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Abstract

This report describes an application of the method of moments to
calculate the electromagnetic scattering from irregularly shaped, thin,
metallic flat plates in free space. In the present technigue, an ir-
reqularly shaped plate is enclosed by a rectangle on which the surface-
current density is then expressed in terms of subdomain functions by
dividing the rectangle into subsections. A shape function is introduced
to ensure zero current outside the patch. The surface-current density is
determined using the electric field integral equation (EFIE) approach
in conjunction with the method of moments, and from a knowledge
of the surface-current density, the electromagnetic scattering from a
plate is calculated. Using this technique, the electromagnetic scattering
from (1) a hezagonal plate, (2) an equilateral triangular plate, (8) an
equilateral triangular plate with a concentric, equilateral triangular hole
and an inverted, equilateral triangular hole, and ({) a diamond-shaped
plate is computed and compared with the numerical results obtained by
using the Electromagnetic Surface Patch (ESP) code developed by Ohio
State University. The numerical results compare favorably with the
measurements performed on these shapes in the Langley Ezperimental

Test Range facility.

Introduction

A knowledge of electromagnetic (EM) scattering
from a complex-shaped metallic object is of practical
interest to electromagnetic analysts and engineers.
In recent years, considerable interest has developed
in the EM scattering analysis of polygonal plates
because a complex-shaped metallic object can al-
ways be modeled as an interconnection of these poly-
gonal flat plates (ref. 1). An EM scattering anal-
ysis of a polygonal, metallic flat plate can be
accomplished by using various numerical techniques.
One of the widely used techniques is the method
of moments in which a polygonal plate is first seg-
mented into a number of rectangular or nonrectangu-
lar surface patches called subdomains. The unknown
surface-current density on these subdomains is then
determined using the electric field integral equation
(EFIE) in conjunction with the method of moments.

The early work on polygonal flat plates (ref. 2)
consisted of subdividing an irregularly shaped plate
into a collection of curvilinear cells that were rep-
resented numerically as fourth-order polynomials.
However, use of that method required a knowledge
of the coordinates of a large number of points on the
object, and this made the method unattractive. In
another approach (refs. 3 and 4), a nonrectangular
plate was viewed as an interconnection of polygonal
plates. The unknown amplitudes of the surface patch
modes were determined by expressing the currents on
the polygonal plates in terms of nonrectangular sur-

face patch modes and using the EFIE in conjunction
with the method of moments.

An Electromagnetic Surface Patch (ESP) code
was developed in 1988 under NASA Grant NSG 1498
by E. H. Newman at the ElectroScience Laboratory,
Ohio State University. (This code is described in
a manual entitled A User’s Manual for the Electro-
magnetic Surface Patch Code: ESP Version IV.) The
ESP code was based on the segmentation techniques
described in references 3 and 4. Even though the
segmentation technique used in the ESP code com-
pletely filled the arca of the nonrectangular plate,
extra current modes were required at the intercon-
nections of the polygonal plates to ensurc a conti-
nuity of current. Furthermore, when nonrectangular
surface patch modes were used to express the sur-
face current, the resulting matrix would be symmet-
ric but not of a block Toeplitz nature, and hence it
would require more impedance matrix filling time.
In the present work, a segmentation technique that
is both symmetric and results in a block Toeplitz
impedance matrix is developed to analyze the EM
scattering from polygonal, thin, metallic flat plates.

In the present analysis, an irregularly shaped
plate is assumed to be enclosed by a rectangle with
sides equal to W, and W, the maximum dimen-
sions in the z- and y-directions, respectively. By
dividing W, into (M + 1) subdivisions and W), into
(N +1) subdivisions, the surface-current density over



the rectangle is expressed in terms of overlapping
triangular functions in the direction of current flow
and a pulse function in the orthogonal direction. Zero
current outside the plate is ensured by introducing a
space function in the current expansion function. (A
space function is equal to 1/0 if the subdomain lies
inside/outside of the irregular plate.) Selecting the
testing functions to be the same as the expansion
functions allows the EFIE to be reduced to a matrix
equation that is solved by using standard matrix-
equation solver subroutines. The surface current on
the plate is then used to determine EM scattering due
to the plate. By using this technique, the EM scat-
tering due to several nonrectangular plates is com-
puted and compared with the results obtained from
Newman's ESP code. The results obtained from us-
ing the present method are also compared with the
experimental data measured in the Langley Experi-
mental Test Range (ETR) facility, which is a compact
range specifically designed for microwave scattering
measurements. The ETR is a dual anechoic chamber
with a Greorian reflector system (ref. 5) containing
a 16-ft? rolled-cdge main reflector. o '

The measured data are provided on a floppy disk
for the reader, a description of which is given in the
appendix.

