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ABSTRACT

We studiedtwo crystallizationproblems:thegrowthof proteincrystals,in particularthe
influenceof colloidalforcesandconvection,andtheinfluenceof interfaceresistanceon thegrowth
of dendriticcrystals.Theproteinstudyinvolvedbothexperimentalandtheoreticalwork; thework
ondendriteswasentirelytheoretical.

In ourstudyof proteincrystallization,wecarriedoutexperimentswherecrystalswere
grownin thepresenceandabsenceof naturalconvection.Noevidencewasfoundthatconvection
retardscrystalgrowth. Thetheoreticalstudyfocusedon theinfluenceof colloidal forces
(electrostaticandLondon-vanderWaals)ontheinteractionbetweenaproteinmoleculeandafiat
crystalsurface.It wasshownthattheinteractionisextremelysensitiveto colloidal forcesandthat
electrostaticinteractionsplayastrongroleindecidingwhetheror notamoleculewill find a
favorablesite for adsorption.

In ourstudyof dendriticgrowth,weexaminedtherole of aninterfacialresistanceon the
selectionprocesses.Usingacomputationalschemewefoundthattheselectedvelocity is strongly
dependentonthemagnitudeof theinterfacialresistanceto heattransfer.This isapossible
explanationfor discrepanciesbetweenthetheoreticalandexperimentalresultsonsuccinonitrile.





SUMMARYOFTHE WORKON DENDRITICGROWTH

Theworkonproteinsis summarizedin theattachedthesisandpapers;thework on
dendritic growth is in progress (C. A. Martin's PhD thesis) and so a short description of the
results thus far will be given here.

One outstanding problem in dendritic growth is to understand the mechanism by which the
tip velocity and shape are determined. The currently accepted model is called microscopic
solvability. According to that theory, the tip radius and velocity are set by the anisotropic nature of
the surface energy of the crystal melt interface. The differential equations describing the tip growth
balance the freezing process against heat conduction to the melt with the interface temperature
governed, in part, by the Gibbs-Thomson condition. The Gibbs-Thomson effect describes how
interface curvature alters the melting point and this is where the anisotropic nature of the surface
energy (the sb-called interfacial tension) enters. The selected velocity and curvature are determined
by insisting that the tip must be smooth, i.e., have a continuously turning tangent. This theory
does not agree well with existing data on several soft materials. Our approach has been to include
the effect of a resistance to heat transfer at the surface. We use a boundary integral technique to

solve the relevant equations which include the Gibbs-Thomson effect as well as an anisotropic
resistance. We find that smooth tips can be obtained with an isotropic interfacial tension but an
anisotropic interface resistance. Our results were reported at the AICHE Meeting in November of
1992; publications and Martin's PhD thesis are in preparation.

Ivantsov 1 identified the shape of a single needle crystal growing into its supercooled melt

as a paraboloid with Ptcltt number Pe = pV/2D, where p is the tip radius, V is the freezing

velocity, and D is the thermal diffusivity. For a given supercooling, Ivantsov theory allows a

family of solutions satisfying pV = constant, but provides no means for distinguishing the shape

and velocity. Current work addresses the dendrite shape selection problem using the approach of
microscopic solvability theory, but allows a deviation from equilibrium due to anisotropic
interfacial attachment kinetics, introduced through a transport coefficient empiricism.

Microscopic solvability theory 2 is the most recent of shape selection theories focusing on

the role of interfacial free energy ("surface tension"), a force which typically acts over microscopic
length scales, in shape selection. The Ivantsov solution appears under this approach only in the
limiting case of zero surface tension. In the general case, surface tension must act anisotropically
in order for the solvability condition of a smooth tip (one with zero slope) to be satisfied; the
selected shape and velocity depend on the degree of anisotropy.

The current work explores the two-dimensional shape selection problem as a synthesis of
the effects of interfacial free energy and attachment kinetics, each of which may act anisotropically.
A kinetic resistance to interfacial growth depresses the interface temperature T relative to its
equilibrium (Gibbs-Thomson) value TEQ; the resulting boundary condition replaces the equilibrium
assumption and introduces the interphase transport coefficient h,

LV cos 0 = h(0) (TEQ" T),

where L is the latent heat per unit volume and 0 is the angle between the crystal axis and a unit

normal to the interface. The strength of the kinetic effect is described by a reciprocal Biot number
1/Bi = kV/(2Dh), where k is the thermal conductivity.

1G. P. Ivantsov, Dokl. Akad. Nauk, SSSR 58 (1947) 567.

2D. A. Kessler, J. Koplik and H. Levine, Adv. in Phys. 37 (1988) 255.





Figure 1 shows the interaction between kinetic and surface tension mechanisms in shape
selection. When the dimensionless surface tension parameter do is zero, three zero-tip-slope

solutions exist including the Ivantsov case at 1/Bi = 0. In the range 0 < do < 00767 two solutions
exist, and beyond that range the effect of isotropic surface tension is sufficiently strong to prohibit
the existence of smooth-tipped shapes.

The method developed for the current work approximates the shape of the interface by a
series of orthogonal (Laguerre) polynomials, and has proved useful in generating results in the
low-Pe regime relevant for comparison with experimental data. Figure 2 shows the shape

selection parameter or*= d o / Pe 2 approaches a constant value of .0142 in the low Pe limit, under

the given conditions of 10% anisotropy of surface tension and no kinetic resistance. Continuing
work focuses on introducing kinetic effects at low Pe, to allow fitting of kinetic parameters to
published data for succinonitrile and pivalic acid.
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Figure 1: Shape selection curve under conditions of anisotropic kinetics (at = 0.1) and

isotropic surface tension (a, = 0) at Pe = 1. Admissible shapes have zero tip slope.
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Figure 2: Shape selection parameter o* as a function of Pe, under conditions of anisotropic

surface tension (a, -- 0.1) and no kinetic resistance.
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The idiosyncrasies of protein crystal growth are widely known: crystals often stop growing before reaching a size adequate for

X-ray diffraction studies: sometimes their quality is poor. The reasons for this behavior are not well understood We investigated

several transport mechanisms to ascertain whether they might play significant roles in protein crystal growth. Scale analyses were

used to establish the order-of-magnitude of forces arising from natural convection. They sho,_, that shear forces are probably too

small to dislodge molecules from the crystal surface or alter protein structure by unfolding. Strong shear fields can align molecules,

but we find that the shear arising from natural convection is much too weak to alter the orientation distribution of protein molecules.

Crystal growth rates are set by a balance between attachment kinetics and transport to the crystal surface and. according to our

analysis, crystals prepared in growth rate studies are usually too small to be affected by either diffusion or convective transport. The

role of salt rejection at the crystal-fluid interface was also investigated. Salt rejection could influence growth by changang the

transport velocity normal to the interface or by changing the driving force for diffusion. The magnitude of each effect appears too

small to be significant.

!. Introduction

Obtaining suitable crystals is frequently the

rate-limiting step in the process of determining the
full three-dimensional structure of protein mole-

cules by X-ray diffraction. Protein crystallogra-

phers are familiar with the difficulties of finding
conditions which produce crystals of any sort, let

alone the large single crystals desired for diffrac-

tion studies. Protein crystals tend to grow slowly
and often reach a terminal size too small to pro-

duce acceptable diffraction patterns. Occasionally,

protein crystals grow readily but are too dis-
ordered to diffract well. The outcome of any crystal

growth experiment depends on the complex inter-
actions among the protein, solvent, buffer, and

precipitating agent(s) which are present in the
system. Few of these interactions are well char-

acterized and many of them are highly specific to

a given system. A discussion of all these phenom-
ena is beyond the scope of this work. We focus,

instead, on the possible effects of transport phe-

nomena on protein crystal growth.

Crystallization is an inherently nonequilibrium

process which creates gradients in system proper-
ties such as solute concentration. The gradients

produced are affected by various transport

processes and so the relative rates of growth kinet-

ics and transport to the crystal surface determine

the path the system takes towards equilibrium.

Any process which alters those rates changes the

properties of the resultant crystals. For example,
recent work by Pusey, Witherow and Naumann [1]

clearly shows the presence of buoyancy-driven
flows and indicates that crystals grown in the

presence of forced convection grow slower than in
its absence. The reasons for this behavior are

unknown.

Convection might alter growth processes by

retarding attachment at the surface (which inhibits

kinetics) or by feeding the crystal more protein
(which enhances mass transfer). Three mecha-

nisms have been proposed whereby shear pro-

duced by flow could inhibit growth kinetics: strip-

ping molecules from the surface, imposing a pre-
ferred (unfavorable) orientation on protein mole-

cules near the crystal, or denaturing protein mole-

cules as they approach the surface. If, in the

0022-0248/91/$03.50 © 1991 - Elsevier Science Publishers B.V. (North-Holland)
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attachment process, a molecule samples many

orientations and possible binding sites before set-

tling into its ultimate location, it is important that

each molecule has ample time at the attachment
site before the arrival of the next growth unit.

Convection might increase the arrival rate to the

point where protein molecules are trapped in un-
favorable positions; this would produce defects

which inhibit further growth.
There are other processes which affect the rela-

tive rates of transport and attachment. Several

solutes are present in the system, and each must

be transported to or from the surface as the crystal

grows. Interactions between the protein and pre-

cipitating agent, for example, can alter the chem-

ical potential of the protein so that the driving
force for diffusion is diminished. This might pro-

vide additional time for the molecules at the

surface to bind properly and produce a more

ordered crystal. Contaminants which compete for

binding sites on the crystal surface can inhibit

growth, especially when the contaminant hinders

attachment of protein to the crystal. This process

not only reduces the growth rate, but halts crystal

growth when the surface is completely "poisoned"

by the contaminant.
Our calculations indicate that none of the con-

vective processes investigated here is strong enough

to affect the growth of protein crystals. Neverthe-

less. some experimental evidence exists which

seems to imply that buoyancy-driven flow in-
fluences crystal growth rates and quality. Pusey et

al. [1] observed convection plumes rising from

growing tetragonal lysozyme crystals and noted
that the plume velocity was of the same order as

that expected from scaling arguments, i.e. about

30 _m/s (cf. section 2). They then subjected small

crystals (< 20 /am) to forced convection of the

same strength and noted that the growth rate

decreased monotonically with time after convec-
tion commenced. Although the long-term effect of

convection is to reduce growth rates, they also

reported an initial enhancement of crystal growth
due to flow. No evidence has been presented which
indicates the mechanism for this behavior.

On the molecular scale, recent work by De

Lucas et al. [2] shows that crystals grown in micro-

gravity aboard the space shuttle diffracted to

higher resolution than those grown in the labora-
tory. They conducted eleven experiments and

found that the internal order of crystals from the

space experiment was greater than that of ter-
restrial crystals. Additionally, two crystals grew

larger than any reported in ground-based experi-
ments. In the absence of evidence to the contrary.

they attributed these beneficial effects to the re-

duction of buoyancy-driven motion.

Given these conflicting results, the purpose of

this paper is to present our analyses and provide a

context to investigate other mechanisms. The pre-

sentation is organized as follows. First. we present

order-of-magnitude analyses to assess the strength
of shear forces arising from natural convection.

These scale analyses are used to evaluate the pos-

sibility that shear might pull molecules from the
surface, confer a preferred orientation on mole-

cules near the surface, or denature the protein b__

altering the protein's structure. An analysis of the

effects of mass transfer by diffusion is presented

next. This is followed by an inquiry into the effect

of salt rejection at the surface of the growing

crystal. None of these mechanisms is found to

have much effect on the growth processes. The

final section is a more speculative discussion on

the way convection might alter crystal growth in

the presence of an inhibitor.

2. Effecls of fluid flow on protein costal gro_lh

It has been suggested that the terminal size of

the crystals could result from the effects of natural
convection due to disruption of crystal bonds by

hydrodynamic forces. Protein molecules are held

in the crystal lattice by weak hydrogen bonds

(AH = -3 to -6 kcal/mol in vacuo) which are

not well characterized [3]. If the force required to

break the crystal bonds is comparable to that

produced by the shear flow at the crystal surface,
flow might remove protein molecules from the

crystal. This situation is depicted schematically in

fig. l a. Because the shear stress at the surface

increases with crystal size, this would act as a

self-limiting process. An order of magnitude
estimate of the viscous stress _ill indicate whether
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(a) (b)

Fig, 1. Two mechanisms by which shear might disrupt protein crystal growth. (a) Shear flow removes protein molecule from crystal
surface, (b) Shear flow,imposes a preferred orientation on the molecule at the surface.

convective removal of molecules from the surface

is a reasonable mechanism to halt crystal growth.
The shear stress at the surface is due to

buoyancy driven natural convection around the

growing crystal. This flow is caused by density
differences between the fluid adjacent to the

surface of the object and the bulk solution far

from the crystal. The strength of the motion is

characterized by the Grashof number [4], the ratio

of the buoyancy force driving the motion to the
viscous resistance. The Grashof number is defined

as

Gr - R3gAp/p_u 2, (2.1)

where g = gravitational acceleration, Ap = density

difference, O= = bulk fluid density, p = kinematic

viscosity, and R = crystal radius. The ratio of the

molecular transport coefficients for momentum
and diffusion is the Schmidt number, Sc = I,/D,
where D = diffusion coefficient for the solute. For

small Grashof numbers but large Schmidt num-
bers, the motion scales on the square root of the

ratio of Grashof and Schmidt numbers due to the

boundary layer structure of the flow [4].

For a 1 mm diameter spherical crystal in a 5%

(w/v) lysozyme solution, we estimate that Ap/p_

is roughly 0.002 (see section 3). This yields a
Grashof number of about 2; the Schmidt number

for lysozyme is 104. In a weak flow of this sort,

the characteristic velocity, u=, equals (Gr/

Sc)l/2_/R and the shear rate, F, is u=/& with 6

the boundary layer thickness [4]. Accordingly. the
shear stress, r, at the surface is given by

r = laF = I_U_/8, (2.2)

where # is the fluid viscosity. Under the cir-
cumstances noted above, the characteristic veloc-

ity is 3 x 10 -3 cm/s, 3 is 8 x 10 -3 cm. and the
shear rate is about 0.36 s -t. The shear stress

acting on the crystal surface in a solution where

# = 1 x 10 -3 Pa s is approximately 3.6 x 10 -4 Pa.

If we take Fiddis et al.'s [5] approximation of the
lysozyme molecule being a cube 30.9 A on a side.

then the shear force acting on a molecular at the

surface is approximately 3.4 x 10-:1 N.

In the spirit of our order of magnitude analysis.

we compare the shear forces with intermolecular
forces. In what follows, we examine the potential

between molecules and make simplifying ap-

proximations which tend to underestimate the
strength of the bonds. In order not to rule out the

importance of fluid flow prematurely, we de-

liberately weaken our estimates of the bond

strength. Nevertheless, our results indicate that
even the weakest intermolecular bond is still

thousands of times as strong as typical shear forces.

indicating that this level of approximation is ap-

propriate. If the strengths of the forces were com-
mensurate, a more careful estimate would be re-

quired.
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To provide a simple estimate, we approximate

the interaction potential between any two atoms
as a Lennard-Jones 6-12 potential with electro-

static interaction:

A B qlq: (2.3)U=--+ + ,
r 6 "_ 4err,or

where A and B are constants for the particular

bond of interest, ql and q2 are the partial charges
on the atoms in the bond, ¢ is the dielectric

constant of the medium (water), co is permittivity

of free space, and r is the separation between the

atoms. Hagler et al. [6] determined the values of

A, B, ql and q2 for the bonds in an'fide crystals
and found that the form of eq. (2.3) accounted

adequately for the observed interactions. Rather
than find the entire potential by performing a

summation of eq. (2.3) over all the pairs on both

molecules, we take the weakest interatomic bond-

ing interaction as representative of the intermolec-
ular bond. From the values of A, B, ql and q2

reported by Hagler et al., the bond energies were
calculated from the value of U=i. at the equi-

librium separation (where F-- -dU/dr = 0) and
the maximum attractive force was calculated by

determining the force where d F/dr = -d2U/dr 2
= 0. The weakest bond is that with the shallowest

potential well having Urn,. < 0; i.e., metastable ex-

cited states with Urn,. > 0 are excluded. We com-

puted bond energies for hypothetical bonds be-
tween each of the species listed by Hagler et al. [6]
and chose the weakest. Since we seek a weak

characteristic bond for this comparison, we do not

limit our search to only those bonds which have

been observed crystallographically.
The weakest bond determined in this manner is

that between a non-carbonyl carbon and the amino

hydrogen, having Umi. = -81 J/mol and a break-
ing force of roughly F= 8.3 x 10 -13 N/bond. The

force generated by free convection is approxi-
mately eight orders of magnitude too small to
break even this weak bond and thereby strip mole-

cules from the crystal surface. The full intermolec-

ular potential should yield a value of U=i. -'!"AH

of crystallization; Howard et al. [7] report that

A H of crystallization for tetragonal iysozyme

crystals is -79 kJ/mol. Our estimate of the bond

strength is smaller than AH by a factor of 1000,

yet the force required to break it is many orders of

magnitude larger than the shear forces present due
to natural convection.

Even though the shear stress cannot remove
molecules from the surface, it might impart some

preferred orientation to the molecules near the
surface so that they are unable to find the proper

alignment for addition to the crystal (fig. lb). To

test this hypothesis, we compare the characteristic

rates of the processes: alignment by shear and
randomization by rotational diffusion. The rate of

alignment is comparable to the shear rate, F; the
characteristic rotation rate is given by the rota-

tional diffusion coefficient, Dro t = kT/8_r#R 3,

where R is the hydrodynamic radius of the protein

[8]. The hydrodynamic radius of iysozyme is ap-

proximately 20 A [8], giving Dro _= 2 × 107 s -1,

A

B

(c)

x

tr0

A

Fig. 2: Denaturation of protein molecule due to shear stress.

(a) Protein in native conformation. Molecule is maintained in

native state by a single hydrogen bond at A and is hinged at B.

(b) Denatured protein molecule. After hydrogen bond is

broken, both halves swing open. (c) Definition sketch for

calculating force at point A due to shear stress.
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while the shear rate is certainly less than 1 s-1.

The ratio of rotational and shear rates is therefore

more than 107, indicating that randomization of

the protein molecules occurs much faster than any

orientation imposed by the shear flow.

Another possible explanation for slowing or

halting of crystal growth is denaturation of pro-

tein by the shear field. The following model, sug-

gested to us by W.B. Russel (Princeton University),
was used to investigate the possibility of shear-

induced denaturation. If the protein molecule must

be in a particular conformation in order to bind to

the crystal surface, crystal growth may be hindered
if the shear stress changes the protein's conforma-

tion. For this analysis, consider a spherical protein

molecule as shown in fig. 2a and assume that the

molecule is maintained in this conformation by a

single hydrogen bond placed at point A and is

"hinged" at point B. If the shear forces on the
molecule are sufficient to break the bond at A, the

molecule will open up in the yz plane (fig. 2b) and

the molecule might not bind to the surface. The
force on the bond at A can be calculated by

computing the torque about B due to creeping
flow past the sphere and determining the equiv-

alent force to place at A.
Over any differential area element on the

molecular surface, the magnitude of the torque is

given by

dT=r(_,_R 2 sin 0 d0 d_) sin a, (2.4)

where r is the distance from point B to the area

element. _',_ is the shear stress acting on the pro-
tein surface in the 0 direction, and 0, _, and a are

as shown in fig. 2c. Only the component in the
+ x direction contributes to opening the hinge in

the yz plane, however, so the appropriate expres-
sion for the x component of the torque is

dT. =r(T, eR2 sinOdOdep) sinasin_. (2.5)

From geometrical considerations, a = 0/2, and

r= ¢R(1- cos _), while the shear stress is re-
lated to the free stream velocity, u_, by %a=

(3#u_/2R) sin 0 [9]. Note that here R denotes
the radius of the crystal and that we have sup-

posed the molecule is held stationary in a uniform
flow field of strength u_. If eq. (2.5) is integrated

over half a sphere (0_<_ < _r, 0 < 0_< 7r). the +x

component of the torque is

3R2_U_fo"fo" ,;2T+,=_ sin20 (l-cosO)

0 3_R2_u_ (2.6)
×sin_sin _ d_ dO= 2

and the corresponding force is 3_Rlau_/4. The
force, F, on the hydrogen bond is twice the force

due to flow around half the sphere,

F= 37rRl_u_/2, (2.7)

which must equal the breaking force of the hydro-

gen bond if the molecule is denatured.
According to our earlier calculations, the

weakest bond has a breaking strength of 8.3 x

10-13 N. A velocity, u_. of approximately 9 cm/s

is required to disrupt this bond. This velocity is
more than three orders of magnitude greater than

the free convection velocity estimated earlier, and

is certainly greater than the velocity attained in

the systems of interest. Furthermore. this is a
worst case scenario since the weakest possible

bond was chosen and only one hydrogen bond

was permitted. In reality, other contributions

would strengthen the bond.

These analyses indicate that viscous stresses
due to natural convection are too weak to disrupt

crystal growth by stripping molecules from the
surface, orienting molecules at the surface, or de-

naturing the protein as it approaches the surface.

Another way flow can influence protein crystal

growth is by altering the mass transfer rate to the

crystal surface, which we investigate next.

3. Mass transfer and protein cD'stal growlh

The relative rates of mass transport and attach-

ment kinetics determine the manner in which a

crystal grows. Crystal growth can be thought of as

occurring in two steps: (1) the molecule reaches
the surface from the bulk solution and (2) the

molecule is incorporated into the crystal. Two

distinct growth regimes can be observed depend-

ing on which step is rate-limiting, When mass
transport is rate-determining, molecules attach to
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the surface as fast as they arrive and the region

adjacent to the surface is depleted in protein rela-
tive to the bulk. At the other extreme, when at-

tachment controls growth, mass transport main-

rains the protein concentration at the surface equal

to the average protein concentration in solution.

An expression for the the growth kinetics of te-

tragonal lysozyme crystals is available [10,11] so

that we can perform a quasi-steady state analysis
to determine when each step controls crystal

growth.
At pH 4, 50 mg/ml NaCI, and 22°C, the (110)

face was found to advance with a velocity, G,

given by

a = k [(c, - c.)/c,]k (3:1)

where Ci is the mass concentration of protein at

the interface, C_ -- 1.7 mg/ml is the solubility mass
concentration under these conditions, and k =

1.46 × 10 -9 cm/s. In the analysis below, we take

the crystal to be a sphere of radius R and equate

G with the growth rate d R/d t. The crystal growth

rate given by eq. (3.1) must also equal the volume
flux to the crystal surface:

dR D 8C[ (3.2)d--7=  -g7 '.

where C_ -- 725 mg/ml is the mass concentration

of protein in the crystal (corresponding to 50%

solvent by volume [12]). The concentration gradi-
ent at the crystal surface can be expressed as the

product of the concentration gradient which would
obtain if diffusion were the only transport mecha-

nism and a correction factor, Sh:

OC ' 8C/Or [ R OC I =shOC I
-_ R = aC'-_['-_._ii,,,, _r ,R.dmn Or IR.diu_"

(3.3)

Here Sh is the Sherwood number based on the

crystal radius and is given by the Ranz-Marshall

correlation [13]:

Sh = 1 + 0.5 Sc w3 Gr I/4. (3.4)

The Sherwood number is the ratio of the actual

mass transfer rate to the diffusion rate. The

Schmidt number, Sc, and Grashof number, Gr,

were defined earlier. Note that the functional rela-

tion given here, Scl/3Grl/4, differs from that used
earlier in connection with the shear rate and veloc-

ity. There is very little experimental data on mass
transfer in free convection at low Grashof num-

bers but the Ranz-Marshall correlation encom-

passes that which is available.
When the crystal grows in a quasi-steady

manner under diffusion control, the concentration

gradient at the surface is given by

OC I C_ Ci"_r .R...i.,. = R (3.5)

Equating the two expressions for crystal growth

given in eqs. (3.1) and (3.2) and making use of eqs.

(3.3)-(3.5) yields

K{k _Ci- Cs, t2 = C_ - C i Gr_/,)+ 0.5 Sc'J' ,

(3.6)

where K--kR/D. Eq. (3.6) can be solved for the

interfacial concentration C, as a function of crystal

size. The resulting value of CI is then substituted

into eq. (3.1) to find the growth rate. When Gr = 0
(no buoyancy-driven flow), eq. (3.6) can be solved

for C_ explicitly to yield

11
-I

The interfacial concentrations calculated from eqs.

(3.6) and (3.7) are shown in fig. 3a, while the

corresponding growth rates are given in fig. 3b.
We used the results shown in fig. 3a to estimate

the scaled characteristic density difference, Ap/p_:

--0.002, used in section 1.

According to these results, the interfacial con-
centration is essentially equal to the bulk con-

centration over the entire size range studied by

Pusey et al. [10,11]. A constant growth rate (broken

lines), shows that natural convection is sufficient
to maintain the surface concentration at the bulk

level so that crystal growth is entirely kinetically

controlled. If convection is suppressed (solid lines),
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Fig. 3. Mass transfer effects on protein crystal size. (a) lnterfa-

cial concentration of lysozyme calculated from quasi-steady

mass balance on growing crystal, eqs. (3.6) and (3.7).'Solid

lines are for diffusion only, broken lines include natural con-

vection. (b) Crystal growth rate calculated from quasi-steady

mass balance and growth rate expression given in eq. (3.1). All

parameter values are taken from Pusey et al. [11]_

the growth rate decreases as the crystal grows

larger. For example, by the time a lysozyme crystal

growing from a 5% (w/v) solution reaches 1 ram,
its growth rate has slowed to approximately 25%
of its initial value. Similar rest_lts can be seen for

crystals grown from 1% (w/v) solution. A rough
indication of the relative importance of mass

transfer and kinetics can be obtained from the

slope of the growth rate versus crystal size curve

(fig. 3b). The slope is zero when interfacial kinet-
ics are rate-limiting and approaches -1 in the

diffusion-controlled limit. The curves in fig. 3b

indicate that crystals grow under kinetically-

controlled conditions until they reach approxi-

mately 100 #m irrespective of the mass transfer
mechanism. These calculations agree well with

those of Pusey and Naumann [10].

4. Salt rejection and protein crystal grov_1h

There are at least two possible ways in which

the rejection of salt (precipitating agent) at the

interface may influence protein crystal growth: (i)

a "blowing" velocity directed away from the

crystal surface which slows transport of protein to

the crystal; (ii) the alteration of the local protein

solubility which reduces the driving force for dif-
fusion. In the first case, the blowing would appear

in the "crystallization" flow which arises from the

diffusion of protein to the crystal surface [14].

This crystallization flow is related to the growth

rate of the crystal, dR�dr, by

dR( ,4'1v_=.-3T I-G ,

where vt is the fluid velocity at the interface, n is
the unit normal directed outward from the crystal

surface. Pc is the crystal mass density and Pt is the
fluid density at the interface. The crystallization

flow is directed towards the crystal surface if

Pc > Or, and away from the crystal if Pc < Pt- Pro-
tein crystals are usually denser than the bulk fluid

so the crystallization flow enhances mass transfer

to the crystal surface. A straightforward calcula-

tion shows that the convection protein flux due to

crystallization flow is approximately 1% of the
diffusive flux for a spherical protein crystal and

can be neglected without serious error.
The effect of variations in the local protein

solubility can be estimated by considering the

growth of a spherical protein crystal under diffu-
sion control. Salt is rejected at the crystal surface
and must diffuse to the bulk, producing a salt

concentration gradient and corresponding gradi-
ent in the local solubility of the protein. In the

diffusion limit, protein in the liquid at the crystal

interface is at the solubility concentration and is

in equilibrium with the protein in the crystal. The

crystal form is reported to be insensitive to the
salt concentration, so it may be reasonable to

assume the chemical potential of the crystalline

protein is independent of the salt concentration.

The chemical potential of the protein in solution,
however, is no longer directly proportional to its

concentration because it depends on the con-
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centration of other solutes. The salt concentration where

gradient due to rejection at the crystal interface

alters the gradient in the protein's chemical poten-
tial with the result that the flux of protein to the

crystal surface is less than the flux one would

expect from examining the protein concentration

gradient alone. We wish to establish how the salt

gradient alters the protein flux to the crystal.
To set this out in mathematical form, we first

express the flux of protein (species 1) in terms of

its chemical potential [13]

Do (4.2)

where gl is the chemical potential of the protein,

D o = thermodynamic diffusion coefficient, and C1
= molar concentration of protein. The chemical

potential of the protein is given by

_1 = I_ + kT log xoq, (4.3)

where _t_ = standard state chemical potential, x)
= mole fraction of protein, and _ -- activity coef-

ficient of the protein. Since the chemical potential

of the protein at the solubility concentration is

constant, it follows that

la_°) ffi #_ + kT log x_°l_'_ I = constant.

The flux relation given by eq. (4.2) is unchanged

by adding the gradient of a constant, so the flux R

can also be expressed as )' = R--_0'

no v'(t,, W)j= - -_ c,

• [ x,v, _ (4.4)
= - OoC, ,osI j.

One form for the activity coefficient is [15]

V, = _'_ exp( - Xx, ), (4.5)

where y_ is the activity coefficient of protein in
the limit of an infinitely dilute solution. If K is a

constant independent of salt concentration and

?_ varies with salt concentration, then the chem-
ical potential of the dissolved protein can be writ-
ten in terms of the local _,_:

i_1 = tl° + kT log[ xlv_: exp( - Kxl )], (4.6)

v,_ - exp( Kx_°')/x_°'. (4.7)

Although this manner of adjusting 3'_ to satisfy

the solubility constraints is ad hoc, it makes the
mathematics somewhat simpler by implicitly ab-

sorbing the salt dependence into x_ °_ so that sub-
stitution of eqs. (4.5), (4.6) and (4.7) into eq. (4.4)

gives the flux as

(4.8)

A quasi-steady mass balance around a growing

spherical crystal yields

(R_dR)c_-_-

= r2DoC_ ff__log ( x_ _x-_exp[ K(x,- x[°')l),

(4.9)

where C x is the molar concentration of protein in

the crystal. If the following dimensionless varia-
bles based on a reference length R 0 are intro-

duced:

R R o_ tDo
_. = (4.10)

z= r r --_ "

the mass balance becomes

L, / _, x '-u(_,-_,")])=x, dz ,og_ x_,,e P[

where the Peclet number,

pe =hdh R dR
_ = _0 a-7 (4.12)

can be considered a scaled crystal growth velocity.

Eq. (4.11) was obtained by approximating the

protein concentration, C v by the relation C_ =

CTX v and taking C r to be 55M. Transforming the

equation from an expression for the activity into a
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differential equation for the mole fraction of pro-

tein yields:

[c, I -,+]dXl _ Pe_--_T + Kx I - __ __

×(1 - Kxl) -_ (4.13)

Note that the reciprocal relation between z and r

in eq. (4.10) means that z tends to zero as we

move away from the crystal.
The salt concentration was calculated from the

quasi-steady diffusion profile:

Csal t -- Csalt.bulk + ACsalIZ , (4.14)

where Cs, u.bull, = 50 mg/ml, and AC,,,h = C,,,.._u,f

- Cs,_t.b,ll`. The solubility was assumed to obey the

expression [16]:

x_ °l= a exp( -BC,, h ), (4.15)

where a and/3 are empirical parameters. Combin-

ing eqs. (4.14) and (4.15) gives x_ °l as a function

of position:

+o, +o1 exp( - Bats.. z)X l = ,X] .bulk

Substituting eq. (4.16) into (4.13) yields

C _/3.,aC,l, " .... ,dxl pe_-_-x_ = - t^Xl.b.'k

(4.16)

\

×exp(-BJQ_,,z) - l]x,) (1 gx1) -1

(4.17)

a differential equation that can be integrated

numerically from the crystal surface (z = 1, x_ =
sol "kx_ .... f, to "'infinity" (z = O, x_ = XLb_ll`). The re-

sulting value of X_.b_t, may then be used to calcu-

late the expected growth rate due to diffusion in a
uniform salt concentration field, viz.

CT _,o, ), (4.18)
Pen°m = "_x ( X, .bull, -- Xl .bulk

and the ratio of the actual and nominal growth
rates can be determined as a function of system

properties.
For a dilute protein solution, Kx, << 1 [15], and

this term can be neglected in the denominator of

eq. (4.17). In addition, neglecting the first term in

square brackets in the numerator provides an up-

per bound on the effect of salt rejection on the
diffusion rate. In this case, eq. (4.17) can be in-

tegrated analytically to yield

,o, exp( - BJCs_l,z)X I _ Xl.bulk

Pe
/3Ac_,, { 1 - exp[ - BJC,,,, ( z - 1)] }.

(4.19)

The value of X_.hu_l, obtained from eq. (4.19) can
be substituted into (4.18) to obtain

#aC+,,,
Pe = exp(/_aC_, ) - 1 Peno_. (4.20)

Although the form of the relation between the
nominal Peclet number and the actual Peclet num-

ber has been established, the apparent reduction

in diffusion rate depends on AC,,I,. which has not

yet been determined. Recall that the quasi-steady

salt concentration profile, eq. (4.14). was used to

obtain eq. (4.20) but the surface concentration was

left unspecified. A mass balance on the salt re-

jected at the crystal surface yields:

d R OC+,I, I
(1-s)C,+, ,.... ,=-D+,,,---a-7-r IR. (4.21)dt

where s = segregation coefficient of the salt

(Cs, lt.m_t,i/C,,i,.,ur f ); 0 < s < 1. In terms of the di-
mensionless variables introduced in eq. (4.10) and

using eq. (4.14), eq. (4.21) reduces to

PeD_° ( 1 - s)Csul, .... f= C_,alt.... f-- Csah.bulk"

(4.22)

so that

aC,.,, = C,.,,....,- C,+,,.bo,_

Pe( Do/&,,, )(1 - s )

= C"u'bull` 1 -- Pe(Do/D,,l,)(1 -s) " (4.23)

For proteins. Do/Ds_ u --- 10-1. and typical

Peclet numbers for lysozyme crystals are less than
10-_. The maximum concentration difference oc-

curs when s = 0 (total segregation of the salt), in

which case AC,, u < 10 -2 C,,,.bull`. At a bulk con-
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centration of 50 mg/ml NaCI, this gives AC_u <

0.5 mg/ml. For crystals to be diffusion limited

once they reach 10 tzm in size (compared with 100

#m as shown in fig. 3), j8 should be approximately

7.2 ml/mg. Reported values of lysozyme solubility

put the value of /_ close to 10 -_ ml/mg [7,17].

Thus, Pe---0.98 Peno m, and salt rejection cannot

reduce the diffusion rate to the point where crystal

growth is no longer kinetically controlled.

creases without convection, so convection di-
minishes the effects of the inhibitor. The effects of

convection in case (iv) would depend on the rela-

tive rates of transport and the degree to which

they are altered by convection. In situations (ii)

and (iv) above, enhancing the rate of inhibitor

transfer by convection would poison the surface

faster and diminish crystal growth. Case (ii) is

consistent with the retardat.ion of growth observed

by Pusey et al. [1].

5. Contaminants and convection

in most circumstances, convection promotes

crystal growth by enhancing mass transfer to the

crystal surface. However, the presence of a species
which attaches itself to the surface and inhibits

protein binding could retard growth. Suppose that,
in the absence of convection, inhibitor molecules

are delivered to the surface by diffusion and bound

there at a certain rate. If the binding rate is low

compared to diffusion, the inhibitor concentration
near the surface _.i'_ be high and the rate of

inhibition is kin_ ,iy controlled. Individual

binding sites are ot ded by inhibitor molecules

by the crystal continues to grow because succes-
sive additions of protein near the inhibited site

overlay the inhibitor, producing fresh surface with

new attachment sites. The growth process is only

slightly retarded because protein addition keeps
ahead of inhibition.

As the crystal grows, diffusion proceeds at a

slower pace (cf. fig. 3). Four possibilities exist:

(i) both the growth and inhibition processes re-
main kinetically controlled;

(ii) the protein attachment process remains kineti-

eally controlled while the rate of inhibition slows

due to the slower rate of diffusion;

(iii) the protein attachment process becomes dif-
fusion controlled but the rate of inhibition re-

mains kinetically controlled;

(iv) both processes become diffusion controlled.

In case (ii), the effects of the inhibitor species

diminish with time and growth continues un-
abated in the absence of convection. Convection

would replenish the region near the surface and

increase the rate at which the inhibitor poisons

further growth. In case (iii), the growth rate de-

6. Conclusions

The search for better protein crystals has drawn

crystallographers into the realm of fluid mecha-

nics and mass transfer. Forces arising from fluid

flow have been suspected of interfering with the

normal growth of protein crystals by breaking the

hydrogen bonds which both hold the molecule in

the crystal lattice and maintain the protein in its

native conformation. Our analyses indicate shear

forces are several orders of magnitude smaller

than those required to break a single intramolecu-
lar" hydrogen bond, and as much as eight orders of

magnitude too small to strip molecules from the

surface of growing crystals. Another scale analysis

reveals that the protein's orientation is random-

ized through rotational diffusion approximately

107 times as fast as shear can impose a preferred

orientation. We find no hint that buoyancy driven

convection mechanically alters the state of the

protein near the crystal surface.

Calculations from a quasi-steady model delin-

eate the approximate size where crystal growth

changes regimes from kinetic control to diffusion
control. All crystals start in the kinetic regime,

and remain there until they reach the transition

size, which is approximately 70-100 _m for hen

egg white lysozyme. Unless diffusion is substan-

tially slower than expected, defects caused by im-

proper attachment will have formed before con-

vective mass transfer is significant. The reduction
in protein diffusion rate due to counter-diffusion

of precipitating agent is insufficient to reduce the

transition size appreciably. The mechanisms dis-

cussed here fail to explain why growth retardation

is observed in the presence of convection.
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One possible mechanism by which convection

may play a role is the transport of a second,

"contaminant" species which competes for attach-

ment to the crystal. Several scenarios are possible.

For example, when the contaminant attaches fas-

ter than the protein, it is preferentially depleted

from solution near the surface so that its con-

centration falls below its bulk value. This makes

attachment of protein more competitive and favors

crystal growth. Convection, which brings fresh

solution in contact with the crystal, effectively

returns the contaminant concentration to _ts bulk

value and reduces crystal size below its diffusion-

limited size. The presence of contaminant is con-

jecture, but it provides a simple mechanism by

which convection can hinder crystal growth, and is

consistent with observations.
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Abstract

The behavior of colloidal scale systems is often controlled by electrostatic particle-particle

and particle-surface interactions. Examples include the electrostatic stabilization of suspensions

of charged particles and surface adsorption of protein molecules in chromatography. Previous

studies have dealt almost exclusively with particles having a nearly uniform surface charge

density, but such analyses are inadequate for the complicated charge distributions on biological

macromolecules. A boundary element method (BEM) was developed to study the interaction

between a spherical particle with a nonuniform surface charge density and a large, uniformly

charged surface. Our calculations show that the effect of a nonuniform particle charge

distribution can be dramatic. The technique has also been used to study the interaction of a

globular protein with a surface; the results of this study will be described in Part II.



1. lalraxlggi a

Interactions between electrically charged bodies and surfaces are determined by

the arrangement of the objects' charged groups. Many cases have been analyzed wherein

the charge distribution is uniform or has azimuthal symmetry. In systems of synthetic

latex particles, for instance, the charge distribution is fairly uniform and these are

excellent approximations. Particle aggregation and particle-surface adsorption can be

elucidated with models based on uniform surface charge distributions. But, when the

objects are nonuniformly charged their behavior is more difficult to explain and the

models are correspondingly more complicated. Biological macromolecules, which may

have extremely complex charge distributions, often exhibit counter-intuitive behavior.

The enzymatic activity of copper zinc superoxide dismutase is a case in point

Superoxide dismutase (SOD) is reported to be a homodimer of molecular weight

32,000 with a net valence of -4 1; its substrate, the superoxide radical, has a valence of

-1. At first glance it appears that the enzyme's activity should be limited by electrostatic

repulsion between like charges as the substrate approaches the enzyme. One might also

expect the enzymatic activity to increase with ionic strength as the electrostatic repulsion is

screened by counterions. Experimental data contradict both notions: the enzyme activity

is close to that calculated from the Brownian collision rate for uncharged particles of

similar size and decreases with added salt 1

Crystallographic studies of SOD reveal that a group of positively charged residues

around the active site guide the superoxide. Cudd and Fridovich I chemically modified

the residues near the active site and measured enzyme activity as a function of salt

concentration. A 90% drop in enzyme activity at an ionic strength of zero was observed

when arginine 141 was neutralized and the activity still decreased with ionic strength.

Neutralization of 7 or 8 lysine residues reduced the reaction rate by approximately 80%

but reversed the trend with ionic strength. Cudd and Fridovich concluded that the lysines

are responsible for long-range steering while arginine provides local orientation of the

incoming molecule near the active site. Calculations of the electrostatic potential near

SOD 2,3 and Brownian dynamics simulations 4-7 have largely confirmed this

interpretation.

Klapper et al. 3 employed a finite-difference method to solve the linearized

Poisson-Boltzmann equation in the region surrounding SOD. Charged groups were

placed at their crystallographically measured coordinates and the boundary between the

interior of the molecule and the bulk solution was defined to be the solvent-accessible

surface. This calculation, the fast to assign different dielectric constants to the protein

molecule (el = 2) and the solution (e2 = 80), showed that the surface charge distribution



and shape of the enzyme create a large "target" of positive potential which attracts the

negatively charged substrate. As ionic strength increases, the effective target area is

reduced while repulsion from the negatively charged region decreases; the former effect

dominates, accounting for the trend in enzyme activity. Good agreement with experiment

was obtained only with the two-dieleclric model.

Subsequent versions of this technique can now handle the nonlinear Poisson-

Boltzmann equation. However, computational requirements rise rapidly with the

resolution of the finite difference grid. These finite difference calculations are typically

performed with grid spacing scaled so the molecule occupies 50 - 75% of the domain 8

Such scaling is adequate when the substrate is small compared with the enzyme and can

be treated as a point charge. Treating interactions between molecules (or molecules and

macroscopic bodies) by this technique appears difficult or infeasible at present.

Anisotropic charge distributions clearly have a substantial effect on the behavior

of macromolecules, but current finite difference techniques are not completely satisfactory

for protein-surface interactions. The model developed here uses a boundary element

technique to circumvent some of the difficulties. In Part I, the technique is described and

its utility demonstrated using, as an example, a sphere with a charged cap. The

presentation begins with a discussion of the mathematical structure of the problem. Next,

the formulation and implementation of a boundary element method created to treat a

sphere with fixed, nonuniform surface charge density, is explained. The boundary

element code is then used to solve two test problems to establish its accuracy. Finally,

we study a sphere with a charged cap interacting with an insulated plate to assess the

significance of charge inhomogeneity. Part II of the series describes the interaction

between a lysozyme molecule and a charged surface.

2. Mathematical Structure of the Electrostatics Problem

Figure 1 depicts the particle-surface system. The electrostatic potential is a solution of

the linearized Debye-Hiickel equation 9:

region 1 (molecule): V 2 IV1 = 0 (i)

region 2 (solution): V 2 11/2 = K"2 11/2 (2)

where t¢2 = 2nbz2e2/_.of.2kT for a z-z electrolyte; n b = bulk ion number density, e =

elementary charge, eo = permittivity of free space, k = Boltzmann's constant, and T =

absolute temperature. The boundary conditions at the surface of the particle are the continuity

4



of potential,

_=_ (3)

and the jump in electric displacement,

el VIg! • nl + e2 VIg2- n2 = or
eo

(4).

Note that nl and n2 point out of their respective regions. The boundary conditions are:

at z=0: Olg2= - a---q,L-
_z eo e2

(5)

and

as z --->**: V2 _ 0 (6).

