@ https://ntrs.nasa.gov/search.jsp?R=19940012825 2020-06-16T17:41:24+00:00Z

NASA RESEARCH PROGRAM
Final Technical Report
The Roles of Fluid Motion and Other Transport Phenomena
Morphololgyﬂ:f: Materials
Contract NAG8-749

September 1988 - December 1992

Prepared for
Marshall Space Flight Center
November 1993

D. A. Saville
Department of Chemical Engineering
Princeton University
Princeton, NJ 08544






TABLE OF CONTENTS

ABSTRACT
SUMMARY AND CONCLUSIONS

BIBLIOGRAPHY OF THESES, PUBLICATIONS, AND PRESENTATIONS
FROM THIS WORK

APPENDICES
The role of transport phenomena in protein crystal growth
J. Crystal Growth 108 8-18 (1991)

Electrostatic interactions between a protein molecule and a charged surface:
Part I, Development and testing of a computational model.
(manuscript to be submitted to J. Colloid Interface Science )

Electrostatic interactions between a protein molecule and a charged surface:
PartII, The free energy of a lysozyme molecule near a flat plate.
(manuscript to be submitted to J. Physical Chemistry)

Protein crystal growth: the influence of colloidal interactions.
PhD Thesis by M. L. Grant accepted by Princeton University,
January 1992






ABSTRACT

We studied two crystallization problems: the growth of protein crystals, in particular the
influence of colloidal forces and convection, and the influence of interface resistance on the growth
of dendritic crystals. The protein study involved both experimental and theoretical work; the work
on dendrites was entirely theoretical.

In our study of protein crystallization, we carried out experiments where crystals were
grown in the presence and absence of natural convection. No evidence was found that convection
retards crystal growth. The theoretical study focused on the influence of colloidal forces
(electrostatic and London-van der Waals) on the interaction between a protein molecule and a flat
crystal surface. It was shown that the interaction is extremely sensitive to colloidal forces and that
electrostatic interactions play a strong role in deciding whether or not a molecule will find a
favorable site for adsorption.

In our study of dendritic growth, we examined the role of an interfacial resistance on the
selection processes. Using a computational scheme we found that the selected velocity is strongly
dependent on the magnitude of the interfacial resistance to heat transfer. This is a possible
explanation for discrepancies between the theoretical and experimental results on succinonitrile.






SUMMARY OF THE WORK ON DENDRITIC GROWTH

The work on proteins is summarized in the attached thesis and papers; the work on
dendritic growth is in progress (C. A. Martin's PhD thesis) and so a short description of the
results thus far will be given here.

One outstanding problem in dendritic growth is to understand the mechanism by which the
tip velocity and shape are determined. The currently accepted model is called microscopic
solvability. According to that theory, the tip radius and velocity are set by the anisotropic nature of
the surface energy of the crystal melt interface. The differential equations describing the tip growth
balance the freezing process against heat conduction to the melt with the interface temperature
governed, in part, by the Gibbs-Thomson condition. The Gibbs-Thomson effect describes how
interface curvature alters the melting point and this is where the anisotropic nature of the surface
energy (the so-called interfacial tension) enters. The selected velocity and curvature are determined
by insisting that the tip must be smooth, i.e., have a continuously turning tangent. This theory
does not agree well with existing data on several soft materials. Our approach has been to include
the effect of a resistance to heat transfer at the surface. We use a boundary integral technique to
solve the relevant equations which include the Gibbs-Thomson effect as well as an anisotropic
resistance. We find that smooth tips can be obtained with an isotropic interfacial tension but an
anisotropic interface resistance. Our results were reported at the AICHE Meeting in November of
1992; publications and Martin's PhD thesis are in preparation.

Ivantsov! identified the shape of a single needle crystal growing into its supercooled melt

as a paraboloid with Péclét number Pe = pV/2D, where p is the tip radius, V is the freezing
velocity, and D is the thermal diffusivity. For a given supercooling, Ivantsov theory allows a

family of solutions satisfying pV = constant, but provides no means for distinguishing the shape
and velocity. Current work addresses the dendrite shape selection problem using the approach of
microscopic solvability theory, but allows a deviation from equilibrium due to anisotropic
interfacial attachment kinetics, introduced through a transport coefficient empiricism.

Microscopic solvability theory? is the most recent of shape selection theories focusing on
the role of interfacial free energy (“surface tension"), a force which typically acts over microscopic
length scales, in shape selection. The Ivantsov solution appears under this approach only in the
limiting case of zero surface tension. In the general case, surface tension must act anisotropically
in order for the solvability condition of a smooth tip (one with zero slope) to be satisfied; the
selected shape and velocity depend on the degree of anisotropy.

The current work explores the two-dimensional shape selection problem as a synthesis of
the effects of interfacial free energy and attachment kinetics, each of which may act anisotropically.
A kinetic resistance to interfacial growth depresses the interface temperature T relative to its
equilibrium (Gibbs-Thomson) value Tgg; the resulting boundary condition replaces the equilibrium
assumption and introduces the interphase transport coefficient A,

LV cos ® =h(8) (Teg - T),

where L is the latent heat per unit volume and 0 is the angle between the crystal axis and a unit
normal to the interface. The strength of the kinetic effect is described by a reciprocal Biot number
1/Bi = kV/(2Dh), where k is the thermal conductivity.

1g. p. Ivantsov, Dokl. Akad. Nauk, SSSR 58 (1947) 567.
2p. A. Kessler, J. Koplik and H. Levine, Adv. in Phys. 37 (1988) 255.
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Figure 1 shows the interaction between kinetic and surface tension mechanisms in shape
selection. When the dimensionless surface tension parameter d,, is zero, three zero-tip-slope
solutions exist including the Ivantsov case at 1/Bi =0. In the range 0 < d, < 00767 two solutions
exist, and beyond that range the effect of isotropic surface tension is sufficiently strong to prohibit
the existence of smooth-tipped shapes.

The method developed for the current work approximates the shape of the interface by a
series of orthogonal (Laguerre) polynomials, and has proved useful in generating results in the
low-Pe regime relevant for companson with experimental data. Figure 2 shows the shape

selection parameter 6" =d,, / P’ approaches a constant value of .0142 in the low Pe limit, under

the given conditions of 10% anisotropy of surface tension and no kinetic resistance. Continuing
work focuses on introducing kinetic effects at low Pe, to allow fitting of kinetic parameters to
published data for succinonitrile and pivalic acid.
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Figure 1: Shape selection curve under conditions of anisotropic kinetics (ax = 0.1) and
isotropic surface tension (a, = 0) at Pe = 1. Admissible shapes have zero tip slope.
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Figure 2: Shape selection parameter o* as a function of Pe, under conditions of anisotropic

surface tension (a, = 0.1) and no kinetic resistance.
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The role of transport phenomena in protein crystal growth

M.L. Grant and D.A. Saville
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The idiosyncrasies of protein crystal growth are widely known: crystals often stop growing before reaching a size adequate for
X-ray diffraction studies: sometimes their quality is poor. The reasons for this behavior are not well understood. We investigated
several transport mechanisms to ascertain whether they might play significant roles in protein crystal growth. Scale analyses were
used to establish the order-of-magnitude of forces arising from natural convection. They show that shear forces are probably too
small to dislodge molecules from the crystal surface or alter protein structure by unfolding. Strong shear fields can align molecules,
but we find that the shear arising from natural convection is much 100 weak to alter the orientation distribution of protein molecules.
Crystal growth rates are set by a balance between attachment kinetics and transport to the crystal surface and. according to our
analysis, crystals prepared in growth rate studies are usually 100 small to be affected by either diffusion or convective transport. The
role of salt rejection at the crystal-fluid interface was also investigated. Salt rejection could influence growth by changing the
transport velocity normal to the interface or by changing the driving force for diffusion. The magnitude of each effect appears too

small 1o be significant.

1. Introduction

Obtaining suitable crystals is frequently the
rate-limiting step in the process of determining the
full three-dimensional structure of protein mole-
cules by X-ray diffraction. Protein crystallogra-
phers are familiar with the difficulties of finding
conditions which produce crystals of any sort, let
alone the large single crystals desired for diffrac-
tion studies. Protein crystals tend to grow slowly
and often reach a terminal size too small to pro-
duce acceptable diffraction patterns. Occasionally.
protein crystals grow readily but are too dis-
ordered to diffract well. The outcome of any crystal
growth experiment depends on the complex inter-
actions among the protein, solvent, buffer, and
precipitating agent(s) which are present in the
system. Few of these interactions are well char-
acterized and many of them are highly specific to
a given system. A discussion of all these phenom-
ena is beyond the scope of this work. We focus,
instead, on the possible effects of transport phe-
nomena on protein crystal growth.

Crystallization is an inherently nonequilibrium

process which creates gradients in system proper-
ties such as solute concentration. The gradients
produced are affected by various transport
processes and so the relative rates of growth kinet-
ics and transport to the crystal surface determine
the path the system takes towards equilibrium.
Any process which alters those rates changes the
properties of the resultant crystals. For example,
recent work by Pusey, Witherow and Naumann (1]
clearly shows the presence of buoyancy-driven
flows and indicates that crystals grown in the
presence of forced convection grow slower than in
its absence. The reasons for this behavior are
unknown.

Convection might alter growth processes by
retarding attachment at the surface (which inhibits
kinetics) or by feeding the crystal more protein
(which enhances mass transfer). Three mecha-
nisms have been proposed whereby shear pro-
duced by flow could inhibit growth kinetics: strip-
ping molecules from the surface, imposing a pre-
ferred (unfavorable) orientation on protein mole-
cules near the crystal, or denaturing protein mole-
cules as they approach the surface. If, in the

0022-0248 /91 /$03.50 T 1991 - Elsevier Science Publishers B.V. (North-Holland)
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attachment process, a molecule samples many
orientations and possible binding sites before set-
tling into its ultimate location, it is important that
each molecule has ample time at the attachment
site before the arrival of the next growth unit.
Convection might increase the arrival rate to the
point where protein molecules are trapped in un-
favorable positions; this would produce defects
which inhibit further growth.

There are other processes which affect the rela-
tive rates of transport and attachment. Several
solutes are present in the system. and each must
be transported to or from the surface as the crystal
grows. Interactions between the protein and pre-
cipitating agent, for example, can alter the chem-
ical potential of the protein so that the driving
force for diffusion is diminished. This might pro-
vide additional time for the molecules at the
surface to bind properly and produce a more
ordered crystal. Contaminants which compete for
binding sites on the crystal surface can inhibit
growth, especially when the contaminant hinders
attachment of protein to the crystal. This process
not only reduces the growth rate, but halts crystal
growth when the surface is completely **poisoned™
by the contaminant.

Our calculations indicate that none of the con-
vective processes investigated here is strong enough
to affect the growth of protein crystals. Neverthe-
less. some experimental evidence exists which
seems to imply that buoyancy-driven flow in-
fluences crystal growth rates and quality. Pusey et
al. [1] observed convection plumes rising from
growing tetragonal lysozyme crystals and noted
that the plume velocity was of the same order as
that expected from scaling arguments. i.e. about
30 pm/s (cf. section 2). They then subjected small
crystals (<20 pm) to forced convection of the
same strength and noted that the growth rate
decreased monotonically with time after convec-
tion commenced. Although the long-term effect of
convection is to reduce growth rates, they also
reported an initial enhancement of crystal growth
due 10 flow. No evidence has been presented which
indicates the mechanism for this behavior.

On the molecular scale, recent work by De
Lucas et al. [2] shows that crystals grown in micro-
gravity aboard the space shuttle diffracted to

higher resolution than those grown in the labora-
tory. They conducted eleven experiments and
found that the internal order of crystals from the
space experiment was greater than that of ter-
restrial crystals. Additionally, two crystals grew
larger than any reported in ground-based experi-
ments. In the absence of evidence to the contrary.
they attributed these beneficial effects to the re-
duction of buovancy-driven motion.

Given these conflicting results. the purpose of
this paper is to present our analyses and provide a
context (o investigate other mechanisms. The pre-
sentation is organized as follows. First. we present
order-of-magnitude analyses to assess the strength
of shear forces arising from natural convection.
These scale analyses are used to evaluate the pos-
sibility that shear might pull molecules from the
surface, confer a preferred orientation on mole-
cules near the surface. or denature the protein by
altering the protein’s structure. An analysis of the
effects of mass transfer by diffusion is presented
next. This is followed by an inquiry into the effect
of salt rejection at the surface of the growing
crystal. None of these mechanisms is found to
have much effect on the growth processes. The
final section is a more speculative discussion on
the way convection might alter crystal growth in
the presence of an inhibitor.

2. Effects of fluid flow on protein crystal growth

It has been suggested that the terminal size of
the crystals could result from the effects of natural
convection due to disruption of crystal bonds by
hydrodynamic forces. Protein molecules are held
in the crystal lattice by weak hydrogen bonds
(AH = -3 to —6 kcal/mol in vacuo) which are
not well characterized [3]). If the force required to
break the crystal bonds is comparable to that
produced by the shear flow at the crystal surface,
flow might remove protein molecules from the
crystal. This situation is depicted schematically in
fig. 1a. Because the shear stress at the surface
increases with crystal size, this would act as a
self-limiting process. An order of magnitude
estimate of the viscous stress will indicate whether
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Fig. 1. Two mechanisms by which shear might disrupt protein crystal growth. (a) Shear flow removes protein molecule from crystal
surface. (b) Shear flow imposes a preferred orientation on the molecule at the surface.

convective removal of molecules from the surface
is a reasonable mechanism to halt crystal growth.

The shear stress at the surface is due to
buoyancy driven natural convection around the
growing crystal. This flow is caused by density
differences between the fluid adjacent to the
surface of the object and the bulk solution far
from the crystal. The strength of the motion is
characterized by the Grashof number [4], the ratio
of the buoyancy force driving the motion to the
viscous resistance. The Grashof number is defined
as

Gr = R’gAp/p, v?, (2.1)

where g = gravitational acceleration, 4p = density
difference, p, = bulk fluid density, » = kinematic
viscosity, and R = crystal radius. The ratio of the
molecular transport coefficients for momentum
and diffusion is the Schmidt number, Sc=»/D,
where D = diffusion coefficient for the solute. For
small Grashof numbers but large Schmidt num-
bers, the motion scales on the square root of the
ratio of Grashof and Schmidt numbers due to the
boundary layer structure of the flow [4].

For a 1 mm diameter spherical crystal in a 5%
(w/v) lysozyme solution, we estimate that 4p/p,
is roughly 0.002 (see section 3). This yields a
Grashof number of about 2; the Schmidt number
for lysozyme is 10°. In a weak flow of this sort,
the characteristic velocity, wu,. equals (Gr/

Sc)'/?y/R and the shear rate, I, is u, /8. with 8
the boundary layer thickness [4]. Accordingly. the
shear stress, 7, at the surface is given by

r=ul=pu_ /8, (2.2)

where p is the fluid viscosity. Under the cir-
cumstances noted above. the characteristic veloc-
ity is 3x 10" % cmy/s, 8 is 8 X 107° cm. and the
shear rate is about 0.36 s~'. The shear stress
acting on the crystal surface in a solution where
p=1x10"7 Pas is approximately 3.6 X 10 Pa.
If we take Fiddis et al.'s [5} approximation of the
lysozyme molecule being a cube 30.9 A on a side.
then the shear force acting on a molecular at the
surface is approximately 3.4 X 107" N.

In the spirit of our order of magnitude analysis.
we compare the shear forces with intermolecular
forces. In what follows, we examine the potential
between molecules and make simplifying ap-
proximations which tend to underestimate the
strength of the bonds. In order not to rule out the
importance of fluid flow prematurely. we de-
liberately weaken our estimates of the bond
strength. Nevertheless, our results indicate that
even the weakest intermolecular bond is stll
thousands of times as strong as typical shear forces.
indicating that this level of approximation is ap-
propriate. If the strengths of the forces were com-
mensurate, a more careful estimate would be re-
quired.
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To provide a simple estimate, we approximate
the interaction potential between any two atoms
as a Lennard-Jones 6-12 potential with electro-
static interaction:

i+£+ﬁﬁ2_ (2.3)

6 rll’ d7ee,r’

U=

~

where 4 and B are constants for the particular
bond of interest, ¢, and g, are the partial charges
on the atoms in the bond, ¢ is the dielectric
constant of the medium (water), €, is permittivity
of free space, and r is the separation between the
atoms. Hagler et al. [6] determined the values of
A, B, g, and g, for the bonds in amide crystals
and found that the form of eq. (2.3) accounted
adequately for the observed interactions. Rather
than find the entire potential by performing a
summation of eq. (2.3) over all the pairs on both
molecules, we take the weakest interatomic bond-
ing interaction as representative of the intermolec-
ular bond. From the values of 4, B, g, and g,
reported by Hagler et al., the bond energies were
calculated from the value of U, at the equi-
librium separation (where F= —dU/dr =0) and
the maximum attractive force was calculated by
determining the force where d F/dr= ~d*U/dr?
= 0. The weakest bond is that with the shallowest
potential well having U,,, < 0: i.e., metastable ex-
cited states with U,,, > 0 are excluded. We com-
puted bond energies for hypothetical bonds be-
tween each of the species listed by Hagler et al. [6]
and chose the weakest. Since we seek a weak
characteristic bond for this comparison, we do not
limit our search to only those bonds which have
been observed crystallographically.

The weakest bond determined in this manner is
that between a non-carbonyl carbon and the amino
hydrogen, having U,,, = —81 J/mol and a break-
ing force of roughly F = 8.3 x107'> N /bond. The
force generated by free convection is approxi-
mately eight orders of magnitude too small to
break even this weak bond and thereby strip mole-
cules from the crystal surface. The full intermolec-
ular potential should yield a value of U, =4H
of crystallization; Howard et al. {7] report that
AH of crystallization for tetragonal lysozyme
crystals is — 79 kJ/mol. Our estimate of the bond

strength is smaller than AH by a factor of 1000,
yet the force required to break it is many orders of
magnitude larger than the shear forces present due
to natural convection.

Even though the shear stress cannot remove
molecules from the surface, it might impart some
preferred orientation to the molecules near the
surface so that they are unable to find the proper
alignment for addition to the crystal (fig. 1b). To
test this hypothesis, we compare the characteristic
rates of the processes: alignment by shear and
randomization by rotational diffusion. The rate of
alignment is comparable to the shear rate. I'; the
characteristic rotation rate is given by the rota-
tional diffusion coefficient, D, = kT/87uR’.
where R is the hydrodynamic radius of the protein
[8). The hydrodynamic radius of lysozyme is ap-
proximately 20 A (8], giving D,,, =2x107 57},

(@ B (b)

Fig. 2: Denawration of protein molecule due to shear stress.
(a) Protein in native conformation. Molecule is maintained in
native state by a single hydrogen bond at A and is hinged at B.
(b) Denatured protein molecule. After hydrogen bond is
broken, both halves swing open. (c) Definition sketch for
calculating force at point A due to shear stress.
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while the shear rate is certainly less than 1 ™1

The ratio of rotational and shear rates is therefore
more than 107, indicating that randomization of
the protein molecules occurs much faster than any
orientation imposed by the shear flow.

Another possible explanation for slowing or
halting of crystal growth is denaturation of pro-
tein by the shear field. The following model. sug-
gested to us by W.B. Russel (Princeton University),
was used to investigate the possibility of shear-
induced denaturation. If the protein molecule must
be in a particular conformation in order to bind to
the crystal surface, crystal growth may be hindered
if the shear stress changes the protein’s conforma-
tion. For this analysis, consider a spherical protein
molecule as shown in fig. 2a and assume that the
molecule is maintained in this conformation by a
single hydrogen bond placed at point A and is
“hinged” at point B. If the shear forces on the
molecule are sufficient to break the bond at A, the
molecule will open up in the yz plane (fig. 2b) and
the molecule might not bind to the surface. The
force on the bond at A can be calculated by
computing the torque about B due to creeping
flow past the sphere and determining the equiv-
alent force to place at A.

Over any differential area element on the
molecular surface. the magnitude of the torque is
given by

dT =r(7,R* sin 8 d6 d¢) sin a, (2.4)

where r is the distance from point B to the area
element. 7, is the shear stress acting on the pro-
tein surface in the & direction, and 6, ¢, and « are
as shown in fig. 2c. Only the component in the
+ x direction contributes to opening the hinge in
the y: plane, however, so the appropriate expres-
sion for the x component of the torque is

dT, = r(7,4R* sin 6 d6 d¢) sin a sin ¢. (2.5)

From geometrical considerations, a =#6/2. and
r=yR(1—cos ¢), while the shear stress is re-
lated to the free stream velocity, u,. by 7,,=
(3uu,/2R) sin 8 [9]. Note that here R denotes
the radius of the crystal and that we have sup-
posed the molecule is held stationary in a uniform
flow field of strength u . If eq. (2.5) is integrated

over half a sphere (0<¢ <7, 0< 8 <7). the +x
component of the torque is

3R uu, (7 7 2
T, =—Fb2% in26 (1 —cos 8)'*
B A j;j;sm (1 —cos 8)
Rl
Xsingsint;:dda d0=3LiiLi£. (2.6)

and the corresponding force is 37Ruu, /4. The
force. F. on the hydrogen bond is twice the force
due to flow around half the sphere.

F=3wRpu, /2. (2.7)

which must equal the breaking force of the hydro-
gen bond if the molecule is denatured.

According to our earlier calculations. the
weakest bond has a breaking strength of 8.3 X
10~ N. A velocity. u_. of approximately 9 cm/s
is required to disrupt this bond. This velocity 1s
more than three orders of magnitude greater than
the free convection velocity estimated earlier. and
is certainly greater than the velocity attained in
the systems of interest. Furthermore. this is a
worst case scenario since the weakest possible
bond was chosen and only one hydrogen bond
was permitted. In reality. other contributions
would strengthen the bond.

These analyses indicate that viscous stresses
due to natural convection are 100 weak to disrupt
crystal growth by stripping molecules from the
surface. orienting molecules at the surface. or de-
naturing the protein as it approaches the surface.
Another way flow can influence protein crystal
growth is by altering the mass transfer rate to the
crystal surface, which we investigate next.

3. Mass transfer and protein crystal growth

The relative rates of mass transport and attach-
ment kinetics determine the manner in which a
crystal grows. Crystal growth can be thought of as
occurring in two steps: (1) the molecule reaches
the surface from the bulk solution and (2) the
molecule is incorporated into the crystal. Two
distinct growth regimes can be observed depend-
ing on which step is rate-limiting. When mass
transport is rate-determining. molecules attach to
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the surface as fast as they arrive and the region
adjacent to the surface is depleted in protein rela-
tive to the bulk. At the other extreme, when at-
tachment controls growth, mass transport main-

tains the protein concentration at the surface equal A

to the average protein concentration in solution.
An expression for the the growth kinetics of te-
tragonal lysozyme crystals is available [10,11] so
that we can perform a quasi-steady state analysis
to determine when each step controls crystal
growth.

At pH 4, 50 mg/ml NaCl, and 22°C, the (110)
face was found to advance with a velocity, G,
given by

6=k[(c,- )/l (3.1)

where C; is the mass concentration of protein at

the interface, C, = 1.7 mg/ml is the solubility mass
concentration under these conditions, and k =
1.46 X 10~° cm/s. In the analysis below, we take
the crystal 1o be a sphere of radius R and equate
G with the growth rate dR/d+. The crystal growth
rate given by eq. (3.1) must also equal the volume
flux to the crystal surface:

dR D aC

v TS a ¥ R, (3.2)
where C, = 725 mg/ml is the mass concentration
of protein in the crystal (corresponding to 50%
solvent by volume [12]). The concentration gradi-
ent at the crystal surface can be expressed as the
product of the concentration gradient which would
obtain if diffusion were the only transport mecha-
nism and a correction factor, Sh:

_a_g' _ aC/or| g _a_g _ Q_C_
ar g 0C/0r| g.gifin 0r |g.difrn 0r |g.aittn

(3.3)

Here Sh is the Sherwood number based on the
crystal radius and is given by the Ranz-Marshall
correlation [13]:

Sh=1+058c/2Gr'74. (3.4)

The Sherwood number is the ratio of the actual
mass transfer rate to the diffusion rate. The
Schmidt number, Sc, and Grashof number, Gr,

were defined earlier. Note that the functional rela-
tion given here, Sc'/*Gr'/*, differs from that used
earlier in connection with the shear rate and veloc-
ity. There is very little experimental data on mass
transfer in free convection at low Grashnf num-
bers but the Ranz—Marshall correlation encom-
passes that which is available.

When the crystal grows in a quasi-steady
manner under diffusion control, the concentration
gradient at the surface is given by

_G ¢

R diff n R

aC
or

(3.5)

Equating the two expressions for crystal growth
given in egs. (3.1) and (3.2) and making use of egs.
(3.3)-(3.5) yields

c-C\ C.-C
K(=2) -

s x

(1+40.5S8c7? Gr'7?).
(3.6)

where K = kR/D. Eq. (3.6) can be solved for the
interfacial concentration C; as a function of crystal
size. The resulting value of C, is then substituted
into eq. (3.1) to find the growth rate. When Gr =0
(no buoyancy-driven flow), eq. (3.6) can be solved
for C, explicitly to yield

<
Ci=Cs{—1+2K—C—S+

1+4Kg Cx 1 ‘/2\‘
2l
-1

Cl
X (2 K ol ) . (3.7)
The interfacial concentrations calculated from eqs.
(3.6) and (3.7) are shown in fig. 3a, while the
corresponding growth rates are given in fig. 3b.
We used the results shown in fig. 3a to estimate
the scaled characteristic density difference, 4p/p,
= 0.002, used in section 1.

According to these results, the interfacial con-
centration is essentially equal to the bulk con-
centration over the entire size range studied by
Pusey et al. [10,11]. A constant growth rate (broken
lines), shows that natural convection is sufficient
to maintain the surface concentration at the bulk
level so that crystal growth is entirely kinetically
controlled. If convection is suppressed (solid lines),
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Fig. 3. Mass transfer effects on protein crystal size. (a) Interfa-
cial concentration of lysozyme calculated from quasi-steady
mass balance on growing crystal, eqs. (3.6) and (3.7)."Solid
lines are for diffusion only, broken lines include natural con-
vection. (b) Crystal growth rate calculated from quasi-steady
mass balance and growth rate expression given in eq. (3.1). All
parameter values are taken from Pusey et al. [11].

the growth rate decreases as the crystal grows
larger. For example, by the time a lysozyme crystal
growing from a 5% (w/v) solution reaches 1 mm.
its growth rate has slowed to approximately 25%
of its initial value. Similar results can be seen for
crystals grown from 1% (w/v) solution. A rough
indication of the relative importance of mass
transfer and kinetics can be obtained from the
slope of the growth rate versus crystal size curve
(fig. 3b). The slope is zero when interfacial kinet-
ics are rate-limiting and approaches —1 in the
diffusion-controlled limit. The curves in fig. 3b
indicate that crystals grow under kinetically-
controlled conditions until they reach approxi-
mately 100 um irrespective of the mass transfer
mechanism. These calculations agree well with
those of Pusey and Naumann [10].

4. Salt rejection and protein crystal growth

There are at least two possible ways in which
the rejection of salt (precipitating agent) at the
interface may influence protein crystal growth: (i)
a “blowing” velocity directed away from the
crystal surface which slows transport of protein to
the crystal; (ii) the alteration of the local protein
solubility which reduces the driving force for dif-
fusion. In the first case, the blowing would appear
in the “crystallization” flow which arises from the
diffusion of protein to the crystal surface (14].
This crystallization flow is related to the growth
rate of the crystal, dR/d:, by

dR P,
vf=n—dl—(l—-;f'). (4.1)

where ¢, is the fluid velocity at the interface. n is
the unit normal directed outward from the crystal
surface, p, is the crystal mass density and p is the
fluid density at the interface. The crystallization
flow is directed towards the crystal surface if
p. > pr, and away from the crystal if p. < p;. Pro-
tein crystals are usually denser than the bulk fluid
so the crystallization flow enhances mass transfer
to the crystal surface. A straightforward calcula-
tion shows that the convection protein flux due 1o
crystallization flow is approximately 1% of the
diffusive flux for a spherical protein crystal and
can be neglected without serious error.

The effect of variations in the local protein
solubility can be estimated by considering the
growth of a spherical protein crystal under diffu-
sion control. Salt is rejected at the crystal surface
and must diffuse to the bulk, producing a salt
concentration gradient and corresponding gradi-
ent in the local solubility of the protein. In the
diffusion limit, protein in the liquid at the crystal
interface is at the solubility concentration and is
in equilibrium with the protein in the crystal. The
crystal form is reported to be insensitive to the
salt concentration, so it may be reasonable to
assume the chemical potential of the crystalline
protein is independent of the salt concentration.
The chemical potential of the protein in solution,
however, is no longer directly proportional to its
concentration because it depends on the con-
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centration of other solutes. The salt concentration
gradient due to rejection at the crystal interface
alters the gradient in the protein’s chemical poten-
tial with the result that the flux of protein to the
crystal surface is less than the flux one would
expect from examining the protein concentration
gradient alone. We wish to establish how the salt
gradient alters the protein flux to the crystal.

To set this out in mathematical form, we first
express the flux of protein (species 1) in terms of
its chemical potential [13]

) D,
J=- k—;‘clvﬂ'l’ (4.2)

where u, is the chemical potential of the protein,
D, = thermodynamic diffusion coefficient, and C,
= molar concentration of protein. The chemical
potential of the protein is given by

p, = py + kT log x;v,, (4.3)

where p? = standard state chemical potential, x,
= mole fraction of protein, and y, = activity coef-
ficient of the protein. Since the chemical potential
of the protein at the solubility concentration is
constant, it follows that

W' = p? + kT log x;°'y{® = constant.

The flux relation given by eq. (4.2) is unchanged
by adding the gradient of a constant, so the flux
can also be expressed as

. D so
]= —E_%C‘ V(Fl—l‘ll)

= — D,C, Vlog( :O:Y'm,). (4.4)

X1
One form for the activity coefficient is [15]
7 =7 exp(—Kx,), (4.5)

where v is the activity coefficient of protein in
the limit of an infinitely dilute solution. If K is a
constant independent of salt concentration and
¥ varies with salt concentration, then the chem-
ical potential of the dissolved protcin can be writ-
ten in terms of the local y;*:

wy = 1 + kT log[ x,v* exp(—Kx,)]. (4.6)

where
v ~ exp( Kx*') /x}. (4.7)

Although this manner of adjusting y° to satisfy
the solubility constraints is ad hoc, it makes the
mathematics somewhat simpler by implicitly ab-
sorbing the salt dependence into x}° so that sub-
stitution of egs. (4.5), (4.6) and (4.7) into eq. (4.4)
gives the flux as

JZL,exp[—K(xl —x§°‘)]).

X1
(4.8)

j=-DC, v 1og(

A quasi-steady mass balance around a growing
spherical crystal yields

LdR
(R _d—t)c"
2 d X3 sol \
= r’DC g, log Fexp[—l((xl—xl )]}
1

(4.9)

where C, is the molar concentration of protein in
the crystal. If the following dimensionless varia-
bles based on a reference length R, are intro-
duced:

R 5 RyA 1D,
r ) :

A=Ro (4.10)

the mass balance becomes

d X C,
x,alog(;—lsﬁcxp[—]((xl —x,s“')]) = —Pe s

(4.11)
where the Peclet number,
dA R dR
Pe=}\F=FOT. -(4.12)

can be considered a scaled crystal growth velocity.
Eq. (4.11) was obtained by approximating the
protein concentration, C;. by the relation C, =
Crx,, and taking Cy to be 55M. Transforming the
equation from an expression for the activity into a
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differential equation for the mole fraction of pro-
tein yields:

dx, C, x, | dx;®
I - —I:PCCT + (Kx,— x,“") az

x(1—-Kx;) . (4.13)
Note that the reciprocal relation between - and r
in eq. (4.10) means that z tends to zero as we
move away from the crystal.

The salt concentration was calculated from the

quasi-steady diffusion profile:

(4.14)

C = Csall.bulk + ACsallz'

salt

where Csall.bulk =50 mg/m]* and AQall = Csall.surf
= C,ibui- The solubility was assumed to obey the
expression [16]:

sol

X" = a exp(~BC,, ). (4.15)

where « and B are empirical parameters. Combin-
ing egs. (4.14) and (4.15) gives x;°' as a function

of position:

sol sol

x5 = X} %un €xp( = BAC,,2). (4.16)
Substituting eq. (4.16) into (4.13) yields

dx,
d:z

Cx S0
= — PCC—T - BACsall[K'xi.}lauIL

Xexp(—BAC, ,,2) — 1]x1) (1-Kx,)™ .
(4.17)

a differential equation that can be integrated
numerically from the crystal surface (z =1, x, =
x3%,) to “infinity” (2 =0, X, = X; ). The re-
sulting value of x, ., may then be used to calcu-
late the expected growth rate due to diffusion in a

uniform salt concentration field, viz.

C
— T _ ol
Pepom = C (Xl.hulk X].bulk)*
x

(4.18)
and the ratio of the actual and nominal growth
rates can be determined as a function of system
properties.
For a dilute protein solution, Kx; <« 1[15], and
this term can be neglected in the denominator of

eq. (4.17). In addition, neglecting the first term in
square brackets in the numerator provides an up-
per bound on the effect of salt rejection on the
diffusion rate. In this case, eq. (4.17) can be in-
tegrated analytically to yield

X = X;fll:ulk exp(—BaC,,,2)

B B.fce {1-exp[ - BAC,, (== D]}

salt
(4.19)

The value of x,,,, obtained from eq. (4.19) can
be substituted into (4.18) to obtain

BACsall

Pe = Pe
exp( BAC,,,) — 1

nom "

(4.20)

Although the form of the relation between the
nominal Peclet number and the actual Peclet num-
ber has been established, the apparent reduction
in diffusion rate depends on AC,,. which has not
yet been determined. Recall that the quasi-steady
salt concentration profile, eq. (4.14), was used to
obtain eq. (4.20) but the surface concentration was
left unspecified. A mass balance on the salt re-
jected at the crystal surface yields:

aCsah | (4 2])

ar |,

dR
'F (1-35 )C.sall\.surf = -Dsall

where s = segregation coefficient of the salt
(Coanervatar” Caaiaurs ): 0 <5 < 1. In terms of the di-
mensionless variables introduced in eq. (4.10) and
using eq. (4.14). eq. (4.21) reduces to

‘DO
Pe D (1 -5 )Csall.surf = Caall.surf - Csall.bulk .

salt

(4.22)
so that
AC.1 = Cansurt ~ Cuatbu
e Pe(D,/D,, )(1 —s) (4.23)'

salt.bulk 1- PC( DO/Dsah )(1 - S) .

For proteins, D,/D_, = 107! and typical
Peclet numbers for lysozyme crystals are less than
10~ '. The maximum concentration difference oc-
curs when s = 0 (total segregation of the salt), in
which case AC,,, < 107? C,, pui- At a bulk con-

alt == s
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centration of 50 mg/ml NaCl, this gives AC,,, <
0.5 mg/ml. For crystals to be diffusion limited
once they reach 10 pm in size (compared with 100
wm as shown in fig. 3), B should be approximately
7.2 ml/mg. Reported values of lysozyme solubility
put the value of 8 close to 10~ ml/mg [7,17].
Thus, Pe =098 Pe,.. and salt rejection cannot
reduce the diffusion rate to the point where crystal
growth is no longer kinetically controlied.

§5. Contaminants and convection

In most circumstances, convection promotes
crystal growth by enhancing mass transfer to the
crystal surface. However, the presence of a species
which attaches itself to the surface and inhibits
protein binding could retard growth. Suppose that,
in the absence of convection, inhibitor molecules
are delivered to the surface by diffusion and bound
there at a certain rate. If the binding rate is low
compared to diffusion, the inhibitor concentration
near the surface wit! be high and the rate of
inhibition is kin. .y controlled. Individual
binding sites are oc:. ..ded by inhibitor molecules
by the crystal continues to grow because succes-
sive additions of protein near the inhibited site
overlay the inhibitor, producing fresh surface with
new attachment sites. The growth process is only
slightly retarded because protein addition keeps
ahead of inhibition.

As the crystal grows, diffusion proceeds at a
slower pace (cf. fig. 3). Four possibilities exist.

(i) both the growth and inhibition processes re-
main kinetically controlled;

(ii) the protein attachment process remains kineti-
cally controlled while the rate of inhibition slows
due to the slower rate of diffusion;

(iii) the protein attachment process becomes dif-
fusion controlled but the rate of inhibition re-
mains kinetically controlled;

(iv) both processes become diffusion controlled.

In case (ii), the effects of the inhibitor species
diminish with time and growth continues un-
abated in the absence of convection. Convection
would replenish the region near the surface and
increase the rate at which the inhibitor poisons
further growth. In case (iil), the growth rate de-

creases without convection, so convection di-
minishes the effects of the inhibitor. The effects of
convection in case (iv) would depend on the rela-
tive rates of transport and the degree to which
they are altered by convection. In situations (ii)
and (iv) above, enhancing the rate of inhibitor
transfer by convection would poison the surface
faster and diminish crystal growth. Case (ii) is
consistent with the retardation of growth observed
by Pusey et al. [1].

6. Conclusions

The search for better protein crystals has drawn
crystallographers into the realm of fluid mecha-
nics and mass transfer. Forces arising from fluid
flow have been suspected of interfering with the
normal growth of protein crystals by breaking the
hydrogen bonds which both hold the molecule in
the crystal lattice and maintain the protein in its
native conformation. Our analyses indicate shear
forces are several orders of magnitude smaller
than those required to break a single intramolecu-
lar hydrogen bond, and as much as eight orders of
magnitude too small to strip molecules from the
surface of growing crystals. Another scale analysis
reveals that the protein’s orientation is random-
ized through rotational diffusion approximately
107 times as fast as shear can impose a preferred
orientation. We find no hint that buoyancy driven
convection mechanically alters the state of the
protein near the crystal surface.

Calculations from a quasi-steady mode! delin-
eate the approximate size where crystal growth
changes regimes from kinetic control to diffusion
control. All crystals start in the kinetic regime,
and remain there until they reach the transition
size, which is approximately 70-100 um for hen
egg white lysozyme. Unless diffusion is substan-
tially slower than expected, defects caused by im-
proper attachment will have formed before con-
vective mass transfer is significant. The reduction
in protein diffusion rate due to counter-diffusion
of precipitating agent is insufficient to reduce the
transition size appreciably. The mechanisms dis-
cussed here fail to explain why growth retardation
is observed in the presence of convection.
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One possible mechanism by which convection
may play a role is the transport of a second,
“contaminant” species which competes for attach-
ment to the crystal. Several scenarios are possible.
For example, when the contaminant attaches fas-
ter than the protein, it is preferentially depleted
from solution near the surface so that its con-
centration falls below its bulk value. This makes
attachment of protein more competitive and favors
crystal growth. Convection, which brings fresh
solution in contact with the crystal, effectively
returns the contaminant concentration to its bulk
value and reduces crystal size below its diffusion-
limited size. The presence of contaminant is con-
jecture, but it provides a simple mechanism by
which convection can hinder crystal growth, and is
consistent with observations.
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Abstract
The behavior of colloidal scale systems is often controlled by electrostatic particle-particle

and particle-surface interactions. Examples include the electrostatic stabilization of suspensions
of charged particles and surface adsorption of protein molecules in chromatography. Previous
studies have dealt almost exclusively with particles having a nearly uniform surface charge
density, but such analyses are inadequate for the complicated charge distributions on biological
macromolecules. A boundary element method (BEM) was developed to study the interaction
between a spherical particle with a nonuniform surface charge density and a large, uniformly
charged surface. Our calculations show that the effect of a nonuniform particle charge
distribution can be dramatic. The technique has also been used to study the interaction of a
globular protein with a surface; the results of this study will be described in Part II.



1. Introduction

Interactions between electrically charged bodies and surfaces are determined by
the arrangement of the objects' charged groups. Many cases have been analyzed wherein
the charge distribution is uniform or has azimuthal symmetry. In systems of synthetic
latex particles, for instance, the charge distribution is fairly uniform and these are
excellent approximations. Particle aggregation and particle-surface adsorption can be
elucidated with models based on uniform surface charge distributions. But, when the
objects are nonuniformly charged their behavior is more difficult to explain and the
models are correspondingly more complicated. Biological macromolecules, which may
have extremely complex charge distributions, often exhibit counter-intuitive behavior.
The enzymatic activity of copper zinc superoxide dismutase is a case in point.

