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ABSTRACT

This paper describes the interface/integration between FEM/SINDA, a general purpose
geometry driven thermal analysis code, and the FEM software: I-DEAS, PATRAN, and
NASTRAN. FEM/SINDA brings together the advantages of the finite element method to
model arbitrary geometry and anisotropic materials and SINDA’s finite difference capability
to model thermal properties, loads, and boundary conditions that vary with time or temper-
ature. I-DEAS and PATRAN thermal entities are directly supported since FEM/SINDA
uses the nodes of the FEM model as the point at which the temperature is determined.
Output from FEM/SINDA ( as well as the FEM/SINDA input deck) can be used directly
by NASTRAN for structural analysis.

INTRODUCTION

The industry standard thermal analysis codes SINDA and MITAS are known for their ver-
satility in solving a wide range of thermal analysis problems. The input to these codes, how-
i ever, generally involves tedious hand calculations of nodal capacitances and conductances.
- The CAE group at Martin Marietta Missile Systems in Orlando, Florida has developed a
finite element - finite difference hybrid thermal analysis code which can take finite element
models developed in I-DEAS or PATRAN and produce a finite difference network model
which is then solved with MITAS, Martin Marietta’s version of SINDA (from this point
forward, any reference to SINDA implies MITAS as well).

Copyright@l”! Martin Marietta Corporation, all rights reserved. Published by COSMIC, with permission.
I-DEAS is a registered trademark of SDRC. PATRAN is a registered trademark of PDA Engineering.
FEM/SINDA is a trademark of Martin Marietta Corp.
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A FEM/SINDA input deck can be generated from an I-DEAS universal file or a PATRAN
neutral file using the I-DEAS-to-FEM/SINDA translator or the PATRAN-to-FEM/SINDA
translator. FEM/SINDA can then be run to produce nodal temperatures at the finite ele-
ment nodes. The solution algorithm to determine the nodal temperatures is SINDA’s finite
difference network solution. The conductors and capacitances used in the SINDA network

solution are mathematxcgllyieqm;alent to the thermal conductxvxty and thermal capacitance

matrices generated by using finite element techniques. A node tn the finite element model

will necessarily be a node in the SINDA modcl

This method will allow, at the IDEAS or PATRAN lcvel the mixing of 1-D (rod), 2-
D (shell) and 3-D (solid) elements and will generate the conductivity network that this
connectivity implies. This is in direct contrast to centroidal methods which require the
creation of additional elements when mixing 1-D, 2-D and 3-D elements (for example, the
connection between a shell coming into two nodes of a solid requires the creation of one or
more shell elements on the face of that solid).

Working with the true finite element nodes (versus the centroidal node) also allows boundary
conditions to be easily handled. Specified temperatures can be applied at the finite element
nodes which are generated on the true boundary of the object. Applying boundary condi-
tions to centroidal nodes can lead to erroneous answers since the node location is probably
not at the proper boundary. In addition, the thermal boundary conditions and loads (such
as convection, heat fluxes, radiation, etc. ) can be specified in I-DEAS or PATRAN using

the current entities available in each of the pre-proceésors In I-DEAS or PATRAN the user

" can also specify whether the properties are isotropic or ‘orthotropic, and whether they are

constant or vary with temperature. Boundary conditions and loads are also specified by the
modeler to either be constant or vary with time and/or temperature.

FEM/SINDA will automatically generate a SINDA input deck for the subsequent finite dif-
ference analysis. This deck can be automatically combined with a SINDA deck that has,
for example, a table that could specify how ‘a thermal property (for example, a thermal
conductivity already flagged in I-DEAS or PATRAN) would vary with temperature. The
complete flexibility of SINDA is therefore available to the thermal analyst. Use of FOR-
TRAN subroutines and tables to account for thermal properties or boundary condltlons

that vary thh txme and /or temperature is one of the strengths of SINDA.

FEM / SINDA is also mtegrated ‘with TRASYS, a well-known code (Hevaoped by Martin

Marietta) for determining both radiation view factors and solar and planetary heat fluxes.

TRASYS has over ten years of development activity and is an industry standard. The

I-DEAS or PATRAN user can simply select which faces of shell or solid element radiate.
FEM/SINDA will generate the necessary input deck to TRASYS for view factor calcula-
tions. A subsequent TRASYS run will return SINDA radiation conductors. These radiation
conductors will reflect the view factors between the various radiating elements selected in
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I-DEAS or PATRAN. Moreover, the radiation conductors are between the finite element
nodes and can be combined with the SINDA deck of thermal conductors for a system anal-
ysis involving conduction, convection and radiation.