If we scale all the lengths on the particle radius, a, and write the equations in terms of the

dimensionless potential, u = _/Vo, the problem becomes:

region 1: V 2 ul = 0 (7)

region 2: V 2 U2 = (aK') 2 U2 (8)

/

sphere surface: Iul = u2

C 1 VU 1 • n I + C2 Vu 2. !! 2= 0"*

(9)

00)

z=0: du2= °'x (11)
tgz e 2

2 -'9 oo: 142 _ 0 (12).

The reference quantities for potential and surface charge are Vo = kT/e and ao = eoVola.

The solution of the problem specified by equations (7) - (12) is complicated, but its

linearity allows it to be split into readily-solved subproblems as shown in Figure 2. First we

divide the problem into two separate problems: (i) a charged sphere near an insulated flat

plate and (ii) a charged plate with an uncharged sphere. Since the potential of problem (i) is

identical to that produced by the charged sphere and its mirror image 10-12, we denote it uss

(i.e., sphere-sphere); the potential in problem (ii) is uSP, the sphere-plate potential. The total

potential is their sum

5



u = u ss + u sp (13).

The equations for the sphere-sphere problem arc:

region 1: V 2 u_ = 0

region 2: V 2 u_ s = (aK) 2 u_ s

Iuls --uy
spheresurface:[ eIVu_s"nl + e2Vu_ s"n2 = a*

(14)

(15)

(16)

(17)

z = 0: bu_S = 0
bz

z _ .o: u_s _ 0

(18)

(19),

while the sphere-plate potential satisfies:

region 1: V 2 u_ = 0 (20)

region 2: V 2 u_p = (ate) 2 u_p (21)

=u7
sphere surface:/e 1 VuSlp" nl + E2 Vu_ p" n2 = 0

(22)

(23)

z =0: _u_ p _ crx (24)
Oz e2

z ---) **" u_p .--) 0 (25).

uss can be obtained using a boundary element technique. A solution for uSP is more

difficult because the boundary condition at z = 0 is not easily satisfied by the method of

images. Instead, we further divide the sphere-plate problem, viz.,

uSP = ufP + u r (26)

where ufp is the potential due to the charged plate in the absence of the sphere, and u r is the

"remainder" potential. The flat plate potential is



ufP _ VX e --a_2

E2 a_¢
(27)

When ufP is subtracted from uSP, we obtain:

region 1" V 2 u_ = - (a_') 2 uYt' = - p*

region 2: V 2 u_ = (a_')2 U_

sphere surface: / ul
u_

|el Vu[. nl + e2 Vu_. n2 = -(el- e2) VuYp • nl

z=0: _-_-" = 0
Oz

(28)

(29)

(30)

(31)

(32)

z _,o" u_ _0 (33).

In this problem the sphere contains a known charge density, p° = (a_ 2 uP. The fixed charge

density is scaled on Po = eo_o/a2. Since the potential produced by the two mirror image

spheres satisfies the boundary conditions (30) and (32), u" can be obtained from the

boundary element technique used to find u ss. The full solution is the sum of the three

potentials.

We are also interested in the electrostatic potential energy and its dependence on

particle-surface separation. This energy, or interaction potential, is defined in terms of the

work performed to bring two bodies to a particular configuration from some reference

state 13. When performed isothermally and reversibly, the free energy change for the system

can be expressed in terms of the work required to assemble all the charges from infinity 14,15:

dGetec = V ll/dP / (34),

Here £2 denotes the volume of the system and thefsuperscript indicates a fixed charge density

(not subject to thermal randomization). When the charge density is proportional to the potential

(as is the case for solutions of the linearized Poisson-Boltzmann equation) and all the fixed

charges reside on the surfaces of the system, equation (34) simplifies to 14-16

(35).



Frepresents all the surfaces of the system and o" is the fixed surface charge.

The change in free energy can be divided into two parts:

AGetec = AG_c + Oetec(r) (36),

where AGUe c is the change in free energy required to "charge up" the molecule and plate at

infinite separation, and Oetec(r) is the change in free energy as the molecule and plate are

brought together. In terms of scaled electrostatic variables,

O t,c(d)
eollf2oa =l fT*[u(d)-u(**)]dA (37).

Here, d = gap (in particle radii) between the plate and the surface of the sphere (see Figure

1), u(d) = potential when the particle and plate are separated by d, and u(*_) = potential when

particle is infinitely far from plate; dA is dimensionless.

. Bound_,ry Element Formulation

The starting point for the boundary element formulation is the differential equation:

V2u-(ar)2u=-p * (38),

where p* is afixed charge density. Solutions of equation (38) describe the potential in the

electrolyte (region 2) when p* = 0, in region 1 of the "remainder" problem when a x'= 0, and

in region 1 of the sphere-sphere problem when both ax" and p* = 0. The fundamental

solution (Green's function) of the homogeneous form of equation (38) is:

u* = le-ar_ (39),
4_ r

where r is measured from the "source" point Xo (i.e., r = Ix- Xo[ ). The differential

equation can be convened into an integral equation using standard manipulations 11 to yield:

cu(xo)+_lU(Vu*'n)dA=;_*(Vu'n)dA+_p*u*dV (40),

where:

8



t 1, x o in £2
C= ½, Xo inF

O, otherwise

(41).

An attractive feature of the boundary integral expression is that computations in the infinite

domain are unnecessary; the integral over g2 is performed only when there is a distribution of

fixed charges in the domain. This formulation greatly reduces the amount of computation needed

to obtain a numerical solution.

To convert the integral equation into a form suitable for numerical computation, the

boundary of the system is divided into N elements, denoted as Fj. The integrals over F in

equation (40) are equivalent to the sum of integrals over all the elements:

N N

cU(Xo)+Zfu(Vu'.n)dA=ZIu'(Vu.n)dA+Iff'u*dV
j=l G j=l rs

(42).

In the notation of Brebbia et al. 11, equation (42) reads:

N N

XJ',rc U(Xo)+ q*dA =' *qdA+ dV

I 1 j=l

(43),

where q = Vu • n, q* = Vu'- n, and u* = fundamental solution centered at Xo. For points in

the domain, equation (43) expresses the potential as the sum of a single-layer distribution of

strength q, a double-layer distribution of strength u, and a particular solution given by the

volume integral.

In the "constant element" approximation, each element has uniform values of potential

uj and normal flux, qj, associated with the node (xj) of the element. Applying (43) at each

node yields N equations of the form:

N N

1 +Zu.IFjq_dA=2,qjI_dA+uP
7 ui j=lf g j=l

(44),

where ui = potential at node i, uj = potential of element j, qj = normal flux through element j,

u_ and q_ are the potential and normal flux due to the fundamental solution placed at xi, and

u_' is the potential at node i produced by the distribution of fixed charges; c = 1/2 because

each node lies in the surface. Writing



(45)

allows us to express equation (44) in matrix form:

HU = GQ + U p (46)

where

1 ,i=j

i
Hij =

Hij , i_j

(47).

If there are N elements on the spheres, equation (46) is a system of N equations in

2N unknowns (N u's and N q's ) for each domain, the interior of the sphere (region 1) and

the exterior (region 2). When the equations for both regions are combined, we obtain 2N

equations and 2N constraints (boundary conditions). N of the boundary conditions govern

the continuity of potential at the surface (u) = u_), while the others specify the jump in the

normal derivative caused by the local surface charge density (el q] + e2 q] = (:r_).

Evaluation of the boundary integrals requires integration of the fundamental solution,

u*, and its normal derivative, q*, over each surface element. In addition to the surface

integrals, the "remainder" problem requires a volume integral to determine the particular

solution produced by the fixed charge density in the sphere. The details of these calculations

are described by Grant 17

4. Boundary_ Element Geometry_

The surface of the sphere is divided into spherical triangular elements (Figure 3), each

with constant values of surface charge density, surface potential, and normal flux. Each edge

of an element is the intersection of the sphere's surface with the plane containing both vertices

and the origin of the sphere (the arc of the great circle connecting the vertices). The location

of a node is determined by calculating the location of the element's centroid and projecting the

ray from the sphere's origin through the centroid to the surface.

The pattern for the initial (coarse) discretization of the sphere is based on either a

regular octahedron (8 equilateral triangular faces) or an icosahedron (20 equilateral triangular

faces) circumscribed by the unit sphere. The vertices of the polyhedron are the vertices of the

corresponding spherical triangular elements on the sphere's surface. The inscribed

10



polyhedron is oriented so that vertices of the polyhedron lie at the north and south poles of

the sphere and the prime meridian (0" longitude) coincides with the boundary between two of

the elements having the north pole as a common vertex. The two coarse discretizations and

their "surface maps" (latitude and longitude) are shown in Figure 4. The discretization is

refined by either converting each node into a vertex to form three smaller elements or

connecting the midpoint of the longest edge with the opposing vertex to form two elements.

The orientation of the sphere must be defined in preparation for discussion of

situations where there is a nonuniform charge distribution. For a given separation the

electrostatic interaction energy of the system depends only on which point on the sphere lies

closest to the plate. (This is a consequence of the mirror symmetry about the plane z = 0,

which implies that a rotation of the spheres about the line of centers will not alter the

interaction potential.) In the sphere's coordinate system defined in Figure 4, the latitude, o_

(-90" < a < +90") and longitude,/3 (-180" _</J < +180"), specify the location of this point

and, therefore, the orientation of the sphere (Figure 5). An orientation of (o.,_ indicates that

the point on the sphere with latitude a and longitude/3 is closest to the plate.

Once the nodal potentials and fluxes have been calculated, the charging integrals must

be computed. The charging work for the sphere is evaluated using the formula:

Ost, here. . j _.
elec t S)

t_oip,o2 =½ cr'udA = ½ O;ujA,
jsi

A_her¢

(48).

where u = the total electrostatic potential. The coefficients in the summation are the charge

density, potential, and area of each element; the summation formula reflects the constant

element approximation. A similar approximation is applied to the plate.

First the boundary element method (BEM) was used to solve two simple problems

with uniform charge to assess its accuracy. Then the significance of nonuniform charge

distributions was studied with a relatively simple configuration.

5. ADvlications of the Boundary Element Method

In section 2, we split the full problem into two subproblems: the sphere-sphere

problem and the sphere-plate problem (see Figure 2). We now apply the BEM to an example

of each to check its accuracy.

A Sphere-Sphere Problem

The first problem involves two uniformly charged spheres (see Figure 6). For e I =

eq = o" = 1, the dimensionless surface potential at infinite separation is u" = (1 + at} -l.

11



_etecwascalculated as a function of distance from the plate and compared with the results

from the linear superposition approximation 9.14:

LSA e-2ar( s-1) e-2atcd¢_lec (s) = 4re 4_
eog2o a (l+ar) 2 2s = (l+ar) 2 2s

(49).

Results for ar -- 0.1 and 1 are shown in Figure 7, while calculations for a r = 5 are

presented in Figure 8. In each case, the a-axis of the sphere's coordinate system (see Figure

4) is coincident with the line of centers. Calculations with N - 8, 24, 48, and 96 are based

on an initial octahedron discretization while the results for N = 20 and 60 are based on the

icosahedron. The BEM calculations agree well with the LSA for dimensionless gaps d >

(a_ -1. For instance, BEM calculations with 96 elements are within 1% of the LSA for d > 0

when aK" =0.1, for d > 0.05 when a_'= 1, and for d > 0.11 when at= 5. For d - a, the

relative error in the BEM calculations is approximately 10 _. At smaller separations

(especially at contact), the linear superposition approximation is not valid 9,18, but

convergence can be studied by comparing the computed values of _elec with a reasonable

upper bound.

At high ionic strengths (large aK'), the calculated energy is sensitive to the location of

the node nearest the plane z = 0, since the surface potential decreases rapidly with increasing

z. With the constant element approximation, the potential of the entire element is that of the

node, so if the node is relatively far from (o_,_, the element's contribution to the charging

work is underestimated. The "nearest node effect" can be removed by rotating the sphere so

that a node is closest to the image sphere. The potential is then correct to within the accuracy

of the boundary element method, but the charging work is overestimated because the

infinitesimal area over which it obtains is exaggerated by the f'mite area of the element. _e:ec

was calculated at contact for several discretizations and the results plotted in Figure 8b. The

calculated energies converge to the same value irrespective of orientation.

The relatively slow convergence for this test problem reveals a shortcoming of the

constant element approximation, viz., the length scale of the discretization must be smaller

than r -1 for good accuracy. In the case of uniform spheres with ar = 5, a 240 element

discretization produces an answer within 2% of the "converged" value at contact. When the

charge distribution is nonuniform or the ionic strength higher, the discretization must be

further refined to achieve comparable accuracy.

A Sphere-Plate Problem

As shown in Figure 2, the sphere-plate problem describes the interaction of a

uniformly charged plate and an uncharged dielectric sphere. Here the force on the particle is

12



proportional to -V(E.E) =-rE 2, where E is the electric field vector 19. The electrostatic

energy of the system is therefore proportional to E2. Except neat contact, the electric field

experienced by the sphere is approximately that created by the fiat plate potential, u_'. As

given in Equation (27), the electric field produced by the fiat plate is proportional to exp(-

am/), so the potential energy is proportional to exp(-2ag_r). We ,malyzed the case where el =

2, e2 = 78.54, ax'= 5, and or: = 100 using 240 elements. The expected exponential decay is

reproduced in the BEM calculations shown in Figure 9.

Spherical Particles with Charged Caps

The effects of a nonuniform charge distribution are illustrated using a charged "cap"

covering 25% of the particle's surface while the remainder of the sphere is uncharged. The

scaled surface charge density of o* = 358 over the cap is based on a net charge of +10.5e

spread uniformly over a sphere 16.48A in radius. These values are appropriate for the

idealized representation of hen egg white lysozyme which will be discussed in Part 11. The

initial discretization for the cap studies is an icosahedron with five elements spanning the

charged cap covering the particle's north pole.

The orientation angle _ was varied from +90" to -90" in steps of 45"; fl was fixed at

+90". The calculated value of Oelec based on 240 elements is shown in Figure 10 as a

function of orientation and separation for at= 5 and 10. The most striking feature of these

calculations is that a rotation of 90" can easily change Oelec by a factor of more than 60. The

relative difference between a = +90" and a = +45" for ar = 10 is smaller than for asc = 5,

reflecting the stronger screening for at= 10.

Computations for spheres with charged caps are subject to convergence problems

similar to those encountered with uniform spheres. The electrostatic interaction energy for a

= +90" should be larger than for any other orientation because a larger area of the charged

caps can interact. The boundary element method results at contact, however, are still

dominated by the sensitivity to node placement described above. With 240 elements, the

node spacing is just close enough at a_" - 5 to ensure that Oetee(+90") > ¢_etee(+45"),

although that is not true for the derivative of Oelee. For ar = 10, 240 elements are

insufficient to place the potential energies in the proper ranking for all separations. A series

of calculations with sequentially refined grids shows a consistent reduction in the size of this

discrepancy, indicating it is a numerical artifact.

6. Summary and Discussion

In preparation for studying the interaction potential for a protein molecule and a

charged surface, we developed a boundary element method to calculate the electrostatic

13



potential. The use of the linearized Poisson-Boltzmann equation in the electrolyte region

permits us to divide the complete problem into three subproblems (sphere-sphere, flat plate,

and "remainder") that can be solved independently to obtain the full potential. A consistent

solution of Laplace's equation inside the sphere is implicitly obtained to satisfy the continuity

of potential and jump in electric displacement at the surface of the sphere.

Electrostatic free energies calculated from the boundary element method agree closely

with those predicted from the linear superposition approximation when the particles are not

too close. The finite size of the elemeats introduces some numerical "orientation" effects

which decrease with further refinement of the mesh. Similar calculations for an uncharged

sphere - charged plate system also reproduce the expected behavior. Calculations with a

nonuniform charge distribution show that the free energy depends strongly on orientation.

Such orientation effects can play important roles in protein adsorption or crystal growth.

Results for a nonuniformly charged protein are reported in Part II.
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FIGURE CAPTIONS

Figure 1:

Figure 2:

Figure 3:

_4:

Definition Sketch.

Lengths are scaled by the particle radius, a, and surface charge densities by cro =

_gda.

Decomposition into subproblems.
(top) The potential produced by a nonuniformly charged sphere near an
uncharged insulated wall is equivalent to a charged particle interacting with its

mirror image, u ss. The mirror image is obtained by reflecting the original

particle across the plane z = 0.
(bottom) The potential produced by an uncharged sphere near a uniformly charged

infinite plate, u-W, can be written as the sum of the potential of a uniformly charged

fiat plate (ufp) and a "remainder" (ur). The fixed volume and surface charge
densities shown in the figure are the result of subtracting ufP from uSP.

A spherical triangle element on the sphere.
Vertices are identified by circled numbers; edges are numbered sequentially as the

perimeter of the element is traversed. The centroid of the element lies inside the
sphere but is projected onto the surface to locate the node of the element.

Boundary element discretization of the sphere's surface.
The boundaries of the elements have been drawn on the surface of the sphere; the

axes shown define the sphere's internal coordinate system and show the orientation
of the discretization. The corresponding 2-dimensional projection ("surface map")
of the discretization is also shown. Locations on the surface are identified by

latitude and longitude. The nodes are plotted as filled circles. (a) N - 8. (b) N =
20.

Figure 5: Orientation of the sphere.
The orientation of the sphere is defined by the angles a and fl (latitude and
longitude) which identify the point on the sphere closest to the plane z = 0. The
figure shows an example where a < 0. The line of centers of the two spheres is an
axis of rotational symmetry. The octants have been identified by letters and their
reflections are indicated by primes to illustrate the mirror symmetry about the plane
z=0.

Figure 6: Definition sketch for the two sphere problem.

Figure 7: Electrostatic free energy for two uniformly charged spheres with o_ = el = e2 = 1.

Solid line is the linear superposition approximation. Plot symbols denote number of
elements on the sphere: • 8, • 24, • 48, _I, 96, [] 20, O 60. On the scale of the figure
these results are almost indistinguishable.
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Figure8: Electrostatic free energy for two uniformly charged spheres for a_" = 5 and
O* =El =£2= 1.

(a) _elec as a function of separation. Solid line is the linear superposition
approximation. Plot symbols denote number of elements on the sphere: • 8,
• 24,• 48,•96, t-120,060.
Co) _elec at contact as a function of the number of elements on the sphere.
Maximum values were calculated with a node closest point to the image
sphere. Plot symbols: • _et_e, • _e/_"

Figure 9: Electrostatic free energy for a charged plate and an uncharged sphere.

In this system, the potential decays as exp(-2ard) except near the plate. The
line shows the expected slope, trx -- 100, el-l, e2=78.5.

Figure 10: Electrostatic free energy for two image spheres with charged caps.
Uniform charge density of o* = 358 is applied to a spherical cap centered at
the particle's "north pole" (tz =+90) and covering 25% of the surface; the
remainder of the sphere is uncharged. Dielectric constants are el = 1 and e2 =
78.5; fl = +90*. Each symbol represents a different angle tz. Plot symbols: •
+90 °, • +45 °, • 0% • -45 °, 13 -90 °. (a) at=5. (b) ar = 10.
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' Abstract

A boundary element method (BEM) was employed to calculate the interaction potential

for a protein molecule and a uniformly charged flat plate. The protein molecule was treated as a

sphere with a dielectric constant of 2 and the protein charge distribution represented by patches

of charge on the sphere surface. The interaction potential was computed as a function of

orientation and an angle-averaged potential calculated. As expected, there are a large number of

local minima in the potential at contact. The angle-averaged free energy is close to the free

energy of a uniformly charged sphere having the same net charge as the protein molecule when

the plate surface charge density is modest sized. When the plate is highly charged, the free

energy of the protein system can be as much as 10 kT lower than the uniform sphere. Even

larger differences are expected if the plate's charge distribution is as heterogeneous as the

molecule's.
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In this paper, we describe the results of calculations of the interaction energy between a

protein molecule and a charged surface (a flat plate) using the boundary integral technique

described in Part I. The interaction energy depends on the separation and orientation of the two

bodies and is the reversible work done against both electrostatic and dispersion or van der

Waals forces. Our objective is to calculate the free energy of the interaction, taking account of

the nonuniform charge distribution on a representative protein molecule and ascertain how it is

reflected in the "adsorption" energy for a flat surface. That surface might be a protein crystal,

if one is interested in protein crystallization; another solid body, if the application is to a

separation process such as chromatography; or simply another protein covered surface. To

mimic the behavior of a typical protein we use data on the globular protein lysozyme.

The assumptions used to simplify the calculations are listed in Table 1. First, the two

interactions are presumed additive; this is the cornerstone of the Derjaguin-Landau-Verwey-

Overbeek (DLVO) theory and is justified by numerous observations 1"3. Dispersion forces are

modeled using an "effective" Hamaker constant, Aeff. Frequency spectra for a material's

dielectric behavior are required for a detailed calculation using the Lifshitz theory I so, in the

absence of such data for proteins, we take Aeff as given. We assess the relative importance of

dispersion forces by varying Aeff. but neglect effects due to restructuring of the solvent, e.g.,

hydration forces.

Next, linearization of the Poisson-Boltzmann equation simplifies the electrostatics

problem. The linearization is consistent with the low net charge on the molecule and,

moreover, allows us to readily assess the significance of nonuniform charge distributions in

protein-surface interactions. The average surface potential of lysozyme in 1M NaC1 in water

(e2 = 80) is about 16 mV based on a net valence of +10.5 at pH 4.7 4 and a hydrodynamic

radius of 207_ 5. Since the linearization is valid for potentials up to approximately 100 mV 1, it

is more than adequate except when the particle and surface are almost in contact.

The disparate sizes of the molecule and surface justify the treatment of the surface as a

semi-infinite region with a surface charge. For an ionic strength of 1M, _¢-1, the Debye length,

is approximately 3)k. Exponential decay of the potential limits the range of the electrostatic

forces to about 5_¢-1 (15 ,_,) so a molecule approaching a surface may not "sense" it until it is

roughly 15A away. Nevertheless, the use of a uniformly charged fiat plate to represent the

surface is one of the more severe assumptions because the scale of the roughness and charge

heterogeneity of most surfaces are the same as those of the molecule. Although we recognize

the limitations of this approximation, the intricacies caused by such effects are beyond the

scope of our calculations. To some extent, the effect of a nonuniform surface charge



distribution can be estimated by calculating the electrostatic potential energy for different

amounts of (uniform) surface charge, crx, since mobile ions in solution screen the influence of

all but a small portion of the surface. Nevertheless, detailed calculations which take account of

the structure of the surface charge will eventually be needed to appreciate the subtleties of

adsorption.

Table 1

Assumptions Employed in Studying Molecule-Surface Interactions.

The electrostatic and dispersion (van der Waals) potentials are additive.

The dispersion potential is independent of molecular orientation.

The effective Hamaker constant, Aeff, is independent of separation.

The linearized Poisson-Boltzmann equation governs the electrostatics.

The surface can be treated as semi-infinite region with a uniform surface

charge density, trx.

The protein molecule can be treated as a sphere.

The charge of the protein molecule can be represented by a surface charge
distribution.

The interior of the protein molecule has a dielectric constant of 2.

The main reason for treating the protein molecule as a sphere is simplicity.

Crystallographic data indicate that most globular proteins are roughly spherical and a table of

20 proteins of known structure 6 shows that the ratio of maximum to minimum dimensions is

seldom greater than 2. Hen egg white iysozyme is variously described as being an ellipsoid of

dimensions 23]k x 281i x 40,_, 4, or 30/_ x 30_ x 45A 6, or 30,_ x 30A x 45,_, "with a wedge-

shaped piece removed" 7. All these are consistent with a spherical approximation and a

hydrodynamic radius of approximately 20]_ 5

Charged residues are almost invariably found at the surface of the protein molecule,

where they can interact with the polar water molecules 6,7. Researchers who use finite

difference methods 8-11 model the charge distribution with point charges lying just inside the

surface of the protein that is accessible to a "probe sphere", e.g., a water molecule 1.4,_ in

radius 6,9. We represented the protein's charge using a smoothed surface charge distribution to

facilitate implementation of the boundary element method. The method for translating the
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chargedistribution obtained from X-ray crystallography into a surface charge distribution will

be described in section 2.

Hydrophobic residues and side chains tend to be buried in the interior of the molecule,

at least when the molecule is soluble in water 6.7. Calculations of packing density give values

around 0.75 6,7, indicating that the interior is relatively uniform. Free water is generally absent

from the interior, although molecules such as lysozyme and ot-chymotrypsin seem to have

cavities or holes which are presumed to contain solvent 7. Water molecules can be detected in

the interior of some protein molecules and appear to be intrinsic features of protein structure 6.

Thus the dielectric constant in the interior of the molecule is often taken to be in the range

between 2 and 4 12-16. Dao-pin et al. I1 calculated the electrostatically induced shift in pKa for

two systems as a sensitivity check and found the shift was insensitive to values chosen in the

range 2 < el < 8, except at low ionic strength.

The purpose of these approximations is to simplify the problem so it can be solved

while preserving its essential features. Results for a molecule with an anisotropic charge

distribution can then be compared with those for a uniformly charged molecule and differences

in behavior ascribed to the anisotropic particle charge. The level of approximation employed

here is appropriate for such an investigation.

2. l_lealization of the Lysozyrne Molecule

The thrust of the study is to describe those features of the electrostatic interaction which

derive from anisotropic surface charge distributions. Rather than create completely artificial

distributions, the charge distribution of lysozyme was used.

As noted earlier, hen egg white lysozyme is an oblong molecule. The approximate

coordinates of its charged groups (taken from crystallographic data for the tetragonal space

group at 1.4M NaCI in 0.02M sodium acetate buffer at pH 4.7) are listed in Table 2 4. We

assume that all the charged groups lie on a spherical surface and seek the location and size of

the sheath which comes closest to all the charged groups. The sphere is defined by the location

of its origin (Xo, Yo, Zo) and its radius, a. One method for obtaining the best-fit sphere is to

fred the location of the origin such that the lengths of radii from the origin to the charges,

Ri = [(xi- Xo) 2 + (Yi- Yo) 2 + (zi- Zo)2] 1/2 (1),

have minimum matter about the mean value R = a. We performed such a calculation using the

method of random descent with a final step size of 0.01,_. In the coordinate system specified

in Table 2, the best-fit sphere is located at (-1.67, 20.91, 17.91) and has a radius of 16.48/_.

These compare favorably with the center of mass (-1.08, 20.00, 18.35) determined by

inspection 4 and the hydrodynamic radius of approximately 20,_ 5. The location of charge i



was projected onto the surface of the sphere using the radius vector Ri ; the surface charge

distribution is diagrammed in Figure 1.

Table 2

Coordinates of charged groups in tetragonal hen egg white lysozyme.

Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Residue

1

1

5

13

14

15

18

21

33

35

45

48

52

61

66

68

73

87

96

97

101

112

114

116 °

125

128

129

Type

N-terminus

lys

arg

lys

arg

his

asp

arg

lys

glu

arg

asp

asp

arg

asp

arg

arg

asp

lys

lys

asp

arg

arg

lys

arg

arg

C-terminus

Charge

+1

+1

+1

+1

+1

+0.5

-1

+1

+1

-1

+1

-1

-1

+1

-1

+1

+1

-1

+1

+1

-1

+1

+1

+1

+1

+1

-1

X

3.28

-3.80

-6.31

-17.40

-12.20

-9.67

-14.73

-11.82

3.17

4.38

18.46

14.17

8.98

13.02

11.50

16.16

1.83

-5.45

-11.68

-5.50

-2.00

5.25

6.61

-1.79

-10.80

-18.86

-17.14

Y

10.16

10.48

24.40

21.25

9.25

11.01

24.29

23.93

23.88

24.84

15.42

22.91

21.08

20.81

12.56

12.96

16.91

7.45

16.57

14.40

24.43

33.64

30.51

36.55

31.20

17.79

21.78

Z

10.35

8.18

2.84

11.10

14.63

17.86

14.83

29.27

5.62

18.14

23.99

29.22

22.43

31.91

27.61

24.25

39.96

16.81

22.82

30.09

32.74

23.22

10.82

22.86

-1.00

0.09

6.41
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If the charged groups on the surface are represented as point charges, the potential in

their immediate neighborhood is too high for the linearized Poisson-Boltzmann equation to

apply. Instead, we employ the method of "local averaging" to create a patchwork of charge

smooth enough to ensure that the governing equations remain valid but "lumpy" enough to

exhibit behavior unique to anisotropically charged proteins. Local averaging is often used to

make continuum approximations of discrete phenomena. Here the averaging is done by

centering a spherical cap at the point of interest and summing the point charges which lie within

the cap. The local charge density is the net charge within the cap divided by the area of the cap,

Asar_te. A specific charge contributes to the local charge density when the distance (ri) from

the point of interest to charge i is less than rs_u (see Figure 2). The local charge density is:

N
1

Asan_le i=1

where Qi = charge of group i, and H(.) is the Heaviside step function. The sampling radius is
2

given by r,,,,_,_, = a_]2(1 - cos 0); the sampling area is Asample = fir'sample. Maps of the local

surface charge density derived for lysozyme are shown in Figure 3 for sample areas of 300,

200, and 100 ,_,2. The surface area of the model lysozyme molecule, Asphere, is approximately

3400 J_2, so the charge density maps shown in Figure 3 correspond to sample areas ranging

from about 9% to 3% of the molecule's surface. Note, however, that mapping the sphere's

surface as a rectangle distorts the distribution. The degree of heterogeneity and the size of its

effect are controlled by the choice of Asample. As an extreme example, setting the Asample =

Asphere produces a uniformly charged particle with the same net charge as the model sphere.

Asample has a lower bound below which the model no longer applies. This bound

derives from the limits of applicability of the linearized Poisson-Boltzmann equation,

approximately 100 mV (a dimensionless potential of 4 when scaled on kT/e). For an isolated

sphere with a uniform scaled surface charge density, or*, the scaled surface potential, u'*, is

o'*/[t:2(1 + aw)]. Surface charge densities greater than about 4e2(1 + aw) would place the

system outside the range of validity of the linearized Poisson-Boltzmann equation. Therefore,

if the net charge within the sampling area is Q, the corresponding restriction on Asa,_tt is:

Qa (3).
A"_oa" > 4t:0e 2 V0(1 + ak)



To smear a proton charge (Q = 1.6x10 -19 C) on a particle with a = 16.48A, t2 = 80 (water)

and a_" = 5 (ionic strength approximately 1M) requires a minimum sampling area of 60 A 2.

Our calculations are based on a sampling area of 100 ]k 2.

Once a smooth charge distribution available, it must be translated into a form consistent

with the boundary element formulation wherein each element has uniform potential and charge.

The (constant) charge density, _, assigned to an element is calculated by averaging over the

area of the element, A j:

1 io.d A (4).o-)=m
As Ai

This method of computing crj introduces the length scale of the discretization into the problem.

The larger of Asamt, te and Aj determines the length scale of the patchiness. Surface charge

density maps shown in Figure 4 show how the charge distribution in Figure 3c is

approximated by successive refinements of the original icosahedral discretization (Part I). The

discretized charge distribution shown in Figure 4d retains much of the general character

exhibited by the smoothed charge distribution in Figure 3c, although the range of surface

charge densities in Figure 4d is slightly smaller because of the additional averaging described

by equation (4).

Several layers of approximation have been employed to create a realistic model of a

protein molecule. The choice of sampling area is dictated by the linearization of the governing

equation. The idealization of the molecule as a sphere and the corresponding mapping of the

charged groups reflect a desire to keep the problem as simple as possible. Despite these

simplifications the resulting surface charge distribution appears able to capture the essential

features of the electrostatic phenomena.

3. Interaction Ener_rv Between a Lysozyme Molecule and a Surface

Once the protein charge distribution is established, the boundary element technique can

be used to calculate the sphere-plate electrostatic interaction energy as a function of separation

and orientation (cf. Part I). However, the electrostatic free energy for an uncharged surface is

always repulsive because charges on the sphere nearest the plate dominate the interaction. The

effect of charge anisotropy can be seen in Figure 5, where we compare the electrostatic free

energy at contact with an uncharged plate (Figure 5a) with the charge distribution (Figure 5b).

When the surface charge density on the plate is raised to crx = 500 (230 _' per charge), the

repulsion is greatly increased (Figure 5c). Differences between various orientations are
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enormous,reflecting variations in chargedensity around the sphere. According to these

calculations there are a large number of local free energy minima with similar energies.

In some orientations, the calculated electrostatic surface potential can be 10 kT/e or

larger at contact and would seem to violate the low potential assumption used to linearize the

Poisson-Boltzmann equation. However, as the particle moves away from the flat surface, the

potential decreases rapidly into the range where linearization is valid. Hence, although there is

some uncertainty in the value of _elec near contact, the results appear consistent with those

calculated at small non-zero separations. This shortcoming is inherent in any model which

employs the linearized Poisson-Boltzmann equation to describe the electrostatics.

In Part I, we discussed how the energy of a given orientation depends on the charge

distribution on the nearest surfaces. When the plate is charged, orientations offering similarly

charged surfaces suffer an increase in free energy while the free energies of orientations

presenting oppositely charged surfaces are reduced, relative to their interaction with an

uncharged plate. As we have just seen, energies between different orientations can be quite

large. The "average" behavior of anisotropically charged and uniformly charged spheres is

also of interest since rotary Brownian motion enables a molecule to sample many orientations.

Therefore, we compare the orientation-averaged interaction potential with, e.g., the potential

for a uniformly charged molecule having the same net charge. The proper orientation average

is 17-19-

(_ekT (d)) -ln/_-_exp [ _elec(d'f'2)Td.f2}j= -ff ,

I. 4n

(5),

with the orientation defined in terms of the solid angle 1"2. Using the constant element

approximation, the integral over all solid angles can be replaced by a sum over the elements on

the sphere:

(*¢t_c(d)> . [I '_"_. F
._ =- ml-7-- ? ./lj exp/

K, L
kT

(6),

Here Aj is the area of element j on the unit sphere and the coordinates (aj, _j) of node j

define the orientation of the sphere (cf. Part I). The significance of the nonuniform charge

distribution can be determined by comparing the angle-averaged interaction potential defined by

equation (6) with that for the uniformly charged particle.
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The angle-averaged interaction potential for the 240 element discretization of lysozyme
{ t_unif°rm_ andis shown in Figure 6, along with results for the uniformly charged sphere _,Yelec J

lysozyme orientations having the maximum (eO_/ec) and minimum (O_e_cn) electrostatic potential

energy. The arithmetic average potential energy ("Oelec) is also shown. Note the large

differences between the maximum, minimum and angle-averaged potentials. The relative

t_uniform
ranking of <_elec>, Oelec" and Yelec at small separations is obscured in Figure 6, so the

results are replotted in Figure 7. At high surface charge densities, the angle-averaged
d_tmiform

potential lies below Oe_c and "elec , as expected, because the Boltzmann weighting favors

lower potential energy orientations.

An important feature of these electrostatic free energy curves is the weak electrostatic

repulsion at these charge densities (less than 6 kT when o"x = 500, i.e., with approximately

230 A 2 per charge). In addition, the difference in free energy (2 kT or less at these conditions)

between the uniformly charged and angle-averaged molecules is relatively small. Each

conclusion is consistent with the modest charge on the molecule and the surface.

To see how the electrostatic effects contribute to the total interaction we can add the

effect of the van der Waals or dispersion potential. The dispersion potential for a (spherical)

macroscopic body and a (spherical) molecule is 1,3,18:

Aeff [ 2R

= U2(R +d 2 "_

2R

4R + 2(R + 1)d + d 2

+ In 2(R + 1)d + d 2

4R + 2(R + 1)d + d 2

(7),

where R = radius of the macroscopic body and d = separation (gap) between the surfaces and

the molecule; all lengths have been scaled by the particle radius. For cases of interest here, R -

1 and Ova_ at small d is insensitive to the exact value of R; a value ofR = 106 was used for all

calculations.

If the molecule and surface were pure hydrocarbon bodies interacting through water,

A_ would be about 1 kT at 300K 18. Measurements of dispersion forces with lysozyme

indicate values for Aeffin the range of 1 - 2 kT at room temperature 20,21. In the study of

protein crystallization, there is a sizable uncertainty in the value of Aeff because the crystal is

approximately 50% solvent by volume 22. There may be a similar uncertainty in the study of

protein adsorption on a protein-covered surface. A naive estimate would take Aeff as roughly

half the value for pure hydrocarbons, in which case the balance between van der Waals
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attractionand electrostatic repulsion is as shown in Figure 8. The sensitivity of the barrier

height to Aeff, is shown in Figure 9. At values of Aeffas low as 0.1 kT, the angle-averaged

potential still peaks at only 2 kT (not shown in Figure 9).

Until now attention has focused on plate charge densities of modest size. Local "charge

densities" on protein covered surfaces may be much larger. The surface potentials on an

isolated lysozym¢ molecule provide some guidance in selecting the range of interest. For a_" =

5, local surface potentials on an isolated lysozym¢ molecule range from +3.91 (+100 mV) to

-2.44 (--63 mV); the equivalent surface charge densities on the plate are 1600 (72 A2 per

charge) and -1000 (116 A2 per charge). Surface charge densities of this magnitude cause

dramatic changes in the electrostatic free energy at contact (Figure 10). Figure 11 depicts the

way the angle-averaged interaction potential varies with distance in these two cases.

4, Summary and Discussion

A simplified model of molecule-surface interactions was developed to take account of

charge anisotropy on a protein molecule using a boundary element method (BEM). The BEM

employs a linearized equation for the electrostatics, which allows the problem to be divided into

subproblems that can be solved separately to obtain the total electrostatic potential. The

nonuniform charge distribution on the protein molecule is represented by a set of surface

elements of differing charge densities. Smooth surfaces and simple geometries are assumed

for mathematical convenience. Electrostatic free energies calculated from the boundary element

method for two uniformly charged spheres agree well with those given by the linear

superposition approximation.

Interaction free energies (electrostatic and dispersion potentials) for the molecule-

surface system in different orientations are calculated from the isothermal reversible work

required to bring the two bodies into a given configuration. Different orientations have

substantially different interaction energies. Free energies for different orientations were angle-

averaged to obtain an "average potential." At moderate plate surface charge densities, the

potentials of the angle-averaged molecule and a uniformly charged sphere having the same net

charge are similar. In both cases, the electrostatic and dispersion terms nearly balance; the free

energy maxima are correspondingly small (about 3 kT).

As o'_ increases to about 1000 (approximately 100 _,2 per charge), large differences

between the model lysozyme molecule and the uniformly charged sphere appear. The

electrostatic free energy of uniformly charged particles can exceed the molecule's free energy

by 10 kT at contact (see Figure 10). Dispersion forces, which dominate near the plate, reduce

the difference somewhat, but the differences in the free energy maxima for the two systems are

significant.

9



The nature of the plate's surface controls the behavior of the molecule near contact and

this is where our model lacks rigor. The approximation of a moderate, uniform surface charge

density on the plate clearly becomes less appropriate as the molecule approaches the plate.

Instead, the highly charged patches on both the molecule and the surface interact, so

differences in free energy as the molecule rotates and moves parallel to the surface should be

similar to those shown in Figure 11. These results, although not definitive, clearly

demonstrate the need to account for nonuninform charge distributions when modeling protein-

surface interactions. The boundary elemem method provides a means to study the effects of

charge hetcrogeneities on the adsorption of biological macromolecules.
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FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

A map of the surface charge distribution for an idealized lysozyme sphere.

Symbols: • +1; • -1; • +1/2. All charges given in units of the proton charge

(1.6x10 -19 C)

Sampling area and radius. Charged groups lying within the shaded area contribute
to the local charge density.

Local (smoothed) charge density on the surface for different averaging areas. The

lysozyme sphere has a surface area of approximately 3400 A2 and in the figure

charge densities are scaled by O'o _ 1.4x10 "2 btC/cm 2. Scaled charge densities are

shown for sampling areas of: (a) 300 A2 (b) 200 ,_2 (c) 100 ,_2. The legend at the

bottom of the figure shows the charge level.

Constant element approximation for the surface charge density. Various

representations of the charge density on the model lysozyme molecule based on a

100/_,2 averaging area (Figure 3c). Charge densities are scaled by o'o = 1.4x10 -2

I.tC/cm 2. (a) 20 elements. (b) 60 elements. (c) 120 elements. (d) 240 elements.

A comparison of the electrostatic free energy at contact and the surface charge

distribution for a_" = 5. The results at contact are shown for the 240 element

discretization. Free energies are scaled by kT; charge density scaled by O'o

1.4x10 -2 l.tC/cm 2. (a) ¢l_elec when o'_ = 0. (b) scaled charge density. (c) _etec

when Ox = 500.

Comparison of maximum and minimum electrostatic free energies with several

averages for lysozyme when ate = 5. Symbols: • _,'_; • _,'_; • T,_,ca_f°"',[]

o

Electrostatic free energies near contact Symbols: • T ,_,c_f°"",[] "_,_,c ; 0 ( tb ,_c ).

The combined interaction potential between a charged sphere and a surface for

different surface charge densities; ax'=5, Aeff= 0.5 kT. Symbols indicate the

surface charge density on the plate, o'_: O 0; [] 100; O 200; A 300; • 400; • 500.

The combined interaction potential between a charged sphere and a surface for

different Hamaker constants; a_'-- 5, o'_ = 500. The Hamaker constants are: O 0;

[] 0.5 kT; O 1 kT.

Angle-averaged electrostatic free energy at contact as a function of the surface
charge density. The solid curve represents the model lysozyme molecule while the
dashed curve is the uniformly charged sphere with the same net charge.
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Figure 11. Angle-averagedlysozyme interaction potentials for a r = 5. The solid curves

correspond to Aeff = 0.5 kT and the dashed curves represent Aeff = 0. The plot

symbols represent the surface charge density on the plate, o'*: O 1600 (72 _2 per

charge); [] -1000 (116 ,_2 per charge).
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ABSTRACT

The threedimensionalstructureof biological macromolecules is determined from

X-ray diffraction studies of large, well ordered crystals. Many proteins, however, form

crystals too small or too disordered to diffract well. Two findings suggest buoyancy-

driven natural convection may affect protein crystal growth: (i) crystals grown in

microgravity are reported to diffract better than crystals grown in the laboratory and (ii)

crystals subjected to weak forced convection slow their growth. Reasons for this behavior

are unknown.

In this work, digital microscopy was used to measure growth rates of tetragonal

crystals of hen egg white lysozyme; the size range covered was 50 325 gin. The growth

rate distribution of crystals grown under nominally quiescent consitions was compared

statistically with that of crystals exposed to forced convection of approximately 50 grn/s.

In both cases, the sample standard deviation and sample mean were proportional; relative

standard deviations of both groups were approximately equal. The shape of the

distributions did not change with time during the experiment (3 - 10 days), implying that

flow effects, if any, act on all crystals irrespective of growth rate or size. Natural

convection is present even under nominally quiescent conditions, but growth rates for

quiescent crystals remained constant over the size range 156 - 322 gm. At the 99%

confidence level, no evidence was found to suggest natural convection retards crystal

growth. These results agree with previously published quasi-steady mass balances on

growing protein crystals.

Colloidal interactions of a uniformly charged crystal with a spherical molecule

having a patchy su;'face charge distribution were computed. Calculations of the angle-

averaged interaction potential show the balance between electrostatic repulsion and

dispersive attraction is sensitive to the effective surface charge on the crystal and the

effective Hamaker constant; neither quantity is known with certainty. Nevertheless, it

..°
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appears that colloidal forces reduce the protein flux to the crystal only slightly, suggesting

that the rate-limiting step in protein crystal growth occurs once the molecule has reached the

surface. These results, coupled wlth the experimental findings, indicate mass transport

from bulk solution does not limit protein crystal growth.
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CHAPTER1

The Art and Science of Protein Crystal Growth

1.1 Introduction

A fundamental axiom of biochemistry declares that the structure of biological

macromolecules reflects their function. If the role of the molecule can be determined

through some sort of assay and the relevant structures identified, a synthetic molecule can

be designed to mimic the original molecule. This is the basis of "rational drug design" [1].