Symbols

A(z,y,z2) magnetic vector potential

E; incident electric field vector

|E;| absolute value of incident electric
field vector

Ei(z,y,2) scattered electric field vector

Egx z-component of scattered ficld Eg

Egy y-component of scattered field Eg

Eg #-component of scattered ficld Eg

Esy ¢-component of scattered field E;

Eri Eyi Ez z-, y-, and z-components, respec-
tively, of incident electric field

Ey,, Ey, #- and ¢-components, respec-
tively, of incident electric field

ez (kz, ky,0) Fourier transform of Egz(z,y,0)

ey(kz, ky,0) Fourier transform of Egy(z,y,0)

Fxmn(kzy ky)

Fourier transform of

Pr(z) Qn(y)

Fourier transform of

QRm(z) Pr(y)
{FX} — sin(k; Ax/2

ke Az/2

Fymn (k.r» ky)

__ sin(ky Ay/2)
{FY} - k'y'Agj’yh

_ sin[(sin §; cos ¢;)(ky Ax/2)]

{FX1} = T §in 6, cos &, ko(Ar/2)

_ sin[(sin 8; sin ¢;)(ky Ay/2)]
{FYI} 7 (sin 8; sin qbi)(kooAy/?)
f frequency, GHz

G(z,y,z/z',y') Iree-space-scalar Green’s function
g(kz, ky, z/x',y') Fourier transform of G(x,y, /7', y')
H, incident magnetic field vector

I.(p) complex amplitude of pth z-
directed subdomain current mode

I(q) complex amplitude of gth y-
directed subdomain current mode

Js(z,y) induced surface-current density
) vector on plate

Jsz(z,y) z-component of Js(z,y)

Jsy(z,y) y-component of J4(z,y)

j = V71

is Fourier transform of J,

Jsz z-component of jg

Jsy y-component of jg

k; propagation vector of plane wave

kr Fourier transform variable with
respect to ¢

ky Fourier transform variable with
respect to y

k. complex propagation constant in
z-direction

ko propagation constant in free
space

M+1 number of subdivisions in
z-direction

m,n (m, n)th subdomain of induced
current

m',n (m/, n/)th subdomain of induced
current

N+1 number of subdivisions in
y-direction
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P ()

Pu(y)

Qm(y)
Qn(z)

total number of z-directed sub-
domains on plate

piecewise linear distribution in
z-direction

piecewise linear distribution in
y-direction

equivalent to (m, n)th z-directed
subdomain

equivalent to (m/,n’)th z-
directed subdomain

total number of y-directed sub-
domains on plate

pulse distribution in y-direction
pulse distribution in z-direction

equivalent to (m, n)th y-directed
subdomain

equivalent to (m’,n’)th y-directed
subdomain

'
real part of ZEF

position vector in direction of
plane wave

shape function for z-directed
current (=1 or 0)

shape function for y-directed
current (=1 or 0)

reaction of p/th z-directed sub-
domain testing function with E;

reaction of ¢’th y-directed sub-
domain testing function with Ey;

maximum dimension of plate in
z-direction

maximum dimension of plate in
y-direction

- . p p,
imaginary part of Zzx

Cartesian coordinates of field
point

Cartesian coordinates of source

point

mutual impedance between pth
and p’th z-directed subdomain
currents

/
zir

/
zh?

9.9
Zyy

o, B

ag

Az

10

OFEE
OFH

OHE

mutual impedance between qth
y-directed and p'th z-directed
subdomain currents

mutual impedance between pth
z-directed and ¢'th y-directed
subdomain currents

mutual impedance between gth
and ¢'th y-directed subdomain
currents

polar coordinate variables related
to kg, ky

angle between E; and éi, deg

delta function
free-space wave impedance

angles of scattered electro-
magnetic wave

incident angles of electromagnetic
wave

unit vectors along §; and ¢;
axes, respectively, in spherical
coordinate system

unit vectors along 8, and ¢g
axes, respectively, in spherical
coordinate system

wavelength in free space

magnetic permeability of free
space

total radar cross section

copolarized radar cross sec-
tion when E-polarized wave is
transmitted

cross-polarized radar cross
section when E-polarized wave
is transmitted

cross-polarized radar cross
section when H-polarized wave
is transmitted



OHH copolarized radar cross sec- Abbreviations:

tion wben H-polarized wave is EFIE electric field integral equation
transmitted
EM electromagnetic
v angular frequency, 2 f ESP Electromagnetic Surface Patch
\v4 gradient operator RCS radar cross section

Theory

General Theory 7 7

Consider an irregularly shaped:rirnrﬁhit;ésrimaﬂy thin plate excited by a plaﬁe wave as shown in figure 1(a).
By using the representation of reference 6, the incident field with a time variation of e/“! may be written as

E(z,y,z) = (@Eai + $1E¢i) e ikt
= (@l |E;| cos ap + &; |E; sin ao) e kT (1)
where
k; - r = —kp sin 8; (z cos ¢; + y sin ¢;)

and kg is the free-space wave number. From equation (1), the z-, y-, and z-components of the incident field

may be written, respectively, as
Eyi = Ey, cos O;cos ¢; — Ey, sin ¢;

Eyi = Ey, cos O;sin ¢; + Ey, cos ¢; - @
Ezi = —EHZ Sin 61 7

The corresponding magnetic field components are obtained through

H; = lki x E; (3)
™ .

where 1, s the free-space impédance. The incident field with Ey. # 0, Es;. = 0 (i.e., ag = 0°) is called the
H-polarized wave and with Ey, = 0, Ey, # 0 (i.e., ap = 90°) is called the E-polarized wave.