Existing I-DEAS or PATRAN stress and dynamic models may also be used, with some or no
modification, to drive FEM/SINDA. This will then insure, for example, that the temperature
field is determined at the nodes of a stress model. A subsequent thermal stress analysis is
therefore automatic since nodal temperatures are available. A centroidal method, on the
other hand, would require the interpolation/extrapolation of the centroidal temperatures to
determine the nodal temperatures — a possible source of misinterpretation and/or error.

Output from FEM/SINDA (either steady state or transient analyses) can be brought back
into '-DEAS or PATRAN for processing (also available is the ability to read a FEM/SINDA
input deck into I-DEAS or PATRAN). Another feature of FEM /SINDA is that the input
deck can be either in free field and/or fixed field, and the card image format is almost
identical to a NASTRAN input deck. Existing NASTRAN decks, with slight modification,
could therefore be used as input to FEM/SINDA.

In short, the integration of - DEAS, PATRAN and NASTRAN with FEM/SINDA for ther-
mal analysis combines the power of finite element pre- and post- processing and discretization
techniques with the industry accepted SINDA code, taking advantage of the strengths of
both while preserving completely the conventional input to SINDA. This allows the FEM
user to completely specify his/her thermal model in I-DEAS or PATRAN (conduction, con-
vection, radiation) and allows for boundary conditions, loads and thermal properties to vary
with time and/or temperature.

FEM THEQRY

In order to understand the basic architecture of FEM/SINDA, a short review of some of
the basic techniques in finite element theory is in order. Consider the simple triangular
element shown in Figure la. The triangle has a constant thickness ¢ and an isotropic
thermal conductivity of k. The temperature field within the element is assumed to be a
linear function of the nodal temperatures: Ty, T;, and Ts. It can be shown (see Reference
1) that the temperature field T at any point (x,y) within the element is given by

T,
1 1

T(z,y) = 24 [ay +biz+ 1y a2+ bz +c2y as + byz + 3y { T, } (1)
Ts

where
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A = Area of triangle
t = Thickness of triangle
a) = T2Ys — TsY2 (2)
b=y —us
€1 =Ty — T2

and a,, by, ¢, a3, bs, €3, are obtained by permuting the indices in Equation 2 (for example,
b, = ys — y1). If the (x,y) coordinate in Equation 1 equals a nodal coordinate, T(x,y) will
reduce to that nodal temperature. Note also that the temperature field of equation (1) is
linear. - o ' ' '

Next, based on variational principles (Reference 1), the thermal conductivity matrix [K] of
the element can be determined. For this triangular element, it is given by (Reference 1)

g [0 +el) (Bads +erez) (bids +eyes)
[K] = iA (63 +¢3)  (baby + c2cs) (3)
SYM (83 +¢3)

Note that the matrix is symmetric and not all the values in the matrix are independent. It
can be shown (based on the fact that a constant temperature can be maintained with no
heat input) that the sum of the values on any row (or column) must add up to zero. Stated
another way, the diagonal term on any row is minus the sum of all the off-diagonal terms

of that row. Thus, for

ki ki ki ,
(K] = k22 kos (4)
SYM kss

once the upper triangular values, ki3, k1s,and ka3 are known, all the other entries are de-

termined.

Next consider a conductor network between the same set of nodes as shown in Figure 1b.
The conductor values, g12,¢13, and g2y can be found such that this conductor network is
equivalent to the finite element of Figure 1a and Equation 4. This can be shown by recalling
that a conductor g between any two nodes A & B has a thermal conductivity matrix given

by:
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m=2 125 7 (5)

The thermal conductivity matrix for the three conductors of Figure 1b is assembled by
applying Equation 5 to each conductor. Then the assembled 3 x 3 conductivity matrix for
the three conductors of Figure 1b is

1 2 S
1 | G2 + Gy -Gz -Gy
[K]= - -G12 Giz + Gas ~Gas (6)
s —Ghs —Gas Gis + Gas

Notice that the conductors are assembled in the matrix consistent with the conduction
matrix of Equation 5. Also the matrix exhibits the topology of all conductivity element
matrices: the matrix is symmetric and the sum of the off-diagonal terms on any row is
equal to minus the diagonal term of that row. Finally, the conductivity matrix of the finite
element of Figure 1a will exactly match that of the conductor network of Figure 1b by
equating Equation 6 to Equation 4. Only the upper triangular terms need to match (all the
others will then necessarily match). This gives

