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FLUTTER ANALYSIS USING TRANSVERSALITY THEORY

D. Afolabi

Institutefor Computational Mechanics in Propulsion

Lewis Research Center

Cleveland, Ohio 44135

and Department of Mechanical Engineering 1

Purdue University

Indianapolis, Indiana 47907

ABSTRACT

A new method of calculating flutter boundaries of undamped aeronautical struc-

tures is presented. The method is an application of the weak transversality theorem

used in catastrophe theory. In the first instance, the flutter problem is cast in ma-

trix form using a frequency domain method, leading to an eigenvalue matrix. The

characteristic polynomial resulting from this matrix usually has a smooth dependence

on the system's parameters. As these parameters change with operating conditions,

certain critical values are reached at which flutter sets in. Our approach is to use

the transversality theorem in locating such flutter boundaries using this criterion:

at a flutter boundary, the characteristic polynomial does not intersect the axis of the

abscissa transversaIly. Formulas for computing the flutter boundaries and flutter fre-

quencies of structures with two degrees of freedom are presented, and extension to

multi degree of freedom systems is indicated. The formulas have obvious applications

in, for instance, problems of panel flutter at supersonic Mach numbers.

XOn leave. Temporary address: Room 3-360, Department of Mechanical Engineering, MIT,
Cambridge, MA 02139.



I. INTRODUCTION

Flutter prevention is a very important consideration in the design and development of

various engineering structures and components for aeronautics and space propulsion

applications. The development of advanced propulsion engines and their components

has been on-going at NASA Lewis Research Center. Part of the development effort is

devoted to the aeroelastic behavior of rotating bladed structures. The work reported

here is part of that development.

In this work, a computationally efficient method is developed for calculating the

flutter boundaries of an engineering structure with two degrees of freedom, based on

the typical section model. The typical section model of an airfoil is a simple but

very effective model used to predict the aeroelastic behavior of structures such as

fixed airplane wings (Bairstow [1]; Frazer & Duncan [2]; Theodorsen [3]), and the

rotary wings of helicopters (Chopra & Johnson [4]). By an extension, the model has

been used in the aeroelastic analysis of a cascade of turbomachine blades in various

regimes of flow (Whitehead [5], [6]; Kaza & Kielb [7]; Dugundji & Bundas [8]; Bahkle

et al. [9]). This methodology is used in a variety of mathematical models of engine

components such as propfans, compressor fans, and turbine bladed-disk assemblies.

Flutter problems in aeroelasticity are characterized by nonlinearity and frequency

dependence. This means that elements of the mass and stiffness matrices of an

aeroelastic problem are normally frequency dependent. In flutter analysis, one usually

solves a flutter determinant, which is essentially a characteristic equation, and one

determines from the real parts of the complex roots of the equation the stability or

otherwise of the system. In our new method, one is able to determine the onset of

flutter without explicitly solving the flutter determinant or computing the roots of the

characteristic equation. The method described in this paper is therefore very general,

and may be applied to other "flutter" problems which do not necessarily originate

from aeroelasticity, e.g. as in mechanical systems with follower forces. The method

as currently developed in this paper, however, is limited to applications of undamped

systems.



1.1. Qualitative Approach

The conventional approach in theoretical flutter analysis is basically quantita-

tive, in which computationally intensive codes are developed for calculating flutter

boundaries. However, the ultimate consideration in a flutter analysis is, essentially, a

qualitative one: will flutter occur in the designed system under its normal operating

conditions or not? The qualitative nature of the problem to be solved is, in some

cases, masked by quantitative computational strategies.

An innovative aspect of our method is that it enables the solution of the qual-

itative flutter problem by means of a qualitative method of mathematical analysis

well known in catastrophe theory or singularity theory. It is based on the concept of

"structural stability" of mathematical objects such as matrices, smooth functions or

differential equations; see, for instance, Poincar_ [10, Lemma IV, p. LXI], Andronov

& Pontryagin [11], Thom [12], and Arnol'd [13]-[14], among others.

