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SUMMARY

The NASA STRuctural ANalysis (NASTRAN) (Ref 1) program is one of the most extensively
used engineering applications software in the world. It contains a wealth of matrix operations and
numerical solution techniques, and they were used to construct efficient eigenvalue routines. The
purpose of this paper is to examine the current eigenvalue routines in NASTRAN and to make
efficiency comparisons with a more recent implementation of the Block Lanczos algorithm by
Boeing Computer Services (BCS). This eigenvalue routine is now available in the BCS mathe-
matics library as well as in several commercial versions of NASTRAN. In addition, CRAY main-
tains a modified version of this routine on their network. Several example problems, with a
varying number of degrees of freedom, were selected primarily for efficiency bench-marking.
Accuracy is not an issue, because they all gave comparable results. The Block Lanczos algorithm
was found to be extremely efficient, in particular, for very large size problems.

INTRODUCTION

In NASTRAN the real eigenvalue analysis module is used to obtain structural vibration modes
from the symmetric mass and stiffness matrices, M4 and K44, which are generated in the pro-
gram using finite element models. Currently the user has a choice of four methods for solving
vibration mode problems: Determinant Method, Inverse Power Method with Shifts, Tridiagonal
Method (Givens’ Method) and Tridiagonal Reduction or FEER Method. NASTRAN provides all
these options for user convenience as well as for analysis efficiency. For example, the Givens’
Method is most appropriate when all the eigenvalues are of equal interest. By the same token, it is
not suitable (because of the need for excessive computer résources) when the number of degrees
of freedom is too large (greater than three to four hundred) unless preceded by Guyan reduction
(ASET or OMIT). The Inverse Power. Determinant and FEER Methods are most suitable when
only a small subset of the eigenvalues are of interest. These methods take advantage of the
sparseness of the mass and stiffness matrices and extract one or a small subset of eigenvalues at a
time.

*NASTRAN without qualification refers to COSMIC-NASTRAN (or government version) in the paper.
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The purpose of this paper is to examine, in some detail, the real eigenvalue analysis methods cur-
rently available in NASTRAN and to make efficiency comparisons with the Block Lanczos algo-
rithm as implemented by Boeing Computer Services (BCS) and currently available in some
commercial versions of NASTRAN (for example MSC-NASTRAN and UAI-NASTRAN). The
accuracy of the eigenvalues is not an issue in this paper, because all the methods gave comparable
results. Efficiency in terms of computer time is the only issue in this bench-marking. This study
was made, for all cases, on a single platform, the CRAY XMP. The genesis of the Block Lanczos
Method in all the NASTRANS, as well as the CRAY version, is the one implemented by BCS with
some modifications.

Section 1 discusses the general form of the eigenvalue problem for vibration modes. In Section 2
a mathematical formulation of the four methods in NASTRAN is given with emphasis on the
FEER Method as a precursor to the Lanczos Method. A detailed mathematical description of the
Block Lanczos Method is given in Section 3. Also reference is made to the Lanczos method in
MSC NASTRAN and to its implementation by CRAY Research, Inc. In Section 4 selected fre-
quencies are calculated for five structures of varying complexity using the Inverse Power Method,
the FEER Method, MSC/NASTRAN Lanczos Method and CRAY Lanczos Method. Results are
discussed in Section 5 and recommendations are made for possible implementation into NAS-
TRAN.
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1.0 The Eigenvalue Problem

1.1 The general form of the eigenvalue problem for vibration modes is

‘

Kx = AMx 0))

where M and K are the symmetric mass and stiffness matrices, the eigenvalue A = o the square
of the natural vibration frequency, and x is the eigenvector corresponding to A. The dimension of
the matrices K and M is nxn, where n is the number of degrees of freedom in the analysis set. For
this paper it is assumed that K and M are at least positive semi-definite. Thus associated with Eq
(1) are n eigenpairs X,., x; such that

Kxi = kiMxi i=1,2,.n )

Properties of the eigenvectors include:

. i=J
szij _ (M” for

3)
0 for ;=

where M;; is referred to as the modal mass or generalized mass. It is evident from Eq (3) that the
eigenvectors are orthonormal with respect to the mass matrix. Also the eigenvectors are orthonor-
mal with respect to the stiffness matrix, i.e.

i=j
A Kx, = (Ki" for . )]

where Kii_ is the modal stiffness or generalized stiffness.