Superoxide dismutase (SOD) is reported to be a homodimer of molecular weight
32,000 with a net valence of —4 1; its substrate, the superoxide radical, has a valence of
—1. At first glance it appears that the enzyme's activity should be limited by electrostatic
repulsion between like charges as the substrate approaches the enzyme. One might also
expect the enzymatic activity to increase with ionic strength as the electrostatic repulsion is
screened by counterions. Experimental data contradict both notions: the enzyme activity
is close to that calculated from the Brownian collision rate for uncharged particles of
similar size and decreases with added salt 1.

Crystallographic studies of SOD reveal that a group of positively charged residues
around the active site guide the superoxide. Cudd and Fridovich! chemically modified
the residues near the active site and measured enzyme activity as a function of salt
concentration. A 90% drop in enzyme activity at an ionic strength of zero was observed
when arginine 141 was neutralized and the activity still decreased with ionic strength.
Neutralization of 7 or 8 lysine residues reduced the reaction rate by approximately 80%
but reversed the trend with ionic strength. Cudd and Fridovich concluded that the lysines
are responsible for long-range steering while arginine provides local orientation of the
incoming molecule near the active site. Calculations of the electrostatic potential near
SOD 2.3 and Brownian dynamics simulations 4-7 have largely confirmed this
interpretation.

Klapper et al. 3 employed a finite-difference method to solve the linearized
Poisson-Boltzmann equation in the region surrounding SOD. Charged groups were
placed at their crystallographically measured coordinates and the boundary between the
interior of the molecule and the bulk solution was defined to be the solvent-accessible
surface. This calculation, the first to assign different dielectric constants to the protein
molecule (€, = 2) and the solution (& = 80), showed that the surface charge distribution



and shape of the enzyme create a large "target" of positive potential which attracts the
negatively charged substrate. As ionic strength increases, the effective target area is
reduced while repulsion from the negatively charged region decreases; the former effect
dominates, accounting for the trend in enzyme activity. Good agreement with experiment
was obtained only with the two-dielectric model.

Subsequent versions of this technique can now handle the nonlinear Poisson-
Boltzmann equation. However, computational requirements rise rapidly with the
resolution of the finite difference grid. These finite difference calculations are typically
performed with grid spacing scaled so the molecule occupies 50 - 75% of the domain &,
Such scaling is adequate when the substrate is small compared with the enzyme and can
be treated as a point charge. Treating interactions between molecules (or molecules and
macroscopic bodies) by this technique appears difficult or infeasible at present.

Anisotropic charge distributions clearly have a substantial effect on the behavior
of macromolecules, but current finite difference techniques are not completely satisfactory
for protein-surface interactions. The model developed here uses a boundary element
technique to circumvent some of the difficulties. In Part I, the technique is described and
its utility demonstrated using, as an example, a sphere with a charged cap. The
presentation begins with a discussion of the mathematical structure of the problem. Next,
the formulation and implementation of a boundary element method created to treat a
sphere with fixed, nonuniform surface charge density, is explained. The boundary
element code is then used to solve two test problems to establish its accuracy. Finally,
we study a sphere with a charged cap interacting with an insulated plate to assess the
significance of charge inhomogeneity. Part II of the series describes the interaction
between a lysozyme molecule and a charged surface.

2. Mathematical Structure of the Electrostatics Problem
Figure 1 depicts the particle-surface system. The electrostatic potential is a solution of
the linearized Debye-Hiickel equation %:

region 1 (molecule): V2 y;=0 1)
region 2 (solution): Viy,=x2y; )

where x2 = 2n,z2e2/€,€2kT for a z-z electrolyte; n, = bulk ion number density, e =
elementary charge, €, = permittivity of free space, k = Boltzmann's constant, and T =

absolute temperature. The boundary conditions at the surface of the particle are the continuity



of potential,
Vi=y: (3)
and the jump in electric displacement,

€1VW1°H1+€2VW2'H2=f- 4).
(]

Note that n; and n; point out of their respective regions. The boundary conditions are:

at ,20 W2__ 00 )
0z & &
and
as z9: Y -0 (6).

If we scale all the lengths on the particle radius, a, and write the equations in terms of the
dimensionless potential, u = y/y,, the problem becomes:

region 1: v? uy=0 @)
region 2: V2 uy =(ax)? up (8)

- 9

sphere surface: H=i ®
€] Vul-n1+ez Vuz-l12=()"I (10)
r=0 J2- O a1

0z )

z — oo; u; =0 (12).

The reference quantities for potential and surface charge are ¥, = kT/e and G, = &Y. /a.

The solution of the problem specified by equations (7) - (12) is complicated, but its
linearity allows it to be split into readily-solved subproblems as shown in Figure 2. First we .
divide the problem into two separate problems: (i) a charged sphere near an insulated flat
plate and (ii) a charged plate with an uncharged sphere. Since the potential of problem (i) is
identical to that produced by the charged sphere and its mirror image 10-12, we denote it uss
(i.e., sphere-sphere); the potential in problem (ii) is w7, the sphere-plate potential. The total
potential is their sum



U =uss+ us (13).

The equations for the sphere-sphere problem are:

region 1: Viup=0 (14)
region 2: V2 us® = (ax)? ugf (15)
uss = 35 (16)
sphere surface: 1= .
&§vVi® -ny+&,Viy' my =0 an
s
z=0. % _g (18)
0z
z—ee: U —0 19),
while the sphere-plate potential satisfies:
region 1: v2 u? =0 (20)
region 2: v? uf =(ax)? usP (21)
wf = u? 22
sphere surface: ’ ! 2 @2)
\el Vu? -ny + & VuFf -nz=0 (23)
sp *
;= 2 G 24)
0z &
z—ro0: Ul -0 (25).

uss can be obtained using a boundary element technique. A solution for u* is more
difficult because the boundary condition at z = 0 is not easily satisfied by the method of
images. Instead, we further divide the sphere-plate problem, viz.,

usP = ul + ur (26)

where u is the potential due to the charged plate in the absence of the sphere, and u” is the
"remainder” potential. The flat plate potential is



*
whr = Ox e —9Kz @7
& axk

When w? is subtracted from us?, we obtain:

region 1: Viul=—(ax)2up =-p* (28)
region2: V2 u5=(ax)?ub 9)

re | 30

sphere surface: =10 G0
& Vuf-n1+£2Vu5-n2=—(£,-£2)VufP-nl €2Y)
=0 g (32)

oz

2z u; >0 (33).

In this problem the sphere contains a known charge density, p* = (a K)2 wP. The fixed charge
density is scaled on p, = &V,/a?. Since the potential produced by the two mirror image
spheres satisfies the boundary conditions (30) and (32), u" can be obtained from the
boundary element technique used to find uss. The full solution is the sum of the three
potentials.

We are also interested in the electrostatic potential energy and its dependence on
particle-surface separation. This energy, or interaction potential, is defined in terms of the
work performed to bring two bodies to a particular configuration from some reference
state13. When performed isothermally and reversibly, the free energy change for the system
can be expressed in terms of the work required to assemble all the charges from infinity 14.15;

o/
AG,,,. = JdVJ ydp’ (34),
n 0

Here Q denotes the volume of the system and the f superscript indicates a fixed charge density
(not subject to thermal randomization). When the charge density is proportional to the potential
(as is the case for solutions of the linearized Poisson-Boltzmann equation) and all the fixed
charges reside on the surfaces of the system, equation (34) simplifies to 14-16

1
AG, . = EJ‘FG vdA (35).



I'represents all the surfaces of the system and o is the fixed surface charge.

The change in free energy can be divided into two parts:
AGelec = AG:I:C + ¢ekc(r) (36),

where AG,,,,
infinite separation, and @,.(r) is the change in free energy as the molecule and plate are

is the change in free energy required to "charge up" the molecule and plate at

brought together. In terms of scaled electrostatic variables,

L2 [ o' lu)- )]s 3.

&V, a

Here, d = gap (in particle radii) between the plate and the surface of the sphere (see Figure
1), u(d) = potential when the particle and plate are separated by d, and u(e<) = potential when
particle is infinitely far from plate; dA is dimensionless.

3. Boun Element Formulation
The starting point for the boundary element formulation is the differential equation:

Viu-(ax)u=-p° (38),

where p* is a fixed charge density. Solutions of equation (38) describe the potential in the
electrolyte (region 2) when p* =0, in region 1 of the “remainder” problem when ax =0, and
in region 1 of the sphere-sphere problem when both ax and p* = 0. The fundamental
solution (Green's function) of the homogeneous form of equation (38) is:

ut = le?e%w (39),

where r is measured from the "source" point X, (i.e.,, r =|X — Xo| ). The differential
equation can be converted into an integral equation using standard manipulations 11 ¢ yield:

c u(x(: )+ Jru(Vu' . n)dA =I#'(Vu -n)dA +J.A)'u‘ dv (40),

where:



1, x, in 02
c={ 4,x, inT 41).

0, otherwise

An attractive feature of the boundary integral expression is that computations in the infinite
domain are unnecessary; the integral over £ is performed only when there is a distribution of
fixed charges in the domain. This formulation greatly reduces the amount of computation needed
to obtain a numerical solution. »

To convert the integral equation into a form suitable for numerical computation, the
boundary of the system is divided into N elements, denoted as I';. The integrals over I in

equation (40) are equivalent to the sum of integrals over all the elements:
N N
cu(xo )+ Zju (Vu' -n)dA =Zju‘(vu ‘n)dA +j p'udv (42).
=i Jr; et JT; Q
j=1 J Jj=1 4
In the notation of Brebbia et al. 11, equation (42) reads:
N N
cu(x,)+ j uq‘dA = J u'qu+Jp'u'dV 43),
() 3 | uaaa= 2 Juiacns I

where ¢ = Vu - n, ¢* = Vu*- n, and 4* = fundamental solution centered at x,. For points in
the domain, equation (43) expresses the potential as the sum of a single-layer distribution of
strength ¢, a double-layer distribution of strength u, and a particular solution given by the

volume integral.
In the "constant element” approximation, each element has uniform values of potential

u; and normal flux, gj, associated with the node (x;) of the element. Applying (43) at each
node yields N equations of the form:

N N

1 Z * z .

5u,~+ ujJr q,-dA= qjjll_t,dA+u,p (44),
j=1 J j=1 J

where u; = potential at node i, u; = potential of element j, g; = normal flux through element j,
u; and g; are the potential and normal flux due to the fundamental solution placed at x;, and
u? is the potential at node i produced by the distribution of fixed charges; ¢ = 1/2 because
each node lies in the surface. Writing



T;

G = u; dA A =Lg,~‘dA (45)
J

allows us to express equation (44) in matrix form:

HU=GQ+U? (46)
where
- 1
Hi+—=,i=
y 2 1=J
H,-j = @é7).
1:1,']' » 1#]

If there are N elements on the spheres, equation (46) is a system of N equations in
2N unknowns (N u’s and N ¢’s ) for each domain, the interior of the sphere (region 1) and
the exterior (region 2). When the equations for both regions are combined, we obtain 2N

equations and 2N constraints (boundary conditions). N of the boundary conditions govern

the continuity of potential at the surface (ujl = ujz), while the others specify the jump in the

normal derivative caused by the local surface charge density (€1 q} +& 412 = 0';).

Evaluation of the boundary integrals requires integration of the fundamental solution,
u*, and its normal derivative, ¢*, over each surface element. In addition to the surface
integrals, the "remainder" problem requires a volume integral to determine the particular
solution produced by the fixed charge density in the sphere. The details of these calculations
are described by Grant 17,

4. Boundary Element Geometry

The surface of the sphere is divided into spherical triangular elements (Figure 3), each
with constant values of surface charge density, surface potential, and normal flux. Each edge
of an element is the intersection of the sphere’s surface with the plane containing both vertices
and the origin of the sphere (the arc of the great circle connecting the vertices). The location
of a node is determined by calculating the location of the element's centroid and projecting the
ray from the sphere’s origin through the centroid to the surface.

The pattern for the initial (coarse) discretization of the sphere is based on either a
regular octahedron (8 equilateral triangular faces) or an icosahedron (20 equilateral triangular
faces) circumscribed by the unit sphere. The vertices of the polyhedron are the vertices of the
corresponding spherical triangular elements on the sphere's surface. The inscribed
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polyhedron is oriented so that vertices of the polyhedron lie at the north and south poles of
the sphere and the prime meridian (0" longitude) coincides with the boundary between two of
the elements having the north pole as a common vertex. The two coarse discretizations and
their "surface maps" (latitude and longitude) are shown in Figure 4. The discretization is
refined by either converting each node into a vertex to form three smaller elements or
connecting the midpoint of the longest edge with the opposing vertex to form two elements.

The orientation of the sphere must be defined in preparation for discussion of
situations where there is a nonuniform charge distribution. For a given separation the
electrostatic interaction energy of the system depends only on which point on the sphere lies
closest to the plate. (This is a consequence of the mirror symmetry about the plane z =0,
which implies that a rotation of the spheres about the line of centers will not alter the
interaction potential.) In the sphere’s coordinate system defined in Figure 4, the latitude, &
(-90° < a < +90°) and longitude, B (-180° < B < +180°), specify the location of this point
and, therefore, the orientation of the sphere (Figure 5). An orientation of (o) indicates that
the point on the sphere with latitude & and longitude B is closest to the plate.

Once the nodal potcntials‘and fluxes have been calculated, the charging integrals must
be computed. The charging work for the sphere is evaluated using the formula:

. sphere
d>elec

(s) _ . N .
v =% I cudA=4 3 ouA | (48).

Agphere j=1
where u = the total electrostatic potential. The coefficients in the summation are the charge
density, potential, and area of each element; the summation formula reflects the constant
element approximation. A similar approximation is applied to the plate.

First the boundary element method (BEM) was used to solve two simple problems
with uniform charge to assess its accuracy. Then the significance of nonuniform charge
distributions was studied with a relatively simple configuration.

5. Applications of the Boundary Element Method

In section 2, we split the full problem into two subproblems: the sphere-sphere -
problem and the sphere-plate problem (see Figure 2). We now apply the BEM to an example
of each to check its accuracy.

A Sphere-Sphere Problem
The first problem involves two uniformly charged spheres (see Figure 6). For g, =
&, = " = 1, the dimensionless surface potential at infinite separation is u==(1+ax)~L.

11



&, was calculated as a function of distance from the plate and compared with the results

from the linear superposition approximation 9:14:

oLt 4am PV am e

g via (1+ ax)’  2s T (1+ax)® 25

(49).

Results for ax = 0.1 and 1 are shown in Figure 7, while calculations for ax =5 are
presented in Figure 8. In each case, the 9-axis of the sphere's coordinate system (see Figure
4) is coincident with the line of centers. Calculations with N = 8, 24, 48, and 96 are based
on an initial octahedron discretization while the results for N = 20 and 60 are based on the
icosahedron. The BEM calculations agree well with the LSA for dimensionless gaps d 2
(@x)-!. For instance, BEM calculations with 96 elements are within 1% of the LSA ford 20
when ax =0.1, for d > 0.05 when ax =1, and ford > 0.11 when ax=S5. Ford ~a, the
relative error in the BEM calculations is approximately 10-4. At smaller separations
(especially at contact), the linear superposition approximation is not valid 9,18 but
convergence can be studied by comparing the computed values of @, with a reasonable
upper bound.

At high ionic strengths (large ax), the calculated energy is sensitive to the location of
the node nearest the plane z = 0, since the surface potential decreases rapidly with increasing
z. With the constant element approximation, the potential of the entire element is that of the
node, so if the node is relatively far from (c,f), the element’s contribution to the charging
work is underestimated. The “"nearest node effect” can be removed by rotating the sphere so
that a node is closest to the image sphere. The potential is then correct to within the accuracy
of the boundary element method, but the charging work is overestimated because the
infinitesimal area over which it obtains is exaggerated by the finite area of the element. @,
was calculated at contact for several discretizations and the results plotted in Figure 8b. The
calculated energies converge to the same value irrespective of orientation.

The relatively slow convergence for this test problem reveals a shortcoming of the
constant element approximation, viz., the length scale of the discretization must be smaller
than x-1 for good accuracy. In the case of uniform spheres with ax = 3, a 240 element
discretization produces an answer within 2% of the "converged"” value at contact. When the
charge distribution is nonuniform or the ionic strength higher, the discretization must be
further refined to achieve comparable accuracy.

A Sphere-Plate Problem
As shown in Figure 2, the sphere-plate problem describes the interaction of a
uniformly charged plate and an uncharged dielectric sphere. Here the force on the particle is

12



proportional to —V(E-E) = -VE2, where E is the electric field vector 19. The electrostatic
energy of the system is therefore proportional to E2. Except near contact, the electric field
experienced by the sphere is approximately that created by the flat plate potential, w?. As
given in Equation (27), the electric field produced by the flat plate is proportional to exp(—
axd), so the potential energy is proportional to exp(-2axd). We analyzed the case where &, =
2,6 =78.54,ax=>5, and o: = 100 using 240 elements. The expected exponential decay is

reproduced in the BEM calculations shown in Figure 9.

Spherical Particles with Charged Caps

The effects of a nonuniform charge distribution are illustrated using a charged “cap”
covering 25% of the particle’s surface while the remainder of the sphere is uncharged. The
scaled surface charge density of o* = 358 over the cap is based on a net charge of +10.5¢
spread uniformly over a sphere 16.48A in radius. These values are appropriate for the
idealized representation of hen egg white lysozyme which will be discussed in Part II. The
initial discretization for the cap studies is an icosahedron with five elements spanning the
charged cap covering the particle’s north pole.

The orientation angle a, was varied from +90° to —90° in steps of 45°; B was fixed at
+90°. The calculated value of Pgjec based on 240 elements is shown in Figure 10 as a
function of orientation and separation for ak = 5 and 10. The most striking feature of these
calculations is that a rotation of 90° can easily change @, by a factor of more than 60. The
relative difference between a = +90° and a = +45° for ax = 10 is smaller than for ax =35,
reflecting the stronger screening for ax = 10.

Computations for spheres with charged caps are subject to convergence problems
similar to those encountered with uniform spheres. The electrostatic interaction energy for a
= +90° should be larger than for any other orientation because a larger area of the charged
caps can interact. The boundary element method results at contact, however, are still
dominated by the sensitivity to node placement described above. With 240 elements, the
node spacing is just close enough at ax = 5 to ensure that @,,(+90°) > P, (+45°),
although that is not true for the derivative of @.,... For ax = 10, 240 elements are
insufficient to place the potential energies in the proper ranking for all separations. A series
of calculations with sequentially refined grids shows a consistent reduction in the size of this
discrepancy, indicating it is a numerical artifact.

n 1 Di .
In preparation for studying the interaction potential for a protein molecule and a
charged surface, we developed a boundary element method to calculate the electrostatic
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potential. The use of the linearized Poisson-Boltzmann equation in the electrolyte region
permits us to divide the complete problem into three subproblems (sphere-sphere, flat plate,
and "remainder") that can be solved independently to obtain the full potential. A consistent
solution of Laplace's equation inside the sphere is implicitly obtained to satisfy the continuity
of potential and jump in electric displacement at the surface of the sphere.

Electrostatic free energies calculated from the boundary element method agree closely
with those predicted from the linear superposition approximation when the particles are not
too close. The finite size of the elemeats introduces some numerical "orientation” effects
which decrease with further refinement of the mesh. Similar calculations for an uncharged
sphere - charged plate system also reproduce the expected behavior. Calculations with a
nonuniform charge distribution show that the free energy depends strongly on orientation.
Such orientation effects can play important roles in protein adsorption or crystal growth.
Results for a nonuniformly charged protein are reported in Part IL.
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EIGURE CAPTIONS

Figure 1: Definition Sketch.
Lengths are scaled by the particle radius, a, and surface charge densities by 6, =
EoVola.

Figure 2: Decomposition into subproblems.
(top) The potential produced by a nonuniformly charged sphere near an
uncharged insulated wall is equivalent to a charged particle interacting with its
mirror image, usS. The mirror image is obtained by reflecting the original
particle across the plane z = 0.
(bottom) The potential produced by an uncharged sphere near a uniformly charged
infinite plate, ¥, can be written as the sum of the potential of a uniformly charged
flat plate (WP) and a "remainder” (¥”). The fixed volume and surface charge
densities shown in the figure are the result of subtracting w? from u*r.

Figure 3: A spherical triangle element on the sphere.
Vertices are identified by circled numbers; edges are numbered sequentially as the
perimeter of the element is traversed. The centroid of the element lies inside the
sphere but is projected onto the surface to locate the node of the element.

Figure 4: Boundary element discretization of the sphere's surface.
The boundaries of the elements have been drawn on the surface of the sphere; the
axes shown define the sphere's internal coordinate system and show the orientation
of the discretization. The corresponding 2-dimensional projection ("surface map")
of the discretization is also shown. Locations on the surface are identified by
latitude and longitude. The nodes are plotted as filled circles. (a) N=8. (b)) N =
20.

Figure 5: Orientation of the sphere.
The orientation of the sphere is defined by the angles a and B (latitude and
longitude) which identify the point on the sphere closest to the plane z =0. The
figure shows an example where & < 0. The line of centers of the two spheres is an
axis of rotational symmetry. The octants have been identified by letters and their
reflections are indicated by primes to illustrate the mirror symmetry about the plane
z=0.

Figure 6: Definition sketch for the two sphere problem.

Figure 7: Electrostatic free energy for two uniformly charged spheres with 0* =g, =& =1.

Solid line is the linear superposition approximation. Plot symbols denote number of
elements on the sphere: ll 8, ® 24, A 48, ¢ 96, 00 20, O 60. On the scale of the figure
these results are almost indistinguishable.
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Figure 8: Electrostatic free energy for two uniformly charged spheres for ak = 5 and
o= =6=1.

(a) Pelec as a function of separation. Solid line is the linear superposition
approximation. Plot symbols denote number of elements on the sphere: B 8,
® 24, A 48,696,020, 060.

(b) Pelec at contact as a function of the number of elements on the sphere.
Maximum values were calculated with a node closest point to the image
sphere. Plot symbols: Bl P, ® o

elec’

Figure 9: Electrostatic free energy for a charged plate and an uncharged sphere.
In this system, the potential decays as exp(—2axd) except near the plate. The
line shows the expected slope. o, = 100, £;=1, £=78.5.

Figure 10: Electrostatic free energy for two image spheres with charged caps.
Uniform charge density of 6* = 358 is applied to a spherical cap centered at
the particle's "north pole” (@ =+90) and covering 25% of the surface; the
remainder of the sphere is uncharged. Dielectric constants are £ =1 and &; =
78.5; B=+90°. Each symbol represents a different angle c. Plot symbols: H
+90°, @ +45° A 0°, ¢ -45°,0 -90° (a)ax=S5.(b)ax=10.
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Abstract

A boundary element method (BEM) was employed to calculate the interaction potential
for a protein molecule and a uniformly charged flat plate. The protein molecule was treated as a
sphere with a dielectric constant of 2 and the protein charge distribution represented by patches
of charge on the sphere surface. The interaction potential was computed as a function of
orientation and an angle-averaged potential calculated. As expected, there are a large number of
local minima in the potential at contact. The angle-averaged free energy is close to the free
energy of a uniformly charged sphere having the same net charge as the protein molecule when
the plate surface charge density is modest sized. When the plate is highly charged, the free
energy of the protein system can be as much as 10 kT lower than the uniform sphere. Even
larger differences are expected if the plate's charge distribution is as heterogeneous as the
molecule's.



1._Introduction

In this paper, we describe the results of calculations of the interaction energy between a
protein molecule and a charged surface (a flat plate) using the boundary integral technique
described in Part I. The interaction energy depends on the separation and orientation of the two
bodies and is the reversible work done against both electrostatic and dispersion or van der
Waals forces. Our objective is to calculate the free energy of the interaction, taking account of
the nonuniform charge distribution on a representative protein molecule and ascertain how it is
reflected in the "adsorption” energy for a flat surface. That surface might be a protein crystal,
if one is interested in protein crystallization; another solid body, if the application is to a
separation process such as chromatography; or simply another protein covered surface. To
mimic the behavior of a typical protein we use data on the globular protein lysozyme.

The assumptions used to simplify the calculations are listed in Table 1. First, the two
interactions are presumed additive; this is the cornerstone of the Derjaguin-Landau-Verwey-
Overbeek (DLVO) theory and is justified by numerous observations!-3. Dispersion forces are
modeled using an "effective” Hamaker constant, A,y Frequency spectra for a material's
dielectric behavior are required for a detailed calculation using the Lifshitz theory 1 50, in the
absence of such data for proteins, we take A.g as given. We assess the relative importance of
dispersion forces by varying A4 but neglect effects due to restructuring of the solvent, e.g.,
hydration forces.

Next, linearization of the Poisson-Boltzmann equation simplifies the electrostatics
problem. The linearization is consistent with the low net charge on the molecule and,
moreover, allows us to readily assess the significance of nonuniform charge distributions in
protein-surface interactions. The average surface potential of lysozyme in 1M NaCl in water
(&, = 80) is about 16 mV based on a net valence of +10.5 at pH 4.7 4 and a hydrodynamic
radius of 20A 5. Since the linearization is valid for potentials up to approximately 100 mV 1t
is more than adequate except when the particle and surface are almost in contact.

The disparate sizes of the molecule and surface justify the treatment of the surface as a
semi-infinite region with a surface charge. For an ionic strength of 1M, k-1, the Debye length,
is approximately 3A. Exponential decay of the potential limits the range of the electrostatic
forces to about 5x-! (15 A) so a molecule approaching a surface may not "sense" it until it is -
~ roughly 15A away. Nevertheless, the use of a uniformly charged flat plate to represent the
surface is one of the more severe assumptions because the scale of the roughness and charge
heterogeneity of most surfaces are the same as those of the molecule. Although we recognize
the limitations of this approximation, the intricacies caused by such effects are beyond the
scope of our calculations. To some extent, the effect of a nonuniform surface charge



distribution can be estimated by calculating the electrostatic potential energy for different
amounts of (uniform) surface charge, oy , since mobile ions in solution screen the influence of

all but a small portion of the surface. Nevertheless, detailed calculations which take account of
the structure of the surface charge will eventually be needed to appreciate the subtleties of
adsorption.

Table 1

Assumptions Employed in Studying Molecule-Surface Interactions.

The electrostatic and dispersion (van der Waals) potentials are additive.
The dispersion potential is independent of molecular orientation.

The effective Hamaker constant, A¢ff, is independent of separation.
The linearized Poisson-Boltzmann equation governs the electrostatics.

The surface can be treated as semi-infinite region with a uniform surface
charge density, 0.

The protein molecule can be treated as a sphere.

The charge of the protein molecule can be represented by a surface charge
distribution.

The interior of the protein molecule has a dielectric constant of 2.

The main reason for treating the protein molecule as a sphere is simplicity.
Crystallographic data indicate that most globular proteins are roughly spherical and a table of
20 proteins of known structure 6 shows that the ratio of maximum to minimum dimensions is
seldom greater than 2. Hen egg white lysozyme is variously described as being an ellipsoid of
dimensions 23A x 28A x 40A 4, or 304 x 30A x 454 6, or 30A x 30A x 45A "with a wedge-
shaped piece removed"” 7. All these are consistent with a spherical approximation and a
hydrodynamic radius of approximately 20A 5.

Charged residues are almost invariably found at the surface of the protein molecule,
where they can interact with the polar water molecules 6,7, Researchers who use finite
difference methods 8-11 model the charge distribution with point charges lying just inside the
surface of the protein that is accessible to a "probe sphere”, e.g., a water molecule 1.4A in
radius 69. We represented the protein's charge using a smoothed surface charge distribution to
facilitate implementation of the boundary element method. The method for translating the



charge distribution obtained from X-ray crystallography into a surface charge distribution will
be described in section 2.

Hydrophobic residues and side chains tend to be buried in the interior of the molecule,
at least when the molecule is soluble in water 6.7. Calculations of packing density give values
around 0.75 6.7, indicating that the interior is relatively uniform. Free water is generally absent
from the interior, although molecules such as lysozyme and a-chymotrypsin seem to have
cavities or holes which are presumed to contain solvent 7. Water molecules can be detected in
the interior of some protein molecules and appear to be intrinsic features of protein structure 6,
Thus the dielectric constant in the interior of the molecule is often taken to be in the range
between 2 and 4 12-16, Dao-pin et al. 1! calculated the electrostatically induced shift in pK, for
two systems as a sensitivity check and found the shift was insensitive to values chosen in the
range 2 < € < 8, except at low ionic strength.

The purpose of these approximations is to simplify the problem so it can be solved
while preserving its essential features. Results for a molecule with an anisotropic charge
distribution can then be compared with those for a uniformly charged molecule and differences
in behavior ascribed to the anisotropic particle charge. The level of approximation employed
here is appropriate for such an investigation.

2. Idealization of the Lysozyme Molecule

The thrust of the study is to describe those features of the electrostatic interaction which
derive from anisotropic surface charge distributions. Rather than create completely artificial
distributions, the charge distribution of lysozyme was used.

As noted earlier, hen egg white lysozyme is an oblong molecule. The approximate
coordinates of its charged groups (taken from crystallographic data for the tetragonal space
group at 1.4M NaCl in 0.02M sodium acetate buffer at pH 4.7) are listed in Table 2 4, We
assume that all the charged groups lie on a spherical surface and seek the location and size of
the sheath which comes closest to all the charged groups. The sphere is defined by the location
of its origin (X,, Yo, 2,) and its radius, a. One method for obtaining the best-fit sphere is to
find the location of the origin such that the lengths of radii from the origin to the charges,

Ri=[(xi = x0)2 + (i — yo)? + (zi — 2) ] ),

have minimum scatter about the mean value R = a. We performed such a calculation using the
method of random descent with a final step size of 0.01A. In the coordinate system specified
in Table 2, the best-fit sphere is located at (-1.67, 20.91, 17.91) and has a radius of 16.48A.
These compare favorably with the center of mass (-1.08, 20.00, 18.35) determined by
inspection 4 and the hydrodynamic radius of approximately 20A 5. The location of charge i



was projected onto the surface of the sphere using the radius vector R; ; the surface charge
distribution is diagrammed in Figure 1.
Table 2
Coordinates of charged groups in tetragonal hen egg white lysozyme.

Number | Residue Type Charge X Y Z
1 1 N-terminus +1 3.28 10.16 10.35
2 1 lys +1 -3.80 10.48 8.18
3 5 arg +1 —6.31 24.40 2.84
4 13 lys +1 -17.40 21.25 11.10
5 14 arg +1 -12.20 9.25 14.63
6 15 his +0.5 -9.67 11.01 17.86
7 18 asp -1 -14.73 24.29 14.83
8 21 arg +1 -11.82 23.93 29.27
9 33 lys +1 3.17 23.88 5.62
10 35 glu -1 4.38 24.84 18.14
11 45 arg +1 18.46 15.42 23.99
12 48 asp -1 14.17 2291 29.22
13 52 asp -1 8.98 21.08 22.43
14 61 arg +1 13.02 20.81 31.91
15 66 asp -1 11.50 12.56 27.61
16 68 arg +1 16.16 12.96 24.25
17 73 arg +1 1.83 16.91 39.96
18 87 asp -1 -5.45 7.45 16.81
19 96 lys +1 -11.68 16.57 22.82
20 97 lys +1 -5.50 14.40 30.09
21 101 asp -1 -2.00 24.43 32.74
22 112 arg +1 5.25 33.64 23.22
23 114 arg +1 6.61 30.51 10.82
24 116 ° lys +1 -1.79 36.55 22.86
25 125 arg +1 -10.80 31.20 -1.00
26 128 arg +1 -18.86 17.79 0.09
27 129 C-terminus -1 -17.14 21.78 6.41




If the charged groups on the surface are represented as point charges, the potential in
their immediate neighborhood is too high for the linearized Poisson-Boltzmann equation to
apply. Instead, we employ the method of "local averaging" to create a patchwork of charge
smooth enough to ensure that the governing equations remain valid but "lumpy" enough to
exhibit behavior unique to anisotropically charged proteins. Local averaging is often used to
make continuum approximations of discrete phenomena. Here the averaging is done by
centering a spherical cap at the point of interest and summing the point charges which lie within
the cap. The local charge density is the net charge within the cap divided by the area of the cap,
Asample. A specific charge contributes to the local charge density when the distance (r;) from
the point of interest to charge i is less than rgampie (see Figure 2). The local charge density is:

N
A 1 ZQEH(rsmIe’ri) : ),

sample i=1

o=

where Q; = charge of group i, and H(') is the Heaviside step function. The sampling radius is
given by 7., = a+2(1 - cos 8); the sampling area is Asample = nrfamp,e. Maps of the local
surface charge density derived for lysozyme are shown in Figure 3 for sample areas of 300,
200, and 100 A2. The surface area of the model lysozyme molecule, Agphere , is approximately
3400 A2, so the charge density maps shown in Figure 3 correspond to sample areas ranging
from about 9% to 3% of the molecule's surface. Note, however, that mapping the sphere's
surface as a rectangle distorts the distribution. The degree of heterogeneity and the size of its
effect are controlled by the choice of Asample. AS an extreme example, setting the Asample =
Agphere produces a uniformly charged particle with the same net charge as the model sphere.

Agampie has a lower bound below which the model no longer applies. This bound
derives from the limits of applicability of the linearized Poisson-Boltzmann equation,
approximately 100 mV (a dimensionless potential of 4 when scaled on kT/e). For an isolated
sphere with a uniform scaled surface charge density, o”, the scaled surface potential, u=, is
o"/[e2(1 + ax)]. Surface charge densities greater than about 4£,(1 + ax) would place the
system outside the range of validity of the lincarized Poisson-Boltzmann equation. Therefore,
if the net charge within the sampling area is Q, the corresponding restriction on Asgmple is:

Qa

A >
el 4eye, o (1 + ak)

(3).



To smear a proton charge (Q = 1.6x10 -1° C) on a particle with a = 16.48A, &, = 80 (water)
and ax = 5 (ionic strength approximately 1M) requires a minimum sampling area of 60 A2,
Our calculations are based on a sampling area of 100 A2,

Once a smooth charge distribution available, it must be translated into a form consistent
with the boundary element formulation wherein each element has uniform potential and charge.
The (constant) charge density, 0j, assigned to an element is calculated by averaging over the
area of the element, A;:

o, -;—J 4).

This method of computing g; introduces the length scale of the discretization into the problem.
The larger of Asampre and A; determines the length scale of the patchiness. Surface charge
density maps shown in Figure 4 show how the charge distribution in Figure 3c is
approximated by successive refinements of the original icosahedral discretization (Part I). The
discretized charge distribution shown in Figure 4d retains much of the general character
exhibited by the smoothed charge distribution in Figure 3c, although the range of surface
charge densities in Figure 4d is slightly smaller because of the additional averaging described
by equation (4).

Several layers of approximation have been employed to create a realistic model of a
protein molecule. The choice of sampling area is dictated by the linearization of the governing
equation. The idealization of the molecule as a sphere and the corresponding mapping of the
charged groups reflect a desire to keep the problem as simple as possible. Despite these
simplifications the resulting surface charge distribution appears able to capture the essential
features of the electrostatic phenomena.

n i ner lecule an

Once the protein charge distribution is established, the boundary element technique can
be used to calculate the sphere-plate electrostatic interaction energy as a function of separation
and orientation (cf. Part I). However, the electrostatic free energy for an uncharged surface is
always repulsive because charges on the sphere nearest the plate dominate the interaction. The
effect of charge anisotropy can be seen in Figure 5, where we compare the electrostatic free
energy at contact with an uncharged plate (Figure 5a) with the charge distribution (Figure 5b).
When the surface charge density on the plate is raised to o; = 500 (230 A2 per charge), the

repulsion is greatly increased (Figure Sc). Differences between various orientations are



enormous, reflecting variations in charge density around the sphere. According to these
calculations there are a large number of local free energy minima with similar energies.

In some orientations, the calculated electrostatic surface potential can be 10 kT/e or
larger at contact and would seem to violate the low potential assumption used to linearize the
Poisson-Boltzmann equation. However, as the particle moves away from the flat surface, the
potential decreases rapidly into the range where linearization is valid. Hence, although there is
some uncertainty in the value of @, near contact, the results appear consistent with those
calculated at small non-zero separations. This shortcoming is inherent in any model which
employs the linearized Poisson-Boltzmann equation to describe the electrostatics.

In Part I, we discussed how the energy of a given orientation depends on the charge
distribution on the nearest surfaces. When the plate is charged, orientations offering similarly
charged surfaces suffer an increase in free energy while the free energies of orientations
presenting oppositely charged surfaces are reduced, relative to their interaction with an
uncharged plate. As we have just seen, energies between different orientations can be quite
large. The "average" behavior of anisotropically charged and uniformly charged spheres is
also of interest since rotary Brownian motion enables a molecule to sample many orientations.
Therefore, we compare the orientation-averaged interaction potential with, e.g., the potential

for a uniformly charged molecule having the same net charge. The proper orientation average
ig 17-19-
is :

(Gacc@) _ | L exp[-"d)da(d—’g)]dﬂ (s)
kT ar kT ' ’
4n

with the orientation defined in terms of the solid angle £2. Using the constant element
approximation, the integral over all solid angles can be replaced by a sum over the elements on
the sphere:

kT kT

§ elec(dz _ ZA [ elec(dvajvﬁj)] . 6),

" Here Aj is the area of element j on the unit sphere and the coordinates (c;, ) of node j
define the orientation of the sphere (cf. Part I). The significance of the nonuniform charge
distribution can be determined by comparing the angle-averaged interaction potential defined by
equation (6) with that for the uniformly charged particle.



The angle-averaged interaction potential for the 240 element discretization of lysozyme

is shown in Figure 6, along with results for the uniformly charged sphere (db‘;;'e‘{"'"') and

lysozyme orientations having the maximum (¢%;,) and minimum (7" electrostatic potential

energy. The arithmetic average potential energy (3mc) is also shown. Note the large

differences between the maximum, minimum and angle-averaged potentials. The relative
ranking of (@,.), form

elec® e at small separations is obscured in Figure 6, so the

and

results are replotted in Figure 7. At high surface charge densities, the angle-averaged
potential lies below @, and @"/orm as expected, because the Boltzmann weighting favors

elec
lower potential energy orientations.

An important feature of these electrostatic free energy curves is the weak electrostatic
repulsion at these charge densities (less than 6 kT when 0': = 500, i.e., with approximately
230 AZper charge). In addition, the difference in free energy (2 kT or less at these conditions)
between the uniformly charged and angle-averaged molecules is relatively small. Each
conclusion is consistent with the modest charge on the molecule and the surface.

To see how the electrostatic effects contribute to the total interaction we can add the
effect of the van der Waals or dispersion potential. The dispersion potential for a (spherical)
macroscopic body and a (spherical) molecule is 1.3:18:

(Y

_ Ag 2R, 2R
Vv T 6 | 2(R+1)d+d?  4R+2(R+1)d+d*
N,

. 2(R+1)d +d®
4R+2(R+1)d +d*

where R = radius of the macroscopic body and d = separation (gap) between the surfaces and
the molecule; all lengths have been scaled by the particle radius. For cases of interest here, R »
1and &,4, atsmalld is insensitive to the exact value of R; a value of R = 106 was used for all
calculations. .

If the molecule and surface were pure hydrocarbon bodies interacting through water,
Ar would be about 1 kT at 300K 18, Measurements of dispersion forces with lysozyme
indicate values for Ay in the range of 1 - 2 kT at room temperature 2021, In the study of
protein crystallization, there is a sizable uncertainty in the value of Ay because the crystal is
approximately 50% solvent by volume 22. There may be a similar uncertainty in the study of
protein adsorption on a protein-covered surface. A naive estimate would take A,y as roughly
half the value for pure hydrocarbons, in which case the balance between van der Waals



attraction and electrostatic repulsion is as shown in Figure 8. The sensitivity of the barrier
height to A.g, is shown in Figure 9. At values of A.g as low as 0.1 &7, the angle-averaged
potential still peaks at only 2 kT (not shown in Figure 9).