Let Js(z,y) be the induced surface-current density on the plate. The elcctromagnietic field due to J4(z,y)
located in the z = 0 plane may be obtained from the magnetic vector potential A(x,y, z) as

1 .
H.s(xyyrz) = %V X A(I,y,l) (4)

Bu(r,9,2) = " {8 Al ) 4 V(7 Al 2]} (5)

where pq is the permeability of the medium. The vector potential A{zx,y, 2) in equations (4) and (5) satisfies

the wave equation
V2 A(z,y,2) + k§ Alz,y,2) = —po Is(z',y) (8)

If G(z,y,2/7',y) is the free-space-scalar Green’s function, the magnetic vector potential A(z,y, 2) is obtained

from

Ay = [ [I) Glay,z/al o ae' dy ()
where G(z,y, z/x, y') satisfies

(V2 +K) Glz,y,2/2'y) = —po 8(z - o) Sy - ¥/) 6(z) 8)

O N T T NN T SR T T U R T
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The solution of equation (8) in the (kz,k,) domain may be written as (ref. 7)

o0

o
1 . .
Glay 27 ) = G2 [ ke [ atheky 2/ g e ak, (9)

kp=—00 ky=—oc

where .
ron . IR gkex—jkyy tkez
Q(kzaky’z/xay)—me IR =IRY g

k_{ k2 — k2 — k2 (k2 + k2 < K3)
z

RN (K2 + k2 > K3)

and the + and — signs in the exponential are used for z < 0 and z > 0, respectively. Substituting equation (9)
into equation (7) gives the magnetic vector potential

[o. 9]

— k

A(z,y,0) = 7:0 / dkz / ’"——(27; ») eikeztikyy gp, (10)
Z

where ) .. ..
Js(kz, ky) = ITjsz + YJsy

=/d;z:’/.]s(ac',y’) e—jkxz’—jkyy’ dy’ (11)

Substituting equation (12) into equation (5) allows us to write the scattered tangential components of the
electric field over the plate due to the induced currents as

oo
—w . . : . dk
Egy(x,y,0) = ’2‘22 / dks / (K8 = K2 Joalhn, by) = kaky sy(ka, ky)] xePhetihn S8 (12)
FA
kz=—oc ky=—0c0
o0
—w . .
Esy(-TyysO) = ﬂO / dk; / [(-kxky) ]sr(kz’ ky) + (k(% - k;) sz(kz,ky)}
kx-——oo ky=—00 (13)
w eikaz ity Tky
2k,

Subjecting the total tangential electric field on the plate to zero gives the following equations
Esz + El-le—‘](kzr) = O

Esy + Eyle-'](klr) = 0

Substituting equations (2), (12), and (13) into the above equations gives the following integral equations with
surface current as an unknown variable:

o0

w . . - o dk

Qﬁ“sz / dks / (K8 = k2) Jsalka, ky) = kaky oy(ka, ky)] xefhem ko 220 =
kx—-oo ky=-00 ‘

Enie /ST (14)



N |
wig P 2 2\ . kez+jkyy Ry
niy, / dk, / [(—haky) Gsclh,dey) + (B = k2) Joylka, ky)] x 7otk g

ky=—20 ky=-oc

= Eye /T (15)

With the aid of figure 1(b), the surface-current density distributions can be expressed as

M N+1

Jso(z,y) = D D Se(m,n) I(m,n) Pu(z) Qn(y) (16a)
m=1 n=1
and
M+1 N )
Ta(@,y) = Y 3 Sy(m,n) Iy(m,n) Qm(z) Puly) (16b)
m=1n=1

where I;(m,n) and Iy{(m,n) are the unknown current amplitudes and

1-% ((-Tm"ACE)SxSIm)
Pm(l') = 1 - %ﬂ (Im Szr<(zm+ AI))
0 (Otherwise)
1 (n=1)Ay <y <nAy)
@nly) = {0 (Otherwise) B

If the (m, n)th cell lies inside the plate, then

Sl‘( an) —
S ) } =1

Otherwise,

Sa(m,n) | _
sy(z,rri)}‘o

Also,

J— WZ‘I
T M+1
_ Wy
TN+1

Ay

Here, W, and W, are the maximum dimensions of the plate in the z- and y-directions, respectively. The
(mm,n)th cell is considered to be inside the plate if the arca occupied by the plate is more than 50 percent of

the cell arca.

Using equation {11) allows us to write the Fourier transform of the patch current as

M N+1

Jsa(kz, ky) = Sz(m,n) I:(m,n) Frmn(ks, ky) (17a)
m=1 n=1
M+1 N

Fsylks, ky) = Z Z y(m,n) Iy(m,n) Fymn(ks, ky) (17b)

X7

T IR
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where

W ) Wy A
Fomn(ke,by) = B2 8y (FY}FXY o [she (B =) 0y (T2 =+ )

. W. Ax W,
Fymn(kz, ky) = Az Ay {FY}2 {FX}exp [jkm (-—z— — Tm+ ) + jky (Ty — yn)]

2 2
(FX} = Sink(zkzix/;UQ/Z)
sin (ky Ay/2)
{FY}= ky iJAy/2

With reference to figure 1(b), the double summation with respect to m and n in equation (17) can be
represented by a single summation with respect to p or g. If P and @ are the maximum numbers of z- and
y-domain subcells, respectively, on the plate, then equations (17) may be rewritten as

P
Jsz{kz, ky) = Z L.(p) F.I‘p(kIa ky) (18a)
Q
jsy(kxa k'y) = Z Iy(‘l) Fyq(kx; ky) (18b)
g=1

Substitution of equations (18) into equations (14) and (15) and use of the method of moments yields

P Q

S Lp) ZBF + 3 Lq) 28 = V¥ (19)
=1 g=1

P ! Q 7 7

S L(p) 287 + Y I(q) Z5T =V (20)

where p’ =1,2,...P, ¢ =1,2,...Q, and

oC oC

zop _ _WHO / /
o (27‘(’)2/62

ky=—00ky=—o0

k2 — k2
0 szp(kx,ky) vy (ke ky) dkz dky (21)