1.2. Structural Stability and Flutter

The term "structural stability" as used in mathematical texts is quite different

from what is normally understood to be structural stability in engineering. In order to

avoid any confusion here, we shall use the term "dynamic stability" when engineering

concepts are being discussed, while stability in the mathematical sense will be referred

to as "structural stability", in those situations where the intended meaning is not

obvious from the context.

Also, the term "flutter" is used in many texts in Applied Mechanics 2 to describe

"dynamic instability", whether or not such instability is caused by aerodynamics.

Thus, systems which are subject to follower forces may lose stability in a dynamic

manner, and such a loss of stability is often called "flutter". However, some aeroe-

lasticians reserve the term flutter for cases in which dynamic instability is caused by

aerodynamic forces only, thereby excluding instability problems caused by follower

forces. In this paper, 'flutter' is used to describe dynamic instability in general, and

2see, for instance: G. HERR.MANN, Dynamics and Stability of Mechanical Systems with Follower

Forces. NASA CR 1782, 1971.



this includes loss of stability by causes other than aerodynamics.

1.3. Parametric Dependence

The problem of flutter in aeroelasticity may be formulated as a problem of matrices

depending on parameters, in which the parameters are derived from the geometry,

flow and frequencies of the aeroelastic model. The parametric dependence is usually

non-linear. The mathematical problem of matrices depending on parameters has

been solved by Arnol'd [15]. The transversality theorem was used in [15] in arriving

at the versal deformation theorem for matrices depending on parameters. In this

paper, we draw motivation from Arnol'd's work, but do not apply the transversality

theorem to matrices directly, as he did. Instead, we apply the transversality theorem

to the characteristic polynomials of matrices depending on parameters. In this way,

we obtain a computationally efficient method for calculating flutter boundaries.

The format of this paper is as follows. In {}2, a brief review of pertinent definitions

and concepts from matrix theory and algebraic geometry is presented. In §3, we show

that, in an undamped vibrating system, the condition of a non-transversal intersection

of the characteristic polynomial with the axis of the abscissa may be used to detect

the onset of flutter. The material in §4 is a brief outline of aeroelastic problems, and

is included here for continuity: Our main results are in §5, where various formulas

for calculating flutter boundaries are presented. These formulas are applied to the

computation of flutter boundaries in the remainder of the paper, §§6ft.

2. TRANSVERSALITY

The weak transversality theorem is one of the foundations of catastrophe theory,

Thom& Levin [16]. It arises in the context of intersections of manifolds, a discussion

of which has been given by, for instance, Abraham & Robbin [17]. The mathematical

term "manifold" may be conceived as a smooth surface in n dimensions for engineering

purposes. For example, a smooth curve is a 1-dimensional manifold, while a smooth

surface is a 2-manifold. The significance of transversality in algebraic geometry has

been outlined by Brieskorn & KnSrrer [18] and Zeeman [19], among others. The weak



transversality theorem assertsthat if two manifolds intersect in sucha way that the

intersection is not in generalposition, then an arbitrarily small perturbation will lead

to its bifurcation, and placethe resulting intersectionsin generalposition.

In Fig la, the two intersectionsbetweenthe horizontal line and the curve are in

generalposition, and are called transversal. At each intersection, the local tangent

to the curve is different from that to the line, and the set of local tangents spans the

ambient space. On the other hand, the intersection shown in Fig lb is non-transversal.

The tangent to the curve at its only intersection with the line cannot be distinguished

from the tangent to the line at that point. At this non-transversal intersection, the

local tangents do not span the two-dimensional ambient space. In Fig lc there are no

real intersections between the curve and the line, but there is an imaginary or complex

intersection. The imaginary or complex intersection in Fig lc is just as transversal

as the real intersections in Fig la. For a further discussion of these ideas see, for

instance, Poston &_ Stewart [20].

3. NON-TRANSVERSALITY IMPLIES FLUTTER

Many flutter problems may be analyzed as vibrating systems with two or more

degrees of freedom; see, for instance, Bisplinghoff & Ashley [21], Dowell et al [22],

Dugundji &5 Bundas [8], and other references cited earlier. Often, the typical section

model is used, in which there exists a coupling between two coordinates of vibra-

tion such as torsion and bending. In what follows, we consider such a coupled two

degree-of-freedom system in order to illustrate how a non-transversal intersection of

its characteristic polynomial with the axis of the abscissa indicates the onset of flutter.