Until now attention has focused on plate charge densities of modest size. Local "charge
densities" on protein covered surfaces may be much larger . The surface potentials on an
isolated lysozyme molecule provide some guidance in selecting the range of interest. For ax=
5, local surface potentials on an isolated lysozyme molecule range from +3.91 (+100 mV) to
—2.44 (63 mV); the equivalent surface charge densities on the plate are 1600 (72 A2 per
charge) and -1000 (116 A2 per charge). Surface charge densities of this magnitude cause
dramatic changes in the electrostatic free energy at contact (Figure 10). Figure 11 depicts the
way the angle-averaged interaction potential varies with distance in these two cases.

S 1 Di .

A simplified model of molecule-surface interactions was developed to take account of
charge anisotropy on a protein molecule using a boundary element method (BEM). The BEM
employs a linearized equation for the electrostatics, which allows the problem to be divided into
subproblems that can be solved separately to obtain the total electrostatic potential. The
nonuniform charge distribution on the protein molecule is represented by a set of surface
elements of differing charge densities. Smooth surfaces and simple geometries are assumed
for mathematical convenience. Electrostatic free energies calculated from the boundary element
method for two uniformly charged spheres agree well with those given by the linear
superposition approximation.

Interaction free energies (electrostatic and dispersion potentials) for the molecule-
surface system in different orientations are calculated from the isothermal reversible work
required to bring the two bodies into a given configuration. Different orientations have
substantially different interaction energies. Free energies for different orientations were angle-
averaged to obtain an "average potential.” At moderate plate surface charge densities, the
potentials of the angle-averaged molecule and a uniformly charged sphere having the same net
charge are similar. In both cases, the electrostatic and dispersion terms nearly balance; the free
energy maxima are correspondingly small (about 3 kT).

As a; increases to about 1000 (approximately 100 A2 per charge), large differences
between the model lysozyme molecule and the uniformly charged sphere appear. The
electrostatic free energy of uniformly charged particles can exceed the molecule’s free energy
by 10 KT at contact (see Figure 10). Dispersion forces, which dominate near the plate, reduce
the difference somewhat, but the differences in the free energy maxima for the two systems are

significant.



The nature of the plate's surface controls the behavior of the molecule near contact and
this is where our model lacks rigor. The approximation of a moderate, uniform surface charge
density on the plate clearly becomes less appropriate as the molecule approaches the plate.
Instead, the highly charged patches on both the molecule and the surface interact, so
differences in free energy as the molecule rotates and moves parallel to the surface should be
similar to those shown in Figure 11. These results, although not definitive, clearly
demonstrate the need to account for nonuninform charge distributions when modeling protein-
surface interactions. The boundary elemen: method provides a means to study the effects of
charge heterogeneities on the adsorption of biological macromolecules.
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EIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

A map of the surface charge distribution for an idealized lysozyme sphere.
Symbols: B +1; @ -1; A +1/2. All charges given in units of the proton charge

(1.6x10-19C)

Sampling area and radius. Charged groups lying within the shaded area contribute
to the local charge density.

Local (smoothed) charge density on the surface for different averaging areas. The
lysozyme sphere has a surface area of approximately 3400 A2 and in the figure

charge densities are scaled by &, = 1.4x10-2 uC/cm2. Scaled charge densities are

shown for sampling areas of: (a) 300 A2 (b) 200 A2 (c) 100 A2. The legend at the
bottom of the figure shows the charge level.

Constant element approximation for the surface charge density. Various
representations of the charge density on the model lysozyme molecule based on a

100 A2 averaging area (Figure 3c). Charge densities are scaled by g, = 1.4x10-2
uC/cm?2. (a) 20 elements. (b) 60 elements. (¢) 120 elements. (d) 240 elements.

A comparison of the electrostatic free energy at contact and the surface charge
distribution for ax = 5. The results at contact are shown for the 240 element

discretization. Free energies are scaled by k7T charge density scaled by 0, =
1.4x10-2 uC/cm2. (a) Perec When oy = 0. (b) scaled charge density. (¢) Petec
when o = 500.

Comparison of maximum and minimum electrostatic free energies with several
averages for lysozyme when ak =5. Symbols: @ @77, @ @0 A @m0
Eekc; O <¢¢l¢c)'

Electrostatic free energies near contact Symbols: A 4™ O Pesec; O ((D,,“).

The combined interaction potential between a charged sphere and a surface for
different surface charge densities; ax =5, Ay = 0.5 kT. Symbols indicate the
surface charge density on the plate, cx: O 0; O 100; © 200; A 300; @ 400; W 500.

The combined interaction potential between a charged sphere and a surface for
different Hamaker constants; ak = 5, 0, = 500. The Hamaker constants are: O 0;
D 0.54T; © 14T.

Angle-averaged electrostatic free energy at contact as a function of the surface

charge density. The solid curve represents the model lysozyme molecule while the
dashed curve is the uniformly charged sphere with the same net charge.
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Figure 11. Angle-averaged lysozyme interaction potentials for ax = 5. The solid curves
correspond to A.g = 0.5 kT and the dashed curves represent A = 0. The plot

symbols represent the surface charge density on the plate, o5: O 1600 (72 A2 per
charge); 01 1000 (116 A2 per charge).
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ABSTRACT

The three dimensional structure of biological haaomolecules is determined from
X-ray diffraction studies of large, well ordered crystals. Many proteins, however, form
crystals too small or too disordered to diffract well. Two findings suggest buoyancy-
driven natural convection may affect protein crystal growth: (i) crystals grown in
microgravity are reported to diffract better than crystals grown in the laboratory and (i)
crystals subjected to weak forced convection slow their growth. Reasons for this behavior
are unknown.

In this work, digital microscopy was used to measure growth rates of tetragonal
crystals of hen egg white lysozyme; the size range covered was 50 - 325 um. The growth
rate distribution of crystals grown under nominally quiescent consitions was compared
statistically with that of crystals exposed to forced convection of approximately 50 pm/s.
In both cases, the sample standard deviation and sample mean were proportional; relative
standard deviations of both groups were approximately equal. The shape of the
distributions did not change with time during the experiment (3 - 10 days), implying that
flow effects, if any, act on all crystals irrespective of growth rate or size. Natural
convection is present even under nominally quiescent conditions, but growth rates for
quiescent crystals remained constant over the size range 156 - 322 pm. At the 99%
confidence level, no evidence was found to suggest natural convection retards crystal
growth. These results agree with préviously published quasi-steady mass balances on
growing protein crystals.

Colloidal interactions of a uniformly charged crystal with a spherical molecule
having a patchy surface charge distribution were computed. Calculations of the angle-
averaged interaction potential show the balance between electrostatic repulsion and
dispersive attraction is sensitive to the effective surface charge on the crystal and the

effective Hamaker constant; neither quantity is known with certainty. Nevertheless, it



appears that colloidal forces reduce the protein flux to the crystal only slightly, suggesting
that the rate-limiting step in protein crystal growth occurs once the molecule has reached the
surface. These results, coupled with the experimental findings, indicate mass transport

from bulk solution does not limit protein crystal growth.
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CHAPTER 1
The Art and Science of Protein Crystal Growth

1.1 Introduction

A fundamental axiom of biochemistry declares that the structure of biological
macromolecules reflects their function. If the role of the molecule can be determined
through some sort of assay and the relevant structures identified, a synthetic molecule can
be designed to mimic the original molecule. This is the basis of "rational drug design"” [1].
X-ray diffraction studies of protein crystals (or crystals of other biological macromolecules
such as DNA) provide the knowledge of the macromolecular structure required for such
endeavors.

Crystallographic techniques are now sufficiently developed so that the rate-limiting
step in protein structure determination is the growth of suitable crystals [2-5]. Protein
crystals are grown from aqueous solutions containing protein, buffer, and precipitating
agent (often salt or an organic solvent). Given a newly isolated protein, it is often a
painstaking process of trial and error to find conditions which produce any crystals, let
alone crystals large enough and sufficiently well ordered to diffract X-rays to high
resolution [2,6-8]. Crystallographers may have only small amounts of material with which
to work and do not have time to perform the exhaustive experiments needed to establish the
phase diagram for each protein. Any finding or technique that reduces the time needed to
obtain protein structures would be welcomed by crystallographers.

Many of the difficulties of growing good protein crystals have been attributed to
buoyancy-driven natural convection, although the mechanism by which fluid flow inhibits
crystal growth remains a matter of conjecture. In particular, convection is suspected of
mechanically disrupting the bonds holding the molecules to the crystal surface [5],
disturbing the homogeneous deposition of protein on the crystal [9], or perturbing the

molecular packing in the crystal [10]. Others, on the basis of a simple model of colloidal



interaétions between molecule and crystal, have suggested that the small terminal size of
protein crystals results from a poor choice of crystal growth conditions [11]. Our intent is
to examine the roles of transport phenomena, colloidal forces, and attachment kinetics in
protein crystal growth. Studies of these subjects are incorporated into a single framework
by interpreting the results in terms of the relative rates of transport and attachment.

Experimental studies were used to investigate possible flow effects on protein
crystal growth. Quasi-steady mass balances on growing lysozyme crystals in the presence
of natural convection [5,12,13], for instance, predict crystal growth is entirely kinetically
controlled. Any systematic deviation from this behavior would imply some important
process has been omitted. The predictions of quasi-steady model had not been tested until
now because all studies of flow effects and growth kinetics were performed on small
crystals which should be significantly affected by fluid flow. The long-term crystal growth
studies described in Chapters 2 and 3 are the first in which crystals larger than 100 pm
were measured. Although these experiments do not settle the issue of flow effects, they
suggest alternative hypotheses which had not been considered.

Of primary importance is the result that lysozyme crystals 150 - 300 um in size do
not slow their growth in the presence of natural convection. Over this size range, at least,
the rates of attachment and transport appear unaffected by the presence of buoyancy-driven
flow. Three additional findings of the experiments are: (i) there may be a long initial
downward transient in crystal growth rate before the system reaches steady-state, (i{)
distributions of growth rate and size are extremely broad, and (iii) size and growth rate
distributions are similar irrespective of the presence of forced convection.

The colloidal interaction between crystal and molecule consists of electrostatic and
dispersive contributions. If there is a net repulsion between the crystal and molecules in
solution, the rate of transport to the surface is diminished [14]. In this context, addidon of

the molecule to the crystal consists of three steps in series: (i) transport from bulk solution



to the vicinity of the surface, (ii) climbing a free energy barrier to reach the surface, and (iii)
suitable surface kinetics to fit into the crystal lattice. Note that in the previous analysis,
steps (i) and (iii) were lumped together into the growth kinetics. In Chapter 4, the
colloidal interaction potential was calculated for a simplified model of lysozyme crystal
systems including some effects of the molecule’s nonuniform charge distribution. In
agreement with the current experimental findings, as well as the predictions of quasi-steady
mass balances, transport from bulk solution does not seem to control protein crystal
growth.

In this opening chapter, general background on the nature of protein crystals and
their growth is presented. A critical review of previous crystal growth studies is given, as
well as a discussion of hypotheses about the unusual behavior of protein systems. In
particular, the possible effect of convection on protein crystal growth is examined in detail.
The evidence is often contradictory, and it is difficult to interpret all the claims andl
findings. The behavior of protein crystal systems is then discussed in terms of interactions
between molecules in solution and macroscopic bodies. Next, in Chapter 2,is a
description of the crystal growth experiment intended to test for convective effects. A
technique developed for estimating the size and orientation of three-dimensional objects
based on two-dimensional projections (digitized images) is also presented. Chapter 3is a
thorough statistical analysis of the crystal growth measurements from the experiment
described in Chapter 2. Emphasis is placed on the sources of variance within each
experiment that produce a wide range of behavior from what are nominally uniform
populations.

Chapter 4 begins with a description of the interaction potential between protein
molecules and protein crystals. The electrostatic contribution to the interaction potential is
calculated from a combined numerical and analytical solution for the electrostatic potential
produced by a nonuniformly charged protein molecule and a crystal with a constant

uniform surface charge. The numerical solution was obtained by a boundary element



method, the details of which are described. Finally, the total interaction potential is
calculated by adding the dispersive potential with the angle-averaged electrostatic potential
and the effect of nonuniform charge effects are discussed. Recommendations for future

work, both experimental and computational, are presented in Chapter 5.

1.2 The Nature of Protein Crystals

Compared with ideal inorganic or "small molecule” crystals, protein crystals have
an open structure with channels of solvent [4]. Solvent content ranges from 27% to 65%
of the crystal volume, with values of 40% - 50% being most common [15]. Protein
molecules are thought to be held in place in the crystal lattice by hydrogen bonds [2], which
are relatively weak (AH = -3 to —6 kcal/mol in vacuo [16] compared with O(100 kcal/mol)
for covalent bonds [17] ). The loose structure of the crystal and weak bonding allow the
molecule to crystallize without a radical change in conformation [2,16], which is why X-
ray diffraction can be used to study the relationship between structure and function.
Evidence that the molecule's structure is not greatly altered upon crystallization comes
largely from assays that show enzymes retain their activity in the crystal state [16].

The weak bonding in the protein crystal and the complexity of the molecules
combine to give proteins an almost legendary reputation for sensitivity and fragility. Ina
list of 21 variables influencing macromolecule crystallization given by McPherson [6], two
items stand out in particular: vibration and sound (#13) and gravity, gradients and
convection (#21). Some of the difficulty of protein crystal growth can be attributed to the
stochastic nature of nucleation and growth. Small perturbations of a highly metastable state
can disturb nucleation and produce a rapid amorphous precipitation of the protein. The
nonspecific nature of the crystal bonds, which produces several local solubility minima, is
at least partly responsible for the reported polymorphism of macromolecular crystals;
McPherson [6] shows a photograph in which two different crystal forms of yeast

phenylalanine tRNA grow from the same solution.



The resolution at which a molecule's structure can be determined depends on how
well the crystal diffracts. A typical X-ray study requires crystals which are sufficiently
large (~ 1 mm3 in volume) and reasonably well ordered. Few proteins readily form
crystals which are suitable for X-ray analysis, although many precipitate as fine crystals or
amorphous solids. Occasionally, large crystals form but the crystal packing is too
disordered to diffract well [2]. Some studies [18,19] suggested that proteins may have a
limiting size beyond which they cannot grow. This "cessation of growth" phenomenon has
become firmly entrenched in the protein crystal growth literature. More recent studies have
been performed in which careful control of conditions produced crystals significantly larger
than the previously reported terminal size [11,20].

At least in the past, there was a tendency on the part of protein crystal growers to
attribute all the quirkiness of the protein systems on the extreme sensitivity of the molecule.
It was common, in fact, for protein crystallographers to deny theories of crystal growth
developed by small molecule crystal growers could be applied at all to biological
macromolecules [4]. Now, however, most protein crystallographers realize that a better
understanding of the underlying processes of crystal growth can reduce the time and effort
needed to grow crystals and solve the molecular structure. The structure, after all, is the

goal of the crystallographers.

1.3 Physico-chemical Description of Protein Crysial §

A survey of the protein crystal growth literature shows how difficult it can be to
characterize protein solutions. (Since most protein crystal growth studies have been
performed on hen egg white lysozyme, the discussions of protein behavior in this text are
based on lysozyme. Characteristics of other globular proteins are expected to be
qualitatively similar.) Physical properties such as size, density and diffusion coefficient
appear 1o be relatively consistent among different researchers [21-23] but thermodynamic

properties such as solubilities display much more variation. Consider the solubility of



lysozyme at 20°C, pH 4 and a NaCl concentration of 50 mg/ml: Fiddis et al. [24] report a
value of 3.5 mg/m! while Howard ez al. [10] report 6 mg/ml. Pusey et al. [S] report a
solubility of only 1.7 mg/m! at 22°C and Feher and Kam [19] measured a value of 5.0
mg/ml at 20°C and pH 4.2. The proliferation of conditions for growth studies is another
complication which must be considered when comparing the results of different workers.

There is also some uncertainty in the state of aggregation of the protein molecules in
solution. Sophianopoulos and Van Holde [25] found evidence that dimers are the
dominant form of lysozyme in the pH range 5 - 9; Bruzzesi ef al. [26] employed light
scattering and sedimentation experiments to observe a reversible association of lysozyme at
pH > 4.5. At pH 6.8 and protein concentrations greater than about 20 mg/ml, oligomers
larger than dimers seem prevalent; at pH 4.3, hc;wever, lysozyme appears to be mostly
monomeric even up to protein concentrations of 50 mg/ml [26].

Dynamic light scattering has also been used to study aggregation in protein
systems. Kam and coworkers [18,19] looked at the power spectrum of light scattered from
lysozyme solutions in an attempt to assay possible crystallization conditions quickly. By
using the linewidth of the power spectrum to fit the parameters in their aggregation model,
they could discriminate between conditions known to produce crystals and those known to
form amorphous precipitate. Although their technique is adequate for measuring large
qualitative differences between conditions, it cannot be used to determine the state of
aggregation in the system. Sample calculations [27] show that the linewidth is sensitive to
the size of the "average" scatterer, but is unable to resolve the exact form of the size
distribution. For now, the degree of association in lysozyme solutions remains an
interesting but unresolved issue.

The formation and shape of oligomers may affect the crystal growth process. If,
for example, crystal growth occurs by addition of monomer, a high degree of association
effectively depletes the population of growth units in solution. Not only might the rate of

transport to the surface be altered, but crystal growth could be controlled by the rate of



oligomer dissociation. On the other hand, if crystal growth occurs by addition of
associated protein molecules, the shape and complexity of the growth unit might determine
the intrinsic attachment rate. Salemme et al. [28] analyzed intermolecular contacts in the
monoclinic, triclinic, and tetragonal forms of hen egg white lysozyme and found a common
molecular "chain” in all of them despite the difference in crystal packing. They
hypothesized that such chain formation is related to crystal nucleation and growth. As in
many of the other questions about protein crystal growth, available data are simply
inadequate to identify the growth unit.

By now, the reader will appreciate some of the complexity of protein systems and
the confusion surrounding the interpretation of crystallization behavior. Until recently, the
emphasis was on structure determination from a small population of crystals; even though
the underlying phenomena were not well understood, crystallographcfs were able to refine
conditions repeatedly until they grew enough crystals to solve the structure. Since the mid-
1980s, protein crystallographers have become more interested in systematizing protein
crystal growth and have have begun an interdisciplinary effort to characterize protein crystal
systems [4]. The prognosis for the future is encouraging, but the interpretation of current

results remains clouded.

1.4 Previous Protein Crystal Growth Studies

The driving force for crystallization of species i from solution can be written in
terms of the difference in the chemical potential of species i in solution,
Wi = p° + kT In(y; x;), and in the crystal, prel =y + kT In (y{”’ x,-"”). Here, uw =
standard state chemical potential of species i, k = Boltzmann's constant, T = absolute
temperature, ¥; = aCtivity coefficient and x; = mole fraction of species i; the superscript
"sol" denotes solubility values. The chemical potential of solute in solution exceeds that in

the crystal by an amount
A= pi— ﬂfm] =kTIn (Yx Ii/‘)fd x;sol) (1.1),



which is normally taken to be the driving force for crystallization [29]. Equation (1.1) is
strictly valid when the crystal is large enough that surface effects are negligible compared
with bulk effects. When x; is small, the term in parentheses is written approximately as
%C; 17} C3°!. Researchers studying small molecule crystal growth usually invoke the
ideal solution approximation (% = 1) because solute concentrations are low and the
necessary thermodynamic data are unavailable [29,30]. If the conditions are further
restricted to small relative supersaturations,the logarithm in (1.1) can be éxpanded in terms
of the relative supersaturation to give (ci-c )/C;"" to first order.

In contrast with inorganic (small molecule) crystal growth, theoretical studies of
crystal growth mechanisms are scarce, so a hybrid approach is often taken. Crystal growth
rates are measured and fitted to models borrowed from inorganic crystal growth.
Researchers often draw conclusions about growth mechanisms based on agreement with
the functional form of the growth rate dependence, without regard to the possibility that
grossly different mechanisms can sometimes predict the same behavior [4]. In other cases,
growth rate expressions are fitin a wholly empirical fashion with no attempt to explain the
underlying process. A popular method is to fit growth rates to a power-law in the relative
supersaturation, even though this is not entirely consistent with the logarithmic driving
force described by (1.1). The review of protein crystal growth studies given below,
although brief, covers most of the extant work.

Pioneering work on protein crystal growth was done by Schlichtkrull in the 1950s.
Working with insulin crystals up to 100 um in size, he determined that the face growth rate
(the rate at which a crystal face advances along its normal, sometimes called the linear
growth rate because it is related to the change in the linear dimension of the crystal) was
proportional to (C — Cfinat)?, Where the reported Cfinal could be as much as six times the
solubility [31]. In a subsequent study in which seed crystals were grown from solution
containing India ink and later transferred to a clear solution, Schlichtkrull found that only

three of the six crystal faces were advancing [32]. Seed crystals were seen clearly in the



corners of the final crystals. The anisotropic growth of insulin crystals was ascribed to a
corresponding anisotropy in the unit cell which somehow prevented deposition of protein
molecules from solution. Population balances on the crystals indicated crystal nucleation
was highly heterogeneous and increased with crystal surface area as well as the liquid-
vapor interfacial area of the solution [31].

Pusey and coworkers [5,12] performed a similar empirical study on the post-
nucleation growth of the {110) faces of tetragonal hen egg white lysozyme crystals from
solution. They found a dependence on the square of the relative supersaturation. The
fourfold symmetry of the tetragonal crystal form makes all four {110) faces equivalent, so
that anisotropic growth was neither expected nor dctéctcd. Pdscy et al. were primarily
concerned with the relative importance of material transport and attachment kinetics in
controlling protein crystal growth (see section 1.5 for a detailed discussion). No size-
dependent growth was observed for the size range (up to 70 pm) used in the study.
Calculations based on their results indicate that even in the absence of convective transport,
lysozyme crystal growth is kinetically controlled until the crystals are at least 100 pm in
size.

Fiddis et al. [24] measured the growth of tetragonal lysozyme crystals up to about
50 pm in size and compared their measurements with predictions from several models of
inorganic crystal growth. As might be expected from the discussion above, the
thermodynamic driving force in Equation (1.1) was simplified with the ideal solution
assumption. Growth rates were compared with those expected from models in which
growth was controlled by the rates of: diffusive transport, convective transport, addition to
a uniformly rough surface, addition to a screw dislocation, and nucleation of new surface
layers. In agreement with Pusey and coworkers [5,12], the kinetics were found to be rate-
limiting over the size range studied. The data agreed best with the model based on surface
nucleation kinetics. Fiddis compared Schlichtkrull's results for insulin [31] with the

surface nucleation model and found reasonable agreement; the cessation of growth at



concentrations above the solubility was reported to be consistent with a surface nucleation
mechanism.

Durbin and Feher [33] applied the same crystal growth models to their
measurements as did Fiddis ez al. In contrast, however, Durbin and Feher claimed none of
the models describe the data. The models were rejected on the basis of condition-
dependent variations in parameters which, according to the models, were supposed to be
constants. An empirical power-law fit of the growth rate dependence on relative
supersaturation gave exponents in the range 2.0 - 3.9. At protein concentrations greater
than 20 mg/ml, secondary nucleation forced them to measure crystal growth from unstirred
solutions. Under these cir.cumstanccs, they obtained constant crystal growth rates for
crystals smaller than 50 um which diminished with increasing crystal size; they attributed
this behavior to protein depletion of the solution. At moderate protein concentrations,
crystals grew at the same rate whether in quiescent conditions or in the presence of forced
convection of about 150 pmy/s. Durbin and Feher noticed that equivalent crystal faces grew
at unequal rates at low supersaturations but not at high supersaturations; they decided that
the unequal growth was driven by some type of defect and that some other mechanism was
dominant at higher supersaturations. In addition, they noted that crystals exposed to low
supersaturations for several days exhibited a "patchiness" in their growth: protein
molecules seemed to attach to isolated locations on the surface and were unequally etched
when placed in unsaturated protein solutions.

A more detailed study of crystal surfaces was performed later by Durbin and Feher
[34] using freeze-etch electron microscopy. They were able to identify surface features
which resemble the step trains, growth spirals, and growth islands described in theoretical
studies of crystal growth. At relative supersaturations larger than about 3 (protein
concentration of approximately 10 mg/ml based on a reported solubility of 3.5 mg/ml at
24°C, pH 4.6, 50 mg/ml NaCl), growth islands were distributed more or less uniformly

over the crystal surfaces; at lower supersaturations, the formation of new layers seemed
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confined to selected regions on the surface. Durbin and Feher interpreted this behavior at
low supersaturations in terms of a competition between deposition of lysozyme and some
unknown contaminant that poisons the surface for further growth. Their observations are
consistent with their earlier work [33] and may be related to the “cessation of growth"
phenomenon [18,19] which has become part of the protein crystal growth lore.

" The profusion of crystal growth models and interpretations follows from the
uncertainties in the physico-chemical properties discussed in the previous section.
Although the conflicting results of extant crystal growth studies make it difficult to form a
clear picture of the phenomena, characterization of the surface by freeze-etch electron
microscopy [34] may help identify crystal growth mechanisms. Until now, protein
crystallographers felt that the complexity of protein systems defied quantitative description
based on models of inorganic crystal growth [4]. By showing the qualitative similari'ty
between the surfaces of protein crystals and inorganic crystals, the work of Durbin and
Feher suggests that better crystals require a deeper understanding of the state of the protein

system.

1.5 Effects of Convection on Protein Crystal Growth

Flow effects might have remained of only incidental interest to protein crystal
growers if not for some preliminary experiments performed aboard Spacelab 1 [35]). Littke |
and John [35] reported the growth of lysozyme crystals in orbit with linear dimensions
approximately ten times those grown in the laboratory with the same equipment. Related
work performed by Bugg and coworkers [3,36] also suggested some sort of flow effect.
The major shortcoming of these first experiments is the small sample populations from
which the researchers draw their conclusions. More extensive experiments have been
conducted with mixed results. Erdmann ez al. [37] launched a series of 101 experiments
aboard a Chinese Long March CZ-2C rocket and compared the diffraction resolution of

space-grown crystals with controls grown in the laboratory. They found that although
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some proteins grew larger and diffracted better than the controls, overall quality was below
that of crystals grown under optimal conditions in the laboratory. De Lucas et al. [10], on
the other hand, found that at least three proteins (y-interferon D!, porcine elastase and
isocitrate lyase) grown aboard the U. S. space shuttle were larger and diffracted better than
any crystals grown in the laboratory.

Three general mechanisms have been proposed by which fluid flow could interfere
with the growth of large, well ordered crystals: (i) convective transport of protein-to the
crystal surface could overwhelm the attachment kinetics and produce poor quality crystals,
(ii) forces produced by the flowing fluid could mechanically disrupt the orderly deposition
of protein molecules on the surface, and (iii) convection has some other effect which
inhibits crystal growth. Each of these mechanisms has been offered to account for the
small, poorly diffracting crystals with which protein crystallographers must often contend.
We examine each of them in turn.

The crystal growth studies of Pusey, Snyder, and Naumann [5] and Pusey and
Naumann [12] were discussed briefly in the previous section. Their main purpose was to
estimate the relative importance of importance of solute transport and interfacial kinetics in
controlling protein crystal growth. Pusey et al. performed a quasi-steady mass balance on
the growing tetragonal lysozyme crystal to compute the growth rate as a function of crystal
size for various protein concentrations at 22°C, pH 4.0 and 50 mg/ml NaCl. They modeled
the growth process as two steps: (i) transport of the solute to the interface and (ii)
attachment to the surface. Solute transport was treated as the diffusion of protein from a
well mixed bulk solution to the interface across a boundary layer of thickness
&=L (Sc Gr)~V4. Here, L = characteristic length of the crystal, Sc = Schmidt number
v/D, and Gr = Grashof number L3Bg/v2; v = kinematic viscosity of the solution, D =
diffusion coefficient of the solute, = scaled density difference between fluid at the

interface and the bulk fluid (p; — p..)/P-., and g = acceleration of gravity.
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The quasi-steady growth rates calculated by Pusey er al. {5,12] clearly indicate that
even in the absence of convective transport, lysozyme crystal growth is kinetically limited
until crystals reach sizes of at least 10 um. Grant and Saville [13] equated the crystal
growth rate calculated from Pusey's kinetic expression with the flux predicted by the Ranz-
Marshall correlation for mass transfer to a growing sphere and reached essentially the same
conclusion except that the transition from kinetic to diffusion control is expected to occur at
crystal sizes larger than 100 um. Diffusion is not expected to really limit crystal growth
until the crystal is significantly larger than the typical 1 mm size used in X-ray diffraction
studies. In practice, then, protein crystals appear to be kinetically controlled during most of
their growth.

The relative fragility of the hydrogen bonds which maintain the molecule's tertiary
structure and hold the molecule in the crystal has led some researchers to suggest that shear
stresses produced by buoyancy-driven flow may somehow disrupt the molecule's structure
or strip it from the surface of a growing crystal. Grant and Saville [13] used an order of
magnitude analysis to show that characteristic velocity of the convective plume, U, should

scale as
(5_)1/2 v (1.2),

where R = radius of the (assumed) spherical crystal. This is the same scaling derived by
Ostrach [38], Rosenberger [4], and Pusey, Witherow and Naumann [9]. Thus, the
boundary layer thickness scales as

5=(GrSc)~" " R (1.3),

so the characteristic shear stress is given by:
1...,,111-#(&”2 _\i){Gr”‘ Sc"“)__,ﬁ‘j(gﬁ_ 1/4 R4 (1.4)
5  \sc12R R2\Sc ’

where y = solution viscosity. Typical Schmidt numbers for proteins are on the order of

10 while estimates of the Grashof number for a growing lysozyme crystal are about 2
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[13]). The characteristic velocity under these conditions is U = 30 um/s, in good agreement
with the velocities measured by Pusey er al. [9]. This scale analysis shows that shear
stresses produced by buoyancy-driven flow are small and are only weakly dependent on
crystal size.

Grant and Saville [13] then compared forces calculated from a simple model of
nonspecific interatomic bonding with the shear forces estimated above in order to assess the
likelihood that molecules and crystals could be disrupted by free convection. The
representative nonspecific bond had a strength of 81 J/mol, compared with a typical
hydrogen bond (> 12 kJ/mol in vacuo [16]) and the magnitude of AH of crystallization of
tetragonal lysozyme (70 - 80 kJ/mol [20,39]). Shear forces were found to be three orders
of magnitude too small to break the molecule's internal hydrogen bonds and almost eight
orders of magnitude too weak to strip molecules from the crystal surface. Another order of
magnitude analysis compared the rates at which the orientation of the molecule is imposed
by the shear flow and randomized by rotary diffusion; randomization occurs approximately
107 times as fast as the shear flow can orient the molecule. These simple calculations
provide no evidence that buoyancy-driven convection can mechanically alter the state of the
molecule near the crystal surface; nor do they suggest that a low gravity environment would
be beneficial for protein crystal growth.

Despite the absence of an obvious mechanism, other observations do suggest that
crystal orientation and flow environment may affect protein crystal growth [9,40]. Broom
et al. [40] noted that crystals of human serum albumin, which form plates approximately
0.5 mm x 0.5 mm x 0.05 mm (length x width X thickness) when one of the large faces is
occluded, could be grown almost twice as thick if one of the narrow faces were occluded.
They chose to interpret the change in aspect ratio with orientation in terms of a combination
of convective and surface occlusion effects. Note, however, that the crystal's thickness is
determined by the rate at which the large faces advance. When both large faces are exposed

to supersaturated solution, as when one of the small faces is occluded, both large faces can .
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advance. If this interpretation is correct, there is no need to invoke convection because a
doubling of the thickness is a natural consequence of crystal orientation alone.

Pusey, Witherow, and Naumann [9] measured the velocity of the convective plume
produced by growing lysozyme crystals and obtained values in the range 5 - 50 pm/s
depending on crystal size and bulk protein concentration. These values are in reasonable
agreement with the characteristic velocity calculated from Equation (1.2). Pusey eral.
conducted a series of growth experiments in which crystals smaller than 50 um were
exposed to forced convection comparable to the free convection velocities they measured.
They report that growth rates were initially consistent with kinetic expressions derived from
quiescent crystal studies but started to fall within 2 hou.rs. Furthermore, growth rates after
8 - 20 hours were only 5 - 10% of the initial growth rates. The reduction in growth rate
began at shorter times as the strength of convection was increased [M. L. Pusey, personal
communication]. Pusey er al. interpreted their results as tentative support for the
hypothesis that convection was responsible for "cessation of growth."

One puzzling result of these convection experiments is an apparent enhancement of
the crystal growth rate in the presence of convection. This transient enhancement is
inconsistent with the notion that small crystals grow under kinetic control (as suggested by
the absence of any size dependent growth in small crystals at short times). One possible
explanation for this unusual behavior lies in the nature of the experimental system:
conditions in the supersaturated bulk protein solution are extremely difficult to control.
Protein tends to come out of solution whenever possible by: deposition on the face of a
growing crystal, secondary nucleation ("showering") of new crystals, or amorphous
precipitation as a stringy floc. Secondary crystals and amorphous precipitates, both of
which were reported by Pusey er al., compete for protein with the crystals under
observation and could significantly reduce the measured crystal growth rate by depleting

the bulk solution. In fact, this hypothesis was actually suggested by Pusey and coworkers
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in an earlier study [5] to explain some apparent discrepancies in the work done by Fiddis er
al. [24].

A second hypothesis was suggested by Grant and Saville [13], who posited the
existence of a high molecular weight contaminant which somehow "poisons” the surface
against further addition of protein to the crystal. If deposition of the contaminant is favored
over the desired protein, the contaminant concentration is reduced near the crystal surface
and protein addition is favored. Convection effectively raises the surface concentration of
contaminant to .thc bulk value by bringing in fresh solution, thereby retarding crystal
growth. The identity of the contaminant (if any) is unknown, but oligomers of protein
could fill the role.

In brief, the case for convective effects in protein crystal growth remains
ambiguous. Order of magnitude calculations of a characteristic shear force provide no
evidence that buoyancy-driven flow mechanically disrupts the bonds that hold the moleucle
in the crystal lattice or maintain native structure of the protein [13]. Similar calculations
based on measured crystal growth kinetics reveal that protein crystals grow under
kinetically-controlled conditions until they are approximately 100 pm in size.
Nevertheless, crystals grown aboard the U. S. space shuttle are reported to diffract X-rays
to higher resolution than control crystals grown in the laboratory [10]. Crystals grown
under forced convection slow their growth [9], but the interpretation of this behavior
remains elusive. These somewhat conflicting results prompted our investigation into

possible flow effects, as described in Chapters 2 and 3.

1.6 The Search for C llization Conditi

Finding suitable crystallization conditions can be the most time consuming step in a
structure determination. A balance must be struck between the demand for relatively rapid
crystal growth (high supersaturations) and the need to limit the number of competing nuclei

(low supersaturations). In a typical scenario, an array of possible crystallizing conditions
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is tested simultaneously using microliter quantities of protein solution [2]. Subsequent
trials are spent refining conditions to produce a few satisfactory crystals. Heidner [41]
examined crystal number density as a function of protein concentration and supersaturation.
The nucleation rate of rabbit muscle aldolase crystals was reported to depend on total
protein concentration, C, and not the supersaturation as expected from thermodynamic
arguments. Growth rates, in contrast, were dependent on supersaturation. These results
led Heidner to suggest dilute but highly supersaturated solutions would be optimal for rapid
growth of only a few crystals.

Rosenberger and Meehan [42] suggested exploiting the different functional
dependences of nucleation and growth to create a small number of primary crystals in one
concentration regime and then reduce the supersaturation to maintain steady growth and
reduce secondary nucleation. The novel aspect of their suggestion (at least for protein
crystal growers) was the use of a programmed temperature history to alter the protein
solubility. Controlling solubility in this way is a marked change from the usual practice.of
changing the ionic strength of the solution. Effective use of suchba technique requires
knowledge of the dependence of solubility on temperature - exactly the fundamental data
which are scarce and not always reliable (see section 1.3).

In a different approach, Young et al. [11] examined the selection of crystallization
conditions in terms of the interaction potentials between protein crystals and protein
molecules in solution. As the reader might expect, these interactions are poorly
understood. The behavior of protein crystal systems can, in principle, be described in
terms of the electrostatic and dispersion (van der Waals) potentials between protein
molecules and crystals. The case examined by Young was that of protein molecules
(spheres) with a constant surface potential interacting with a crystal (flat plate) also at
constant potential. At the current level of understanding, the approximation of the crystal
as a flat plate is reasonable since the crystal is typically 10° - 106 times as large as the

molecule and faceted. They claim that optimal conditions for crystal growth are those
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where the sphere-sphere potential is more repulsive (presents a higher barrier to
aggregation) than the sphere-plate potential; the sphere-plate potential should have a
moderate to low energy barrier to promote attachment of molecules to the surface.

Young and coworkers focused most of their attention on the role of ionic strength
on reducing the electrostatic repulsion between similarly charged bodies. Their working
hypothesis, that salt rejection by growing protein crystals eventually raises the ionic
strength of the solution above the critical electrolyte concentration and induces rapid
coagulation, was based on a sudden increase in turbidity of a protein solution (30 mg/ml
lysozyme, 50 mg/ml NaCl, pH 4.0, 17°C) upon addition of a single seed crystal. Ina
subsequent experiment, they placed comparable seed crystals in solutions with various
NaCl concentrations and noted that significant crystal growth occurred for NaCl
concentrations between 30 mg/ml and 50 mg/ml. They suggest that electrostatic repulsion
at low ionic strength is too strong to permit crystal growth, while protein in solution is
depleted by rapid coagulation at high ionic strength.

Rapid coagulation is a regime in which colloidal particles experience no repulsion
and coagulate as soon as they come in contact [14]. If 50 mg/ml NaCl is above the critical
flocculation concentration, rapid coagulation of the protein molecules should be observed
even in the absence of the seed crystal. In addition, Young's argument would suggest that
crystal growth would be impossible at salt concentrations significantly greater than 50
mg/ml (0.85 M). Nevertheless, crystallographic data for hen egg white lysozyme grown
from a solution of 1.4M NaCl [C. D. Smith, personal communication] indicate a much
larger value for the critical flocculation concentration. Excursions in local salt concentration
larger than a few percent of the bulk concentration can be excluded on the basis of a ciuasi-
steady model of salt rejection by a growing lysozyme crystal [13].

The main contribution of the work by Young er al. was to set out the problem of
protein crystal growth in a form familiar to colloid scientists. Properties which determine

the interaction potentials of molecules with crystals and other molecules are the surface
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potentials on the molecule and crystal (which need not be the same), the ionic strength of
the solution, and the strength of the dispersive attraction. The surface potential is
determined by the distribution of charged groups which, because they are determined by
acid-base equilibria, are pH dependent. The nonuniform (fixed) charge distribution on the
surface of the molecule introduces a major complication into the analysis of protein systems
compared with the simpler "regular” colloidal systems. Until now, no work has been done
which is applicable to the current situation. The effects of the charge distribution on

enzyme activity has been studied, however, and is presented in the following section.

1.7 Effects of Nonuniform Charge Distribution

Nonuniform charge distributions on biological macromolecules can produce
superficially counter-intuitive behavior. The enzymatic activity of copper, zinc superoxide
dismutase is a case in point. Superoxide dismutase (SOD) is reported to be a homodimer
of molecular weight 32,000 with a net valence of -4 [43]; its substrate, the superoxide
radical (-O) has valence -1. An initial inspection might suggést that the activity of the
enzyme would be limited by repulsion of the like charges as the substrate approaches the
enzyme. One might also expect the enzymatic activity to increase with ionic strength as the
repulsion is diminished by counterion screening. Experimental findings contradict both
these hypotheses: the enzyme activity is close to that calculated from the Brownian collision
rate for uncharged particles of similar size and decreases with added salt [43].

Crystallographic studies of SOD revealed a group of positively charged residues
around the active site which guide the superoxide. Cudd and Fridovich [43] chemically
modified the residues near the active site and measured enzyme activity as a function of salt
concentration. A 90% drop in enzyme activity was observed when arginine 141 was

neutralized, and the activity still decreased with ionic strength. A similar neutralization of 7
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- 8 lysine residues reduced the reaction rate by approximately 80% but reversed the trend
with ionic strength. It was concluded that lysines are responsible for long-range steering
while the arginine provides local orientation of the incoming molecule near the active site.