8@} oQ
/ witg —kzky
zay = B0 / / 2 (ke ky) Fly (ko ky) d diy (22)
(2m)2k2 ok,
ky=—00 ky=-00
o0 oo
zpd — _WHO “kaky bk F(ka ky) dky dky 23
yr (27r)2k2 2%, 331’( k2 y) ’( ) y) ( )
r=—0C ky=—00
o0 D
q _ _Who — kj
Z3 = ot / / S Fualhe, ) Fyp (e Ky) dbe db, (24)
ky=—00 ky=—00
VE = [ [ Buie @) Qui) de’ dyf (25)
W = [ [ e Qute) o) e’ (26)



In equations (21)-(24), the superscript * indicates a complex conjugate. Using the expressions for Fyp and Fy,
with the substitutions k; = ko cos a and ky = ko sin « allows equations (21), (22), (23), and (24) to be
written, respectively, in terms of the new variables («, 3) as

k3 AZI A%y F s
A Rl /5 E/ —& C°”‘{FY} (Fx}’
(27)
x coslko(z, ) ;B cos a] cos[ko(yp,p/) 3 sin o] da
where z, y = Tm — Ty and Y, 7 = yn — Yy,
, ok A2 Ay T
Zg’yp__'fl()o / ’idﬂ/ﬂ cosa51na{FY}3{FX}3
(28)
x sinfko(zg ) /3 cos @ sin[ko(y, ) B sin o] da
where T,y = Ty — Ty + AG and Yy = Yo — Yy — %y,
7 = 23y (29)
and
nokd A2 R 1- 8 sin’a
299 = Who &z &y / 8.4g / e pyy (X2
w 2v1 21— (30)

x coslko(zq o) ,8 cos « cos[kg(yq’ql) 3 sin a] da

where z, v = Tm — 2,y and y, # = yn — y,y. In deriving equations (27)-(30), the even and odd properties of

the integrands have been utilized.

Integrating equations (25) and (26) with respect to =’ and y/ gives, respectively,

Vf/ = Az Ay E,; {FY1} {FX1}%exp [jko ( J - E;—) sin 6; cos ¢,}
Wy Ay (31)
X exp [jkn (yny -3 5 ) sin 8; sin qbz]
and - A
qu’ = Ar Ay Ey {FYI}2 {FX1}exp [jk[) (zm/ - TI - Tx) sin 6; cos q&i}
' (32)

7

W—;i) sin §; sin d)i]

where {F' X1} is obtained from {FX?} by replacing 3 cos a with sin 8; cos ¢;, and {FY1} is obtained from
{FY} by replacing 3 sin a with sin ; sin ¢,.

X exp [jko (yn/ —

The elements Z;’;g , Zgyp , etc., of the coefficient matrix are determined from equations (27)-(30) by using

gauss-quadrature numerical integration techniques. The presence of \/ 1 - 3? in the denominators of the
integrands of equations (27)-(30) causes numerical difficulty around 8 = 1. However, this is avoided by
splitting the 3 integration into two parts: the first part consists of integration from 3 = 0 to 1, and the second
part consists of integration from 8 = 1 to co. When 3 is replaced by sin ¢ in the first part and by cosh ( in

the second part, equation (27) becomes
7 / 7
Z3F = R + 3 XEL (33)

(R T IR
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where

2 A2 9 T/2 /2
) _ ko ATz A%y 2 2 2 4
Rgf:—QUT——)T—-/SiHCdC/(I—sin ¢ cos® a) {FY}*{FX}
¢=0 a=0
x coslko(zp, ) sin ¢ cos o] cos[ky(y, ) sin ¢ sin a] da
. /2
, nk? A% A%y T "
XPP = ﬂ%(—ﬂ)z__y / cosh ¢ d¢ [ (1 —cosh? ¢ cos? a) {FY}2 {FX}!
¢=0 a=0

x cos|ky(zp,,7) cosh ( cos a] coslko(y, ) cosh ¢ sin o] da
where {FX} and {FY} in the equations for Rgf’ and X2P l are, as defined earlier, with the appropriate change
of variables.

Similarly, the singularities due to the presence of 1/1 — 42 in the denominators of equations (28)-(30) are
removed and thus yield expressions analogous to equation (33).

Equations (19) and (20) can now be solved for I(p) and Iy(q) either by using the matrix inversion method
or by decomposing the impedance matrix into lower and upper triangular matrices. We show later that the
method of triangular decomposition (ref. 8) is preferred over the matrix inversion method because the former
takes less central processing unit (CPU) time.