G12 = —k12
Gis = —kis (7
Gas = —kas

Equation 7 simply states that the conductor value between any two nodes i and j is simply
minus the off-diagonal i-j term of the thermal conductivity matrix of that element. That is,

Gij = —ki; (8)

Equation 8 applies not only for the triangular element but for any element. For example,
Figure 2a shows a quadrilateral shell element, and the six conductors between the four nodes
exactly correspond to the six upper triangle values of the thermal conductivity matrix shown
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in Equation 9.
kin k12 kis kg

kaz kas ka4
K] = 9
(K] kes kss (9)
SYM kes

For any element (rod, shell or solid) the thermal conductivity matrix can be determined and
the conductivity network is given by Equation 8. The thermal conductivity matrix for most
elements can be found in either Reference 1 or Reference 2. Once the conductor network for
cach element is determined, FEM/SINDA looks towards SINDA (a finite difference code)
for solving the system of equations. This is in direct contrast to a finite element code that
generally solves a linear system of equations of the form

[K]{T} = {Q} (10)

where [K] is a thermal conductivity matrix of size N (N is the total number of nodes in
the model), {T'} is a vector of nodal temperatures, and {Q lisa _vector of nodal heat flows.
The finite element method requires first the assembly of the system thermal conductnnty
matrix [K] of Equation 10 and then the simultaneous solution to the set of Equat:ons 10.
FEM/SINDA does not assemble the matrix [K]. It simply determines the conductivity matrix

of an individual element and then generates the appropriate SINDA conductors. The SINDA

common in thermal analysis. On the other hand, finite element techniques are not nearly as
efficient (or even capable) in handling nonlinearities (NASTRAN thermal analysis package,
for example, is significantly slower than SINDA in solving nonlinear transient problems, and
will not handle something as fundamental as a heat transfer coefficient varying with time).

A code such as SINDA requires as input the conductor value between two nodes. For

the triangular element of Figure 1a, Equation 3 (a.pp]ymg Equat:on 8) gives the conductor
values. Thus the three conductors are

4 -
G12 =k —(blbz + C]Cg)

G13 =k A(b] bs + C1C3) (11)

G23 =k (bgbg + CzC;)

]
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These values (those given by Equation 11) can be input into SINDA in one of two ways.
If the thermal conductivity k is constant, FEM/SINDA will generate the following SINDA

card:

CONDUCTOR #, NODE;, NODE;, G;;
EXAMPLE: 37, 2, 3, 4.278

where the CONDUCTOR # is some unique label number, NODE; and NODE; are the
nodes that the conductor is between, and G;; is the conductor value which is given by
Equation 11. If k is not constant (but is to vary with temperature) the following SINDA
card is generated by FEM/SINDA:

CGS CONDUCTOR #, NODE;, NODE;, ARRAY #, (A/L);
EXAMPLE: CGS 97, 1, 3, A4, 0.789

where CGS implies a conductor that will vary, the ARRAY # (in the example, array Ad)isa
table of conductivity vs. temperature that specifies how the thermal conductivity is to vary
with temperature, and (A/L);; (a single number) is the “geometric part” of the conductor
and is the term in brackets in Equation 11. The table of k vs. T is added separately to the
SINDA deck.

Capacitance for each node of each element uses the “lumped mass” approach that is often
used in finite element structural analysis. Essentially this means that, for the triangular
element of Figure la, each node is assigned 1/3 of the mass of that element. For other ele-
ments the lumping of mass (and hence capacitance) is similar and can be found in Reference
1 and 2. FEM/SINDA will automatically generate the appropriate capacitance for SINDA.

The above procedure for determining the “finite element” conductors and capacitances for
each element is used in a similar way to handle convection and radiation. Convection and
radiation will lead to additional conductors in the network and will automatically be gener-
ated by FEM/SINDA. SINDA radiation conductors can also include view-factor calculations
based on a TRASYS run (the conductors are automatically generated by the TRASYS run).