Getzoff et al. [44] calculated the electrostatic potential near SOD by treating the
charged groups as point charges. Her results indicate that the clectric field produced by
SOD's charge distribution channels the negatively charged substrate into the active site, and
that certain residues have particularly large effects on the field direction. The criterion for
assigning relative significance was the size of the change in the average E-field vector in the
active site channel. By this standard, arg 141, the neutralization of which changes the
average direction of the electric field by approximately 20" at short distances from the active
site, is the most important single residue. Glu 131 and lys 134 contribute significantly to
the E-field direction at ranges greater than about 8A.

Several workers have used Brownian dynamics to estimate the importance of
electrostatic steering in the activity of SOD [45-47]; the electrostatic forces in these
simulations were calculated by treating the charged groups as point charges in a uniform
dielectric medium (& = 78) with no added salt. The protein dimer was modeled as a sphere
approximately 30A in radius with two reactive caps at the poles (the caps covered about
10°). The 76 charged groups of SOD have been variously approximated as: (i) a single
charge in the center of the dimer, (ii) 5 charges which reproduce the monopole, dipole and
quadrupole moments of the charge distribution observed crystallographically, (iii) 76 point
charges, and (iv) 2196 partial charges on all non-hydrogen atoms in the dimer. Allison and
McCammon [45] showed that including the dipole and quadrupole moments of the
molecule increased the reaction rate by 40% imeaos—%mparcd with the monopole alone. X
They also found that the reaction rate for the charged species was 40% that expected for
uncharged particles. They attributed the small difference in rates to the small potential

energy barrier (< 1 kT at contact) which the incoming superoxide radical must overcome in

20
ONQINAL PAGE IS

OF POOR QUALITY



order to reach the enzyme surface. The calculated reaction rates for models (ii), (iii) and
(iv) were approximately the same [46,47). When the Debye-Hiickel expression for the
potential was used to simulate the effect of salt, the reaction rate reached a maximum at an
ionic strength of approximately 0.03M [45].

In 1986, Klapper et al. [48] employed a finite-difference method to solve the
linearized Poisson-Boltzmann equation in the vicinity of SOD. Charged groups were
placed at their crystallographically measured coordinates and the boundary between the
interior of the molecule and the bulk solution was defined to be the solvent-accesible
surface. Points inside the molecule were assigned €; = 2; those outside, & = 80.
Electrically charged groups were represented by fractional charges assigned to the eight
nearest grid points. Klapper's calculations showed that the surface charge distribution and
molecular shape of the enzyme combine to create a large "target" area of positive potential
to attract the negatively charged substrate. As ionic strength increases, repulsion from thé
negatively charged region decreases at the same time the effective target area is reduced; the
latter effect dominates the former, accounting for the trend in enzyme activity.

Subsequent versions of this technique can now handle the nonlinear Poisson-
Boltzmann equation. One limitation of the finite element method, however, is that
computer memory requirements rise rapidly as the resolution of the finite difference grid is
increased. These finite difference calculations are typically performed with grid spacing
scaled so the molecule occupies 50 - 75% of the domain [49]. Such scaling is adequate
when the substrate is small enough compared with the enzyme that it can be treated as a
point charge, but the interactions between molecules (or molecules and macroscopic
bodies) are infeasible.

Brownian dynamics simulations of the association between cytochrome ¢ and
cytochrome ¢ peroxidase were performed by Northrup et al. [S0). They modeled the
proteins as spheres with embedded charges to reproduce the monopole and dipole moments
of the molecules calculated from the crystallographic locations of the charged groups. The.
AR 21
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most significant finding was a reaction rate enhancement of an order of magnitude resulting
from mutual alignment of the enzymes by their large dipole moments (300D - 500D).
Virtually no work has been published on the interaction of charged proteins with
macroscopic objects (such as crystals); this situation is addressed in the study described in

Chapter 4.

1.8 Present Work

For reasons outlined earlier, the research in this project is divided between an
experimental study on the effect of forced convection on protein crystal growth (Chapters 2
and 3) and a theoretical study of the interaction potential between crystals and protein
molecules in solution (Chapter 4). The former is a response to hypotheses about the role of
buoyancy-driven natural convection in protein crystal growth [9,10,35,37,40], while the
latter is intended to describe some of the complex interactions experienced by protein
molecules near the crystal surface.

There is a certain amount of ambiguity in the results of the crystal growth
experiments. Differences in experimental conditions restrict most of the analysis to trends
within a given experiment instead of a comparison of flow and quiescent experiments.
Certain theoretical predictions of crystal growth behavior can be tested, however, and some
possible mechanisms can be ruled out in this manner. Mass transport does not seem to
limit crystal growth under the conditions studied, so future research may be better spent
exploring other phenomena of crystal growth. A comparable level of uncertainty pervades
the calculation of interaction potentials, but again transport from the bulk does not seem
crucial. In conjunction with the experimental findings, the results suggest that a study of

processes occurring near the crystal surface.may be worthwhile.
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CHAPTER 2
Description of Protein Crystal Growth Experiments

2.1 Introduction

The conflicting reports of experimentally observed effects of convection on protein
crystal growth [1,2], coupled with the negative findings of order-of-magnitude calculations
of proposed disruptive mechanisms [3], prompted this experimental investigation into the
existence and magnitude of flow effects. An examination of published results showed no
data on crystals significantly larger than 100 pm, precisely the range where transport
effects, if any, would become manifest [3]. A series of studies was planned to establish
the baseline behavior of large (> 100 pm) lysozyme crystals, both in the presence and
absence of forced convection.

This chapter can be divided into two parts: (i) the history of the experiment's
purpose and procedure, and (ii) the methods developed to analyze digital images of a
growing crystal and estimate the size and orientation of the three-dimensional crystal.
Although the final experimental set-up is similar to that used by other researchers [2,4-6], it
was originally quite different. Most of the changes in the experiment were made in
response to difficulties in sample preparation. Some of the difficulties in growing
lysozyme crystals which can be used for growth studies are discussed at some length
below.

The analysis of crystal images is considerably more routine than growing the
crystals. The geometric information contained in a picture of a crystal can, with certain
assumptions, be reduced to list of crystal vertex locations for quantitative analysis. The
construction of three-dimensional ideal analogues for a given crystal image allows crystals
in almost any orientation to be studied. Given the difficultics associated with producing
isolated single crystals, and the need to measure many crystals to establish baseline

behavior, even a slight increase in the fraction of usable crystals is a boon to investigators.
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Nevertheless, some crystals are extremely difficult to interpret and cannot be measured with
these techniques.

The intent here is to trace the evolution of the crystal growth experiment before
describing the final system. Sample preparation and experimental procedure are then
decribed, followed by the results of mcasuremchts of effluent fluid taken from the growth
cell. The geometry of an ideal tetragonal lysozyme crystal is then presented in order to set
the stage for interpreting the digital images. Ideal analogﬁcs are compared with the raw
images, and limitations of the method are discussed. Finally, some additional observations

are presented before concluding.

2.2 Evoluti f the C | Growth Experi

The goal of these experiments was to measure the growth rates of single crystals
over a much larger size range than had been done before. By continuing measurements
into the 100 pm — 1 mm size range, the experiment would provide baseline information on
the long-term behavior of protein crystals, especially the reported cessation of growth [71.
If such a phenomenon were observed, the manner in which growth stopped would provide
clues to the responsible mechanism. Furthermore, the extent to which convection
contributes to growth cessation could also be evaluated by comparing the rates at which
crystals grew in the presence of forced convection and in its absence.

As originally conceived, the experiment called for size measurements of isolated
crystals growing on a "sting," a glass fiber approximately 50 pm in diameter, well away
from the walls of the growth cell. Crystals on a surface probably grow differently from
isolated crystals in solution, so the sting was proposed as a means of reducing the effect of
the substrate by reducing the area of contact. The sting was suspended from above and
mounted on microtranslators to allow xyz translations of the fiber, as well as rotation about
the z axis. Crystals growing anywhere on the fiber could be selected for observation;

orientation effects could be studied by selecting suitably oriented crystals. The microscope -

27



was placed on a rotary table so that simulated stereo observations of a given crystal could
be made from two angles for three-dimensional modeling. When convective effects were
studied, crystals could be positioned in the midst of the bulk flow, which would be easier
to characterize than the region near the walls. The flow field experienced by the crystals
would, presumably, be less influenced by the fiber than by the cell walls, at least near the
base of the fiber.

This approach was eventually abandoned because the strict requirements imposed
by the experiment could not be satisfied regularly. It was sometimes difficult to obtain
satisfactory images of the crystals for several reasons. The lensing effect of the curved
fiber produced a bright halo which obscured the edges of the crystal. The crystal
positioning scheme, which permitted observation of any crystal on the sting, also hindered
development of an optical train which could consistently produce clear images of the
crystal. The relative positioning of illuminator, microscope, fiber, and crystal changed
from crystal to crystal and required a great deal of adjustment between measurements. In
addition, the fibers swayed when immersed in solution and this motion was more
pronounced as fiber length increased. This motion may have resulted from building
vibration and/or weak convection in the growth cell. The digitizing board used to capture
images requires 1/30 of a second to record an image, and the vibration frequency was such
that pictures were too blurry to interpret, even when using microscope objectives as weak
as 10X.

Since measurements were to be made on only a few crystals during any one
experiment, fast growth was required in order to build up a statistically signiﬁcaﬁt sample
in a reasonable time. Unfortunately, small particles of protein formed quickly from the
highly supersaturated solution and scattered light, making the solution too murky to see the
crystals on the glass fiber. The turbidity of the solution could have been reduced by using
lower protein concentrations, but experimental requirements placed a premium on rapid

crystal growth (high protein concentration). The contradictory requirements of quick
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growth and a clear optical path between the sting and the front cell wall could not be

resolved, and this approach was abandoned.

2.3 Control of Crystal Nucleation

The most serious difficulty encountered during this project was consistently
nucleating single crystals which were sufficiently separated from their neighbors for use in
growth experiments. Although sample preparation was standardized as much as possible,
‘results were inconsistent. Early exploratory experiments in which lysozyme powder (as
received) was dissolved in warm buffer at a concentration of 100 mg/ml, diluted with an
equal volume of 100 mg/ml NaCl solution in buffer, and transferred to vials made of soda-
lime glass, were uniformly successful.” In this context, success was judged as the
formation and growth of relatively large (> 100 um) crystals which could easily bc
distinguished from their neighbors. These initial successes were not readily transferred to a
system where size measurements could be made.

The most common result was a cluster of many small crysté.ls which grew into a
single mass. Discussions with protein crystallographers revealed that batch-to-batch
variation due to trace contaminants is a common phenomenon in protein crystal growth.
Durbin and Feher [2], for instance, used SDS-PAGE electrophoresis to detect the presence
of some sort of contaminant in the lysozyme supplied by their vendor. Similar
measurements performed here found no evidence of contaminants, either in samples
prepared from lysozyme powder as purchased or in protein solutions which had sat in the
laboratory for two months. Nevertheless, several procedural changes were made in order
to reduce possible interference by extraneous, undetected species. Protein was dissolved in
buffer at room temperature to reduce the possibility of thermal denaturation which might
increase the variability in the experiment. The dissolved protein was then dialyzed against
buffer in hopes of removing low molecular weight contaminants that might denature the

protein or act as nucleation sites. The new procedure did not consistently increase the
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number of suitable crystals. Filtering and centrifugation of the protein solutions produced
comparable results.

A screening was performed to assess the effects of each preparation step and the
role of the substrate on the size and number of lysozyme crystals. A large batch of protein
solution was prepared by dissolving the protein powder (as supplied) in buffer. Samples
of solution (as dissolved) were diluted with 100 mg/ml NaCl in buffer and transferred to
vials of various types of glass, some of which contained stings of different glasses. The
remainder of the protein solution was divided into smaller portions which received different
treatments. The most elaborate treatment sequence was dialysis, centrifugation, and
filtration; other portions were treated with only one of the three methods. Samples were
removed after each step in the process, diluted with an equal volume of 100 mg/ml NaCl in
buffer, and transferred to the vials. No obvious qualitative differences among the cleaning
treatments could be discerned; crystals formed regardiess of treatment history. The nature
of the substrate, however, did affect the size and number of lysozyme crystals.

Soﬁc measure of control was gained by adjusting the concentration of protein in the
solution from which crystals were nucleated. The nucleation rate had been reported to be a
function only of protein concentration and not supersaturation [8]. A reduction in protein
concentration reduced the number of crystals while increasing the fraction of usable
crystals. The clarity of the optical path also improved. Crystal growth rates were so
sharply reduced as a result of the lower protein concentration, however, that it was no
longer feasible to study only a few crystals per experiment. The experiment was modified
to observe crystals growing on the cell walls so that reasonable sample populations could
be measured in a single experiment. Although the new experiment relaxed the requirements
set forth earlier, obtaining crystals which could be used for the experiment remained

haphazard.
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2.4 Sample Preparation

The procedure detailed here produced the crystals measured during the experiments.
No statement is made about the reliability of the method. There is a significant stochastic
quality to crystal growth, even in well characterized systems. Protein systems, which are
not well characterized, show even greater variability.

Two liters of buffer (pH 4) were prepared by dissolving 20.0 g of fused anhydrous
sodium acetate (FW 82.03, Fisher) and 50 ml glacial acetic acid (Fisher) in deionized water
and diluting to the mark in a volumetric flask. Twenty-five grams of lysozyme powder L-
6876, Sigma, grade 1, 3X crystallized, dialyzed and lyophilized) were dissolved in buffer
to form 1 liter of solution. One liter of precipitant solution was prepared by dissolving
100.0 g of NaCl in buffer. A triple beam balance was used fo; all weighings; the
uncertainty in each value is £ 0.05 g.

Some white floc-like material formed during dissolution or shortly thereafter; more
formed while the solution was storcd for use. In addition, the protein solution was slightly
turbid. Both the protein and precipitant solutions were pumped through a prefilter (AP15,
Millipore) to remove foreign matter and cxtrcinely large aggregates of protein. The protein
solution, which contained no visible floc strands and was markedly clearer after this step,
was loaded into the feed reservoir for use in the experiment. The solutions were not
cleaned further because each cleaning step removed some protein and experience had

shown that elaborate cleaning procedures have only a marginal effect on crystal formation.

2.5 Apparatus

A schematic diagram of the crystal growth experiment is shown in Figure 2-1. A
two-channel syringe pump (Haﬁmd Apparatus) supplied feed solutions at room
temperature to the reservoirs in the constant temperature recirculating bath (RMS-6,
Lauda). Glass cold traps having a capacity of approximately 85 ml were used as

reservoirs. The solution entering the reservoir displaced fluid that had already equilibrated
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Figure 2-1: Schematic diagram of protein crystal growth experiment.
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with the bath. After leaving the reservoirs, the fluids flowed through approximately 110
cm of 0.16 cm (1/16") ID Tygon tubing before merging in a "Y." An additional 40 cm of
0.32 cm (1/8") ID Tygon tubing connected the "Y" with the cell entrance. Total hold-up in
the feed lines was estimated to be 2.1 ml of each solution upstream of the merge and 3.3ml
of mixed solution downstream. The effluent flowed through approximately 30 cm of 0.32
cm ID tubing before reaching the sample port, where it could be diverted down a final 45
cm of 0.32 cm tubing for collection in scintillation vials for later ana]ysis. The volume of
effluent in the lines between the cell exit and sample collection point was approximately 6.1
ml. All tubing was flushed with several hundred milliliters of deionized water prior to the
expeiment.

Crystals were grown in a fused quartz spectrophotometer cell (type 66-Q, Uvonics)
with a water jacket. The dimensions of the growth chamber were 04cmx1.0cmx3.8
cm (width x depth x height). Feed solution entered the cell in the lower right rear comer of
the cell ( as viewed from the microscope) and effluent departed at the rear top center. The
horizontal and vertical position of the cell could be adjusted with a rack and pinion which
was, in turn, mounted on a translation stage. The range of travel permitted observation of
all but the bottommost few millimeters of the cell. See Figure 2-2 for a picture of the
cell/microscope assembly.

A Mitutoyo Finescope FS 50 microscope was used to inspect the growing crystals.
The microscope was custom-mounted horizontally so it could be used to examine crystals
growing on vertical surfaces. The microscope could be rotated about the cell because it
was mounted on a rotary table, a holdover from the design of the original experiment. For
this experiment, the angle was not changed after the initial alignment. Observations were
made using transmitted light provided by a fiber-optic ring light (series 180 Fiber-Lite,
Dolan-Jenner) positioned behind the growth cell; the only illumination control was

brightness.
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Figure 2-2: Crystal growth cell/microscope assembly.

Video images, which were produced by a Sanyo VDC 3800 charge-coupled
television (CCTV) camera were displayed on an Hitachi Denshi VM-920 monitor for
framing and focusing. Suitable images could be captured by a Matrox PIP-640B frame
grabber which was installed in an IBM PC-AT. Image files were copied to magnetic tape
for long-term storage. Captured images were displayed on a Mitsubishi HF 1400 rgb
monitor for analysis. A Mouse Systems mouse was installed on the PC-AT to provide
cursor control when measuring crystals. Measurement software, which consistcd' of calls
to Matrox-supplied "primitive" routines and mouse driver routines, was written by the

author.
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2.6 Procedure
A highly supersaturated slug of protein solution was injected into the growth cell,

where it remained until crystals could be observed on the side of the cell. The cell was
flushed with fresh growth solution at lower supersaturation prior to digitizing the initial
pictures of the crystals. For the quiescent experiment, the initial slug was prepared by
slowly adding NaCl to the stock protein feed solution until the solution became cloudy.
“The salt concentration of the slug was approximately 100 mg/ml (0.5 g NaCl added to 5 ml

of protein feed solution). Crystals were first clearly observed after approximately 4 hours.
Repetition of this procedure for the flow experiment produced many highly crowded
crystals which seemed likely to grow into large masses. Slug preparation was modified to

reduce the number of nuclei formed rapidly and to relieve crowding. The final proccdﬁrc

was to mix 6 ml of protein feed solution with 5 ml of buffer solution saturated with NaCl.

The mixture was injected into the cell as before. Crystals were observed after 75 — 80
minutes, at which time the forced convection was started. The volumetric flow rate was W)
approximately 1.87 + 0.04 pl/s, corresponding to an average velocity of 46.7 £ 0.9 um/s  geco
based on the 0.4 cm? cross-sectional area of the growth cell. @ ot

’
4

During the first digitizing pass, crystals were included for study based on two "’!'Tj‘,‘_'

e

criteria: they had to be visible through the 10X objective of the microscope and sufficiently \/
isolated that they would not impinge on each other early in the experiment. The wall of the
growth cell was surveyed in a "switchback" pattemn progressing from one corner of the cell
to the diagonally opposing corner. Quiescent crystals were inspected starting in the upper
left corner while the search for flow crystals began in the lower right corner. Subsequent
imaging passes through the crystals followed the same sequence established during the
initial pass.

Numbers were assigned to each image in the order they were added to the sample

population. Image files were named according to the date and order in which they were
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made. The names of all crystal images start with "X," followed by the date (year-month-
day) and a suffix indicating the order in the sequence; for example, X900512.002 was the
second picture taken on 12 May 1990. After capturing an image, the file name, time, and
microscope objective used were written onto the stored image so that this information could
not be accidentally separated from the image. Each crystal was named according to the
cxpcﬁment and frame in which it appeared. Thus, crystal XQ008001 was the first crystal
measured in the eighth picture of the quiescent experiment and XF033002 was the second
crystal in the 33rd frame of the flow experiment. When more than one crystal appeared in a
picture, the order of selection was arbitrary. Crystals appearing in more than one picture
were named according to the frame in which the measurements were made. These naming
conventions were violated occasionally when crystal measurements were repeated;
successive attempts were treated like measurements of additional crystals, although only
one set of measurements was included in the analysis. A crystal's name provides some
information about its position: crystals at the end of the sampling sequence were at the top
or bottom of the cell; crystals with sequential names were nearer than those with widely
differing names.

Samples of effluent were collected at least once a day so that conditions in the
growth cell could be determined ex post facto. Samples from the quiescent cxpcrimcntv
were obtained by opening the sample port and flushing the cell and lines with enough fresh
solution to displace the fluid originally in the cell into a scintillation vial. Flow samples
were taken by opening the sample port to allow the forced convection to ﬂuéh the effluent
line; collection started after a reasonable time had passed. Flow samples probably tra.\ckcd
cell conditions better than the quiescent samples because the feed to the collection vial was
continuous, while quiescent sampling was a sporadic event. A small aliquot
(approximately 0.5 ml) of the supernatant was removed by pipet and diluted to 10 mlin a
volumetric flask for later measurement. The dilution was necessary to make the solution

unsaturated and to put the ultraviolet absorbance by the protein into an easily measured
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range. Measurements of pH, sodium concentration,- and protein concentration were made
on all samples collected in both experiments. The sampling was intended primarily as a
check for serious problems since, in light of the relatively slow growth rates previously
reported [4-6], these values were not expected to vary greatly over the course of the
experiment. No correction was possible, even if real-time measurements had been made,
because no active control was in effect.

During the quiescent experiment, frcsh feed solution was introduced to the cell in
order to maintain a constant protein concentration. This was usually done at the same time
the samples were taken so that excessive solution was not required. There was no rigid
schedule for replacing the solution since the concentration was not expected to change
rapidly. As a result, the volume of fresh solution infused each time was not closely
measured. The infused volumes were, however, slightly larger at the beginning than at the
end. Drifts in protein concentration were not expected to be significant during the flow
experiment.

The syringes in the pump were refilled whenever the volume in each fell below
approximately 10 ml. This caused no disruption during the quiescent experiment since the
pump was normally off, but the forced convection was interrupted briefly to resupply the
syringes. The procedure was to turn off the pump, open the refilling port, and infuse fresh
solution with loaded syringes. The syringe pump was set to a higher speed and air was
bled from the lines through the refilling port. The refilling port was closed, the pump
speed reset, and the experiment resumed.

2.7 Measurements of Samples

The pH of the stored samples was measured using an EA 940 expandable ion
analyzer (Orion Research, Inc.) with pH and reference electrodes (MI-405, MI-409)
obtained from Microelectrodes, Inc. After calibration with two standards (pH 4.00 and pH

7.00, Fisher), measurements were taken in random sequence. Instrument drift required a
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one-point recalibration after every 5 - 7 samples; pH 4.00 standards were used. A two-
point calibration was performed after 24 samples had been measured. The pH of samples
from the quiescent experiment was 4.02 t 0.04, while flow samples had pH 3.99 £ 0.03.
The reported uncertainties are the unbiased estimates of the population standard deviations.

The samples were diluted by an additional factor of 1:5 prior to measuring sodium
concentration. A sodium-selective electrode (MI-420, Microelectrodes, Inc) and the EA
940 ion analyzer were used. A 10,000 ppm sodium stock solution was prepared by
diluting 100 m! of a 10% sodium standard (Orion Research, Inc.) to 1 liter in a volumetric
flask. Calibration standards with 100, 250, and 500 ppm added sodium were prepared by
adding appropriate amounts of 10,000 ppm stock solution to 10 ml of sodium acetate/acetic
acid buffer and diluting to 1 liter in volumetric flasks. These standards had approximately
the same background sodium and hydronium concentrations as the diluted samples. The
corrections for background signal caused by the buffer and for instrument drift are
described in Appendix A. NaCl concentrations of quiescent samples were measured at
52.1 £ 5.8 mg/ml ; after an initial upward transient, flow samples contained 51.7 + 4.9
mg/ml NaCl.

Protein concentration was determined from UV absorbance at 280 nm based on a
value of Ajpy ) = 26.35 + 0.13 for a 1 cm light path [9]; 1%(w/v) = 10 mg/ml.
Measured effluent stream protein concentrations are plotted in Figure 2-3. Measurements
were made in duplicate using a Beckman DU 64 spectrophotometer and the average value
was reported after correcting for dilution. The largest deviation from the mean was 0.15
mg/ml and the standard deviation for all measurements was less than 0.05 mg/ml. In each
experiment, there is an interval over which the protein concentration is constant within
statistical error at the 95% confidence level. These intervals are marked by double-headed
arrows in Figure 2-3. The sample mean and 95% confidence limits of the measurements

are also shown.

38



[
N

7~
=%
N

[u—y
[

‘ 95% upper

(VA Raiiw

95% lower e
l( >

I interval of constant concentration

[e—y
(e

(o o)

3

protein concentration (mg/ml)
=)
saaadaaaalasaalaanadansslanss

()

v L ' T ¥ ¥ l L v L] ' LA l v ¥ L] l ¥ LA | l LIRS

T
2000 4000 6000 8000 10000 12000 14000 16000
elapsed time (min)

o

[
N

(b)

95% upper

[}
[

mean

[ =
o

95% lower

oo

interval of constant concentration

|

|

[

€ —>

: i
|

~J

protein concentration (mg/ml)
\©
saaalaasslaaaalassalasaalasy

)

'
I. L] L L ' L] Ll LR | l v ¥ R ] L] l LAER L L ] L) L] L] LS ' L] L] L

0 1000 2000 3000 4000 5000 6000
elapsed time (min)

Figure 2-3: Protein concentration in growth cell effluent solution.
The interval of constant concentration is determined from a linear regression of
protein concentration as a function of elapsed time. The calculated slope is not
statistically different from zero at the 95% confidence level. The mean protein
concentration and 95% confidence limits are marked on the figure.
(a) Quiescent experiment. (b) Flow experiment.
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The initial concentration during the quiescent experiment was initially 11.07 mg/ml
and decreased to 8.84 mg/ml. In contrast, the protein concentration in the effluent from the
flow experiment was initially 7.24 mg/ml, climbed quickly to 10.06 mg/ml, and remained
constant until the pump failed after 4600 min had elapsed. Prior to the flow experiment,
the system was flushed with large amounts of deionized water, so the initial transient in
effluent protein concentration may record the reintroduction of protein solution into the
system. The longer, downward transient in the quiescent experiment may reflect the
gradual depletion of the highly supersaturated nucleation slug and its displacement by the
less supersaturated growth solution. Although the variations in protein concentration may
not seem large, a strong concentration dependence is implied by empirical growth rate
expressions of the form (C — Cs°/)». With values of n reported in the range 2 - 4 [2,4,5]
and the large range of reported solubilities (3.5 mg/ml [6] to 6 mg/ml [10]), crystal growth
rates could change drastically during the experiment. In the statistical analysis of the
experiments (chapter 3), the different trends in the two experiments prevent a direct
comparison of the results.

The formation of a floc-like network of filaments (Figure 2-4) was observed in both
experiments. During the quiescent experiment, the filaments formed a layer along the left
wall of the cell; filaments were observed in the lower middle region of the cell in the flow
experiment. The presence of such strands has been reported before in experiments

ormed at similar protein concentrations [1].
P
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Figure 2-4: Floc-like structure formed during protein crystal growth
experiments.

2.8 Geometry of Tetragonal Lysozyme Crystals
The shape, or habit, of an ideal tetragonal crystal is a right rectangular bipyramidal

prism (Figure 2-5a) in which the pyramidal caps are formed by the {101} faces
(parallelograms) and the sides of the "box" are formed by the hexagonal {110} faces. In
the figure, the faces have been made opaque to enhance the three-dimensional effect. The
line connecting the tips of the pyramids is designated the z axis (denoted 2) of the crystal;
lines from the centroid of the crystal normal to the hexagonal faces define the x and y axes
(2,9). As a result of the symmetry in the crystal habit, the selection of top and bottom is
arbitrary. Similarly, the assignment of % (or $) unit vector is also arbitrary. The coordinate
system defined by (.9.2) is the "standard" coordinate system, which will be used for all
measurements. Various dimensions are defined in Figure 2-5b, which shows the crystal in
Figure 2-5a with transparent faces. The overall height, Hy,4, of the crystal is the distance
between apices, while the face height, Hy, measures the separation between top and bottom
pyramidal caps. Ljgj, the distance between parallel {101} faces, is simply related to Hayal
by L1oy = Hyqar cos B. The {110} dimension, L;;q, is the distance between parallel
hexagonal faces of the crystal. The angle, B, between the 2 axis and the normals to the

{101} faces was measured to be 24° 10 [11], which is relatively close to the theoretical
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value of 25° 36 calculated from unit cell dimensions reported by Palmer, Ballantyne and
Galvin [12]. All calculations were performed using the theoretical value.

Some additional reference points on the crystal are required for clear analysis. Each
of the 18 vertices on the crystals is labeled as shown in Figure 2-6. Vertex A is always at
the top (in the standard coordinate frame), while vertex R is at the bottom.Vertices, A, B,
D, N, P, and R all lie in the %2 plane, while vertices A, C, E, O, Q, and R are contained in
the $7 plane. The 12 faces of the crystal, and the vertices defining them, are defined as in
Table 2-1. The 28 edges formed by the intersection of the faces have five distinct slopes
and are grouped accordingly (Table 2-2).

Table 2-1 :
Crystal face nomenclature for tetragonal lysozyme crystals.

Face Type Vertices Face | Type Vertices
1 | (01) ABG,C 7 (110) | DHLPM,]I
2 | (101} A.CHD 8 (110} E,IM,Q,JF
3 | {101} A,D,LE, 9 (101} R.N.K,O
4 | (101) AEFB 10 (101) R,O.L,P
5 | {110) B,FJNK,G |11 (101} R,P.M,Q
6 | (110) C,GKOLH |12 {101) R,Q.J,N

The aspect ratio and orientation can give lysozyme crystals appearances which are
significantly different from that of the crystal in Figure 2-5; some examples are shown in

Figure 2-7. For descriptive purposes, the aspect ratio is defined to be:

=thal 2.1
=T (2.1),

where the subscript H denotes it is based on Hyy. The aspect ratio could also have been

based on le:

43



e

=>

mn..l‘l R

'y, ot
,"IMh b

Figure 2-6: Vertex nomenclature.

Table 2-2
Edge classification for tetragonal lysozyme crystals.

Type | Edges

1 AB,CG,EF,LO,MQ,PR

2 AC,BG,DH,JN,MP,QR
3 AD,CH.ELLJQ,KO,NR
4 AE,BF,.DLLKN,LP,OR
5 FJ,GK,HL,IM




q=%1-°l 2.2).
110

Each definition has its advantages: &y conveys a better sense of the geometry of the crystal
because maximum and minimum dimensions are included, while & is a direct measure of
the relative growth of (101) and {110} faces. The choice is a matter of personal
preference since the two are related by a factor of cos B, and they differ from each other by
less than 10%. In Figure 2-7, the crystals lic at somc\drizmation with respect to the
"laboratory" coordinate frame, which is a right-handed coordinate system with the xy plane
in the page (+x axis pointing to the right, +y axis pointing up) and the +z axis pointing out
of the page towards the reader. The angles reported in Figum 2-7 are those describing the
directions of the & and % axes of the crystals in the laboratory frame described above. The
back wall of the cell, which slices through the crystal, can give crystals a decidedly odd
appearance (Figure 2-8).

291 o0 of Disital I

When the experiment became a study of crystals growing on a wall instead of a
sting, the full threc-diincnsional reconstruction of the growing crystal was no longer
possible. Some general estimate of crystal size was required since the growth rates of
single faces could not be measured. An obvious choice was the projected area of the
crystal as it grew: each observable growing face made a contribution to the projected area of
the crystal, and some orientation-averaged growth rate could be obtained from
measurements of the time rate of change of the crystal's area. This method of analysis,
however, required that the orientation distribution of the quiescent crystals closely resemble
that of the flow crystals, a hope which was quickly extinguished by a cursory inspection of
the first twenty crystals from each experiment.

Nevertheless, if the geometry of the crystals grown during the experiments is

relatively close to ideal, two-dimensional projections (images) of the crystals can be used to
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construct a “best-fit" ideal crystal. Dimensions of the ideal crystal, in turn, provide

estimates of the actual crystal size for assessing the effects of convection on crystal growth.

(@) (b) (©)
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0,=352°, ¢,=5.%° 6,=90°, ¢,=315" 6,=0°

Figure 2-7: Effects of aspect ratio and orientation on crystal appearance.
(a-c) Crystals have same orientation but aspect ratio increases from left to
right.
(c-f) Crystals are the same size but their orientations are different.
From the outset, this was recognized as an extrapolation from the data; no claim was made

that the dimensions calculated from this method were correct, or even unique, only that the
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projections of the ideal crystals were close to those of the real crystals. In previous work
[2,4-6], the effect of orientation on the apparent size of crystals was either neglected
entirely or reduced by selecting crystals oriented "cleanly” with x'csi)cct to the optics. By
explicitly accounting for differing orientations, the restrictions on suitable crystals were

relaxed and the potential sample pool was increased.

100 pm

Sonmp—

“n “';g

Figure 2-8: Growth of crystals on rear wall of cell.

Only one pyramidal cap is visible on these crystals. The rear wall slices through the

crystals at an arbitrary angle, so the edges of the crystal in contact with the wall.do

not satisfy ideal geometry. '

The measurement programs described here were written in Microsoft C 5.0 on the
IBM PC-AT used for the experiments. The intent was to reduce the 307.2 kilobytes
required for each picture (640 horixzontal pixels x 480 vertical pixels) to a list of
coordinates which could be analyzed by separate programs written in FORTRAN on an
IBM 3081 mainframe computer. Although tedious and sometimes confusing in practice,
the measurement procedure was straightforward in theory. All pictures of a given crystal
were "previewed" in order to determine whether the vertices were sufficiently recognizable
that an ideal crystal could be mentally superimposed. A crystal was removed from further
study if its orientation could not be estimated, it was hopelessly crowded, could not be well
focused, or combinations of the above. Examples of crystals which could not be
interpreted are given in Figure 2-9. Crowding by neighbors (Figure 2-10) and walls
(Figure 2-11) did not always interefere with interpretation. In Figure 2-10a, what appears
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to be the upper crystal of the contacting pair is actually an amalgam of at least two crystals;
the lower crystal seems to present a {110) face, but the vertices could not be located
clearly. In contrast, the crystal pair in Figure 2-10b could be easily distinguished despite
their marked interpenetration. In Figure 2-10c one crystal seems to be above the second,
which can be seen through the first. Figure 2-10a is from the quiescent experiment, while
the cfystals in Figure 2-10b-c are from the flow experiment. The presence of the side wall
of the cell did not always prevent measurements of crystals, as demonstrated by crystal
XF015001 (Figure 2-11).

If the crystal could be identified clearly, vertices were marked in a sequence
consistent with the model crystal shown in Figure 2-6. Only visible vertices were marked;
hidden vertices were omitted. Computer programs written to calculate best-fit ideal crystals
required that the "upper” pyramidal cap be included in all measurements, so crystals with
only one visible apex were marked as though they pointed upward. When vertices of both‘
caps were visible, the choice of top and bottom was arbitrary.

When the visible vertices in each picture of a given crystal had been marked, the
information was written to a disk file. The information included in this data file was: a
character string identifying the image file from which the crystal was selected, the clapsed
time from an arbitrary zero, the power of the objective used to take the picture, and the list
of coordinates including a status identifier. The status identifier of vertex i, &;, was an
integer acting as a binary switch to indicate whether the vertex was marked; & = 1 when the
vertex was visible and 0 when the vertex was hidden. When the file was written to disk,
the logical coordinate system of the digitizing board and mouse driver (origin in uppér left
corner, x increasing to the right, y increasing downward) was converted to the “laboratory”
coordinate frame (origin in upper left, x increasing to the right, y increasing upward). Note
that in the laboratory coordinate system, the crystal was digitized from directly above (z —
o0). After each frame had been measured, the operator could enter relevant comments

about the crystal. These comments, along with a copy of the information described above,
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were written into a "log" file for later inspection. Thc duplication was also a safeguard

against accidental loss of the data file.

ik 100 um

Smasn——

100 pm

Figure 2-9: Examples of uninterpretable crystals.

Vertices corresponding to those of the ideal crystal cannot be identified on these

crystals. The bias introduced by omitting uninterpretable crystals is unknown.

ination 1 ion

The method for determining the orientation and size of lysozyme crystals is
presented in this section (orientation) and section 2.11 (crystal size). The author developed
the technique based on the geometry of the ideal lysozyme crystal without reference to the
work of others. The approximate nature of the estimates has already been mentioned
(§2.9) and limitations of the method are discussed below (§2.12). The software was tested
by comparing calculated orientations and dimensions with the known values used to
generate two dimensional projections of ideal crystals; calculated dimensions were usually

within a few percent of the known values except when crystal orientation made "depth
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perception” inaccurate. The accuracy of the estimates for real crystals can be determined
only when the true dimensions of the crystal are known. Of course, if the actual
dimensions were known, there would be no need for the technique.

All the necessary information to determine the orientation of an ideal crystal is
contained in the angles of the edges, of which there are only five distinct types (sec Table
2-2). This information can be represented by a "stencil" constructed by drawing unit
vectors at the appropriate angles from a common origin. An example of such a stencil and
its normalized projection onto the xy plane of the laboratory coordinate system is shown in
Figure 2-12. The angles between vectors in the two-dimensional projection depend on the
stencil's orientation, as can be seen by comparing Figures 2-12 and 2-13. Assigning an
orientation to a given crystal in the experiment is a matter of finding the stencil orientation
which most closely approximates the measured angles.

The main assumption underlying the calculations is that the images are orthographic
projections of ideal crystals. Under the assumption of orthography, parallel edges of the
crystal would also be parallel in the image. Normally, pictures violate this approximation
only when the depth of field is large enough that perspective effects become significant. In
this work, there were no gross violations of this approximation because the back wall of
the cell prevented crystals from growing away from the microscope and the limited focal
depth of the microscope restricted observation to those crystal which did not show obvious
foreshortening. A second assumption is that the orientation of the crystal did not change
during the experiment so that all measurements could be pooled to obtain a single
orientation for the crystal. Since the crystals were anchored to the walls of the cell, this
assumption seems reasonable.

| Estimates of crystal orientation are made by the program ANGLE based on the
coordinates supplied in the data file. After reading the status and coordinates of all vertices
in each picture of a given crystal, ANGLE determines which of the 28 edges appear in the

image by multiplying the status indicators of the two points defining the edge. If the edge
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is present in the image, its type is identified, and the vector describing the edge is
normalized. Thus, the angle of the edge is represented by a two-dimensional unit vector
having the same slope as the measured edge. Measurements of the same type of edge are
grouped by adding the point corresponding to the x and y components of the resulting unit
vector to any previous measurcments. A pooied estimate for the angle of a given 2-D
stencil edge is obtained from the slope of the line connecting the origin of the stencil to the
centroid of all measurements for that edge. Data for the érystal XF014001 are used for
illustration (Figure 2-14a).

100 pm

100 pm

Figure 2-10: Influence of crystal contact on interpretation.

(a) The crystals in contact do not display recognizable vertices. The upper
crystal of the pair is actually two crystals which had grown together
carlier.

(b) These crystals, although intergrown, retain their identities and can be
measured.

(c) Crystal on the right appears to be closer to the microscope than the other.
Both crystals can be measured.
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Figure 2-11: Time series for crystal XF015001.

Vertices on this crystal were easily identified, so it could be measured despite its

contact with the right hand wall of the growth cell.

The centroid method for determining the average slope was chosen because it is
simple and robust. The major drawback of the method is that each measurement is
weighted equally, even though the relative uncertainties in measurement are larger for short
lines than for long ones. Other methods for calculating average edge angles were not
investigated because the accuracy of the measurments did not warrant further refinements.
Assigning relative weights for each type of edge is a related issue. Equal weighting for
cach edge type present in the image was rejected because the relative freqency of occurrence
could vary widely. The confidence limits of the “average” or characteristic angle are
expected to shrink as the sample population increases. Greater weight should be attached
to those edges with more measurements. An analogy with least-squares analysis of pooled

experimental data [13] might suggest that the relative weight for each edge should be
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Figure 2-12: Orientation stencil when standard coordinate frame is aligned

with laboratory frame.
(a) 3-D stencil. (b) Normalized 2-D projection onto xy plane.
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Figure 2-13: Orientation stencil when standard coordinate frame is rotated
45° about the 9

axis through the stencil origin.
(a) 3-D stencil. (b) Normalized 2-D projection onto xy plane.
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Figure 2-14: Orientation stencils for crystal XF014001.