X-ray diffraction studies of protein crystals (or crystals of other biological macromolecules

such as DNA) provide the knowledge of the macromolecular structure required for such

endeavors.

Crystallographic techniques are now sufficiently developed so that the rate-limiting

step in protein structure determination is the growth of suitable crystals [2-5]. Protein

crystals are grown from aqueous solutions containing protein, buffer, and precipitating

agent (often salt or an organic solvent). Given a newly isolated protein, it is often a

painstaking process of trial and error to find conditions which produce any crystals, let

alone crystals large enough and sufficiently well ordered to diffract X-rays to high

resolution [2,6-8]. CrystaIlographers may have only small amounts of material with which

to work and do not have time to perform the exhaustive experiments needed to establish the

phase diagram for each protein. Any finding or technique that reduces the time needed to

obtain protein structures would be welcomed by crystallographers.

Many of the difficulties of growing good protein crystals have been attributed to

buoyancy-driven natural convection, although the mechanism by which fluid flow inhibits

crystal growth remains a matter of conjecture. In particular, convection is suspected of

mechanically disrupting the bonds holding the molecules to the crystal surface [5],

disturbing the homogeneous deposition of protein on the crystal [9], or perturbing the

molecular packing in the crystal [10]. Others, on the basis of a simple model of colloidal



interactionsbetween molecule and crystal, have suggested that the small terminal size of

protein crystals results from a poor choice of crystal growth conditions [ 11 ]. Our intent is

to examine the roles of transport phenomena, colloidal forces, and attachment kinetics in

protein crystal growth. Studies of these subjects are incorporated into a single framework

by interpreting the results in terms of the relative rates of transport and attachment.

Experimental studies were used to investigate possible flow effects on protein

crystal growth. Quasi-steady mass balances on growing lysozyme crystals in the presence

of natural convection [5,12,13], for instance, predict crystal growth is entirely kinetically

controlled. Any systematic deviation from this behavior would imply some important

process has been omitted. The predictions of quasi-steady model had not been tested until

now because all studies of flow effects and growth kinetics were performed on small

crystals which should be significantly affected by fluid flow. The long-term crystal growth

studies described in Chapters 2 and 3 are the first in which crystals larger than 100 I,tm

were measured. Although these experiments do not settle the issue of flow effects, they

suggest alternative hypotheses which had not been considered.

Of primary importance is the result that lysozyme crystals 150 - 300 I.tm in size do

not slow their growth in the presence of natural convection. Over this size range, at least,

the rates of attachment and transport appear unaffected by the presence of buoyancy-driven

flow. Three additional findings of the experiments are: (i) there may be a long initial

downward transient in crystal growth rate before the system reaches steady-state, (ii)

distributions of growth rate and size are extremely broad, and (iii) size and growth rate

distributions are similar irrespective of the presence of forced convection.

The colloidal interaction between crystal and molecule consists of electrostatic and

dispersive contributions. If there is a net repulsion between the crystal and molecules in

solution, the rate of transport to the surface is diminished [14]. In this context, addition of

the molecule to the crystal consists of three steps in series: (i) transport from bulk solution

2



to the vicinity of the surface, (ii) climbing a free energy barrier to reach the surface, and (iii)

suitable surface kinetics to fit into the crystal lattice. Note that in the previous analysis,

steps (ii) and (iii) were lumped together into the growth kinetics. In Chapter 4, the

colloidal interaction potential was calculated for a simplified model of lysozyme crystal

systems including some effects of the molecule's nonuniform charge distribution. In

agreement with the current experimental findings, as well as the predictions of quasi-steady

mass balances, transport from bulk solution does not seem to control protein crystal

growth.

In this opening chapter, general background on the nature of protein crystals and

their growth is presented. A critical review of previous crystal growth studies is given, as

well as a discussion of hypotheses about the unusual behavior of protein systems. In

particular, the possible effect of convection on protein crystal growth is examined in detail.

The evidence is often contradictory, and it is difficult to interpret all the claims and

findings. The behavior of protein crystal systems is then discussed in terms of interactions

between molecules in solution and macroscopic bodies. Next, in Chapter 2, is a

description of the crystal growth experiment intended to test for convective effects. A

technique developed for estimating the size and orientation of three-dimensional objects

based on two-dimensional projections (digitized images) is also presented. Chapter 3 is a

thorough statistical analysis of the crystal growth measurements from the experiment

described in Chapter 2. Emphasis is placed on the sources of variance within each

experiment that produce a wide range of behavior from what are nominally uniform

populations.

Chapter 4 begins with a description of the interaction potential between protein

molecules and protein crystals. The electrostatic contribution to the interaction potential is

calculated from a combined numerical and analytical solution for the electrostatic potential

produced by a nonuniformly charged protein molecule and a crystal with a constant

uniform surface charge. The numerical solution was obtained by a boundary element



method, the details of which are described. Finally, the total interaction potential is

calculated by adding the dispersive potential with the angle-averaged electrostatic potential

and the effect of nonuniform charge effects are discussed. Recommendations for future

work, both experimental and computational, are presented in Chapter 5.

1.2 The Nature of Protein Crystals

Compared with ideal inorganic or "small molecule" crystals, protein crystals have

an open structure with channels of solvent [4]. Solvent content ranges from 27% to 65%

of the crystal volume, with values of 40% - 50% being most common [15]. Protein

molecules are thought to be held in place in the crystal lattice by hydrogen bonds [2], which

are relatively weak (fill ----3 to --6 kcal/mol in vacuo [16] compared with O(100 kcal/mol)

for covalent bonds [17] ). The loose structure of the crystal and weak bonding allow the

molecule to crystallize without a radical change in conformation [2,16], which is why X-

ray diffraction can be used to study the relationship between structure and function.

Evidence that the molecule's structure is not greatly altered upon crystallization comes

largely from assays that show enzymes retain their activity in the crystal state [16].

The weak bonding in the protein crystal and the complexity of the molecules

combine to give proteins an almost legendary reputation for sensitivity and fragility. In a

list of 21 variables influencing macromolecule crystallization given by McPherson [6], two

items stand out in particular: vibration and sound (#13) and gravity, gradients and

convection (#21). Some of the difficulty of protein crystal growth can be attributed to the

stochastic nature of nucleation and growth. Small perturbations of a highly metastable state

can disturb nucleation and produce a rapid amorphous precipitation of the protein. The

nonspecific nature of the crystal bonds, which produces several local solubility minima, is

at least partly responsible for the reported polymorphism of macromolecular crystals;

McPherson [6] shows a photograph in which two different crystal forms of yeast

phenylalanine tRNA grow from the same solution.
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The resolution at which a molecule's structure can be determined depends on how

well the crystal diffracts. A typical X-ray study requires crystals which are sufficiently

large (- 1 mm 3 in volume) and reasonably well ordered. Few proteins readily form

crystals which are suitable for X-ray analysis, although many precipitate as fine crystals or

amorphous solids. Occasionally, large crystals form but the crystal packing is too

disordered to diffract well [2]. Some studies [18,19] suggested that proteins may have a

limiting size beyond which they cannot grow. This "cessation of growth" phenomenon has

become firmly entrenched in the protein crystal growth literature. More recent studies have

been performed in which careful control of conditions produced crystals significantly larger

than the previously reported terminal size [11,20].

At least in the past, there was a tendency on the part of protein crystal growers to

attribute all the quirkiness of the protein systems on the extreme sensitivity of the molecule.

It was common, in fact, for protein crystallographers to deny theories of crystal growth

developed by small molecule crystal growers could be applied at all to biological

macromolecules [4]. Now, however, most protein crystallographers realize that a better

understanding of the underlying processes of crystal growth can reduce the time and effort

needed to grow crystals and solve the molecular structure. The structure, after all, is the

goal of the crystallographers.

1.3 Physico-chemical Descriotion of Protein Cry_stal Systems

A survey of the protein crystal growth literature shows how difficult it can be to

characterize protein solutions. (Since most protein crystal growth studies have been

performed on hen egg white lysozyme, the discussions of protein behavior in this text are

based on lysozyme. Characteristics of other globular proteins are expected to be

qualitatively similar.) Physical properties such as size, density and diffusion coefficient

appear to be relatively consistent among different researchers [21-23] but thermodynamic

properties such as solubilities display much more variation. Consider the solubility of



lysozyme at 20"C, pH 4 and a NaC1 concentration of 50 mg/mh Fiddis et al. [24] report a

value of 3.5 mg/ml while Howard et al. [10] report 6 mg/ml. Pusey et al. [5] report a

solubility of only 1.7 mg/ml at 22"C and Feher and Kam [19] measured a value of 5.0

mg/ml at 20"C and pH 4.2. The proliferation of conditions for growth studies is another

complication which must be considered when comparing the results of different workers.

There is also some uncertainty in the state of aggregation of the protein molecules in

solution. Sophianopoulos and Van Holde [25] found evidence that dimers are the

dominant form of lysozyme in the pH range 5 - 9; Bruzzesi et al. [26] employed light

scattering and sedimentation experiments to observe a reversible association of lysozyme at

pH > 4.5. At pH 6.8 and protein concentrations greater than about 20 mg/ml, oligomers

larger than dimers seem prevalent; at pH 4.3, however, lysozyme appears to be mostly

monomeric even up to protein concentrations of 50 mg/ml [26].

Dynamic light scattering has also been used to study aggregation in protein

systems. Kam and coworkers [18,19] looked at the power spectrum of light scattered from

lysozyme solutions in an attempt to assay possible crystallization conditions quickly. By

using the linewidth of the power spectrum to fit the parameters in their aggregation model,

they could discriminate between conditions known to produce crystals and those known to

form amorphous precipitate. Although their technique is adequate for measuring large

qualitative differences between conditions, it cannot be used to determine the state of

aggregation in the system. Sample calculations [27] show that the linewidth is sensitive to

the size of the "average" scatterer, but is unable to resolve the exact form of the size

distribution. For now, the degree of association in lysozyme solutions remains an

interesting but unresolved issue.

The formation and shape of oligomers may affect the crystal growth process. If,

for example, crystal growth occurs by addition of monomer, a high degree of association

effectively depletes the population of growth units in solution. Not only might the rate of

transport to the surface be altered, but crystal growth could be controlled by the rate of



oligomer dissociation. On the other hand, if crystal growth occurs by addition of

associated protein molecules, the shape and complexity of the growth unit might determine

the intrinsic attachment rate. Salemme et al. [28] analyzed intermolecular contacts in the

monoclinic, triclinic, and tetragonal forms of hen egg white lysozyme and found a common

molecular "chain" in all of them despite the difference in crystal packing. They

hypothesized that such chain formation is related to crystal nucleation and growth. As in

many of the other questions about protein crystal growth, available data are simply

inadequate to identify the growth unit.

By now, the reader will appreciate some of the complexity of protein systems and

the confusion surrounding the interpretation of crystallization behavior. Until recently, the

emphasis was on structure determination from a small population of crystals; even though

the underlying phenomena were not well understood, crystallographers were able to refine

conditions repeatedly until they grew enough crystals to solve the structure. Since the mid-

1980s, protein crystallographers have become more interested, in systematizing protein

crystal growth and have have begun an interdisciplinary effort to characterize protein crystal

systems [4]. The prognosis for the future is encouraging, but the interpretation of current

results remains clouded.

1,4 Previous Protein Crystal Growth Studies

The driving force for crystallization of species i from solution can be written in

terms of the difference in the .chemical potential of species i in solution,

l.ti = i.t° + kT In (_ xi), and in the crystal, lift at= la° + kT In (H °t xS°t). Here, /.t° =

standard state chemical potential of species i, k = Boltzmann's constant, T = absolute

temperature, 5 = a_tivity coefficient and xi = mole fraction of species i; the superscript

"sol" denotes solubility values. The chemical potential of solute in solution exceeds that in

the crystal by an amount

7



which isnormally taken tobe the drivingforceforcrystallization[29]. Equation (I.I)is

strictlyvalidwhen the crystalislargeenough thatsurfaceeffectsarc negligiblecompared

with bulk effects.When xi issmall,the term inparenthesesiswrittenapproximately as

zC i/_otC[°t. Researchers studying small molecule crystalgrowth usuallyinvoke the

ideal solution approximation (Z = I) because soluteconcentrations are low and the

necessary thermodynamic data arc unavailable [29,30]. If the conditions are further

restrictedtosmallrelativesupcrsaturations,thelogarithmin (1.1)can bc expanded in terms

ofthorelativesu  .rationtoave(c,- )/crto o der.

In contrastwith inorganic (smallmolecule) crystalgrowth, theoreticalstudiesof

crystalgrowth mechanisms arc scarce,so a hybridapproach isoftentaken.Crystalgrowth

rates arc rncasurcd and fittedto models borrowed from inorganic crystal growth.

Researchers often draw conclusions about growth mechanisms based on agreement with

the functionalform of the growth ratedependence, without regard to the possibilitythat

grosslydifferentmechanisms can sometimes predictthesame behavior [4].In othercases,

growth rateexpressionsarcfitin a wholly empiricalfashionwith no attempttoexplainthe

underlyingprocess. A popular method istofitgrowth ratesto a power-law inthe relative

supersaturation,cvcn though thisisnot entirelyconsistentwith the logarithmicdriving

force described by (l.l). The review of proteincrystalgrowth studiesgiven below,

although brief,coversmost of theextantwork.

Pioneering work on proteincrystalgrowth was done by Schlichtkrullin the 1950s.

Working with insulin crystals up to 100 I_m in size, he determined that the face growth rate

(the rate at which a crystal face advances along its normal, sometimes called the linear

growth rate because it is related to the change in the linear dimension of the crystal) was

proportional to (C- Ct_,,_) 2, where the reported Cf, nat could be as much as six times the

solubility [31 ]. In a subsequent study in which seed crystals were grown from solution

containing India ink and later transferred to a clear solution, Schlichtkrull found that only

three of the six crystal faces were advancing [32]. Seed crystals were seen clearly in the
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corners of the final crystals. The anisotropic growth of insulin crystals was ascribed to a

corresponding anisotropy in the unit cell which somehow prevented deposition of protein

molecules from solution. Population balances on the crystals indicated crystal nucleation

was highly heterogeneous and increased with crystal surface area as well as the liquid-

vapor interfacial area of the solution [31].

Pusey and coworkers [5,12] performed a similar empirical study on the post-

nucleation growth of the { 110} faces of tetragonal hen egg white lysozyme crystals from

solution. They found a dependence on the square of the relative supersaturation. The

fourfold symmetry of the tetragonal crystal form makes all four { 110} faces equivalent, so

that anisotropic growth was neither expected nor detected. Pusey et al. were primarily

concerned with the relative importance of material transport and attachment kinetics in

controlling protein crystal growth (see section 1.5 for a detailed discussion). No size-

dependent growth was observed for the size range (up to 70 I.tm) used in the study.

Calculations based on their results indicate that even in the absence of convective transport,

lysozyme crystal growth is kinetically controlled until the crystals are at least 100 lain in

size.

Fiddis et al. [24] measured the growth of tetragonal lysozyme crystals up to about

50 I.tm in size and compared their measurements with predictions from several models of

inorganic crystal growth. As might be expected from the discussion above, the

thermodynamic driving force in Equation (1.1) was simplified with the ideal solution

assumption. Growth rates were compared with those expected from models in which

growth was controlled by the rates of: diffusive transport, convective transport, addition to

a uniformly rough surface, addition to a screw dislocation, and nucleation of new surface

layers. In agreement with Pusey and coworkers [5,12], the kinetics were found to be rate-

limiting over the size range studied. The data agreed best with the model based on surface

nucleation kinetics. Fiddis compared Schlichtkrulrs results for insulin [31] with the

surface nucleation model and found reasonable agreement; the cessation of growth at
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concentrations above the solubility was reported to be consistent with a surface nucleation

mechanism.

Durbin and Feher [33]

measurements as did Fiddis et al.

applied the same crystal growth models to their

In contrast, however, Durbin and Feher claimed none of

the models describe the data. The models were rejected on the basis of condition-

dependent variations in parameters which, according to the models, were supposed to be

constants. An empirical power-law fit of the growth rate dependence on relative

supersaturation gave exponents in the range 2.0 - 3.9. At protein concentrations greater

than 20 mg/ml, secondary nucleation forced them to measure crystal growth from unstirrea:l

solutions. Under these circumstances, they obtained constant crystal growth rates for

crystals smaller than 50 gm which diminished with increasing crystal size; they attributed

this behavior to protein depletion of the solution. At moderate protein concentrations,

crystals grew at the same rate whether in quiescent conditions or in the presence of forced

convection of about 150 lam/s. Durbin and Feher noticed that equivalent crystal faces grew

at unequal rates at low supersaturations but not at high supersaturations; they decided that

the unequal growth was driven by some type of defect and that some other mechanism was

dominant at higher supersaturations. In addition, they noted that crystals exposed to low

supersaturations for several days exhibited a "patchiness" in their growth: protein

molecules seemed to attach to isolated locations on the surface and were unequally etched

when placed in unsaturated protein solutions.

A more detailed study of crystal surfaces was performed later by Durbin and Feher

[34] using freeze-etch electron microscopy. They were able to identify surface features

which resemble the step trains, growth spirals, and growth islands described in theoretical

studies of crystal growth. At relative supersaturations larger than about 3 (protein

concentration of approximately 10 mg/ml based on a reported solubility of 3.5 mg/ml at

24"C, pH 4.6, 50 mg/ml NaC1), growth islands were distributed more or less uniformly

over the crystal surfaces; at lower supersaturations, the formation of new layers seemed
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confined to selected regions on the surface. Durbin and Feher interpreted this behavior at

low supersaturations in terms of a competition between deposition of lysozyme and some

unknown contaminant that poisons the surface for further growth. Their observations are

consistent with their earlier work [33] and may be related to the "cessation of growth"

phenomenon [ 1839] which has become part of the protein crystal growth lore.

The profusion of crystal growth models and interpretations follows from the

uncertainties in the physico-chemical properties discussed in the previous section.

Although the conflicting results of extant crystal growth studies make it difficult to form a

clear picture of the phenomena, characterization of the surface by freeze-etch electron

microscopy [34] may help identify crystal growth mechanisms. Until now, protein

crystallographers felt that the complexity of protein systems defied quantitative description

based on models of inorganic crystal growth [4]. By showing the qualitative similarity

between the surfaces of protein crystals and inorganic crystals, the work of Durbin and

Feher suggests that better crystals require a deeper understanding of the state of the protein

system.

1.5 Effects of Convection on Protein Crystal Growth

Flow effects might have remained of only incidental interest to protein crystal

growers if not for some preliminary experiments performed aboard Spacelab 1 [35]. Littke

and John [35] reported the growth of lysozyme crystals in orbit with linear dimensions

approximately ten times those grown in the laboratory with the same equipment. Related

work performed by Bugg and coworkers [3,36] also suggested some sort of flow effect.

The major shortcoming of these first experiments is the small sample populations from

which the researchers draw their conclusions. More extensive experiments have been

conducted with mixed results. Erdmann et al. [37] launched a series of 101 experiments

aboard a Chinese Long March CZ-2C rocket and compared the diffraction resolution of

space-grown crystals with controls grown in the laboratory. They found that although
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someproteinsgrew larger and diffracted better than the controls, overall quality was below

that of crystals grown under optimal conditions in the laboratory. De Lucas et at. [10], on

the other hand, found that at least three proteins (T-interferon D 1, porcine elastase and

isocitrate lyase) grown aboard the U. S. space shuttle were larger and diffracted better than

any crystals grown in the laboratory.

Three general mechanisms have been proposed by which fluid flow could interfere

with the growth of large, well ordered crystals: (i) convective transport of protein.to the

crystal surface could overwhelm the attachment kinetics and produce poor quality crystals,

(ii) forces produced by the flowing fluid could mechanically disrupt the orderly deposition

of protein molecules on the surface, and (iii) convection has some other effect which

inhibits crystal growth. Each of these mechanisms has been offered to account for the

small, poorly diffracting crystals with which protein crystallographers must often contend.

We examine each of them in ram.

The crystal growth studies of Pusey, Snyder, and Naumann [5] and Pusey and

Naumann [ 12] were discussed briefly in the previous section. Their main purpose was to

estimate the relative importance of importance of solute transport and intcrfacial kinetics in

controlling protein crystal growth. Pusey et al. performed a quasi-steady mass balance on

the growing tetragonal lysozyme crystal to compute the growth rate as a function of crystal

size for various protein concentrations at 22"C, pH 4.0 and 50 mg/ml NaC1. They modeled

the growth process as two steps: (i) transport of the solute to the interface and (ii)

attachment to the surface. Solute transport was treated as the diffusion of protein from a

well mixed bulk solution to the interface across a boundary layer of thickness

_5= L (Sc Gr)-1/4. Here, L = characteristic length of the crystal, Sc = Schmidt number

v/D, and Gr = Grashof number L3flg/v2; v = kinematic viscosity of the solution, D =

diffusion coefficient of the solute, fl = scaled density difference between fluid at the

interface and the bulk fluid (Pi - P-)/P-, and g = acceleration of gravity.
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The quasi-steady growth rates calculated by Pusey et al. [5,12] clearly indicate that

even in the absence of convective transport, lysozyme crystal growth is kinetically limited

until crystals reach sizes of at least 10 _m. Grant and Saville [13] equated the crystal

growth rate calculated from Pusey's kinetic expression with the flux predicted by the Ranz-

Marshall correlation for mass transfer to a growing sphere and reached essentially the same

conclusion except that the transition from kinetic to diffusion control is expected to occur at

crystal sizes larger than 100 }_m. Diffusion is not expected to really limit crystal growth

until the crystal is significantly larger than the typical 1 mm size used in X-ray diffraction

studies. In practice, then, protein crystals appear to be kinetically controlled during most of

their growth.

The relative fragility of the hydrogen bonds which maintain the molecule's tertiary

structure and hold the molecule in the crystal has led some researchers to suggest that shear

stresses produced by buoyancy-driven flow may somehow disrupt the molecule's structure

or strip it from the surface of a growing crystal. Grant and Saville [13] used an order of

magnitude analysis to show that characteristic velocity of the convective plume, U, should

scale as

{Gr}l/2v (1.2),U- Sc R

where R = radius of the (assumed) spherical crystal. This is the same scaling derived by

Ostrach [38], Rosenberger [4], and Pusey, Witherow and Naumann [9]. Thus, the

boundary layer thickness scales as

6= (Gr Sc)- 1/4 R (1.3),

so the characteristic shear stress is given by:

" I12 I14S I14 - R TM (1.4),

lr-la_~P[Scl/2RJ_ R R2_Sc

where/z = solution viscosity. Typical Schmidt numbers for proteins are on the order of

10 4 while estimates of the Grashof number for a growing lysozyme crystal are about 2
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[13]. The characteristic velocity under these conditions is U = 30 ttm/s, in good agreement

with the velocities measured by Pusey et al. [9]. This scale analysis shows that shear

stresses produced by buoyancy-driven flow are small and are only weakly dependent on

crystal size.

Grant and Saville [13] then compared forces calculated from a simple model of

nonspeeific interatornic bonding with the shear forces estimated above in order to assess the

likelihood that molecules and crystals could be disrupted by free convection. The

representative nonspecific bond had a strength of 81 J/tool, compared with a typical

hydrogen bond (> 12 kJ/mol in vacuo [16]) and the magnitude of AH of crystallization of

tetragonal lysozyrne (70 - 80 kJ/mol [20,39]). Shear forces were found to be three orders

of magnitude too small to break the molecule's internal hydrogen bonds and almost eight

orders of magnitude too weak to strip molecules from the crystal surface. Another order of

magnitude analysis compared the rates at which the orientation of the molecule is imposed

by the shear flow and randomized by rotary diffusion; randomization occurs approximately

107 times as fast as the shear flow can orient the molecule. These simple calculations

provide no evidence that buoyancy-driven convection can mechanically alter the state of the

molecule near the crystal surface; nor do they suggest that a low gravity environment would

be beneficial for protein crystal growth.

Despite the absence of an obvious mechanism, other observations do suggest that

crystal orientation and flow environment may affect protein crystal growth [9,40]. Broom

et al. [40] noted that crystals of human serum albumin, which form plates approximately

0.5 mm x 0.5 mm x 0.05 mm (length x width x thickness) when one of the large faces is

occluded, could be grown almost twice as thick if one of the narrow faces were occluded.

They chose to interpret the change in aspect ratio with orientation in terms of a combination

of convective and surface occlusion effects. Note, however, that the crystal's thickness is

determined by the rate at which the large faces advance. When both large faces are exposed

to supersaturated solution, as when one of the small faces is occluded, both large faces can
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advance. If this interpretation is correct, there is no need to invoke convection because a

doubling of the thickness is a natural consequence of crystal orientation alone.

Pusey, Witherow, and Naumann [9] measured the velocity of the convective plume

produced by growing lysozyme crystals and obtained values in the range 5 - 50 _trn/s

depending on crystal size and bulk protein concentration. These values are in reasonable

agreement with the characteristic velocity calculated from Equation (1.2). Pusey et al.

conducted a series of growth experiments in which crystals smaller than 50 I.tm were

exposed to forced convection comparable to the free convection velocities they measured.

They report that growth rates were initially consistent with kinetic expressions derived from

quiescent crystal studies but started to fall within 2 hours. Furthermore, growth rates after

8 - 20 hours were only 5 - 10% of the initial growth rates. The reduction in growth rate

began at shorter times as the strength of convection was increased [M. L. Pusey, personal

communication]. Pusey et al. interpreted their results as tentative support for the

hypothesis that convection was responsible for "cessation of growth."

One puzzling result of these convection experiments is an apparent enhancement of

the crystal growth rate in the presence of convection. This transient enhancement is

inconsistent with the notion that small crystals grow under kinetic control (as suggested by

the absence of any size dependent growth in small crystals at short times). One possible

explanation for this unusual behavior lies in the nature of the experimental system:

conditions in the supersaturated bulk protein solution are extremely difficult to control.

Protein tends to come out of solution whenever possible by: deposition on the face of a

growing crystal, secondary nucleation ("showering") of new crystals, or amorphous

precipitation as a stringy floc. Secondary crystals and amorphous precipitates, both of

which were reported by Pusey et al., compete for protein with the crystals under

observation and could significantly reduce the measured crystal growth rate by depleting

the bulk solution. In fact, this hypothesis was actually suggested by Pusey and coworkers
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in anearlierstudy[5] to explain some apparent discrepancies in the work done by Fiddis et

al. [24].

A second hypothesis was suggested by Grant and Saville [13], who posited the

existence of a high molecular weight contaminant which somehow "poisons" the surface

against further addition of protein to the crystal. If deposition of the contaminant is favored

over the desired protein, the contaminant concentration is reduced near the crystal surface

and protein addition is favored. Convection effectively raises the surface concentration of

contaminant to the bulk value by bringing in fresh solution, thereby retarding crystal

growth. The identity of the contaminant (if any) is unknown, but oligomers of protein

could fill the role.

In brief, the case for convective effects in protein crystal growth remains

ambiguous. Order of magnitude calculations of a characteristic shear force provide no

evidence that buoyancy-driven flow mechanically disrupts the bonds that hold the moleucle

in the crystal lattice or maintain native structure of the protein [13]. Similar calculations

based on measured crystal growth kinetics reveal that protein crystals grow under

kinetically-controlled conditions until they are approximately 100 I.tm in size.

Nevertheless, crystals grown aboard the U. S. space shuttle are reported to diffract X-rays

to higher resolution than control crystals grown in the laboratory [10]. Crystals grown

under forced convection slow their growth [9], but the interpretation of this behavior

remains elusive. These somewhat conflicting results prompted our investigation into

possible flow effects, as described in Chapters 2 and 3.

1,6 The Search for Crystallization Conditions

Finding suitable crystallization conditions can be the most time consuming step in a

structure determination. A balance must be struck between the demand for relatively rapid

crystal growth (high supersaturations) and the need to limit the number of competing nuclei

(low supersaturations). In a typical scenario, an array of possible crystallizing conditions
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is testedsimultaneously using microliter quantities of protein solution [2]. Subsequent

trials are spent refining conditions to produce a few satisfactory crystals. Heidner [41]

examined crystal number density as a function of protein concentration and supersaturation.

The nucleation rate of rabbit muscle aldolase crystals was reported to depend on total

protein concentration, C, and not the supersaturation as expected from thermodynamic

arguments. Growth rates, in contrast, were dependent on supersaturation. These results

led Heidner to suggest dilute but highly supersaturated solutions would be optimal for rapid

growth of only a few crystals.

Rosenberger and Meehan [42] suggested exploiting the different functional

dependences of nucleation and growth to create a small number of primary crystals in one

concentration regime and then reduce the supersaturation to maintain steady growth and

reduce secondary nucleation. The novel aspect of their suggestion (at least for protein

crystal growers) was the use of a programmed temperature history to alter the protein

solubility. Controlling solubility in this way is a marked change from the usual practice.of

changing the ionic strength of the solution. Effective use of such a technique requires

knowledge of the dependence of solubility on temperature - exactly the fundamental data

which are scarce and not always reliable (see section 1.3).

In a different approach, Young et al. [11] examined the selection of crystallization

conditions in terms of the interaction potentials between protein crystals and protein

molecules in solution. As the reader might expect, these interactions are poorly

understood. The behavior of protein crystal systems can, in principle, be described in

terms of the electrostatic and dispersion (van der Waals) potentials between protein

molecules and crystals. The case examined by Young was that of protein molecules

(spheres) with a constant surface potential interacting with a crystal (fiat plate) also at

constant potential. At the current level of understanding, the approximation of the crystal

as a fiat plate is reasonable since the crystal is typically 10 _ - 106 times as large as the

molecule and faceted. They claim that optimal conditions for crystal growth are those
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where the sphere-spherepotential is more repulsive (presents a higher barrier to

aggregation)than the sphere-platepotential; the sphere-platepotential shouldhave a

moderateto low energybarriertopromoteattachment of molecules to the surface.

Young and coworkers focused most of their attention on the role of ionic strength

on reducing the electrostatic repulsion between similarly charged bodies. Their working

hypothesis, that salt rejection by growing protein crystals eventually raises the ionic

strength of the solution above the critical electrolyte concentration and induces rapid

coagulation, was based on a sudden increase in turbidity of a protein solution (30 mg/ml

lysozyme, 50 mg/ml NaC1, pH 4.0, 17"C) upon addition of a single seed crystal. In a

subsequent experiment, they placed comparable seed crystals in solutions with various

NaCI concentrations and noted that significant crystal growth occurred for NaCI

concentrations between 30 mg/ml and 50 mg/ml. They suggest that electrostatic repulsion

at low ionic strength is too strong to permit crystal growth, while protein in solution is

depleted by rapid coagulation at high ionic strength.

Rapid coagulation is a regime in which colloidal particles experience no repulsion

and coagulate as soon as they come in contact [14]. If 50 mg/ml NaCI is above the critical

flocculation concentration, rapid coagulation of the protein molecules should be observed

even in the absence of the seed crystal. In addition, Young's argument would suggest that

crystal growth would be impossible at salt concentrations significantly greater than 50

mg/ml (0.85 M). Nevertheless, crystallographic data for hen egg white lysozyme grown

from a solution of 1.4M NaCI [C. D. Smith, personal communication] indicate a much

larger value for the critical flocculation concentration. Excursions in local salt concentration

larger than a few percent of the bulk concentration can be excluded on the basis of a quasi-

steady model of salt rejection by a growing lysozyme crystal [13].

The main contribution of the work by Young et al. was to set out the problem of

protein crystal growth in a form familiar to colloid scientists. Properties which determine

the interaction potentials of molecules with crystals and other molecules are the surface
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potentialson themoleculeandcrystal(which neednot bethe same),the ionic strengthof

the solution, and the strengthof the dispersive attraction. The surfacepotential is

determinedby thedistributionof chargedgroupswhich, becausetheyaredeterminedby

acid-baseequilibria,arepH dependent.Thenonuniform(fixed)chargedistributionon the

surfaceof themoleculeintroducesamajorcomplicationinto theanalysisof proteinsystems

comparedwith thesimpler"regular"colloidal systems.Until now,nowork hasbeendone

which is applicableto the current situation. The effectsof the chargedistribution on

enzyme activity has been studied, however, and is presented in the following section.

_l.7 Effects of Ngn0niform Charge Distribution

Nonuniform charge distributions on biological macromolecules can produce

superficially counter-intuitive behavior. The enzymatic activity of copper, zinc superoxide

dismutase is a case in point. Superoxide dismutase (SOD) is reported to be a homodimer

of molecular weight 32,000 with a net valence of -4 [43]; its substrate, the superoxide

radical (.0 2) has valence -1. An initial inspection might suggest that the activity of the

enzyme would be limited by repulsion of the like charges as the substrate approaches the

enzyme. One might also expect the enzymatic activity to increase with ionic strength as the

repulsion is diminished by counterion screening. Experimental findings contradict both

these hypotheses: the enzyme activity is close to that calculated from the Brownian collision

rate for uncharged particles of similar size and decreases with added salt [43].

Crystallographic studies of SOD revealed a group of positively charged residues

around the active site which guide the superoxide. Cudd and Fridovich [43] chemically

modified the residues near the active site and measured enzyme activity as a function of salt

concentration. A 90% drop in enzyme activity was observed when arginine 141 was

neutralized, and the activity still decreased with ionic strength. A similar neutralization of 7
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- 8 lysine residues reduced the reaction rate by approximately 80% but reversed the trend

with ionic strength. It was concluded that lysines are responsible for long-range steering

while the arginine provides local orientation of the incoming molecule near the active site.

Getzoff et al. [44] calculated the electrostatic potential near SOD by treating the

charged groups as point charges. Her results indicate that the electric field produced by

SOD's charge distribution channels the negatively charged substrate into the active site, and

that certain residues have particularly large effects on the field direction. The criterion for

assigning relative significance was the size of the change in the average E-field vector in the

active site channel. By this standard, arg 141, the neutralization of which changes the

average direction of the electric field by approximately 20" at short distances from the active

site, is the most important single residue. Glu 131 and lys 134 contribute significantly to

the E-field direction at ranges greater than about 8,/k.

Several workers have used Brownian dynamics to estimate the importance of

electrostatic steering in the activity of SOD [45-47]; the electrostatic forces in these

simulations were calculated by treating the charged groups as point charges in a uniform

dielectric medium (e = 78) with no added salt. The protein dimer was modeled as a sphere

approximately 30,_ in radius with two reactive caps at the poles (the caps covered about

10"). The 76 charged groups of SOD have been variously approximated as: (i) a single

charge in the center of the dimer, (ii) 5 charges which reproduce the monopole, dipole and

quadrupole moments of the charge dislribution observed crystallographically, (iii) 76 point

charges, and (iv) 2196 partial charges on all non-hydrogen atoms in the dimer. Allison and

McCammon [45] showed that including the dipole and quadrupole moments of the

molecule increased the reaction rate by 40% _mpared with the monopole alone.

They also found that the reaction rate for the charged species was 40% that expected for

uncharged particles. They attributed the small difference in rates to the small potential

energy bander (_< 1 kT at contact) which the incoming superoxide radical must overcome in

;(
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order to reach the enzyme surface. The calculated reaction rates for models (ii), (iii) and

(iv) were approximately the same [46,47]. When the Debye-Hfickel expression for the

potential was used to simulate the effect of salt, the reaction rate reached a maximum at an

ionic strength of approximately 0.03M [45].

In 1986, Klapper et al. [48] employed a finite-difference method to solve the

linearized Poisson-Boltzmann equation in the vicinity of SOD. Charged groups were

placed at their crystallographically measured coordinates and the boundary between the

interior of the molecule and the bulk solution was defined to be the solvent-accesible

surface. Points inside the molecule were assigned c] - 2; those outside, e2 - 80.

Electrically charged groups were represented by fractional charges assigned to the eight

nearest grid points. Klapper's calculations showed that the surface charge distribution and

molecular shape of the enzyme combine to create a large "target" area of positive potential

to attract the negatively charged substrate. As ionic strength increases, repulsion from the

negatively charged region decreases at the same time the effective target area is reduced; the

latter effect dominates the former, accounting for the trend in enzyme activity.

Subsequent versions of this technique can now handle the nonlinear Poisson-

Boltzmann equation. One limitation of the finite element method, however, is that

computer memory requirements rise rapidly as the resolution of the finite difference grid is

increased. These finite difference calculations are typically performed with grid spacing

scaled so the molecule occupies 50 - 75% of the domain [49]. Such scaling is adequate

when the substrate is small enough compared with the enzyme that it can be treated as a

point charge, but the interactions between molecules (or molecules and macroscopic

bodies) are infeasible.

Brownian dynamics simulations of the association between cytochrome c and

cytochrome c peroxidase were performed by Northrup et al. [50]. They modeled the

proteins as spheres with embedded charges to reproduce the monopole and dipole moments

of the molecules calculated from the crystallographic locations of the charged groups. The



most significant finding was a reaction rate enhancement of an order of magnitude resulting

from mutual alignment of the enzymes by their large dipole moments (300D - 500D).

Virtually no work has been published on the interaction of charged proteins with

macroscopic objects (such as crystals); this situation is addressed in the study described in

Chapter 4.

1.8 Present Work

For reasons outlined earlier, the research in this project is divided between an

experimental study on the effect of forced convection on protein crystal growth (Chapters 2

and 3) and a theoretical study of the interaction potential between crystals and protein

molecules in solution (Chapter 4). The former is a response to hypotheses about the role of

buoyancy-driven natural convection in protein crystal growth [9,10,35,37,40], while the

latter is intended to describe some of the complex interactions experienced by protein

molecules near the crystal surface.

There is a certain amount of ambiguity in the results of the crystal growth

experiments. Differences in experimental conditions restrict most of the analysis to trends

within a given experiment instead of a comparison of flow and quiescent experiments.

Certain theoretical predictions of crystal growth behavior can be tested, however, and some

possible mechanisms can be ruled out in this manner. Mass transport does not seem to

limit crystal growth under the conditions studied, so future research may be better spent

exploring other phenomena of crystal growth. A comparable level of uncertainty pervades

the calculation of interaction potentials, but again transport from the bulk dogs not seem

crucial. In conjunction with the experimental findings, the results suggest that a study of

processes occurring near the crystal surface.may be worthwhile.
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CHAPTER 2

Description of Protein Crystal Growth Experiments

2,,Lla z  aim

The conflicting reports of experimentally observed effects of convection on protein

crystal growth [ 1,2], coupled with the negative findings of order-of-magnitude calculations

of proposed disruptive mechanisms [3], prompted this experimental investigation into the

existence and magnitude of flow effects. An examination of published results showed no

data on crystals significantly larger than 100 lam, precisely the range where transport

effects, if any, would become manifest [3]. A series of studies was planned to establish

the baseline behavior of large (> 100 _m) lysozyme crystals, both in the presence and

absence of forced convection.

This chapter can be divided into two pans: (i) the history of the experiment's

purpose and procedure, and (ii) the methods developed to analyze digital images of a

growing crystal and estimate the size and orientation of the three-dimensional crystal.

Although the final experimental set-up is similar to that used by other researchers [2,4-6], it

was originally quite different. Most of the changes in the experiment were made in

response to difficulties in sample preparation. Some of the difficulties in growing

lysozyme crystals which can be used for growth studies are discussed at some length

below.

The analysis of crystal images is considerably more routine than growing the

crystals. The geometric information contained in a picture of a crystal can, with certain

assumptions, be reduced to list of crystal vertex locations for quantitative analysis. The

construction of three-dimensional ideal analogues for a given crystal image allows crystals

in almost any orientation to be studied. Given the difficulties associated with producing

isolated single crystals, and the need to measure many crystals to establish baseline

behavior, even a slight increase in the fraction of usable crystals is a boon to investigators.
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Nevertheless, some crystals are extremely difficult to interpret and cannot be measured with

these techniques.

The intent here is to trace the evolution of [he crystal growth experiment before

describing the final system. Sample preparation and experimental procedure are then

decribed, followed by the results of measurements of effluent fluid taken from the growth

cell. The geometry of an ideal t_tragonal lysozyme crystal is then presented in order to set

the stage for interpreting the digital images. Ideal analogues are compared with the raw

images, and limitations of the method are discussed. Finally, some additional observations

are presented before concluding.

2.2 Evolution of the Crystal Growth Ex_riment

The goal of these experiments was to measure the growth rates of single crystals

over a much larger size range than had been done before. By continuing measurements

into the 100 lam - 1 mm size range, the experiment would provide baseline information on

the long-term behavior of protein crystals, especially the reported cessation of growth [7].

If such a phenomenon were observed, the manner in which growth stopped would provide

clues to the responsible mechanism. Furthermore, the extent to which convection

contributes to growth cessation could also be evaluated by comparing the rates at which

crystals grew in the presence of forced convection and in its absence.

As originally conceived, the experiment called for size measurements of isolated

crystals growing on a "sting," a glass fiber approximately 50 lam in diameter, well away

from the walls of the growth cell. Crystals on a surface probably grow differently from

isolated crystals in solution, so the sting was proposed as a means of reducing the effect of

the substrate by reducing the area of contact. The sting was suspended from above and

mounted on mierotranslators to allow xyz translations of the fiber, as weU as rotation about

the z axis. Crystals growing anywhere on the fiber could be selected for observation;

orientation effects could be studied by selecting suitably oriented crystals. The microscope
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was placed on a rotary table so that simulated stereo observations of a given crystal could

be made from two angles for three-dimensional modeling. When convective effects were

studied, crystals could be positioned in the midst of the bulk flow, which would be easier

to characterize than the region near the walls. The flow field experienced by the crystals

would, presumably, be less influenced by the fiber than by the cell walls, at least near the

base of the fiber.

This approach was eventually abandoned because the strict requirements imposed

by the experiment could not be satisfied regularly. It was sometimes difficult to obtain

satisfactory images of the crystals for several reasons. The lensing effect of the curved

fiber produced a bright halo which obscured the edges of the crystal. The crystal

positioning scheme, which permitted observation of any crystal on the sting, also hindered

development of an optical train which could consistently produce clear images of the

crystal. The relative positioning of illuminator, microscope, fiber, and crystal changed

from crystal to crystal and required a great deal of adjustment between measurements. In

addition, the fibers swayed when immersed in solution and this motion was more

pronounced as fiber length increased. This motion may have resulted from building

vibration and/or weak convection in the growth cell. The digitizing board used to capture

images requires 1/30 of a second to record an image, and the vibration frequency was such

that pictures were too blurry to interpret, even when using microscope objectives as weak

as 10X.

Since measurements were to be made on only a few crystals during any one

experiment, fast growth was required in order to build up a statistically significant sample

in a reasonable time. Unfortunately, small particles of protein formed quickly from the

highly supersaturated solution and scattered light, making the solution too murky to see the

crystals on the glass fiber. The turbidity of the solution could have been reduced by using

lower protein concentrations, but experimental requirements placed a premium on rapid

crystal growth (high protein concentration). The contradictory requirements of quick
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growth and a clear optical path between the sting and the front cell wall could not be

resolved, and this approach was abandoned.

2.3 Control of Crystal Nucleation

The most serious difficulty encountered during this project was consistently

nucleating single crystals which were sufficiently separated from their neighbors for use in

growth experiments. Although sample preparation was standardized as much as possible,

results were inconsistent. Early exploratory experiments in which lysozyme powder (as

received) was dissolved in warm buffer at a concentration of 100 mg/ml, diluted with an

equal volume of 100 mg/ml NaC1 solution in buffer, and transferred to vials made of soda-

lime glass, were uniformly successful. In this context, success was judged as the

formation and growth of relatively large (> 100 _tm) crystals which could easily be

distinguished from their neighbors. These initial successes were not readily transferred to a

system where size measurements could be made.

The most common result was a cluster of many small crystals which grew into a

single mass. Discussions with protein crystallographers revealed that batch-to-batch

variation due to trace contaminants is a common phenomenon in protein crystal growth.

