
Abundance Recovery Error Analysis using Simulated AVIRIS Data

_- William W. Stoner, Joseph C. Harsanyi, William H. Farrand and Jennifer A. Wong

N94-1 708,!.

Science Applications International Corporation
803 West Broad Street

Falls Church VA,22046

1.0 Introduction
Measurement noise and imperfect atmospheric correction translate directly into errors in _

the determination of the surficial abundance of materials from imaging spectrometer

data. The effects of errors on abundance recovery have been investigated previously

using Monte Carlo simulation methods by Sabol et. al. [1]. The drawback of the Monte :

Carlo approach is that thousands of trials are needed to develop good statistics on the

probable error in abundance recovery. This computational burden invariably limits the
number of scenarios of interest that can practically be investigated.

A more efficient approach is based on covariance analysis. The covariance analysis

approach expresses errors in abundance as a function of noise in the spectral
measurements and provides a closed form result eliminating the need for multiple trials.

In this paper, Monte Carlo simulation and covariance analysis are used to predict
confidence limits for abundance recovery for a scenario which is modeled as being

derived from AVIRIS.

2.0 Abundance Recovery Error Derivation

The visible and near infrared reflectance vector of a surface, R, is the product of an n x

m matrix M of endmember spectra and an m x 1 abundance vector A

R = MA

For simplicity, we assume Lambertian properties for the modeled pixel surface, and we
also assume that the surface is level. With these assumptions, we use the n x n diagonal

matrices L and T to represent the surface irradiance and atmospheric transmission

between the surface and the sensor respectively. The ground reflected radiance at the

sensor is represented by the n x 1 vector LTR = LTMA.

In addition to the multiplicative effects on the reflectance vector, upwelling light from

thermal radiation and atmospheric scattering is represented by an additive term given by

the n x 1 vector U. The total upward radiance (represented by the n x 1 vector D) is

now given as

D = TLMA+U+N

where N is an n x 1 zero mean additive white Gaussian noise vector with covariance

Y'N = °2I where I is the n x n identity matrix and o 2 is the noise variance.

The first step in the recovery process is estimation of the atmospheric contributions,

denoted by _ and 2. Errors in estimation of these quantities will tend to bias

abundance recovery results as well as increase the size of the resultant error distribution.
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Froma theoretical standpoint, it is useful to consider the case where the atmospheric

contributions are perfectly estimated, and the only error is due to random effects such as

sensor noise. The equation with the atmospheric effects removed becomes

(TL) -I(_D-U) = M_A +(TL) -I_N

The least squares estimate _ is given by the well known result [2]

= (M_M) -'M T((TL) -l(D -U)) = A +(M_M) -'M _ (TL)-' N

The variance-covariance matrix of _ is given by

Var(_) = (M_M) -I M T(TL) -1 _N ((MTM) -1 MT ( TL)-1 )T

The square roots of the eigenvalues of this matrix are the semi-axes of a

hyperdimensional ellipsoid which describes the error distribution of the recovered
abundances. The eigenvectors determine the orientation of the ellipsoid. This

representation of the abundance estimation error provides a closed form solution for
assessing the confidence that the true abundance vector lies within particular limits.

3.0 Simulation Results

Laboratory spectra of a red soil, creosote leaves and dry grass were used to simulate a

mixed pixel. The resulting mixed pixel reflectance spectrum was convolved with gains

and offsets previously calculated by a simulated empirical line method calibration [3] of

the same pixel. The earlier simulation convolved the mixed pixel with the

multiplicative and additive effects of a mid-latitude summer atmosphere illuminated

with a solar zenith angle of 30 ° as calculated by the LOWTRAN 7 radiative transfer

code. The instrumental response of AVIRIS was simulated for theinput radiance vector

with the output vector consisting of 224 digital numbers corresponding to AVIRIS
channels. Additive noise with standard deviation of 5 DN (representing AVIRIS

performance circa 1987-1988) was added to the simulated raw AVIRIS data, and the
same gains and offsets were used to convert the databack to reflectance providing a

perfect atmospheric correction. Finally, the abundances were solved for using singular

value decomposition based least squares techniques [4].

Figure la shows the projection of the simulation derived error distribution onto 2D

planes relating errors in pairs of abundance measurements. Figure lb shows the
theoretical 95% confidence ellipsoid projected onto 2D planes for the same scenario. In

order to obtain results comparable to the theoretical error distributions, approximately

10000 trials were needed to obtain the required statistics. The run-time for 10000 trials

is approximately two orders of magnitude greater than the theoretical calculation (e.g.
1000 sec vs. 10 sec on a 486 PC).

4.0 Conclusion

The example shown here demonstrates that the orientation and size of an abundance

recovery error ellipsoid can be determined accurately with covariance analysis. Tiffs

approach eliminates the need to generate statistics from which to calculate the error
covariance matrix reducing the calculation to a small fraction of the computational

burden of the Monte Carlo simulation approach. In further investigations that simulated

the current, higher SNR configuration of AVIRIS, the abundance recovery error is
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significantlyreduced.Thus,givenahigherSNR sensor system, greater confidence can

be invested in spectral mixture studies.
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Figure la: Projection
of 3D Scatter Plot

of Abundance Estimates

onto 2D planes for case with
Red Soil (30%),

Creosote Leaves (30%)

and Dry Grass (40%).

0 _

0_

Figure lb: Theoretical Abundance Recovery
Error Ellipsoid for above case projected onto

2D planes. 95% confidence level is represented.
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