(a) Points are measurements of edge angles. Arrows represent "average”
angles determined by connecting stencil origin with centroid of
measurements for each type of edge as indicated.

(b) Measured average edge angles are compared with "ideal” best-fit stencil
projection. Solid lines are measured values; dashed lines are best-fits.
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inversely proportional to its sample variance. When only one measurement is available for
a given edge, however, the sample variance is undefined. Instead, the relative weight of
edge k was taken to be the relative frequency of its measurements: wy = ni/N, where w =
weight of edge k, n; = number of measurements of edges of type k,and N = total number
of measurements for a given crystal. This method reflects the greater confidence resulting
from larger sample sizes, although not in a fashion rigorously supported by statistical
reasoning. This weighting was chosen largely because it is simple and reasonable.
Two-dimensional projections of the ideal stencil, such as those in Figures 2-12 and
2-13, are compared with the measured angles to determine the orientation of the crystal.
The orientation of the crystal is taken to be the same as that of the stencil which best

describes all the measured angles. The selection criterion is the minimization of the

objective function:
5
G1(8:05,0:.0,) = | F(6x,02.6:.0) + Y, & wi %t (2.3),
k=1
where
_ {1, if at least one edge of type k is present
O = 0, otherwise (2.4),

wy is the relative weighting of edge k, % is the angle between the measured and ideal
projections of edge &, and F(6,,¢x,6,,9,) is an empirical "avoidance” function to prevent
orientations in which the normals to {101} faces lie in the xy plane of the laboratory
coordinate system.

In certain cases tested during the development of the analysis programs, the
calculated dimensions of the crystal were extremely sensitive to the orientation of the {101}
faces. When the pI;mcs of the {101) faces were nearly orthogonal to the xy plane, slight
variations in orientation could produce a tenfold change in calculated size. The avoidance
function was introduced during this stage in the development in order to reduce the erratic

behavior of the calculated crystal dimensions. The avoidance function is
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4
F(6:,6.6:.6,) = 3, exp (~5000 n?,) (2.5),
j=1

where n;, = z component of the normal to face j. The function has a steep decay, falling to
1% of its maximum when the angle between the normal and the plane is £0.03 radian
(1.7°). A difference of 2° is small when compared with the estimated accuracy of the
measurements, but makes a large difference in providing consistent size results for Ljo;.
Subsequent changes in the methods of computing crystal sizes diminished the need for an
avoidance function, but its presence in Equation (2.3) acts as insurance against a poorly
selected dta set. In this work, the effect of F is negligible in most cases, since orientations
with small angles between the (101} normals and the xy plane were rare. Typical values
of G, are less than 0.05 for almost all crystals, with many crystals giving values of Gy <
10~4. In a few cases, the assigned orientation is relatively close to forbidden; the maximum
value of G is approximately 0.05, which would indicate a {101} normal within 0.02
radian (1.4°) of the xy plane.

The search for a suitable orientation begins by aligning the standard coordinate
frame (9,9,? ) with the _laboratory frame (x,y,z) and placing the ideal 3-D stencil at the
origin of the laboratory frame. An initial value of G, is calculated for this starting
orientation. The ideal stencil is "rocked” 0.1 radian (approximately 5.7°) about the
laboratory y axis in each direction and G, is evaluated for both potential orientations. In
what is basically the method of random descent, a new orientation is accepted only if it
produces a new minimum value of G;. The stencil is then rocked about the laboratory x
axis, G, is calculated for both possible orientations, and a decision is made to accept or
reject the new orientations. The process is repeated for rotation about the z axis, to
complete the sequence. Rotations about each of the axes in the laboratory frame are
repeated cyclically until a local minimum is reached. This coarse position is used as a
starting point for a finer search (step size 0.05 radian), which in turn sets up a final search

using a step size of 0.01 radian. The global minimum is found by repeating the entire
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procedure starting from all initial orientations in which vector 5 is aligned with each
coordinate axis. The best-fit stencil is compared with the measured angles for crystal

XF014001 in Figure 2-14b

211 Caleulation of Ideal Crystal Dimensi

The method used to determine the dimensions of ideal crystals, unsurprisingly,
depends heavily on knowledge of the crystal geometry and the estimated orientation
discussed above. As long as the five unit vectors (v} — vs) are related to their standard
stencil counterparts (¥, - ¢5) through a simple rotation about the stencil origin, the
coordinates of each vertex of the ideal crystal in any coordinate system can be written in
terms of the vector from the origin to vertex A (denoted p,), the appropriately rotated
stencil unit vectors, and crystal dimensions (Table 2-3). Note that use has been made of
the relation Hya = Hr+ 2a Lyy9, where o =2(24 - 28)/ Lyy0 = 2 (31 — 22)/ Ly reflects
the pitch of the (101} faces in the pyramidal caps. Henceforth, vertices will be designated
by the numbers given in Table 2-3 instead of by letters. Although inspection of the
equivalent vectors in Table 2-3 shows that a full description of the location and shape of an
ideal crystal is contained in only five variables (the three components of pj, L110, and Hp),
only four of these variables can be used to fit the projected image: x1, y1, L110, and Hy.
These variables are defined to be, respectively, the four unknowns of interest, 5) — sa.

When the following notation is introduced:

Prij= 5?] . Py ij= -aTJ (2.6),

4 4
Xi= 2 Prijsi Yi= z Py, ijsj (2.7).
j=1
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Table 2-3
Position of vertices in arbitrary coordinate system.

Vertex Number Equivalent vector
A 1 P1
B 2 Dz=m+%v1 Liyo
C 3 P3=Pl+%V2L110
D 4 P4=P1+%V3Lno
E 5 P5=P1+'2LV4L110
F 6 Ps=P1 +%(v1+v4)L110
G 7 P7=p1 +%(V1 +v2)L110
H 8 Ps =P +%(V2+V3)Lno
I 9 Py = Pi +12-(V3+V4)L110_
J 10 P10=P1+‘2L(V1+V4)L110+V5 Hy
K 11 P11=Pl+%(V1+V2)L110+V5 H;
L 12 P12 = P1 +%(V2+V3)L110+V5 Hy
M 13 p13=p1+%(V3+V4)L110+V5 Hy
N 14 pl4=Pl+%(V1+aV5)L110+V5 Hy
o 15 P15 =P1 +%(V2+0V5)L110+V5 H;
P 16 P16 = Pi +%(V3+aV5)Lno+V5 H;
Q 17 P17=M +%(V4+0V5)L110+V5 H,
R 18 pig=pr+2avsLyo+ vs Hy
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Once an orientation has been assigned to the crystal and the stencil unit vectors have
been rotated accordingly, an ideal crystal is superimposed on the image so that its vertices
are as close as possible to the measured vertices. Vertices are placed in order to minimize

the objective function:
18 B
Ga= z & (%i- xfP +(5i - )’i)z] (2.8),
i=1

where (%;, ¥; )denotes the measured coordinates of vertex i, while the coordinates of the
corresponding ideal analogue are (x;,y;). The presence of vertex i in the measured data set
is indicated by the value of &;:

1, if vertex i is present (2.9).

6= ]
* 710, otherwise

A direct substitution of Equations (2.7) into Equation (2.8) casts the objective function into
a form which is amenable to a linear least-squares minimization:
18 4 2 4 2
Gz=z o; X,'—z Pirisi| + y,-—z Pia;s; (2.10).
i=1 =1 j=1
The four normal equations arising from partial differentiation with respect to each of the s;

can be solved in matrix form:

AS=B (2.11),
where
18
Ajk= 2, 8i(PirjPiak+ PizjPi2i) (2.12)
i=1 .
and
18 _ -
B;= 2 S (x,- Piri+Yyi Pi.2J) (2.13).
i=1

In the event that the data set lacks sufficient information to determine Hy, it is simply

omitted. A is then a 3 x 3 matrix, while S and B become 3 x 1 column vectors.



When Equation (2.11) has been solved for S by the FORTRAN program
IDEAL3D, the coordinates of all the vertices of the ideal crystal can be calculated (provided
that all four s; could be determined). Again, the example of crystal XF014001 is used to
compare the raw images with the ideal analogues (Figure 2-15). Lo and Lo for
XF014001 are plotted against elapsed time in Figure 2-16. The time series of crystals
XQ005002 and XQ023001 are shown in Figures 2-17 and 2-18; orientation measurements
and calculations are compared in Figure 2-19, while the calculated dimensions are shown in
Figure 2-20. Ljq; was not calculated for éithcr of these crystals because no points in the
lower pyramidal cap had been measured. The entire process is summarized for crystals
XQ002001 and XQ002002 in Figure 2-21, where the raw image, vertex markings, and
best-fit ideal crystal are displayed in successive panels.

212 Limitati f the Ideal Crystal 2 .

There are two levels of approximation in the analysis: (i) marking the vertices in a
manner consistent with ideal geometry, and (i) the calculation of the dimensions of the
ideal analogue. The effect of each is shown Figure 2-22, where the raw images, vertex
markings, and ideal crystals are compared for four different crystals. Symmetry
constraints of the ideal crystal result in a slight displacement of the best-fit vertices from the
marked vertices, although this displacement is small in most cases. The situation shown in
the bottom row of Figure 2-22 (crystal XQ023001) is common: the {101} face in the lower
left is significantly smaller than the others, reflecting a faster growth rate. Compared with
the ideal crystal, crystal XQ023001 has an extra vertex which cannot be interpreted in the
current scheme. In most cases like this, the apex of the pyramid was marked along the
edge connecting the two vertices so that the calculated value of Ly characterized the
overall dimensions of the crystal reasonably well. In this particular case, the vertices at

the corners of the small {101} face were not marked because the angles of the resulting
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Figure 2-15: Comparison of crystal XF014001 and ideal analogue.

(upper half) Digitized images of crystal XF014001 taken duning experiment.
(lower half) Ideal analogues calculated to same scale as actual images.
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Calculated dimensions of crystal XF014001.

edges might introduce a large error in the calculated fits. In Figure 2-23, the effect of

approximation (ii) is isolated; the asymmetry is caused primarily by unequal {110} growth

rates. Clearly, image analysis requires some judgment on the part of the researcher.

A crystal's appearance can change as a result of asymmetric growth of equivalent

faces. The time series for crystal XQ033002 demonstrates the apparent disappearance of

{101} faces over the course of the experiment (Figure 2-24). The requirement that all
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Figure 2-17: Time series for crystal XQ005002.
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Figure 2-18: Time series for crystal XQ023001.
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Figure 2-19: Comparison of measured and ideal edge angles for crystals
XQ005002 and XQ023001.

(top row) Arrows are drawn from stencil origin to centroid for each edge.
(bottom row) Measured stencil points (M) and ideal stencil (O) are
coincident.
pictures be marked consistently sometimes produces questionable vertex placements, as
illustrated by comparing the measurements and calculations of XQ033002 at two diferent

times (Figure 2-25). Two interpretations, differing in the angle between the hexagonal face

and the xy plane, are possible. Early pictures favor a steeper pitch, while later images
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suggest the {110} face is almost parallel to the back Wall of the cell. Without a full stereo

view, it is extremely difficult to determine which is correct.
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Figure 2-20: Calculated {110} dimensions for crystals XQ005002 and
XQ023001.

It is reassuring that inaccurate measurements produce inaccurate results which are
easy to detect. This point is made emphatically in Figure 2-26, which compares
measurements of XQO033001 at two different times. Crystals XQO033001 and
X Q033002 were selected for inspection because their calculated growth rates seemed to be
inconsistent from one interval to the next. In some cases, measurements of L;o; indicated
shrinkage, a phenomenon not expected in a supersaturated solution; no calculated shrinkage
of Lyjo was found. Some of the uncertainty arises from "depth perception” problems

discussed briefly in section 2.10 in conjunction with the empirical avoidance function
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Figure 2-21: Summary of measurement steps for crystals XQ002001 and

XQ002002.
(a) As digitzed. (b) As marked. (c) Ideal best-fit analogue.
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As digitized

F

As marked Ideal best-fit

Figure 2-22: Summary of measurement stegg: for four different crystals.
(top row) XF014001. (second row) XF0S0001.
(third row) XQ005002. (bottom row) XQ023001.
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Figure 2-23: Ideal analogue of an asymmetric crystal.
The (110} face on the left grew faster than the one on the right, producing the
asymmetric morphology shown.
(a) As digitized. (b) As marked. (c) Ideal best-fit analogue.
[Equation (2.5)]. Note, however, that the calculated L,¢ is relatively close to the apparent
size of the crystal in Figures 2-25 and 2-26. The robustness of Lo permitted the use of
all measurements in the statistical analyses of chapter 3; Ljg; was not included because

there were fewer measurements (particularly of quiescent crystals) and they were less

reliable.

2.13 Additional rvation

There is a great range in appearance of lysozyme crystals. Some, like those shown
in Figures 2-11, 2-15, 2-17 and 2-18, are easy to interpret. Others, like XQ033002
(Figure 2-24) seem to change their appearance and have no clear interpretation. Quiescent
crystals seem to have more internal defects than crystals subjected to convection. In
Figure 2-22, for instance, compare the flow crystals in the top two rows with the quiescent
crystals in the bottom two rows. These are not isolated instances; most crystals from the
flow experiment are easier to interpret and measure than comparable quiescent crystals. On
the whole, quiescent crystals exhibit more incomplete layers and missing corners than do
flow crystals. The development of a heavily defect-laden quiescent crystal is shown in

Figure 2-27. No comparably flawed flow crystal was found during the experiment.
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Figure 2-24: Time series for crystal XQ033002.
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Figure 2-25: Change in the appearance of crystal XQ033002 with time.

The requirement that the crystal be marked consistently is not always easily met.

The distance between parallel (110} faces still seems reasonable despite the

uncertainty in orientation.

(top) 1524 minutes. (bottom) 14378 minutes.

Crystals exhibiting growth over only parts of a surface were unexpected (Figures 2-
28 and 2-29). Durbin and Feher {2] reported that when a crystal had been aged in an
unstirred solution for 51 days and then placed in a supersaturated solution, rapid growth
resumed only in isolated locations on the surface. When they repeated the experiment with
a crystal several days old, growth resumed uniformly over the surface. Although it is
difficult to judge the height of the growth layers from their figures, the length scale of the
growth "patchiness” (approximately 5 - 10 um) is somewhat finer than that observed in this

work (~ 30 - 100 um). Additionally, Durbin and Feher reported that the surfaces filled in,

albeit imperfectly, after approximately 30 minutes. In the case of crystal XQ041001
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Figure 2-26: Change in appearance of crystal XQ033001 with time.
There is uncertainty in the orientation of the crystal. The best-fit placement of the
pyramid is seriously in error, but the distance between {110} faces appears close.
(top) 1524 minutes. (bottom) 14378 minutes.
(Figure 2-28), the discontinuity in height was easily visible under a 5X microscope
objective and required four days to fill in the surface. Durbin and Feher suggested that this
partial inactivation of the crystal surface could be related to the cessation of growth which
had been reported earlier [7]. Certainly, the crystals in this study continued to grow despite

an apparent spatial variation in growth rate. The net effect of this observation is to add

another item to the overwhelmingly long list of questions about protein crystal growth.
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Figure 2-27: Time series for crystal XQ014001.
Crystal displays a large number of terraces which may be incomplete layers.

74



772 min
Fosoz . o e \ g8l N ' : i

100 um ' J o [ 100 pm

. Lok

3078min— ~ —4STimin | 6281min

100pm | © “.100 um »

7474 min 8746min " 10244min

i

11588 min 13050 min T 14402min

Figure 2-28: Time series for crystal XQ041001.
Shading suggests the presence of incomplete layers starting at 7474 minutes. The

surface has filled in by 13050 minutes. The face in the upper left quadrant seems to
have grown faster than the other (101} faces.
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Figure 2-29: Several quiescent crystals with incomplete layers.

2.14 Summary

The growth of isolated single crystals remains largely a matter of chance. The
original design of the experiment imposed strict requirements on the clarity of the optical
path, crystal density, and protein concentration. In the end, these requirements could not
be satisfied simultaneously and the initial approach was abandoned. The experiment was
then altered so that it was similar to earlier reported experiments [2,4-6]. Batch-to-batch
variations plagued the experiments throughout, although efforts were made to clean the
protein to obtain a uniform starting material. No cause for the irreproducibility was
determined. Crystals grown from a single batch of protein solution provided all the data
for this work.

A method was developed to estimate the size and orientation of growing tetragonal
crystals of hen egg white lysozyme. The method relies on the assumption that digitized
images of the crystals are orthographic projections of an ideal crystal onto a plane. The
angles of the crystal's edges are measured by recording the coordinates of all the visible
vertices. The crystal is assumed to have the same orientation as the ideal crystal which
minimizes the sum of the squares of the angles between the measured edges and projections
of the ideal edges. The size of the crystal is taken the be the same as that of the "best-fit"

ideal crystal which can be superimposed on the measured crystal. The accuracy of the
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method cannot be determined without calibration against objects of known dimensions, but
inspection of the superimposed ideal crystals shows that the ideal dimensions are in
reasonable agreement with the raw images. Furthermore, they seem to be internally
consistent.

The method allows crystals in any orientation to be measured, which significantly
relaxes the requirements imposed in previous work [2,6] and increases the potential sample
size. The method produces its best results when the measured crystals are close to ideal,
but the {110} dimension is robust even when the crystal is highly asymmetric; the
robustness of L;j0 holds even when there is a large uncertainty in the placement of
vertices. Lo;, in contrast, seems highly sensitive to the calculated orientation. The major
advantage of the method, its ability to estimate dimensions of a three-dimensional object
from a two-dimensional image, is also its major limitation: the symmetry constraints of the
ideal crystal preclude measurement of variations in growth rates among equivalent faces.
At the conditions used in this work (lysozyme concentration = 10 mg/ml, 50 mg/ml NaCl,
pH 4), asymmetrical growth of {101} faces was prevalent. A full stereo view is required

to obtain single face growth rates.
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CHAPTER 3

Analysis of Experimental Results

3.1 Introduction

Crystal growth experiments provide data on crystal size as a function of time; the
time derivative of crystal size is the growth rate. Statistical analysis of growth rates as a
function of time can be used to determine whether there is a trend. A downward trend in
growth rate is a necessary, but not sufficient, condition to infer that flow has an inhibitory
role in protein crystal growth. Other phenomena, such as changes in the local
environment, may cause crystals to slow their growth over time. Under ideal conditions,
flow effects would be assessed by comparing crystal growth from two experiments
differing only in whether or not crystals were subjected to forced convection. As discussed
in Chapter 2, conditions in the two experiments were not identical, so differences in crystal
growth behavior between the two experiments cannot be attributed entirely to flow without
first assessing the effects of these other variables. The drift in protein concentration during
the quiescent experiment and the shorter duration of the flow experiment are the two main
differences which cloud interpretation of the results. The effect of sampling bias must also
be investigated as a source of differences in behavior between the two experiments.

A series of statistical tests is applied to the distributions of sample size and growth
rate obtained from the experiment. Trends in these measurements are compared with those
expected from some of the mechanisms proposed to explain apparent convective effects on
protein crystal growth. Based on the trends in growth rate, for instance, a simple
competition between mass transfer and attachment kinetics is ruled out. The crystal
populations within each experiment exhibit a large degree of heterogeneity in their growth
rates, and the latter part of the analysis is a search for the sources of this variation. A series
of contingency tests are then performed in order to determine whether sampling differences

between the two experiments could cause some apparent differences in behavior. Since the
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conclusions drawn from the experiments rely heavily on statistical hypothesis testing, an

illustrative sample of such a test is an appropriate starting point.

32 AnE le Statistical T

Many of the methods employed in the following sections are tests of the null
hypothesis, Ho: there is no significant difference between two groups or among several
groups. The difference between groups is deemed significant only when, at a chosen
confidence level, the null hypothesis is rejected because the observed variation is too great
to be attributed solely to chance. Statistical tests of the null hypothesis can be classified
broadly into two classes: (i) parametric and (ii) nonparametric or distribution-free methods
[1,2]. Engineers are most familiar with parametric tests such as the analysis of variance
(ANOVA); the assumptions implicit in ANOVA are that the samples are drawn from
normally distributed populations and the populations have equal variances. The variance,
02, is a parameter of the underlying population. Nonpaiametric tests, which permit
statistical inference based on the rank order (from low to hi gh, for example) of the sample,
do not require the variable in question to be normally distributed or have a "well behaved"
variance. As employed here, nonparametric tests provide a check on the validity of
conclusions drawn from comparable parametric tests.

Statistical tests can be classified as single sample tests or multisample tests
depending on whether the researcher is interested in determining if the sample could have
been selected from a specified (known) population or if two or more samples could have
been drawn from the same (but unknown) population. Examples of each might be "Could
this sample of size N have been drawn from a population of median 50?" and "Could
sample 1 of size Ny and sample 2 of size N, have been drawn from a common
population?” Engineers are accustomed to seeing the former question posed in terms of the

mean, Y, instead of the median, but this reflects the implicit assumption of a symmetric
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distribution, for which the mean and median coincide. The median is also a measure of
central tendency [3] and is the property of choice when applying nonparametric tests.

Suppose now that the second question above is to be investigated under the null
hypothesis, Ho: both samples are drawn from the same population. The nonparametric
"median test” is as follows: (i) all N = N + N3 values, x;, are pooled and ranked from
lowest to highest; (ii) the pooled median, xsog, is found; (iii) the number of individual
values from sample 1 larger than xsog is determined (since N is fixed, this counting also
fixes the number of values from sample 2 in the upper half of the pooled sample); (iv)
deviations in the observed number of "high" values from the expected value of N)/2 are
compared with the that expected by chance; and (v) a decision is made to accept or reject
Ho. If Ny and N; are small, all possible rankings of the individual values could be listed
and the probability of a deviation as large as the observed deviation could be calculated
exactly. For large samples, a suitable statistic involving the difference in the mean rank of
the samples can often be found which obeys (at least approximately) a known continuous
distribution; significance of tests are then made by reference to the appropriate value of the
known distribution.

Most of the statvistical analyses were performed on a Macintosh Plus using the
commercially available program, SratView SE + Graphics [4]. Extensive descriptions of
the nonparametric tests are given by Siegel [1]. On several occasions, the formulas in the
two sources differed; those given by Siegel were used whenever there was a discrepancy.
Critical values used in assessing significance were obtained from the Chemical Rubber
Company's Standard Mathematical Tables [5] when tabulated, or from routines in the

IMSL statistical library [6]. Where additional sources were used, they are cited in the text.
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3.3 General Discussion of Results of Crystal Growth Experi

Although inferences about the growth experiments are based on statistical tests, it is
important to remember that these tests were developed for samples drawn at random from a
population in order to evaluate properties of the underlying population. The samples in
these experiments, however, are not random; they are images of the first 60 or 70 crystals
which could be located on the walls and appeared sufficiently isolated from their neighbors.
Exclusion of crystals that could not be satisfactorily interpreted introduces another
unknown bias into the samples. The experiments described here are really longitudinal
studies of particular subgroups of protein crystals and not a series of measurements
performed on freshly drawn random samples. Comprehensive statistical tests designed
specifically for this sampling technique are simply not available, so several tests were
applied in the hope that their interpretations would be consisteﬁt. Underlying the
discussion that follows is an implicit assumption that the sample, although not random,
adequately characterizes the crystal population.

Crystal sizes as calculated from the method presented in Chapter 2 are shown in
Figure 3-1 and Table 3-1. The crystals are grouped into "rounds" for later statistical
analysis; each crystal is numbered sequentially in the order it was digitized during the
experiment. The calculated distance between parallel {110} faces of crystal i measured
during round # is denoted L; ,. This causes no ambiguity because, as mentioned in section
2.12, Lyo; was excluded from statistical analysis. Crystals in round 1 of the quiescent
experiment were large enough and clear enough to be measured with some confidence.
This was not generally the case in the flow experiment, so analysis of these crystals begins
with round 2. The average growth rate of each crystal over a given interval was calculated

from the formula

_1Lin—Lin
Gl.n 2 ti'n— ti'n_] (3°l)v
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Figure 3-1: Crystal size as a function of time.
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Table 3-1

Crystal size by round.
Elapsed
Round Nt timet  Mean Sid. dev.® Minimum Maximum Range
(min) (um) (um) (um) (um) (um)
Quiescent
1 32 322 84.98 9.38 50.87 99.03  48.16
2 35 662 99.01 9.58 62.69 11577  53.08
3 37 1488  122.94 11.60 8264  143.06  60.42
4 38 2965  156.15 1510 116.59 188.34  71.75
5 39 4411 174.51 17.50 137.68 217.58  79.90
6 39 6215  197.12 22.64 156.14 252.02 95.88
7 39 7382  211.59 2456 165.80 27090 105.10
8 39 8688  230.96 28.54 179.20 299.74  120.54
9 39 10151  257.03 31.85 201.73 324.01 122.28
10 39 11520  280.16 35.25  219.80 351.03 131.23
11 39 12997  301.91 38.36  241.35 375.98 134.63
12 39 14363  321.74 40.22 256.81 397.44  140.63
Flow
2 51 571 100.93 25.64 58.93 14039  81.46
3 53 1518 141.28 28.11 97.38 191.94 94.56
4 53 1965  157.56 29.60 111.27 217.44 106.17
5 53 2981 190.40 31.75 139.13 258.57 119.44
6 53 4503  232.37 37.56 175.03 332.81 157.78

t N is the number of crystals measured during each round.
1 Time reported is mean for all crystal measurements during each round.
¢ Reported standard deviation is the unbiased estimate for the population,

s [N /(N - D]V
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where G, , = average growth rate of crystal i over interval n and 1;, = time at which that
measurement was made. Note that each interval is numbered to match the round that ends
it. These growth rates are summarized in Table 3-2 and plotted against tmigin = (5in +
1;,n-1)/2 in Figure 3-2. A sense of how the calculated growth rate tracks the protein
concentration can be gained from the traces in Figure 3-2 representing the measured protein

concentration (based on optical density at 280 nm) during the experiments.

Table 3-2
Crystal growth rates by round.
Round Nt Mean  Std. dev.} Minimum Maximum Range
(nm/min) (nm/min) (nm/min) _ (nm/min) _(nm/min)
Quiescent
2 32 21.39 4.96 12.06 32.32 20.26
3 35 14.92 3.39 8.72 25.76 17.04
4 37 11.42 1.80 7.48 14.75 7.27
5 38 6.19 1.61 2.10 10.10 8.00
6 39 6.25 2.12 0.46 9.71 9.25
7 39 6.22 1.58 1.95 9.82 7.86
8 39 7.40 2.20 0.04 12.25 12.22
9 39 8.92 2.15 2.47 1239 992
10 39 8.45 1.85 3.61 11.58 7.97
11 39 7.37 1.46 3.84 10.62 6.77
12 39 7.25 2.01 3.16 11.05 7.89
Flow )
3 51 20.79 3.33 15.43 30.20 14.77
4 53 18.29 5.06 8.06 36.72 28.66
5 53 16.15 3.64 6.78 25.01 18.23
6 53 13.80 3.80 7.15 27.21 20.05

¥ N is the number of crystals for which a growth rate could be calculated.
¥ Reported standard deviation is unbiased estimate for the population,
s [N /(N - )],

85



(a) i L =
30- L10€
25-5" —> | E

] B -8 §
g 204 [ E

E ] -6 €

vls':. 2 8

I L L4 §

. " Q
5] -— ‘ g
1% S T S —— —~-0

O 2000 4000 6000 8000 10000 12000 14000 16000
elapsed time (min)

40+ 12
(b)353 o [ =
e § - E
~ E a (8 -
£ 254 i B | :8 .§
E 3 (18] g = gD N
£ 6 £
- 9 i 9
&) 15-5 - g o L4 §
10 a_ £
E 0 [y &
O-'l""ll'l"ll'l""llIIII'IIIUVII'IIII'lll"l""f O

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
elapsed time (min)

Figure 3-2: Crystal growth rates as a function of time.
(a) Quiescent experiment, Ng = 39. (b) Flow experiment, Ny = 53.

The most striking feature of the experiments is the large range of crystal sizes and
growth rates. As shown in Table 3-1, the range of sizes is typically 50% of the mean for

"quiescent” crystals and 70% for "flow" crystals. Because the relative range in growth
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rates is approximately the same in both experiments (approximately 120% of the mean),
this difference in the relative range of crystal sizes seems to result from differences in the
initial size distribution in the two experiments. Large variations such as these have been
reported by Durbin and Feher [7] and seem to be inherent in the protein crystal growth
process. Accordingly, it is evident that large numbers of crystals must be measured in
order to characterize the size and growth rate distributions of protein crystals. A second
feature of the measurements is that the sample standard deviation is approximately
proportional to the mean. This is commonly observed in growth phenomena where the
variation present at a given stage of growth is proportional to the average characteristic size

at that stage [8]. This is also a characteristic of the log-normal distribution [8,9].

3.4 Staristical Analysis of A Growth R

The simplest hypothesis to test about the crystal growth rate distribution is Ho: the
crystal growth rate is constant over the course of the experiment. For each experiment, a
one-way ANOVA was performed with the round as the independent variable and G as the
dependent variable (ANOVALI1 in Table 3-3). In both experiments, the variation between
rounds is significant at the 95% confidence level. One of the assumptions of ANOVA,
which is violated in this case, is that all treatments have the same variance. The relative
standard deviations in all cases, however, are nearly the same, so an ANOVA with In G as
the dependent variable would come closer to meeting the restriction on variance. This
analysis of variance (ANOVAZ2 in Table 3-3) reveals a significant variation in In G. These
results are confirmed by the Kruskal-Wallis H test. Another nonparametric analysis of
variance, the Friedman %2, is well suited for checking differences between matched

samples; the Friedman y? confirms the earlier findings. The null hypothesis is therefore

rejected and the alternative that the growth rate changes is accepted.
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Table 3-3

Tests of Hy: growth rates are constant.

ANOVALY ANOVA2# Kruskal-Wallis Friedman
Experiment F F H ZE
Quiescent 128.96*** 37.98%** 257.93%*« 226.31%%*
Flow 28.74%*+ 32.57%*x 75.00%** 90.58***

Significance: * p <0.1; ** p < 0.05; *** p <0.01.
T Analysis of variance performed on growth rates calculated from method of Chapter 2.
1 Analysis of variance performed on natural logarithm of calculated growth rates.

In both experiments, crystal growth seems to slow with time. A correlation matrix
(Table 3-4) provides the information to test for trends. When G, , is correlated with
tmid,i n, the sample correlation coefficient, r, is —<0.534 for the quiescent experiment and —
0.558 for the flow experiment. These sample correlation coefficients, r, are estimators of
the correlation coefficient of the underlying populations, p. Thc'null hypothesis is that the
growth rates of the population are uncorrelated with time (p = 0). This hypothesis can be
tested against the alternative p < 0 by a one-tailed test as follows. The statistic z = (1/2) In
[(1 + r)/(1 - r)] is approximately normally distributed with an expectation or mean of y, =
(172) In [(1 + p)/(1 — p)] and variance (N — 3)-1, where N = sample size [3]. The standard
normal deviate of z, { = (z — y,)(N — 3)!1/2, can then be checked against a table of the
standard normal distribution to determine if the deviation of the sample correlation
coefficient from the mean could be attributed to chance. Note that under the null
hypothesis, p = 0 and u, = 0. In this one-tailed test, the hypothesis is rejected if § < {; =
-1.645, corrcspondi'ng to the 95% confidence level. The quiescent sample has N, = 415
and {, = —12.1, so the hypothesis p, = 0 is rejected in favor of the alternative p, < 0.
Similarly, Ny = 211 and {;=-9.08 so that the hypothesis py= 0 is also rejected in favor of

pr < 0. These conclusions are supported by a comparable nonparametric test, the
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Spearman rank correlation coefficient, rs (Table 3-5), which correlates the ranks of the

samples instead of the values. The statistic x=rg »\f(N -2)/(1 —rf) is distributed as
Student's ¢ with N — 2 degrees of freedom. The values of x are x, =-10.0 and x,=-11.6,
which are certainly far enough from zero to reject the null hypothesis. The downward
trend in crystal growth rates during both experiments is therefore statistically significant at
the 95% confidence level.

Table 3-4
Correlation matrix for both experiments

Imidin Gin Cavin
mid,i,n 1.000 —0.558%*x* 0.866%**
Gin —0.534%** 1.000 —0.527%*+*
Cavin —0.591*** 0.812%** 1.000

Significance: * p <0.1; **p < 0.05; *** p <0.01.

The full correlation matrix is symmetric. Flow experiment correlations are
shown in the upper right half of the matrix; quiescent experiment is in the
lower left. Ny=211and N, =415.

The trends in protein concentration are different in the two experiments, as can be
seen in the traces of protein concentration in Figure 3-2. Calculations like those above
confirm at the 95% confidence level that the average protein concentration is decreasing
with time in the quiescent experiment but increasing in the flow experiment. The
correlation between average growth rate and average protein concentration in the two
experiments shows obvious differences in behavior. Quiescent crystal growth rates are
correlated to average protein absorbance with r, = 0.812, while growth rates in flow are
correlated with ry=-0.527. One-tailed tests of the hypothesis p = 0 can once again be
made. In this case, however, the alternatives are that p, > 0 and psf < 0. The

corresponding {'s are {, = 22.98 > Ly and {y=-9.64 < (s s0 the hypotheses pg =0

89



and pr = 0 are rejected. The conclusion, then, is that the reduction in growth rate in the
quiescent case can be at least partially attributed to decreased protein concentration, but the
flow crystals slow down despite increasing protein concentration. Spearman rank
correlation coefficient tests confirm these results.

Table 3-5
Spearman correlation matrix for both experiments.

Imid,i,n Gin Cavin
tmid.in 1.000 ~0.626%** 0.836%**
Gin —0.441 %% 1.000 —0.568%**
Cavin —(.534%** 0.632%** | 1.000

Significance: * p <0.1; ** p < 0.05; *** p < 0.01.

The full correlation matrix is symmetric. Flow experiment correlations
are shown in the upper right half of the matrix; the quiescent experiment
is in the lower left. Ny=211 and N, = 415.

The observed trends disagree with the predictions of quasi-steady mass balances on
the growing crystal [10-12] but are consistent with the experimental results of Pusey,
Witherow and Naumann [13]. Although differences in cell geometry and flow fields
prevent quantitative comparison of the two experiments, the qualitative features of their
experiment are the same as those presented above. When lysozyme crystals were subjected
to forced convection of 18 - 40 um/s, Pusey er al. found that growth slowed to 5 - 20% of
initial rates within 4 - 5 hours. The observed effect is significantly smaller in the present
work: the mean lysozyme crystal growth rate fell to 66% of its initial value when crystals
were exposed to a flow of 50 um/s (superficial velocity) over a three day pcric;d. The
iritial growth rates in both experiments are about half the initial rates measured by Pusey
and coworkers [13]. The current experiments provide clear information only about the

initial behavior of the flow crystals and the long-time behavior of the quiescent crystals.
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Quiescent crystals may show a reduction in growth rate similar to flow crystals, but these
experiments cannot be used to decide the issue. If quiescent crystals show a similar
decrease in growth rate while they are still small, it would be evidence of kinetic control.
This question must be resolved by additional experiments on quiescent crystals.

The flow experiment, which was designed to simulate the effects of buoyancy-
driven natural convection, was interrupted by difficulties with the syringe pump. Natural
convection is present in the quiescent experiment, however, and quiescent data can be used
to test some hypotheses about the effect of flow on crystal growth. If protein crystal
growth is inhibited by this convection, growth rates should decrease with time. Correlation
coefficients can again be used to test for trends. The correlation matrix of Table 3-4 is not
appropriate for studying long-time behavior because it is dominated by the protein
concentration transient early in the experiment. Tests of the correlation between average
protein concentration and elapsed time at the 95% confidence level show the initial decline
had ended by round 4 (start of interval 5). After 3000 minutes had elapsed, the average
protein concentration was nearly constant, with mean 8.59 mg/ml, standard deviation 0.40
mg/ml, and a range from 8.11 mg/ml to 9.46 mg/ml. These values differ slightly from
those reported in section 2.7 because the quantity of interest here is the average protein
concentration over each interval instead of the measured concentration in each effluent
sample.

The average crystal size doubled from 156 pum at the beginning of interval 5 to 322
pm at the end of the experiment, pl.acing the crystals in the range where convective
transport is expected to be significant {10-12]. The correlation coefficient of growth rate
and elapsed time is r = 0.264 (Table 3-6) based on a sample of 311 measurements. The
standard normal variate is { = 4.75 > {,,; = 1.645. In fact,the probability that a sampie
correlation coefficient as large as 0.264 could have been drawn from an underlying
population with p = 0 is approximately 10-6. The null hypothesis that growth rate is

independent of time (or decreasing) is rejected in favor of the alternative that the growth rate
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is increasing. If the hypothesis were that growth rate is independent of size, the conclusion

would again be that crystals are not slowing as they grow.

Table 3-6
Correlation matrix for quiescent crystals beginning in interval 5.

Imid in Gin Covin Lin
bmid,i,n 1.000
Gin 0.264%** 1.000
Cavin 0.054 0.262%**  1.000
Lin 0.843%%* 0.517%%* 0.054 1.000

Significance: * p < 0.1; ** p < 0.05; *** p <0.01.
The full correlation matrix is symmetric. N = 311.

Any phenomenon that causes protein crystal growth to stop ("cessation of growth")
must become active after the crystal has reached 300 pm in size because there is no
evidence of slowing over the range 150 — 300 um. Crystals are reported to reach a
“critical” size of about 1 mm before they stop growing {14]. This is a tight constraint on
any models which attribute an inhibitory effect to free convection, especially since the
strength of the convective effects increase slowly with crystal size. Based on the scale
analysis mentioned in section 1.5, the characteristic velocity scales as L1/2 and the shear
stress scales as L1/4; at 1 mm, the characteristic velocity and shear stress are only 1.8 and
1.4 times as large as they are at 300 um. Longer, better-controlled growth' experiments

ought to provide a clearer picture of long-term behavior of protein crystals.
n of the Di ion i w
In addition to affecting the mean of the growth rate distribution, flow might affect

the dispersion about the mean. The effect of flow on the dispersion of growth rates can be

studied once the samples have been put on a comparable basis. As mentioned above, the
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sample standard deviations are approximately proportional to the sample means; i.e., 55/ X
= ¥, where y = relative standard deviation. Transforming the sample random variable x
into a new random variable £ = x/X reduces a sample distribution of x having mean X and
variance sfto an equivalent distribution having mean 2 = 1 and variance sz = sf /X 2= y2.
Differences between the transformed sample distributions now result only from differences
in the shape of the empirical distribution functions and can be tested with any technique that
can detect such differences.

An F-test is one method to determine if the dispersion of the normalized growth
rates in the two experiments is consistent with the hypothesis that the underlying
populations are the same. The variances of each normalized sample from the quiescent
experiment are pooled under the null hypothesis that they are independent measures of the
(unknown) variance of the underlying population of quiescent crystals. A similar estimate
is made of the variance of the normalized growth rates from the flow experiment, and the
two estimates are compared to see whether the samples could have been drawn from a
common normal distribution. The unbiased estimator of the quiescent variance is oZ = 6.36
x 10-2 based on N, — 11 = 404 degrees of freedom; the flow variance is o} =5.76 x 10-2
based on Ny— 4 = 206 degrees of freedom. The overall value of F = 1.10 is less than the
estimated value of F.,; = 1.23, so the pooled variances of the two experiments could be the
same at the 95% confidence level. In fact, the pooled variances in the two experiments
differ less than do the estimates within an experiment. If the normalized growth rates are
assumed to follow a log-normal distribution, the results are: og =7.52 x 102, of = 5.35 x
10-2, and F = 1.40 > F_,;. If the growth rates are log-normal, the difference in variance is
significant at the 95% level, and the flow crystals have a narrower distribution than the
quiescent crystals. As before, the difference between experiments is smaller than
differences within experiments.