3.1. Undamped System

If a coupled vibrating system with two degrees of freedom has no damping, then

its characteristic equation may be written as a quadratic polynomial in _,

p(._) = )_2 + a._ + b = O; ._, a, b 6 lit. (1)

The eigenvalues A = w 2 must be real and positive in order for the structure to have



elastic stability. A complex value of A in a coupled undamped system implies flutter

instability, while a real but negative value of A implies divergence instability. Equation

(1) may also be expressed in alternative form as

p(w) = w 4 + aw 2 + b = 0; w,a,b E JR, (2)

where w is the vibration frequency.

If the coefficients a and b in (1) or (2) are real, then the graph of p(A) or p(w) in

]R 2 is a real algebraic curve, Brieskorn & KnSrrer [18]. Consider, for now, equation

(1). The zero level set of this graph comes from the intersections of the polynomial

with the axis of the abscissa, and are the eigenvalues of the coupled vibrating system.

It follows from a corollary of the fundamental theorem of algebra, that there are at

most two roots of (1), counting multiplicities. If the magnitudes of the roots are

distinct, then the roots must be real; if the magnitudes are equal, the roots are either

real and degenerate, or are complex conjugates.

The coefficients a and b have parametric dependence on system variables, such

as the air speed in an aeroelastic system or the magnitude of the force in a system

with follower force. As these system variables change with operating conditions, a

and b also vary, and the graph of (1) becomes a family of curves in the plane. There

are exactly three qualitatively different types of intersections with the axis of the

abscissa, with regard to the number and nature of the roots in this family. All three

are illustrated in Figs. la to lc.

In Fig la, there are two distinct real roots; two real but coincident roots in Fig lb;

and no real roots at all in Fig lc. The only case where transversal intersections do not

occur is Fig lb. We shall now show how the loss of transversality, as in Fig lb, marks

the flutter boundary in a coupled two degree-of-freedom system without damping.

Coupled vibrating systems with two degrees of freedom having the graph in Fig la

cannot flutter because the eigenvalues A = J, being the two roots of the polynomial

in (1), are always real and distinct. Coupled two degree-of-freedom vibrating systems

having the graph in Fig lc must flutter. The system flutters because the eigenvaIues

6



A1,2,which should alwaysbe real and positive if flutter is to be avoided,have now

becomecomplex. Intermediate betweenthe two cases is that of Fig. lb, i.e. a non

transversal intersection. The following points may now be made.

From the mathematical point of view, the intersection of Fig. lb is not non-

transversal, is not in general position, and is structurally unstable. If flutter occurs

at any time in an initially stable system (1) as its parameters a and b are varied, then

the graph of the characteristic polynomial must have changed from that of Fig. la to

that of Fig lc. There is only one route for passing from Fig. la to Fig 1c, and that is

through Fig. lb. Therefore, the case of Fig. lb constitutes a flutter boundary.

From what has been said above, we come to the following result:

the flutter boundaries of a coupled two degree-of-freedom system without

damping may be obtained simply by inspecting its characteristic poly-

nomial, and noting the critical parameters at which a non-transversal

intersection with the axis of the abscissa, such as in Fig. lb, occurs.

Although we reached the above result by considering the transversal intersection of

a real curve with a real axis of the abscissa, similarly useful results could be obtained

by considerations of the transversality of complex algebraic curves intersecting with

a complex axis of the abscissa, using the appropriate singularity theory for complex

polynomial germs; see, for instance, Milnor [23] or Arnol'd et al [24].

3.2. Computational Aspects and Degeneracies

Computationally, the loss of transversality of the characteristic polynomial with

the axis of the abscissa is indicated by the occurrence of degenerate eigenvalues.

Degenerate eigenvalues, like all degenerate mathematical objects, are not in "general

position". Therefore, they are structurally unstable, and should not normally be

encountered in realistic models in engineering analysis. If they are encountered in

the mathematical model of a physical system, it is only because one has made a

theoretical assumption which is not qualitatively valid in the actual physical problem.

