Appendix

Description of Floppy Disk Contents

A double-sided/high-density(DS/HD)3½-in_floppydiskcontainingseveraldatafileshasbeenprovidedfor
furtherclarificationof thisreport. Thesedatafilescontaintheexperimentaldataandthecomputedresults
usedin plottingvariousfiguresin thereport.Thecomputedandexperimentaldataforafigurearestoredin a
file havingthesamenameasthefigure.Forexample,thedatausedto plot figure3(a)maybc foundin a file
namedfig3a, dat.

The floppy disk may be read using an IBI{{ PC, PC/XT, or PC/AT with MS-DOS 2.1 or higher and a

3½-in. drive. The data onthe disk are in a compressed form. To read the data, the me figure.zip must be

uncompressed first. This is done as shown below. Create a director), called ternp, and thcn usc the command

pkunzip figure.zip c: temp

This will write all data files ill the temp directory.

The reader can obtain a copy of this floppy disk by contacting the authors at the following address:

Guidance and Control Diyision
Antenna and Microwave Research Branch

NASA Langley Research Center
MS 490

Hampton, VA 23681-0001
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Figure 1. Geometry of irregularly shaped, thin, metallic flat plate.
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Figure 2. Thin, metallic fiat plate of hexagonal shape with a = 2.074 cm.
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Figure 3. Magnitude of z- and y-components of surface-current density along XX- and YY-planes on hexagonal
plate (shown in fig. 2) excited by H- and E-polarized plane waves with angle of incidence (Oi = 80 °, qSi = 0 °)

for M = N = 15, 19, 21, and 23.
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Figure 3. Continued.
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(a) H-polarized plane wave (a0 = 0 °) at ¢i = 0° and 180 °.
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(b) E-polarized plane wave (a0 = 90 °) at ¢i = 0° and 180 °.

Figure 4. Monostatic RCS of hexagonal plate (shown in fig. 2) excited by H- and E-polarized plane waves
(a0 = 0 ° and 90 °, respectively) as a function of 0i for f = 11.811 GHz with M = N = 15, 19, 21, and 23.
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Figure 4. Concluded.
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Figure 5. Monostatic RCS of hexagonal plate (shown in fig. 2) excited by E-polarized plane wave (a0 = 90 °)
as a function of ¢i for f = 11.811 GHz with M = N = 15, 19, 21, and 23 and 0i = 90° (grazing incidence).
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Figure 6. Monostatic RCS of hexagonal plate (shown in fig. 2) excited by H- and E-polarized plane waves
(c_0 = 0° and 90 °, respectively) as a function of Oi for f = 11,811 GHz with M = N = 19,
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Figure 6. Concluded.

25



-20i
Presentmethod

-- ---:_SPcode.....
-30 .... Measurement

OEE'dB-m2 -40

-50

-60
0

/ I t , it l,_.l

90 180 270 360

0i, deg

Figure 7. Monostatic RCS of hexagonal plate (shown in fig. 2) excited by E-polarized plane wave (c_0 = 90 °)
eus a function of 0i for f = 11.811 GHz with M = N = 19 and Oi = 90 ° (grazing incidence).
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Figure 8. Equilateral triangular, thin, metallic flat plate with a = 5.08 cm lying in XY-plane.
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Figure 9. Monostatic RCS of equilateral triangular plate (shown in fig. 8) excited by H- and E-polarized plane
waves (a 0 = 0° and 90 °, respectively)as a function of Oi for f = 11.811 GHz with M = N = 11, 15, 19, and
21.
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Figure 10. Monostatic RCS of equilateral triangular plate (shown in fig. 8) excited by H- and E-polarized plane
waves (c_0 = 0° and 90 °, respectively) as a function of Oi for f = 11.811 GHz and M = N = 19.
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Figure 11. Monostatic RCS of equilateral triangular plate (shown in fig. 8) excited by E-polarized plane wave
(c_0 = 90 °) as a function of q5i for f = 11.811 GHz with M = N = 19 and 0i = 90 ° (grazing incidence).
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Figure 13. Equilateral, triangular, thin, metallic flat plate with concentric, equilateral triangular hole with
a = 5.08 cm and b = 2.54 cm.
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Figure 14. Monostatic 1RCS Of equilateral triangular plate (shown in fig. 13) excited by /-/- and E-polarized
plane waves (a0 = 0° and 90 °, respectively) as a function of Oi for f = 11.811 GHz with M = N = 19.
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Figure 14. Concluded.
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Figure 16. Monostatic RCS of equilateral triangular plate with concentric, equilateral triangular hole (shown
in fig. 13) excited by E-polarized plane waves (c_0 = 90 °) at angles of incidence as a function of frequency
for M= N= 19.
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Figure 17. Equilateral, triangular, thin, metallic fiat plate with inverted equilateral triangular hole with
a = 5.08 cm and b = 2.54 cm.
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Figure 18. Monostatic RCS of equilateral triangular plate with inverted, equilateral triangular hole (shown in
fig. 17) excited by H- and E-polarized plane waves (a0 = 0° and 90 °, respectively) as a function of Oi for
f = 11.811 GHz with M = N = 19.
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Figure 18. Concluded.
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Figure 19. Monostatic RCS of equilateral triangular plate with inverted equilateral triangular hole (shown
in fig. 17) excited by E-polarized plane wave (a0 = 90 °) as a fimction of q_i for f = 11.811 GHz with
M = N = 19 and Oi = 90 ° (grazing incidence).
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Figure 21. Thin, metallic, diamond-shaped flat plate with a = 3.592 cm.
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Figure 22. Monostatic RCS of diamond-shaped plate (shown in fig. 21) excited by H- and E-polarized plane
waves (c_0 = 0 ° and 90 °, respectively) as a fanction of Oi for f = 11.811 GHz with M = N = 19.
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(d) E-polarized plane wave (s0 = 90 °) at ¢i = 0° and 180 °.

Figure 22. Concluded.
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Figure 23. Monostatic RCS of diamond-shaped plate (shown in fig. 21) excited by E-polarized plane wave

(c_ 0 = 90 °) as a function of _i for f = 11.811 GHz with M = N = 19 and Oi = 90 ° (grazing incidence).
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Figure 24. Comparison of CPU time required by present method using matrix inversion and decomposition

with CPU time required by ESP code.
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