Radar Cross Section

The radiation field due to the plate is given by (ref. 9)

e
Egs = [ex(kz, ky,0) cos ¢ + ey (kz, ky, 0) sin @] é—#eﬁk"r (34)

" '
Eys = [ey(kz, ky,0) cos ¢ — ez (kz, ky, 0) sin ¢] cos G%Bﬂk(’r (35)

where eg(kz, ky,0) and ey(kz, ky,0) are the Fourier transforms of the tangential electric field components at
the interface z = 0 (obtained from eq. (13)) and are given, respectively, as

oy |8 = K2) o ke, ky) = Kieky sy (Ko, k)]

ex(kz, ky,0) = 36
alhes by 0) = = T (36)
and [ ]
B —kyky Jsz(kz, ky) + (k2 = k2) joy(kz, ky)
Wi Thy Jsc\hx, by 0 Y Y MY
ey(kz, ky, 0) = 2 o, (37)
Substituting equations (36) and (37) into equations (34) and (35) gives, respectively,
—Wi . . Jko
Egp = ‘ﬁ []sr(kr: ky) {1} + ]sy(kr,- ky) {2}] én_(z-e Thor (38)
and ”
—WH ., ) 0 —j
Esqs = —/{18—“ []sx(kla ky) {3} + ]sy(k'z: ky) {4}] cos 0%6 Jhor (39)
where 5 5
ki —k kek
1V=20 "z kit
{1} T cos ¢ o, sin ¢



—kgky ki —k

2} = =P g
{2} = 2kz cos ¢ + o, sin ¢
_ K-k
{3} 2kz COs QS - 2—}‘7z Sin ¢
k3 — k2 keky
{4} = o, cos ¢ + o, sin ¢

By substituting k; = kg sin 6 cos ¢ and ky = k¢ sin @ sin ¢, the above equations reduce to

{1}:%0cos¢)cosﬂ

{2} = —kz—o sin ¢ cos 8

__ —kysing
{3} ) cos 6
ko cos ¢
{4} = 2 cos. 0

By using the above expressions, the scattered electric field components are obtained as

—19 cos 8 _
Eg = o cos Y []sx(km y) cOS ¢+]§y(’$x,ky) sin qb] ?p Jkor (40)

2

Egp = —— []sy(kl, ky) cos ¢ — sz (kz, ky) sin ¢] .7 0 Mjknr )

After substituting for jg and Jy and performmg a fow mathematical mampulations, the scattered ficld

components are written as

. L P
. —jnoko Az kg Ay Ay eIFor Fyp(ky, ky)
By = rrays N U IRy vy vl

< Fyq(ks, ky)
+ Ely(q _A A sin ¢
q=1

—jnoko Az kg Ay Ay e ko {

(42)

Q
> 1y0) e o ] {Zfz(p P ) i 4} (43)
g=1

E.. =
59 dm\/m 2\
In equations (42) and (43), Firp(ke, ky) and Fyg(ke, ky) are calculated at ky = —ko sin 6 cos ¢ and
ky = —kg sin 8 sin ¢. The radar cross scction of the plate, as defined in reference 10, is then obtained
from 9
o g2 Bl
o= rlg]go 4mr ToRE (44)
where

!Es|2 = lE80,2 + ‘Es¢‘2
|Ei|? = |Eg,|* + |Ey,|°

The radar cross section defined in equation (44) is the total monostatic radar cross section (RCS) of an
object. However, in most of the measurement, either E-polarized or H-polarized waves are transmitted and the

10
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E-polarized and H-polarized scattered far fields are measured separately. In order to compare the calculated
results with the measurement, the radar cross section may be defined as

- 1 2IE59‘
oHH —rll»nolo dnr AR (45a)
2
T 92 'Esdal
OHE = Tli»n:}o 4rr 1B, (45b)
- T 2 'Es9]2
Opg = Tli)n;c dzr I, |2 (45¢)
2
T 2 IES¢!I
OEE = rlggo 47y IE@I? (45d)

Numerical Results

In this section the RCS of nonrectangular, thin
metallic plates is calculated by using equations (44)
and (45). To validate the present formulation, the
RCS computed by using equation (44) is compared
with (1) the RCS computed by using Newman’s
ESP code and (2) the RCS measured in the Langley
Experimental Test Range facility.

RCS of Hexagonal Plate

As a first example, a hexagonal plate with a =
2.074 cm, as shown in figure 2, is considered. To
study the edge behavior, the induced current densi-
ties along the X X- and YY-planes, as shown in fig-
ure 2, are calculated using the present mecthod and
are plotted in figure 3 for E-polarized (g = 90°)
and H-polarized (a9 = 0°) incident waves. Fig-
ure 3 shows that the normal and tangential com-
ponents of the current to an edge tend to bchave
as expected; i.e., the normal component of the cur-
rent to an edge goes to 0 and the tangential compo-
nent to an edge approaches oc. Figure 3 also shows
that M = N > 19 gives stable values of the current
densities.

Furthermore, to establish the convergence of the
method, monostatic RCS’s of a hexagonal plate using
equation (44) are calculated as a function of angle
of incidence 6; for M = N = 15,19,21, and 23
and are presented in figure 4. In figure 4(a), 0° <
0; < 90° for ¢; = 0° or 180° indicates the X Z-
plane. Similarly, in figure 4(c), 0° < §; < 90° for
¢; = —90° or 90° indicates the Y Z-planc. Because
all RCS calculations in this report are made for the
XZ-,Y Z-, and XY -planes, this notation is followed
throughout in this report. From figure 4 we can
conclude that M = N > 19 (which corresponds to

the subdomain size < A(/10) gives rcasonably stable
results.

Large values of M and N are required to obtain
stable results when a flat plate is illuminated by a
plane wave at the grazing angle because of a rapid
variation of the phase of incident electric field along
the plate surface. To get the quantitative estimation
of the stability for grazing incidence, the RCS of the
hexagonal plate shown in figure 2 is calculated as a
function of ¢; for §; = 90° and is shown in figure 5.