FEM/SINDA will generate the conductors for each element used in the FEM model. When
two elements produce conductors between the same nodes, those conductors are combined
(in cases where the conductors are not constant but are referencing a different thermal con-
ductivity, they are not combined). The sorting and summing is performed by FEM /SINDA
not only for conductors (conduction, convection and radiation conductors) but also for ca-
pacitance and loads. This will generate a compact conductor network for the subsequent
thermal analysis.
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I-DEAS and PATRAN MODELING

The thermal analyst can define his/her entire thermal model within I-DEAS or PATRAN
and then subsequently generate a FEM/SINDA input deck. The key to the ease of generating
a FEM/SINDA input deck from a FEM model is simple: a node in the FEM model will
necessarily be a node in the SINDA network. The I-DEAS entities available in I-DEAS 4.0
and the PATRAN entities available in PATRAN 2.3 will, in general, be used to directly to
drive the FEM/SINDA model. In particular, the I-DEAS and PATRAN entities shown in

Table 1 are directly supported by FEM/SINDA.

I-DEAS/PATRAN entity FEM/SINDA entity]
Cartesian coordinate system CORDR
Cylindrical coordinate system CORDC
Spherical coordinate system CORDS
Isotropic material table MATI
Orthotropic material table MATO
Spring physical table PCOND
Rod/Bar physical table PROD
Shell physical table PSHELL
Solid physical table PSOLID
Node NODE
Node-to-node translational spring] CONDUCT
Lumped mass CAPAC
Linear rod/bar ROD
Linear thin-shell triangle TRIA
Linear thin-shell quadrilateral QUAD
Linear solid tetrahedron TETRA
Linear solid wedge WEDGE
Linear solid brick BRICK
Nodal heat source NHEAT
Edge influx/Dist. heat source EFLUX
Face influx/Dist. heat source FFLUX
Distributed heat generation VFLUX
Edge convection ECNVECT
Face convection FCNVECT
Edge radiation ERADS
Face radiation FRADS or FRADT
Nodal temperature TEMP

TABLE 1. .DEAS/PATRAN entity and corresponding FEM/ SINDA entity.
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The property and material values in I-DEAS can be used and the corresponding FEM/SINDA
input deck will be properly generated. Some of the material values that are supported
in I-DEAS directly are isotropic and orthotropic thermal conductivity, specific heat and
material density. Convective heat transfer coefficients and the emmisivities (for radiation
calculations) are also input directly in I-DEAS in the “ANALYSIS_CASES” task. Note
that by supporting both edge entities and surface entities (as Table 1 shows) both 2-D and
3-D models can be fully generated in I-DEAS and analyzed by FEM/SINDA. Heat loads,
convection and radiation can be applied using - DEAS’s heat transfer loads (see Table 1).
I-DEAS’s modeling of conductivity, specific heat, loads and boundary conditions that vary
with time or temperature is supported by entering a negative integer value for that prop-
erty. The FEM/SINDA translator (which translates a universal file into a FEM/SINDA
input deck) interprets all negative integer values for conductivity, specific heat, loads and
boundary conditions as a SINDA array reference (the SINDA array # is the absolute value
of the integer). The SINDA input deck must then include an array which describes how
that value is to vary with time or temperature.

The PATRAN interface to FEM/SINDA supports almost all FEM/SINDA entities which,
like I-DEAS, allows the user to input the entire model in the preprocessor. Nodes and
elements are generated with the standard GFEG and CFEG commands. Element properties
and material properties are entered with PROP and PMAT commands, respectively. Two
PMAT options are supported: thermal isotropic (TIS) and thermal anisotropic (TAN).
Material properties which vary with temperature may reference a SINDA array by entering
a negative array number in the PMAT command for that property. Boundary conditions are
entered with the standard DFEG command and may reference a SINDA time-varying array
by entering the array number in the UID field of the DFEG command. The only exception
is convection in which the array reference goes in the data field and the convection option
(time or temperature dependent) goes in the UID field.