For example, one might have assumed perfect symmetry when, in fact, there is a

7



small but non-vanishingamount of imperfection, leadingto a coupling between,say,

two modesof vibration. Although the imperfection may be quantitatively small, the

dynamic behavior of the coupled systems could be dramatically different from that

predicted by ignoring the small imperfection altogether.

There are also other kinds of ambiguities associated with the eigenvalue degen-

eracy. For example, to which form of (3) below does the system eigenmatrix corre-

sponding to Fig. lb reduce under a similarity transformation: a diagonal matrix D2

of order 2, or a jordan matrix ,]2 of order 2?

{ 01D2 = , J_ = . (3)
0 A 1 A

Computationally, in order to resolve whether or not a coupled two degree-of-

freedom will flutter, one has to calculate the eigenvalues in the first instance. If

degenerate eigenvalues are encountered, then it means that the characteristic polyno-

mial is not transversal to the abscissa axis. We then must inspect the corresponding

eigenvectors or, equivalently, the eigenvalue matrix at the point where transversality

is lost. If the eigenvectors are linearly dependent or, equivalently, the eigenmatrix is

not diagonalizable, then flutter must occur.

3.3. A Note on Divergence

The graph of (1) loses transversality with the axis of its abscissa in only one

way, as in Fig lb. In contrast, the graph of (2) intersects the axis of its abscissa

non-transversally in two ways as in Fig 2b or Fig 2c. Now, (1) is a quadratic in A,

whereas (2) is a biquadratic in w, and both describe the same system. The loss of

transversality depicted in Fig. 2b is that which signifies a flutter condition.

4. EQUATIONS OF MOTION

Many problems of static and dynamic instability encountered in engineering are

analogous to the two instability phenomena known as "flutter", and "divergence".

Problems of the flutter type are characterized by the fact that the equivalent "stiffness

8



matrix" Of the undamped system is no longer symmetric, i.e. Maxwell's reciprocal

theorem is not obeyed by such systems. Consequently, such systems are not governed

by a potential, and are often called non-conservative systems; see, for instance, Bolotin

[25]. Before the onset of flutter, it is admissible to assume that motion is harmonic,

with small amplitudes in the neighborhood of equilibrium. This is the essence of

linear stability analysis, and the onset of flutter is often correctly predicted by linear

stability analysis. Nonlinear analysis becomes important for post-flutter prediction.

The powerful techniques of catastrophe theory may, at first glance, seem to be

inapplicable to the solution of the physical problems outlined above since, in the first

instance, such problems are linear or linearizable and, secondly, they are not gradient

dynamic systems, or systems governed by potentials. However, if we use matrix

techniques such as the receptance method, we may apply catastrophe theoretic ideas

to gain insight into the stability of such systems, simply by studying the transversality

of the characteristic polynomial of the system's matrix to the axis of the abscissa.

The technical term "receptance" as proposed by Duncan, Biot, Johnson & Bishop

[26] relates to a concept initially called mechanical admittance; see, for instance,

Duncan [27], or Bisplinghoff & Ashley [21, p204]. It is a powerful technique that

enables one to make a frequency domain analysis of a complex engineering structure.

A detailed account of this technique has been provided by Bishop & Johnson [28].

Similar ideas are also used in the static analysis of engineering structures, where

receptances are called "displacement influence coefficients".

The basic concept of receptance is to relate generalized forces to generalized dis-

placements in a multi degree of freedom system vibrating at a frequency w using

matrix methods. If f and x represent the generalized force vector and generalized

displacement vector respectively, then the relationship between the two may be ex-

pressed as

f = D(w)x, x = A(w)f, AD = DA = I E ¢,_x,_, x,f E ¢'_. (4)

where A(w) is the receptance matrix and its inverse, D(w), is the "dynamic stiffness



matrix" in the frequency domain. If f is due to aerodynamic forces, then D(w) may

be termed the "aerodynamic stiffness matrix".

The flutter problem, being essentially a problem of mechanical vibration analysis,

may be treated by the method of receptance. This means that the equation of mo-

tion of an aeroelastic system undergoing small displacements in the neighborhood of

equilibrium may be written in the standard notation of mechanical vibration as

M_ + C_k + K_x = f, (5)

where Ks is the static stiffness matrix.