Sample variances and means are sensitive to outlying values and can vary widely,

especially when the distributions are broad. The nonparametric Kolmogorov-Smirnov test,
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which is less sensitive to outliers than the F-test, can be used to test the hypothesis that the
samples were drawn from an hypothetical distribution. In this case, two forms of the
distribution function are proposed and the Kolmogorov-Smimov test is applied to test for
goodness of fit. The first hypothetical distribution is a normal distribution with mean y =1
and variance 02 = 72, while the second is a log-normal distribution with mean u = 1 and
variance o2 = exp(B?) — 1, where B is the standard deviation of the transformed
(logarithmic) distribution [9]. The normal distribution was chosen because its behavior is
familiar to many engineers; the log-normal distribution was chosen because its standard
deviation is naturally proportional to the mean. For each sample, the upper and lower
bounds for Yand 8 were the maximum and minimum values for which the null hypothesis
was accepted by the Kolmogorov-Smirnov test at the 95% confidence level (see Table 3-7).
By restricting the range of values to those lying between the greatest lower bound and the
smallest upper bound, it is possible to find values for yand B which satisfy all samples
taken from both experiments. The tightest restrictions are placed on yby the flow crystals,
which require 0.165 < y<0.175. (Values of yare reported to tflc nearest one-thousandth
because the limits are so strict.) 8 can range from 0.17 to 0.22. The conclusion of the F-
test under the assumption of a log-normal distribution, namely that the distribution of the
normalized growth rates of flow crystals is narrower than that of quiescent crystals, agrees
with the results shown in Table 3-7.

Goodness-of-fit tests can also be applied to crystal size distributions. Dispersion in
the initial crystal size distribution partially masks changes in the shape of the distribution
with time, so a better sense of the cumulative effect of growth rate dispersion can be gained
from an examination of net crystal growth. The net growth, L; , — L; s, is also suitable
for goodncss-of-ﬁt.testing and is insensitive to the initial size dispersion. Reference
lengths were chosen to be L;; for the quiescent experiment and L;> for the flow
experiment. A single normal distribution can describe the net growth as long as the relative

standard deviation is in the range 0.13 < y< 0.15; a log-normal distribution describes the
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data if 0.13 < B < 0.22 (Table 3-8). No clear choice can be made between these two
proposed distributions, so later tests are performed on both the raw values and their

logarithmic equivalents.

Table 3-7

Extreme standard deviations of normalized growth rate distributions from
Kolmogorov-Smimov goodness-of-fit tests.

Round Normal distribution Log-normal distribution
Ymin Ymax pmin ﬂmax
Quiescent
2 0.099 0.609 0.10 0.47
3 0.092 0.409 0.10 0.51
4 0.077 0.340 0.08 0.38
5 0.104 0.515 0.12 0.50
6 0.153 0.698 0.16 0.50
7 0.094 0.456 0.10 0.45
8 0.132 0.561 0.13 0.44
9 0.086 0.499 0.09 0.37
10 0.117 0.400 0.12 0.39
11 0.110 0.411 0.12 0.42
12 0.133 0.569 0.15 0.58
Flow
3 0.095 0.175 0.10 0.22
4 0.158 0.220 0.15 0.35
5 0.114 0.396 0.13 0.36
6 0.165 0.491 0.17 0.43
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Table 3-8

Extreme standard deviations of normalized net growth distributions from
Kolmogorov-Smirnov goodness of fit tests.

Round Normal distribution Log-normal distribution
Ymin Ymax pmin pmax
Quiescent
2 0.08 0.58 0.08 0.46
3 0.07 0.40 0.07 0.35
4 0.08 0.32 0.08 0.31
5 <0.05 0.34 <0.05 0.34
6 0.09 0.39 0.09 0.45
7 0.09 0.37 - 0.09 0.46
8 0.11 0.39 0.11 0.45
9 0.11 0.40 0.12 0.44
10 0.12 0.37 0.13 0.40
11 0.12 0.31 0.13 0.40
12 0.12 0.31 0.13 0.39
Flow
3 0.09 0.15 0.09 0.22
4 0.09 0.25 0.09 0.24
5 0.11 0.26 0.10 0.23
6 0.13 0.29 0.12 0.25

The results presented in this section suggest that crystals grown under nominally
quiescent conditions have a greater relative dispersion in growth rates than crystals
subjected to flow. Growth rate measurements have ranges of 120 — 130% of the mean for
both flow and quiescent crystals. The wide distribution of rates produces "outlying” points
frequently, causing large fluctuations in sample means and variances which weaken the
ability of the F-test to discriminate between the two experiments. Kolmogorov-Smirnov
goodness-of-fit tests show that all samples in both experiments could have been drawn
from the same underlying population but cannot distinguish between proposed normal and

log-normal distributions. Other than the narrower distributions in the flow experiment,
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there is no statistically significant difference between the two experiments. The shapes of
growth rate and net growth distributions from the two experiments are similar and change
only slightly over the course of the experiment. One inference from these results is that the
same basic distribution of growth mechanisms is present in both cases. A second
inference, based on the approximately constant relative standard deviation of the growth

rate, is that whatever mechanism retards crystal growth is proportional to the growth rate.

1.6 Local Envi S f Vari

The large range of growth rates discussed above may result from an inherent
phenomenon of protein crystal growth or from heterogeneities in local environment. Rank
order of crystal growth rates provide insight into how well "mixed" the distribution of
growth rates is. If crystal growth rates are drawn from a single population, one might
expect the rank assigned to a certain crystal to vary throughout the experiment in some
random fashion. If all the crystals are equivalent, the final rankings should be only weakly
correlated with initial rankings. A high degree of correlation, on the other hand, would
indicate that the initial growth rate dominates the behavior of the sample, environmental
influences dictate growth rate distributions, or both.

For each experiment, Spearman rank correlation coefficients, rs, were calculated for
both the growth rate over each interval and the net growth (Tables 3-9 and 3-10). Most of
the correlation coefficients are significantly greater than zero. The overall agreement of the
rankings can be tested with the Kendall coefficient of concordance, W. The average
Spearman correlation coefficient is related to the Kendall coefficient of concordance by 7
= (kW — 1)/(k - 1), where k = number of sets of rankings [1]. The significance of W can
be tested with the statistic x = k (N — 1)W, which has a ¥2 distribution with N - 1 degrees
of freedom; N = sample population . N =32 and k = 11 in the quiescent experiment, while
the flow experiment has N = 51 and k = 4. Quiescent growth rates are internally correlated

with 75 rge = 0.39, W4, = 0.44, and x,4,, = 152; rankings of quiescent net growth give
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Table 3-10
Spearman correlation matrix for flow crystals

Round
Round 3 4 5 6
3 1.000 0.424%%+ 0.232%* 0.440%**
4 0.883%** 1.000 0.426%%+ 0.474%*+
5 0.651%** 0.811%#* 1.000 0.548%**
6 0.613%** 0.74] %** 0.548%** 1.000

Significance: * p < 0.1; ** p <0.05; *** p <0.01.

The full matrix is symmetric. Correlations of growth rates are in upper right half;
correlations of net growth are in lower half. N =51.

TS.ner= 0.74, Wy = 0.77, and Xner = 262. Both Xr4e and xper €xceed the critical value of
xcz,‘-, = 44.7 (p < 0.05, 31 df), so the internal correlation is deemed significant. Flow
crystals follow the same pattern, with 75z, = 0.42, W;ge = 0.57, and xrq1e = 114, while
Tsnet = 0.77, Wy = 0.82, and xp = 165; xcz,,-, = 67.2 (p < 0.05, 50 df). The overall
consistency of the rankings reflects the breadth of the growth rate distributions and
suggests there may be an inherent reason why some crystals grow faster than others during
the experiments.

The rankings of growth rate have statistical significance, but the reasons are
unknown. Factors governing the relative growth rates can be divided into two classes:
initial conditions, and environmental factors which determine long-term behavior. The
current experiments provide no insight into the early stages of crystal growth, but can be
used to determine whether environmental factors contribute to the apparent stratification ’of
the growth rate distribution. The significance of environmental effects is tested in the same

fashion as before: a suitable null hypothesis is presented and the statistical test provides the
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criterion for acceptance or rejection. The focus of the experiments is on possible transport
effects, so it is natural to examine environmental variables which could affect the
accessibility of growing crystals. The local environment of a target crystal is defined to be
the region within which a neighbor would perturb the depletion zone surrounding a
diffusion-controlled spherical crystal. A quasi-steady analysis shows the range of the
depletion region around such a crystal is approximately L/2, where L is the characteristic
length (equivalent diameter) of the crystal. The three major variables which were tested for
significance were: crowding, location, and contact.

Two crystals are said to crowd each other when their depletion layers overlap (their
nearest surfaces are within L of each other). The final image of each crystal was displayed
on the monitor and measured with a scale to obtain an estimate of L. The relative crowding
of a given crystal is the number of neighbors lying within an envelope of thickness L
surrounding the target crystal. If the target crystal was touching its neighbors, it was
classified as "in contact;" otherwise, it was "no contact.”" Contact can be considered a
severe (but difficult to quantify) form of crowding, which is why it is included in the list of
environmental variables. The crystal's location was further divided according to
center/edge and top/bottom dichotomies. A crystal was at the edge if its nearest surface
was within L of a side wall, otherwise it was in the center. Top and bottom classifications
were assigned according to the sampling sequence, as described in more detail where the
test results are presented. Note that these classifications were made based on the final
image of the crystal.

One-way ANOVA was performed on the growth rates over each interval to assess
the significance of crowding as an environmental variable. As summarized in Table 3-11,
crowding has a sig.niﬁcant effect on growth rate only over the first interval of each
experiment. The results are the same when In G is the dependent variable. The apparent
early significance of crowding may be an aberration, at least for the quiescent experiment,

because crowding is not judged significant at the 95% confidence level by the
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nonparametric Kruskal-Wallis test. Over the course of the experiment, it seems that

crowding does not play a large role in determining crystal growth rates.

Table 3-11
Effect of crowding on crystal growth rates.

Round ANOVAL1t ANOVA2# Kruskal-Wallis
F F H
Quiescent . '
2 2.539* 3.375+ 5.599
3 0.817 0.860 2.998
4 0.597 0.563 1.771
5 0.557 0.488 1.944
6 0.162 0.177 1.144
7 0.290 0.190 0.976
8 1.244 0.997 2.711
9 0.201 0.182 0.778
10 1.084 1.000 3.414
11 1.918 1.888 6.144
12 0.797 0.836 2.587
Flow
3 2.729* 2.915* 8.925%*
4 0.335 0.200 0.250
5 0.872 0.844 2.425
6 0.760 0.396 1.296

Significance: * p < 0.1; ** p <0.05; *** p <0.01.
1 Analysis of variance performed on calculated growth rates.
1 Analysis of variance performed on natural logarithm of calculated growth rates.
The proximity of a side wall consistently affects growth rates of quiescent crystals,
at least according to all tests except the Wald-Wolfowitz runs test (Table 3-12). The effect
first becomes significant during interval 3 and remains significant for the duration of the

experiment. Apparently, the protein concentration was lower at the side walls than near the
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Table 3-12
Effect of lateral location on crystal growth rates.

Mann— Kolmogorov Wald-
Round ANOVA1t | ANOVA2} Whitney —Smirnov Wolfowitz
F F U X runs
Quiescent

2 2.155 1.675 84 5.303* 15

3 7.811%%* 0.220%** 65** 6.574%* 12

4 5.592%* 5.510%* 84»» 7.900** 20

5 7.834 %% 7.032%% Ul Ak 8.202%* 16

6 7.435%>* 3.446* X bl 12.315%** 12%*

7 6.636%* 8.105%** g7 %% 7.786%* 13*

8 9.368*** 5.967** TS*** 9.494%** 16

9 11.907*** 9.074%*x G3%** 11.029%** 16
10 12.733%*% | 12.73]%%* TO*** 0.494%** 10 %+
11 5.902%* 6.351%* 104> 4.952* 16
12 12.896%** | 12.916%** 73 b 12.678%** 12%*

Flow

3 0.878 0.933 187 2.196 19

4 0.745 1.472 198 2.352 16

S 0.069 0.010 210 1.413 15

6 0.232 0.484 207 1.236 18

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.

* Analysis of variance performed on calculated growth rates.

1 Analysis of variance performed on natural logarithm of calculated growth rates.

center. The flow of fresh feed solution through the cell may have left stagnant regions near
the walls. There is no obvious reason why the concentration should differ bctweén center
and edges, but depletion of protein by the growing crystals does not seem to be the cause.
If the crystals are divided into two groups based on their locations, and their growth rates
over intervals 5 - 12 are correlated with both elapsed time and crystal size (as was done in

section 3.3), there is no indication that the two groups show different trends (Table 3-13).
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Examination of the means and standard deviations of the two groups shows that crystals at
the edge grow slower and display a greater relative variability than those in the center

(Table 3-14). Crystals from the flow experiment show no significant effect of location.

Table 3-13
Correlation matrix for center and edge quiescent crystals beginning in round 5.
Imid,in Gin Lin
tmid,in 1.000 0.248% %+ 0.843%*+*
Gin 0.318%** 1.000 0.483%**
Lin 0.886*** 0.478%*x* 1.000

Significance: * p < 0.1; ** p <0.05; *** p <0.01.
The full correlation matrix is symmetric. Edge crystal correlations are shown in the upper
right half of the matrix; center crystals are in the lower left. No=111and N. = 200.

The differences between quiescent crystals in the center of the cell and those at the
edge may result from inhomogeneities in the local environment produced by sporadic flow
| through the cell. There may also be a top/bottom variation similar to the center/edge effect
already presented. As discussed in section 2.6, the sequence in which crystals were
digitized progressed generally from top to bottom in the quiescent experiment and from
bottom to top in the flow experiment. Crystals can then be classified as "top" or "bottom"
depending on where they fall in the sampling sequence. For purposes of testing the null
hypothesis that there is no diffcrenc'e between top and bottom, the first 19 quiescent
crystals were designated top and the last 20 were bottom. Likewise, the first 26 flow
crystals were bottom and the last 27 were top. Comparisons of the growth rates of the two
groups are shown in Table 3-15. Height seems significant in the early rounds of the
quiescent experiment, but its significance becomes less consistent as the experiment

progresses. Results for the flow experiment are mixed, with no obvious pattern. When
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net growth is examined (Table 3-16), the early significance of height in the quiescent
experiment dominates the results. The cumulative effect of height is probably significant (p
<0.1) in the flow experiment.

Table 3-14
Comparison of quiescent center and edge crystals.

Growth rates (nm/min) Net growth (um)
Round Center Edge Center Edge
Mean Std. dev. Mean Std. dev.] Mean Std. dev. Mean Std. dev.
2 2230 5.38 19.64 3.63 1422 3.42 13.68 243
3 1598 3.16 1290 2.94 40.71  6.11 34.68 4.17
4 11.90 1.67 10.52 176 76.03 8.34 6590 7.42
5 6.68 1.52 526 140 95.29 11.90 80.76 9.93
6 6.89 190 511 206 |120.19 17.84 98.60 14.43
7 6.68 1.14 541 194 13594 19.10  111.61 16.95
8 8.13 1.88 6.10 220 |157.36 23.24 126.73 19.47
9 9.70 1.78 7.52 210 |18556 26.20 147.41 2142
10 9.14 137 722 198 [210.68 28.39 166.70 25.00
11 7.76  1.32 6.65 1.48 ]23370 2890 185.86 26.61
12 g.01 1.70 590 1.86 |255.41 3043  202.10 30.33

Reported standard deviation is unbiased estimate for the population, s [N /(N - N2,
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Table 3-15
Effect of height on crystal growth rates.

Mann- Kolmogorov Wald—
Round ANOVAI1t | ANOVA2? Whitney ~Smirmov | Wolfowitz
F F U 72 runs
Quiescent

2 3.400* 2.649 764+ 8.000%* 15

3 6.178%* 5.477%+ 79%++ | 10.111%+* 13*
4 4.385%+ 4.996%* 115% 7.443%+ 16
5 13.310%*% | 12.556%++ 70%++ | 11.463%++ 16
6 11.950%** | 11.368%*+ T9%s+ | 11.122%%+ 15
7 7.146%* 6.410* 111%* 6.154%* 20
8 2.367 8.413%%* | 123+ 7.709%* 17
9 1.295 0.708 146 3.446 20
10 5.619%+ 6.098%* 111%+ 9.438% %+ 19
11 0.002 0.140 186 3.326 17
12 0.767 1.325 172 6.073%+ 16

Flow

3 3.110* 2.804 273 2.833 24
4 6.478%* 5.443%* 236%* 6.401%* 24
5 0.260 0.127 290 4.257 26

6 1.606 0.825 296 6.506%* 21*

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.

T Analysis of variance performed on calculated growth rates.

* Analysis of variance performed on natural logarithm of calculated growth rates.



Table 3-16
Effect of height on net crystal growth.

Mann- Kolmogorov Wald—
Round ANOVAI1t | ANOVA2+¢ Whitney —Smimov | Wolfowitz
F F U 72 runs
Quiescent

2 5.068** 4.974%* 71+ 8.000%* 14

3 0.276 0.200 113 1.125 19

4 5.314%* 5.770%* 78.5% 6.125%* 18

5 8.435%** 9.234%%+ 63%* 8.000** 16

6 11,059%%% | 12.045%** S54%** 10.125%** 14

7 11.194%%% | 12, 167*** 59%*x 12.500%** 12

8 10.202%** | 11.066*** §9*** 10.125%%* 16

9 8.081%** 8.773%** 68** 10.125%** 14
10 8.290*** 8.917%** 69** 10.125%** 14
11 7.668%** 8.554%x* 70** 10.125+~* 15
12 7.084%* 8.001%** 75%* 10.125%** 11%*

Flow

3 2.408 2.090 279 2.206 30

4 2.597 2.066 301 2.305 32

5 3.311% 2.524 230* 4.890* 23

6 2.929* 2.182 229+ 5.491* 29

Significance: * p < 0.1; ** p < 0.05; *** p <0.01.

t Analysis of variance performed on net growth.
$ Analysis of variance performed on natural logarithm of net growth.

106




Crystals in the upper half of the cell have narrower distributions of growth rates and
net growth than do those in the lower half (Table 3-17). The behavior of the mean growth
rate is different in the two experiments: crystals at the top grow faster than those at the
bottom during the quiescent experiment, but slower during the flow experiment.
Correlation matrices (Tables 3-18 and 3-19) show that the growth rates of top crystals are
more negatively correlated than bottom crystals with both elapsed time and crystal size.
The significance of the differences in correlation coefficients can be tcstcd with the statistic
x = (z; - 2,)/(6} + 6)"/2, which is approximately normal (0,1). As before, z = (1/2) In
[(1 +r)/(1-r)]) and 62 = (N - 3)-1. The correlations of growth rate and time give values
of x = —1.64 for the quiescent experiment and x = —1.38 for the flow experiment. When
the null hypothesis x = 0 is tested against the alternative x < 0, both values are probably
significant (p < 0.1) in one-tailed tests. Correlations of growth rate and crystal size yield
values x = -3.86 and -3.14, both of which are highly significant (p < 10-3) in one-tailed
tests. Although the reason is not apparent, height seems to influence the trends in crystal
growth.

The effect of crystal contact on growth rate is intermittently significant according to
ANOVA on both G and In G (Table 3-20). The nonparametric Mann-Whitney U test
confirms the significance of contact over rounds 3, 6, 8, 9, and 10 of the quiescent
experiment. The Kolmogorov-Smirnov two-sample test finds contact is at least probably
significant (p <'0.1) in all rounds but 2, 7, and 11. The Wald-Wolfowitz test is alone m
failing to reject the null hypothesis. Identical tests on flow crystals uniformly show that
crystal contact is not significant. The apparent significance of contact beginning in round 3
of the quiescent experiment is puzzling. On physical grounds, the effects of contact are not
expected to be important until the crystals are in contact or at least near contact. Tests for
independence (§3.6) show that the probability of classifying a quiescent crystal as ';in
contact” depends on its height, so the apparent early significance of contact is actually a

product of top/bottom variations.
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Table 3-17
Comparison of top and bottom crystals.

Growth rates (nm/min) Net growth (um)
Round Top Bottom Top Bottom
Mean Std. dev. Mean Std. dev.] Mean Std. dev. Mean Std. dev.

puicsccm
2

2294 543 19.83  4.03 12.88 2.79 15.19 3.01

3 16.37 3.70 13.70  2.62 39.22 6.88 38.06 5.55
4 12.06 1.26 10.87 2.03 76.10 7.25 68.99 9.97
5 7.06 1.15 5.41 1.59 96.35 9.58 84.24 13.64
6 7.31 1.24 525 231 122.74 1274 102.79 20.33
-7 6.86 1.37 5.61 1.55 138.65 13.21 116.50 22.95
8 795 235 6.88 1.97 159.85 1741 133.81 27.57
9 9.32 208 854 221 186.27 20.69 158.62 32.95
10 913 114 7.80 2.16 |211.24 23.05 179.88 39.96
11 7.38 0.99 7.36 1.83 23327 2284 201.24 40.23
12 7.54 1.59 698 236 [254.05 23.60 220.12 45.22
{Flow
3 20.03 2.42 21.64 4.00 38.17 4.60 40.85 7.56

4 16.64 3.06 2000 6.13 53.76 6.07 58.02 12.14
5 1590 3.53 16.41  3.79 85.30 9.67 92.48 17.78
6 13.15  2.75 14.47 4.61 125.55 17.06 136.95 29.54

Reported standard deviation is unbiased estimator for population, s [N /(N - 1)]1/2,
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Table 3-18
Correlation matrix for top and bottom quiescent crystals beginning in round 5.

Imid,i,n Gin L,

Imid,i,n 1.000 0.178%* 0.917*%=*

Gin 0.352%%+ 1.000 0.300%**
Lin 0.830%*+* 0.634%%* 1.000

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.
The full correlation matrix is symmetric. Top crystal correlations are shown in the upper
right half of the matrix; bottom crystals are in the lower left. N, =151 and N = 160.

Table 3-19
Correlation matrix for top and bottom flow crystals.

tmidin Gin Li,

Imid,in 1.000 -0.638%** 0.868***

Gin —0.510%** 1.000 —0.472%*+
Lin 0.787*%** -0.073 - 1.000

Significance: * p < 0.1; ** p < 0.05; *** p <0.01.

The full correlation matrix is symmetric. Top crystal correlations are shown in the upper
right half of the matrix; bottom crystals are in the lower left. N, =109 and N, = 102.
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Table 3-20
Effect of contact on crystal growth rates.

Mann- Kolmogorov Wald-
Round ANOVAILt | ANOVA2: Whitney ~Smirmov Wolfowitz
F F U 22 runs
Quiescent .

2 1.317 1.129 86 1.911 15
3 7.454%* 8.255%** 57+ 9.740%*%* 12

4 2.775 2987+ 107 4.683* 16

5 1.552 0.929 107 6.240 17

6 15.030*%* | 11.660*** 56%** 12.037%%* 16

7 0.015 0.062 156 1.641 16

8 17.084*%* | 14 858*%* 48 %¥* 11.670*** 14

9 15.394%*+ 14.059*** 61 *** 0.9]17%** 12*
10 8.804%** | 10.176*** Q2% *x 6.293** 18
11 2.702 3.287* 123 3.490 20
12 4.957** 5.544%* 98* 7.704** 16

Flow

3 0.016 0.006 195 2.709 15

4 0.252 0.225 176 1.898 17

5 1.391 0.966 164 2.202 17

6 0.386 0.250 191 3.012 17

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.

t Analysis of variance performed on calculated growth rates.
1 Analysis of variance performed on natural logarithm of calculated growth rates.

It seems odd that the effect of contact should differ in the two experiments. If the
effect results from physical contact, one would not expect forced convection to mitigate the
effect. The absence of an effect in the flow experiment may reflect shortcomings in both
the experiment and the analysis. It is possible that the flow experiment may simply have
ended before the impact of contact was apparent. Final images of flow crystals in contact,
however, show that some of them are highly intergrown. If contact had an effect in the

flow experiment, it should have been evident in these crystals. A more plausible
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explanation, although one which cannot be tested rigorously with current image analysis
routines, is that the apparent reduced growth rates derive from restrictions placed on the
data analysis method. The crystal dimensions reported are those corresponding to the best-
fit ideal crystal which can be superimposed on a given image; growth rates are obtained by
calculating how these ideal dimensions change with time. For highly asymmetrical
crystals, these ideal dimensions may not accurately reflect the true size. The data analysis
routine determines some sort of average growth rate; asymmetries due to contact reduce the
average growth rate by eliminating the contribution of those faces in contact with
neighbors. The orientation of crystals in contact with their neighbors may differ in the two
experiments so that {110]) faces in the quiescent experiment are more occluded than those
in the flow experiment. A thorough survey of all images is required to determine if this
explanation is reasonable. Future experiments should resolve the issue.

Three environmental variables, location, height, and contact, were found to have
significance in the quiescent experiment. In order to determine whether each variable
predicts an independent portion of the total variance, a three-way ANOVA was performed
on the net growth of quiescent crystals with location, height, and contacts as independent
variables. The findings are summarized in Tables 3-21 (net growth) and 3-22 (logarithm of
net growth). As mentioned above, contact is not found to be significant until later in the
experiment, when crystals are in near contact. Each of the three variables accounts for a
different portion of the sample variance, so it is not surprising the quiescent crystals have a
broader distribution than the flow crystals, which can be separated only by height.

Statistically significant variation in local environment (as defined by crystal contact
and location) has been found in both the flow and quiescent experiments. Undoubtedly,
this heterogeneity contributes to the apparent differences in behavior of flow and quiescent
crystals, but the experiments conducted so far provide no way to assess this contribution.
The current experiments suggest there are some effects of flow, but results such as these

must remain suggestive until other factors have been eliminated as causes. Although
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environmental factors confuse the interpretation of the growth experiments in the short
term, the results of this section provide a guide for increasing the utility of future

experiments: redesign the experiment to make crystal environments more uniform.

Table 3-21
Three-way ANOVA of net growth of quiescent crystals.

Height Contact Location Interactions
Round A) B) © (AB) (AC) BC) (ABC)
2 3.68* 0.27 0.33 0.17 <0.01 <0.01 0.16
0.34 5.13%k 7. 35%* 0.20 0.41 0.79 1.07

3.69* 2.47 7.42%* 0.32 <0.01 <0.01 1.94
6.27%* 1.40 8.55%**  0.26 0.02 10.03 2.37
8.84%*x  320% 8.30%**  0.92 0.03 0.02 1.61
10.34***  1.49 7.54% 0.92 0.21 0.08 1.12
7.29%* 4.19*  10.62***  0.31 0.10° 0.06 2.35

O 00 N O W AW

5.40%* 8.14*%* 16.20***  0.08 0.45 0.16 4.56%*
10 5.76%* 9.25%** 18.74%**  0.05 0.34 0.43 4.67%*
11 6.04** 8.72*%x* 18.86*%**  0.07 <0.01 0.01 3.71*

12 5.71%* 7.92%** 19.71*** (.10 0.06 0.28 3.01*

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 3-22
Three-way ANOVA of logarithm of net growth of quiescent crystals.

Height Contact Location Interactions
Round (A) (B) ©) (AB) (AOC) (BO) (ABC)
2 3.18* 0.20 0.18 0.32 0.01 <0.01 0.10

0.62 7.04**  920%*** 0.35 0.79 1.64 1.97
4.19* 2.70 7.52%* 0.38 0.01 0.03 1.80
7.07%* 1.53 8.62%** (0.25 <0.01 0.06 2.22
9.84%¥*  3.50* 7.76%* 1.03 <0.01 0.06 1.33
11.48%%* 1.45 7.11%* 0.94 0.38 0.06 092
8.03%**  424*  10.13***  0.30 0.04 0.12 2.14
5.88%* 8.90%** 16.06***  0.05 0.47 0.33 477+
10 6.20%*  10.22%** 18.99%** (.02 0.35 0.77 4.84%*
11 7.01** 9.28*¥* 19.68***  0.05 <0.01 0.29 3.71*

O 00 N O v b W

12 6.70%* 8.40%** 20.40*** 0.08 0.11 0.57  2.83

Significance: * p <0.1; ** p < 0.05; *** p <0.01.

f Sampl ies Not Rel w
Differences in the behavior of the sample populations may result from differences in
the way samples were selected. Sampling biases may skew the selection of crystals so
that, for example, one experiment may have a much higher percentage of edge crystals than
the other. In what follows, the samples are compared with each other to determine if
sampling biases could be responsible for the effects noted in section 3.6. Inferences about
the underlying population can be drawn only if one is willing to assume that the samples

are representative of the population, an assumption that cannot be tested independently.
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The following tests use contingency tables and the 22 statistic to test for sampling
homogeneity between the two ckperimcnts. For example, the contingency table of
crowding level in the two experiments is given in Table 3-23. Under the null hypothesis
that the distribution of crowding levels is the same in both experiments, the marginal values
provide estimates of the probability of each class: 16.30% with none, 45.65% with low,
26.09% with medium, and 11.96% with high. The expected number of crystals with a
given crowding level is computed for each experiment and the total ¥2 is then calculated
and checked for significance. In this case, 32 = 6.74 < 2, = 7.81, so the hypothesis is

accepted that the crowding class frequencies are the same in both experiments.

Table 3-23
Contingency table of crowding and experiment

Expenment
Crowding Quiescent Flow Totals
Observed Expected Observed Expected
None 3 (6.36) 12 (8.64) 15
Low 19 (17.80) 23 (24.20) 42
Medium 14 (10.17) 10 (13.83) 24
High 3 (4.66) 8 (6.34) 11
Totals 39 53 92

A contingency table for location is given in Table 3-24. With 22 = 2.60, the
fraction of sample crystals taken from the edge regions is seen to be the same in each
experiment. The probability of selecting crystals in contact with others was also checked

against the null hypothesis. The observed marginal values (Table 3-25) show that 76.09%

of those crystals sampled should have no contact with their neighbors. A value of 2=

1.75 < xcz,,-,= 3.84 suggests that no real difference exists between the experiments. The x?2
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tests of class frequencies indicate the samples in the two experiments are homogeneous,

and differences between the two experiments cannot be attributed to sampling differences.

Table 3-24
Contingency table of location and experiment.

Experiment
Location Quiescent Flow Totals
Observed Expected Observed Expected
Center 25 (28.40) 42 (38.60) 67
Edge 14 (10.60) 11 (14.40) 25
Totals 39 53 92
Table 3-25

Contingency table of contact and experiment.

’ Experiment
Contact Quiescent Flow Totals
Observed Expected Observed Expected
No contact 27 (29.67) 43 (40.33) 70
In contact 12 (9.33) 10 (12.67) 22
Totals 39 53 92

Comparisons of the sample orientation distributions can be made to decide if: (i) the
crystals in the two experiments could have been drawn from the same population, and (ii)
there is a preferred orientation. Mann-Whitney, Kolmogorov-Smirnov, and Wald-
Wolfowitz tests were used to decide the first issue; ANOVA was not used since there is no
reason to believe that either 6 or ¢ is normally distributed. The Kolmogorov-Smimov two-
sample test (Table 3-26) indicates the difference in 8, orientations of the z-axis between the
two experiments is highly significant (p < 0.01), while the difference is probably

significant according to the Mann-Whitney U test (p < 0.1). The sample distributions of ¢,
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could well have been drawn from the same distribution. The existence of preferred
orientations is tested by comparing the observed sample cumulative distribution function
with the appropriate uniform distribution function under the null hypothesis. For 6, the
appropriate cumulative distribution function is F(6,) = 1 — cos 6,, where n = the rank of
the observation; the observed sample cumulative distribution function of ¢ is compared
with F(¢,)=¢,/360". The cumulative distribution functions are shown in Figures 3-3 and
3-4. At the 95% confidence level, the Kolmogorov-Smimov tests reject the null hypothesis
that the crystal orientations are uniformly distributed over 6and ¢ in favor of the alternative

that some orientations are preferred.

Table 3-26
Comparison of orientation distributions.

Kolmogorov-
Mann-Whitney Smimov Wald-Wolfowitz
Angle U 72 runs
6, 824* 0.84%** 38
9. 876 4.99 50

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01.

Contingency tables can also be used to assess whether class frequencies of the
independent variables are in fact independent events. Earlier, the probability a quiescent
crystal is in contact was said to be dependent on its height. The contingency table for
height and contact in the quiescent experiment is shown in Table 3-27; the expected values
based on the marginal values are also given in the table. If contact and height are
independent, the cell totals would be the product of sample size and the marginal
probabilities. The total 2 = 3.90 > x2.=3.84 (p < 0.05), so the null hypothesis of
independence is rejected. Contact and height are independent events in the flow

experiment; 2 = 1.79 (Table 3-28). If the marginal totals for each experiment are replaced
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by the marginal totals for the pooled experiments, the results are the same, with xqz = 5.61
> xcz,,-, and ;(,2 =225 < xcz,,-,. Contingency tables (Tables 3-29 and 3-30) suggest that
height is independent of crowding level (x? = 5.47 < x2 =5.77 < x%, = 1.81, p < 0.05),
and that height and location (Tables 3-31 and 3-32) are also independent (g(f2 = 0.07 < x?
=148 <yl =3.84)

1.0

\O

1-cos &

(> ]

6 quiescent

coooo
~J
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cumulative probability

0 10 20 30 40 50 60 70 80 90
92 (degrees)

Figure 3-3: Cumulative distribution function for 6,.

The observed frequency tables for location and crowding for the experiments are
given in Tables 3-33 and 3-34. The calculated values of x? = 4.88 and x? = 3.53 are
consistent with the hypothcsis that crowding level and location are independent; i.e., the
number of neighbors present does not depend on where the crystal is located. There may
be some association between location and contact in the quiescent experiment (Table 3-35;
22=319> X2, =2.71,p <0.1, 1 df), but location is independent of contact in the flow
experiment, as shown in Table 3-36 (x} = 0.87). Finally, the probability that a crystal is in
contact with a neighboring crystal is shown to be independent of crowding level, provided
there is at least one neighbor (Tables 3-37 and 3-38; lﬁ =3.04 < xfz = 3.56 < xin., = 4.61,
p <0.1, 2 df). Only crystals with neighbors have been included in Tables 3-37 and 3-38.
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Figure 3-4: Cumulative distribution function for ¢,.
Table 3-27
Contingency table of height and contact for quiescent crystals.
Contact
Height No contact In contact Totals
Observed Expected Observed Expected
Top 16 (13.15) 3 (5.85) 19
Bottom 11 (13.85) 9 (6.15) 20
Totals 27 12 39

With the possible exception of crystal orientation, tests for sampling bias fail to find
any statistically significant differences between the samples chosen for each experiment.
The effect, if any, of crystal orientation on growth is unknown. Forced convection is not
responsible for differences in crystal orientation, however, because nucleation and
attachment of crystals to the walls of the growth cell occur during the initial period of
quiescence. Classifications according to crowding, location, height, and contact are found

to be mutually independent, except for some association between height and contact in the
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quiescent experiment. Differences in the behavior of quiescent and flow crystals cannot be

attributed to disparities in sample selection.

Table 3-28
Contingency table of height and contact for flow crystals.

Contact
Height No contact In contact Totals
Observed Expected Observed Expected
Top 20 (21.91) 7 5.09) 27
Bottom 23 (21.09) 3 (4.91) 26
Totals 43 10 53
Table 3-29

Contingency table of crowding and height for quiescent crystals.

Height
Crowding Top Bottom Totals
Observed Expected Observed Expected
None 2 (1.46) 1 (1.54) 3
Low 12 (9.26) 7 (9.74) 19
Medium 5 (6.82) 9 (7.18) 14
| High 0 (1.46) 3 (1.54) 3
Totals 19 20 39
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Contingency table of crowding and height for flow crystals.

Table 3-30

Height
Crowding Top Bottom Totals
Observed Expected Observed Expected
None 9 6.11) 3 (5.89) 12
Low 10 (11.72) 13 (11.28) 23
Medium 3 (5.09) 7 4.91) 10
High 5 (4.08) 3 (3.92) 8
Totals 27 26 53
Table 3-31
Contingency table of height and location for quiescent crystals.
Location
Height Center Edge Totals
Observed Expected Observed Expected
Top 14 (12.18) ) (6.82) 19
Bottom 11 (12.82) 9 (7.18) 20
Totals 25 14 39
Table 3-32
Contingency table of height and location for flow crystals.
Locaton
Height Center ‘ Edge Totals
Observed Expected Observed Expected
Top 21 (21.40) 6 (5.60) 27
Bottom 21 (20.60) 5 (5.40) 26
Totals 42 11 53
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Table 3-33
Contingency table of crowding and location for quiescent crystals.

Location
Crowding Center Edge Totals
Observed Expected Observed Expected
None 1 (1.92) 2 (1.08) 3
Low 14 (12.18) 5 (6.82) 19
Medium 7 (8.97) 7 (5.03) 14
 High 3 (1.92) 0 (1.08) 3
Totals 25 14 39
Table 3-34

Contingency table of crowding and location for flow crystals.

Location
Crowding Center Edge Totals
Observed Expected Observed Expected

None 10 (9.51) 2 (2.49) 12

Low 16 (18.23) 7 4.77) 23

Medium 8 (71.92) 2 (2.08) 10
 High 8 (6.34) 0 (1.66) 8

Totals 42 11 53
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Contingency table of contact and location for quiescent crystals.

Table 3-35

Location
Contact Center Edge Totals
Observed Expected Observed Expected
No contact 20 (17.31) -7 (9.69) 27
In contact 5 (7.69) 7 (4.31) 12
Totals 25 14 39
Table 3-36
Contingency table of contact and location for flow crystals.
Locanon
Contact Center Edge Totals
Observed Expected Observed Expected
No contact 33 (34.08) 10 (8.92) 43
In contact 9 (7.92) 1 (2.08) 10
Totals 42 11 53
Table 3-37
Contingency table of crowding and contact for quiescent crystals.
Contact
Crowding No contact In contact Totals
Observed Expected Observed Expected
Low 15 (12.67) 4 (6.33) 19
Medium 7 (9.33) 7 (4.67) 14
High 2 (2.00) 1 (1.00) 3
Totals 24 12 36
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Table 3-38
Contingency table of crowding and contact for flow crystals.

Contact
Crowding No contact In contact Totals
Observed Expected Observed Expected
Low 19 (17.39) 4 (5.61) 23
Medium 8 (7.56) 2 (2.44) .10
_I-_h_‘_gh 4 (6.05) 4 (1.95) 8
Totals 31 10 41

These experiments clearly show a feature of protein crystal growth which has not
yet been fully appreciated, namely that there is an inherently large variation in crystal
growth rates and sizes. In both of the experiments reported here, growth rates have a range
of 120% of the mean. Crystal growth tended to slow in both experiments, but there was a
qualitative difference between quiescent crystals and those exposed to weak convection.
The growth rates of crystals in the quiescent experiment generally tracked the measured
protein concentration, while flow crystals exhibited a slowing of growth even when
exposed to a slightly increased protein concentration. The flow experiment was terminated
by equipment problems after only 5000 minutes had elapsed; at the same point in the
quiescent experiment, the mean crystal growth rate had just completed what proved to be an
initial downward transient. The effects of flow on average crystal growth rates cannot be
determined unambiguously from these experiments because the flow experiment provides
clear information about short-term behavior and the quiescent experiment gives details
about long-term behavior.

The behavior of quiescent crystals after the initial transient provides some hint of

the effect of natural convection on the growth of lysozyme crystals. Over the final 10,000
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minutes of the experiment, when protein concentration was approximately constant, there is
no evidence that crystal growth rates slowed as a result of flow. The average (110}
dimension of these crystals approximately doubled from 156 um to 322 um during this
time, placing the crystals in the size range where convective flow might be significant. The
absence of a statistically significant effect over this size range suggests that retardation of
growth occurs either early in crystal growth, in which case flow is not responsible, or at
larger crystal sizes, which, in light of the reported "cessation of growth” phenomenon,
requires the effect to be relatively abrupt. Future longevity studies of protein crystal
growth should yield evidence to determine which scenario is more likely.

Comparisons of the dispersion in growth rates and net growth show that flow
crystals could have been drawn from a narrower distribution than quiescent crystals. This
is probably related to the smoothing effect of flow, which tends to make conditions in the
growth cell more uniform than in the quiescent experiment. Crystals in the flow
experiment can be separated into two groups depending on whether they are in the upper or
lower half of the growth cell. In contrast, quiescent crystals also show sensitivity to their
placement relative to the side walls of the cell and to contact with their neighbors. Tests for
sampling bias show that the samples are relatively well matched, so that sampling errors are
not responsible for differences in behavior in the two experiments.