I-DEAS or PATRAN modeling used in conjunction with FEM/SINDA allows the thermal an-
alyst to easily model his/her problem with the tools that are available in the pre-processors.
The mapped and free mesh generation, application of loads and boundary conditions to
geometric entities, mixing of rod, shell and solid elements are just a few of the FEM’s fea-
tures that can be used (without playing games) to generate a thermal model. Fundamental
tasks such as free edge plots can be used meaningfully to show the absence of thermal con-
nections (this is in direct contrast to centroidal methods and any method which does not
use the nodes of the finite element model as the point at which the temperature is to be
determined). FEM/SINDA’s interface with -DEAS and PATRAN truly allows the modeler
to use the pre-processor software consistent with its design, and hence makes the thermal
analyst more efficient in his/her modeling.
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FEM/SINDA INP ECK

The FEM/SINDA translator will read a I-DEAS universal file or a PATRAN neutral file of
a thermal model and generate a8 FEM/SINDA input deck. The input deck to FEM/SINDA
looks similar to a NASTRAN input deck (hence present NASTRAN decks can be used, with
slight modification, to perform a thermal analysis). Figure 3 shows a quick reference guide
describing a FEM/SINDA input deck, and Figure 5 shows an input deck for the simple
problem shown in Figure 4. This deck was completely generated from the I-DEAS model
shown by first generating a universal file from I-DEAS and then running the FEM/SINDA
translator ( similiar techniques apply for PATRAN). The card image input is self explanatory
(Figure 3 can be used as a quick guide for the field description). The “SFILE” shown in
Figure 5 is the name of a supplementary SINDA file. The SFILE can contain SINDA array
definitions, FORTRAN subroutines, etc. that will augment the conductor network generated
from the finite element model to produce the SINDA input deck. This file could contain old
SINDA decks that will be thermally combined with the new finite element input deck. The
ECNVECT card shown in Figure 5 defines the heat transfer coefficient to the air gap (see

Figure 4) as a function of temperature to be defined by array “A1”. This array is specified
in the SFILE. :

The quick reference guide (Flgur;35 indicates which fields of the data input can vary (data
enclosed in {}) with time or temperature and hence reference an array. For example, the
edge flux card (EFLUX) allows for the flux to be specified by an array.

Radiation is specified (for which TRASYS will calculate the view factors and generate the
nodal radiation conductors) by the FRADT card. The radiation conductor network returned
from TRASYS is included with the SINDA input deck to form a complete system network
which models the integration of the conduction, convection and radiation thermal model.

Once the SINDA analysis is complete, a universal file or neutral file is generated by SINDA
that contains all of the nodal temperatures for post-processing. In a transient thermal
analysis, this file will contain a temperature data set for each output time step. SINDA can
also generate a set of NASTRAN “TEMP” cards that can be included with a NASTRAN

input deck for thermal stress analysis.

FEM/SINDA EXAMPLE

The following examples of FEM/ SINDA w111 hclg to illustrate the advaﬁtagcs of the - DEAS
/PATRAN-to-FEM/SINDA combination to the thermal analyst. '

Figure 6 shows the temperature contours for a 2-D model of a rectangular region. Heat
is input at the bottom of the region and the top is held at a constant temperature of
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zero. The thermal conductivity is constant. The grid shown (using 2-D shell elements)
was purposely made irregular to illustrate the strength of the finite element method. The
temperature field is linear for this model. FEM/SINDA will model a linear temperature field
exactly because of the finite element description of the conductor network (see Equation 1).
Three contour plots are shown: (a) FEM/SINDA results, (b) TMG results , and (c) a
centroidal method. The FEM/SINDA results give the exact solution, and the TMG results
are reasonably close to the exact solution. TMG uses a single “thermal node” per element,
but the “node” is not at centroid but at the intersection of the perpendicular bisectors of the
sides (assuming a triangular element - a quadrilateral can be broken up into triangles). It
can be shown that these “thermal node” points will mode] a linear temperature field exactly.
The apparent discrepancy (from Figure 6) is that TMG will not use these points when the
bisector intersection falls outside the triangle. The resulting TMG conductor network is
therefore not guaranteed to model the temperature field exactly (a trivial change to the
code could remedy this). Despite this, the TMG temperature field is acceptable. This is not
the case for the the centroidal temperature field show in Figure 6c. The conductor network
for this model is based on an in-house code that uses the centroid as the “temperature
node”. The results are unacceptable and clearly show that the irregular finite element grid
dramatically affects the results (a rectangular grid would give the exact solution).