Durbin and Feher [2], for instance, used SDS-PAGE electrophoresis to detect the presence

of some sort of contaminant in the lysozyme supplied by their vendor. Similar

measurements performed here found no evidence of contaminants, either in samples

prepared from lysozyme powder as purchased or in protein solutions which had sat in the

laboratory for two months. Nevertheless, several procedural changes were made in order

to reduce possible interference by extraneous, undetected species. Protein was dissolved in

buffer at room temperature to reduce the possibility of thermal denaturation which might

increase the variability in the experiment. The dissolved protein was then dialyzed against

buffer in hopes of removing low molecular weight contaminants that might denature the

protein or act as nucleation sites. The new procedure did not consistently increase the
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number of suitable crystals. Filtering and centrifugation of the protein solutions produced

comparable results.

A scr_ning was performed to assess the effects of each preparation step and the

role of the substrate on the size and number of lysozyme crystals. A large batch of protein

soluti.on was prepared by dissolving the protein powder (as supplied) in buffer. Samples

of solution (as dissolved) were diluted with 100 mg/ml NaCl in buffer and transferred to

vials of various types of glass, some of which contained stings of different glasses. The

remainder of the protein solution was divided into smaller portions which received different

treatments. The most elaborate treatment sequence was dialysis, centrifugation, and

filtration; other portions were treated with only one of the three methods. Samples were

removed after each step in the process, diluted with an equal volume of 100 mg/ml NaCl in

buffer, and transferred to the vials. No obvious qualitative differences among the cleaning

treatments could be discerned; crystals formed regardless of treatment history. The nature

of the substrate, however, did affect the size and number of lysozyme crystals.

Some measure of control was gained by adjusting the concentration of protein in the

solution from which crystals were nucleated. The nucleation rate had been reported to be a

function only of protein concentration and not supersaturation [g]. A reduction in protein

concentration reduced the number of crystals while increasing the fraction of usable

crystals. The clarity of the optical path also improved. Crystal growth rates were so

sharply reduced as a result of the lower protein concentration, however, that it was no

longer feasible to study only a few crystals per experiment. The experiment was modified

to observe crystals growing on the cell walls so that reasonable sample populations .could

be measured in a single experiment. Although the new experiment relaxed the requirements

set forth earlier, obtaining crystals which could be used for the experiment remained

haphazard.
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2.4 Samole Preparation

The procedure detailed here produced the crystals measured during the experiments.

No statement is made about the reliability of the method. There is a significant stochastic

quality to crystal growth, even in well characterized systems. Protein systems, which are

not well characterized, show even greater variability.

Two liters of buffer (pH 4) were prepared by dissolving 20.0 g of fused anhydrous

sodium acetate (FW 82.03, Fisher) and 50 ml glacial acetic acid (Fisher) in deionized water

and diluting to the mark in a volumetric flask. Twenty-five grams of lysozyme powder (L-

68"/6, Sigma, grade 1, 3X crystallized, dialyzed and lyophilized) were dissolved in buffer

to form 1 liter of solution. One liter of precipitant solution was prepared by dissolving

100.0 g of NaCl in buffer. A triple beam balance was used for all weighings; the

uncertainty in each value is + 0.05 g.

Some white floe-like material formed during dissolution or shortly thereafter;, more

formed while the solution was stored for use. In addition, the protein solution was slightly

turbid. Both the protein and precipitant solutions were pumped through a prefilter (AP15,

Millipore) to remove foreign matter and extremely large aggregates of protein. The protein

solution, which contained no visible floc strands and was markedly clearer after this step,

was loaded into the feed reservoir for use in the experiment. The solutions were not

cleaned further because each cleaning step removed some protein and experience had

shown that elaborate cleaning procedures have only a marginal effect on crystal formation.

LS..agv.gaaa

A schematic diagram of the crystal growth experiment is shown in Figure 2-I. A

two-channel syringe pump (Harvard Apparatus) supplied feed solutions at room

temperature to the reservoirs in the constant temperature recirculating bath (RMS-6,

Lauda). Glass cold traps having a capacity of approximately 85 ml were used as

reservoirs. The solution entering the reservoir displaced fluid that had already equilibrated
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Figure 2-1" Schematic diagram of protein crystal growth experiment.
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with the bath. After leavingthe reservoirs,the fluidsflowed through approximately 1I0

cm of 0.16 cm (I/16")ID Tygon tubingbeforemerging ina "Y." An additional40 cm of

0.32 cm (I/8")ID Tygon tubingconnected the "Y" with thecellentrance.Totalhold-up in

thefeed lineswas estimatedtobc 2.1ml of each solutionupstream of themerge and 3.3ml

of mixed solutiondownstream. The effluentflowed through approximately 30 crn of 0.32

cm ID tubingbcf0rcreaching the sample port,where itcould bc diverteddown a final45

cm of 0.32 cm tubingforcollectionin scintillationvialsforlateranalysis.Thc volume of

effluentinthe linesbetween thecellexitand sample collectionpointwas approxirnatcly6.1

rnl.All tubingwas flushedwith scvcralhundred millilitcrsof dcionizcd water priortothe

expeimcnt.

Crystalswcrc grown ina fused quartzspectrophotometcrcell(type66-Q, Uvonics)

with a water jackct. Thc dimcnsions of thc growth chambcr wcrc 0.4 cmx 1.0cmx 3.8

cm (width x depth x height).Feed solutionenteredthecellinthe lower rightrearcomer of

thecell(as viewed from the microscope) and effluentdepartedatthe reartop center.The

horizontaland verticalpositionof thc cellcould bc adjustedwith a rack and pinionwhich

was, in turn,mounted on a translationstagc.The range of travelpermittedobservationof

allbut the bottommost few millimetersof thc ccll. Scc Figure 2-2 for a pictureof the

cell/microscopeasscmbly.

A Mitutoyo Fincscope FS 50 microscope was used toinspectthc growing crystals.

Thc microscope was custom-mounted horizontallyso itcould bc used toexamine crystals

growing on verticalsurfaces.The microscope could bc rotatedabout the cellbecause it

was mounted on arotarytable,a holdover from the designof theoriginalexperiment. For

thiscxpcrimcnt,the angle was not changed afterthe initialalignment. Observations wcrc

made using transmittedlightprovided by a fiber-opticring light(series180 Fibcr-Litc,

Dolan-Jenncr) positioned behind the growth cell;the only illuminationcontrol was

brightness.
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Figure 2-2: Crystal growth cell/microscope assembly.

Video images, which were produced by a Sanyo VDC 3800 charge-coupled

television (CCTV) camera were displayed on an Hitachi Denshi VM-920 monitor for

framing and focusing. Suitable images could be captured by a Matrox PIP-640B frame

grabber which was installed in an IBM PC-AT. Image files were copied to magnetic tape

for long-term storage. Captured images were displayed on a Mitsubishi HF 1400 rgb

monitor for analysis. A Mouse Systems mouse was installed on the PC-AT to provide

cursor control when measuring crystals. Measurement software, which consisted of calls

to Matrox-supplied "primitive" routines and mouse driver routines, was written by the

author.
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A highly supersaturated slug of protein solution was injected into the growth cell,

where it remained until crystals could be observed on the side of the cell. The cell was

flushed with fresh growth solution at lower supersaturation prior to digitizing the initial

pictures of the crystals. For the quiescent experiment, the initial slug was prepared by

slowly adding NaCI to the stock protein feed solution until the solution became cloudy.

The salt concentration of the slug was approximately 100 mghnl (0.5 g NaC1 added to 5 ml

of protein feed solution). Crystals were first clearly observed after approximately 4 hours.

Repetition of this procedure for the flow experiment produced many highly crowded

crystals which seemed likely to grow into large masses. Slug preparation was modified to

reduce the number of nuclei formed rapidly and to relieve crowding. The final procedure

was to mix 6 ml of protein feed solution with 5 rnl of buffer solution saturated with NaCI.

The mixture was injected into the cell as before. Crystals were observed after 75 - 80

minutes, at which time the forced convection was started. The volumetric flow rate was

approximately 1.87 + 0.04 I.tl/s, corresponding to an average velocity of 46.7 -1-0.9 Bm/s /acco

based on the 0.4 cm 2 cross-sectional area of the growth cell. _ !:_ t,

During the first digitizing pass, crystals were included for study based on two .!_I. _

criteria: they had to be visible through the 10X objective of the microscope and sufficiently

isolated that they would not impinge on each other early in the experiment. The wall of the

growth cell was surveyed in a "switchback" pattern progressing from one corner of the cell

to the diagonally opposing corner. Quiescent crystals were inspected starting in the upper

left corner while the search for flow crystals began in the lower right corner. Subsequent

imaging passes through the crystals followed the same sequence established during the

initial pass.

Numbers were assigned to each image in the order they were added to the sample

population. Image files were named according to the date and order in which they were
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made. The names of all crystal images start with "X," followed by the date (year-month-

day) and a suffix indicating the order in the sequence; for example, X900512.002 was the

second picture taken on 12 May 1990. After capturing an image, the file name, time, and

microscope objective used were written onto the stored image so that this information could

not be accidentally separated from the image. Each crystal was named according to the

experiment and frame in which it appeared. Thus, crystal XQ008001 was the first crystal

measured in the eighth picture of the quiescent experiment and XF033002 was the second

crystal in the 33rd frame of the flow experiment. When more than one crystal appeared in a

picture, the order of selection was arbitrary. Crystals appearing in more than one picture

were named according to the frame in which the measurements were made. These naming

conventions were violated occasionally when crystal measurements were repeated;

successive attempts were treated like measurements of additional crystals, although only

one set of measurements was included in the analysis. A crystal's name provides some

information about its position: crystals at the end of the sampling sequence were at the top

or bottom of the cell; crystals with sequential names were nearer than those with widely

differing names.

Samples of effluent were collected at least once a day so that conditions in the

growth cell could be determined ex post facto. Samples from the quiescent experiment

were obtained by opening the sample port and flushing the cell and lines with enough fresh

solution to displace the fluid originally in the cell into a scintillation vial. Flow samples

were taken by opening the sample port to allow the forced convection to flush the effluent

line; collection started after a reasonable time had passed. Flow samples probably tracked

cell conditions better than the quiescent samples because the feed to the collection vial was

continuous, while quiescent sampling was a sporadic event. A small aliquot

(approximately 0.5 ml) of the supematant was removed by pipet and diluted to 10 ml in a

volumetric flask for later measurement. The dilution was necessary to make the solution

unsaturated and to put the ultraviolet absorbance by the protein into an easily measured
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range. Measurementsof pH, sodiumconcentration,andproteinconcenu'ationweremade

on all samplescollectedin bothexperiments.The sampling was intended primarily as a

check for serious problems since, in light of the relatively slow growth rates previously

reported [4-6], these values were not expected to vary greatly over the course of the

experiment. No correction was possible, even if real-time measurements had been made,

because no active control was in effect.

During the quiescent experiment, fresh feed solution was introduced to the cell in

order to maintain a constant protein concenwation. This was usually done at the same time

the samples were taken so that excessive solution was not required. There was no rigid

schedule for replacing the solution since the concentration was not expected to change

rapidly. As a result, the volume of fresh solution infused each time was not closely

measured. The infused volumes were, however, slightly larger at the beginning than at the

end. Drifts in protein concentration were not expected to be significant during the flow

experiment.

The syringes in the pump were refilled whenever the volume in each fell below

approximately 10 ml. This caused no disruption during the quiescent experiment since the

pump was normally off, but the forced convection was interrupted briefly to resupply the

syringes. The procedure was to turn off the pump, open the refilling port, and infuse fresh

solution with loaded syringes. The syringe pump was set to a higher speed and air was

bled from the lines through the refilling port. The refilling port was closed, the pump

speed reset, and the experiment resumed.

2.7 Measurements of Samoles

The pH of the stored samples was measured using an EA 940 expandable ion

analyzer (Orion Research, Inc.) with pH and reference electrodes (MI-405, MI-409)

obtained from Microelectrodes, Inc. After calibration with two standards (pH 4.00 and pH

7.00, Fisher), measurements were taken in random sequence. Instrument drift required a
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one-point recalibration after every 5 - 7 samples; pH 4.00 standards were used. A two-

point calibration was performed after 24 samples had been measured. The pH of samples

from the quiescent experiment was 4.02 ± 0.04, while flow samples had pH 3.99 :t: 0.03.

The reported uncertainties are the unbiased estimates of the population standard deviations.

The samples were diluted by an additional factor of 1:5 prior to measuring sodium

concentration. A sodium-selective electrode (MI-.420, Microelectrodes, Inc) and the EA

940 ion analyzer were used. A 10,000 ppm sodium stock solution was prepared by

diluting 100 ml of a 10% sodium standard (Orion Research, Inc.) to 1 liter in a volumetric

flask. Calibration standards with 100, 250, and 500 ppm added sodium were prepared by

adding appropriate amounts of 10,000 ppm stock solution to 10 ml of sodium acetate/acetic

acid buffer and diluting to 1 liter in volumetric flasks. These standards had approximately

the same background sodium and hydronium concentrations as the diluted samples. The

corrections for background signal caused by the buffer and for instrument drift are

described in Appendix A. NaCI concentrations of quiescent samples were measured at

52.1 + 5.8 mg/ml ; after an initial upward transient, flow samples contained 51.7 ± 4.9

mg/ml NaCl.

Protein concentration was determined from UV absorbance at 280 nm based on a

A1%(w/v)value of "'280 nm = 26.35 ± 0.13 for a 1 cm light path [9]; 1%(w/v) = 10 mg/ml.

Measured effluent stream protein concentrations are plotted in Figure 2-3. Measurements

were made in duplicate using a Beckman DU 64 spectrophotometer and the average value

was reported after correcting for dilution. The largest deviation from the mean was 0.15

mg/rrd and the standard deviation for all measurements was less than 0.05 mg/ml. In each

experiment, there is an interval over which the protein concentration is constant within

statistical error at the 95% confidence level. These intervals are marked by double-headed

arrows in Figure 2-3. The sample mean and 95% confidence limits of the measurements

are also shown.
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Figure 2-3: Protein concentration in growth cell effluent solution.
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protein concentration as a function of elapsed time. The calculated slope is not
statistically different from zero at the 95% confidence level. The mean protein
concenwation and 95% confidence limits are marked on the figure.

(a) Quiescent experiment. (b) Flow experiment.
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The initial concentration during the quiescent experiment was initially 11.07 mg/ml

and decreased to 8.84 mg/ml. In conwast, the protein concentration in the effluent from the

flow experiment was initially 7.24 mg/ml, climbed quickly to 10.06 mg/ml, and remained

constant until the pump failed after 4600 min had elapsed. Prior to the flow experiment,

the system was flushed with large amounts of deionized water, so the initial transient in

effluent protein concentration may record the reintroduction of protein solution into the

system. The longer, downward transient in the quiescent experiment may reflect the

gradual depletion of the highly supersaturated nucleation slug and its displacement by the

less supersaturated growth solution. Although the variations in protein concentration may

not seem large, a strong concentration dependence is implied by empirical growth rate

expressions of the form (C - Cs°t) n. With values of n reported in the range 2 - 4 [2,4,5]

and the large range of reported solubilities (3.5 mg/ml [6] to 6 mg/ml [10]), crystal growt h

rates could change drastically during the experiment. In the statistical analysis of the

experiments (chapter 3), the different trends in the two experiments prevent a direct

comparison of the results.

The formation of a floc-like network of f'flaments (Figure 24) was observed in both

experiments. During the quiescent experiment, the filaments formed a layer along the left

wall of the cell; filaments were observed in the lower middle region of the cell in the flow

experiment. The presence of such strands has been reported before in experiments

perfom'_ at similar protein concentrations [1 ].
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Figure 2-4: Floc-like structure formed during protein crystal growth
experiments.

2.8 Geometre of Tetra2onal Lvsozvme Crystals

The shape, or habit, of an ideal tetragonal crystal is a right rectangular bipyramidal

prism (Figure 2-5a) in which the pyramidal caps axe formed by the {I01} faces

(parallelograms) and the sides of the "box" axe formed by the hexagonal { 110} faces. In

the figure, the faces have been made opaque to enhance the three-dimensional effect. The

line connecting the tips of the pyramids is designated the z axis (denoted 3) of the crystal;

lines from the centroid of the crystal normal to the hexagonal faces define the x and y axes

AA
(x,y). As a result of the symmetry in the crystal habit, the selection of top and bottom is

arbiffary. Similarly, the assignment of_ (or _) unit vector is also axbi_ary. The coordinate

^^
system defined by (_,y,z) is the "standard" coordinate system, which will be used for all

measurements. Various dimensions are defined in Figure 2-5b, which shows the crystal in

Figure 2-5a with transparent faces. The overall height, Hx:aZ, of the crystal is the distance

between apices, while the face height, Hf, measures the separation between top and bottom

pyramidal caps. LI01, the distance between parallel [ 101 } faces, is simply related to Hztal

by L{01 =Hztal cos ]3. The {If0} dimension, L110, is the distance between parallel

hexagonal faces of the crystal. The angle, ]3, between the _ axis and the normals to the

[ 101 } faces was measured to be 24" 10" [l I], which is relatively close to the theoretical
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value of 25" 36" calculated from unit cell dimensions reported by Palmer, Ballantyne and

Galvin [ 12]. All calculations were performed using the theoretical value.

Some additional reference points on the crystal are required for clear analysis. Each

of the 18 vertices on the crystals is labeled as shown in Figure 2-6. Vertex A is always at

the top (in the standard coordinate frame), while vertex R is at the bottom.Verdces, A, B,

D, N, P, and R all lie in the _ plane, while vertices A, C, E, O, Q, and R are contained in

the _ plane. The 12 faces of the crystal, and the vertices defining them, are defined as in

Table 2-1. The 28 edges formed by the intersection of the faces have five distinct slopes

and are grouped accordingly (Table 2-2).

Table 2-1

Crystal face nomenclature for tetragonal lysozyme crystals.

Face Type

1 [101)

2 {101}

3 {101}

4 {101)

5 {110}

6 {110}

Vertices Face

A,B,G,C 7

A,C,H,D 8

A,D,I,E, 9

A,E,F,B 10

B,F,J,N,K,G 11

C,G,K,O,L,H 12

Type

{110)

1110}

{101}

{lOll

11o11

1101}

Vertices

D,H,L,P,M,I

E,I,M,Q,J,F

R,N,K,O

R,O,L,P

R,P,M,Q

R,Q,J,N

The aspect ratio and orientation can give lysozyme crystals appearances which are

significantly different from that of the crystal in Figure 2-5; some examples are shown in

Figure 2-7. For descriptive purposes, the aspect ratio is defined to be:

Ell= H xta..._.._Ll (2. I),
L110

where the subscript H denotes it is based on H_aal. The aspect ratio could also have been

based on L101:
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Figure 2-6: Vertex nomenclature.

Table 2-2

Edge classification for tetragonal lysozyme crystals.

Type

1

2

3

4

5

Edges

AB,CG,EF,LO,MQ,PR

AC,BG,DH,JN,MP,QR

AD,CH,EI,JQ,KO,NR

AE,BF,DI,KN,LP,OR

FJ,GK,HL,IM
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_ = L.__ (2.2).
L11o

Each definition has its advantages: ¢4/conveys a belier sense of the geometry of the crystal

because maximum and minimum dimensions arc included, while _ is a direct measure of

the relative growth of { 101} and { 110} faces. The choice is a matter of personal

preference since the two are related by a factor of cos _), and they differ from each other by

less than 10%. In Figure 2-7, the crystals lie at some orientation with respect to the

"laboratory" coordinate frame, which is a fight-handed coordinate system with the xy plane

in the page (+x axis pointing to the right, +y axis pointing up) and the +z axis pointing out

of the page towards the reader. The angles reported in Figure 2-7 are those describing the

directions of the ._ and _ axes of the crystals in the laboratory frame described above. The

back wall of the cell, which slices through the crystal, can give crystals a decidedly odd

appearance (Figure 2-8).

2.9 Inte _rpretation of Difital Images

When the experiment became a study of crystals growing on a wall instead of a

sting, the full three-dimensional reconstruction of the growing crystal was no longer

possible. Some general estimate of crystal size was required since the growth rates of

single faces could not be measured. An obvious choice was the projected area of the

crystal as it grew: each observable growing face made a contribution to the projected area of

the crystal, and some orientation-averaged growth rate could be obtained from

measurements of the time rate of change of the crystal's area. This method of analysis,

however, required that the orientation distribution of the quiescent crystals closely resemble

that of the flow crystals, a hope which was quickly extinguished by a cursory inspection of

the first twenty crystals from each experiment.

Nevertheless, if the geometry of the crystals grown during the experiments is

relatively close to ideal, two-dimensional projections (images) of the crystals can be used to
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construct a "best-fit" ideal crystal. Dimensions of the ideal crystal, in turn, provide

estimates of the actual crystal size for assessing the effects of convection on crystal growth.

(a)

C/-/-- 0.7

0x = 60.8", 0x = 223.4"

Oz = 72.1", ez = 123.0"

(d)

E:H= 2.0

Ox = 60.8 °, ¢x = 223.4 °

Oz = 35.2", Oz = 5.8"

(b)

e/¢ = 1.0

Ox = 60.8", ¢x = 223.4"

Oz= 72.1", ¢z = 123.0"

(e)

EH = 2.0

Ox = 45", ex =45"

Oz = 90", Oz= 315"

(c)

et-/. = 2.0

Ox = 60.8", Ox = 223.4"

Oz = 72.1", ¢z = 123.0"

OO

ell= 20

Ox = 90", ¢x = 0"

Oz=O"

Figure 2-7: Effects of aspect ratio and orientation on crystal appearance.
(a-c) Crystals have same orientation but aspect ratio increases from left to

right.
(c-f) Crystals are the same size but their orientations are different.

From the outset, this was recognized as an extrapolation from the data; no claim was made

that the dimensions calculated from this method were correct, or even unique, only that the
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projections of the ideal crystals were close to those of the real crystals. In previous work

[2,4-6], the effect of orientation on the apparent size of crystals was either neglected

entirely or reduced by selecting crystals oriented "cleanly" with respect to the optics. By

explicitly accounting for differing orientations, the restrictions on suitable crystals were

relaxed and the potential sample pool was incrr,m_

Figure 2-8: Growth of crystals on rear wall of cell.
Only one pyramidal cap is visible on these crystals. The rear wall slices through the
crystals at an arbitrary angle, so the edges of the crystal in contact with the walldo
not satisfy ideal geometry.

The measurement programs described here were written in Microsoft C 5.0 on the

IBM PC-AT used for the experiments. The intent was to reduce the 307.2 kilobytes

required for each picture (640 horixzontal pixels x 480 vertical pixels) to a list of

coordinates which could be analyzed by separate programs written in FORTRAN on an

IBM 3081 mainframe computer. Although tedious and sometimes confusing in practice,

the measurement procedure was straightforward in theory. All pictures of a given crystal

were "previewed" in order to determine whether the vertices were sufficiently recognizable

that an ideal crystal could be mentally superimposed. A crystal was removed from further

study if its orientation could not be estimated, it was hopelessly crowded, could not be well

focused, or combinations of the above. Examples of crystals which could not be

interpreted are given in Figure 2-9. Crowding by neighbors (Figure 2-10) and walls

(Figure 2-11) did not always interefere with interpretation. In Figure 2-10a, what appears
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to be the upper crystal of the contacting pair is actually an amalgam of at least two crystals;

the lower crystal seems to present a [ 110) face, but the vertices could not be located

clearly. In contrast, the crystal pair in Figure 2-10b could be easily distinguished despite

their marked interpenetration. In Figure 2-10c one crystal seems to be above the second,

which can be seen through the first. Figure 2-10a is from the quiescent experiment, while

the crystals in Figure 2-10b-c are from the flow experiment. The presence of the side wall

of the cell did not always prevent measurements of crystals, as demonstrated by crystal

XF015001 (Figure 2-11).

If the crystal could be identified clearly, vertices were marked in a sequence

consistent with the model crystal shown in Figure 2-6. Only visible vertices were marked;

hidden vertices were omitted. Computer programs written to calculate best-fit ideal crystals

required that the "upper" pyramidal cap be included in all measurements, so crystals with

only one visible apex were marked as though they pointed upward. When vertices of both

caps were visible, the choice of top and bottom was arbitrary.

when the visible vertices in each picture of a given crystal had been marked, the

information was written to a disk file. The information included in this data file was: a

character string identifying the image file from which the crystal was selected, the elapsed

time from an arbitrary zero, the power of the objective used to take the picture, and the list

of coordinates including a status identifier. The status identifier of vertex i, 8i, was an

integer acting as a binary switch to indicate whether the vertex was marked; _ = 1 when the

vertex was visible and 0 when the vertex was hidden. When the file was written to disk,

the logical coordinate system of the digitizing board and mouse driver (origin in upper left

comer, x increasing to the right, y increasing downward) was converted to the "laboratory"

coordinate frame (origin in upper left, x increasing to the fight, y increasing upward). Note

that in the laboratory coordinate system, the crystal was digitized from directly above (z ---¢

oo). After each frame had been measured, the operator could enter relevant comments

about the crystal. These comments, along with a copy of the information described above,
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were written into a "log" file for later inspection.

against _kk, ntal loss of the data file.

The duplication was also a safeguard

Figure 2-9: Examples of uninterpretable crystals.
Vertices corresponding to those of the ideal crystal cannot be identified on these
crystals. The bias introduced by omitting uninterpretable crystals is unknown.

2,10 Determination of Crystal Orientation

The method for determining the orientation and size of lysozyme crystals is

presented in this section (orientation) _d section 2.11 (crystal size). The author developed

the technique based on the geometry of the ideal lysozyme crystal without reference to the

work of others. The approximate nature of the estimates has already been mentioned

(§2.9) and limitations of the method are discussed below (§2.12). The software was tested

by comparing calculated orientations and dimensions with the known values used to

generate two dimensional projections of ideal crystals; calculated dimensions were usually

within a few percent of the known values except when crystal orientation made "depth
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perception" inaccurate. The accuracy of the estimates for real crystals can be determined

only when the true dimensions of the crystal are known. Of course, if the actual

dimensions were known, there would be no need for the technique.

All the necessary information to determine the orientation of an ideal crystal is

contained in the angles of the edges, of which there are only five distinct types (see Table

2-2). This information can be represented by a "stencil" constructed by drawing unit

vectors at the appropriate angles from a common origin. An example of such a stencil and

its normalized projection onto the xy plane of the laboratory coordinate system is shown in

Figure 2-12. The angles between vectors in the two-dimensional projection depend on the

stencil's orientation, as can be seen by comparing Figures 2-12 and 2-13. Assigning an

orientation to a given crystal in the experiment is a matter of finding the stencil orientation

which most closely approximates the measured angles.

The main assumption underlying the calculations is that the images are orthographic

projections of ideal crystals. Under the assumption of orthography, parallel edges of the

crystal would also be parallel in the image. Normally, pictures violate this approximation

only when the depth of field is large enough that perspective effects become significant. In

this work, there were no gross violations of this approximation because the back wall of

the cell prevented crystals from growing away from the microscope and the limited focal

depth of the microscope restricted observation to those crystal which did not show obvious

foreshortening. A second assumption is that the orientation of the crystal did not change

during the experiment so that all measurements could be pooled to obtain a single

orientation for the crystal. Since the crystals were anchored to the walls of the cell, this

assumption seems reasonable.

Estimates of crystal orientation are made by the program ANGLE based on the

coordinates supplied in the data file. After reading the status and coordinates of all vertices

in each picture of a given crystal, ANGLE determines which of the 28 edges appear in the

image by multiplying the status indicators of the two points defining the edge. If the edge
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is present in the image, its type is identified, and the vector describing the edge is

normalized. Thus, the angle of the edge is represented by a two-dimensional unit vector

having the same slope as the measured edge. Measmen_nts of the same type of edge are

grouped by adding the point corresponding to the x and y components of the resulting unit

vector to any previous measurements. A pooled estimate for the angle of a given 2-D

stencil edge is obtained from the slope of the line connecting the origin of the stencil to the

centroid of all measurements for that edge. Data for the crystal XF014001 are used for

illustration (Figure 2-14a).

Figure 2-10: Influence of crystal contact on interpretation.
(a) The crystals in contact do not display recognizable vertices. The upper

crystal of the pair is actually two crystals which had grown together
earlier.

(b) These crystals, although intergrown, retain their identities and can be
measured.

(c) Crystal on the right appears to be closer to the microscope than the other.
Both crystals can be measured.
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108min 491min 1432min

mln ,mln mm

Figure 2-11: Time series for crystal XF015001.
Vertices on this crystal were easily identified, so it could be measured despite its
contact with the right hand wall of the growth cell.

The centroid method for determining the average slope was chosen because it is

simple and robust. The major drawback of the method is that each measurement is

weighted equally, even though the relative uncertainties in measurement are larger for short

lines than for long ones. Other methods for calculating average edge angles were not

investigated because the accuracy of the measurments did not warrant further refinements.

Assigning relative weights for each type of edge is a related issue. Equal weighting for

each edge type present in the image was rejected because the relative freqency of occurrence

could vary widely. The confidence limits of the "average" or characteristic angle are

expected to shrink as the sample population increases. Greater weight should be attached

to those edges with more measurements. An analogy with least-squares analysis of pooled

expefimentaldata [13] might suggest that the relative weight for each edge should be
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Figure 2-12: Orientation stencil when standard coordinate frame is aligned
with laboratory frame.

(a) 3-D stencil. (b) Normalized 2-D projection onto xy plane.
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(a)

O_ = 45", 0_ = O"

Oz = 45 °, ¢z = 180"

Y

(b)
1.°t

J

0.5-
m

y 0.0"< 3

-0.5-

-1.0 , ,
-1.0

2

||wlw

0.0
X

' ' I ' ' ' ' I ' ' ' '
-0.5 0.5 1.0

Figure 2-13: Orientation stencil when standard coordinate frame is rotated

45* about the _ axis through the stencil origin.
(a) 3-D stencil. (b) Normalized 2-D projection onto xy plane.
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1°t
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3
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-1.0
-1.0 -0.5 0.0 0.5 1.0

X

(b)

X

Figure 2-14: Orientation stencils for crystal XF014001.
(a) Points are measurements of edge angles. Arrows represent "average"

angles determined by connecting stencil origin with centroid of
measurements for each type of edge as indicated.

(b) Measured average edge angles are compared with "ideal" best-fit stencil
projection. Solid lines are measured values; dashed lines are best-fits.
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inversely proportional to its sample variance. When only one measurement is available for

a given edge, however, the sample variance is undefined. Instead, the relative weight of

edge k was taken to be the relative frequency of its measurements: wk = ngN, where wk =

weight of edge k, nk = number of measurements of edges of type k, and N = total number

of measurements for a given crystal. This method reflects the greater confidence resulting

from larger sample sizes, although not in a fashion rigorously supported by statistical

reasoning. This weighting was chosen largely because it is simple and reasonable.

Two-dimensional projections of the ideal stencil, such as those in Figures 2-12 and

2-13, are compared with the measured angles to determine the orientation of the crystal.

The orientation of the crystal is taken to be the same as that of the stencil which best

The selection criterion is the minimization of thedescribes all the measured angles.

objective function:

where

G i(0,.¢x,0._)= [F(O,.¢_,O_,¢,)+ _k=16kwk _]
(2.3),

1, if at least one edge of type k is present (2.4),6_ = O, otherwise

wk is the relative weighting of edge k, 7k is the angle between the measured and ideal

projections of edge k, and F(Ox,_,Oz,¢z) is an empirical "avoidance" function to prevent

orientations in which the normals to { 101 } faces lie in the x'y plane of the laboratory

coordinate system.

In certain cases tested during the development of the analysis programs, the

calculated dimensions of the crystal were extremely sensitive to the orientation of the { I01 }

faces. When the planes of the { 101 } faces were nearly orthogonal to the xy plane, slight

variations in orientation could produce a tenfold change in calculated size. The avoidance

function was introduced during this stage in the development in order to reduce the erratic

behavior of the calculated crystal dimensions. The avoidance function is
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4

E (-5000n .z) (25),
j=l

where nj._ = z component of the normal to face j. The function has a steep decay, falling to

1% of its maximum when the angle between the normal and the plane is :£-0.03 radian

(1.7"). A difference of 2" is small when compared with the estimated accuracy of the

measurements, but makes a large difference in providing consistent size results for Lt01.

Subsequent changes in the methods of computing crystal sizes diminished the need for an

avoidance function, but its presence in Equation (2.3) acts as insurance against a poorly

selected dta set. In this work, the effect of F is negligible in most cases, since orientations

with small angles between the { 101 } normals and the Xy plane were rare. Typical values

of GI are less than 0.05 for almost all crystals, with many crystals giving values of GI <

10 -4. In a few cases, the assigned orientation is relatively close to forbidden; the maximum

value of Gl is approximately 0.05, which would indicate a { 101 } normal within 0.02

radian (1.4") of the xy plane.

The search for a suitable orientation begins by aligning the standard coordinate

frame _,_,_) with the laboratory frame (x,y,z) and placing the ideal 3-D stencil at the

origin of the laboratory frame. An initial value of G1 is calculated for this starting

orientation. The ideal stencil is "rocked" 0.1 radian (approximately 5.7") about the

laboratory y axis in each direction and G1 is evaluated for both potential orientations. In

what is basically the method of random descent, a new orientation is accepted only if it

produces a new minimum value of G1. The stencil is then rocked about the laboratory x

axis, G1 is calculated for both possible orientations, and a decision is made to accept or

reject the new orientations. The process is repeated for rotation about the z axis, to

camplete the sequence. Rotations about each of the axes in the laboratory frame are

repeated cyclically until a local minimum is reached. This coarse position is used as a

starting point for a finer search (step size 0.05 radian), which in turn sets up a final search

using a step size of 0.01 radian. The global minimum is found by repeating the entire
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procedure starting from all initial orientations in which vector 5 is aligned with each

coordinate axis. The best-fit stencil is compared with the measured angles for crystal

XF014001 in Figure 2-14b

2.11 Calculation of Ideal Crystal Dimensions

The method used to determine the dimensions of ideal crystals, unsurprisingly,

depends heavily on knowledge of the crystal geometry and the estimated orientation

discussed above. As long as the five unit vectors (vl - vs) are related to their standard

stencil counterparts _1 - 05) through a simple rotation about the stencil origin, the

coordinates of each vertex of the ideal crystal in any coordinate system can be written in

terms of the vector from the origin to vertex A (denoted Pl), the appropriately rotated

stencil unit vectors, and crystal dimensions (Table 2-3). Note that use has been made of

the relation H_aat = Hf + 2a L11o, where a = 2 (_A - _B) / L110 = 2 (_1 - 32) / L1 to reflects

the pitch of the { 101 } faces in the pyramidal caps. Henceforth, vertices will be designated

by the numbers given in Table 2-3 instead of by letters. Although inspection of the

equivalent vectors in Table 2-3 shows that a full description of the location and shape of an

ideal crystal is contained in only five variables (the three components of Pl, L110, and tt/),

only four of these variables can be used to fit the projected image: xl, Yl, Ll10, and Hr.

These variables are defined to be, respectively, the four unknowns of interest, sl - s4.

When the following notation is introduced:

Oxi

Px'i'J=

_Yi

the coordinates (xi, Yi) of vertex i can be written in terms of s_ as:

4 4

Xi= E Px.i. jSj , Yi= E ey.i.jsj

j=l j=l

(2.6),

(2.7).
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Table 2-3

Position of vertices in arbitrary coordinate system.

i

Vertex Number Equivalent vector

Pl1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

P2- Pl +½Vl LIIO

P3 = Pl +_v2 Lllo

P4 = Pl + ½ v3 LI 1o

P5 = P_ +_v4 Lifo

P6 = Pl + 2£(vl + v4)L110

P7 = Pl + 21-(vl + v2)Lllo

Ps = Pl + 2J-(v2 + v3)L110

P9 = Pl + _(v3 + v4)L110

Plo = Pl +½(vl + v4)L110 + V5 HI

Pll = Pl + 2J-{Vl + v2)LlIo + V5 H/

P12 = Pl +_(v2 + v3)Lllo + v5 H!

PI3 =pl +½(V3+V4) Lll0+V5 H/

PI4 ffi Pl +½(Vl + a vs)Lllo + v5 H I

P15 = Pl +½(v2+ avs)Lllo+ v5 H I

P16 = Pl + 2£(v3 + a vs)L110 + v5 H I

P17 =Pl + 2&{v4 + av5)Lllo + v5 HI

P18 = Pl + 2_v5 L1_o+ v5 H/

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R
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Once an orientation has been assigned to the crystal and the stencil unit vectors have

been rotated accordingly, an ideal crystal is superimposed on the image so that its vertices

are as close as possible to the measured vertices. Vertices are placed in order to minimize

the objective function:

18

c2- E a,[¢ x,f + y,F] (2.8),
i=1

where (_i, Yi )denotes the measured coordinates of vertex i, while the coordinates of the

corresponding ideal analogue are (xi,yi). The presence of vertex i in the measured data set

is indicated by the value of tSi:

1, if vertex i is present (2.9).¢5i= 0, otherwise

A direct substitution of Equations (2.7) into Equation (2.8) casts the objective function into

a form which is amenable to a linear least-squares minimization:

i=1 j=l j=l

(2.10).

The four normal equations arising from partial differentiation with respect to each of the sj

can be solved in matrix form:

A S = B (2.1 I),

where

and

18

Aj,k = Z

i=l

_i( Pi.14 Pi, l,k + Pi.2j Pi,2.k)

18

i=I

(2.12)

(2.13).

In the event that the data set lacks sufficient information to determine HI', it is simply

omitted. A is then a 3 x 3 matrix, while S and B become 3 x 1 column vectors.
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When Equation (2.11) has been solved for S by the FORTRAN program

IDEAL3D, the coordinates of all the vertices of the ideal crystal can be calculated (provided

that all four sj could be determined). Again, the example of crystal XF014001 is used to

compare the raw images with the ideal analogues (Figure 2-15). L101 and L110 for

XF014001 are plotted against elapsed time in Figure 2-16. The time series of crystals

XQ005002 and XQ023001 are shown in Figures 2-17 and.2-18; orientation measurements

and calculations are compared in Figure 2-19, while the calculated dimensions are shown in

Figure 2-20. L101 was not calculated for either of these crystals because no points in the

lower pyramidal cap had been measured. The entire process is summarized for crystals

XQ002001 and XQ002002 in Figure 2-21, where the raw image, vertex markings, and

best-fit ideal crystal are displayed in successive panels.

2.12 Limitations of the Ideal C_stal Approximation

There are two levels of approximation in the analysis: (i) marking the vertices in a

manner consistent with ideal geometry, and (ii) the calculation of the dimensions of the

ideal analogue. The effect of each is shown Figure 2-22, where the raw images, vertex

markings, and ideal crystals are compared for four different crystals. Symmetry

constraints of the ideal crystal result in a slight displacement of the best-fit vertices from the

marked vertices, although this displacement is small in most cases. The situation shown in

the bottom row of Figure 2-22 (crystal XQ023001) is common: the { 101 } face in the lower

left is significantly smaller than the others, reflecting a faster growth rate. Compared with

the ideal crystal, crystal XQ023001 has an extra vertex which cannot be interpreted in the

current scheme. In most cases like this, the apex of the pyramid was marked along the

edge connecting the two vertices so that the calculated value of Lll0 characterized the

overall dimensions of the crystal reasonably well. In this particular case, the vertices at

the comers of the small { 101 } face were not marked because the angles of the resulting

61



106min 487min

1850min

Not measured

106 min

1850 min

100 lain

487 min

2891 min

4407 min

10o pm

1430 min

4407 min

Figure 2-15: Comparison of crystal XF014001 and ideal analogue.
(upper half) Digitized images of crystal XF014001 taken dunng experiment.
(lower half) Ideal analogues calculated to same scale as actual images.
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Figure 2-16: Calculated dimensions of crystal XF014001.

edges might introduce a large error in the calculated fits. In Figure 2-23, the effect of

approximation (ii) is isolated; the asymmelry is caused primarily by unequal {110} growth

rates. Clearly, image analysis requires some judgment on the part of the researcher.

A crystal's appearance can change as a result of asymmetric growth of equivalent

faces. The time series for crystal XQ033002 demonstrates the apparent disappearance of

{101 } faces over the course of the experiment (Figure 2-24). The requirement that all
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Figure 2-17" Time series for crystal XQ005002.
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Figure 2-18: Time series for crystal XQ023001.
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Figure 2-19: Comparison of measured and ideal edge angles for crystals

XQ005002 and XQ023001.
(top row) Arrows are drawn from stencil origin to centroid for each edge.

(bottom row) Measured stencil points (i) and ideal stencil (17) are
coincident.

pictures be marked consistently sometimes produces questionable vertex placements, as

illustrated by comparing the measurements and calculations of XQ033002 at two diferent

times (Figure 2-25). Two interpretations, differing in the angle between the hexagonal face

and the xy plane, are possible. Early pictures favor a steeper pitch, while later images
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I
suggest the {1 I0} face is almost parallel to the back wall of the cell.

view, it is extremely difficult to determine which is correct.

Without a full stereo
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Figure 2-20: Calculated {110} dimensions for crystals XQO05002 and

XQ023001.

It is reassuring that inaccurate measurements produce inaccurate results which are

easy to detect. This point is made emphatically in Figure 2-26, which compares

measurements of XQ033001 at two different times. Crystals XQ033001 and

XQ033002 were selected for inspection because their calculated growth rates seemed to be

inconsistent from one interval to the next. In some cases, measurements of L101 indicated

shrinkage, a phenomenon not expected in a supersaturated solution; no calculated shrinkage

of L110 was found. Some of the uncertainty arises from "depth perception" problems

discussed briefly in section 2.10 in conjunction with the empirical avoidance function
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Figure 2-21" Summary of measurement steps for crystals XQ002001

XQ002002.
(a) As digitzed. (b) As marked. (c) Ideal best-fit analogue.

and
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As digitized As marked Ideal best-fit

Figure 2-22: Summary of measurement steps for four different crystals.
(top row) XF014001. (second row) XF050001.
(third row) XQO05002. (bottom row) XQ023001.
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Figure 2-23: Ideal analogue of an asymmetric crystal.
The {110} face on the left grew faster than the one on the right, producing the
asymmetric morphology shown.

(a) As digitized. (b) As marked. (c) Ideal best-fit analogue.

[Equation (2.5)]. Note, however, that the calculated Lll0 is relatively close to the apparent

size of the crystal in Figures 2-25 and 2-26. The robustness of L110 permitted the use of

all measurements in the statistical analyses of chapter 3; Llol was not included because

there were fewer measurements (particularly of quiescent crystals) and they were less

reliable.

2.13 Additional Observ0fion_

There is a great range in appearance of lysozyme crystals. Some, like those shown

in Figures 2-11, 2-15, 2-17 and 2-18, are easy to interpret. Others, like XQ033002

(Figure 2-24) seem to change their appearance and have no clear interpretation. Quiescent

crystals seem to have more internal defects than crystals subjected to convection. In

Figure 2-22, for instance, compare the flow crystals in the top two rows with the quiescent

crystals in the bottom two rows. These are not isolated instances; most crystals from the

flow experiment are easier to interpret and measure than comparable quiescent crystals. On

the whole, quiescent crystals exhibit more incomplete layers and missing corners than do

flow crystals. The development of a heavily defect-laden quiescent crystal is shown in

Figure 2-27. No comparably flawed flow crystal was found during the experiment.
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347 rain 721 min 1524 min

2988min 4431min 6236min

7432min 8707min

l1543min 13012min

Figure 2-24" Time series for crystal XQ033002.

14378min
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] As digitized As marked Ideal best-fit

Figure 2-25: Change in the appearance of crystal XQ033002 with time.
The requirement that the crystal be marked consistently is not always easily met.
The distance between parallel {110} faces still seems reasonable despite the
uncertainty in orientation.