For harmonic vibrations at the circular frequency w one may write

D(w)x = f, D(w) = (Ks -w2M) + iwC. (6)

where D is the dynamic stiffness matrix of the multi degree of freedom vibrating

system. For sinusoidal motion of an airfoil in an air stream, the forcing vector f in

(5) may be written in matrix form

f = w2L(w)x, (7)

where L(w) is an "aerodynamic stiffness matrix". It may be noted that L generally

has a smooth, nonlinear dependence on the vibration frequency w.

From (5) and (7), one gets the equation of motion, when C = 0 as

M_ +Kx = w2L(w)x. (s)

Under harmonic vibrations at small amplitudes, _ = -w2x, and the above becomes

Kx = w 2 [M + L(w)] x, (9)

10



which may be written in the eigenvalue problem form as

A()_)u = Su, A($) = K -1 [M + L($)]. (10)

The stability of A in the above may be investigated by using the techniques published

by Arnol'd [15] on matrices depending on parameters. However, our approach here is

to map A from the space of matrices to the space of polynomials, and treat it there

as a problem of smooth functions depending on parameters. In this way we apply the

transversality theorem in a more efficient way to suit the problem under analysis.

5. DETERMINATION OF FLUTTER FREQUENCIES

Equation (10) is a nonlinear eigenvalue problem, which is traditionally solved

for damping and frequency, each requiring iteration, in a computationally intensive

procedure, in order to determine the flutter boundaries. In this section, we shall

outline a new and computationally more efficient procedure for finding the flutter

boundaries, based on applications of the weak transversality theorem of catastrophe

theory. This method, in the general sense, requires only frequency iteration.

First, we consider the special case where we fix 3_ in (10) at some nominal value

)_o to get

k()_o)U = )_Iu. (11)

which may be written as

-  13u = 0. (12)

from which one obtains a "flutter determinant"

- = O. (13)

Expanding the above determinant yields the characteristic polynomial, p()_). The

characteristic polynomial is obtained from the eigenmatrix, A()_0) in (12), which may

11



bewritten as

A(_o) = , aij E @. (14)

Since A(Ao) is not a symmetric matrix, it may be decomposed into its symmetric and

skew-symmetric parts,

A(Ao) = 1[ la ]1 0 -7( 12- a2x)
all _(a12 -4- a21) -t-

1 a_( 12+a2,) _= _(al_- a2!) 0
(15)

in which all the matrix elements aij are functions of A0.

In the general case, elements of the eigenmatrix A are frequency dependent. How-

ever, there are special cases in which the elements are independent of frequency. In

what follows, we consider the less general case where aij are either constants or inde-

pendent of A. By using the substitutions

1
ao = _(axl + a22),

1 aco = _( 12- an),

1 di
bo--- 7(12q-a21),

do a22),= ½(al,- (16)

one obtains from (15)

A ._.

ao-do bobo no+do

The characteristic polynomial of (17) is

0
+

Co
-co0]. (17)

p()_)=A 2-2aoA+(a2o-bo 2+c_-do 2) =0; ao, bo, doE]R. (18)

from which one obtains the following discriminant of p, as

= bo_+ _:o- _Z. (19)

When p is not a quadratic, its discriminant may be computed by means of Sylvester's

eliminant; see, for instance, Afolabi [29].

12



The condition for a non-transversalintersectionof (18)with the axisof the abscissa

is equivalent to the vanishingof the discriminant of the polynomial. The vanishing

of the discriminants of polynomials is very significant in catastrophetheory, Zeeman

[19], where the projection of discriminant surfacesto the parameter spaceis called

the bifurcation set. The geometry of discriminant surfaces of algebraic varieties in a

more general context is discussed in the work of Brieskorn & KnSrrer [18]. In the

specific case of our two degree-of-freedom typical section model the non-transversality

condition, of the vanishing of the discriminant of the characteristic polynomial, is also

the same as eigenvalue degeneracy.