The Rayleigh quotient shows that the modal mass, M;, and modal stiffness, K};, are related to the
eigenvalue \ , i.e.

xlTle- K;:
}\,, = = ! (5)
: xiTMxi M;;
For normalized eigenvectors with respect to modal mass, Eqgs (3) can be written as
T 1 for i=Jj
x;Mx, = (6)
e ( Ofor i=zj
Now using Egs (5). Eqgs (4) can be written as
A.for i=j
xiTKxj = ( J d @)
0 for i#j
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The central issue of a real eigenvalue or normal modes analysis is to determine the eigenvalues,
X,., and the eigenvectors, x;, which satisfy the conditions stated by Egs (1-7). The next sections
present the important elements of the eigenvalue methods of interest.
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2.0 Eigenvalue Extraction Methods in NASTRAN

2.1 For real symmetric matrices there are four methods of eigenvalue extraction available in
NASTRAN: the Determinant Method, the Inverse Power Method with shifts, the Givens’
Method of Tridiagonalization and the Tridiagonal Reduction or FEER Method. Most methods of
algebraic eigenvalue extraction can be categorized as belonging to one or the other of two groups:
transformation methods and tracking methods. In a transformation method the two matrices M
and K are simultaneously subjected to a series of transformations with the object of reducing them
to a special form (diagonal or triadiagonal) from which eigenvalues can be casily extracted.
These transformations involve pre and post multiplication by clementary matrices to annihilate
the off-diagonal elements in the two matrices. This process preserves the original eigenvalues in
tact in the transformed matrices. The ratio of the diagonal elements in the two matrices gives the
eigenvalues. In a tracking method the roots are extracted, one at a time, by iterative procedures
applied to the dynamic matrix consisting of the original mass and stiffness matrices. In
NASTRAN the Givens’ and the FEER methods are transformation methods, while the
Determinant and the Inverse Power methods are tracking methods. Both tracking methods and
the Givens’ method will be discussed briefly in this section while the Lanczos algorithm, the main
emphasis of this paper, is outlined here and in more detail in the next section.

2.2 Determinant Method

For the vibration problem

Kx = AMx ®)

the matrix of coefficients, A, has the form

A= K-AM )]

The determinant of A can be expressed as a function of A, i.e.
D(A) = 1Al = (7»—-7»1) (A- Xz) (X—?\,n)

where Xi, i = 1,2...n are the eigenvalues of A. In the determinant method D(A) is evaluated for
trial values of A, selected according to an iterative procedure, and a criterion is established to
determine when D(A) is sufficiently small or when A is sufficiently close to an eigenvalue. The
procedure used for evaluating D(A) employs the triangular decomposition

A=LU (10)
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for an assumed value of A where L is a lower unit triangular matrix and U is an upper triangular
matrix. D(A) is equal to the product of the diagonal terms of U. Once an approximate cigenvalue,
A;, has been accepted, an eigenvector, X;, is determined from

LUxi =0 an

by back substitution where one of the elements of x; is preset. Since L (A,) is nonsingular, only
U (X,) is needed. The determinant method may not be efficient in some cases if more than a few
eigenvalues are desired because of the large number of triangular decompositions of A.

23 Inverse Power Method with Shifts

The Inverse Power Method with shifts is an iterative procedure applied directly to Eq (1) in the

form

[K-AM]x =0 12)

It is required to find all the eigenvalues and eigenvectors within a specified range of A. Let
A=A +A (13)

where A is a constant called the shift point. Therefore A replaces A as the eigenvalue. The iter-
ation algorithm is defined in the nth iteration step by:

[K—?LOM] w, = Mx, _, (14)
1

xn = E—wn (15)
n

where ¢, a scaler, is equal to that element of the vector w,, with the largest absolute value. At
convergence 1/c, converges to A, the shifted eigenvalue closest to the shift point, and x,, con-
verges to the corresponding eigenvector 9. Note from Eq (14) that a triangular decomposition of
matrix K — AM is necessary in order to evaluate w,. The shift point A canbe changed in order to
improve the rate of convergence toward a particular eigenvalue or to improve accuracy and con-
vergence rates after several roots have been extracted from a given shift point. Also A can be
calculated such that the eigenvalues within a desired frequency band can be found and not just
those that have the smallest absolute value.