(top) 1524 minutes. (bottom) 14378 minutes.

Crystals exhibiting growth over only parts of a surface were unexpected (Figures 2-

28 and 2-29). Durbin and Feher [2] reported that when a crystal had been aged in an

unstirred solution for 51 days and then placed in a supersaturated solution, rapid growth

resumed only in isolated locations on the surface. When they repeated the experiment with

a crystal several days old, growth resumed uniformly over the surface. Although it is

difficult to judge the height of the growth layers from their figures, the length scale of the

growth "patchiness" (approximately 5 - 10 lam) is somewhat finer than that observed in this

work (~ 30 - 100 lam). Additionally, Durbin and Feher reported that the surfaces filled in,

albeit imperfectly, after approximately 30 minutes. In the case of crystal XQ041001
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As marked Ideal best.fit

Figure 2-26: Change in appearance of crystal XQ033001 with time.
There is uncertainty in the orientation of the crystal. The best-fit placement of the
pyramid is seriously in error, but the distance between { 110} faces appears close.

(top) 1524 minutes. (bottom) 14378 minutes.

(Figure 2-28), the discontinuity in height was easily visible under a 5X microscope

objective and required four days to fill in the surface. Durbin and Feher suggested that this

partial inactivation of the crystal surface could be related to the cessation of growth which

had been reported earlier [7]. Certainly, the crystals in this study continued to grow despite

an apparent spatial variation in growth rate. The net effect of this observation is to add

another item to the overwhelmingly long list of questions about protein crystal growth.
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2901rain 4348min 6171min

7294 min 8649 min 10101 min

11468 m in 12960 m in 14335 m in

Figure 2-27: Time series for crystal XQ014001.
Crystal displays a large number of terraces which may be incomplete layers.
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378 min "/72 min 1659 rain

3078min 4511min 6281min

7474min 8746min 10244min

l1588min 13050min 14402min

Figure 2-28: Time series for crystal XQ041001.

Shading suggests the presence of incomplete layers starting at 7474 minutes. The

surface has filled in by 13050 minutes. The face in the upper left quadrant seems to
have grown faster than the other { 101 } faces.
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Figure 2-29: Several quiescent crystals with incomplete layers.

2.14 Summary

The growth of isolated single crystals remains largely a matter of chance. The

original design of the experiment imposed strict requirements on the clarity of the optical

path, crystal density, and protein concentration. In the end, these requirements could not

be satisfied simultaneously and the initial approach was abandoned. The experiment was

then altered so that it was similar to earlier reported experiments [2,4-6]. Batch-to-batch

variations plagued the experiments throughout, although efforts were made to clean the

protein to obtain a uniform starting material. No cause for the irreproducibility was

determined. Crystals grown from a single batch of protein solution provided all the data

for this work.

A method was developed to estimate the size and orientation of growing tetragonal

crystals of hen egg white lysozyme. The method relies on the assumption that digitized

images of the crystals are orthographic projections of an ideal crystal onto a plane. The

angles of the crystal's edges are measured by recording the coordinates of all the visible

vertices. The crystal is assumed to have the same orientation as the ideal crystal which

minimizes the sum of the squares of the angles between the measured edges and projections

of the ideal edges. The size of the crystal is taken the be the same as that of the "best-fit"

ideal crystal which can be superimposed on the measured crystal. The accuracy of the
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method cannot be determined without calibration against objects of known dimensions, but

inspection of the superimposed ideal crystals shows that the ideal dimensions are in

reasonable agreement with the raw images. Furthermore, they seem to be internally

consistent.

The method allows crystals in any orientation to be measured, which significantly

relaxes the requirements imposed in previous work [2,6] and increases the potential sample

size. The method produces its best results when the measured crystals are close to ideal,

but the {110} dimension is robust even when the crystal is highly asymmetric; the

robustness of Ll10 holds even when there is a large uncertainty in the placement of

vertices. L101, in contrast, seems highly sensitive to the calculated orientation. The major

advantage of the method, its ability to estimate dimensions of a three-dimensional object

from a two-dimensional image, is also its major limitation: the symmetry constraints of the

ideal crystal preclude measurement of variations in growth rates among equivalent faces.

At the conditions used in this work (lysozyme concentration = 10 mg/ml, 50 mg/ml NaCI,

pH 4), asymmetrical growth of {101} faces was prevalent. A full stereo view is required

to obtain single face growth rates.
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CHAPTER3

Analysisof Experimental Results

Crystal growth experiments provide data on crystal size as a function of time; the

time derivative of crystal size is the growth rate. Statistical analysis of growth rates as a

function of time can be used to determine whether there is a trend. A downward trend in

growth rate is a necessary, but not sufficient, condition to infer that flow has an inhibitory

role in protein crystal growth. Other phenomena, such as changes in the local

environment, may cause crystals to slow their growth over time. Under ideal conditions,

flow effects would be assessed by comparing crystal growth from two experiments

differing only in whether or not crystals were subjected to forced convection. As discussed

in Chapter 2, conditions in the two experiments were not identical, so differences in crystal

growth behavior between the two experiments cannot be attributed entirely to flow without

first assessing the effects of these, other variables. The drift in protein concentration during

the quiescent experiment and the shorter duration of the flow experiment are the two main

differences which cloud interpretation of the results. The effect of sampling bias must also

be investigated as a source of differences in behavior between the two experiments.

A series of statistical tests is applied to the distributions of sample size and growth

rate obtained from the experiment. Trends in these measurements are compared with those

expected from some of the mechanisms proposed to explain apparent convective effects on

protein crystal growth. Based on the trends in growth rate, for instance, a simple

competition between mass transfer and attachment kinetics is ruled out. The crystal

populations within each experiment exhibit a large degree of heterogeneity in their growth

rates, and the latter part of the analysis is a search for the sources of this variation. A series

of contingency tests are then performed in order to determine whether sampling differences

between the two experiments could cause some apparent differences in behavior. Since the
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conclusionsdrawnfrom theexperimentsrely heavilyon statisticalhypothesistesting,an

illustrativesampleof suchatestis anappropriatestartingpoint.

3.2 An Example Statistical Test

Many of the methods employed in the following sections are tests of the null

hypothesis, H0: there is no significant difference between two groups or among several

groups. The difference between groups is deemed significant only when, at a chosen

confidence level, the null hypothesis is rejected because the observed variation is too great

to be attributed solely to chance. Statistical tests of the null hypothesis can be classified

broadly into two classes: (i) parametric and (ii) nonparametric or distribution-free methods

[ 1,2]. Engineers are most familiar with parametric tests such as the analysis of variance

(ANOVA); the assumptions implicit in ANOVA are that the samples are drawn from

normally distributed populations and the populations have equal variances. The variance,

tr 2, is a parameter of the underlying population. Nonpa_ametric tests, which permit

statistical inference based on the rank order (from low to high, for example) of the sample,

do not require the variable in question to be normally distributed or have a "well behaved"

variance. As employed here, nonparametric tests provide a check on the validity of

conclusions drawn from comparable parametric tests.

Statistical tests can be classified as single sample tests or multisample tests

depending on whether the researcher is interested in determining if the sample could have

been selected from a specified (known) population or if two or more samples could have

been drawn from the same (but unknown) population. Examples of each might be "Could

this sample of size N have been drawn from a population of median 50?" and "Could

sample 1 of size N1 and sample 2 of size N 2 have been drawn from a common

population?" Engineers are accustomed to seeing the former question posed in terms of the

mean,/._, instead of the median, but this reflects the implicit assumption of a symmetric
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distribution, for which the meanandmediancoincide. The medianis alsoa measureof

centraltendency[3] andis thepropertyof choicewhenapplyingnonparametrictests.

Supposenow that the secondquestionaboveis to be investigatedunderthe null

hypothesis,H0: both samplesaredrawn from the samepopulation.The nonparametric

"mediantest" is asfollows: (i) all N = N1 + N2 values, xi, are pooled and ranked from

lowest to highest; (ii) the pooled median, x50%, is found; (iii) the number of individual

values from sample 1 larger than x50% is determined (since N is fixed, this counting also

fixes the number of values from sample 2 in the upper half of the pooled sample); (iv)

deviations in the observed number of "high" values from the expected value of Nff2 are

compared with the that expected by chance; and (v) a decision is made to accept or reject

H0. If N1 and N2 are small, all possible rankings of the individual values could be listed

and the probability of a deviation as large as the observed deviation could be calculated

exactly. For large samples, a suitable statistic involving the difference in the mean rank of

the samples can often be found which obeys (at least approximately) a known continuous

distribution; significance of tests are then made by reference to the appropriate value of the

known distribution.

Most of the statistical analyses were performed on a Macintosh Plus using the

commercially available program, StatView SE + Graphics [4]. Extensive descriptions of

the nonparametric tests are given by Siegel [1]. On several occasions, the formulas in the

two sources differed; those given by Siegel were used whenever there was a discrepancy.

Critical values used in assessing significance were obtained from the Chemical Rubber

Company's Standard Mathematical Tables [5] when tabulated, or from routines in the

IMSL statistical library [6]. Where additional sources were used, they are cited in the'text.
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3.3 General Discussion of Results of Crystal Growth Experimen_

Although inferences about the growth experiments are based on statistical tests, it is

important to remember that these tests were developed for samples drawn at random from a

population in order to evaluate properties of the underlying population. The samples in

these experiments, however, are not random; they are images of the first 60 or 70 crystals

which could be located on the walls and appeared sufficiently isolated from their neighbors.

Exclusion of crystals that could not be satisfactorily interpreted introduces another

unknown bias into the samples. The experiments described here are really longitudinal

studies of particular subgroups of protein crystals and not a series of measurements

performed on freshly drawn random samples. Comprehensive statistical tests designed

specifically for this sampling technique are simply not available, so several tests were

applied in the hope that their interpretations would be consistent. Underlying the

discussion that follows is an implicit assumption that the sample, although not random,

adequately characterizes the crystal population.

Crystal sizes as calculated from the method presented in Chapter 2 are shown in

Figure 3-1 and Table 3-1. The crystals are grouped into "rounds" for later statistical

analysis; each crystal is numbered sequentially in the order it was digitized during the

experiment. The calculated distance between parallel {110} faces of crystal i measured

during round n is denoted Li,n. This causes no ambiguity because, as mcntioned in section

2.12, L101 was excluded from statistical analysis. Crystals in round 1 of the quiescent

experiment were large enough and clear enough to be measured with some confidence.

This was not generally the case in the flow experiment, so analysis of these crystals begins

with round 2. The average growth rate of each crystal over a given interval was calculated

from the formula

Gin = .l Li,n - Li,n-I (3.1),
• 2 ti.n ti,n-I
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Figure 3-1" Crystal size as a function of time.
(a) Quiescent experiment, Nq = 39. (b) Flow experiment, Nl = 53.
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Round Nt

Table 3-1

Crystal size by round.

Elapsed
time_ Mean Std. dev. ° Minimum Maximum

(min) _m) (lain) (pm) (_m)

Quiescent

1 32 322 84.98 9.38 50.87 99.03

2 35 662 99.01 9.58 62.69 115.77

3 37 1488 122.94 11.60 82.64 143.06

4 38 2965 156.15 15.10 116.59 188.34

5 39 4411 174.51 17.50 137.68 217.58

6 39 6215 197.12 22.64 156.14 252.02

7 39 7382 211.59 24.56 165.80 270.90

8 39 8688 230.96 28.54 179.20 299.74

9 39 10151 257.03 31.85 201.73 324.01

10 39 11520 280.16 35.25 219.80 351.03

11 39 12997 301.91 38.36 241.35 375.98

12 39 14363 321.74 40.22 256.81 397.44

Flow

2 51 571 100.93 25.64 58.93 140.39

3 53 1518 141.28 28.11 97.38 191.94

4 53 1965 157.56 29.60 111.27 217.44

5 53 2981 190.40 31.75 139.13 258.57

6 53 4503 232.37 37.56 175.03 332.81

Range

(jam)

48.16

53.08

60.42

71.75

79.90

95.88

105.10

120.54

122.28

131.23

134.63

140.63

81.46

94.56

106.17

119.44

157.78

t N is the number of crystals measured during each round.

* Time reported is mean for all crystal measurements during each round.

0 Reported standard deviation is the unbiased estimate for the population,
s [N I(N - 1)] 1/2.
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where Gi,,_ = average growth rate of crystal i over interval n and ti,n = time at which that

measurement was made. Note that each interval is numbered to match the round that ends

it. These growth rates are summarized in Table 3-2 and plotted against tmid,i,n = (ti,n +

ti,n-1)/2 in Figure 3-2. A sense of how the calculated growth rate tracks the protein

concentration can be gained from the traces in Figure 3-2 representing the measured protein

concentration (based on optical density at 280 nm) during the expeThnents.

Table 3-2

Crystal growth rates by round.

Round N't Mean Std. dev.* Minimum Maximum Range
(nm/min) (nm/min) (nm/min) (nm/min) (nm/min)

Quiescent

2 32 21.39 4.96 12.06 32.32 20.26

3 35 14.92 3.39 8.72 25.76 17.04

4 37 11.42 1.80 7.48 14.75 7.27

5 38 6.19 1.61 2.10 10.10 8.00

6 39 6.25 2.12 0.46 9.71 9.25

7 39 6.22 1.58 1.95 9.82 7.86

8 39 7.40 2.20 0.04 12.25 12.22

9 39 8.92 2.15 2.47 12.39 9.92

10 39 8.45 1.85 3.61 11.58 7.97

11 39 7.37 1.46 3.84 10.62 6.77

12 39 7.25 2.01 3.16 11.05 7.89

Flow

3 51 20.79 3.33 15.43 30.20 14.77

4 53 18.29 5.06 8.06 36.72 28.66

5 53 16.15 3.64 6.78 25.01 18.23

6 53 13.80 3.80 7.15 27.21 20.05

* N is the number of crystals for which a growth rate could be calculated.

* Reported standard deviation is unbiased estimate for the population,
s [N/(N- 1)] 1/2.
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Figure 3-2: Crystal growth rates as a function of time.
(a) Quiescent experiment, Nq = 39. (b) Flow experiment, N/= 53.

The most striking feature of the experiments is the large range of crystal sizes and

growth rates. As shown in Table 3- I, the range of sizes is typically 50% of the mean for

"quiescent" crystals and 70% for "flow" crystals. Because the relative range in growth
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rates is approximately the same in both experiments (approximately 120% of the mean),

this difference in the relative range of crystal sizes seems to result from differences in the

initial size distribution in the two experiments. Large variations such as these have been

reported by Durbin and Feher [7] and seem to be inherent in the protein crystal growth

process. Accordingly, it is evident that large numbers of crystals must be measured in

order to characterize the size and growth rate distributions of protein crystals. A second

feature of the measurements is that the sample standard deviation is approximately

proportional to the mean. This is commonly observed in growth phenomena where the

variation present at a given stage of growth is proportional to the average characteristic size

at that stage [8]. This is also a characteristic of the log-normal distribution [8,9].

3.4 Statistical Analysis of Average Growth Rate

The simplest hypothesis to test about the crystal growth rate distribution is H0: the

crystal growth rate is constant over the course of the experiment. For each experiment, a

one-way ANOVA was performed with the round as the independent variable and G as the

dependent variable (ANOVA 1 in Table 3-3). In both experiments, the variation between

rounds is significant at the 95% confidence level. One of the assumptions of ANOVA,

which is violated in this case, is that all treatments have the same variance. The relative

standard deviations in all cases, however, are nearly the same, so an ANOVA with In G as

the dependent variable would come closer to meeting the restriction on variance. This

analysis of variance (ANOVA2 in Table 3-3) reveals a significant variation in In G. These

results are confirmed by the Kruskal-Wallis H test. Another nonparametric analysis of

variance, the Friedman Z,2, is well suited for checking differences between matched

samples; the Friedman Z 2 confirms the earlier findings. The null hypothesis is therefore

rejected and the alternative that the growth rate changes is accepted.
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Table3-3

Testsof Ho:growthratesareconstant.

Experiment

Quiescent

Flow

ANOVAlt

F

ANOVA2*

F

Kruskal-Wallis

H

Friedman

226.31"**

90.58***

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.

t Analysis of variance performed on growth rates calculated from method of Chapter 2.
:_ Analysis of variance performed on natural logarithm of calculated growth rates.

In both experiments, crystal growth seems to slow with time. A correlation matrix

(Table 3-4) provides the information to test for trends. When Gi)t is correlated with

tmid,i,n, the sample correlation coefficient, r, is -0.534 for the quiescent experiment and -

0.558 for the flow experiment. These sample correlation coefficients, r, are estimators of

the correlation coefficient of the underlying populations, p. The null hypothesis is that the

growth rates of the population are uncorrelated with time (19= 0). This hypothesis can be

tested against the alternative/9 < 0 by a one-tailed test as follows. The statistic z = (1/2) In

[(1 + r)/(1 - r)] is approximately normally distributed with an expectation or mean of//, =

(1/2) In [(1 + p)/(1 -/9)] and variance (N - 3) -1, where N = sample size [3]. The standard

normal deviate of z, ( = (z - laz)(N - 3) 1/2, can then be checked against a table of the

standard normal distribution to determine if the deviation of the sample correlation

coefficient from the mean could be attributed to chance. Note that under the null

hypothesis, p = 0 and btz = 0. In this one-tailed test, the hypothesis is rejected if _"< _r/t =

-1.645, corresponding to the 95% confidence level. The quiescent sample has Nq = 415

and _'q = -12.1, so the hypothesis pq = 0 is rejected in favor of the alternative pq < 0.

Similarly, Ny= 211 and (f= -9.08 so that the hypothesis pf= 0 is also rejected in favor of

p/< 0. These conclusions are supported by a comparable nonparametric test, the
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Spearmanrank correlation coefficient, rs (Table 3-5), which correlates the ranks of the

samples instead of the values. The statistic x = rs 4(N- 2)/(I - r_) is distributed as

Student's t with N - 2 degrees of freedom. The values ofx are xq = -10.0 and x$= -I 1.6,

which are certainly far enough from zero to reject the null hypothesis. The downward

trend in crystal growth rates during both experiments is therefore statistically significant at

the 95% confidence level.

Table 3-4

Correlation matrix for both experiments

tmid,i,n

Gi,n

C av.i,n

tmidliln G iln C av.i.n

1.000 --0.558*** 0.866***

-0.534*** 1.000 -0.527***

-0.591"** 0.812"** 1.000

Significance: *p < 0.1; **p < 0.05; ***p < 0.01.

The full correlation matrix is symmetric. Flow experiment correlations are

shown in the upper right half of the matrix; quiescent experiment is in the

lower left. Nf= 211 and Nq = 415.

The trends in protein concentration are different in the two experiments, as can be

seen in the traces of protein concentration in Figure 3-2. Calculations like those above

confirm at the 95% confidence level that the average protein concentration is decreasing

with time in the quiescent experiment but increasing in the flow experiment. The

correlation between average growth rate and average protein concentration in the two

experiments shows obvious differences in behavior. Quiescent crystal growth rates are

correlated to average protein absorbance with rq = 0.812, while growth rates in flow are

correlated with rf = -0.527. One-tailed tests of the hypothesis p = 0 can once again be

made. In this case, however, the alternatives are that pq > 0 and pf < O. The

corresponding _'s are _'q = 22.98 > _crit and _/-= -9.64 < _crit so the hypotheses p¢ = 0
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and pf = 0 are rejected. The conclusion, then, is that the reduction in growth rate in the

quiescent case can be at least partially attributed to decreased protein concentration, but the

flow crystals slow down despite increasing protein concentration. Spearman rank

correlation coefficient tests confn'm these results.

Table 3-5

Spearman correlation matrix for both experiments.

lmid, i,n

Gi,n

Cav,i,n

tmid,i,n G_,n Cqv,i,n

1.000 -0.526*** 0.836***

-0.441"** 1.000 -0.568***

-0.534*** 0.632*** 1.000

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.

The full correlation matrix is symmetric. Flow experiment correlations

are shown in the upper right half of the matrix; the quiescent experiment
is in the lower left. Nf= 211 andNq= 415.

The observed trends disagree with the predictions of quasi-steady mass balances on

the growing crystal [10-12] but are consistent with the experimental results of Pusey,

Witherow and Naumann [13]. Although differences in cell geometry and flow fields

prevent quantitative comparison of the two experiments, the qualitative features of their

experiment are the same as those presented above. When lysozyme crystals were subjected

to forced convection of 18 - 40 p.m/s, Pusey et al. found that growth slowed to 5 - 20% of

initial rates within 4 - 5 hours. The observed effect is significantly smaller in the present

work: the mean lysozyme crystal growth rate fell to 66% of its initial value when crystals

were exposed to a flow of 50 I.trn/s (superficial velocity) over a three day period. The

initial growth rates in both experiments are about half the initial rates measured by Pusey

and coworkers [13]. The current experiments provide clear information only about the

initial behavior of the flow crystals and the long-time behavior of the quiescent crystals.
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Quiescentcrystalsmay show a reduction in growth rate similar to flow crystals, but these

experiments cannot be used to decide the issue. If quiescent crystals show a similar

decrease in growth rate while they are still small, it would be evidence of kinetic control.

This question must be resolved by additional experiments on quiescent crystals.

The flow experiment, which was designed to simulate the effects of buoyancy-

driven natural convection, was interrupted by difficulties with the syringe pump. Natural

convection is present in the quiescent experiment, however, and quiescent data earl be used

to test some hypotheses about the effect of flow on crystal growth. If protein crystal

growth is inhibited by this convection, growth rates should decrease with time. Correlation

coefficients can again be used to test for trends. The correlation matrix of Table 3-4 is not

appropriate for studying long-time behavior because it is dominated by the protein

concentration transient early in the experiment. Tests of the correlation between average

protein concentration and elapsed time at the 95% confidence level show the initial decline

had ended by round 4 (start of interval 5). After 3000 minutes had elapsed, the average

protein concentration was nearly constant, with mean 8.59 mg/ml, standard deviation 0.40

mg/ml, and a range from 8.11 mg/ml to 9.46 mg/ml. These values differ slightly from

those reported in section 2.7 because the quantity of interest here is the average protein

concentration over each interval instead of the measured concentration in each effluent

sample.

The average crystal size doubled from 156 I.tm at the beginning of interval 5 to 322

la.m at the end of the experiment, placing the crystals in the range where convective

transport is expected to be significant [10-12]. The correlation coefficient of growth rate

and elapsed time is r = 0.264 (Table 3-6) based on a sample of 311 measurements. The

standard normal variate is _"= 4.75 > _crit --" 1.645. In fact,the probability that a sample

correlation coefficient as large as 0.264 could have been drawn from an underlying

population with p - 0 is approximately 10 --6. The null hypothesis that growth rate is

independent of time (or decreasing) is rejected in favor of the alternative that the growth rate
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is increasing. If the hypothesis were that growth rate is independent of size, the conclusion

would again be that crystals arc not slowing as they grow.

Table 3-6

Correlation matrix for quiescent crystals beginning in interval 5.

tmid, i,n

Gi,n

C av,i.n

Li.n

tmid,i,n G i,n C _v,i,n Li.n

1.000

0.264*** 1.000

0.054 0.262*** 1.000

0.843*** 0.517"** 0.054 1.000

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.

The full correlation matrix is symmetric. N = 311.

Any phenomenon that causes protein crystal growth to stop ("cessation of growth")

must become active after the crystal has reached 300 lain in size because there is no

evidence of slowing over the range 150 - 300 I.tm. Crystals are reported to reach a

"critical" size of about 1 mm before they stop growing [14]. This is a tight constraint on

any models which attribute an inhibitory effect to free convection, especially since the

strength of the convective effects increase slowly with crystal size. Based on the scale

analysis mentioned in section 1.5, the characteristic velocity scales as L 1/2 and the shear

stress scales as Ltl4; at 1 mm, the characteristic velocity and shear stress are only 1.8 and

1.4 times as large as they are at 300 lam. Longer, better-controlled growth experiments

ought to provide a clearer picture of long-term behavior of protein crystals.

3,5 Comparison of the Dispersion in Growth Rate

In addition to affecting the mean of the growth rate distribution, flow might affect

the dispersion about the mean. The effect of flow on the dispersion of growth rates can be

studied once the samples have been put on a comparable basis. As mentioned above, the
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sample standard deviations are approximately proportional to the sample means; i.e., sz/X

= 7, where 7 = relative standard deviation. Transforming the sample random variable x

into a new random variable _ = x/X reduces a sample distribution ofx having mean _ and

variance s_ to an equivalent distribution having tm.an'_- 1 and variance s_ ---s_ / _2 _ y2"

Differences between the transfom_ sample distributions now result only from differences

in the shape of the empirical distribution functions and can be tested with any technique that

s

can detect such differences.

An F-test is one method to determine if the dispersion of the normalized growth

rates in the two experiments is consistent with the hypothesis that the underlying

populations are the same. The variances of each normalized sample from the quiescent

experiment are pooled under the null hypothesis that they are independent measures of the

(unknown) variance of the underlying population of quiescent crystals. A similar estimate

is made of the variance of the normalized growth rates from the flow experiment, and the

two estimates are compared to see whether the samples could have been drawn from a

unbiased estimator of the quiescent variance is o_q = 6.36common normal distribution. The

10 -2 based on Nq - 11 = 404 degrees of freedom; the flow variance is o_f -- 5.76 x 10 -2X

based on Nf- 4 = 206 degrees of freedom. The overall value ofF = 1.10 is less than the

estimated value of Fcrit = 1.23, so the pooled variances of the two experiments could be the

same at the 95% confidence level. In fact, the pooled variances in the two experiments

differ less than do the estimates within an experiment. If the normalized growth rates are

follow a log-normal distribution, the results are: o_q= 7.52 x 10- 2, of/= 5.35 xassumed tO

I0-2,and F = 1.40> Fcrit.Ifthegrowth ratesare log-normal,thedifferenceinvariance is

significantat the 95% level,and the flow crystalshave a narrower distributionthan the

quiescent crystals. As before, the difference between experiments is smaller than

differences within experiments.

Sample variances and means are sensitive to outlying values and can vary widely,

especially when the distributions are broad. The nonparametric Kolmogorov-Smirnov test,
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which is less sensitive to outliers than the F-test, can be used to test the hypothesis that the

samples were drawn from an hypothetical distribution. In this case, two forms of the

distribution function are proposed and the Kolmogorov-Smimov test is applied to test for

goodness of fit. The first hypothetical distribution is a normal distribution with mean/I = l

and variance a 2 = _, while the second is a log-normal distribution with mean/.l = 1 and

variance a 2 = exp(fl "2) - I, where fl is the standard deviation of the transformed

(logarithmic) distribution [9]. The normal distribution was chosen because its behavior is

familiar to many engineers; the log-normal distribution was chosen because its standard

deviation is naturally proportional to the mean. For each sample, the upper and lower

bounds for yand fl were the maximum and minimum values for which the null hypothesis

was accepted by the Kolmogorov-Smimov test at the 95% confidence level (see Table 3-7).

By resmcting the range of values to those lying between the greatest lower bound and the

smallest upper bound, it is possible to find values for 7and fl which satisfy all samples

taken from both experiments. The tightest restrictions are placed on 7by the flow crystals,

which require 0.165 < 7_< 0.175. (Values of 7are reported to the nearest one-thousandth

because the limits are so strict.) fl can range from 0.17 to 0.22. The conclusion of the F-

test under the assumption of a log-normal distribution, namely that the distribution of the

normalized growth rates of flow crystals is narrower than that of quiescent crystals, agrees

with the results shown in Table 3-7.

Goodness-of-fit tests can also be applied to crystal size distributions. Dispersion in

the initial crystal size distribution partially masks changes in the shape of the distribution

with time, so a better sense of the cumulative effect of growth rate dispersion can be gained

from an examination of net crystal growth. The net growth, Li,n - Li,ref, is also suitable

for goodness-of-fit testing and is insensitive to the initial size dispersion. Reference

lengths were chosen to be Li, l for the quiescent experiment and Li,2 for the flow

experiment. A single normal distribution can describe the net growth as long as the relative

standard deviation is in the range 0.13 < 7< 0.15; a log-normal distribution describes the
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data if 0.13 </3 < 0.22 (Table 3-8). No clear choice can be made between these two

proposed distributions, so later tests are performed on both the raw values and their

logarithmic ¢xluivalents.

Table 3-7

Extreme standarddevia_ons of normalized growth ratedistributionsfrom

Kolmogorov-Smirnov goodness-of-fittests.

Round Normal disu'ibudon Log-normal distribution

Quiescent

2 0.099 0.609 0.10 0.47

3 0.092 0.409 0.10 0.51

4 0.077 0.340 0.08 0.38

5 0.104 0.515 0.12 0.50

6 0.153 0.698 0.16 0.50

7 0.094 0.456 0.10 0.45

8 0.132 0.561 0.13 0.44

9 0.086 0.499 0.09 0.37

10 0.117 0.400 0.12 0.39

11 0.110 0.411 0.12 0.42

12 0.133 0.569 0.15 0.58

Flow

3 0.095 0.175 0.10 0.22

4 0.158 0.220 0.15 0.35

5 0.114 0.396 0.13 0.36

6 0.165 0.491 0.17 0.43
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Table 3-8

Extreme standarddeviationsof normalized netgrowth distributionsfrom

Kolmogorov-Smirnov goodness of fittests.

Round Normal distribution Log-normal distribution

r,,in #,,,i,,
Quiescent

2 0.08 0.58 0.08 0.46

3 0.07 0.40 0.07 0.35

4 0.08 0.32 0.08 0.31

5 <0.05 0.34 <0.05 0.34

6 0.09 0.39 0.09 0.45

7 0.09 0.37 0.09 0.46

8 0.11 0.39 0.11 0.45

9 0.II 0.40 0.12 0.44

10 0.12 0.37 0.13 0.40

11 0.12 0.31 0.13 0.40

12 0.12 0.31 0.13 0.39

Flow

3 0.09 0.15 0.09 0.22

4 0.09 0.25 0.09 0.24

5 0.11 0.26 0.10 0.23

6 0.13 0.29 0.12 0.25

The results presented in this section suggest that crystals grown under nominally

quiescent conditions have a greater relative dispersion in growth rates than crystals

subjected to flow. Growth rate measurements have ranges of 120- 130% of the mean for

both flow and quiescent crystals. The wide distribution of rates produces "outlying" points

frequently, causing large fluctuations in sample means and variances which weaken the

ability of the F-test to discriminate between the two experiments. Kolmogorov-Smirnov

goodness-of-fit tests show that all samples in both experiments could have been drawn

from the same underlying population but cannot distinguish between proposed normal and

log-normal distributions. Other than the narrower distributions in the flow experiment,
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there is no statistically significant difference between the two experiments. The shapes of

growth rate and net growth distributions from the two experiments are similar and change

only slightly over the course of the experiment. One inference from these resdts is that the

same basic distribution of growth mechanisms is present in both cases. A second

inference, based on the approximately constant relative standard deviation of the growth

rate, is that whatever mechanism retards crystal growth is proportional to the growth rate.

3.6 Local Environment as a Source of Variance

The large range of growth rates discussed above may result from an inherent

phenomenon of protein crystal growth or from heterogeneities in local environment. Rank

order of crystal growth rates provide insight into how well "mixed" the distribution of

growth rates is. If crystal growth rates are drawn from a single population, one might

expect the rank assigned to a certain crystal to vary throughout the experiment in some

random fashion. If all the crystals are equivalent, the final rankings should be only weakly

correlated with initial ranldngs. A high degree of correlation, on the other hand, would

indicate that the initial growth rate dominates the behavior of the sample, environmental

influences dictate growth rate distributions, or both.

For each experiment, Spearman rank correlation coefficients, rs, were calculated for

both the growth rate over each interval and the net growth (Tables 3-9 and 3-10). Most of

the correlation coefficients are significantly greater than zero. The overall agreement of the

rankings can be tested with the Kendall coefficient of concordance, W. The average

Spearman correlation coefficient is related to the Kendall coefficient of concordance by ?s

= (/_W - 1)/(/c- 1), where/c = number of sets of rankings [1]. The significance of W' can

be tested with the statistic x = k (N - 1)W, which has a Z2 distribution with N - 1 degr_s

of freedom; N = sample population. N = 32 and/c = 11 in the quiescent experiment, while

the flow experiment has N = 51 and k = 4. Quiescent growth rates are internally correlated

with ?S.,ate = 0.39, W,ate = 0.44, and x,aze = 152; rankings of quiescent net growth give
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Round

3

4

5

6

Table 3-10

Spearman correlation matrix for flow crystals

Round

3 4 5 6

1.000 0.424*** 0.232** 0.440***

0.883*** 1.000 0.426*** 0.474***

0.651"** 0.811"** 1.000 0.548***

0.613"** 0.741"** 0.548*** 1.000

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.

The full matrix is symmetric. Correlations of growth rates are in upper fight half;
correlations of net growth are in lower half. N ---51.

?s,,,,r= 0.74, W_t = 0.77, and x_t = 262. Both xrate and xr_t exceed the critical value of

Z2crit = 44.7 (p < 0.05, 31 df), so the internal correlation is deemed significant. Flow

crystals follow the same pattern, with ?S.rate = 0.42, Wrate = 0.57, and xra_e = 114, while

?s,,,,et = 0.77, Whet = 0.82, and Xnet = 165; XXcrit = 67.2 (19 < 0.05, 50 dr). The overall

consistency of the rankings reflects the breadth of the growth rate distributions and

suggests there may be an inherent reason why some crystals grow faster than others during

the experiments.

The rankings of growth rate have statistical significance, but the reasons are

unknown. Factors governing the relative growth rates can be divided into two classes:

initial conditions, and environmental factors which determine long-term behavior. The

current experiments provide no insight into the early stages of crystal growth, but can be

used to determine whether environmental factors contribute to the apparent stratification of

the growth rate distribution. The significance of environmental effects is tested in the same

fashion as before: a suitable null hypothesis is presented and the statistical test provides the
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criterion for acceptance or rejection. The focus of the experiments is on possible u'ansport

effects, so it is natural to examine environmental variables which could affect the

accessibility of growing crystals. The local environment of a target crystal is defined to be

the region within which a neighbor would perturb the depletion zone surrounding a

diffusion-controlled spherical crystal. A quasi-steady analysis shows the range of the

depletion region around such a crystal is approximately/./2, where L is the characteristic

length (equivalent diameter) of the crystal. The three major variables which were tested for

significance were: crowding, location, and contact.

Two crystals are said to crowd each other when their depletion layers overlap (their

nearest surfaces are within L of each other). The final image of each crystal was displayed

on the monitor and measured with a scale to obtain an estimate of L. The relative crowding

of a given crystal is the number of neighbors lying within an envelope of thickness L

surrounding the target crystal. If the target crystal was touching its neighbors, it was

classified as "in contact;" otherwise, it was "no contact." Contact can be considered a

severe (but difficult to quantify) form of crowding, which is why it is included in the list of

environmental variables. The crystal's location was further divided according to

center/edge and top/bottom dichotomies. A crystal was at the edge if its nearest surface

was within L of a side wall, otherwise it was in the center. Top and bottom classifications

were assigned according to the sampling sequence, as described in more detail where the

test results are presented. Note that these classifications were made based on the final

image of the crystal.

One-way ANOVA was performed on the growth rates over each interval to assess

the significance of crowding as an environmental variable. As summarized in Table 3-11,

crowding has a significant effect on growth rate only over the first interval of each

experiment. The results are the same when In G is the dependent variable. The apparent

early significance of crowding may be an aberration, at least for the quiescent experiment,

because crowding is not judged significant at the 95% confidence level by the
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nonparametric Kruskal-Wallis test. Over the course of the experiment, it seems that

crowding does not play a large role in determining crystal growth rates.

Table 3-11

Effect of crowding on crystal growth rates.

Round

Quiescent

2

3

4

5

6

7

8

9

10

11

12

Flow

3

4

5

6

ANOVAIt
F

2.539*

0.817

0.597

0.557

0.162

0.290

1.244

0.201

1.084

1.918

0.797

2.729*

0.335

0.872

0.760

ANOVA2)
F

3.375*

0.860

0.563

0.488

0.177

0.190

0.997

0.182

1.000

1.888

0.836

2.915"

0.200

0.844

0.396

Kruskal-Wallis
H

5.599

2.998

1.771

1.944

1.144

0.976

2.711

0.778

3.414

6.144

2.587

8.925**

0.250

2.425

1.296

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01. "

Analysis of variance performed on calculated growth rates.

) Analysis of variance performed on natural logarithm of calculated growth rates.

The proximity of a side wall consistendy affects growth rates of quiescent crystals,

at least according to all tests except the Wald-Wolfowitz runs test (Table 3-12). The effect

first becomes significant during interval 3 and remains significant for the duration of the

experiment. Apparently, the protein concentration was lower at the side walls than near the
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Table 3-12

Effect of lateral location on crystal growth rates.

Round

2

3

4

5

6

7

8

9

10

11

12

Flow

3

4

5

6

ANOVAlt

F

2.155

7.811"**

5.592**

7.834***

7.435***

6.636**

9.368***

11.907"**

12.733"**

5.902**

12.896"**

ANOVA2*

F

1.675

9.220***

5.510"*

7.032**

3.446*

8.105"**

5.967**

9.074***

12.731"**

6.351"*

12.916"**

Mann-

Whitney
U

84

65**

84**

77***

83***

87***

75***

63***

70***

104"*

71"**

0.878

0.745

0.069

0.232

0.933 187

1.472 198

0.010 210

0.484 207

Kolmogorov
-Smirnov

Xa

5.303*

6.574**

7.900**

8.292**

12.315"**

7.786**

9.494***

11.029"**

9.494***

4.952*

12.678"**

2.196

2.352

1.413

1.236

Wald-
Wolfowitz

runs

15

12

20

16

12"*

13"

16

16

10"**

16

12"*

19

16

15

18

Significance: *p < 0.1; ** p < 0.05; *** p < 0.01.

* Analysis of variance performed on calculated growth rates.

* Analysis of variance performed on natural logarithm of calculated growth rates.

center. The flow of fresh feed solution through the cell may have left stagnant regions near

the walls. There is no obvious reason why the concentration should differ between center

and edges, but depletion of protein by the growing crystals does not seem to be the cause.

If the crystals are divided into two groups based on their locations, and their growth rates

over intervals 5 - 12 are correlated with both elapsed time and crystal size (as was done in

section 3.3), there is no indication that the two groups show different trends (Table 3-13).
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Examination of the means and standard deviations ofthe two groups shows that crystals at

the edge grow slower and display a greater relative variability than those in the center

(Table 3-14). Crystals from the flow experiment show no significant effect of location.

Table 3-13

Correlation matrix for center and edge quiescent crystals beginning in round 5.

tmid,i,n

Gi,n

Li.n

tmid,iln

1.000

0.318"**

0.886***

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.

G_,n Li,n

0.248*** 0.843***

1.000 0.483***

0.478*** 1.000

The fullcorrelationmatrixissymmetric. Edge crystalcorrelationsare shown inthe upper

righthalfof the matrix;centercrystalsarein thelower left.Ne = I11 and Nc = 200.

The differences between quiescent crystals in the center of the cell and those at the

edge may result from inhomogeneities in the local environment produced by sporadic flow

through the cell. There may also be a top/bottom variation similar to the center/edge effect

already presented. As discussed in section 2.6, the sequence in which crystals were

digitized progressed generally from top to bottom in the quiescent experiment and from

bottom to top in the flow experiment. Crystals can then be classified as "top" or "bottom"

depending on where they fall in the sampling sequence. For purposes of testing the null

hypothesis that there is no difference between top and bottom, the first 19 quiescent

crystals were designated top and the last 20 were bottom. Likewise, the first 26 flow

crystals were bottom and the last 27 were top. Comparisons of the growth rates of the two

groups are shown in Table 3-15. Height seems significant in the early rounds of {he

quiescent experiment, but its significance becomes less consistent as the experiment

progresses. Results for the flow experiment are mixed, with no obvious pattern. When
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net growth is examined (Table 3-16), the early significance of height in the quiescent

experiment dominates the results. The cumulative effect of height is probably significant (p

< 0.1) in the flow experiment.

Table 3-14

Comparison of quiescentcenterand edge crystals.

Round

2

3

4

5

6

7

8

9

10

11

12

Growth rates(nm/min)

Center Edge

Mean Std. dev. Mean Std. dev.

22.30 5.38 19.64 3.63

15.98 3.16 12.90 2.94

11.90 1.67 10.52 1.76

6.68 1.52 5.26 1.40

6.89 1.90 5.11 2.06

6.68 1.14 5.41 1.94

8.13 1.88 6.10 2.20

9.70 1.78 7.52 2.10

9.14 1.37 7.22 1.98

7.76 1.32 6.65 1.48

8.01 1.70 5.90 1.86

Net growth (tim)

Center Edge

Mean Sd. dev. Mean Std. dev.

14.22 3.42 13.68 2.43

40.71 6.11 34.68 4.17

76.03 8.34 65.90 7.42

95.29 11.90 80.76 9.93

120.19 17.84 98.60 14.43

135.94 19.10 111.61 16.95

157.36 23.24 126.73 19.47

185.56 26.20 147.41 21.42

210.68 28.39 166.70 25.00

233.70 28.90 185.86 26.61

255.41 30.43 202,10 30.33

Reported standard deviation is unbiased estimate for the population, s [N/(N - 1)] 1/2.
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Table 3-15

Effect of height on crystal growth rates

Round

Quiescent

2

3

4

5

6

7

8

9

10

11

12

ANOVAI?

F

Flow

3

4

5

6

ANOVA2t
F

3.400*

6.178"*

4.385**

13.310"**

11.950"**

2.649

5.477**

4.996**

12.556"**

11.368"**

7.146"*

2.367

1.295

5.619"*

0.002

0.767

3.110"

6.478**

0.260

1.606

6.410"

8.413"**

0.708

6.098**

0.140

1.325

2.804

5.443**

0.127

0.825

Matm-

Whimey
U

76**

79***

115"

70***

79***

111"*

123"

146

111"*

186

172

273

236**

290

296

Kolmogorov
-Smirnov

8.000 * *

10.111"**

7.443**

11.463"**

11.122"**

6.154"*

7.709**

3.446

9.438***

3.326

6.073**

2.833

6.401"*

4.257

6.506**

Wald-
Wolfowitz

runs

15

13"

16

16

15

20

17

20

19

17

16

24

24

26

21"

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.

? Analysis of variance performed on calculated growth rates.

¢ Analysis of variance performed on natural logarithm of calculated growth rates.
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Table 3-16

Effect of height on net crystal growth.

Round

Quiescent

2

3

4

5

6

7

8

9

10

11

12

Flow

3

4

5

6

ANOVAI?

F

5.068**

0.276

5.314"*

8.435***

ll.0Y_***

11.194"**

10.202"**

8.081"**

8.290***

7.668***

7.084**

2.408

2.597

3.311"

2.929*

ANOVA2*
F

4.974**

0.200

5.770**

9.234***

12.045"**

12.167"**

11.066"**

8.773***

8.917"**

8.554***

8.001"**

2.090

2.066

2.524

2.182

Mann-

Whitney
U

71"*

113

78.5*

63**

54***

59***

59***

68**

69**

70**

75**

279

301

230*

229*

Kolmogorov
.--Smirnov

Z2

_.000"*

1.125

6.125"*

8.000**

10.125"**

12.500"**

10.125"**

10.125"**

10.125"**

10.125"*

10.125"**

2.206

2.305

4.890*

5.491"

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.

? Analysis of variance performed on net growth.

• Analysis of variance performed on natural logarithm of net growth.

Wald-
Wolfowim

runs

14

19

18

16

14

12

16

14

14

15

11"*

30

32

23

29
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Crystals in the upper half of the cell have narrower disu'ibutions of growth rates and

net growth than do those in the lower half (Table 3-17). The behavior of the mean growth

rate is different in the two experiments: crystals at the top grow faster than those at the

bottom during the quiescent experiment, but slower during the flow experiment.