It is hard to draw definitive conclusions about the effect of flow because the large
amount of heterogeneity within an experiment blurs distinctions between the two
experiments. Nevertheless, there are hints that flow has some sort of influence on crystal
growth, although the size of the effect has yet to be demonstrated. These experiments,
which lasted longer than any other reported growth experiments, have shown that
tetragonal lysozyme crystals may behave in a manner which cannot be predicted on the
basis of simple quasi-steady models of crystal growth. A great deal could be learned from
an extended, better controlled, version of these experiments. If crystals slow their growth,

long-term studies will reveal the manner in which this occurs and indicate which
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mechanisms may be important in protein crystal growth. At that point, a fair assessment of

the effects of flow could be made.
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CHAPTER 4
Colloidal Interactions in Protein Crystal Systems

4.1 Introduction

Much of the effort required to determine the structure of biological macromolecules
is spent in a trial-and-error search for suitable growth conditions. Valuable protein and
time could be saved if the most promising range of conditions could be selected based on
an understanding of the growth processes. Although the accurate prediction of optimal
growth conditions for the complicated systems used in protein crystal growth remains
beyond our abilities, some insight can be gained from modeling simpler systems. The
reliability of such modeling is limited by the accuracy with which the appropriate
interactions are known; predictions of crystallization conditions remain qualitative because
the complex interactions responsible for protein crystal growth are still poorly
characterized.

Nonuniform charge distributions have been shown to affect the interactions of
protein molecules (§1.7), but little is known about anisotropic charge effects on interactions
of protein molecules with macroscopic bodies. A molecule with patches Vof positive and
negative charge could experience strongly orientation dependent interactions with the
crystal. As a concrete example, consider the case of a positively charged crystal surface: a
molecule is repelled if it préscnts a primarily positive patch to the crystal but attracted if the
patch is negative. On average, molecules impinging on the surface should be oriented with
negative patches facing the surface. Once on the surface, the molecule may desorb and
adsorb repeatedly as it samples many orientations in an attempt to fit into the crystal lattice
[1].

Anisotropic charge distributions can produce qualitatively different behavior
depending on the arrangement and depth of local minima in the electrostatic free energy. If

the minima are close together and shallow, rotary diffusion of the molecule would not be
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too restricted and the molecule could find the "correct” orientation reasonably quickly. In
contrast, when the minima are widely separated and deep, the molecule is effectively
trapped in its original orientation. The former scenario is the basis for the
crystallographers' interest in the balance between mass transport and attachment kinetics: all
molecules would fit neatly into the lattice provided they could sample enough orientations
before next molecule arrived. The rotational restrictions described in the second scenario
imply that a fixed fraction of all incoming molecules would be trapped in unfavorable
orientations where they might interfere with attachment of other molecules. If such
misoriented molecules are responsible for "site poisoning” that eventually terminates crystal
growth, the rate at which molecules reach the surface is largely irrelevant.

In this chapter, a simplified model of the interactions of lysozyme is developed in
an effort to locate the behavior of a "typical” protein on the continuum between the two
extremes outlined above. Interaction potentials for molecule-crystal systems are calculated
by the methods of colloid scientists and used to compare nonuniformly charged systems
with comparable uniformly charged systems. Large uncertainties in the interaction
parameters make a quantitative interpretation difficult, but the calculations provide a
qualitative description of the molecule-crystal behavior which can guide subsequent work.

A first step in modeling protein crystal growth systems was taken by Young, De
Mattei, Feigelson, and Tiller [2]. In their study, protein molécules were treated as spherical
colloid particles and the crystal as a flat plate. They compared the interactions between two
particles with those between a particle and the plate using the sum of the electrostatic and
van der Waals (dispersion) potentials. Their electrostatic potentials are appropriate .for high
ionic strength and constant (uniform) surface potentials; the dispersion potentials are valid
for small separations. Young er al.'s primary conclusion was that crystal size ought to
depend on the ionic strength of the solution, a fact crystal growers had long appreciated

[3]. Although the effect of the crystal's surface potential on the shape of the potential
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energy curve was discussed, no estimates were made of the surface potential or the
strength of the interaction.

In light of the documented effects of anisotropic charge distributions on protein
behavior (see chapter 1), the use of a uniform surface potential to represent the protein
molecule is the weakest assumption in Young's ﬁnalysis. It is altogether likely that patches
of charge on the molecule's surface interact differently with the surface of the crystal
(which also has patches of charge). Already, researchers are studying the interaction of ion
exchange resins with specific charge patches on the protein surface [4]. In this chapter, we
calculate the interaction potential curve for a molecule-crystal system including effects
arising from the nonuniform charge distribution on the protein.

The presentation is organized as follows. We begin with a general discussion of
the problem and the approximations employed to make the problem tractable, followed by
the mathematical statement of the simplified problem. A boundary element method was
developed for the numerical solution of the electrostatics problem of a nonuniformly
charged sphere, and the formulation and implementation of the method are explained in
some detail. The boundary element code is then applied to two simple test problems to
evaluate its accuracy and assess the significance of charge inhomogeneities. Then the
method for creating a surface charge distribution to approximate the location of the
protein's charged groups is presented, followed by a discussion of the computational
results for lysozyme. Finally, the effect of dispersion forces is included to calculate the
total interaction potential.

The calculated interaction potentials show how finely the electrostatic and van der
Waals forces are balanced. Under some circumstances, the potential energy barrier is quitc‘
modest, so variations in the effective crystal surface charge density and effective Hamaker
constant can change the magnitude and sign of the interaction potential. When nonuniform
charge effects are included, the behavior of protein crystal systems shows significant

orientation dependence. Rotational sampling by the molecule may be a key step in
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molecular attachment. Further refinement of the model is required to establish reasonable

ranges for the key parameters affecting the strength of the interaction.

4.2 Problem Description

We wish to calculate the interaction potential between a protein molecule and a
_ protein crystal as a function of separation and orientation. The interaction potential is the
work done to bring the molecule and crystal together from an infinite separation. In our
case, this energy results from work done against two types of forces: (i) electrostatic forces
between charged groups on the molecule and in the crystal, and (ii) dispersion or van der
Waals forces. As is frequently the case in the study of protein interactions, there are
insufficient data to calculate the two contributions with complete confidence.

A sketch of the molecule-crystal system is shown in Figure 4-1. The assumptions
used to simplify the problem are listed in Table 4-1. First, it is assumed the interactions are
addidve. This is a cornerstone of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory
and is justified by numerous empirical observations [5-7]. Next, linearization of the
Poisson-Boltzmann equation allows the problem to be divided into separate subproblems
which can be solved independently to obtain the electrostatic potential. The linearization is
consistent with the low net charge on the molecule and, moreover, allows us to assess the
significance of nonuniform charge distributions on protein-crystal interactions. A rough

estimate of the surface potential of lysozyme in water (&, = 80) based on the net valence of
+10.5 at pH 4.7 [8], a hydrodynamic radius of 20A [9], and approximately 1M NaCl (ax=
5) is 16mV. Since the linearization is valid for potentials up to approximately 100 mV [5],
it is probably adequate here except when the particle and crystal are practically in contact.
Assumptions 3 - 5 are largely self-explanatory. If dispersion forces arise from
induced dipole effects, then #3 is consistent with the notion that both the molecule and
crystal are solid bodies with uniform dielectric constants (#s 5 and 8). Frequency spectra

for the dielectric constant are required if retardation effects are to be incorporated into the
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effective Hamaker constant, A.s. In the absence of such data for lysozyme crystal
systems, we treat A, as constant; a range of reasonable values for A pis used in §4.9 to

assess the size of the dispersion potential and its effect on the total interaction potential.

solvent

~1
& K

molecule

Figure 4-1: Definition sketch for molecule-crystal interactions.

The approximations concerning the protein molecule (#s 6-8) are based on
experimental observations and are widely used. The primary reason for the spherical
approximation is simplicity. Moreover, crystallographic data indicate that most globular
proteins are roughly spherical. A table of 20 proteins of known structure [10], for
instance, shows that the ratio of maximum to minimum dimensions is seldom greater than
about 2. Hen egg white lysozyme is variously described as being 23A x 284 x 40A [8],
30A x 30A x 45A [10], and 30A x 30A x 45A "with a wedge-shaped piece removed" [11];

130



all these descriptions are consistent with the approximation that lysozyme behaves as a

sphere with a hydrodynamic radius af approximately 20A [9].

Table 4-1
Assumptions Employed in Study of Interaction Potental.

1. The electrostatic and dispersion potentials are strictly additive.
2.  The linearized Poisson-Boltzmann equation (LPBE) governs the electrostatics.

3. Dispersion potential is independent of molecular orientation (function of
separation only).

4.  The effective Hamaker constant, A,g, is independent of separation.

5.  For calculating the dispersion potential, the protein crystal is treated as a solid
sphere.

6.  The protein molecule is a sphere.

7.  All charged groups lie on surface of the protein molecule and can be
represented by a surface charge density distribution.

8. Protein molecule's interior is filled with material of dielectric constant £ =2

9.  For electrostatic calculations, the crystal's surface is treated as infinite plate
with uniform effective surface charge density o;.

L10. _ Electrostatic potential variations in the crystal's interior are ignored.

When discussing the environments of individual amino acid residues, Cantor and
Schimmel [11] state that charged residues are on the surface of the molecule (#7).
Representing the charged groups as a surface charge density distribution instead of a
collection of point charges reflects the implementation of the boundary element method
used here to calculate the electrostatic potential energy of the molecule-crystal system.
Other workers using finite difference methods [12-15], model the charge distribution as
point charges which lie just inside the accessible surface of the protein. (The accessible

surface is that which can be reached by a probe sphere, usually taken to be a hypothetical
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water molecule 1.4A in radius [10,13].) The method for translating the charge distribution
obtained from X-ray crystallography into a surface charge distribution is described in §4.8.

Hydrophobic residues and side chains tend to be buried in the interior of the
molecule [10,11], at least when the molecule is soluble in water. Calculations of packing
density generally give values around 0.75 [10,11], indicating that the interior is relatively
uniform. Free water is generally absent from the interior, although some molecules, such
as lysozyme and a-chymotrypsin, seem to have cavities or holes which are presumed to
contain solvent [11]. Occasionally, bound water molecules can be detected in the interior
of some proteins; such water molecules appear to be intrinsic features of the protein
structure [10]. The dielectric constant in the interior of the molecule is generally taken to be
similar to those of hydrocarbons (2 < € < 4) [16-20]. Dao-pin ez al. [15] calculated the
electrostatically induced shift in pK, for two systems as a sensitivity check on &;. They
found that results were insensitive to the value chosen in the range 2 < € < 8 except at low
ionic strength. |

The disparate sizes of the molecule and crystal justify the treatment of the protein
crystal as a semi-infinite region with only a surface charge. When the ionic strength is
about 1M, which is on the low end for much of the protein crystal growth work, the Debye
length is approximately x-! ~ 3A. Thus, the exponential decay of the potential effectively
limits the range of the electrostatic forces to about 5x-1 or 15 A. A molecule approaching
the crystal may not actually "sense” the crystal until its surface is only 15A away. Thus,
Coulombic screening by ions in solution and the difference in the sizes of the crystal (R ~
0.5 mm) and the molecule (a ~ 20A) make the crystal seem like an infinite flat plate.

The use of a uniformly charged flat plat to represent the crystal (#9) is the most
drastic of the assumptions in Table 4-1. The roughness and charge heterogeneity of the
surface are the same as those of the molecule, but complications caused by including such
effects are beyond the scope of our calculations. The uniform surface charge

approximation is invoked to simplify the problem. When solving differential equations '
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numerically, it is usually necessary to divide the domain into small elements in order to
obtain a solution. If a patchy charge distribution were placed on the crystal surface, the
number of computations needed to calculate the electrostatic potential for a given
orientation, separation and surface location would increase dramatically. These calculations
would then have to be repeated at sites spread over the surface of the crystal in order to give
some sense of the "average" behavior of the molecule-crystal system. Such detailed
calculations will eventaully be needed to appreciate the subtleties of crystal growth
mechanisms, but they require far more data than we have available. The effect of a
nonuniform crystal surface charge distribution can be estimated, however, by calculating
the electrostatic potential energy for different values of o;. Recall that although the plate is
infinite in extent, mobile ions in solution screen out the influence of all but a small patch of
the crystal surface. In some sense, then, calculations with different o, mimic interactions
of the molecule with different charge sites on the crystal surface.

As employed here, o; is the effective surface charge density including contributions
from molecules and ions inside the crystal. An incoming molecule is influenced by these
charges as it nears the crystal, but, because there is some salt inside the crystal, effects of
internal charges are partially screened. In the absence of experimental data or a more
detailed theory to predict the internal Debye length (and thus the effective surface charge
density) o is treated as a parameter.

It follows from the finite range of the screened electrostatic interaction, that
molecules in the center of a sufficiently large crystal (R » k-1, the internal Debye length)
are not influenced by the presence of incoming molecules. The potential inside this region
is virtually constant (although not necessarily uniform). In other words, molecules more
than (say) 0.5x;~! from the crystal surface are isolated from the influence of events outside
the crystal. By collapsing the finite shell of charge into an effective surface charge density,

we account for those charges in the crystal which respond to the approach of an incoming
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protein molecule; the deep interior of the crystal makes no contribution to the electrostatic
interaction potential.

The purpose of these approximations is to simplify the problem to the point where it
can be solved while preserving the essential physics. Results for a molecule with a
nonuniform charge distribution on the surface can be compared with those for a uniformly
charged molecule. By applying the same approximations to calculations on a uniform
sphere, we should be able to describe differences in behavior due to patchy charge. The
level of approximation employed here is entirely appropriate for such an investigation. If
nonuniform charge distributions significantly affect crystal growth behavior, the restrictive

approximations in Table 4-1 can be relaxed in future work.

3 Matt ical S f the EJ ics Probl
The sketch of the molecule-crystal system in Figure 4-2 incorporates the
assumptions in Table 4-1; distances and surface charge densities are scaled as described

below. The electrostatic potential is a solution of the governing equations [5]:
region 1 (molecule): V2 =0 4.1)

region 2 (solution): v? V2= K2y, (4.2)

where k2 = 2n_.Z2e2/e,e2kT for a Z:Z electrolyte; n_, = bulk ion number density, e =
elementary charge, €, = permittivity of free space, k = Bbltzmann's constant, and T =
absolute temperature. The boundary conditions at the surface of the molecule are the
continuity of potential,

Vi=Vv, 4.3)

and the jump in electric displacement,
e Vyi-ni+¢g Vl[lz-n2=-§ (4.4).

Note that n; and n; point out of their respective regions. The boundary conditions at the

plate and at infinity are
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e, x1
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Figure 4-2: Sketch of molecule-crystal system for electrostatics
calculations.

Lengths have been scaled by the particle radius, a, and surface charge densities
have been scaled by o, = & y,/a.
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z=0: a—u-,z =— Ox (4.5)
0z & &

and
z— 00 Y0 (4.6).
If the electrostatic potentials are rewritten as y = uy,, with Y, = kT/e and lengths are

scaled by the particle radius, g, the following dimensionless equations result:

region 1: v? u =0 47

region 2: Vi =(ax)?u (4.8)

,ul = uz (49)

sphere surface:

\E] Vu1 ‘M + & Vuz-n2=o" (4.10)

;0. %2__g° @.11)

0z &
700 Uup—0 (4.12).

The reference quantity for the surface charge is 6, = &Y./a.

The solution of the full problem specified by Equations (4.7) - (4.12) is difficult,
but the linearity of the governing equations permits the problem to be split into
subproblems which can be solved analytically or numerically. Suppose the problem shown
in Figure 4-2 is divided into two subproblems as in Figure 4-3: (i) a charged sphere with an
insulated flat plate, and (ii) a charged plate with an unchargéd sphere. We can then apply
the method of images to construct a solution for the problem (i) which satisfies the no-flux
boundary condition at z = 0 [21-23]. For z > 0, the potential of problem (i) is the same as
that produced by the charged sphere and its mirror image (Figure 4-4) and is denoted u**
(i.e., sphere-sphere); the potential in problem (ii) is the sphere-plate potential, u*P. The
total potential is their sum

U=UsS+ usp 4.13).
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(a) (b)

Figure 4-3: Two subproblems that make up the full electrostatics problem.
(a) A nonuniformly charged sphere near an uncharged insulated wall.
(b) An uncharged low dielectric sphere near a uniformly charged infinite

plate.

The equations for the sphere-sphere problem are:
region 1: v? ur=0

: 2
region 2: Vo us =(ax)? uj*

uss = uss
sphere surface: /! u3

&1 Vuf" M + & Vuf’ ‘N = o’

s
z2=0: agz =0
290 w0
while the sphere-plate potential satisfies:
region 1: v’ u =0
region 2: v? uf =(ax)? wi?
I uP = usp

sphere surface:
\81 Vig? mi+&Vu? -n, =0
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(4.20)
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4.22)
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(a) (b)

Figure 4-4: Image charge representation of an insulated boundary.
No flux boundary condition at z = 0 is identically satisfied by the potential produced
by the original sphere and a mirror sphere obtained by reflecting the original below
the plane z = 0.
(a) The nonuniformly charged sphere and insulated plate from Figure 4-3a.
(b) Replacement of infinite insulating wall with mirror image of the original

sphere.
120 2. o (4.24)
0z &
Z - oo; u{” -0 (4.25).

The sphere-sphere potential can be calculated directly by the boundary element method
presented in §4.4. |

A solution for 4P is more difficult, however, because the boundary condition at z =
0 cannot be easily satisfied by the method of images. A boundary element solution would
require the discretization of a finite portion of the plate and the introduction of an empirical
cut-off beyond which the plate is unaffected by the sphere. Instead, we divide the sphere-
plate problem into two parts:

U =u +ur (4.26)
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where u? is the potential due to charged plate in the absence of the low dielectric sphere,

and i’ is the "remainder” of the potential. The flat plate potential is

= = = _o-;_. -ax?
Wl = ulf = up & ix® (4.27)
and satisfies the equations:
2>0: VP =V ulp = V2 ub= (ax)2 wp (4.28)
u{r = u{P (4.29)

sphere surface:
VP -n +eVulf - ny=(g-&)VuP - n, (4.30)

;=00 WP__ox (4.31)

0z &
z—o0: w0 (4.32).

When /P is subtracted from uP, the result is:
region 1: v? ul =—(ax)2up=-p* (4.33)
region 2: V2 u5 = (ax)? uj (4.34)
Y (4.35)
sphere surface: ’ “r=is
\El Vu{-nl + & Vu§ n;=-(&-&)Vur - n, (4.36)
2= 0: a_u-i = 0 (4-37)
0z

Z — oo; u; -0 (4.38).

Equation (4.33) indicates the sphere contains a fixed charge density of p* = (ax )2 wP; the

charge density is scaled on p, = &V,/a2. The potential produced by the two mirror

spheres identically satisfies boundary conditions (4.37) and (4.38), so ’ can be obtained

from the same boundary element technique used to find «*. The full solution is thé sum of
the three potentials:

U=UusS+uP +ur (4.39).

Of primary interest in the present work is not the electrostatic potential, but the

electrostatic potential energy and its dependence on particle-crystal separation. Interaction
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potentials are usually defined in terms of the work performed on the system to bring two
bodies within a distance r of each other from an initially infinite separation or, equivalently,
the work that could be done by the system if the bodies were initially separated by r and
allowed to become infinitely separated [24]. When performed isothermally and reversibly,
the work done is the free energy change of the system [6,25-27] and can be expressed in

terms of the work required to assemble all the charges from infinity [6,28]:
o _
AGlec = j dVI Vdpf (4.40),
Q 0

where £2denotes the volume of the system and the superscript f indicates the charge density
is fixed (not subject to thermal randomization). When applied to the present case where the
charge density is linearly proportional to the potential and all the fixed charges reside on the

surfaces of the system, the form of Equation (4.40) is simplified to [6,17,28,29]

AG,ICC=%—Lpfde=%IrowdA (4.41),

where I represents all the surfaces of the system and ¢ is understood to be fixed.
The total change in free energy can be divided into two parts:

AG iec = AG ,, + Petedr) (4.42),
where AG,,. = change in free energy required to "charge up" the molecule and plate at
infinite separation, and @,,.{r) = additional change in free cnérgy as the molecule and plate
are brought together. In terms of the scaled variables of the electrostatics problem, @, is:

Peieds) _ 1 ] o*[u(s) - u(==)] da (4.43),
&yia 2)r
with s = distance (in particle radii) from the plate to the center of the sphere, u(s) = potcntiai
when the particle and plate are separated by s, and u(es) = potential when particle is

infinitely far from plate; dA is now dimensionless. The surface of the system consists of
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the plate and the sphere, so when the integral over I"is split into two area integrals and

(4.39) is substituted into (4.43), we have:

Deiec(s) = 1_] c' [(u.u' +u?+ u'), - (u:s +uP+ u’)_] dA
& Yia Asphere

+ %—f 0 (s + ufp + u)s— (uss + ufp + ur)] da (4.44),
Aplare

where the subscripts on the parentheses indicate the separation of the plate and sphere and
the subscript "0" on w? in the plate integral is a reminder that the flat plate potential on the
plate is a constant. At infinite separation, #? is zero on the sphere, usS is zero on the plate,
and " is zero everywhere, so that

DLetecls) _ l] o' [(uss +uP+u)— u.’,’]dA + lf ox (uss+u’)dA (4.45).
&y3a 2Ja 2 Ja

sphere plate

Equation (4.45) gives the electrostatic free energy of interaction for the molecule-
crystal as a function of separation from the plate. The boundary element method for
calculating »** and u" to evaluate @, is described in the following sections. Even without
the calculated potentials, the form of (4.45) reveals qualitative behavior of the system under
consideration and warrants a brief discussion. By Equations (4.33) and (4.36), the
"remainder” potential scales with the flat plate potential, which, according to Equation
(4.27), is linearly proportional to the surface charge density on the plate. If the terms in

(4.45) were regrouped by their dependence on 6%, we would have:
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independent of o : %— f 0" (uss - u2s) dA
Asphere

« . *
linear in o :

N

I c (M) dA + f uss dA
A.rphere Ox Apldlt

i
quadratic in o : %— I ‘—‘-*:—dA
Aplate Ox

with the independent, linear, and quadratic terms corresponding to the charged sphere-
charged sphere, charged sphere-charged plate, and charged plate-uncharged sphere
interactions respectively. The potential energy associated with the quadratic term scales
with E-Efp, where E/ = electric field vector given by E = -Vy#?. This is consistent
with the results for the dielectrophoresis of a dielectric particle in a nonuniform electric ﬁcid
[29] where the force on the particle is proportional to VE2,

The electrostatic free energy calculated from of Equation (4.45) can be determined
only after the electrostatic potentials are known, but the form of the free energy implies the
following qualitative behavior: (i) when the surface charge density on the plate is low, the
repulsion of the mirror spheres produces an increase in @, as the particle approaches the
wall; (ii) at high crystal surface charge densities, the interaction potential is also repulsive
due to dielectrophoretic effects; and (iii) at intermediate crystal surface charge densities, the
interaction potential can be either attractive or repulsivé depending on the sign and
magnitude of the surface charge density on the molecule. Note also that since u* and 1’ are
calculated from the interaction of two spheres a distance 2s apart, their contributions decay
as e~2axs compared with e~a%s for the linear term. Now that the general behavior of the
system has been outlined, we turn to the boundary element solution of the electrostatics

problems presented above.
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4.4 Boundary Element Formulation
The starting point for the boundary element formulation is, naturally enough, the

most general form of the governing differential equation:

Viu-(ax)u=-p* (4.46),
where p° is a fixed charge density. Equation (4.46) governs the electrostatics in the
solution (region 2) when p* — 0, region 1 of the "remainder” problem when ax — 0, and
region 1 of the sphere-sphere problem when both ax and p* — 0. The fundamental

solution (Green's function) of the homogeneous differential equation is:

ut = Le=t (4.47),

where r is measured from the "source” point X, (i.e. 7 =|X - X,| ). When the ionic

strength vanishes, the fundamental solution is u*= 1/4zr. Next, both sides of Equation

(4.46) are multiplied by u* and integrated over the domain, £2to produce:
* 2 2 LI
u*\Vu—(ax)ujdv=-} p u* dv (4.48).
Q N
A direct application of Green's second identity to the integral of u*V2 u gives:
» 2 2 - - *
f u'v udV=f u Vi dV+f u (Vu-n)dA—f u(Vu® -n)da (4.49),
n fo] r r
so that Equation (4.48) can be rewritten as:
2, . * . L
f u|V2u® - (axfu ]dV=f u(Vu* - n)aa -f u*(Vu-n)da -I p'u* dv (4.50).
fo r r fo)

If we wish to calculate the potential, u, at the point x,,, we can exploit the properties
of the fundamental solution, u®. Suppose that the fundamental solution is placed at x,,

then since u* is Green's function for Equation (4.46), it satisfies the equation:

Vzu"—(atr)2 u'=-6(x-xp) (4.51),

from which it follows that
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-1, X, in N2
f [Vzu‘ —(dx)2 u'] dV={_1/2,x,in I (4.52).
: 0, otherwise
Note that the value of —1/2 when X, is in I reflects an implicit assumption that the
boundary is smooth; this is the situation for all the work discussed here. For the case
where x, may be at an edge or corner, the integral in (4.52) can be calculated in a
straightforward manner [22]. Upon substitution of (4.52) into (4.50) and subsequent

rearrangement of Equation (4.50), we obtain:
cu(x°}+I u(Vu* n)dA:I u*(Vu-n)da +I plutdv  (4.53),
r r n

where:

’ 1, x,in 2
c= \1/2, Xpin I (4.54).

‘ 0, otherwise

The advantage of the boundary integral expression in Equation (4.53) over a finite
difference method is that all computations in the infinite domain have been eliminated. The
integral over £2 is performed only when there is a distribution of fixed charges in the
domain, but the electrostatics problems have been formulated so that all the charges in
solution are mobile; in the "remainder” problem, the fixed charge density is inside the
sphere (a finite domain). Although this advantage may not be great when an analytical
solution exists, it can greatly reduce the amount of computation needed to obtain a
numerical solution. The conversion of the boundary integral expression in Equation (4.53)
into a discretized boundary element method (BEM) suitable for such a numerical solution is
described next.

The outline of this discussion is similar to that of Brebbia, Wrobel, and Telles [22];

the notation is the same. Suppose that the boundary of the system is divided into N
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elements, each of which is denoted I';. The integrals over I'in (4.53) are equivalent to the
sum of integrals over all the elements:
N N
cu(xq)+ z u(Vu‘ . n)dA = 2 I u’ (Vu . n)dA +] p'utdv  (4.55).
j=171; j=19T; Q
In the shorthand notation of Brebbia et al., Equation (4.55) is:

N N
cufxo,)+ Z uq*dA = z u*qdA +I pu* av (4.56),
I; j=1JT; 2

where ¢ =Vu - n and ¢* = Vu*- n. As before, u = potential and 4* = fundamental solution
located at x,. For points in the domain, (4.56) expresses the potential as the sum of a
single-layer distribution of strength ¢, a double-layer distribution of strength u, and a
particular solution given by the volume integral.

At this time, we introduce the "constant element” approximation; i. e., that each
clement j has uniform values of potential and normal flux, u;j and g;. The surface potentials
and normal fluxes can then be removed from the integrals in (4.56) to obtain:

N N
cu(Xo)+ Y, u q"dA=), q,-f u* dA +f pu* av (4.57).
j=1 Jr; j=1 I Q

Further, we assume that each of these u; and g; can be associated with the node (x;) of the
element; the node lies in the interior of I'; and is "representative” of the element. Equation
(4.57) is valid everywhere, but since we are primarily concerned with surface values, we

can restrict X, to each of the nodes in tum to obtain N equations of the form:

N N
%ui+z ui| qf dA=3 q,-[ ui dA + uP (4.58),
=1 T j=1 T ‘

where u; = potential at node i, and u; = potential of element j, gj = normal flux through
element j, u; and g; are the potential and normal flux due to the fundamental solution

placed at x;, and u? is the potential at node i produced by the distribution of fixed charges;

¢ = 1/2 because each node lies in the surface. Brebbia chooses to define:
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G,'j=j u; dA ﬁij=j q; dA (4.59)
T r;

so that Equation (4.58) can be expressed in matrix form:
HU=GQ+1Ur (4.60)
where
,-,-={ H‘”gz :;j (4.61).

If there are N elements on the spheres, Equation (4.60) is a system of N equations
in 2N unknowns (N u's and N ¢'s) that can be written for each region in the problem.
(The two domains for the problem are the interior of the sphere (region 1) and the exterior
(region 2). When relating dependent variables in the two domains, the domain is indicated
by a superscript.). The problem is well posed, however, because when the equations for
both regions are combined, there are 2N equations in 4N unknowns plus 2N constraints
(boundary conditions). N of these boundary conditions govern the continuity of potential
at the surface (uj1 = ujz), while the others specify the jump in the normal derivative caused
by the local surface charge density (€ qj' + & qu = 0;).

Solving the BEM problem involves evaluating G and H;; twice for every
combination of i and j on each sphere (once treating the interior as the domain and again
with the exterior as the domain) and then including terms due to the interaction of the nodes
on one sphere with the elements on the other. Suppose the surfaces in the system have
been discretized into N elements, N; of which are on sphere 1. Then, when all the surface

quantities are written in terms of uf and qf, the matrix equation can be rearranged in the

form:
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Ny
1 13 1 1
( HU ﬁGU 0 0 \ sz ( ‘éll—j-IG‘JO} +uf \
H: -G* HY _qg2 q? 0
ij i ij ij N (4.62),
H} G; H} -G} ||lu 0
N
1 & 1 »
oo o2a )l | 15 g
i=M

" where the top row represents the integrals over the elements of sphere 1 when the node is
located on the interior surface of sphere 1, and the second row contains the integrals over
all surfaces when the node is on the exterior surface of sphere 1. Rows 3 and 4 correspond
to integrals for nodes located on sphere 2. Equation (4.62) is applicable to any two sphere
problem. For the special case where the second sphere is a mirror image of the first so that

N = 2N and the elements have been numbered so that elements J and j+N; are mirror

images, there are N, additional constraints of the form ujz = “,2+N. and N, of the form

qu = ‘I,%N,- There are, therefore, only 2N, = N independent unknowns, and Equation

(4.62) can be reduced to:
M .
HL &l 2 ELZ Gijoj +u
ij e i uj Lj=1
1 = (4.63).
(3 + ) (63 GEn) |\ 0

Terms involving the nodes and elements on the same sphere are independent of the
separation between the spheres and so need be calculated onfy once.

Evaluation of the boundary integrals for the BEM requires the integration of the
fundamental solution, u®, and its normal derivative, q°, over each surface element in the
discretization. When the source of the fundamental solution is placed on the z axis (see
Figure 4-5), the integration of u* and ¢* can be performed analytically in 6, reducing the
need for numerical quadrature schemes. A translation and rotation of coordinates can

position any fieldpoint above the north pole of the sphere, so it is sufficient to evaluate the
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integrals in this orientation only. The coordinate system employed below is that of Figure
4-5, not that used to define the problem in section 4.3.

For the case of the linearized Poisson-Boltzmann equation, the integrals over

element j are:
G..=I wda=1 L €% 44 (4.64)
Y A; W 4r T
and
ﬁ,-,=f qtda=] d-lr.naa (4.65),
A; Aj

where dA = sin 6 d@ d¢, r = (sin 0 cos §) ex + (sin O sin ¢) e, + (cos 6 - h) e; ,and n =
— (sin 6 cos §) ex — (sin 0 sin ¢) e, — cos 6 e,; e; = unit vector in direction k. For the

geometry shown in Figure 4-5, r2 = h2 + 1 — 2h cos 6, from which it follows that:

sin8dé=Ldr (4.66)

r
h
and

dA =sin 0d0d¢ = idrd¢ (4.67).

The 6 integration in Equation (4.64) can be performed once (4.67) is substituted and the

change of variables is made:

G,-,-=I d¢[ f—smedﬂ-—j d¢f e-axrdr

¢
=-1_1 -axr:_ g -axn
amhax ), (e-axr_e-axn)d¢ (4.68).

The limits of integration for 8 and r are implicit functions of ¢ which define the element on
the surface. When there is no screening by counterions, the governing equation is

Laplace's equation, and the expression for G;; reduces to
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Figure 4-5: Temporary coordinate system used to evaluate boundary
integrals.
A translation and rotation of coordinates can place any fieldpoint along the polar
axis; the height, A, is the distance from the fieldpoint to the center of the sphere.The
source is placed at (0, 0, 4) and the radius, r, for all integrations is measured from
there. ’
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o
] ' L _1_ —-—
aizf_n’o G amh |, (rp—ry)de (4.69).

The radial derivative of 4°* and the dot product of r and n are required to evaluate

H ;. The derivative of u" is:

du® __ 1 (1 ;ax),-ax
i 4n(r2+ K) ¢ -axr (4.70),
while the dot product is
2_1.92
r-n=hcosO-1=!'—-—;—r—- @&.71).

The expression on the far right of Equation (4.71) results from the geometric relationship

among r, h, and 6. H ij can now be evaluated to yield:

¢ 2 2
G o__ 1 [( 2 k-1 _( 2k -1) x}
Hi 87h ), e o e o (4.72).

In the absence of Coulombic screening,

L

R U A [_
afc"—n»O ij S Th A (n rZ)l

(—ﬁ:l_;—zl)-] ag (4.73).

Equations (4.68) and (4.69) are valid for A 2 1, but (4.72) and (4.73) warrant
further discussion. The expressions for H ;j are valid for & 2 1 except when the integral is
evaluated over elements cohtaining the north pole, in whichv case it is valid only for A > 1.
The exception for 4 = 1 reflects the jump condition in the double-layer potential when the
source point enters the surface. When the source point is in the surface (as opposed to

infinitesimally above it) 42— 1 =0, and H ij is given by:

)

Flg:—ﬁ \ [( r2+azg.)e-“"'2—-‘ rn +a2’—()e"’"’l] d¢ 4.74)

or
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lim Hj=-1_| (r,-r) d¢ (4.75).

If, on the other hand, the field point is in the domain along the polar axis, the quantity
involving A2 — 1 is: |

lim h2—1~h2—1
ho1,6=0 N h-1

=h+1=20 (4.76).

~
The correct expressions for H ; in this case are:

- * K2 -1
H"’:"s_rchL [( ry+ 2 - ’e"’""!—(r1+-a2'—c—(h+]))e"‘""l] dp  (4.77)

ak n2
and
)
m Bl _ [ _(_ﬂ]
aQT»OHU 87k ), (r1 —r2)|1 fz d¢ (4.78).

In addition to the surface integrals presented above, the "remainder" problem
requires a volume integral to determine the particular solution produced by the fixed charge
density in the sphere. For region 1, the fundamental solution is u* = 1/47r and the
particular solution is given by:

r

wp=-L I P_av (4.79),
4n 2 _

where p* = (ax)2 WP = oy (ax/e) exp (-axz). At this time, we shift the coordinate

system to the origin of the sphere and write ” as:

=g 4K -axs €9KH ' .
u 0;471_82 ge - dav (4.80),

where z = s + 14, t is measured from the center of the sphere and i = cos 6. Numerical
quadrature schemes for evaluating integrals over the volume of a sphere might employ 300
- 500 evaluations of the integrand [30] and still be appreciably in error because they fail to

catch the effects of the large and rapidly changing charge density at t =1 and u = -1.
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Instead of a completely numerical evaluation of (4.80), we will exploit the axisymmetry of
the remainder problem to obtain a series solution to evaluate u” on the surface of the
sphere.

We represent the charge distribution in the sphere as infinitesimal charged rings
(Figure 4-6) and calculate »” at points on thc‘sphcre's surface ( = 1) by summing the

potentials produced by all such rings. The total charge, 80°, on each ring is

80" = p* (21 1, sin 6,)(t,d6,) di, = — 27 12 G} (aK /€y) e—9%s e—aKlobo dyi,, dit, (4.81).
The ring creates a potential given by [27]:

ouP (z,p):% Z (%T'HP,,(;JO)P,.(;A) , 1> (4.82),
O p=0

where P,(u) = Legendre polynomial of degree n. This series is suitable for calculating the
potential at the surface (r = 1) due to charged rings inside the sphere (¢, < 1) because the
series, fortunately, also converges for z, = ¢ =1. The full potential is then calculated by
summing (integrating) over all rings:

up () =2m o e-axs| qu | 12dp, 2k 2 ('—"—\r Pn(Uo) Pnlp) (4.83).
& 0 0 ane, o't

After simplification and rearrangement, Equation (4.83) is:
o 1 !
uP(t.p)= O 5 e 2N E:O Pa() =+ D) f_  Prlko) dii L 15+ 2 ¢ ~axioho dr,, (4.84).
The integral over ¢, in (4.84) can be done by parts for each value of n. If fvdw =
vw — Jwdv, the normal choice would be v = 12+2 and dw = exp (—aKiolo)dl, so that a
finite number of integrations are required. Each integration by parts then places a factor of
axi, in the denominator which might cause difficulties for a subsequent numerical

evaluation of the integral over u, (notably when p, = 0). Instead, we set v =

exp (—axito,) and dw = 12+ 2 di, to obtain an infinite series for the integral:
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Figure 4-6: Definition sketch for ring of charge.
Geometry used to calculate the potential on the surface of the sphere due to a ring of
charge. Subscript "o" denotes quantities associated with the charged ring.

1 o
n+2 o aKtols = | e~ axi _(Luo)t__ . .
fo 1h*ce-a dio=(n+2)!e-a Iz§0 (n+3+ 0 (4.85)

Comparison with the convergent series expansion for exp (ax i),

exp (axpio) = Y, (“"T‘,‘J- (4.86),
k=0 :

shows that the ratio of the kth term in (4.85) to the kth term in (4.86) is (within a
multiplicative constant) k!/(n + 3 + k)! < 1 and that (4.85) converges faster than the

exponential series because

' A— k! )
kil-:noo (n+3+k)! k' (k+1)(k+2)k+3)--(k+n +3) 0 (4.87).
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The potential at each node produced by the fixed charge distribution can now be

written as:
uf = w1 )= of GK e -axs 3 e Pa(u) (4.88),
2 n=0
where
| y
- (axpo
= —aKi, ! 4. ’
Ca e ok (n +2) Z,o a3y o) dio (4.89)

-1

yi =cos 8;, and t = 1 because the nodes are on the surface of the sphere. The integral in
(4.89) is evaluated numerically using a Romberg integration scheme with a polynomial
extrapolation to the limit of zero step size (described by Press er al. [31]). The estimated
relative error in the value of ¢, is approximately 10-5.

Except for the specialization of the analysis to cases with constant elements, the
discussion of boundary elements so far has been general. In the following sections, the
method for discretizing the surface is presented (§4.5), and the specifics of the

computations are described (§4.6).

4.5 Boundary Element Geometry

The surface of the sphere is divided into spherical triangular elements (Figure 4-7),
each of which is taken to have constant values of surface charge density, surface potential,
and normal flux. Each edge of the element is the path of minimum length between the two
vertices defining that edge. The edges can then be considered the arc of the great circle
connecting the vertices or, equivalently, the intersection of the sphere’s surface with the
plane containing two vertices and the origin of the sphere. The bounding plane is
completely described by its normal vector. The location of the node is determined by
calculating the Cartesian coordinates (x, y,, 2.) of the centroid of the element (which lies

within the sphere) and projecting the ray from the sphere’s origin through (x, y., z.) to the
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surface. The node’s position on the unit sphere is p ’F’p

p=(x2+y2 + 222
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Figure 4-7: A spherical triangle element on the sphere.
Vertices are identified by circled numbers; edges are numbered sequentially as the
perimeter of the element is traversed. The centroid of the element lies inside the
sphere but is projected onto the surface to locate the node of the element.