The validity and accuracy of the present formu-
lation are compared with measured results and with
the results obtained by the Electromagnetic Surface
Patch (ESP) code in figure 6 for parametric values
given in the figure. For the measurement of the RCS,
a hexagonal plate with dimensions shown in figure 2
with a thickness equal to 0.16 cm was fabricated and
the RCS was measured in the Langley Experimental
Test Range facility. While using the ESP code, the
number of modes selected was equal to 511, whereas
the number of modes used for the present method
was 524. Figures 3-6 show that the RCS calcula-
tions of this paper compare reasonably well with the
measurements and numerical results obtained from
the ESP code.

Figure 7 shows the RCS of the hexagonal plate
that was calculated for grazing incidence by using the
present formulation along with the measured data
and results obtained using the ESP code. According
to figure 7, the present method shows good agree-
ment with the measured data for the incidence an-
gles normal to the cdges of the plate. However,
for incidence angles along the corners of a plate, a
disagreement occurs between the two results which
may be attributed to inadequate modeling of the
corners.

11
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RCS of Equilateral Triangular Plate

As a second example, an equilateral triangular
plate with ¢ = 5.08 cm is considered, as shown in
figure 8. Monostatic RCS’s of the plate are calcu-
lated as a function of the angle of incidence #; and
are shown in figure 9 for parametric values given in
this figure. From this figure, we again conclude that
M = N > 19 gives stable results for the triangular
plate. From these values of M and N and because
the hexagonal and equilateral triangular plates con-
sidered so far in this paper have dimensions around
2)\g, one also can conclude that a subcell size of
approximately A/10 is sufficient for obtaining sta-
ble results. Also, because all the plates considered
in this paper have maximum dimensions of approxi-
mately 2Xp, all future calculations are performed us-
ing M = N = 19. However, for larger sized plates
(larger than 2)g), larger values of M and N are re-
quired for convergence in accord with the A /10 sub-
cell criterion.

For parametric values given in figure 10, the RCS
of the triangular plate is calculated by using the
present method and is compared both with the RCS
computed by using the ESP code and with the RCS
measured in the Langley Experimental Test Range
facility. The RCS of the triangular plate for grazing
incidence is also calculated and presented in figure 11.
From these figures we can conclude that the RCS
predicted by the present method is in good agreement
with both the measured data and the results obtained
from the ESP code. Note in the results shown
above that the number of modes selected for the
ESP code was 312, whereas the number of modes
P + Q for the present method was 324. Because
of the unavailability of measured data, the results
in figures 10(a) and 11 cannot be compared with
measurements.

To validate the present technique over a wide
frequency band, monostatic RCS’s of the triangular
plate shown in figure 8 are calculated for a fixed angle
of incidence as a function of frequency, and these are
presented in figure 12 along with the measured data
and the results obtained using the ESP code. The
results obtained by using both methods (the ESP
code and the present method) compare very well with
the measurements.

RCS of Equilateral Triangular Plate With
_ Concentric, Equilateral Triangular Hole

An equilateral triangular plate with a concentric,
equilateral triangular hole as shown in figure 13 with
a = 5.08 cm and b = 2.54 cm is considered here as
a third example. For the parametric values given

12

in figures 14 and 15, the RCS’s of this plate are
calculated by using the present method along with
the results obtained from the ESP code and the
measured data. One can observe that the present
method gives RCS estimates that are comparable
with the measured data and with the ESP-code

calculation.

To compare frequency dependencies, the mono-
static RCS’s of the plate shown in figure 13 are cal-
culated for two angles of incidence (8; = 90°, ¢; = 90°
and §; = 90°,¢; = —90°) as a function of fre-
quency, and these data are presented in figure 16
along with measured and calculated results from
the ESP code. For the incidence angle 6; = 90°,
#; = 90° (the incidence on the tip), the predicted
RCS’s are comparable with the other results. How-
ever, for the incidence angle §; = 90°,¢; = -90°
(the edge on incidence), the nulls and peaks pre-
dicted by the present method are shifted in frequency
from those observed in the measured data and in
the results obtained from the ESP code. Note in
these calculations that the number of modes used
for the present method was 217 and the number of
modes used for the ESP code was marginally smaller

than 217.

RCS of Equilateral Triangular Plate With

Inverted, Equilateral Triangular Hole

An equilateral triangular plate with an inverted,
equilateral triangular hole as shown in figure 17 is
considered next. Monostatic RCS’s computed using
the present method for various angles of incidence
and polarization are presented in figures 18 and 19
and compared with the results obtained from the
ESP code. The number of modes used in both
methods was the same. The agreement between the
two methods was reasonably good. Because of the
unavailability of experimental results for this case,
the resnlts shown in figures 18 and 19 could not be
compared with the mcasured data.

The monostatic RCS’s of the equilateral triangu-
lar plate with an inverted equilateral triangular hole
as a function of frequency for a given angle of in-
cidence are calculated by using the present method
and are presented in figure 20 along with the results
obtained from the ESP code. Good agreement was
observed between the results of both methods.

~ RCS of Diamond-Shaped Plate

By using the present Vformulat'ion, the RCS’s of
a diamond-shaped plate as shown in figure 21 are
calculated and presented in figures 22 and 23 along
with measured data and the results obtained from
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the ESP code. Again, the agreement among the
techniques and measurements is quite good. The
number of modes for the two methods was again
selected to be the same.