Correlation matrices (Tables 3-18 and 3-19) show that the growth rates of top crystals are

more negatively correlated than bottom crystals with both elapsed time and crystal size.

The significance of the differences in correlation coefiieients can be tested with the statistic

x = (zt - Zb)/(O_ + Crab)l/2,which is approximately normal (0,1). As before, z = (1/2) In

[(1 + r)/(1 - r)] and o"2= (N - 3)-1. The correlations of growth rate and time give values

ofx = -1.64 for the quiescent experiment and x = -138 for the flow experiment. When

the null hypothesis x = 0 is tested against the alternative x < 0, both values are probably

significant (p < 0.1) in one-tailed tests. Correlations of growth rate and crystal size yield

values x = -3.86 and -3.14, both of which are highly significant (p < 10 -3) in one-tailed

tests. Although the reason is not apparent, height seems to influence the trends in crystal

growth.

The effect of crystal contact on growth rate is intermittently significant according to

ANOVA on both G and In G (Table 3-20). The nonparametric Mann-Whimey U test

confirms the significance of contact over rounds 3, 6, 8, 9, and 10 of the quiescent

experiment. The Kolmogorov-Smirnov two-sample test finds contact is at least probably

significant (p <0.1) in all rounds but 2, 7, and 11. The Wald-Wolfowitz test is alone in

failing to reject the null hypothesis. Identical tests on flow crystals uniformly show that

crystal contact is not significant. The apparent significance of contact beginning in round 3

of the quiescent experiment is puzzling. On physical grounds, the effects of contact are not

expected to be important until the crystals are in contact or at least near contact. Tests for

independence (§3.6) show that the probability of classifying a quiescent crystal as "in

contact" depends on its height, so the apparent early significance of contact is actually a

product of top/bottom variations.
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Round

_>uJescent

2

3

4

5

6

7

8

9

10

11

12

Flow

3

4

5

6

Table 3-17

Comparison of top and bottom crystals.

Growth rates (nm/min)

Top Bottom

Net growth (gm)

Top Bottom

Mean Std. dev. Mean Std. dev.

22.94 5.43 19.83 4.03

16.37 3.70 13.70 2.62

12.06 1.26 10.87 2.03

7.06 1.15 5.41 1.59

7.31 1.24 5.25 2.31

6.86 1.37 5.61 1.55

7.95 2.35 6.88 1.97

9.32 2.08 8.54 2.21

9.13 1.14 7.80 2.16

7.38 0.99 7.36 1.83

7.54 1.59 6.98 2.36

20.03 2.42 21.64 4.00

16.64 3.06 20.00 6.13

15.90 3.53 16.41 3.79

13.15 2.75 14.47 4.61

Mean Std. dev. Mean

12.88 2.79 15.19

39.22 6.88 38.06

76.10 7.25 68.99

96.35 9.58 84.24

122.74 12.74 102.79

138.65 13.21 116.50

159.85 17.41 133.81

186.27 20.69 158.62

211.24 23.05 179.88

233.27 22.84 201.24

254.05 23.60 220.12

38.17 4.60 40.85

53.76 6.07 58.02

85.30 9.67 92.48

125.55 17.06 136.95

Std. dev.

3.01

5.55

9.97

13.64

20.33

22.95

27.57

32.95

39.96

40.23

45.22

7.56

12.14

17.78

29.54

Reported standard deviation is unbiased estimator for population, s [N/(N- 1)] 1/'2.
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Table 3-18

Correlation matrix for top and bottom quiescent crystals beginning in round 5.

tmid.ion

Gi,n

Li,n

tmid.i.n Gi,n Li,n

1.000 0.178"* 0.917"**

0.352*** 1.000 0.300***

0.830*** 0.634*** 1.000

Significance: *p <0.1; **p <0.05; ***p < 0.01.

The full correlation matrix is symmetric. Top crystal correlations are shown in the upper
right half of the matrix; bottom crystals are in the lower left. Nt = 151 andNb ffi !60.

Table 3-19

Correlation matrix for top and bottom flow crystals.

tmid, i,n

Gi,n

Li,n

tmid,i,n Gi,n Li, n

1.000 -_.638"** 0.868***

-0.510"** 1.000 -0.472***

0.787*** -0.073 1.000

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.

The full correlation matrix is symmetric. Top crystal correlations are shown in the upper
right half of the matrix; bottom crystals are in the lower left. Nt = 109 and Nb -- 102.
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Table 3-20

Effectof contacton crystalgrowth rates.

Round

Quiescent

2

3

4

5

6

7

8

9

l0

11

12

Flow

3

4

5

6

ANOVA 1?
F

1.317

7.454**

2.775

1.552

15.030"**

0.015

17.084"**

15.394"**

8.804***

ANOVA2*
F

1.129

8.255***

2.987*

0.929

11.660"**

0.062

14.858"**

14.059"**

10.176"**

0.016

0.252

1.391

0.386

0.006

0.225

0.966

0.250

Mamr-

Whitney
U

86

57***

107

107

56***

156

48***

61"**

92***

123

98*

195

176

164

191

Kolmogorov
-Smirnov

Z 2

1.911

9.740***

4.683*

6.240

12.037"**

1.641

11.670"**

9.917"**

6.293**

3.490

7.704**

2.709

1.898

2.202

3.012

Wald-
Wolfowitz

runs

15

12

16

17

16

16

14

12"

18

20

16

15

17

17

17

Significance: *p < 0.1; **p <0.05; ***p < 0.01.

? Analysis of variance performed on calculated growth rates.

* Analysis of variance performed on natural logarithm of calculated growth rates.

It seems odd that the effect of contact should differ in the two experiments. If the

effect results from physical contact, one would not expect forced convection to mitigate the

effect. The absence of an effect in the flow experiment may reflect shortcomings in both

the experiment and the analysis. It is possible that the flow experiment may simply have

ended before the impact of contact was apparent. Final images of flow crystals in contact,

however, show that some of them are highly intergrown. If contact had an effect in the

flow experiment, it should have been evident in these crystals. A more plausible
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explanation, although one which cannot be tested rigorously with current image analysis

routines, is that the apparent reduced growth rates derive from restrictions placed on the

data analysis method. The crystal dimensions reported are those corresponding to the best-

fit ideal crystal which can be superimposed on a given image; growth rates are obtained by

calculating how these ideal dimensions change with time. For highly asymmetrical

crystals, these ideal dimensions may not accurately reflect the u'ue size. The data analysis

routine determines some sort of average growth rate; asymmetries due to contact reduce the

average growth rate by eliminating the contribution of those faces in contact with

neighbors. The orientation of crystals in contact with their neighbors may differ in the two

experiments so that { 110] faces in the quiescent experiment are more occluded than those

in the flow experiment. A thorough survey of all images is required to determine if this

explanation is reasonable. Future experiments should resolve the issue.

Three environmental variables, location, height, and contact, were found to have

significance in the quiescent experiment. In order to determine whether each variable

predicts an independent portion of the total variance, a three-way ANOVA was performed

on the net growth of quiescent crystals with location, height, and contacts as independent

variables. The findings are summarized in Tables 3-21 (net growth) and 3-22 (logarithm of

net growth). As mentioned above, contact is not found to be significant until later in the

experiment, when crystals are in near contact. Each of the three variables accounts for a

different portion of the sample variance, so it is not surprising the quiescent crystals have a

broader distribution than the flow crystals, which can be separated only by height.

Statistically significant variation in local environment (as defined by crystal contact

and location) has been found in both the flow and quiescent experiments. Undoubiedly,

this heterogeneity contributes to the apparent differences in behavior of flow and quiescent

crystals, but the experiments conducted so far provide no way to assess this contribution.

The current experiments suggest there are some effects of flow, but results such as these

must remain suggestive until other factors have been eliminated as causes. Although
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environmental factors confuse the interpretation of the growth experiments in the short

term, the results of this section provide a guide for increasing the utility of future

experiments: redesign the experiment to make crystal environments more uniform.

Table 3-21

Three-way ANOVA of net growth of quiescent crystals.

Round (A)

2 3.68*

3 0.34

4 3.69*

5 6.27**

6 8.84***

7 10.34"**

8 7.29**

9 5.40**

10 5.76**

11 6.04**

12 5.71"*

Contact Loeaaon

0.27 0.33 0.17

5.13"* 7.35** 0.20

2.47 7.42** 0.32

1.40 8.55*** 0.26

3.29* 8.30*** 0.92

1.49 7.54** 0.92

4.19" 10.62"** 0.31

8.14"** 16.20"** 0.08

9.25*** 18.74"** 0.05

8.72*** 18.86"** 0.07

7.92*** 19.71"** 0.10

Intcm+ctions

 AC)  BC) (ABC)

<0.01 <0.01 0.16

0.41 0.79 1.07

<0.01 <0.01 1.94

0.02 0.03 2.37

0.03 0.02 1.61

0.21 0.08 1.12

0.10' 0.06 2.35

0.45 0.16 4.56**

0.34 0.43 4.67**

<0.01 0.01 3.71"

0.06 0.28 3.01"

Significance: * p < O. 1; ** p < 0.05; *** p < 0.01.
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Table 3-22

Three-way ANOVA of logarithm of net growth of quiescent crystals.

ttmla

Round (A)

2 3.18"

3 0.62

4 4.19"

5 7.07**

6 9.84***

7 11.48***

8 8.03***

9 5.88**

10 6.20**

11 7.01"*

12 6.70**

_ntact Location Interactions

(B) (C) (_AB_) (_AC) (BC) _ABC)

0.20 0.18 0.32 0.01 <0.01 0.10

7.04** 9.20*** 0.35 0.79 1.64 1.97

2.70 7.52** 0.38 0.01 0.03 1.80

1.53 8.62*** 0.25 <0.01 0.06 2.22

3.50* 7.76** 1.03 <0.01 0.06 1.33

1.45 7.11"* 0.94 0.38 0.06 0.92

4.24* 10.13"** 0.30 0.04 0.12 2.14

8.90*** 16.06"** 0.05 0.47 0.33 4.77**

10.22"** 18.99"** 0.02 0.35 0.77 4.84**

9.28*** 19.68"** 0.05 <0.01 0.29 3.71"

8.40*** 20.40*** 0.08 0.11 0.57 2.83

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.

3.7 Tests of Sample Properties Not Related to Growth Rates

Differences in the behavior of the sample populations may result from differences in

the way samples were selected. Sampling biases may skew the selection of crystals sb

that, for example, one experiment may have a much higher percentage of edge crystals than

the other. In what follows, the samples are compared with each other to determine if

sampling biases could be responsible for the effects noted in section 3.6. Inferences about

the underlying population can be drawn only if one is willing to assume that the samples

are representative of the population, an assumption that cannot be tested independently.
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Thefollowing testsusecontingencytablesandthe_2 statistic to test for sampling

homogeneity between the two experiments. For example, the contingency table of

crowding level in the two experiments is given in Table 3-23. Under the null hypothesis

that the dislribution of crowding levels is the same in both experiments, the marginal values

provide estimates of the probability of each class: 16.30% with none, 45.65% with low,

26.09% with medium, and 11.96% with high. The expected number of crystals with a

given crowding level is computed for each experiment and the total X2 is then calculated

and checked for significance. In this case, _2 = 6.74 < Z_ra = 7.81, so the hypothesis is

accepted that the crowding class frequencies are the same in both experiments.

Table 3-23

Contingency table of crowding and experiment

Crowding

None

Low

Medium

High

Totals

Experiment
Quiescent Flow

Observed Expected Observed Expected

3 (6.36) 12 (8.64)

19 (17.80) 23 (24.20)

14 (10.17) 10 (13.83)

3 (4.66) 8 (6.34)

Totals

15

42

24

11

39 53 92

A contingency table for location is given in Table 3-24. With X 2 = 2.60, the

fraction of sample crystals taken from the edge regions is seen to be the same in each

experiment. The probability of selecting crystals in contact with others was also checked

against the null hypothesis. The observed marginal values (Table 3-25) show that 76.09%

of those crystals sampled should have no contact with their neighbors. A value of X2 =

1.75 < jtc2rit= 3.84 suggests that no real difference exists between the experiments. The X2
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tests of class frequencies indicate the samples in the two experiments are homogeneous,

and differences between the two experiments cannot be attributed to sampling differences.

Location

Center

_e

Totals

Table 3-24

Contingency table of location and experiment.

Experiment
Quiescent Flow

Observed Expected Observed Expected

25 (28.40) 42 (38.60)

14 (10.60) II (14.40)

Totals

67

25

39 53 92

Contact

No contact

In contact

Totals

Table 3-25

Contingency table of contact and experiment.

Experiment
Quiescent Flow

Observed Expected Observed Expected

27 (29.67) 43 (40.33)

12 (9.33) 10 (12.67)

39 53

Totals

70

22

92

Comparisons of the sample orientation distributions can be made to decide if: (i) the

crystals in the two experiments could have been drawn from the same population, and (ii)

there is a preferred orientation. Mann-Whitney, Kolmogorov-Smirnov, and Wald-

Wolfowitz tests were used to decide the first issue; ANOVA was not used since there is no

reason to believe that either 0 or _ is normally distributed. The Kolmogorov-Smimov two:

sample test (Table 3-26) indicates the difference in 02 orientations of the z-axis between the

two experiments is highly significant (p < 0.01), while the difference is probably

significant according to the Mann-Whitney U test (p < 0.1). The sample distributions of ¢_
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could well have been drawn from the same distribution. The existence of preferred

orientations is tested by comparing the observed sample cumulative distribution function

with the appropriate uniform distribution function under the null hypothesis. For 6, the

appropriate cumulative distribution function is F(On) = 1 - cos On, where n = the rank of

the observation; the observed sample cumulative distribution function of _, is compared

with F(C,n)=,_,d360". The cumulative distribution functions are shown in Figures 3-3 and

3-4. At the 95% confidence level, the Kolmogorov-Smimov tests reject the null hypothesis

that the crystal orientations are uniformly distributed over 0 and 0 in favor of the alternative

that some orientations are preferred.

Table 3-26

Comparison of orientation distributions.

Angle

0_

Mann-Whitney
U

824*

876

Kolmogorov-
Smirnov

g,2

9.84***

4.99

Wald-Wolfowitz

runs

38

5O

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.

Contingency tables can also be used to assess whether class frequencies of the

independent variables are in fact independent events. Earlier, the probability a quiescent

crystal is in contact was said to be dependent on its height. The contingency table for

height and contact in the quiescent experiment is shown in Table 3-27; the expected values

based on the marginal values are also given in the table. If contact and height are

independent, the cell totals would be the product of sample size and the marginal

probabilities. The total X 2 = 3.90 > }(,2crit= 3.84 (p < 0.05), so the null hypothesis of

independence is rejected. Contact and height are independent events in the flow

experiment; Z 2 = 1.79 (Table 3-28). If the marginal totals for each experiment are replaced
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by the marginal totals for the pooled experiments, the results are the same, with _ = 5.61

2
> Xc,.i, and Z_ = 2.25 < Xc2it. Contingency tables (Tables 3-29 and 3.30) suggest that

height is independent of crowding level (X_ = 5.47 < Z_ = 5.77 < X2r/t = 7.81, p < 0.05),

and that height and location (Tables 3-31 and 3-32) are also independent (X_ = 0.07 <

= 1.48 < X2r/_ = 3.84)

*mall
m
om

e¢

2

q2

-u

m

E
_2

1 - cos 0

quiescent

flow

Figure 3-3"

0 10 20 30 40 50 60 70 80 90

0 (degrees)
z

Cumulative distribution function for 0_.

The observed frequency tables for location and crowding for the experiments are

given in Tables 3-33 and 3-34. The calculated values of Z_ = 4.88 and X_ = 3.53 are

consistent with the hypothesis that crowding level and location are independent; i.e., the

number of neighbors present does not depend on where the crystal is located. There may

be some association between location and contact in the quiescent experiment (Table 3-35;

g_ = 3.79 > X2crit= 2.71, p < 0.1, 1 d.D, but location is independent of contact in the' flow

experiment, as shown in Table 3-36 (g_ = 0.87). Finally, the probability that a crystal is in

contact with a neighboring crystal is shown to be independent of crowding level, provided

there is at least one neighbor (Tables 3-37 and 3-38; _q = 3.04 < _f = 3.56 < Z 2 = 4.61cr_

p < 0.1, 2 d./). Only crystals with neighbors have been included in Tables 3-37 and 3-38.
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Figure 3-4: Cumulative distribution function for _.

Height

Top

Bottom

Table 3-27

Contingency table of height and contact for quiescent crystals.

Contact
No contact In contact

Observed Expected Observed Expected

16 (13.15) 3 (5.85)

11 (13.85) 9 (6.15)

Totals 27 12 39

Totals

19

2O

With the possible exception of crystal orientation, tests for sampling bias fail to find

any statistically significant differences between the samples chosen for each experiment.

The effect, if any, of crystal orientation on growth is unknown. Forced convection is not

responsible for differences in crystal orientation, however, because nucleation and

attachment of crystals to the walls of the growth cell occur during the initial period of

quiescence. Classifications according to crowding, location, height, and contact are found

to be mutually independent, except for some association between height and contact in the
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quiescent experiment. Differences in the behavior of quiescent and flow crystals cannot be

attributed to disparities in sample selection.

Table 3-28

Contingency table of height and contact for flow crystals.

Height

!Top

Bottom

Contact

No contact In contact

Observed Expected Observed Expected

20 (21.91) 7 (5.09)

23 (21.09) 3

Totals

27

26(4.91)

Totals 43 I0 53

Table 3-29

Contingency table of crowding and height for quiescent crystals.

Crowding

None

Low

Medium

High

Totals

Height
Top Bottom

Observed Expected Observed Expected

2 (1.46) 1 (1.54)

12 (9.26) 7 (9.74)

5 (6.82) 9 (7.18)

0 (1.46) 3 (1.54)

Totals

3

19

14

3

19 20 39
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Table3-30

Contingency table of crowding and height for flow crystals.

Crowding
Height

Top Bottom Totals

None

Low

Medium

High

Totals

Observed Expected Observed Expected

9 (6.11) 3 (5.89)

10 (11.72) 13 (11.28)

3 (5.09) 7 (4.91)

5 (4.08) 3 (3.92)

27 26

12

23

10

8

53

Table 3-31

Contingency table of height and location for quiescent crystals.

Height

Top

Bottom

Totals

Location

Center Edge

Observed Expected Observed Expected

14 (12.18) 5 (6.82)

11 (12.82) 9 (7.18)

25 14

Totals

19

2O

39

Height

Top

Eottom

Table 3-32

Contingency table of height and location for flow crystals.

Loc_tion

Center Edge

Observed Expected Observed Expected

21 (21.40) 6 (5.60)

Totals

27

2621 (20.60) 5 (5.40)

Totals 42 11 53
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Crowding

None

Low

Medium

High

Totals

Table 3-33

Contingency table of crowding and location for quiescent crystals.

Localion

Center Edge

Observed Expected Observed Expected

1 (1.92) 2 (1.08)

14 (12.18) 5 (6.82)

7 (8.97) 7 (5.03)

3 (1.92) 0 (1.08)

Totals

3

19

14

3

25 14 39

Table 3-34

Contingency table of crowding and location for flow crystals.

Crowding

None

Low

Medium

High

Totals

Location
Center

Observed Expected Observed

10 (9.51) 2

16 (18.23) 7

8 (7.92) 2

8 (6.34) 0

Edge

Expected

(2.49)

(4.77)

(2.08)

(1.66)

Totals

12

23

10

8

42 11 53
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Table3-35

Contingency table of contact and location for quiescent crystals.

Location

Contact

No contact

In contact

Total._

Center Edge

Observed Exp_ Obs_v_l Expected

20 (17.31) 7 (9.69)

5 (7.69) 7 (4.31)

25 14

Totals

27

12

39

Table 3-36

Contingency table of contact and location for flow crystals.

Contact

No contact

In contact

Totals

Location

Center Edge

Observed Expected Observed

33 (34.08) 10

9 (7.92) 1

42 11

Expected

(8.92)

(2.08)

Totals

43

10

53

Table 3-37

Contingency table of crowding and contact for quiescent crystals.

Crowding

Low

Medium

High

Totals

Contact
No contact In contact

Observed Expected Observed Expected

15 (12.67) 4 (6.33)

7 (9.33) 7 (4.67)

2 (2.00) 1 (1.00)

24 12

Totals

19

14

3

36
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Table 3-38

Contingency table of crowding and contact for flow crystals.

Crowding

LOW

Medium

High

Totals

Contact

No contact In contact

Observed Expected Observed Expected

19 (17.39) 4 (5.61)

8 (7.56) 2 (2.44)

4 (6.05) 4 (1.95)

31 10

Totals

23

• 10

8

41

3.8 Summary and Discussion

These experiments clearly show a feature of protein crystal growth which has not

yet been fully appreciated, namely that there is an inherently large variation in crystal

growth rates and sizes. In both of the experiments reported here, growth rates have a range

of 120% of the mean. Crystal growth tended to slow in both experiments, but there was a

qualitative difference between quiescent crystals and those exposed to weak convection.

The growth rates of crystals in the quiescent experiment generally tracked the measured

protein concentration, while flow crystals exhibited a slowing of growth even when

exposed to a slightly increased protein concentration. The flow experiment was terminated

by equipment problems after only 5000 minutes had elapsed; at the same point in the

quiescent experiment, the mean crystal growth rate had just completed what proved to be an

initial downward transient. The effects of flow on average crystal growth rates cannot be

determined unambiguously from these experiments because the flow experiment provides

clear information about short-term behavior and the quiescent experiment gives details

about long-term behavior.

The behavior of quiescent crystals after the initial transient provides some hint of

the effect of natural convection on the growth of lysozyme crystals. Over the final 10,000
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minutes of the experiment, when protein concentration was approximately constant, there is

no evidence that crystal growth rates slowed as a result of flow. The average (110}

dimension of these crystals approximately doubled from 156 _tm to 322 _tm during this

time, placing the crystals in the size range where convective flow might be significant. The

absence of a statistically significant effect over this size range suggests that retardation of

growth occurs either early in crystal growth, in which case flow is not responsible, or at

larger crystal sizes, which, in light of the reported "cessation of growth" phenomenon,

requires the effect to be relatively abrupt. Future longevity studies of protein crystal

growth should yield evidence to determine which scenario is more likely.

Comparisons of the dispersion in growth rates and net growth show that flow

crystals could have been drawn from a narrower distribution than quiescent crystals. This

is probably related to the smoothing effect of flow, which tends to make conditions in the

growth cell more uniform than in the quiescent experiment. Crystals in the flow

experiment can be separated into two groups depending on whether they are in the upper or

lower half of the growth cell. In contrast, quiescent crystals also show sensitivity to their

placement relative to the side walls of the cell and to contact with their neighbors. Tests for

sampling bias show that the samples are relatively well matched, so that sampling errors are

not responsible for differences in behavior in the two experiments.

It is hard to draw definitive conclusions about the effect of flow because the large

amount of heterogeneity within an experiment blurs distinctions between the two

experiments. Nevertheless, there are hints that flow has some sort of influence on crystal

growth, although the size of the effect has yet to be demonstrated. These experiments,

which lasted longer than any other reported growth experiments, have shown that

tetragonal lysozyme crystals may behave in a manner which cannot be predicted on the

basis of simple quasi-steady models of crystal growth. A great deal could be learned from

an extended, better controlled, version of these experiments. If crystals slow their growth,

long-term studies will reveal the manner in which this occurs and indicate which
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mechanismsmaybe important in protein crystal growth. At that point, a fair assessment of

the effects of flow could be made.
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CHAPTER 4

Colloidal Interactions in Protein Crystal Systems

  ..1amxlarJ  

Much of the effort required to determine the structure of biological macromolecules

is spent in a trial-and-error search for suitable growth conditions. Valuable protein and

time could be saved if the most promising range of conditions could be selected based on

an understanding of the growth processes. Although the accurate prediction of optimal

growth conditions for the complicated systems used in protein crystal growth remains

beyond our abilities, some insight can be gained from modeling simpler systems. The

reliability of such modeling is limited by the accuracy with which the appropriate

interactions are known; predictions of crystallization conditions remain qualitative because

the complex interactions responsible for protein crystal growth are still poorly

characterized.

Nonuniform charge distributions have been shown to affect the interactions of

protein molecules (§ 1.7), but little is known about anisotropic charge effects on interactions

of protein molecules with macroscopic bodies. A molecule with patches of positive and

negative charge could experience strongly orientation dependent interactions with the

crystal. As a concrete example, consider the case of a positively charged crystal surface" a

molecule is repelled if it presents a primarily positive patch to the crystal but attracted if the

patch is negative. On average, molecules impinging on the surface should be oriented with

negative patches facing the surface. Once on the surface, the molecule may desorb and

adsorb repeatedly as it samples many orientations in an attempt to fit into the crystal lattice

[11.

Anisotropic charge distributions can produce qualitatively different behavior

depending on the arrangement and depth of local minima in the electrostatic free energy. If

the minima are close together and shallow, rotary diffusion of the molecule would not be
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toorestrictedandthemoleculecouldfind the"correct"orientationreasonablyquickly. In

contrast, when the minima are widely separated and deep, the molecule is effectively

trapped in its original orientation. The former scenario is the basis for the

crystallographers' interest in the balance between mass transport and attachment kinetics: all

molecules would fit neatly into the lattice provided they could sample enough orientations

before next molecule arrived. The rotational restrictions described in the second scenario

imply that a fixed fraction of all incoming molecules would be trapped in unfavorable

orientations where they might interfere with attachment of other molecules. If such

misoriented molecules are responsible for "site poisoning" that eventually terminates crystal

growth, the rate at which molecules reach the surface is largely irrelevant.

In this chapter, a simplified model of the interactions of lysozyme is developed in

an effort to locate the behavior of a "typical" protein on the continuum between the two

extremes outlined above. Interaction potentials for molecule-crystal systems arc calculated

by the methods of colloid scientists and used to compare nonuniformly charged systems

with comparable uniformly charged systems. Large uncertainties in the interaction

parameters make a quantitative interpretation difficult, but the calculations provide a

qualitative description of the molecule-crystal behavior which can guide subsequent work.

A first step in modeling protein crystal growth systems was taken by Young, De

Mattei, Feigelson, and Tiller [2]. In their study, protein molecules were u'eated as spherical

colloid particles and the crystal as a fiat plate. They compared the interactions between two

particles with those between a particle and the plate using the sum of the electrostatic and

van der Waals (dispersion) potentials. Their elec_'ostatic potentials arc appropriate for high

ionic strength and constant (uniform) surface potentials; the dispersion potentials are valid

for small separations. Young et al.'s primary conclusion was that crystal size ought to

depend on the ionic strength of the solution, a fact crystal growers had long appreciated

[3]. Although the effect of the crystal's surface potential on the shape of the potential
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energycurve was discussed, no estimateswere madeof the surface potential or the

strength of the interaction.

In light of the documented effects of anisotropic charge distributions on protein

behavior (see chapter 1), the use of a uniform surface potential to represent the protein

molecule is the weakest assumption in Young's analysis. It is altogether likely that patches

of charge on the molecule's surface interact differently with the surface of the crystal

(which also has patches of charge). Already, researchers are studying the interaction of ion

exchange resins with specific charge patches on the protein surface [4]. In this chapter, we

calculate the interaction potential curve for a molecule-crystal system including effects

arising from the nonuniform charge distribution on the protein.

The presentation is organized as follows. We begin with a general discussion of

the problem and the approximations employed to make the problem tractable, followed by

the mathematical statement of the simplified problem. A boundary element method was

developed for the numerical solution of the electrostatics problem of a nonuniformly

charged sphere, and the formulation and implementation of the method are explained in

some detail. The boundary element code is then applied to two simple test problems to

evaluate its accuracy and assess the significance of charge inhomogeneities. Then the

method for creating a surface charge distribution to approximate the location of the

protein's charged groups is presented, followed by a discussion of the computational

results for lysozyme. Finally, the effect of dispersion forces is included to calculate the

total interaction potential.

The calculated interaction potentials show how finely the electrostatic and van der

Waals forces are balanced. Under some circumstances, the potential energy barrier is quite

modest, so variations in the effective crystal surface charge density and effective Hamaker

constant can change the magnitude and sign of the interaction potential. When nonuniform

charge effects are included, the behavior of protein crystal systems shows significant

orientation dependence. Rotational sampling by the molecule may be a key step in
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molecularattachment. Further refinement of the model is required to establish reasonable

ranges for the key parameters affecting the strength of the interaction.

4.2 Problem Descriotion

We wish to calculate the interaction potential between a protein molecule and a

protein crystal as a function of separation and orientation. The interaction potential is the

work done to bring the molecule and crystal together from an infinite separation. In our

case, this energy results from work done against two types of forces: (i) electrostatic forces

between charged groups on the molecule and in the crystal, and (ii) dispersion or van der

Waals forces. As is frequently the case in the study of protein interactions, there are

insufficient data to calculate the two contributions with complete confidence.

A sketch of the molecule-crystal system is shown in Figure 4-1. The assumptions

used to simplify the problem are listed in Table 4-1. First, it is assumed the interactions are

additive. This is a cornerstone of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory

and is justified by numerous empirical observations [5-7]. Next, linearization of the

Poisson-Boltzmann equation allows the problem to be divided into separate subproblems

which can be solved independently to obtain the electrostatic potential. The linearization is

consistent with the low net charge on the molecule and, moreover, allows us to assess the

significance of nonuniform charge distributions on protein-crystal interactions. A rough

estimate of the surface potential of lysozyme in water (e2 = 80) based on the net valence of

+10.5 at pH 4.7 [8], a hydrodynamic radius of 20_, [9], and approximately IM NaCl (ax'=

5) is 16inV. Since the linearization is valid for potentials up to approximately 100 mV [5],

it is probably adequate here except when the particle and crystal are practically in contact.

Assumptions 3 - 5 are largely self-explanatory. If dispersion forces arise from

induced dipole effects, then #3 is consistent with the notion that both the molecule and

crystal are solid bodies with uniform dielectric constants (#s 5 and 8). Frequency spectra

for the dielectric constant are required if retardation effects are to be incorporated into the
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effective Hamaker constant, Aeff. In the absence of such data for lysozyme crystal

systems, we treat Ae0' as constant; a range of reasonable values for Ae.0' is used in §4.9 to

assess the size of the dispersion potential and its effect on the total interaction potential.

crystal molecule

Figure 4-1: Definition sketch for molecule-crystal interactions.

The approximations concerning the protein molecule (#s 6-8) are based on

experimental observations and are widely used. The primary reason for the spherical

approximation is simplicity. Moreover, crystallographic data indicate that most globular

proteins are roughly spherical. A table of 20 proteins of known structure [10], for

instance, shows that the ratio of maximum to minimum dimensions is seldom greater than

about 2. Hen egg white lysozyme is variously described as being 23,/k x 28,/_ x 40,_ [8],

30,/_ x 30./_ x 45/I, [10], and 30/1, x 30/_ x 45,_, "with a wedge-shaped piece removed" [11];
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all thesedescriptionsareconsistentwith theapproximationthat lysozyme behaves as a

sphere with a hydrodynamic radius af approximately 20A [9].

Table 4-1

Assumptions Employed in Study of Interaction Potential.

o

2.

.

.

5.

.

7.

o

9.

10.

The electrostatic and dispersion potentials are strictly additive.

The linearized Poisson-Boltzmann equation (LPBE) governs the electrostatics.

Dispersion potential is independent of molecular orientation (function of
separation only).

The effective Hamaker constant, A<O,,is independent of separation.

For calculating the dispersion potential, the protein crystal is treated as a solid
sphere.

The protein molecule is a sphere.

All charged groups lie on surface of the protein molecule and can be
represented by a surface charge density distribution.

Protein molecule's interior is filled with material of dielectric constant el = 2.

For electrostatic calculations, the crystal's surface is treated as infinite plate
with uniform effective surface charge density ax.

Electrostatic potential variations in the crystal's interior are ignored.

When discussing the environments of individual amino acid residues, Cantor and

Schimmel [11] state that charged residues are on the surface of the molecule (#7).

Representing the charged groups as a surface charge density distribution instead of a

collection of point charges reflects the implementation of the boundary element method

used here to calculate the electrostatic potential energy of the molecule-crystal system.

Other workers using finite difference methods [12-15], model the charge distribution as

point charges which lie just inside the accessible surface of the protein. (The accessible

surface is that which can be reached by a probe sphere, usually taken to be a hypothetical
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watermolecule1.4,_in radius [ I0,13].) The method for translating the charge distribution

obtained from X-ray crystallography into a surface charge dis_'ibution is described in §4.8.

Hydrophobic residues and side chains tend to be buried in the interior of the

molecule [10,1 I], at least when the molecule is soluble in water. Calculations of packing

density generally give values around 0.75 [10,1 I], indicating that the interior is relatively

uniform. Free water is generally absent from the interior, although some molecules, such

as lysozyme and a-chymotrypsin, seem to have cavities or holes which are presumed to

contain solvent [ I l ]. Occasionally, bound water molecules can be detected in the interior

of some proteins; such water molecules appear to be intrinsic features of the protein

structure [I0]. The dielectric constant in the interior of the molecule is generally taken to be

similar to those of hydrocarbons (2 < el < 4) [16-20]. Dao-pin et al. [15] calculated the

electrostatically induced shift in pKa for two systems as a sensitivity check on el. They

found that results were insensitive to the value chosen in the range 2 < el < 8 except at low

ionic strength.

The disparate sizes of the molecule and crystal justify the treatment of the protein

crystal as a semi-infinite region with only a surface charge. When the ionic strength is

about IM, which is on the low end for much of the protein crystal growth work, the Debye

length is approximately _c-I - 3,_. Thus, the exponential decay of the potential effectively

limits the range of the electrostatic forces to about 5_ "-I or 15 ,_. A molecule approaching

the crystal may not actually "sense" the crystal until its surface is only 15._ away. Thus,

Coulombic screening by ions in solution and the difference in the sizes of the crystal (R -

0.5 ram) and the molecule (a ~ 20_) make the crystal seem like an infinite fiat plate.

The use of a uniformly charged fiat plat to represent the crystal (#9) is the most

drastic of the assumptions in Table 4-I. The roughness and charge heterogeneity of the

surface are the same as those of the molecule, but complications caused by including such

effects are beyond the scope of our calculations. The uniform surface charge

approximation is invoked to simplify the problem. When solving differential equations
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numerically, it is usually necessary to divide the domain into small elements in order to

obtain a solution. If a patchy charge distribution were placed on the crystal surface, the

number of computations needed to calculate the electrostatic potential for a given

orientation, separation and surface location would increase dramatically. These calculations

would then have to be repeated at sites spread over the surface of the crystal in order to give

some sense of the "average" behavior of the molecule-crystal system. Such detailed

calculations will eventaully be needed to appreciate the subtleties of crystal growth

mechanisms, but they require far more data than we have available. The effect of a

nonuniform crystal surface charge distribution can be estimated, however, by calculating

the electrostatic potential energy for different values of ax. Recall that although the plate is

inf'mite in extent, mobile ions in solution screen out the influence of all but a small patch of

the crystal surface. In some sense, then, calculations with different crx mimic interactions

of the molecule with different charge sites on the crystal surface.

As employed here, crx is the effective surface charge density including contributions

from molecules and ions inside the crystal. An incoming molecule is influenced by these

charges as it nears the crystal, but, because there is some salt inside the crystal, effects of

internal charges are partially screened. In the absence of experimental data or a more

detailed theory to predict the internal Debye length (and thus the effective surface charge

density) _ is treated as a parameter.

It follows from the finite range of the screened electrostatic interaction, that

molecules in the center of a sufficiently large crystal (R _>_¢x-1, the internal Debye length)

are not influenced by the presence of incoming molecules. The potential inside this region

is virtually constant (although not necessarily uniform). In other words, molecules more

than (say) 0.5pq -1 from the crystal surface are isolated from the influence of events outside

the crystal. By collapsing the finite shell of charge into an effective surface charge density,

we account for those charges in the crystal which respond to the approach of an incoming
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proteinmolecule;thedeepinterior of the crystal makes no contribution to the electrostatic

interaction potential.

The purpose of these approximations is to simplify the problem to the point where it

can be solved while preserving the essential physics. Results for a molecule with a

nonuniform charge distribution on the surface can be compared with those for a uniformly

charged molecule. By applying the same approximations to calculations on a uniform

sphere, we should be able to describe differences in behavior due to patchy charge. The

level of approximation employed here is entirely appropriate for such an investigation. If

nonuniform charge distributions significantly affect crystal growth behavior, the restrictive

approximations in Table 4-1 can be relaxed in future work.

4,3 Mathematical Statement of the Electrostatics Problem

The sketch of the molecule-crystal system in Figure 4-2 incorporates the

assumptions in Table 4-1; distances and surface charge densities are scaled as described

below. The electrostatic potential is a solution of the governing equations [5]:

region 1 (molecule): V 2 Igl = 0 (4.1)

region 2 (solution): V2 V2 = r2 _2 (4.2)

r 2 = 2no*Z2e2/eoe2kT for a Z:Z electrolyte; no. = bulk ion number density, e =where

elementary charge, eo = permittivity of free space, k -- Boltzmann's constant, and T --

absolute temperature. The boundary conditions at the surface of the molecule are the

continuity of potential,

Igt = II/2 (4.3)

and thejump inelectricdisplacement,

el Vlgl • nl + e2 VI//2 • 112 ffi 13" (4.4).

Note that nl and n2 point out of their respective regions. The boundary conditions at the

plate and at infinity are
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Figure 4-2" Sketch of molecule-crystal system for electrostatics
calculations.

Lengths have been scaled by the particle radius, a, and surface charge densities
have been scaled by % = eo Vo/a.
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z -- 0: 3_2 = tr_ (4.5)
_z e_ e2

and

z-.-_ **: 1V2--_ 0 (4.6).

If the electrostatic potentials are rewritten as _' = u_to, with _¢o = kT/e and lengths are

scaled by the particle radius, a, the following dimensionless equations result:

region 1: V 2 ul - 0 (4.7)

region 2: V 2 u2 = (at) 2 u2 (4.8)

U -- U2
sphere surface:

IE1 VUl " 111 + E2 _U2 " 112 = O'*

(4.9)

(4.10)

z = 0: Ou2 = _ _ (4.11)
bz e2

z _ **: u2 _ 0 (4.12).

The reference quantity for the surface charge is % - eogto/a.

The solution of the full problem specified by Equations (4.7) - (4.12) is difficult,

but the linearity of the governing equations permits the problem to be split into

subproblems which can be solved analytically or numerically. Suppose the problem shown

in Figure 4-2 is divided into two subproblems as in Figure 4-3: (i) a charged sphere with an

insulated flat plate, and (ii) a charged plate with an uncharged sphere. We can then apply

the method of images to construct a solution for the problem (i) which satisfies the no-flux

boundary condition at z = 0 [21-23]. For z > 0, the potential of problem (i) is the same as

that produced by the charged sphere and its mirror image (Figure 4-4) and is denoted uss

(i.e., sphere-sphere); the potential in problem (ii) is the sphere-plate potential, un'. The

total potential is their sum

u = u ss + u st' (4.13).
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(a)
cr*(O,¢,)

z Vu- n-O

(b)

__il::_' '_":'?_: _'_'%'_" "_-'_'::;'_' -' " ":" '!_!:: " ':'_
•_"":-_::.... "_ ' _i_!':"'":...........

Figure 4-3: Two subproblems that make up the full electrostatics problem.
(a) A nonuniformly charged sphere near an uncharged insulated wall.
(b) An uncharged low dielectric sphere near a uniformly charged infinite

plate.

The equations for the sphere-sphere problem are:

region 1: V2ufs =0

region 2: V 2 u_s = (at) 2 u_ s

ul"= uy
sphere surface: |el Vu[ s. nl + e2 Vu_ _. n2 = tr"

z = O: _U--_--= O
OZ

Z --_ o_."

while the sphere-plate potential satisfies:

° region 1:

region 2:

u_s _ 0

V2u_P= 0

v _u_"=(at)2u_"

lu .=
sphere surface:/e 1 VUSlp" nl + e2 Vu_ p. n2 = 0

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19),

(4.20)

(4.21)

(4.22)

(4.23)
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(b)

Figure 4-4: Image charge representation of an insulated boundary.
No flux boundary condition at z = 0 is identically satisfied by the potential produced
by the original sphere and a mirror sphere obtained by reflecting the original below
the plane z = 0.

(a) The nonunfformly charged sphere and insulated plate from Figure 4-3a.
(b) Replacement of infinite insulating wall with mirror image of the original

sphere.

z=0: _._f_ = _ O'_ (4.24)
_z e2

z _ **" u_p _ 0 (4.25).

The sphere-sphere potential can be calculated directly by the boundary element method

presented in §4.4.

A solution for uSp is more difficult, however, because the boundary condition at z =

0 cannot be easily satisfied by the method of images. A boundary element solution would

require the discretization of a finite portion of the plate and the introduction of an empirical

cut-off beyond which the plate is unaffected by the sphere. Instead, we divide the sphere-

plate problem into two parts:

uSt ' = u.#' + u" (4.26)
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where ufP is the potential due to charged plate in the absence of the low dielectric sphere,

and u" is the "remainder" of the potential. The fiat plate potential is

and satisfies the equations:

z>0:

u_1=t_t'=u/t,= cr_ e-awz
e2aJc

v = v: = v (a,c):

(4.27)

(4.28)

sphere surface: [u_l = u_p (4.29)

[el V_P •nl + e2 Vu/P •n2 = {el- e2)Vufp, n l (4.30)

z = O: --=---Q3uYPcr._ (4.31)
Oz e2

z _ oo. ufp ---) 0 (4.32).

When ufP is subtracted from uSP, the result is:

region I: V2 u_ =-(arJ2 ul'p= - p °

region 2: V 2 u,5 = (a/c) 2 u_

(4.33)

(4.34)

sphere surface: Iu[ = u_

lel Vu_. n 1 + e2 Vu_. n 2 =- (el- e2)VufP • nl

(4.35)

(4.36)

z = O: _ --0 (4.37)
0z

z _ **" u_ _ 0 (4.38).

Equation (4.33) indicates the sphere contains a fixed charge density of p* = (at) 2 u_; the

charge density is scaled on Po = eo _to/a 2. The potential produced by the two mirror

spheres identically satisfies boundary conditions (4.37) and (4.38), so u" can be obtained

from the same boundary element technique used to find u ss. The full solution is the sum of

the three potentials:

u = u ss + u_ + u v (4.39).

Of primary interest in the present work is not the electrostatic potential, but the

electrostatic potential energy and its dependence on particle-crystal separation. Interaction
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potentialsareusuallydefinedin terms of the work performed on the system to bring two

bodies within a distance r of each other from an initially infinite separation or, equivalently,

the work that could be done by the system if the bodies were initially separated by r and

allowed to become infinitely separated [24]. When performed isothermally and reversibly,

the work done is the free energy change of the system [6,25-27] and can be expressed in

terms of the work required to assemble all the charges from infinity [6,28]:

(4.40),

where 1"2denotes the volume of the system and the superscriptfindicates the charge density

is fixed (not subject to thermal randomization). When applied to the present case where the

charge density is linearly proportional to the potential and all the fixed charges reside on the

surfaces of the system, the form of Equation (4.40) is simplified to [6,17,28,29]

(4.41),

where Frepresents all the surfaces of the system and or is understood to be fixed.