If we calculate the eigenvalues and corresponding eigenvectors of (17), we get

Al=a°-x/_' A2=a°+VrA'ul={ 1}-d0+x/_ / 1 }, u2 = . (20)
-do - x/_

When the discriminant vanishes, A = 0 in (20), and one obtains the following degen-

erate eigenvalues, the corresponding eigenvectors of which are also degenerate:

{1}A1 = A2 = ao, ul = u2 = . (21)
-do

Thus, at the non-transversal condition signified by the vanishing of the discriminant,

the eigenvalues are degenerate. It is precisely this kind of eigenvalue degeneracy,

usually noted in undamped models of coupled bending-torsion vibrations, that gives

rise to the well known terms, coupled mode flutter and coalescence flutter.

It is now pertinent to make the following remarks.

1. A flutter boundary corresponds to the parameter values where a si-

multaneous degeneracy of the eigenvalues and eigenvectors occurs.

2. The degeneracy of eigenvectors necessarily implies flutter, because

the existence of degenerate eigenvectors at a flutter boundary im-

plies that the system's eigenmatrix cannot be diagonalized at that

condition; it is only reducible to a jordan matrix.

13



A summary of the foregoing is this. The flutter boundaries obtained from the

transversality criterion, as determined by the vanishing of the discriminant, also cor-

responds to the conditions of simultaneous degeneracy of the eigenvalues and their

corresponding eigenvectors.

Two types of flutter information may be deduced from the characteristic poly-

nomial of an aeroelastic system. In the first place, one tests if flutter will occur at

all. If flutter is to occur, the discriminant of the polynomial of the undamped system

must vanish. The discriminant of the undamped system has real coefficients. If the

occurrence of flutter has been determined, the second thing is to compute the flutter

frequencies. The flutter boundaries are obtained simply by setting the discriminant

to zero when solving for the roots of the characteristic polynomial. The formula for

computing the discriminant of a quadratic equation is very well known in engineering,

but not so for a polynomial of arbitrary order. A general algorithm for computing

the discriminant of a polynomial of arbitrary order by means of Sylvester's resultant,

or eliminant, is well known in the theory of equations, Turnbull [30]; its applications

for vibrating systems have been described by Afolabi [29].

The following conditions may be used to test if a given aeroelastic system, whose

characteristic polynomial is written in the form of (18), will flutter or not.

if b = 0, flutter occurs when Co = q-do, (22)

if do = 0, flutter occurs when Co = 4- bo, (23)

if do = 0, and bo = 0, flutter occurs for all Co E ¢'_, (24)

if do :fi 0, and bo _ 0, flutter occurs when Co = 4-_02 + _. (25)

The variables a0--- do in the foregoing are functions of ,k0, and are defined in (16).

Although all of the above equations (22)-(25) are theoretically equivalent in that they

all give the same flutter boundaries, there are instances when it may be advantageous

to use a particular form, rather than another. For example, if b0 = 0 in a model,

then it is computationally more efficient to use (22). Similarly, if do = 0 in some

mathematical model, then flutter boundaries are easier to predict for such a model

14



using (23). If b0 = 0 and do = 0, then flutter must occur, as seen from (24). In the

most general case, (25) applies and the flutter boundaries may be obtained from

4 = g + (26)

If it has been definitely determined that flutter will occur, e.g. by using any of

(22)-(25), then the flutter frequencies may be computed by means of the formula

AF = WE = no, (27)

which follows upon substituting (25) in (18). The formula (27) for calculating flutter

frequencies is especially efficient because, ao is simply the semi-trace of the eigenvalue

matrix; the off-diagonal terms in the matrix contribute nothing. Thus, we arrive at

the remarkable result:

the off-diagonaI terms or, coupling terms, in the eigenmatrix (17) have no

influence whatsoever on the flutter frequencies; the flutter speed is deter-

mined simply by averaging up the diagonal terms in (17) and equating

the sum thus obtained to the eigenvalue parameter, A as in (27).

The formula (27) is also easy to obtain from the monic form of the characteristic

polynomial (18): it is, quite simply, the coefficient of the linear term divided by 2.

6. FLUTTER FREQUENCIES IN STEADY AERODYNAMICS

This flutter problem, for a typical section structural model and a steady flow

aerodynamic model, has been treated in several texts; see, for instance, Dowellet. al.