If the analyst were to use a centroidal method (rather than FEM/SINDA), the modeling for
a large model could be complicated and very cumbersome. For example, besides the needed
shell elements shown in Figure 6 to model the 2-D conduction region, bar elements must be
used at the top and bottom boundary to designate the boundary conditions. This process
carried over to 3-D models requires shell elements to be put on the face of solid elements
to handle boundary conditions—a process that can add significant modeling time and that
is cumbersome. These “additional” elements are sometimes needed even within a solid
region; for example, at the interface of two materials with different conductivity. Failure to
do so will can cause interpolation algorithms to inadequately predict finite element nodal
temperatures from the “element” temperatures. Modeling convection and radiation can also
require the addition of elements on the appropriate boundaries. Mixing of 1-D, 2-D, and 3-D
conduction elements also requires the “additional” elements when such elements join (a 2-D
shell coming into two nodes of a solid requires the addition of a shell on the face of that solid
to force the thermal connectivity). Overall, these thermal “games” can significantly affect
the thermal analyst’s productivity in I-DEAS or PATRAN and can hinder the graphical
verification of his model.

Figure 7 shows a radiation-conduction problem that was performed both with FEM/SINDA
and NASTRAN. The top body is held at a constant temperature of 100 degrees and the
bottom body at 0 degrees. The circular region has a low thermal conductivity and a unit
depth is used. Spaceis at a temperature of 50 degrees. This model was generated in I-DEAS
including the designation of the radiating surfaces. FEM/SINDA generated the TRASYS
run which produced the view factors and the SINDA radiation conductors. Good agreement
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is shown between FEM/SINDA and NASTRAN for the relatively coarse grid used.

Figure 8 shows an example of a transient analysis. It consists of a splice ring used to attach
sections of a missile together. Normally, the thermal protection requirements of a missile
are determined by a 1-D analysis through a typical portion of the missile skin. In this
case two dimensional effects are considered important where the splice section and the bolt
area join. For this example, a 2-D mapped mesh mode] was constructed. Different thermal
properties were used for the splice ring, bolt and filler elements. Aerodynamic heating was
applied to the outer surface (top) by means of a time-varying adiabatic wall temperature
and convection coefficient. The outer surface was also allowed to radiate to the sky. The
inner surface (bottom) had constant free convection applied. The results of the five second
transient analysis are shown in two forms - four temperature contour plots at various points
in time and as a surface temperature versus time plot. The surface temperature time trace
compared favorably with the results from a 1-D in-house finite difference code, called F86,

which is also shown in the plot.

A practical example showing the use of FEM/SINDA is the model of a TV camera of an
electro-optical system that is shown in Figure 9. This model is composed of 2849 nodes
and 2834 elements which generated 19289 SINDA conductors (the largest model to date
with FEM/SINDA was 4897 nodes and 5423 elements). The model shown is a mixture of
rods, shells, and solid elements. Convection loads the exposed surfaces. Heat is input in
the mounting bracket (shown in the foreground) because of a direct connection between
the bracket and an electronics module. The results shown here represent the steady state
temperature distribution. The detail shown in the finite element model was needed for
structural analysis. The deflections of the optical train were driven by the temperature
distribution. The determination of the temperature distribution at the finite element by
FEM/SINDA) made the interface between the structural and thermal model a trivial matter.
The other important feature that is automatic in this model was the mixing of various
element types. For example, a rod coming into one node of a shell is thermally allowed and
easily modeled in PATRAN or I-DEAS. This connectivity is also easily verified in PATRAN

or I-DEAS.

CONCLUSIONS

FEM/SINDA provides a general purpose geometry driven thermal analysis code to the ther-
mal analyst. Because of the finite-element-type input to the code (essientially identical to a
NASTRAN input deck), its interface with I-DEAS, PATRAN and NASTRAN is complete:
each FEM/SINDA entity corresponds naturally to a I-DEAS or PATRAN entity, and in most
cases to 8 NASTRAN entity (hence NASTRAN input decks can, with little or no modifi-
cation, be used as an input deck to FEM/SINDA). The nodal temperatures determined
from FEM/SINDA can be used directly to drive a thermal loading condition in NASTRAN.
FEM/SINDA combines the power of finite element techniques with the thermal community’s
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tested and well accepted workhorse: SINDA. This mix of the finite element-finite difference
worlds takes advantage of the strengths of both methods: the finite element method’s abil-
ity to handle arbitrary geometry, model non-homogeneous regions with different element
types, and model linear temperature fields exactly; and SINDA’s finite difference capability
to handle time and temperature dependent material properities, loads, and boundary con-
ditions, and add user written FORTRAN routines. FEM/SINDA’s interface with I-DEAS
and PATRAN allows the thermal analyst to take full advantage of all of a finite element
modeler’s capabilities in a manner consistent with the design of the FEM pre- and post-
processors. The key to that interface/integration is that a node of the finite element model
will necessarily be a node in the thermal conductor network. Therefore this technique does
not comprimise the inherent modeling integrity of FEM geometric discretization, and will
casily allow the alogrithms of both old and new finite element technology (for example, both
in meshing applications and finite element matrix manipulations) to be applied to general
purpose thermal analysis.
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Figure 2a. Quadrilateral Element
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Figure 1b. Equivalent Conductors
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TITLL- $ Give some title