The total change in free energy can be divided into two parts:

AGelec = AGUe c + _elec(r) (4.42),

where AG_t_c = change in free energy required to "charge up" the molecule and plate at

infinite separation, and Oetec(r) = additional change in free energy as the molecule and plate

are brought together. In terms of the scaled variables of the electrostatics problem, Oetec is:

Oelec(s) = 12Jr"( or*[u(s)- u(**)] dA (4.43), ,o2a

with s = distance (in particle radii) from the plate to the center of the sphere, u(s) = potential

when the particle and plate are separated by s, and u(**) = potential when particle is

infinitely far from plate; dA is now dimensionless. The surface of the system consists of
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the plate and the sphere, so when the integral over F is split into two area integrals and

(4.39) is substituted into (4.43), we have:

¢,eleX ):j.fA o"[(,,,+ +u,},-(u,,+ +,,,).]
eo 11120a 2 sphere

(. O': [(U$$ + _ ÷ ur)$--(U ss + I_o + UrL] dA (4.4.4),.I_+
2

,/A
plate

where the subscripts on the parentheses indicate the separation of the plate and sphere and

the subscript "o" on ufP in the plate integral is a reminder that the flat plate potential on the

plate is a constant. At infinite separation, ufP is zero on the sphere, uss is zero on the plate,

and ur is zero everywhere, so that

Eo Ip'2 a 2 sphere pl

Equation (4.45) gives the electrostatic free energy of interaction for the molecule-

crystal as a function of separation from the plate. The boundary element method for

calculating uss and ur to evaluate Oetec is described in the following sections. Even without

the calculated potentials, the form of (4.45) reveals qualitative behavior of the system under

consideration and warrants a brief discussion. By Equations (4.33) and (4.36), the

"remainder" potential scales with the flat plate potential, which, according to Equation

(4.27), is linearly proportional to the surface charge density on the plate. If the terms in

(4.45) were regrouped by their dependence on o'_, we would have:
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f

of 1/ a" (ue- u.'s)independent
2 ]a

sphere

with the independent, linear, and quadratic terms corresponding to the charged sphere-

charged sphere, charged sphere-charged plate, and charged plate-uncharged sphere

interactions respectively. The potential energy associated with the quadratic term scales

with F_,/p.F_, where F_Zp= electric field vector given by F_]p =-VI_P. This is consistent

with the results for the dielectrophoresis of a dielectric particle in a nonuniform electric field

[29] where the force on the particle is proportional to VE 2.

The electrostatic free energy calculated from of Equation (4.45) can be determined

only after the elecirostatic potentials are known, but the form of the free energy implies the

following qualitative behavior: (i) when the surface charge density on the plate is low, the

repulsion of the mirror spheres produces an increase in _etec as the particle approaches the

wall; (ii) at high crystal surface charge densities, the interaction potential is also repulsive

due to dielectrophoretic effects; and (iii) at intermediate crystal surface charge densities, the

interaction potential can be either attractive or repulsive depending on the sign and

magnitude of the surface charge density on the molecule. Note also that since u ss and u r are

calculated from the interaction of two spheres a distance 2s apart, their contributions decay

as e -2ars compared with e "-ars for the linear term. Now that the general behavior of the

system has been outlined, we turn to the boundary element solution of the electrostatics

problems presented above.
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4.4 Boundary Element Formulation

The starting point for the boundary element formulation is, naturally enough, the

most general form of the governing differential equation:

V2u - (a_) 2 u = - p* (4.46),

where p* is afixed charge density. Equation (4.46) governs the electrostatics in the

solution (region 2) when p* --_ 0, region 1 of the "remainder" problem when a r'--_ 0, and

region 1 of the sphere-sphere problem when both ar and p* --, 0. The fundamental

solution (Green's function) of the homogeneous differential equation is:

• __1_e -a_',
u = (4.47),

47r r

where • is measured from the "source" point Xo (i.e. •--Ix- Xol ). When the ionic

strength vanishes, the fundamental solution is u*= 1/4trr. Next, both sides of Equation

(4.46) are multiplied by u* and integrated over the domain, £2 to produce:

f u*[V2u-(atc)2u]dV=-f p*u*dV
(4.48).

A direct application of Green's second identity to the integral of u*V 2 u gives:

fou*V2udV=f, uVZu'dV÷fru*(Vu .)dA-fru(Vu*.n)dA (4.49),

so that Equation (4.48) can be rewritten as:

n)da ,4,0,

If we wish to calculate the potential, u, at the point xo, we can exploit the properties

of the fundamental solution, u*. Suppose that the fundamental solution is placed at xo,

then since u* is Green's function for Equation (4.46), it satisfies the equation:

V2u * - (at) 2 u* = - t_( x - Xo) (4.51),

from which it follows that
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-I, Xo in

f_[V2u * - (as') 2 u*] dV= -1/2, xo in F (4.52).

0, otherwise

Note that the value of -1/2 when xo is in F reflects an implicit assumption that the

boundary is smooth; this is the situation for all the work discussed here. For the case

where Xo may be at an edge or comer, the integral in (4.52) can be calculated in a

straightforward manner [22]. Upon substitution of (4.52) into (4.50) and subsequent

rearrangement of Equation (4.50), we obtain:

 u,xo,÷f ÷f (4,3,,

where:

1, _ in .f/

c = "1/2, _ in F (4.54).

I 0, otherwise

The advantage of the boundary integral expression in Equation (4.53) over a finite

difference method is that all computations in the infinite domain have been eliminated. The

integral over 1"2 is performed only when there is a distribution of fixed charges in the

domain, but the electrostatics problems have been formulated so that all the charges in

solution are mobile; in the "remainder" problem, the fixed charge density is inside the

sphere (a finite domain). Although this advantage may not be great when an analytical

solution exists, it can greatly reduce the amount of computation needed to obtain a

numerical solution. The conversion of the boundary integral expression in Equation (4.53)

into a discretized boundary element method (BEM) suitable for such a numerical solution is

described next.

The outline of this discussion is similar to that of Brebbia, Wrobel, and Telles [22];

the notation is the same. Suppose that the boundary of the system is divided into N



elements, each of which is denoted _. The integrals over/"in (4.53) are equivalent to the

sum of integrals over all the elements:

u(Vu'.)aa- p'.'e¢ (4.55).
/ffil j=l

In the shorthand notation of Brebbia et al., Equation (4.55) is:

c u (Xo) + _ u q* dA - u* q dA + p'u* dV (4.56),

j=l j=1

where q = Vu. n and q* = Vu*. n. As before, u = potential and u* = fundamental solution

located at Xo. For points in the domain, (4.56) expresses the potential as the sum of a

single-layer distribution of strength q, a double-layer distribution of strength u, and a

particular solution given by the volume integral.

At this time, we introduce the "constant element" approximation; i. e., that each

element j has uniform values of potential and normal flux, uj and qj. The surface potentials

and normal fluxes can then be removed from the integrals in (4.56) to obtain:

c u (Xo)+ _., uj q* dA qj u* dA + p'u* dV (4.57).

Further, we assume that each of these uj and qj can be associated with the node (xj) of the

element; the node lies in the interior of Fj and is "representative" of the element. Equation

(4.57) is valid everywhere, but since we are primarily concerned with surface values, we

can restrict xo to each of the nodes in turn to obtain N equations of the form:

1 ui + _ uj q_ dA qj u_ dA + ut/ (4.58).2 /=

where ui = potential at node i, and u./= potential of element j, qj - normal flux through

element j, u* and q_ are the potential and normal flux due to the fundamental solution

placed at xi, and u_ is the potential at node i produced by the distribution of fixed charges;

c --- 1/2 because each node lies in the surface. Brebbia chooses to define:
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Gij"fFu':dA Hij-fq_ dA

so that Equation (4.58) can be expressed in matrix form:

HU=GQ+UP

where

(4.59)

(4.6O)

A

Hij+ 1/2 , i=j

Hij={ Hij, i_j
(4.61).

IfthereareN elements on the spheres,Equation (4.60)isa system of N equations

in 2N unknowns (N u's and N q's)thatcan be written for each region in the problem.

(The two domains for theproblem are theinteriorof the sphere(regionI)and the exterior

(region2). When relatingdependent variablesin thetwo domains, thedomain isindicated

by a superscript.).The problem iswell posed,however, because when the equationsfor

both regions are combined, thereare 2N equations in 4N unknowns plus 2N constraints

(boundary conditions).N of these boundary conditionsgovern the continuityof potential

atthesurface(u) = u_),while theothersspecifythejump inthe normal derivativecaused

by the local surface charge density (el q: + e2 qj2 = ty;).

Solving the BEM problem involves evaluating G O and Hij twice for every

combination of i and j on each sphere (once treating the interior as the domain and again

with the exterior as the domain) and then including terms due to the interaction of the nodes

on one sphere with the elements on the other. Suppose the surfaces in the system have

been discretized into N elements, N1 of which are on sphere 1. Then, when all the surface

quantities are written in terms of ufl and qfi, the matrix equation can be rearranged in the

form:

146



H_ el

0 0

Ni

o o ± X cb "
e_ j= 1

H3 -G_ q_ 0
= (4.62),

q o
N

El j = Nl

where the top row represents the integrals over the elements of sphere 1 when the node is

located on the interior surface of sphere 1, and the second row contains the integrals over

all surfaces when the node is on the exterior surface of sphere I. Rows 3 and 4 correspond

to integrals for nodes located on sphere 2. Equation (4.62) is applicable to any two sphere

problem. For the special case where the second sphere is a mirror image of the fast so that

N = 2.N1 and the elements have been numbered so that elements j and j+NI are mirror

images, there are N1 additional constraints of the form u_ = u_+N, and N1 of the form

qj2 = q_,. There are, therefore, only 2Nl = N independent unknowns, and Equation

(4.62) can be reduced to:

NI

_1_X +ur4_lj= Iu])_
q]] " 0

(4.63).

Terms involving the nodes and elements on the same sphere are independent of the

separation between the spheres and so need be calculated only once.

Evaluation of the boundary integrals for the BEM requires the integration of the

fundamental solution, u*, and its normal derivative, q', over each surface element in the

discretization. When the source of the fundamental solution is placed on the z axis (see

Figure 4-5), the integration of u" and q* can be performed analytically in 0, reducing the

need for numerical quadrature schemes. A translation and rotation of coordinates can

position any fieldpoint above the north pole of the sphere, so it is sufficient to evaluate the
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integralsin thisorientationonly. Thecoordinatesystem employed below is that of Figure

4-5, not that used to define the problem in section 4.3.

For the case of the linearized Poisson-Boltzmann equation, the integrals over

element] are:

and

Gij=fA u'dA=_ ..I._4_e-ar'dAr
i J

(4.64)

HiJ = fA q* dA = /A_du* l r" n dAdrr
(4.65),

where dA = sin 0 dO dCp, r = (sin 0 cos 4) ex + (sin 0 sin _p)ey + (cos 0 - h) ez , and n =

- (sin0 cos (_)ex - (sin0 sin 4) ey - cos O ez;ek = unitvector in directionk. For the

geometry shown in Figure 4-5, r2 = h 2 + 1 - 2h cos 0, from which it follows that:

and

sin 0 dO = r (4.66)idr

dA = sin O dO d_p = -_drr d_ (4.67).

The 8 integration in Equation (4.64) can be performed once (4.67) is substituted and the

change of variables is made:

Gij= I__L_e -a,:rsin 0 dO = I e -a_:rdr

--_ _1_ (e- - e - a¢ (4.68).
4_h a_"

The limits of integration for O and r are implicit functions of 0 which define the element on

the surface. When there is no screening by counterions, the governing equation is

Laplace's equation, and the expression for Gij reduces to
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X

(0,0, h)

.--yv

©

Figure 4-5: Temporary coordinate system used to evaluate boundary
integrals.

A _'anslation and rotation of coordinates can place any fieldpoint along the polar
axis; the height, h, is the distance from the fieldpoint to the center of the sphere.The
source is placed at (0, 0, h) and the radius, r, for all integrations is measured from
there.
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A

Hij.

lira G O {r2- rl )dO
ar _ o 4frh

(4.69).

The radial derivative of u* and the dot product of r and n are required to evaluate

The derivative of u* is:

while the dot product is

du" =_-1-(I + rgK)e-a_,dr 4fr r2
(4.70),

r.n=hcosO-l=
h 2- 1 -r 2

2
(4.71).

The expression on the far right of Equation (4.71) results from the geometric relationship

among r, h, and 0. Hij can now be evaluated to yield:

f_2[( h2-1)e-arr2-( rl +_at¢ h2-1) -apcrl]dO_._1__ r2 +a-2¢ r2 "rs ehii --- 8,rh

In the absence of Coulombic screening,

(4.72).

[ (h2 1)lim Hij = - 1.._!_ (rl - r2) 1 - dO (4.73).
8_rh rl r2a_¢ --* 0

Equations (4.68) and (4.69) are valid for h > 1, but (4.72) and (4.73) warrant

further discussion. The expressions for Hij are valid for h _> 1 except when the integral is

evaluated over elements containing the north pole, in which case it is valid only for h > 1.

The exception for h = 1 reflects the jump condition in the double-layer potential when the

source point enters the surface. When the source point is in the surface (as opposed to

inf'mitesimally above it) h 2 - 1 = 0, and H/j is given by:

Hij=- l'--Lf¢_[{r2+ 2}e-a'c'2-(rl+a-a_r)e-ar'l] dOg_h (4.74)

or
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lim HiJ=-8_zh (rl-r2) d_
a_--_ 0

(4.75).

If, on the other hand, the field point is in the domain along the polar axis, the quantity

involving h2 - 1 is:

h2- 1 h 2- 1
lira = h + 1 _ 0 (4.76).

h_ 1.0=0 rl h-I

The correct expressions for Hij in this case are:

 ij= ---1- r2+ -
81rh r2

and

e-arr2-(rl +alr-(h+ 1}) e -at'l] d¢ (4.77)

:±fo° I 1lirn Hij -87rh (rl-r2) 1 (h+l) de
at--* 0 s r2

(4.78).

In addition to the surface integrals presented above, the "remainder" problem

requires a volume integral to determine the particular solution produced by the fixed charge

density in the sphere. For region 1, the fundamental solution is u* = 1/4zrr and the

particular solution is given by:

(4.79),

where p* = (aK) 2 ufp = cr_ (a_cle2) exp (--arz). At this time, we shift the coordinate

system to the origin of the sphere and write uP as:

fae-' s dVuP = cr_ 4n e2 (4.80),

where z = s + t_u, t is measured from the center of the sphere and I_ = cos O. Numerical

quadrature schemes for evaluating integrals over the volume of a sphere might employ 300

- 500 evaluations of the integrand [30] and still be appreciably in error because they fail to

catch the effects of the large and rapidly changing charge density at t = 1 and/_ = -1.
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Insteadof a completely numerical evaluation of (4.80), we will exploit the axisymmetry of

the remainder problem to obtain a series solution to evaluate uP on the surface of the

sphere.

We represent the charge distribution in the sphere as infinitesimal charged rings

(Figure 4-6) and calculate up at points on the sphere's surface (t = 1) by summing the

potentials produced by all such rings. The total charge, t_ °, on each ring is

_.* = p* (2fftosin Oo)(todOo)dto= - 2ftt2oo_ (at�e2) e_s e-_rt*_ dlaodto(4.81).

The ringcreatesa potentialgiven by [27]:

where PnfD) - Legendre polynomial of degree n. This seriesissuitableforcalculatingthe

potentialatthe surface(t= l)due to charged ringsinsidethe sphere (to-<I)because the

series,fortunately,alsoconverges for to--t -I. The fullpotentialisthen calculatedby

summing (integrating)over allrings:

ur (t,l.t) = 27r C_xaK. e-O,_, d_ t2odto ¢-.a_a._ + 1
e2 -1 47rio = Pn(,tto)Pn(ll) (4.83).

After simplification and rearrangement, Equation (4.83) is:

up(t,p)= _ ar e-_:, _ P,2(/./) t -('_+1) Pn(lao) tg+2e"aXTo_dto (4.84).
2e2 ,,-0

The integral over to in (4.84) can be done by parts for each value of n. If jvdw =

vw-Jwdv, the normal choice would be v =fo +2 and dw = exp (-ax'to/.k,)dto so that a

finite number of integrations are required. Each integration by parts then places a factor of

a r/.to in the denominator which might cause difficulties for a subsequent numerical

evaluation of the integral over /.to (notably when /.to = 0). Instead, we set v =

exp (-amol.to) and dw = tg + 2 dto to obtain an infinite series for the integral:
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0o

x

z

41,.-y

Figure 4-6: Definition sketch for ring of charge.
Geometry used to calculate the potential on the surface of the sphere due to a ring of
charge. Subscript "o" denotes quantities associated with the charged ring.

_0 " (ar/.to_

1

lg + 2 e- art.m dto= (n + 2)[ e- arm _. (n + 3 + k)!
k=0

(4.85).

Comparison with the convergent series expansion for exp (ar/.to),

(ax'bto_
exp (at/so) = k! (4.86),

k=O

shows that the ratio of the kth term in (4.85) to the kth term in (4.86) is (within a

multiplicative constant) k!/(n + 3 + k)! < 1 and that (4.85) converges faster than the

exponential series because

lira k! - k! = 0
k.--_**(n + 3 + k)! k! (k + 1)(k + 2)(k + 3)-..(k +n + 3)

(4.87).
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The potential at each node produced by the fixed charge distribution can now be

written as:

where

- = are -*= cJ' OaO
2e2

n=O

(4.88),

f l Pn(#o) dlao (4.89),cn = e --ar_. (n + 2)! _" {n(ar/a°)t+3 + k)!
l k=O

I.ti = cos Oi, and t = 1 because the nodes are on the surface of the sphere. The integral in

(4.89) is evaluated numerically using a Romberg integration scheme with a polynomial

exu'apolation to the limit of zero step size (described by Press et al. [31]). The estimated

relative error in the value of cn is approximately 10 -6.

Except for the specialization of the analysis to cases with constant elements, the

discussion of boundary elements so far has been general. In the following sections, the

method for discretizing the surface is presented (§4.5), and the specifics of the

computations are described (§4.6).

4.5 Boundary Element Geometry_

The surface of the sphere is divided into spherical triangular elements (Figure 4-7),

each of which is taken to have constant values of surface charge density, surface potential,

and normal flux. Each edge of the element is the path of minimum length between the two

vertices defining that edge. The edges can then be considered the arc of the great circle

connecting the vertices or, equivalently, the intersection of the sphere's surface with the

plane containing two vertices and the origin of the sphere. The bounding plane is

completely described by its normal vector. The location of the node is determined by

calculating the Cartesian coordinates (xc, Yc, zc) of the centroid of the element (which lies

within the sphere) and projecting the ray from the sphere's origin through (xc, Yc, z¢) to the
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surface. The node's

p= (x 2 + y2 + zc2)112.

position on the unit sphere Xc Y..__cPlis p , p , where

Figure 4-7" A spherical triangle element on the sphere•
Vertices are identified by circled numbers; edges axe numbered sequentially as the
perimeter of the element is traversed. The centroid of the element lies inside the
sphere but is projected onto the surface to locate the node of the element.

The pattern for the initial (coarse) discretization of the sphere is based on either a

regular octahedron (8 equilateral triangular faces) or icosahedron (20 equilateral triangular

faces) which is circumscribed by the unit sphere. The vertices of the polyhedron are the
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verticesof thecorrespondingsphericaltriangularelements on the sphere's surface, while

the node of a given element can be located by using the arithmetic average of its vertices'

Cartesian coordinates as an estimate of (x c, Yc, zc). (This last simplification results from

the symmetry of the equilateral triangular faces of the polyhedron.) Two conventions

govern the orientation of the inscribed polyhedron: (i) vertices of the polyhedron lie at the

north and south poles of the sphere, and (ii) the prime meridian coincides with the

boundary between two of the elements having the north pole as a common vertex. The two

coarse discretizations and their "surface maps" (latitude and longitude) are shown in

Figures 4-8 and 4-9. The location of the nodes is shown in the surface maps.

Subsequent refinement of the discretization is done by computer according to one of

two possible methods (Figure 4-10): (i) the original element is divided into three smaller

elements by converting the node into a common vertex of each new element, or (ii) the

original element is divided into two elements by connecting the midpoint of the longest

edge with the opposing vertex. In either case, normals to the bounding planes are

calculated and used to place the nodes of the new elements. Only one method is applied to

all elements at a given stage during refinement. In the three-way division, one edge of the

resulting element retains its original length, so that repeated application of method (i)

produces long, narrow elements which may not be adequately approximated by the nodal

value. Method (ii) halves the longest edge and therefore produces elements which are more

compact than those of method (i). The three-way division is applied first to produce

elements with one edge longer than the others, then two-way refinement is applied

successively thereafter. The elements produced by these refinement schemes are, in

general, not identical, but this presents no inherent difficulty for the boundary element

method.
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Figure 4-8: Octahedral discretization of the sphere's surface.
The boundaries of the elements have been drawn on the surface of the sphere; the
axes shown define the orientation of the discretization. The corresponding 2-
dimensional projection ("surface map") of the discretization is also shown. Surface
points are identified by latitude and longitude. Points identify the location of the
nodes.
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Figure 4-9: Icosahedral discretization of the sphere's surface.
The boundaries of the elements have been drawn on the surface of the sphere; the
axes shown define the orientation of the discretization. The corresponding 2-
dimensional projection ("surface map") of the discretization is also shown. Surface
points are identified by latitude and longitude. Points identify the location of the
nodes.
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The orientation of the sphere must be defined in preparation for discussion of the

case when the the particle has a nonuniform surface charge distribution. Recall that the use

of a mirror particle, transforms the line of centers into an axis of rotational symmetry. For

a given separation, then, the electrostatic interaction energy of the system depends only on

which point on the sphere's surface occupies the south pole. Two angles are sufficient to

specify the location of the south pole and, therefore, the orientation of the system. An

obvious choice is the latitude (-90" _ a < +90") and longitude (-180" < fl < +180") of the

ray connecting the centers of the spheres (Figure 4-11). In the fixed coordinate system

established by the crystal, the molecule appears to be oriented so the point (a, ,6) lies

nearest the plate, so the orientation can also be considered the "south pole." This is a

simple means of associating features of the potential energy surface with the surface charge

distribution that creates them.

Figure 4-10: Two successive refinements of a planar triangle.
(left) Three-way refinement: a new vertex is created at the centroid of the

original element.

(right) Two-way refinement: the new edge bisects the longest edge of the
triangle.
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Z

Figure 4-11: Orientation of the molecule.
Octants are identified by letters and their reflections are indicated by primes.
line of centers of the two spheres is an axis of rotational symmetry.

The
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4.6 Mechanics of Boundary Element C_lculatiorl,s

As mentioned in section 4.4, a coordinate transformation is used to create a

temporary coordinate system in which the sphere's center is at the origin and the fieldpoint

sits above the north pole of the particle. In this section, we present the specifics of the

numerical computation of the boundary integrals over the surface elements on the sphere.

In the discussion to follow, Cartesian coordinates (x, y, z), as well as the x, y, and z

components of vectors, are taken to be in the temporary coordinate system; the angles 8

and 0 used here are also confined to the temporary coordinate system and are not related to

the orientation angles discussed in section 4.5.

For each fieldpoint, the computer program BEM3D spends a significant amount of

time assessing the geometry of the elements in order to determine which elements occupy

the north pole so that the correct form of the Hij integral is used. This assessment is simple

when node i and elementsj are on the same sphere; only element j = i can occupy the north

pole and h 2- 1 is strictly zero. The situation is more complicated when the element under

consideration is on the other sphere.

There are three ways in which an element can occupy the north pole (Figure 4-12):

(i) one of the element's vertices can coincide with the north pole, (ii) one of the element's

edges can cross the north pole, and (iii) the north pole can lie in the interior of the element.

When one or more of these conditions occurs, Hq is evaluated from either Equation (4.77)

or (4.78). By explicidy changing the form of the expression for H/j when the noah pole is

involved, the problem of division by zero is eliminated from the computer code.

In all the integral expressions for G_/and Hij, the limits of integration in • (or 0)
o

have been left as functions of 0. We now present the method by which functions are

integrated over the surface element. For the element shown in Figure 4-13a, for instance,

the integral of the generic functionfcould be written as:
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f h 0_(¢) es 0s(_)F= d_ ( f sin O dO + ( f f sin O dO (4.90),

where O_) is calculated from the intersection of bounding plane k and the unit sphere:

Ok(#) = tan -l _ - nz,k (4.91),

nx.k cos _ + ny.k sin

and (nx,k, ny,k, n,,k) are the components of the normal to edge k; care must be taken to

insure that values of 0k(#) between 0 and x are selected.

Evaluation of Equation (4.90) as written requires the computer program to decide

such things as which edges are the upper and lower limits, when to change from one edge

to the next, and what is the sign of the integral. If vertices 1 and 3 were switched in Figure

4-13a, for example, evaluation of Equation (4.90) would produce a result with the opposite

sign. Some of these difficulties are removed if the equivalent expression:

F= d¢_ f sin O dO + d# f sin O dO
l (_) (¢)

f/°f2+ d fsin 0 dO (4.92)
(¢)

is evaluated instead. This procedure is shown graphically in Figure 4-13, panels b-d. As a

check on the sign of the integral, BEM3D computes the integral forf = 1, in which case F

= the surface area of the element. If the surface area as calculated is negative, the signs of

all integrals associated with that element are changed so they are consistent with a positive

surface area. When the element contains the north pole, only the limits of 0 integration

change in Equation (4.92): the lower limit is 0 and the upper limit is 0k(0). In practice, the

0 integrations are performed after changing the integrating variable to r. Gauss-Legendre

quadrature schemes are used for the numerical integration in _.
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Figure 4-12: Three ways an element can occupy the north pole.
(a) Common vertices of several elements may lie at the pole.
(b) The edge between two elements may cross the north pole.
(c) The pole may lie within an element.

Some additional geometric situations must be considered by program BEM3D. For

the most part, these arise from the choice of 0 as the independent variable and 0 as the

dependent variable in describing the boundaries between elements. Consider, for instance,

the case where the plane dividing two elements contains the poles (its normal lies in the xy

plane). The resulting edge is a line of constant 0, and 0 is not a function of 0. Although

Ok(O) is indeterminate, this is not a problem because the integration in O makes no

contribution to the integral over the element. If the z component of the normal to the edge
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(a)

(c)

(b)

(d)

Figure 4-13: Integration scheme for spherical triangular elements.
(a) The element on the sphere with vertices and edges identified.
(b) Integration carded out from vertices 1 to 2 and from 2 to 3 giving a

positive contribution.
(c) Final integration step from vertex 3 to vertex 1, which gives a negative

contribution.

(d) Net result when integrations in (b) and (c) are added.

164



I

along which BEM3D will integrate is sufficiently close to zero, the integration is omitted.

Because the range of _ used is -_t < ¢ _ _t, some confusion is also possible when the path

of integration crosses the plane _ = _ (the "international date line"). If the integration is

between vertices 1 and 2, for example, BEM3D calculates 102 - ¢1] and compares the result

with _r. If[02 - 01[ > it, the proposed path is not the shorter one, so 2_ is added to or

subu'acted from 02 to obtain the correct integration path.

Once the nodal potentials and fluxes have been calculated, the charging integrals

The charging work for the sphere is evaluated approximately by themust be computed.

formula:

_esP here f NI

(s)=!A a'u 2l- 5". c(=,j aj
eo_go2 2 _h,,_ j--i

(4.93),

where u = the total electrostatic potential, and the coefficients in the summation are the

charge density, potential, and area of each element j; the summation formula reflects the

constant element approximation. A similar level of approximation is applied to the charging

of the plate, as discussed next.

Recall from Equations (4.57) and (4.59) that the potential anywhere in the domain

is given by:
N N

Ui = E qJ GO- _., uj Hij (4.94),

jr1 jffil

where the fundamental solution is placed at some point xi. in the domain and the uj and qj

are obtained from the boundary element solution for the potential. (The flat plate potential

makes no net contribution to the charging integral on the plate.) Rather than evaluating the

Gij and Hij, with multi-point quadratures, we approximate them by:

ao- fr.; ij= fFq _ dA = q_j Aj (4.95),

in which u* and q" are evaluated at nodej. Substitution of (4.95) into the charging integral

for the plate gives:
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lec (S)

= ½ O: _ Aj q) u; dA - uj q; dA (4.96).¢2oaeo j =1 p_. _u

For the situation depicted in Figure 4-14, we have r 2 = z] + 172, r = (-71cosfl, -rlsinfl, zj),

n = (-sinOjcos#pj, -sin_sincpj, -cosOj), rld_ = rdr, and dA = rldfldrl. The integral of u_j

over the plate is then

u_ dA = dfl e-a_r rl dT1 = e"arr dr = l e-a_j (4.97)
r 2 ape

I_te

and the corresponding expression for the q_j term is

Yo fo( co,oq_j dA =_1 (r . n) dfl +trr)-Tdr/ = (4.98).---_ e-a_j
pJ"tc

Note that the integration in fl leaves only the z component of the flux. If (4.97) and (4.98)

are substituted into (4.96) and we make use of the symmetry of the problem to express the

integrals over all the elements in terms of the integrals over one sphere, we can write the

charging integral for the plate as:

_)ePlate . . Nt .

lec tS)= tTx _ _ aj e-arzJ(_--_+ uj cosOj} (4.99).
eo _ 2 a j=1

This concludes the discussion of the boundary element method. We now exercise

the boundary element program BEM3D on two relatively simple problems so we can assess

both the accuracy of the method and the significance of nonuniform charge dislributions.
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Figure 4-14: Calculation of charging integral over inf'mite flat plate.
The node is located at (xj, yj, zj); n - (-sinO. cos_, -sinO" sin_', --cosO. ).
and y' axes are parallel to thex and y axes pa_sing _rough _e s_here. J
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4.7 Two Test Problems

The problem of two uniformly charged spheres (see Figure 4-15) was solved for

the case where e 1 = e 2 = o'* = 1, in which case the dimensionless surface potential at

infinite separation is u-= (1 + at) -1. _euc was calculated as a function of distance from

the plate and compared with the results from the linear superposition approximation [5,6].

The potential energy calculated from the linear superposition approximation is:

LSA

_,lec (s)= 4_ ¢-_r(s- I)= 4x •-_ra (4.I00).
1//o2a (1 +at) 2 2s (1 +at) 2 2s

Figure 4-15: Definition sketch for the two sphere problem.

Results for ale= 0.1 and 1 are shown in Figure 4-16, while results for ax" -- 5 are

given in Figure 4-17a. In all cases, the ] axis of the diseretization (see Figures 4-8 and 4-

9) is coincident with the line of centers. Meshes with N -- 8, 24, 48, and 96 are based on

an initial octahedron discretization while the meshes with N - 20 and 60 are based on an

icosahedron. The BEM calculations agree well with the LSA for dimensionless gaps d >

(ax') -1. For instance, BEM calculations with 96 elements are within 1% of the LSA ford>

0 when ax'=0.1, d > 0.05 when ax:= 1, and d > 0.11 when ax'- 5. For d ~ a, the relative

error in the BEM calculations is approximately 10--4. The apparent divergence at d = 3 and
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at= 5 (Figure4-17a) reflectsthe levelof noise in the calculation(~ I0--14).At smaller

separations(especiallyat contact),the linearsuperpositionapproximation is not valid

[5,32],but convergence can be studiedby comparing thecomputed valuesof Oet_cwith a

reasonableupper bound.

At high ionicstrengths(largeax'),thecalculatedenergy issensitivetothe location

of the node nearestthesouth pole (theimage sphere).The surfacepotentialisa maximum

at the south pole and decreases rapidlywith increasingz. Under the constant element

approximation, the potentialover the entireelement isthatof the node; ifthe node is

relativelyfar from the south pole, the element's contributionto the charging work is

underestimated. By rotatingthespheres so thata node restsatthe southpole,the "nearest

node effect"can be removed. The potentialatthe southpole isnow correcttotheaccuracy

of the BEM, but thecalculatedenergy isan overestimateof thecharging work because the

infinitesimalarea over which itobtains isgrosslyexaggerated by the finitearea of the

element. O_ec was calculatedatcontactforseveraldiscretizationsand plottedagainstN in

Figure 4-17b. The calculated potentialenergies are converging to the same value

independentoforientation.

The relativelyslow convergence forthissimple testproblem revealsa shortcoming

of the constant element approximation: the length scale of the discretizationmust be

significantlysmallerthan _c-Iforreasonableaccuracy. In thecaseof uniform sphereswith

ax"= 5, a 240 element discretizationproduces an answer within 2% of the "final"value.

When the charge distributionis nonuniform or the ionic strength ishigher, the

discretizationmust be furtherrefinedbeforecomparable accuracy isreached.

The effectsof a nonuniform chargedistributionareillustratedusinga charged "cap"

covering 25% of the particle'ssurface;the remainder of the sphere isuncharged. The

scaled surfacecharge density of o* _-358 over the cap isbased on a net charge of Z =

+I0.5 spread uniformly over a sphere 16.48]_in radius.These valuesare appropriatefor

the idealizedrepresentationof hen egg white lysozyme used formore detailedwork (§4.8).
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The initial discretization for the cap studies is an icosahedron with the five elements of the

charged cap covering the particle's north pole.

The effective "south pole" was rotated from the north pole (a = +90") to the south

pole (a = -90") in steps of 45" with a fixed longitude of fl = +90". The calculated Oe:,c

based on 240 elements is shown in Figure 4-18 as a function of orientation and separation

for at- 5 and 10. The most striking feature of these calculations is that a rotation of 90"

can easily change Oe_c by a factor of 60 or more. The relative difference between "south

pole" latitudes of +90" and +45" is smaller for a_ = 10 than for ar -- 5, reflecting the

greater effect of screening in the former case.

These computations are subject to convergence problems similar to those in the

uniform two-sphere problem. The eleclrostatic interaction energy for +90" should be larger

than for any other orientation because the charged caps are closer. The BEM results at

contact, however, are still don_nated by the sensitivity to node placement described above.

With 240 elements, the node spacing is just close enough at at-- 5 that _ec(+90") >

Oelec(+45") everywhere, although that is not yet true for the derivative of O_c. When ar

--- 10 (Figure 4-18b), 240 elements are insufficient to place the potential energies in the

proper ranking for all separations. A series of calculations with sequentially refined grids

shows a consistent reduction in the size of this discrepancy, indicating it is a numerical

artifact.

Elecu'ostatic free energies calculated from the boundary element method agree well

with those predicted from the linear superposition approximation when the panicles are not

too close. The finite size of the elements introduces some numerical "orientation" effects

which decrease with further refinement of the mesh. Additional calculations with a

nonuniform charge distribution show that the free energy depends strongly on orientation,

and that these orientation effects could play a role in protein crystal growth. The next step

is to develop an approximate model of the charge distribution on a protein for more detailed

study.
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4.8 Idealization of Lvsozvme Molecule

The thrust of this study is to describe the features of the electrostatic interaction

which derive from variations in surface charge density. Rather than create additional

artificial (and probably unrealistic) charge distributions as was done for the "charged cap"

problem in section 4.7, the actual charge distribution of a small protein is used as a model

to assess the strength of nonuniformity effects. Lysozyme was selected because it has

relatively few charges and more crystal growth studies have been pcrf_ with lysozym¢

than other proteins. The method of mapping the actual charge distribution onto a spherical

surface is the subject of this section.

Hen egg white lysozyme is reported to be an oblong molecule approximately 23,_, ×

28._ × 40._ [8]. The approximate coordinates of its charged groups (taken from

crystallographic data for the tetragonal space group at 1.4M NaCI in 0.02M sodium acetate

buffer at pH 4.7) are listed in Table 4-2 [8]. We make the approximation that all the

charged groups lie on the surface of the molecule and seek the location and size of the

sphere which comes closest to all the charged groups.

The sphere is defined by four unknowns: three coordinates of the origin (Xo, Yo, Zo)

and its radius, a. One method for obtaining the best-fit sphere is to find the location of the

origin such that the lengths of radii from the origin to charges i,

=[(xi-Xo)2+(Yi-Yo)2+{zi-Zo)2] O.I01),

have a minimum scatter.IftheRi are considered independent measures of the particle's

size,thisspecificationisequivalenttominimizing the sample varianceof theN radii.Note

thatthe sample variance,

N

l=l

is a minimum [33]. For a given trial origin, the appropriate estimate for a is then R. The

search for the best-fit sphere is reduced to a search for the origin which minimizes s 2.
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Such a search was performed by the FORTRAN program SPHERFIT using the

method of random descent in a fashion analogous to that used to find crystal orientations

by program ANGLE (§2.10). The ultimate step size for each coordinate is 0.01A. The

best-fit sphere is located at (-1.67, 20.91, 17.91) and has a radius of 16.48A. These

values compare favorably with the center of mass (-1.08, 20.00, 18.35) determined by

inspection [8] and the hydrodynamic radius of approximately 20A [9]. The location of

charge i on the surface was determined from the intersection of the radius vect_ Ri with

the surface, in the same way the location of the nodes was fixed (§4.6). A map of the

surface charge distribution is shown in Figure 4-19.
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Figure 4-19: Surface map of point charge distribution
lysozyme molecule.

Charges are given in units of the proton charge, 1.6x 10-19C.
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Table 4-2

Coordinates of charged groups in tetragonal hen egg white lysozyme.

Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Residue

1

1

5

13

14

15

18

21

33

35

45

48

52

61

66

68

73

87

96

97

101

112

114

116

125

128

129

Type

N-terminus

lys

arg

lys

arg

his

asp

arg

lys

glu

arg

asp

asp

arg

asp

arg

arg

asp

lys

lys

asp

arg

arg

lys

arg

arg

C-terminus

Charge

+I

+I

+l

+l

+l

+0.5

-1

+1

+1

-1

+1

-1

-1

+1

-1

+1

+1

-1

+1

+1

-1

+1

+1

+1

+1

+1

-1

X

3.28

-3.80

-6.31

-17.40

-12.20

-9.67

-14.73

-11.82

3.17

4.38

18.46

14.17

8.98

13.02

11.50

16.16

1.83

-5.45

-11.68

-5.50

-2.00

5.25

6.61

-1.79

-10.80

-18.86

-17.14

Y

10.16

10.48

24.40

21.25

9.25

11.01

24.29

23.93

23.88

24.84

15.42

22.91

21.08

20.81

12.56

12.96

16.91

7.45

16.57

14.40

24.43

33.64

30.51

36.55

31.20

17.79

21.78

Z

10.35

8.18

2.84

11.10

14.63

17.86

14.83

29.27

5.62

18.14

23.99

29.22

22.43

31.91

27.61

24.25

39.96

16.81

22.82

30.09

32.74

23.22

10.82

22.86

-l.O0

0.09

6.41
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We have chosen to represent the surface charges as patches of constant charge

density because that method is consistent with the constant element formulation we have

employed in the boundary element calculations. The goal is to create a patchwork of charge

densities which is smooth enough that the governing equations remain valid but "lumpy"

enough to exhibit any behavior unique to "patchy" spheres.

The concept of "local averaging," which is often used to make continuum

approximations of discrete phenomena, is used here to smooth the local charge density on

the sphere. Rather than represent the charged groups as point charges which would

produce extremely high potentials in their immediate neighborhood, the charges are

"smeared out" over a spherical cap which is finite in area. In principle, this is done by

centering the spherical cap at the point of interest and summing all the point charges which

lie within the cap. The local charge density is the net charge within the cap divided by

Asampte, the area of the cap. In practice, the test to determine if a charge contributes to the

local charge density is whether or not the distance (ri) from the point of interest to charge i

is less than rsample (see Figure 4-20 for a sketch). The local charge density is given by:

N

(y= 1 _._ Qi H(rsar_te- ri) (4.103),
A sample i = I

where Qi = charge of group i, and H(x) = Heaviside step function. The distance from the

north pole to any point on the sphere is r-=-a [2(I - cos 0)]I/2; the surface area within the

spherical cap of size 0 is 2_ta 2 ]sinO dO = 2_a 2 (1 - cos O). When O =Osample, the

sampling radius is related to the sampling area through

r,a_te = q'Z a(1 - cos 8==,wl,) Irz = 2 a [As_ptell/2
_A sphere I

(4.104),

where Aspire = 4r_a 2. Maps of the local surface charge density of lysozyme are shown in

Figure 4-21 for sampling areas of 300, 200, and 100 A2; for the model lysozyme molecule,

Asphe, 3400 A2.
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a

Figure 4-20: Sampling area and sampling radius.
Charged groups lying within the shaded area contribute to the local charge density
at the north pole.

178



(a)

(b)

9O

I ! !

-9(

! ! !

(c) 90

longitude (degrees)

longitude (degrees)

longitude (degrees)

2500

2000

1500

1000

500

0

-500

-1000

-1500

-2000

-2500

Figure 4-21: Local (smoothed) charge density on the surface.
The local charge density depends on the length scale over which it is avenged.

Charge densities are scaled by Go = 1.4 × 10 -2 laC/cm z. The sphere has a surface
area approximately 3400/_2. Sampling areas are:

(a) 300/_,2" (b) 200 A2 (c) 100 A 2.
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The(constant)chargedensity,_, assignedto elementj is calculated by averaging

over the area of the element, A j:

OJ =Aj

(4.105).

This method of computing _ introduces the length scale of the discretization into the

problem. The larger of Asample and Aj determines the length scale of the patchiness. A

series of successive refinements of the original icosahedral discretization (Figure 4-22)

shows how the surface charge density in Figure 4-21c is approximated by constant

elements. Since convergence of the computations is checked by comparing answers

obtained at successively smaller Aj, the discretization does not normally set the scale of the

surface features. The choice of Asample, however, can affect the size of nonuniformity

effects which are calculated. As an extreme example, setting the sampling area equal to the

area of the sphere reduces the charge density to that of a uniform sphere having the same

net charge as the model sphere.

There is a lower bound on Asa,,v, te below which the governing equation in region 2

is no longer valid. The linearized of the Poisson-Boltzmann equation is valid for potentials

up to approximately 100 mV (scaled potentials of u = 4), which places restrictions on how

small Asa,_te can be. Consider the case of an isolated sphere with a uniform scaled surface

charge density, o'. The scaled surface potential, u**, is then _/[e2(1 + aw)] and surface

charge densities greater than about 4e2(1 + at) would place the system outside the range of

validity of the linearized Poisson-Boltzmann equation. If the net charge within the

sampling area is Q, the corresponding restriction on Asa_te is:

Qa (4.106).
A sample > 4eoe2 I//o( 1 +ax')

To smear out a proton's charge (Q = 1.6x10 -19 C) on a particle with a = 16.48,_, e2 - 80

(water) and ape= 5 (ionic strength approximately 1M) would require a minimum sampling

area of 60/_2. All calculations reported here are based on a sampling area of 100 ,_,2.
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Severallayersof approximation have been employed to create a reasonable model

of a protein molecule. The choice of sampling area is dictated by the linearization of the

governing equation, while the assumption of constant elements suggests a method for

specifying the charge density. The idealization of the molecule as a sphere and the

corresponding mapping of the charged groups reflect a strong desire to keep the problem as

simple as possible. Despite these severe simplifications, the resulting surface charge

distribution, although not 100% "authentic," appears adequate to capture the essential

physics of the phenomena.