Comparison of CPU Time

From the results presented so far, the present
method predicts the RCS of a polygonal plate with
reasonable accuracy. The number of modes required
to achieve this accuracy is slightly higher than the
number of modes required by the ESP code for the
same accuracy. This agreement is due to the fact
that the edge conditions on the surface currents
are not explicitly taken into account in the present
formulation. To see the merits of the present method,
one must compare the CPU time required to run the
present code with the CPU time required by the ESP
code. For a CPU time comparison, the RCS of the
hexagonal plate shown in figure 2 is calculated by
using the ESP code and the present method. The
CPU time required by both methods is calculated as
a function of the number of patch current modes and
is plotted in figure 24. For these time comparisons,
both codes were run on a Sun SPARCstation.

As seen in figure 24, the present method with tri-
angular decomposition techniques takes considerably
less CPU time than the ESP code. This is mainly due
to the block Toeplitz nature of the impedance matrix
in the present method. Because the edge conditions
on the surface currents are not explicitly taken into
account, the present method requires more modes
than the ESP code for reasonably accurate results.
However, from the earlier comparisons of the results
obtained by both methods, the difference between
the number of modes used for the present method
and the ESP code is marginal. (The present method
requires 524 modes as compared with 511 modes re-
quired by the ESP code.) The marginal increase in
the number of modes for the present method may
still be preferred from the CPU time consideration.

Figure 24 also gives the CPU time in seconds as
required by the present method using the matrix in-
version method and the matrix triangular decompo-
sition method. Figure 24 shows that the matrix in-
version method takes a much longer CPU time than
that taken by the matrix decomposition method.

Concluding Remarks

The method of moments has been described to
determine the monostatic radar cross section (RCS)
of irregularly shaped, thin, metallic flat plates in free
space. The surface-current density on an irregularly
shaped plate has been expressed in terms of rectangu-
lar subdomain functions by enclosing the plate by a
rectangle and dividing the rectangle into rectangular
subdomains. A shape function has been used to en-
sure zero current outside the arbitrarily shaped plate.
The electric field integral equation (EFIE) has been
used in conjunction with the method of moments to
determine the surface-current density on the irregu-
larly shaped plate. The monostatic RCS’s of (1) a
hexagonal plate, (2) an equilateral triangular plate,
(3) an cquilateral triangular plate with a concentric,
equilateral triangular hole and an inverted, equilat-
eral triangular hole, and (4) a diamond-shaped plate
have been compared with measured data and with
the results obtained by using the Electromagnetic
Surface Patch (ESP) code. From these comparisons,
one can conclude that the present method calculates
the RCS’s of these geometries with good accuracy.
Because an irregularly shaped plate is divided into
identical rectanglar subdomains in the present formu-
lation, the resulting impedance matrix in the moment

method is not only symmetrical but also of block _
Toeplitz nature. This effect is shown to result in

a considerable time savings in filling the impedance
matrix without sacrificing accuracy.

NASA Langley Research Center

Hampton, VA 23681-0001
July 26, 1993
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Appendix

Description of Floppy Disk Contents

A double-sided/high-density (DS/HD) 3} 3-in. floppy disk containing several data files has been provided for
further clarification of this report. These data files contain the experimental data and the computed results
used in plotting various figures in the report. The computed and experimental data for a figure are stored in a
file having the same name as the figure. For example, the data used to plot figure 3(a) may be found in a file
named fig3a.dat. .

The floppy disk may be read using an IBM PC, PC/XT or PC/AT Wlth MS DOS 2.1 or higher and a
35 in. drive. The data on the disk are in a compressed form. To read the data, the file figure.zip must be
uncompressed first. This is done as shown below. Create a directory called temp, and then use the command

pkunzzp figure. zzp c: temp

This will write all data files in the temp directory.

The reader can obtain a copy of this floppy disk by contacting the authors at the following address:

Guidance and Control Division :
Antenna and Microwave Research Branch
NASA Langley Research Center

MS 490

Hampton, VA 23681-0001
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Figure 1. Geometry of irregularly shaped, thin, metallic flat plate.

TrrTm




y
(6 = 90°)

Figure 2. Thin, metallic flat platc of hexagonal shape with e = 2.074 cm.
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(b) y-component along X X-planc with H-polarized plane wave.
Figure 3. Magnitude of z- and y-components of surface-current density along X X- and Y'Y -planes on hexagonal

plate (shown in fig. 2) excited by H- and E-polarized plane waves with angle of incidence (6; = 80°,¢; =0°)
for M = N =15,19,21, and 23.
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(d) z-component along YY-plane with H-polarized plane wave.

Figure 3. Continued.
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(a) H-polarized plane wave (g = 0°) at ¢; = 0° and 180°.

l ¢i=0°<_]t’¢i=]80° |
_60 1 i 1 L I 1 1 £ 1 1 ] j
0

. §
90 60 30 30 60 90
0 i deg

(b) E-polarized plane wave (ag = 90°) at ¢; = 0° and 180°.

Figure 4. Monostatic RCS of hexagonal plate (shown in fig. 2) excited by H- and E-polarized planc waves
(g = 0° and 90°, respectively) as a function of ¢; for f =11.811 GHz with M = N = 15,19, 21, and 23.
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(d) H-polarized plane wave (ap = 0°) at ¢; = —90° and 90°.
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Figure 5. Monostatic RCS of hexagonal plate (shown in fig. 2) excited by E-polarized plane wave (ag = 90°)
as a function of ¢; for f = 11.811 GHz with M = N =15,19,21, and 23 and 6; = 90° (grazing incidence).
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(b) E-polarized plane wave (ag = 90°) at ¢; = 0° and 180°.