OUTPU = $ SUPCRTAB, PATRAN, NASTRAN, and/or PLOT

ITEMP= $ Initiel tempereture COmSTant COmCTIOn
RTDP= $ Tempersture of rediation infinity node .

SPILE= $ Name of S‘l‘dl_fﬁr-!tod input file ,' ”

HINCOND= $ Minimm abs(A/L) value to be written

SICIN LK

$

$ Dats enclosed in { ) may be either a real constant

§ or reference an array

$

$ Coordinate systems:

oRrR, CID, AL, A2, A2,, B1, B2, B, eccid i i :

«cid, a4 ,a, & ' TErPCRATLAL OCPCPOCHT COMECTION

CORDC, CID, AL A2,, B1, 82, B), «Ccid

+cid, a1, a2,
N,
. Q,

. [W ’I{'P "‘] l""
i

AT Flux

D

A2,, B1, 82, B}, +Ccid '

ul
[
a2
[}

§ Modes: Figure 4. Simple Model Generated in SUPERTAB

$ Material properties:

MATT o {x) tho ()

MATO D (Xx}  {xy) (x2]) cho ) TITLE » PLATE MOOEL SAMPLE CASE

$ ITD® = 50.0 $ Initial temperature

§ Physical properties: STILZ = PLATE SAMPLE.MIT $ Sinda-formatted input file
PCOND  PID {xaL) OUTPUT = SUPERTAB $ SUPERTAB Unv. file output
FROD  PID wo AREA MINCOND= 1.00-1% $ Climinate all conductors
PSHELL PID f014.] THXNESS s vith ABS{A/L) ¢ 1.0e-15
PSOLID PID MID BIGIN BULK

$ MAYT® 1 10. 200. .2

$ Clements: MATT® 2 20. 100. .4

CAPAC N1 MASS (op) PSHELL 1 1 0.5

CONDUCT N1 N2 (A1) PSHILL 2 2 0.5

FooND M 2 (pxoT}  (Cp) wooE 1 [ 0.0 0.0 0.0

$ wooL 2 [ 0.0 4“0 0.0

ROD 124.] PID N w2 wooE ) [} 2.0 4.0 0.0

TRIA  EID PID Ny n2 [ 5] wooL 4 0 2.0 0.0 0.0

QUAD  EID PID n 7] n L wooE [ ° 4.0 0.0 0.0

TETRA  LID PID Nl N [} N4 0L ¢ ] 4.0 ¢.0 0.0

WEDGE, EID, PID, N1, N2, N3, N4, NS, N6 woe t] [ 6.0 4.0 0.0

BRICK, EID, PID, N1, M2, N3, M4, NS, N, +Beid oo s ° 6.0 0.0 0.0

+Beid, M7, N3 ;o [} .0 4€°0 0.0

$ mooE 10 [ 8.0 0.0 0.0

$ Boundary Conditions: CUAD 1 1 1 2 3 4
NHEAT  wDOE {MEAT) QUAD 2 1 ) [ 7 [ ]
rux EDGES  {FLUX1) PLUX2 QUAD b} 2 [} 7 ’ 10
YTUX  £Id FACEY  {rux)) DO ) 0.0

vruX  EIo {ruuxi } TP 10 D.o

EOWECT £1D oz (M) h2 neoceE TYPE X 1 H 150, 150,

FOWEICT EID FACTY  (h) noot  TYPE COWECT b 3 10. 10. 1000

WS SID EID EDGEN cowecT 2 1 Al 1000 1
FRADS  SID £ID PACT

NCLOSE  SID1 el SID2 2 r12 ™

FRADT  SID TID FACEL o 1

Figure 5. Input Deck Generated from Model

™F Wt (Tow)
Shown in Figure 4

[ PR bl Al ‘/\‘

Figure 3. General Description of FEM/SINDA
Input Deck
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