The pattern for the initial (coarse) discretization of the sphere is based on either a
regular octahedron (8 equilateral triangular faces) or icosahedron (20 equilateral triangular

faces) which is circumscribed by the unit sphere. The vertices of the polyhedron are the
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vertices of the corresponding spherical triangular elements on the sphere's surface, while
the node of a given element can be located by using the arithmetic average of its vertices'
Cartesian coordinates as an estimate of (x,, y., z2). (This last simplification results from
the symmetry of the equilateral triangular faces of the polyhedron.) Two conventions
govern the orientation of the inscribed polyhedron: (i) vertices of the polyhedron lie at the
north and south poles of the sphere, and (ii) the prime meridian coincides with the
boundary between two of the elements having the north pole as a commoh vertex. The two
coarse discretizations and their "surface maps” (latitude and longitude) are shown in
Figures 4-8 and 4-9. The location of the nodes is shown in the surface maps.

Subsequent refinement of the discretization is done by computer according to one of
two possible methods (Figure 4-10): (i) the original element is divided into three smaller
elements by converting the node into a common vertex of each new element, or (ii) the
original element is divided into two elements by connecting the midpoint of the longest
edge with the opposing vertex. In either case, normals to the bounding planes are
calculated and used to place the nodes of the new elements. Only one method is applied to
all elements at a given stage during refinement. In the three-way division, one edge of the
resulting element retains its original length, so that repeated application of method (i)
produces long, narrow elements which may not be adequately approximated by the nodal
value. Method (ii) halves the longest edge and therefore produces elements which are more
compact than those of method (i). The three-way division is applied first to produce
elements with one edge longer than the others, then two-way refinement is applied
successively thereafter. The elements produced by these refinement schemes are, in
general, not identical, but this presents no inherent difficulty for the boundary element

method.
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Figure 4-8: Octahedral discretization of the sphere's surface.

The boundaries of the elements have been drawn on the surface of the sphere; the
axes shown define the orientation of the discretization. The corresponding 2-
dimensional projection ("surface map") of the discretization is also shown. Surface
points are identified by latitude and longitude. Points identify the location of the
nodes.
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Figure 4-9: Icosahedral discretization of the sphere’s surface.
The boundaries of the elements have been drawn on the surface of the sphere; the
axes shown define the orientation of the discretization. The corresponding 2-
dimensional projection ("surface map") of the discretization is also shown. Surface
points are identified by latitude and longitude. Points identify the location of the
nodes.
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The orientation of the sphere must be defined in preparation for discussion of the
case when the the particle has a nonuniform surface charge distribution. Recall that the use
of a mirror particle, transforms the line of centers into an axis of rotational symmetry. For
a given separation, then, the electrostatic interaction energy of the system depends only on
which point on the sphere’s surface occupies the south pole. Two angles are sufficient to
specify the location of the south pole and, therefore, the orientation of the system. An
obvious choice is the latitude (90" < a < +90°) and longitude (-180° < B < +180°) of the
ray connecting the centers of the spheres (Figure 4-11). In the fixed coordinate system
established by the crystal, the molecule appears to be oriented so the point (a, B) lies
nearest the plate, so the orientation can also be considered the "south pole." This is a
simple means of associating features of the potential energy surface with the surface charge

distribution that creates them.

Figure 4-10: Two successive refinements of a planar triangle.
(left) Three-way refinement: a new vertex is created at the centroid of the
original element.
(right) Two-way refinement: the new edge bisects the longest edge of the
triangle.

159



-90° < a<+90°
-180° < B < +180°

N)

Figure 4-11: Orientation of the molecule.
Octants are identified by letters and their reflections are indicated by primes. The
line of centers of the two spheres is an axis of rotational symmetry.
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4.6 Mecchanics of Boundary Element Calculations

As mentioned in section 4.4, a coordinate transformation is used to create a
temporary coordinate system in which the sphere's center is at the origin and the fieldpoint
sits above the north pole of the particle. In this section, we present the specifics of the
- numerical computation of the boundary integrals over the surface elements on the sphere.
In the discussion to follow, Cartesian coordinates (x, y, z), as well as the x, y, and z
components of vectors, are taken to be in the temporary coordinate system; the angles 6
and ¢ used here are also confined to the temporary coordinate system and are not related to
the orientation angles discussed in section 4.5.

For each fieldpoint, the computer program BEM3D spends a significant amount of
time assessing the geometry of the elements in order to determine which elements occupy
the north pole so that the correct form of the A ij integral is used. This assessment is simple
when node i and elements j are on the same sphere; only element j = i can occupy the north
pole and hZ - 1 is strictly zero. The situation is more complicated when the element under
consideration is on the other sphere.

There are three ways in which an element can occupy the north pole (Figure 4-12):
(1) one of the element's vertices can coincide with the north pole, (ii) one of the element's
edges can cross the north pole, and (iii) the north pole can lie in the interior of the element.
When one or more of these conditions occurs, H ij is evaluated from either Equation (4.77)
or (4.78). By explicitly changing the form of the expression for H ij when the north pole is
involved, the problem of division by zero is eliminated from the computer code.

In all the integral expressions for G and a ij» the limits of integration in r (or 6)
have been left as fu;lctions of ¢. We now present the method by which functions are
integrated over the surface element. For the element shown in Figure 4-13a, for instance,

the integral of the generic function f could be written as:
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¢ 6x(¢) . o(e)
F=j ag f sin 9d9+[ d¢ fsin 6d6 (4.90),
1 6:(¢) ¢ 6:0)

where 6i(¢) is calculated from the intersection of bounding plane & and the unit sphere:

0@) = tan ! = = Bk (4.91),
Rxk COS @ + ny s Sin ¢

and (ny 4, Ry, ny4) are the components of the normal to edge k; care must be taken to
insure that values of 6;(¢) between 0 and & are selected.

Evaluation of Equation (4.90) as written requires the computer program to decide
such things as which edges are the upper and lower limits, when to change from one edge
to the next, and what is the sign of the integral. If vertices 1 and 3 were switched in Figure
4-13a, for example, evaluation of Equation (4.90) would produce a result with the opposite

sign. Some of these difficulties are removed if the equivalent expression:

¢ n & n
F=f dae fsin8d9+f de¢ f sin 6 d6
) 6(¢) L] 8:(¢)

¢ n
+ f da¢ fsin 8d6 (4.92)
] 6(¢)
is evaluated instead. This procedure is shown graphically in Figure 4-13, panels b-d. Asa
check on the sign of the integral, BEM3D computes the integral for f = 1, in which case F
= the surface area of the element. If the surface area as calculated is negative, the signs of
all integrals associated with that element are changed so they are consistent with a positive
surface area. When the element contains the north pole, only the limits of @ integration
change in Equation (4.92): the lower limit is 0 and the upper limit is 8,(¢). In practice, the
@ integrations are performed after changing the integrating variable to r. Gauss-Legendre

quadrature schemes are used for the numerical integration in ¢.
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(b)

(c)

Figure 4-12: Three ways an element can occupy the north pole.
(a) Common vertices of several elements may lie at the pole.
(b) The edge between two elements may cross the north pole.
(c) The pole may lie within an element. :

Some additional geometric situations must be considered by program BEM3D. For
the most part, these arise from the choice of ¢ as the independent variable and 6 as the
dependent variable in describing the boundaries between elements. Consider, for instance,
the case where the plane dividing two elements contains the poles (its normal lies in the xy
plane). The resulting edge is a line of constant ¢, and @ is not a function of ¢. Although

61(¢) is indeterminate, this is not a problem because the integration in ¢ makes no

contribution to the integral over the element. If the z component of the normal to the edge
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(©) (d)

Figure 4-13: Integration scheme for spherical triangular elements.
(a) The element on the sphere with vertices and edges identified.
(b) Integration carried out from vertices 1 to 2 and from 2 to 3 giving a.

positive contribution.
(c) Final integration step from vertex 3 to vertex 1, which gives a negative
- contribution.
(d) Net result when integrations in (b) and (c) are added.
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along which BEM3D will integrate is sufficiently close to zero, the integration is omitted.
Because the range of ¢ used is ~7 < ¢ < 7, some confusion is also possible when the path
of integration crosses the plane ¢ = & (the "international date line"). If the integration is
between vertices 1 and 2, for example, BEM3D calculates | - I and compares the result
with 7. If l¢2 - ¢1| > 7, the proposed path is not the shorter one, so 27 is added to or
subtracted from ¢; to obtain the correct integration path.

Once the nodal potentials and fluxes have been calculated, the charging integrals

must be computed. The charging work for the sphere is evaluated approximately by the

formula:
sphere(s) M
Deiec %f c'u dA='2L z o; uj Aj (4.93),
& V’ A phere j=1

where u = the total electrostatic potential, and the coefficients in the summation are the
charge density, potential, and area of each element j; the summation formula reflects the
constant clement approximation. A similar level of approximation is applied to the charging
of the plate, as discussed next.
Recall from Equations (4.57) and (4.59) that the potential anywhere in the domain
is given by:
N N .
ui= Y, qiGy- 3, uiHj (4.94),

where the fundamental solution is placed at some point ;. in the domain and the u; and g;
are obtained from the boundary element solution for the potential. (The flat platc potential
makes no net contribution to the charging integral on the plate.) Rather than cvaluaung the

Gijand Hi ;j» With multi-point quadratures, we approximate them by:

Gi= fr u; dA = uj; A; A= jr q; dA = qj; A; (4.95),
j i

in which 4* and ¢" are evaluated at node j. Substitution of (4.95) into the charging integral

for the plate gives:
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plale(s) I

Detec (5) -1— or f u; dA - ujI q;; dA (4.96).
) Vo ‘ Jj= 1 Aplaie Apiate
For the situation depicted in Figure 4-14, we have r2 = z} + N2, r = (-ncosp, -nsinP, zj),
n = (=sinBjcos@;, —sinb;sing;, —cosB;), ndn = rdr, and dA = ndfdn. The integral of ufj
over the plate is then

2n L oo
R R Y R L
plate f

and the corresponding expression for the qu term is

Aphu

Note that the integration in 3 leaves only the z component of the flux. If (4.97) and (4.98)
are substituted into (4.96) and we make use of the symmetry of the problem to express the
integrals over all the elements in terms of the integrals over one sphere, we can write the
charging integral for the plate as:
plifzte( ) % % ani‘ﬂ + Uj cosej) (4.99).

& Via =1 ax
This concludes the discussion of the boundary element method. We now exercise

the boundary element program BEM3D on two relatively simple problems so we can assess

both the accuracy of the method and the significance of nonuniform charge distributions.
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Figure 4-14: Calculation of charging integral over infinite flat plate.
The node is located at (xj, ¥js 2j); 0 = (-sin6; cos@;, —sin6; sing;, —cos6;).
and y’ axes are parallel to the x and y axes passing tf'u'ough the sphere.
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4.7 Two Test Problems
The problem of two uniformly charged spheres (see Figure 4-15) was solved for

the case where &, = €, = 0° = 1, in which case the dimensionless surface potential at
infinite separation is u==(1 + ax)~!. &, was calculated as a function of distance from
the plate and compared with the results from the linear superposition approximation [5,6].

The potential energy calculated from the linear superposition approximation is:

o545 2ax(s-1) 2axd
elec(5) _ __ 4x e-2x(s-1) __ 4x e-2ax (4.100).
&yia (1+ax)t 28 (1+ax)? 25
| d '
2s |
|
| |
| ! |
. 2d=2(s-1)

Figure 4-15: Definition sketch for the two sphere problem.

Results for ax = 0.1 and 1 are shown in Figure 4-16, while results for ax =5 are
given in Figure 4-17a. In all cases, the Z axis of the discretization (see Figures 4-8 and 4-
9) is coincident with the line of centcrs;. Meshes with N = 8, 24, 48, and 96 are based on
an initial octahedron discretization while the meshes with N = 20 and 60 are based on an
icosahedron. The BEM calculations agree well with the LSA for dimensionless gaps d 2
(ax)-1. For instance, BEM calculations with 96 elements are within 1% of the LSA ford 2
0 when ax=0.1,d > 0.05 whenax=1,and d > 0.11 when ax=35. Ford ~a, the relative

error in the BEM calculations is approximately 10-4. The apparent divergence atd = 3 and
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ax =5 (Figure 4-17a) reflects the level of noise in the calculation (~ 10-14), At smaller
separations (especially at contact), the linear superposition approximation is not valid
[5,32], but convergence can be studied by comparing the computed values of @, with a
reasonable upper bound.

At high ionic strengths (large ax), the calculated energy is sensitive to the location
of thé node nearest the south pole (the image sphere). The surface potential is a maximum
at the south pole and decreases rapidly with increasing z. Under the constant element
approximation, the potential over the entire element is that of the node; if the node is
relatively far from the south pole, the element’s contribution to the charging work is
underestimated. By rotating the spheres so that a node rests at the south pole, the "nearest
node effect” can be removed. The potential at the south pole is now correct to the accuracy
of the BEM, but the calculated energy is an overestimate of the charging work because the
infinitesimal area over which it obtains is grossly exaggerated by the finite area of the
element. @, was calculated at contact for several discretizations and plotted against N in
Figure 4-17b. The calculated potential energies are converging to the same value
independent of orientation.

The relatively slow convergence for this simple test problem reveals a shortcoming
of the constant element approximation: the length scale of the discretization must be
significantly smaller than k-1 for reasonable accuracy. In the case of uniform spheres with
ax =35, a 240 element discretization produces an answer within 2% of the "final” value.
When the charge distribution is nonuniform or the ionic strength is higher, the
discretization must be further refined before comparable accuracy is reached.

The effects of a nonuniform charge distribution are illustrated using a charged “cap™
covering 25% of the particle’s surface; the remainder of the sphere is uncharged. The
scaled surface charge density of o* = 358 over the cap is based on a net charge of Z =
+10.5 spread uniformly over a sphere 16.48A in radius. These values are appropriate for

the idealized representation of hen egg white lysozyme used for more detailed work (§4.8).
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The initial discretization for the cap studies is an icosahedron with the five elements of the
charged cap covering the particle’s north pole.

The effective "south pole” was rotated from the north pole (a = +90°) to the south
pole (& = -90°) in steps of 45° with a fixed longitude of 8 = +90°. The calculated @,
based on 240 elements is shown in Figure 4-18 as a function of orientation and separation
for ax =S5 and 10. The most striking feature of these calculations is that a rotation of 90°
can casily change @, by a factor of 60 or more. The relative difference between "south
pole” latitudes of +90° and +45° is smaller for ax = 10 than for ax = 5, reflecting the
greater effect of screening in the former case.

These computations are subject to convergence problems similar to those in the
uniform two-sphere problem. The electrostatic interaction energy for +90° should be larger
than for any other orientation because the charged caps are closer. The BEM results at
contact, however, are still dominated by the sensitivity to node placement described above.
With 240 elements, the node spacing is just close enough at ax = S that @,;.(+90°) >
D, (+45°) cvérywhcre, although that is not yet true for the derivative of @,;.. When ax
= 10 (Figure 4-18b), 240 elements are insufficient to place the potential energies in the
proper ranking for all separations. A series of calculations with sequentially refined grids
shows a consistent reduction in the size of this discrepancy, indicating it is a numerical
artifact.

Electrostatic free energies calculated from the boundary element method agree well
with those predicted from the linear superposition approximation when the particles are not
too close. The finite size of the elements introduces some numerical “orientation” effects
which decrease with further refinement of the mesh. Additional calculations with a
nonuniform charge distribution show that the free energy depends strongly on on'entation,.
and that these orientation effects could play a role in protein crystal growth. The next step
is to develop an approximate model of the charge distribution on a protein for more detailed

study.
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The thrust of this study is to describe the features of the electrostatic interaction
which derive from variations in surface charge density. Rather than create additional
artificial (and probably unrealistic) charge distributions as was done for the "charged cap”
problem in section 4.7, the actual charge distribution of a small protein is used as a model
to assess the strength of nonuniformity effects. Lysozyme was selected because it has
relatively few charges and more crystal growth studies have been performed with lysozyme
than other proteins. The method of mapping the actual charge distribution onto a spherical
surface is the subject of this section.

Hen egg white lysozyme is reported to be an oblong molecule approximately 23A x
28A x 40A [8]. The approximate coordinates of its charged groups (taken from
crystallographic data for the tetragonal space group at 1.4M NaCl in 0.02M sodium acetate
buffer at pH 4.7) are listed in Table 4-2 [8]. We make the approximation that all the
charged groups lié on the surface of the molecule and seek the location and size of the
sphere which comes closest to all the charged groups.

The sphere is defined by four unknowns: three coordinates of the origin (xo, Yo, Zo)
and its radius, a. One method for obtaining the best-fit sphere is to find the location of the

origin such that the lengths of radii from the origin to charges i,

Ri=[(xi - %ol + (i = yo)? + (2 - 20212 (4.101),
have a minimum scatter. If the R; are considered independent measures of the particle's
size, this specification is equivalent to minimizing the sample variance of the N radii. Note
that the sample variance,

s2=1 i (Ri - RFP (4.102),
i=1
is a minimum [33]. For a given trial origin, the appropriate estimate for a is then R. The

search for the best-fit sphere is reduced to a search for the origin which minimizes s‘%.
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Such a search was performed by the FORTRAN program SPHERFIT using the
method of random descent in a fashion analogous to that used to find crystal orientations
by program ANGLE (§2.10). The ultimate step size for each coordinate is 0.01A. The
best-fit sphere is located at (-1.67, 20.91, 17.91) and has a radius of 16.48A. These
values cbmpare favorably with the center of mass (~1.08, 20.00, 18.35) determined by
inspection [8] and the hydrodynamic radius of approximately 20A [9]. The location of
charge i on the surface was determined from the intersection of the radius vector R; with
the surface, in the same way the location of the nodes was fixed (§4.6). A map of the

surface charge distribution is shown in Figure 4-19.
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Figure 4-19: Surface map of point charge distribution on idealized
lysozyme molecule.

Charges are given in units of the proton charge, 1.6x10-19C.
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Table 4-2

Coordinates of charged groups in tetragonal hen egg white lysozyme.

Number | Residue Type Charge X Y Z
1 1 N-terminus +1 3.28 10.16 10.35
2 1 lys +1 -3.80 10.48 8.18
3 5 arg +1 -6.31 24.40 2.84
4 13 lys +1 -17.40 21.25 11.10
5 14 arg +1 -12.20 9.25 14.63
6 15 his +0.5 -9.67 11.01 17.86
7 18 asp -1 -14.73 24.29 14.83
8 21 arg +1 -11.82 23.93 29.27
9 33 lys +1 3.17 23.88 5.62
10 35 glu -1 4.38 24.84 18.14
11 45 arg +1 18.46 15.42 23.99
12 48 asp -1 14.17 2291 29.22
13 52 asp -1 8.98 21.08 22.43
14 61 arg +1 13.02 20.81 31.91
15 66 asp -1 11.50 12.56 27.61
16 68 arg +1 16.16 12.96 24.25
17 73 arg +1 1.83 16.91 39.96
18 87 asp -1 -5.45 7.45 16.81
19 96 lys +1 -11.68 16.57 22.82
20 97 lys +1 -5.50 14.40 30.09
21 101 asp -1 -2.00 24.43 32.74
22 112 arg +1 5.2§ 33.64 23.22
23 114 arg +1 6.61 30.51 10.82
24 116 lys +1 -1.79 36.55 22.86
25 125 arg +1 -10.80 31.20 -1.00
26 128 arg +1 -18.86 17.79 0.09
27 129 C-terminus -1 -17.14 21.78 6.41

176




We have chosen to represent the surface charges as patches of constant charge
density because that method is consistent with the constant element formulation we have
employed in the boundary element calculations. The goal is to create a patchwork of charge
densities which is smooth enough that the governing equations remain valid but "lumpy"
enough to exhibit any behavior unique to "patchy” spheres.

The concept of "local averaging," which is often used to make continuum
approximations of discrete phenomena, is used here to smooth the local charge density on
the sphere. Rather than represent the charged groups a§ point charges which would
produce extremely high potentials in their immediate neighborhood, the charges are
"smeared out" over a spherical cap which is finite in area. In principle, this is done by
centering the spherical cap at the point of interest and summing all the point charges which
lie within the cap. The local charge density is the net charge within the cap divided by
Asample, the area of the cap. In practice, the test to determine if a charge contributes to the
local charge density is whether or not the distance (r;) from the point of interest to charge i
is less than rgampy, (see Figure 4-20 for a sketch). The local charge density is given by:

N
o= /T,T,l,,,; E,l Qi H(sampie — ) (4.103),
where Q; = charge of group i, and H(x) = Heaviside step function. The distance from the
north pole to any point on the sphere is r= a [2(1 - cos 6)]!/2; the surface area within the
spherical cap of size 6 is 27a2 [sin6 d6 = 21a? (1 - cos ). When 6 = Osampie, the
sampling radius is related to the sampling area through

1/2
Feample =VZ a(1 = cos Oyampie) © =2 a {AL‘”‘P—'& (4.104),
Asphere
where Agphere = 4a%. Maps of the local surface charge density of lysozyme are shown in
Figure 4-21 for sampling areas of 300, 200, and 100 A2 for the model lysozyme molecule,

A spherg‘-"‘ 3400 AZ.
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Figure 4-20: Sampling area and sampling radius.
Charged groups lying within the shaded area contribute to the local charge density
at the north pole.
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The (constant) charge density, 0j, assigned to element j is calculated by averaging

over the area of the element, A ji

o=11] odr (4.105).

J Jaj

This method of computing o; introduces the length scale of the discretization into the
problem. The larger of Asample and A; determines the length scale of the patchiness. A
series of successive refinements of the original icosahedral discretization (Figure 4-22)
shows how the surface charge density in Figure 4-21c is approximated by constant
elements. Since convergence of the computations is checked by comparing answers
obtained at successively smaller Aj, the discretization does not normally set the scale of the
surface features. The choice of Asample, however, can affect the size of nonuniformity
effects which are calculated. As an extreme example, setting the sampling area equal to the
area of the sphere reduces the charge density to that of a uniform sphere having the same
net charge as the model sphere. |

There is a lower bound on Asgmple below which the governing equation in region 2
is no longer valid. The linearized of the Poisson-Boltzmann equation is valid for potentials
up to approximately 100 mV (scaled potentials of u = 4), which places restrictions on how
small Agample can be. Consider the case of an isolated sphere with a uniform scaled surface
charge density, 0”. The scaled surface potential, u>, is then o*/[e2(1 + ax)] and surface
charge densities greater than about 4&(1 + ax) would place the system outside the range of
validity of the linearized Poisson-Boltzmann equation. If the net charge within the

sampling area is Q, the corresponding restriction on Asample is:

Qa
4.106).
A’“”"’">48062 Vo (1+ax) (4.106)

To smear out a proton's charge (Q = 1.6x10-19 C) on a particle witha = 16.48A, € = 80
(water) and ak = 5 (ionic strength approximately 1M) would require a minimum sampling

area of 60 A2, All calculations reported here are based on a sampling area of 100 A2,
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Several layers of approximation have been employed to create a reasonable model
of a protein molecule. The choice of sampling area is dictated by the linearization of the
governing equation, while the assumption of constant elements suggests a method for
specifying the charge density. The idealization of the molecule as a sphere and the
corresponding mapping of the charged groups reflect a strong desire to keep the problem as
simple as possible. Despite these severe simplifications, the resulting surface charge
distribution, although not 100% “authentic,” appears adequate to capture the essential

physics of the phenomena.

4 : . ’ )

Q.i.c(s, a, B) was calculated for "south pole" locations coincident with each of the
Ny nodes on the sphere, (o, §,). We invoke the constant element approximation once
more to set the potential energy of the system in any orientation (, ) lying within element
J equal to the nodal value. In anticipation of adding the electrostatic and van der Waals
potentials, @, is now scaled by kT. Potential energy surfaces at contact for conditions
ax =5 and oy = 0 are shown in Figures 4-23 and 4-24 for four discretizations. As
mentioned in section 4.3, the free energy is always repulsive because the nearest charges
on the sphere dominate the interaction. A surface map of the electrostatic free energy
surface at contact for ax =5 and c; = 0 (Figure 4-25a) is compared with a contour plot of
the charge distribution (Figure 4-25¢) for 240 elements. The calculated electrostatic surface
potentials (not shown) can be as large as 10 - 20 at contact and would seem to violate the
low potential assumption used to linearize the Poisson-Boltzmann equation. As the particle
moves away from the wall, however, the surface potential rapidly decreases into the range
where the linearized equation is valid. There is therefore some uncertainty in the value of-
@, near contact, although it seems internally consistent with values calculated at finite
separations. This shortcoming is inherent in any model which employs the linearized

Poisson-Boltzmann equation to describe the electrostatics.
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Figure 4-23: 20 and 60 element approximations of electrostatic free energy
at contact.

Free energy as a function of orientation when the model lysozyme sphere is in
contact with an uncharged, insulated plate; ax =5
(a) 20 elements. (b) 60 elements.

183



—
SN

O O B ON 0o

Figure 4-24: 120 and 240 element approximations of electrostatic free
energy at contact. o
Free energy as a function of orientation when the model lysozyme sphere is 1n
contact with an uncharged, insulated plate; axk=35
(a) 120 elements. (b) 240 elements.
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Free energy as a function of orientation when

the model lysozyme sphere is in

contact with the plate; ax = 5. Free energies are scaled by kT; charge density scaled

by 0, = 1.4 x 10-2 uC/cm?.

(@) D1, when o; = 0. (b) D, When 0 = 500. (c) scaled charge density.
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We have already discussed how the plate's surface charge can increase or decrease
the potential energy of a given oriéntation depending on the signs of the charge on the
nearest surfaces. Those orientations offering a similarly charged surface suffer an increase
in free energy while the free energy of orientations with oppositely charged surfaces are
reduced relative to their interaction with an uncharged plate. The selection of an appropriate
crystal surface charge is fraught with uncertainty, but crystal surface potentials are probably
comparable to those of protein molecules. Further, we are interested in comparing the
behavior of patchy and uniform spheres so that crystal charge densities can be restricted to
those which might be produced by packing a large number of uniformly charged spheres
into the lattice. The net charge uniform density on the model lysozyme molecule is 0" =
358; the corresponding flat plate charge density producing the same surface potential is
approximately o; = 300 when ax = 5. The effective surface charge could be larger, so the
range tested was extended to c; = 500. The effect of crystal surface charge is illustrated in
Figure 4-25 for two values of o; at contact when ax = 5. Although Figure 4-25 is
informative, the significance of the nonuniform charge distribution cannot be assessed
without a quantitative comparison of the behaviors of uniform and patchy spheres. For

this, we turn to the angle-averaged interaction potential.

We introduce the principles of angle-averaging through the illustrative example of a
freely rotating point dipole in a uniform electric field. The electrostatic free energy of the
dipole is given by @,;,(6) =-p - E = -p E cos 6, where p = dipole moment, E = electric
field vector, and 6 = angle between dipole and electric field [24]. If M is the property to be
averaged, the angle-averaged value (M) s the average over all orientations of M weighted by
the appropriate Boltzmann factor, e ~®«(6/kT {34]. The effect of the Boltzmann weighting

is illustrated by the calculation of the angle-averaged value of cos 6 for the point dipole:
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n
f (cos 6) epEcos8 kT 5in 0 d@
(cos 9>= 4 = cotanh |=— | - f—l (4.107),

n
[ epEcos8 [kT sin@ de
0

which is known as the Langevin equation [16,26,29,35). The importance of (4.107) is

that there is a preferred orientation for the dipole even though it is freely rotating.
McQuarrie [35] claims that although averages such as (4.107) are correct for

mechanical properties such as pressure and volume, it is inappropriate for nonmechanical

properties such as free energy. Instead, the proper averaging is reported to be [24,36):

(4.108),

f e~ Puds.SD) 40
§¢¢[¢C(S )> =—n solid angles
kT

4r

where the orientation is defined in terms of the solid angle £2. When the constant element

approximation is employed, the integral over all solid angles can be replaced by a sum over

all elements of the sphere:

N
Petecs) . 1 LS 4 jexp - @ueds. oy ) k) (4.109),
kT 47:1.= A

where A; is the area of element j on the unit sphere and the coordinates (ay, ;) define the
orientation of node j. The significance of the nonuniform charge distribution can be
determined by comparing the an gle-averaged interaction potential defined by (4.109) with
that for the uniformly charged particle having the same net charge. |

The angle-averaged interaction potential for the 240 element discretization of
lysozyme is shown in Figure 4-26 for the case ax = 5. The potentials for orientations
producing the least favorable (%) and most favorable (¢¢7¢i:) interaction potentials are
shown for comparison, as well as the uniform sphere potential ((D:z:éfam) and the
arithmetic average potential (5,1,6). The relative ranking of (¢¢1¢c ), 5,1“ and 45:1:.';[ orm
difficult to see in Figure 4-26, so the curves are replotted in Figure 4-27. At high crystal

surface charge densities (Figure 4-27b), the angle-averaged potential lies below both @,
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Figure 4-27: Relation among several averages of electrostatic free energy.
More detailed view of the relation among the angle-average, arithmetic average, and
uniform electrostatic free energies.

(a) ox = 0. (b) o7 = 500.
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uniform

and @..c , as expected from the the influence of the Boltzmann weighting in (4.109).
We note that at high values of g, the potential in orientation j is roughly proportional to
0,0;, where 0; = charge density of element j (which, of course, is closest to the plate).
When averaged over the sphere, we would expect Sd“ -~ (D,'}: om, an expectation which
is approximately met when the sphere is far enough from the plate that the influence of the
" mirror sphere is negligible. The Boltzmann weighting reduces ((D,z,c) below both 5,1“ and

uni . . .
tD,[:‘cf "™ because lower potential energy orientations are favored.

When the sphere is close to the plate or the plate's surface charge density is low, the
interaction of the sphere with its mirror image can no longer be neglected. This additional
contribution to the electrostatic potential energy is roughly proportional to <SJ2 because the
element covering the south pole is repelled by its mirror charge. The arithmetic mean of
this contribution over all orientations is proportional to 07 while that for the uniform sphere

uniform

goes as o ? Since 02 > G 2, it follows for patchy spheres that @, > ®,.;  (Figure 4-

27a). Again we see that the Boltzmann weighting reduces (d),,“) below @, this time,

uniform
> ¢e1ec

however, (t.‘be;ec)

The most important feature of these electrostatic free energy curves is that the
electrostatic repulsion is relatively weak (less than 6 kT when o; = 500). The second
important finding is that there is only a slight difference in free energy (less than about 2 kT
when 0; = 500) between the uniformly charged and angle-averaged moleculés. Both
these conclusions result from the moderate range of crystal surface charges investigated,
and their validity depends on how wcll.this range of charges approximates that experienced
by approaching protein molecules. The issue of crystal surface charge density is addressed
in more detail later. The differences between the uniform and angle-averaged cases may, in
fact, be less significant than they appear because at small separations, the attraction of the

dispersion potential is dominant. We now turn our attention to the effect of the van der

Waals potential.
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The dispersion potential for the (spherical) crystal and the (spherical) molecule is

given by [5,7):

d’vdw=’A 2R + 2R
6 2(R+1)d+d? 4R+2(R+1)d+d?
2(R+1)d+d?
4R +2(R+1)d +d?

+in (4.110),

where R = crystal radius and d = separation (gap) between the surfaces of the crystal and
molecule; all lengths have been scaled by the particle radius. For cases of interest here, R »
1 and @,4\, at small d is insensitive to the exact value of R; a value of R = 106 (crystal
radius about 2 mm) was used for all calculations. As with the effective surface charge
density, extensive data do not exist for estimating the effective Hamaker constant, Aeg.

If molecule and crystal are treated as pure hydrocarbon bodies interacting through
water, A4 should be approximately 1 kT at 300K [24]. Measurements of dispersion
forces on lysozyme indicate values for A.g in the range of 1 - 2 kT at room temperature
[37,38]. Unfortuhately, the high solvent content of the crystal (typically 50% [39})
introduces major uncertainty into the selection of Aqy. A naive estimate might be that A.g
should be roughly half the value appropriate for pure hydrocarbons, or 1/2 kT, in which
case the sensitive balance between van der Waals attraction and electrostatic repulsion is
evident in Figure 4-28 for ax = 5. Even when o} = 500, the repulsive barrier is only about
1 - 2kT; in the context of colloidal stability, this is insignificant. The barrier height is
somewhat sensitive to the exact value of A.p, as shown in Figure 4-29. At values 6f Ay
as low as 0.1 k7, the angle-averaged potential still peaks at only 2kT (Figure 4-29a). As
expected, the repulsion is weaker at higher ionic strengths (Figure 4-30).

Until now, we have studied only cases with moderate positive surface charge
densities on the plate. These conditions are appropriate for comparing the potentials of
uniform and patchy spheres, but they do not demonstrate the full range of behavior

exhibited by the protein molecule. As a result of the nonuniform charge distribution on the
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Figure 4-28: Balance of electrostatic repulsion and dispersive attraction.
Curves show full interaction potential between crystal and charged sphere for
moderate crystal surface charge densities; ax =5.

(a) mode! lysozyme molecule.
(b) uniformly charged sphere with same net charge.
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Figure 4-29: Effect of Hamaker constant on free energy maximum.
Comparison of angle-averaged and uniform interaction potentials for o7 = 500, ax
=5, and various effective Hamaker constants.

(a) model lvsozyme molecule.
(b) uniformly charged sphere with same net charge.
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Figure 4-30: Angle-averaged interaction potential for lysozyme (ax = 10).
At high ionic strengths, the electrostatic repulsion is greatly diminished. Even for a
relatively small effective Hamaker constant, there is no appreciable barrier to the
molecule as it approaches the surface.

molecule, elements on the sphere have charge densities ranging from -1637 < ¢* £2327.
In fact, as seen in the cumulative distribution function of the elements' charges (Figure 4-
31), only 40% of the 240 elements have charge densities within the range studied so far. If
the range of crystal surface charge densities is extended to reproduce the entire range of
surface potentials on the isolated lysozyme molecule, dramatic changes in the electrostatic
free energy result (Figure 4-32). In agreement with the discussion in section 4.3, the
potential is becoming more repulsive at high oy irrespective of sign. The issue is to decide’
what range of effective surface charge densities might reasonably characterize the crystal

surface.
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Figure 4-31: Cumulative distribution function for surface charge density.
Approximate cumulative distribution function for the scaled charge densities of
elements on the sphere (N = 240).

The surface potential of the isolated lysozyme molecule provides guidance in this
matter. A test charge arriving at the surface of the molecule experiences some electrostatic
potential which depends chiefly on the local arrangement of charges. To the test charge,
the potential seems almost like that produced by a uniformly charged sphere with an
appropriate charge density. If 4= is the scaled potential at the surface, the corresponding
equivalent charge density on the sphere is 0" = £5(1 + ax)u=. Plate charge densities which
produce the same surface potential are g} = g,ax u=. For ax = 5, surface potentials on the
isolated lysozyme molecule range from a maximum of u= = +3.91 (+100 mV) to a
minimum of u*==-2.44 (-63 mV); the equivalent crystal surface charge densities are
approximately o; = 1600 and @} = —1000, which seem to be reasonable upper and lower

bounds. There is a dramatic difference in the angle-averaged interaction potential for these
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two cases, as shown in Figure 4-33. These findings are a consequence of the nonuniform
charge distribution on the molecule and would not be anticipated on the basis of the
uniformly charged sphere. Some implications of this behavior are discussed in section

4.10.
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Figure 4-32: Angle-averaged electrostatic free energy at contact as a
function of crystal surface charge density.

When a uniformly charged sphere approaches a plate with a moderate surface
charge of the same sign, the balance between electrostatic repulsion and dispersive
artraction produces a modest energy barrier which must be overcome by the molecule. The
size of the barrier depends on ©; and A g, two parameters which are not well quantified for
the system under study. For the same range of plate charge densities, nonuniform charge
effects leave the qualitative behavior of the system unchanged but alter the height of the free

energy barrier. For crystal surface charge densities comparable to that on a uniform sphere

196



-12.0 LA § L] ' T v LI § I LN | LR J I L 4 LIS I LR L ' LA "I ¥ v l LA LI

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
dimensionless gap, d

.AT;@:O
o%—‘%=0.l
s 2L <02
o &L _05
o 4L -1

L

— T
0.3 0.4 0.5
dimensionless gap, d

Figure 4-33: Most attractive and most repulsive interaction potentials.
Angle-averaged interaction potentials for crystal surface charge densities producing
surface potentials equal to the minimum and maximum values found on the isolated
lysozyme molecule when ax = 5.

(a) Crystal surface potential of 63 mV.
(b) Crystal surface potential of +100mV.
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with the same net charge as lysozyme, the barriers for the uniform and nonuniform spheres
are within 1 - 2 kT of each other. At low crystal charge densities, the angle-averaged
interaction potentials lie above the uniform interaction potentials because the sphere-sphere
interaction is proportional to the average square of the sphere's surface charge density;
at high crystal charge densities, the angle-averaged potential rests below the uniform case
because lower energy orientations are heavily favored. Only when the molecule is nearly in
contact with the crystal are the differences between the two cases important; this region is
of primary interest in crystal growth studies. When the range of effective surface charge
densities is extended to include the entire range of surface potentials found on the isolated
lysozyme molecule, the angle-averaged potential can be either strongly repulsive or
attractive. This change in qualitative behavior is due entirely to inhomogeneities in the

surface charge distribution.

110 i Dj :

A highly simplified model of molecule-crystal interactions has been developed and
applied to protein systems. Chief among the simplifications employed in the model is the
linearization of the governing equation for electrostatic interactions, which allows the
electrostatics problem to be divided into subproblems which can be solved separately to
obtain the total electrostatic potential. Assumptions of smooth surfaces and simple
geometries are made for mathematical convenience since they allow the electrostatic
potential to be expressed as the result of image charges and a uniform flat plate. The
electrostatic potential produced by the image charges is calculated from a boundary element
method which has been specialized to the case of spherical triangular elements.
Electrostatic free energies calculated from the boundary element method for two uniformly
charged spheres agree well with those given by the linear superposition approximation. In

another consistency check, at separations greater than about a double layer thickness, the
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free energy of a uniformly charged sphere in the presence of a uniformly charged plate
produces the same exponential decay with separation expected from a point charge.

The nonuniform charge distribution on the protein molecule is represented by
surface elements with constant charge density. Interaction free energies of the molecule-
crystal system in different orientations are calculated from the isothermal reversible work
required to charge the surfaces to the appropriate electrostatic potential. The results for all
orientations are then angle-averaged to obtain a single curve which represents the
hypothetical "average" molecular orientation. At moderate crystal charge densities, these
angle-averaged potentials are found to differ only slightly from the curves for uniformly
charged spheres with the same net charge.

The full effect of charge inhomogeneities can be seen when the range of plate
charge densities is extended to produce the same range of surface potentials found on the
isolated lysozyme molecule. In the context of the simplified model, the effective plate
charge density reflects the arrangement of molecules exposed at the surface. Different
crystal faces have different effective charge densities, so the free energy barriers could vary
significantly between faces. Crystallographic data can be used to determine which charged
groups are exposed on the crystal face and calculate the effective surface charge densities.
In the absence of such data, however, we have free rein to speculate on various
possibilities.

Consider, for example, the case where each face presents a free energy barrier to
the approach of molecules. Since the ratio of the flux of molecules to the crystal in the
presence and absence of a repulsive interaction potential is approximately exp (— (d’)m /kT)
[7], crystal growth is always slower than the diffusion limit. For a barrier of 2 kT, this
retardation is about a factor of 10. The addition of a molecule to the crystal would thus
appear to occur in three steps: the molecule (i) arrives near the surface, (ii) climbs the free
energy barrier to reach the surface, and (iii) finds a suitable location and orientation on the

crystal face. Steps (ii) and (iii) can be lumped into the kinetics of the process. If step (ii)
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were rate-limiting, large free energy barriers would reduce the effective attachment rate
constant and the transition (if any) from kinetic control to diffusion control would occur at
larger crystal sizes. By the same reasoning, an attractive potential would enhance the flux
to the surface and crystal growth would become transport-limited at smaller crystal sizes.
For lysozyme, at least, measured growth rates lie below the diffusion-limit [40,41] so it is
unlikely that step (i) controls crystal growth. If the interaction potential is attractive, step
(ii) cannot be rate-limiting.

Inspection of the interaction potential curves and experimental results both suggest
that diffusion alone is adequate to sustain crystal growth at constant rates. A definitive
conclusion about the effects of colloidal forces on protein crystal growth must be deferred
unti] more reliable estimates of the crysal charge density and the effective Hamaker constant
are available. Variations in charge density could restrict the arrival of protein molecules to
certain portions of the crystal (a particular crystal face or specific sites within the re