Figurc 6. Monostatic RCS of hexagonal plate (shown in fig. 2) excited by H- and E-polarized plane waves
(g = 0° and 90°, respectively) as a function of §; for f = 11.811 GHz with M = N = 19.
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(d) E—polarizedr blané wavei((;o = 90°) at ¢; = —90° and 90°.
Figure 6. Concluded.
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Figure 7. Monostatic RCS of hexagonal plate (shown in fig. 2) excited by E-polarized plane wave (g = 907)
as a function of ¢; for f = 11.811 GHz with M = N =19 and §; = 90° (grazing incidence).
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(b) E-polarized plane wave (g = 90°) at ¢; = 90° and —90°.
Figure 9. Monostatic RCS of equilateral triangular plate (shown in fig. 8) excited by H- and E-polarized plane

waves (ap = 0° and 90°, respectively) as a function of §; for f = 11.811 GHz with M = N = 11,15, 19, and
21.
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(d) E-polarized plane wave (o = 90°) at ¢; = 0° and 180°.
Figure 9. Concluded.
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(a) E-polarized plane wave (g = 90°) at ¢; = 90° and —90°.
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(b) H-polarized plane wave (ag = 0°) at ¢; = 90° and —90°.

Figure 10. Monostatic RCS of equilateral triangular plate (shown in fig. 8) excited by H- and E-polarized plane
waves (ap = 0° and 90°, respectively) as a function of 8; for f = 11.811 GHz and M = N = 19.
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Figure 10. Concluded.
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Figure 11. Monostatic RCS of cquilateral triangular plate (shown in fig. 8) excited by E-polarized plane wave
(ag = 90°) as a function of ¢; for f = 11.811 GHz with M = N = 19 and #; = 90° (grazing incidence).
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Figure 13. Equilateral, triangular, thin, metallic flat plate with concentric, equilateral triangular hole with
a=25.08 cm and b = 2.54 cm.
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(b) H-polarized plane wave (ag = 0°) at ¢; = 90° and —90°.

shown in fig. 13) excited by H- and E-polarized

Figure 14. Monostatic RCS of equilateral triangular plate (
= 11.811 GHz with M = N = 19.

plane waves (ag = 0° and 90°, respectively) as a function of 8; for f
¥y)
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(c) H-polarized plane wave (g = 0°) at ¢; = 0° and 180°.
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(d) E-polarized plane wave {(ag = 90°) at ¢; = 0° and 180°.
Figure 14. Concluded.
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Figure 15. Monostatic RCS of equilateral triangular plate with concentric, equilateral triangular hole (shown
in fig. 13) excited by E-polarized plane wave (ap = 90°) as a function of ¢; for f = 11.811 GHz with

M = N =19 and 6; = 90° (grazing incidence).
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Figure 16. Monostatic RCS of equilateral triangular plate with concentric, equilateral triangular hole (shown

in fig. 13) excited by E-polarized plane waves (og = 90°) at angles of incidence as a function of frequency
for M = N =19.
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Figure 17. Equilateral, triangular, thin, metallic flat plate with inverted equilateral triangular hole with
a=>5.08 cm and b = 2.54 cm. )
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(a) E-polarized plane wave (ag = 90°) at ¢; = 0° and 180°.
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(b) H-polarized plane wave (ag = 0°) at ¢; = 0° and 180°.
Figure 18. Monostatic RCS of equilateral triangular plate with inverted, equilateral triangular hole (shown in

fig. 17) excited by H- and E-polarized plane waves (ag = 0° and 90°, respectively) as a function of 8; for
f=11.811 GHz with M = N = 19.
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(d) H-polarized plane wave (ag = 0°) at ¢; = 90° and —90°.
Figure 18. Concluded.
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Figure 19. Monostatic RCS of equilateral triangular plate with inverted equilateral triangular hole (shown
in fig. 17) excited by E-polarized plane wave (ag = 90°) as a function of ¢; for f = 11.811 GHz with
M = N =19 and 8; = 90° (grazing incidence).
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Figure 20. Monostatic RCS of equilateral triangular plate with inverted, equilateral triangular hole (shown in
fig. 17) excited by E-polarized plane wave {ag = 90°) at angles of incidence as a function of frequency for

M=N=19.
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Figure 21. Thin, metallic, diamond-shaped flat plate with a = 3.592 cm.
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(a) H-polarized plane wave (a9 = 0°) at ¢; = —90° and 90°.
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(b) E-polarized plane wave (ag = 90°) at ¢; = —90° and 90°.

Figure 22. Monostatic RCS of diamond-shaped plate (shown in fig. 21) excited by H- and E-polarized plane
waves (ag = 0° and 90°, respectively) as a [unction of §; for f = 11.811 GHz with M = N = 19.
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(c) H-polarized plane wave (ap = 0°) at ¢; = 0° and 180°.
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(d) E-polarized plane wave (o = 90°) at ¢; = 0° and 180°.
Figure 22. Concluded.
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Figure 23. Monostatic RCS of diamond-shaped plate (shown in fig. 21) excited by E-polarized plane wave
(ag = 90°) as a function of ¢; for f = 11.811 GHz with M = N = 19 and §; = 90° (grazing incidence).
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Figure 24. Comparison of CPU time required by present method using matrix inversion and decomposition
with CPU time required by ESP code.
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