[22, p.80, §3, eqs. 3.3.48 et seq.] from where one gets the lift and moment coefficients

sOCL, (28)
Lh=q -_a'

M= = eqS_-_(_. (29)

15



The equationsof motion may be written in the form

[m °]{h}{Lh}+ = .

So Is & 0 Ko c_ M,

(30)

where the lift and moment expressions may be written in the form

I Lh }=M. {h}o (31)

Expressing the foregoing in matrix form yields M_ + Kx = Lx. The inverse mass

MI 1[,=d -_ m

matrix is

d=mI_-SL (32)

One may use the above to compute an eigenmatrix, Ax = ),x, where A = M -1 (K -

L), A = w _, and hence obtain the characteristic polynomial of the system. The flutter

boundaries are then obtained from the conditions giving rise to a loss of transversality.

For an example of how the formulas obtained in the preceding sections by using

catastrophe theoretic methods may be implemented, we consider a case previously

treated by the classical methods in Dowell et al. [22, pp.158-159, eq. 3.8.14 et seq.].

The model is for supersonic panel flutter which, according to Dowell et al. [22, p.

156], is "somewhat analogous to the typical section model for airfoil flutter". The

reason we choose this example is because the lift and moment expressions can be

derived in a simple form, which makes it possible to obtain an analytical solution.

The governing equations of motion may be cast in matrix form as

ml

2 1

1 2

k
+

0

poo U 2

2M

0 1

-1 0
=0, (33)

or, Mcl + Kq + Lq = 0. Premultiplying (33) by M -1 leads to the following flutter

16



determinant, where _ = w 2,

1
JA-  ,II -

5mI

8k + P°°U2 Am -2k + 24pooU
M M

-2k 4p°°U2 8k P°°U2 Am
M M

=o, (34)

where Am = (5ml)A . The following characteristic equation is obtained from the

above 'flutter determinant', i.e. equation (34),

p()Q = aA 2 + bA + c = O, (35)

wherea=5m212, b= -16mlk, c=12k 2+3p_U4/M 2.

In the first instance, one tests if the system will flutter at all. If flutter is to

occur, then the discriminant of the characteristic polynomial must vanish at a flutter

boundary. The transversality theorem then provides a geometric criterion--i.e, the

vanishing of the discriminant of the characteristic polynomial--for locating the flutter

boundaries. Computationally, this may be effected by using SyNester's eliminant if

the polynomial is of an arbitrary order (see, for instance, Afolabi [29]).

Since equation (35) is a quadratic, its discriminant is readily computed. If flutter

is to occur, this discriminant must vanish. Thus, setting A = b2 - 4ac = 0 in (35)

gives the parameter values which guarantee the onset of flutter. When this occurs

at a non-transversal intersection of p(A) with the axis of the abscissa, we get the

equation of the flutter frequency as

b
A = w 2 = --- (36)

2a'

or

8k / 8k
AF -- 5ml' =_ WF = 4-V5rnl,

(37)

which agrees with the result previously given by Dowell et al., [22].
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7. CONCLUSIONS

With the aid of the weak transversality theorem from catastrophe theory, simple

formulas have been outlined for computing the flutter boundaries of vibrating sys-

tems representable as aeroelastic "typical sections", and which are characterized by

asymmetric system matrices. The procedure developed here provides flutter bound-

aries much more quickly, and with much less effort, when compared with existing

iterative methods. The essence of the procedure is to first compute the characteris-

tic polynomial, and the test for loss of transversality by computing the discriminant

of the polynomial. If the polynomial is a quadratic function, then the discriminant

A -- b2 - 4ac. For a polynomial of arbitrary order, one may compute A by means

of Sylvester's eliminant. In any case, if A _ 0, then the intersections of the polyno-

mial with the abscissa are always transversal, and coupled mode flutter cannot occur.

However, if A = 0, then at least one non-transversal intersection exists, and coupled

mode flutter may occur.
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(a)

a: transversal

(b)

b: non-transversal

(c)

Fig. 1: Transversal and non-transversal intersections

c: transversal

(a) (c)

a: elastic stability b: flutter boundary c: divergence boundary

Fig. 2: Symmetric unfolding of the cusp catastrophe germ showing transversal

and non-transversal intersections of the characteristic polynomial

of a vibrating system with two degrees of freedom.
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