4.9 Interaction Potential Energy of Lysozyme-Crystal System

_elec(S, a, t) was calculated for "south pole" locations coincident with each of the

N1 nodes on the sphere, (a./, ill)" We invoke the constant element approximation once

more to set the potential energy of the system in any orientation (a, t) lying within element

j equal to the nodal value. In anticipation of adding the electrostatic and van der Waals

potentials, ¢_elec is now scaled by kT. Potential energy surfaces at contact for conditions

a_¢ = 5 and ox = 0 are shown in Figures 4-23 and 4-24 for four discretizations. As

mentioned in section 4.3, the free energy is always repulsive because the nearest charges

on the sphere dominate the interaction. A surface map of the electrostatic free energy

surface at contact for a_" = 5 and o'_ = 0 (Figure 4-25a) is compared with a contour plot of

the charge distribution (Figure 4-25c) for 240 elements. The calculated electrostatic surface

potentials (not shown) can be as large as 10 - 20 at contact and would seem to violate the

low potential assumption used to linearize the Poisson-Bohzmann equation. As the particle

moves away from the wall, however, the surface potential rapidly decreases into the range

where the linearized equation is valid. There is therefore some uncertainty in the value of

_etec near contact, although it seems internally consistent with values calculated at finite

separations. This shortcoming is inherent in any model which employs the linearized

Poisson-Boltzmann equation to describe the electrostatics.
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90

_) elec
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Figure 4-23:20 and 60 element approximations of electrostatic free energy
at contact.
Free energy as a function of orientation when the model lysozyme sphere is in
contact with an uncharged, insulated plate; at= 5

(a) 20 elements. (b) 60 elements.
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_ elec
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(b)
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_) elec

kT

Figure 4-24:120 and 240 element approximations of electrostatic free
energy at contact.
Free energy as a function of orientation when the model lysozyme sphere is in
contact with an uncharged, insulated plate; a_¢-- 5

(a) 120 elements. (b) 240 elements.
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Figure 4-25: Relation between surface charge distribution and electrostatic
free energy at contact.
Free energy as a function of orientation when the model lysozyme sphere is in

contact with the0Plate; ape= 5. Free energies are scaled by kT; charge density scaledby cro -- 1.4 x 1 laC/cm 2.

(a) _e_ec when o'._ = 0. (b) (_e_ when cr_ .- 500. (c) scaled charge density.
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We have already discussed how the plate's surface charge can increase or decrease

the potential energy of a given orientation depending on the signs of the charge on the

nearest surfaces. Those orientations offering a similarly charged surface suffer an increase

in free energy while the free energy of orientations with oppositely charged surfaces are

reduced relative to their interaction with an uncharged plate. The selection of an appropriate

crystal surface charge is fraught with uncertainty, but crystal surface potentials are probably

comparable to those of protein molecules. Further, we are interested in comparing the

behavior of patchy and uniform spheres so that crystal charge densities can be restricted to

those which might be produced by packing a large number of uniformly charged spheres

into the lattice. The net charge uniform density on the model lysozyme molecule is 6' -,

358; the corresponding fiat plate charge density producing the same surface potential is

J,

approximately cr = 300 when a_c = 5. The effective surface charge could be larger, so the

range tested was extended to o'x = 500. The effect of crystal surface charge is illustrated in

Figure 4-25 for two values of tTx at contact when ax" = 5. Although Figure 4-25 is

informative, the significance of the nonuniform charge distribution cannot be assessed

without a quantitative comparison of the behaviors of uniform and patchy spheres. For

this, we turn to the angle-averaged interaction potential.

We introduce the principles of angle-averaging through the illustrative example of a

freely rotating point dipole in a uniform electric field. The electrostatic free energy of the

dipole is given by ¢_tlec(O) = - P" E = -p E cos O, where p = dipole moment, E = electric

field vector, and 0 = angle between dipole and elecwic field [24]. IfM is the property to be

averaged, the angle-averaged value (M) is the average over all orientations of M weighted by

the appropriate Boltzrnann factor, e-¢,,_,_(O)/kT [34]. The effect of the Boltzmann weighting

is illustrated by the calculation of the angle-averaged value of cos 0 for the point dipole:
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=cotanhiPEI -kT (4.107),
_kT! p E

fOn eP sin 0 dO
EcosO IkT

which is known as the Langevin equation [16,26,29,35]. The importance of (4.107) is

that there is a preferred orientation for the dipole even though it is freely rotating.

McQuarrie [35] claims that although averages such as (4.107) are correct for

mechanical properties such as pressure and volume, it is inappropriate for nonmechanical

properties such as free energy. Instead, the proper averaging is reported to be [24,36]:

fs e- d.('2
¢',,,,ts._)

(¢l)etec(s)l - In otid angles
kT = 4n: (4.108),

where the orientation is defined in terms of the solid angle 1'2. When the constant element

approximation is employed, the integral over all solid angles can be replaced by a sum over

all elements of the sphere:

\ Ni

l_etecfS)/=-ln 4"_kT_ ayexp[-_elec_s, aj._j)/kT] (4.109),
J=l

where Aj is the area of elementj on the unit sphere and the coordinates (aj, _) define the

orientation of node j. The significance of the nonuniform charge distribution can be

determined by comparing the angle-averaged interaction potential defined by (4.109) with

that for the uniformly charged particle having the same net charge.

The angle-averaged interaction potential for the 240 element discretization of

lysozyme is shown in Figure 4-26 for the case aJc = 5. The potentials for orientations

producing the least favorable (_e_) and most favorable (_/c n) interaction potentials are

shown for comparison, as well as the uniform sphere potential (_e_: °rm) and the

arithmetic average potential ('_,lec). The relative ranking of (_elee ), _dec and _eatnic/°'m arc

difficult to see in Figure 4-26, so the curves are replotted in Figure 4-27. At high crystal

surface charge densities (Figure 4-27b), the angle-averaged potential lies below both _etec
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Figure 4-27: Relation among several averages of electrostatic free energy.
More detailed view of the relation among the angle-average, arithmetic average, and
uniform electrostatic free energies.

(a) o'_= O. (b) o',_ = 500.

189



and_etec , as expected from the the influence of the Boltzrnann weighting in (4.109).

We note that at high values of crx, the potential in orientation j is roughly proportional to

o'xo), where oj = charge density of element j (which, of course, is closest to the plate).

l_ uniform
When averaged over the sphere, we would expect _ec " "_'etec , an expectation which

is approximately met when the sphere is far enough from the plate that the influence of the
!

mirror sphere is negligible. The Boltzmann weighting reduces [¢etec ) below both _etec and

(_eunifo rm
tec because lower poten:ialenergy orien_ons are favored.

Whenthe sphere is close to theplate or theplate's surfacecharge densityis low. the

interaction of the sphere with its mirror image can no longer be neglected. This additional

contribution to the electrostauc potential energy is roughly proportional to _ because the

element covering the south pole is repelled by its minor charge. The mthmetic mean of

this contributionoverall orientationsis propo_onal to o"zwhile that for the uniform sphere
-- 2 m -- 2 . -- ,._ uniform

goes as o Since cr2 > cr , it follows for patchy spheres that _elec > "veiec (Figure 4-

27a). Again we see that the Boltzmann weighting reduces (_e_,c) below _etec; this time,

however, (_etec ) > "l_unii°rm_" elec •

The most important feature of these electrostatic free energy curves is that the

electrostatic repulsion is relatively weak (less than 6 kT when o'_ = 500). The second

important finding is that there is only a slight difference in free energy (less than about 2 kT

when crx = 500) between the uniformly charged and angle-averaged molecules. Both

these conclusions result from the moderate range of crystal surface charges investigated,

and their validity depends on how well this range of charges approximates that experienced

by approaching protein molecules. The issue of crystal surface charge density is addressed

in more detail later. The differences between the uniform and angle-averaged cases may, in

fact, be less significant than they appear because at small separations, the attraction of the

dispersion potential is dominant. We now turn our attention to the effect of the van der

Waals potential.
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Thedispersionpotentialfor the (spherical)crystalandthe(spherical)moleculeis

givenby [5,7]:

2R + 2R

+ 1)d+d 2 4R+2(R+l)d+d 2

+In 2(R+l)d+d 2 /

4R + 2(R + 1}d+d 2] (4.110),

where R = crystal radius and d = separation (gap) between the surfaces of the crystal and

molecule; all lengths have been scaled by the particle radius. For cases of interest here, R >>

1 and _,dw at small d is insensitive to the exact value of R; a value of R = 106 (crystal

radius about 2 mm) was used for all calculations. As with the effective surface charge

density, extensive data do not exist for estimating the effective Hamaker constant, Aeff.

If molecule and crystal are treated as pure hydrocarbon bodies interacting through

water, Aeff should be approximately 1 kT at 300K [24]. Measurements of dispersion

forces on lysozyme indicate values for Aeff in the range of 1 - 2 kT at room temperature

[37,38]. Unfortuhately, the high solvent content of the crystal (typically 50% [39])

introduces major uncertainty into the selection of Aeff. A naive estimate might be that Aeff

should be roughly half the value appropriate for pure hydrocarbons, or 1/2 kT, in which

case the sensitive balance between van der Waals attraction and electrostatic repulsion is

evident in Figure 4-28 for ax'= 5. Even when cr_ = 500, the repulsive barrier is only about

1 - 2 kT; in the context of colloidal stability, this is insignificant. The barrier height is

somewhat sensitive to the exact value of AeM, as shown in Figure 4-29. At values of AeM

as low as 0.1 kT, the angle-averaged potential still peaks at only 2kT (Figure 4-29a). As

expected, the repulsion is weaker at higher ionic strengths (Figure 4-30).

Until now, we have studied only cases with moderate positive surface charge

densities on the plate. These conditions are appropriate for comparing the potentials of

uniform and patchy spheres, but they do not demonstrate the full range of behavior

exhibited by the protein molecule. As a result of the nonuniform charge distribution on the
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Figure 4-28: Balance of electrostatic repulsion and dispersive attraction.
Curves show full interaction potential between crystal and charged sphere for
moderate crystal surface charge densities; at=5.

(a) model lysozyme molecule.
(b) uniformly charged sphere with same net charge.
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Figure 4-29: Effect of Hamaker constant on free energy maximum.
Comparison of angle-averaged and uniform interaction potentials for o',_ = 500, a _:
= 5, and various effective Hamaker constants.

(a) model lysozyme molecule.

(b) uniformly charged sphere with same net charge.
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Figure 4-30: Angle-averaged interaction potential for lysozyme (ax'= 10).
At high ionic strengths, the electrostatic repulsion is greatly diminished. Even for a
relatively small effective Hamaker constant, there is no appreciable barrier to the
molecule as it approaches the surface.

molecule, elements on the sphere have charge densities ranging from -1637 < o" _<2327.

In fact, as seen in the cumulative distribution function of the elements' charges (Figure 4-

31), only 40% of the 240 elements have charge densities within the range studied so far. If

the range of crystal surface charge densities is extended to reproduce the entire range of

surface potentials on the isolated lysozyme molecule, dramatic changes in the electrostatic

free energy result (Figure 4-32). In agreement with the discussion in section 4.3, the

potential is becoming more repulsive at high tr._irrespective of sign. The issue is to decide

what range of effective surface charge densities might reasonably characterize the crystal

surface.
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Figure 4-31" Cumulative distribution function for surface charge density.
Approximate cumulative distribution function for the scaled charge densities of
elements on the sphere (N1 = 240).

The surface potential of the isolated lysozyme molecule provides guidance in this

matter. A test charge arriving at the surface of the molecule experiences some electrostatic

potential which depends chiefly on the local arrangement of charges. To the test charge,

the potential seems almost like that produced by a uniformly charged sphere with an

appropriate charge density. If u- is the scaled potential at the surface, the corresponding

equivalent charge density on the sphere is o" = e2(1 + a_')u". Plate charge densities which

produce the same surface potential are cr_ = e2atcu'. For at= 5, surface potentials on the

isolated lysozyme molecule range from a maximum of u- = +3.91 (+100 mV) to a

minimum of u"=-2.44 (-63 mV); the equivalent crystal surface charge densities are

approximately cr_ = 1600 and cr_ = -1000, which seem to be reasonable upper and lower

bounds. There is a dramatic difference in the angle-averaged interaction potential for these
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two cases,as shown in Figure 4-33. These findings are a consequence of the nonuniform

charge distribution on the molecule and would not be anticipated on the basis of the

uniformly charged sphere. Some implications of this behavior are discussed in section

4.10.

kT

10- a_'= 5

-5

-2000 -1000 0 1000 2000

dimensionless crystal surface charge, crx

Figure 4-32: Angle-averaged electrostatic free energy at contact as a
function of crystal sui-face charge density.

When a uniformly charged sphere approaches a plate with a moderate surface

charge of the same sign, the balance between electrostatic repulsion and dispersive

attraction produces a modest energy barrier which must be overcome by the molecule. The

size of the barrier depends on tr_ and Ae#, two parameters which are not well quantified for

the system under study. For the same range of plate charge densities, nonuniform charge

effects leave the qualitative behavior of the system unchanged but alter the height of the free

energy barrier. For crystal surface charge densities comparable to that on a uniform sphere
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Figure 4-33: Mos't attractive and most repulsive interaction potentials.

Angle-averaged interaction potentials for crystal surface charge densities producing
surface potentials equal to the minimum and maximum values found on the isolated
lysozyme molecule when at= 5.

(a) Crystal surface potential of--63 mV.
(b) Crystal surface potential of +100mV.
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with the same net charge as lysozyme, the barriers for the uniform and nonuniform spheres

are within I - 2 kT of each other. At low crystal charge densities, the angle-averaged

interaction potentials lie above the uniform interaction potentials because the sphere-sphere

interaction is proportional to the average square of the sphere's surface charge density;

at high crystal charge densities, the angle-averaged potential rests below the uniform case

because lower energy orientations are heavily favored. Only when the molecule is nearly in

contact with the crystal are the differences between the two cases important; this region is

of primary interest in crystal growth studies. When the range of effective surface charge

densities is extended to include the entire range of surface potentials found on the isolated

lysozyme molecule, the angle-averaged potential can be either strongly repulsive or

attractive. This change in qualitative behavior is due entirely to inhomogeneities in the

surface charge distribution.

4,10 Summary_ and Discussion

A highly simplified model of molecule-crystal interactions has been developed and

applied to protein systems. Chief among the simplifications employed in the model is the

linearization of the governing equation for electrostatic interactions, which allows the

electrostatics problem to be divided into subproblems which can be solved separately to

obtain the total electrostatic potential. Assumptions of smooth surfaces and simple

geometries are made for mathematical convenience since they allow the electrostatic

potential to be expressed as the result of image charges and a uniform fiat plate. The

electrostatic potential produced by the image charges is calculated from a boundary element

method which has been specialized to the case of spherical triangular elements.

Electrostatic free energies calculated from the boundary element method for two uniformly

charged spheres agree well with those given by the linear superposition approximation. In

another consistency check, at separations greater than about a double layer thickness, the
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free energy of a uniformly charged sphere in the presence of a uniformly charged plate

produces the same exponential decay with separation expected from a point charge.

The nonuniform charge distribution on the protein molecule is represented by

surface elements with constant charge density. Interaction free energies of the molecule-

crystal system in different orientations are calculated from the isothermal reversible work

required to charge the surfaces to the appropriate electrostatic potential. The results for all

orientations are then angle-averaged to obtain a single curve which represents the

hypothetical "average" molecular orientation. At moderate crystal charge densities, these

angle-averaged potentials are found to differ only slightly from the curves for uniformly

charged spheres with the same net charge.

The full effect of charge inhomogeneities can be seen when the range of plate

charge densities is extended to produce the same range of surface potentials found on the

isolated lysozyme molecule. In the context of the simplified model, the effective plate

charge density reflects the arrangement of molecules exposed at the surface. Different

crystal faces have different effective charge densities, so the free energy barriers could vary

significantly between faces. Crystallographic data can be used to determine which charged

groups are exposed on the crystal face and calculate the effective surface charge densities.

In the absence of such data, however, we have free rein to speculate on various

possibilities.

Consider, for example, the case where each face presents a free energy barrier to

the approach of molecules. Since the ratio of the flux of molecules to the crystal in the

presence and absence of a repulsive interaction potential is approximately exp (- (¢_),_._/kT)

[7], crystal growth is always slower than the diffusion limit. For a barrier of 2 kT, this

retardation is about a factor of 10. The addition of a molecule to the crystal would thus

appear to occur in three steps: the molecule (i) arrives near the surface, (ii) climbs the free

energy barrier to reach the surface, and (iii) finds a suitable location and orientation on the

crystal face. Steps (ii) and (iii) can be lumped into the kinetics of the process. If step (ii)
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wererate-limiting, large free energy barriers would reduce the effective attachment rate

constant and the wansition (if any) from kinetic control to diffusion control would occur at

larger crystal sizes. By the same reasoning, an attractive potential would enhance the flux

to the surface and crystal growth would become transport-limited at smaller crystal sizes.

For lysozyme, at least, measured growth rates lie below the diffusion-limit [40,41] so it is

unlikely that step (i) controls crystal growth. If the interaction potential is attractive, step

(ii) cannot be rate-limiting.

Inspection of the interaction potential curves and experimental results both suggest

that diffusion alone is adequate to sustain crystal growth at constant rates. A definitive

conclusion about the effects of colloidal forces on protein crystal growth must be deferred

until more reliable estimates of the crysal charge density and the effective Hamaker constant

are available. Variations in charge density could restrict the arrival of protein molecules to

certain portions of the crystal (a particular crystal face or specific sites within the repeating

cell on the surface, for instance). The effect of angle-averaging is to bias the orientations of

incoming molecules towards lower potential energies. Once in a low energy state,

subsequent rotational diffusion tends to keep the molecule in orientations which are not too

different in energy. The locations of maxima could effectively lengthen the "orientational

distance" through which the molecule must diffuse by forcing the molecule to bypass

regions of high free energy, even if they lie along a direct path to the global minimum.

The present analysis has dealt with mechanisms by which a molecule can reach the

crystal face but provides no information about how the molecule finally finds its niche on

the surface. This step is extraordinarily complicated because it requires a patchy sphere to

migrate across a patchy surface, find a favorable attachment site, and orient itself properly.

For the case of uniformly charged crystal surfaces investigated here, the free energy suface

at contact consists of several large maxima and many shallow, closely spaced minima.

Rotational sampling by the molecule would not seem to be excessively restricted under

these conditions. In all likelihood, however, the molecule must also translate across the
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surface to the addition site. The investigation of such a process, which calls for much

more precise modeling of the surfaces and interaction potentials than was possible in this

work, is a logical next step.
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CHAP'IER5

ReviewandSuggestions

.L1./azzaar.ma

The work described in this dissertation supports several statements about the nature

of protein crystal growth. Long-term growth experiments on lysozyrne crystals up to 300

lain in size demonstrated that natural convection does not slow crystal growth. Normalized

growth rate and net growth distributions for a population of crystals grown in the presence

of forced convection were similar to those of a population of quiescent crystals; the relative

standard deviations of the flow crystal distributions were smaller than those of quiescent

crystals. Changes in the shape of the distributions with time were not detected, indicating

that convective effects (if an),) act more or less uniformly on all crystals irrespective of size

or growth rate. A wide variation in growth rates was exhibited by flow and quiescent

crystals; some of the variation was associated with measures of the local environment, but

growth by two or more different mechanisms [1] may be partly responsible.

The molecule-crystal interaction potentials calculated in chapter 4 are highly

sensitive to the effective Hamaker constant and crystal charge density. Free energy barriers

to the molecules as they near the surface diminish the relative importance of bulk transport

in controlling crystal growth. For the cases studied here, the heights of the free energy

barriers are moderate (a few kT) and might reduce the flux of molecules to the surface by

slightly more than a factor of 10. Rather than imposing a few low energy orientations on

the lysozyme molecule as it approaches the crystal surface, the distribution of free energy

minima suggests that electrostatic forces prevent the molecule from entering a few highly

repulsive orientations.

The complexity of the protein crystal growth problem is reflected in the questions

posed about it. In large measure, these questions are not "how" but "why" should certain

phenomena be observed? If the results of this research project are indicative, there are no
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simple answers. What is apparent, is that insufficient data are available to describe protein

systems at the appropriate level of detail. Protein crystallographers are correct when they

attribute the apparent sensitivity of protein crystal growth to the complex nature of the

molecules, but these molecules are subject to the same laws which govern small molecule

crystal growth. The description of protein interactions depends strongly on the scale used;

at the correct scale, the apparently idiosyncratic behavior of protein systems may at least be

rationalized, if not predicted. In large measure, the research described here is a search for

the proper scale for further study.

5.2 Summary_ of Crystal Growth Experiments

As part of this investigation into the role of convective effects in protein crystal

growth, a digital microscopy system was assembled for measuring growth rates of crystals

fixed on the walls of a quartz cell. Relevant geometric quantities of the crystals were

measured from the digitized images with software written for an IBM PC-AT. Computer-

aided measurements of the crysta!s were significantly faster than comparable measurements

performed by hand on photographic prints. The measurements condensed the information

in the image for subsequent analysis to a list of vertex coordinates for each crystal.

Cell geometr3, restricted observations of the crystals to a single view ( a two

dimensional projection). Three dimensional information such as crystal orientation and size

were estimated from a "best-fit" ideal crystal analogue superimposed on the digitized

image. The accuracy of the calculated three dimensional properties depended on how well

the actual crystal approximated the ideal geometry. Highly asymmetric crystals, for

instance, were relatively poorly described by the ideal analogues. Calculated distances.

between opposing hexagonal {110} faces could be used for every crystal measured

because they were empirically found to be robust, even when the overall crystal shape

showed significant nonideality; distances between parallelogram {101 } faces were much

more sensitive and were not used in the statistical analysis of the growth data.
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Thesecrystalgrowth experimentscouldnot establishwhetherforced convection

inhibits crystal growth. Equipment failure terminated the flow experiment after only three

days, by which time crystal growth rates had fallen by approximately 35%. Growth rates

of quiescent crystals decreased by approximately 6'1% during the first three days of the

quiescent experiment, but remained constant thereafter. The decline in quiescent crystal

growth rates was statistically correlated with a measured decrease in protein concentration

in the effluent stream. The implication is that the drop in protein concentration is at least

partly responsible for the slowing of crystal growth. In the absence of reliable kinetics

expressions for crystal growth, the effect of this concentration transient cannot be "factored

OUt."

These crystal growth experiments are the first to cover the size range where

convective mass transfer due to buoyancy-driven flow is expected to be comparable to the

diffusive flux [2-4]. In agreement with the results of quasi-steady mass balances on the

growing cr3'stal, growth rates of quiescent crystals were found to be statistically

independent of crystal size at the 99"_ confidence level over the range 156 lam - 322 lam.

This size range includes all measurements of quiescent crystals after the initial protein

concentration transient. The absence of observed growth inhibition over this size range

makes it unlikely that mechanical disruption of molecular attachment is responsible for

"cessation of growth" phenomenon reported in the protein crystal growth literature [5,6].

A scale analysis in [Equation (1.4)] shows that the characteristic shear stress is proportional

to R TM, where R is the approximate radius of the crystal. A crystal as large as 3 mm in

diameter would experience shear stresses less than twice those obtained in this experiment;

such a small change is too small to have much effect [4].

Comparison of the dispersions in growth rates of quiescent and flow crystals

shows that flow crystals have a relatively narrower distribution than crystals grown from

quiescent solution. The breadth of the growth rate distribution as measured in this

experiment is not unusual [7], but is under-appreciated by most protein crystal growers.
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Contributions of several environmental factors (crowding, contact, and location) to the

sample variance were tested for significance. Heterogeneity within the quiescent crystal

population was caused by contact with neighbors and location (center/edge and

top/bottom); the top/bottom division is the only statistically significant factor for flow

crystals. Neither sample population was influenced by the number of neighbors in close

proximity. This last finding, implying that depletion of protein in the vicinity of the crystal

surface is not significant, is in agreement with the absence of size-dependent growth

discussed above. There is no indication why crystals in different locations should behave

differently.

5.3 Further Experimental Studies of Protein Cr'vstal Growth

The question that prompted these experiments, "Does convection eventually halt

crystal growth?" remains unanswered. Flow experiments of longer duration ought to show

whether crystals subjected to forced convection eventually reach a steady-state growth rate

(as do quiescent crystals) or reach a terminal size. If a steady-state is reached, longevity

studies on a statistically significant sample might finally demonstrate that flow is not the

hindrance it is reputed to be. On the other hand, if long-term studies indicate the same sort

of growth inhibition reported by Pusey et al. [8], comparative studies similar to this one

would be required to differentiate between flow effects and temporal effects.

The long-term growth rate transient exhibited by the quiescent crystals is intriguing.

The average size of crystals during the" first round of digitizing was approximately 85 lain,

which implies an average growth rate of about 130 rim/rain during the 5.4 hours prior to

imaging. The high protein concentration in the nucleation slug was no doubt responsible

for the tremendous growth, but there may be other processes at work which gradually

reduce crystal growth rates as the crystals become larger. A study of the initial growth

rates of protein crystals could be conducted using the existing apparatus with slight

modification. The current work ',,,'as restricted to crystals larger than 30 - 50 lam because
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clear digital images could not be obtained at the higher magnifications required for smaller

crystals; vibration isolation may allow measurements of the smaller crystals required to

wack crystal growth better at short times.

Analyses based on best-fit ideal crystals are satisfactory for the sort of exploratory

work performed here, but any effects of anisotropic growth are completely obscured. The

work of Broom et al. [9] indicates that crystal orientation may affect growth rates. A

detailed study of single face growth rates would, for the first time, permit comparison of

crystallographically equivalent faces on the same crystal. An obvious application would be

the measurement of face growth rates as a function of orientation with respect to an

imposed flow. Such a study might be carried out by imaging crystals growing on one face

of a growth cell having a triangular cross-section for flow. Two views of the crystal

separated by a known angle would provide sufficient information to perform a true three

dimensional reconstruction of the crystal, much as three dimensional information can be

gleaned from two satellite surveillance pictures.

Some of these anisotropies may reflect different underlying growth mechanisms on

each face. Durbin and Feher [1] showed that surface features indicative of two

mechanisms could be found on the same crystal face, presumably because the protein

supersaturation was able to drive both of them at comparable rates. At low

supersaturations, crystal growth is believed to be driven by surface defects; growth

anisotropies may therefore provide data on the relative concentration of defects on two

different faces. Conversely, observed symmetries in crystal growth may help eliminate

some possible growth mechanisms from consideration. Anisotropic growth could also

result from interactions with the surface of the container, especially when the crystals are

small. In principle, at least, one could test the null hypothesis that crystal-cell wall

orientation has no effect on crystal growth rates. In all likelihood, such a comparison

would be incidental to other considerations because producing crystals with a suitable

distribution of attachment orientations on demand is practically impossible. A related

2O9



experiment to study how crystal orientation depends on bulk solution propenies and the

material of the cell wall is much simpler.

Recall that the difference in the orientation distributions of quiescent and flow

crystals is what originally prompted the use of best-fit crystals. Since, in both cases,

nucleation and attachment occurred in the absence of forced convection, it was somewhat

surprising that the orientations were not roughly the same. It might be worth investigating

whether changes in nucleating conditions, and not chance, were responsible for the

differences between the two cases. In this experiment, thin plates of various materials

(quartz, borosilicate glass, soda-lime glass, plastics, etc.) would all be immersed in

supersaturated protein solution for nucleation and attachment of crystals. After an

appropriate time had elapsed, the plates could be removed for inspection and measurement

with the current digital microscopy equipment and software. Comparison of crystals

nucleated on different surfaces from equivalent solutions should show how the crystal-wall

interface affects attachment; comparison of orientation distributions from different solutions

would demonstrate the effect of bulk solution conditions. The number density of attached

crystals would also indicate relative affinities of the crystals for each surface.

One last experiment concerns the effect of the hypothetical contaminant which has

been invoked to explain apparent growth inhibition [1,4]. Fontecilla-Camps studied the

effect of a known contaminant.on the number, size, and morphology of crystals grown

from solution [10]. He performed exp.eriments in which crystals of turkey lysozyme were

grown from solutions containing chicken lysozyme as a contaminant. Compared with

turkey lysozyme crystals grown under the same conditions, crystals obtained from

solutions with contaminant levels as low as 0.1% were fewer in number and shorter.

Changes in overall growth habit were interpreted as evidence of preferential adsorption to

different crystal faces. A series of growth rate experiments could demonstrate the effect of

convective transport of contaminant. A preliminary screening would be required to find

two contaminant species (one with high molecular weight, one with low molecular weight)

210



for doping the growth solution. Proteincrystal growth rates in the presenceof these

dopantscouldbemeasuredwith andwithoutforcedconvection;if surfacecontaminationis

responsiblefor apparentconvectiveeffects,forcedconvectionshouldreducethegrowth

ratesof crystals with the large contaminant more than the small one [4]. If this prediction is

confirmed, a search for the identity of the contaminant in the undoped solution would

follow.

It is somewhat discouraging that after a great deal of effort and frustration, the

questions to be answered about flow effects on protein crystal growth are basically the

same as those asked at the outset. The current experiments have provided another datum

with which hypotheses of fl0w mechanisms must agree, and the experiments outlined

above would provide more. A fundamental difficulty with all such experiments is the

uncertainty in the physical state of the supersaturated protein solution. Crystal growth

problems are complicated, and many demanding experiments lie ahead before a better

understanding will emerge.

5.4 Summary_ of Interaction Potential C.alculatio0_

The interaction potential between a protein molecule and a protein crystal was

calculated using a simple model for the electrostatic and dispersion potentials. The protein

molecule was approximated as a solid, low dielectric sphere with a constant but

nonuniform surface charge distribution while the crystal was treated as a region of constant

uniform electrostatic potential having a constant uniform surface charge density. A

numerical approximation for the electrostatic potential was computed by constructing a

suitable distribution of image charges and using a boundary element method to sol_,e the

linearized Poisson-Boltzmann equation for the bulk solution (the region outside both the

crystal and the molecule); Laplace's equation was solved for the potential inside the

molecule. The form of the dispersion potential was that for two spheres when one (the

crystal) is 106 times as large as the other (the molecule).
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Thenumericalsolution for the electrostatic interaction poten6al for the case of two

uniformly charged spheres agreed well the analytic solution over a range of separations

where the analytic solution is known to be valid. The lack of a known solution for the

interaction potential close to contact precluded a test of the accuracy and convergence of the

boundary element solution. Internal checks of convergence indicated that calculated

interaction potentials converge monotonically for a given orientation but that the numerical

solution is sensitive to node placement at separations comparable to or smaller than a

double layer thickness, K"-].

A list of crystallographic coordinates for the charged groups of hen egg white

lysozyme [C. D. Smith, personal communication] provided the data for calculating the size

of the "best-fit" sphere and the approximate surface charge distribution for the idealized

model of the lysozyme molecule. The electrostatic free energy of the molecule-crystal

system was calculated as a function of orientation and separation to investigate the

importance of charge inhomogeneities. The range in free energies displayed by the

molecule is typically 10 kT at contact, even when the surface charge density on the crystal

is modest. The angle-averaged interaction potential was compared wSth the free energy of a

similar sphere having the same net charge as lysozyme spread uniformly over its surface.

For crystal charge densities comparable to that on the uniform sphere, differences in free

energy of the two systems are less than + 2 kT at contact; the free energy of the patchy

sphere is higher than the uniform sphere at low crystal charge densities and lower at high

crystal charge densities. Despite uncertainty in the strength of the dispersive attraction, the

height of the potential barrier is estimated to be no greater than - 3 kT. Compared with

barrier heights of 15 kT discussed in the colloid literature [l l], the approach of protein

molecules to the crystal surface is only slightly retarded.

Qualitative differences in the nature of the interaction potential were seen when the

range of crystal charge densities was extended to reproduce the range of electrostatic

surface potentials observed on the isolated lysozyme molecule. The angle-averaged
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potentialbarrierclimbedto 8kT at the maximum surface potential of +I00 mV and was

purely atu'active at the minimum -63 inV. These dramatic results should be considered

suggestive of the possible effects of charge inhomogeneities. Definitive conclusions about

the interaction potential require reasonable estimates of the effective surface charge density

on the crystal.

5.5 Relaxation of Simplifying Assumptiorl_

The choice of modeling the molecule as a solid sphere with patches (spherical

triangles) of constant surface charge density was made for simplicity and convenience.

Spherical geometry allowed the boundary integrals to be computed analytically in one

variable, thereby reducing the required number of quadrature evaluations. Calculation of

the particular solution for the "remainder" problem was also simplified by the spherical

shape of the molecule. Even with these simplifications, calculation of the interaction

potential at a single point (240 orientations with 240 elements) required approximately 32

hours of cpu time on a SUN SPARC station. Time and computer memory limitations

effectively limited refinement of the surface to 240 elements. Extensions of this work to

more realistic geometries and finer resolution should be performed on a supercomputer

after revising the computer code for use on a vector machine.

The geometry" and charge distribution could be determined in a fashion analogous to

that of Klapper et al. [ 12], who placed the charged groups at their crystallographic locations

and used the solvent accessible surface as the protein surface; exactly the same procedure

could be applied to the boundary element representation. Klapper then assigned an

appropriate fractional charge, dielectric constant, and Debye-Htickel parameter (_ to each

grid point. For the boundary element technique, the surface must be divided into elements

but the location of the surface and charged groups need not be smeared out over

neighboring grid points. Since all the fixed charges lie in the interior of the molecule, the

particular solution at any point inside is the potential due to a collection of point charges in a
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medium of uniform dielectric constant. Again, since the fixed charges are in a finite

domain, calculations over the infinite region outside the molecule reduce to surface

integrals.

The program developed here, BEM3D, is unusual in that the curvature of the

surface is incorporated into the integrations even though the element is nominally

"constant." It is much more common to approximate curved surfaces by a large number of

small planar elements (tesselations) [13,14]. A plane is completely specified by three

points, so Iriangular elements are particularly convenient. In addition, quadrature schemes

have been developed for integration over standard "isoparametric" triangular elements [14].

Some of these quadrature schemes are designed to permit the potential and flux to vary over

the element according to a prescribed interpolation function; these employ "higher order"

elements. With an appropriate choice of geometry and interpolation functions, a coarser

discretization can yield solutions having the same accuracy as finer discretizations with

constant elements. Constant elements can be used when computer memory is sufficient for

successive refinement of the mesh, otherwise, higher order elements with their increased

computational requirements should be used.

5.60oa]itative Relation Between Growth Mechanisms and Interaction Potentials

The surface potential (or equivalently, the surface charge density) of the crystal

largely determines the size of the free energy barrier molecules must overcome on the way

to the crystal surface, The resulting calculated interaction potential, together with growth

rate measurements, permit some discrimination between the roles of transport and

attachment kinetics. Consider, for example, the following scenarios based on the relative

heights of the potential barriers experienced by molecules approaching the crystal surface:

(i) the potential barriers to all faces are comparable, (ii) potentials are purely attractive, (iii)

barriers are much higher for one set of crystal faces than others. In scenario (i), crystal

growth is limited by the rate at which molecules can climb the barrier. The ratio of the

214



actual growth rate to transport-limited growth rate would be approximately

exp(-(cb,,_)/kT ) [15]. For crystal surface potentials of about +31 mV (o'_ -- 500, at=

5) and Ae/f= 0.1 kT, the growth rate would be approximately an order of magnitude

slower than the transport limit. It is probably coincidence that measured lysozyme growth

rates are slightly less than 10% of the diffusion-limited rate. When the potential is

attractive, as in scenario OiL crystal growth rates less than the transport-limited rate imply

kinetically conu'oUed growth.

The relative importance of bulk u'ansport and surface phenomena would be most

evident when there is a large difference in potential barriers among crystal faces (iii). If

face growth rates are controlled by the rate at which molecules collide with the surface,

growth rates of faces with high potential barriers would be negligible compared with faces

having lower potential barriers. Comparable growth rates of faces differing greatly in

barrier height would strongly indicate all the important processes occur on (or in close

proximity to) the surface. Suppose molecules strike the favored faces and attach to the

crystal. Unless electric fields at the surface orient the molecule perfectly during its

approach, its orientation will not be ideal for incorporation into the crystal lattice. The

molecule then samples different orientations in some fashion in order to find a lower energy

state. Suppose further that the molecule samples orientations by lateral migration along the

surface so that a molecule which arrived at one face may travel to another. The net result of

this process is a face growth rate for the unfavored face far greater than its "inherent" rate

based on collisions with molecules in solution. This type of mechanism has been invoked

to explain the growth of mercury whiskers at low supersaturations [16].

Of the three, scenarios discussed above, (i) is most probable and (ii) the least.

Although a definitive calculation of effective charge densities for lysozyme has not been

done, it seems unlikely that spheres with 80% of their surface covered with nonnegative

charge densities could be packed into a crystal lattice such that highly negatively charged

patches would reside at the crystal surface. Even then, the small separations between
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negativechargeson one molecule and positive charges on neighboring molecules would

tend to make the effective surface charge more positive. On the other hand, significant

regions of the molecule have charge densities greater than the uniform net charge density of

lysozyme, so surface potentials above 30 mV can be expected. Again, the proximity of

positive and negative charges would limit the maximum surface potential below the 100 mV

estimated from the isolated molecule. Calculation of the effective charge density is

discussed below.

5.7 Further Study of Molecule-C'h3,stal Systems Near the Crystal Surface

The behavior of the molecule-crystal system has been shown to be extremely

sensitive to the balance between electrostatic and dispersive forces at small separations.

Two parameters, At-and a_, determine the shape of the free energy curve. The choice of

effective Hamaker constant is much more difficult, so attention is given instead to

estimating ax. A limited use of crystallographic data has already been made in

approximating the size and charge distribution of the model lysozyme molecule. These

model molecules could be replicated and placed in an ordered array mimicking the crystal

packing of the actual cr3'stal. A mathematically smooth slice through the array would

define the crystallographic face to be studied. (Fractional molecules present a problem; the

surface would actually consist of only those molecules lying entirely on the appropriate side

of the mathematical surface.) A suitable computational cell could then be defined so that

the effects of the entire surface are desCribed by the cell with periodic boundary conditions.

The boundary element method could then be used to calculate the average surface potential,

_, on the mathematical surface of the crystal. The effective surface charge density

follows from o'_ = a _.

If _x is averaged over the length scale of the molecule's radius, a patchy surface

charge distribution is produced. The behavior of the molecule while adsosrbed on the

surface could be investigated by Brownian dynamics simulations of the orientation
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sampling described earlier. The simplest case would treat the crystal surface as

mathematically smooth and the molecule as a sphere. A molecule placed in an initial

location and orientation would undergo both rotary and surface diffusion while it seeks the

lowest energy surface site and orientation. Particular attention could be paid to the surface

flux between faces with different free energy barriers. A more complicated version would

introduce topological features into the description of the surface. This could be done either

by letting the shape of the molecules clef'me the surface or by allowing incomplete growth

layers to exist on the surface. Electric fields are stronger in the vicinity of surfaces with

high curvature, so the presence of incomplete layers might provide significant steering or

orientation of incoming protein molecules as they near the crystal.

Angle-averaged interaction potentials calculated in the manner of colloid scientists

are rather featureless when the molecule is more than a double layer thickness from the

crystal surface but demonstrate a dramatic sensitivity to surface properties at small

separations. The continuum approximations for the solvent and gross simplifications of

geometry employed in the free ene:gy calculation are suspect at separations on the order of

2 _ or less. This is a strong indication that the length scale of the colloid analysis used here

is inappropriate for studying surface processes of protein crystals. The use of angle-

averaged free energies gives a more realistic estimate of how the "average" molecule

interacts with the crystal but provides no information on how the molecule eventually f'mds

the crystallographically correct orientation and location for incorporation into the crystal

lattice. More detailed descriptions of the surfaces of the molecule and crystal are needed;

such descriptions could be incorporated into molecular dynamics calculations.

5.8 Additional Applications of the Boundary Element Method

The boundary element method developed for this project can be used to study other

phenomena exhibited by supersaturated protein solutions. Consider, for example, the

association of two protein molecules to form a dimer. Since dimerization is a reasonable
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first stepin the formation of crystals, conditions likely to produce dimers could be found

by means of a calculation of the colloid stability ratio [15]. The construction of an angle-

averaged interaction potential in this case requires many more computations because of the

reduced symmetry in the problem. The use of angle-averaged potentials gives an overall

indication of the aggregation rates without regard to whether aggregation leads to

crystallization or amorphous precipitation. These calculations could be compared with

experimental studies of protein aggregation such as the salt-induced precipitation of et-

chymotrypsin performed by Pr'zybycien and Bailey [17].

A related study could explore how the free energy of small aggregates of protein

depends on orientation. The complex interactions of protein molecules are thought to

produce many local minima in the free energy (as indicated by solubility [18]). The free

energy of small aggregates packed into the crystallographically observed orientation could

be compared with free energies of "defective" aggregates. Results of these boundary

element nucleation calculations might be of use in refining conditions suitable for crystal

growth. They could also show the effect of disorder on further addition of molecules to the

aggregate.
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APPENDIXA

SodiumMeasurementsin Effluent Samples

a..l_IalmaaglJm

An ion-selective electrode was used to measure the concentration of added sodium

chloride present in the effluent stream. The total potentiometric output of the electrode

results from the added sodium chloride as well as the sodium acetate buffer and hydronium

ions in solution. The methods for determining the effective background signal and

correction for inswament drift are reported here.

A.2 Theoretical Electrode Response

In the absence of interfering species, the electrode potential is related to the

concentration of species i according to the Nemst equation [ 1,2]:

E = E ° + -_ ln ai (A.1),

where E = electrode potential, E o = standard state electrode potential, R = gas constant, T =

absolute temperature, n = number of electrons transferred, F = Faraday's constant, and ai =

thermodynamic activity of species i. A generalized from of the Nernst equation is often

applied when measurements are made in the presence of interfering ions [2]:

E = E ° + B__ In ai + kij (A.2),
j=

where k 0 -- selectivity of the electr_:le for species j with respect to species i, and N =

number of species to which the electrode responds; m is an empirically determined

exponent for each species. In the present case, we are concerned with only two species:

sodium (l) and hydronium (2), for which n = 1. The appropriate form of (A.2) is then:

E = E ° + _FT In ([Na+l + k12 [H+] m) (A.3),
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where the ideal solution approximation has been invoked to replace activities with

concentrations.

As detailed in section 2.7, the sodium concentration standards were prepared from

the same sodium acetate buffer used in the experiment, so the background concentrations of

sodium and hydronium were approximately that same as in the effluent samples. The pH

of the sodium standards was the same as the effluent samples, so the the second term in the

logarithm in (A.3) can be treated as a constant. The sodium ion concentration can be

divided into two terms:

[Na÷] = [Na+]bk + [Na*]added (A.4),

where the subscript bk denotes background. Substitution of Equation (A.4) into (A.3) and

subsequent regrouping of terms inside the logarithm yields the form of the Nemst equation

applicable here:

E = E ° + _FT In ([Na+]a,/atd + B)

where B --[Na+]bk + kl2[H+]m.

(A.5),

A.3 Actual Electrode Response and Instrument DI'jfl

The response predicted by Equation (A.5) obtains only when the electrode operates

at the theoretical efficiency. In practice, differences in ion concentrations produce smaller

changes in elecu-ode potential than expected from (A.5). The actual slope of a plot of E vs.

In [Na ÷] is smaller than RT/F; the ratio of the actual slope to RT/F is the electrode

efficiency. If the slope of the electrode response is C, the final form of the Nemst equation

is:

E = E °+ C In ([Na+]a_ea+ B) (A.6).

Calibrationcurvesconsistingof fourconcentrationstandards(0,I00,250, and 500

ppm added sodium) were measured before the firsteffluentsample and afterthe final

sample. An estimate of B was obtained in the following manner. As B was incremented
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from 1 ppm in steps of 1 ppm, linear least-squares fits of Equation (A.6) to the electrode

response gave estimates of E ° and C for each calibration curve. The value of B [93 ppm]

which minimized the residual sum of squares for both curves was accepted. A plot of the

calibration curves is given in Figure A-1.
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Figure A-l: Calibration curves for sodium concentration measurements.
Initial (I) and final (@) calibration curves for sodium standards. Effective background

concentration was found to be B = 93 ppm.

The following correction was employed to account for changes in the electrode

response with time during the measurements. Since both calibration curves pass though a

common point with different slopes, all electrode response curves were assumed to pass

through this point. If electrode sensitivity (slope) changed at a nearly constant rate, the

angle, ¢, made by the response curve and the abscissa also changed at a constant rate. The

slope appropriate for measurement i was

Ci = tan (0o + iAC_) (A.7).
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where _o = angle between abscissa and inital calibration curve, 0N = angle between

abscissa and final calibration curve, and A_ = (_^, _ @)/N; N = first measurement of final

calibration curve.
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