For calculating additional eigenvalues, the trial vectors. Xp, in Eq (14) must be swept to eliminate
contributions due to previously found eigenvalues that are closer to the shift point than the current
eigenvalue. An algorithm to accomplish this is given as follows:

m
X, = X,— Y, (BM%,) 8 (16)

i=1
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where X, is the trial vector being swept, m is the number of previously extracted eigenvalues, and
¢, is defined by
Xi N

;=
T .
Xi NMx; N

where x; y is the last eigenvector found in iterating for the ith eigenvalue.

a7

The inverse power method allows the user to define a range of interest [).a, lb] on the total fre-
quency spectrum and to request a desired number of eigenvalues, ND, within that range. When
ND is greater than the actual number of eigenvalues in the range, then the method guarantees the
lowest eigenvalues in the range.

2.4 Givens’ Method of Tridiagonalization

In the Givens’ method the vibration problem as posed by Eq (8) is first transformed to the form
Ax = Ax (18)

by the following procedures. The mass matrix, M, is decomposed into upper and lower triangular
matrices such that

M=LLT 19)

If M is not positive definite, the decomposition in Eq (19) is not possible. For example, when a
lumped mass model is used, NASTRAN does not compute rotary inertia effects. This means that
the rows and columns of the mass matrix comresponding to the rotational degrees of freedom are
zero resulting in a singular mass matrix. In this case the mass matrix must be modified to elimi-
nate the massless degrees of freedom.

Thus Eq (8) becomes
Kx = ALLTx 20)

which implies after premulitplying by L and post multiplying by (LT)’I that

-1
L'k (T x = x Q1)

ie.

Ax = Ax

where A=L'1K(LT)'1 . Note that Lt is easy to perform, since L is triangular. Also

-1
A=L"kx (LT) is a symmetric matrix. The matrix A is then transformed to a tridiagonal
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matrix, A,, by the Givens’ method, i.e a sequence of orthogonal transformations, TJ. are defined

such that

T.T _l...TleAx = kTrTr_l...Tlex (22)

r-r

Recall that an orthogonal transformation is one whose matrix T satisfies

T =TT =1 23)

the identity matrix. The eigenvalues of A are preserved by the transformation, and if
=1l .77 _ | Ty (24)
then from Eq (22)
TT T T _ Tl T
T,T,_,..T,T\AT|T;..T} _ Ty = AT,T, _;..T,T\T\T;...T,y

ie.
ToT T T _
T.T,_;..T,7\AT\T,...T, T,y = Ay (25)
by repeatedly applying Eq (23). Eq (25) implies that y is an eigenvector of the transformed matrix
T.T._,.T,T,ATT5...T'_,T. Thus x can be obtained from y by Eq (24).

r
The eigenvalucs of the tridiagonal matrix, A, are extracted using a modified Q-R algorithm, ie.,
A= Q ,Q, such that A, is factored into the product O, R, where R, is an upper triangular
matrix and Q, is orthogonal. Thus

A, = QR (26)
and
A1 = Q e
_ Qr QRO from Eq (26)
Since @, is orthogonal, then
A .1 =RO, @7

In the limit as r = = and A is symmetric, A, will approach a diagonal matrix. Since eigenvalues
are preserved under an orthogonal transformation, the diagonal elements of the limiting diagonal
matrix will be the eigenvalues of the original matrix A.

To obtain the ith eigenvector, y;, of the tridiagonal matrix, A, the tridiagonal matrix A, - A g is
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factored such that

where L; is a unit triangular matrix and U, is an upper triangular matrix. The eigenvector y; is then
obtained by iterating on

Uy™ =y D @9

where the elements of the vector yi(o) are arbitrary. Note that the solution of Eq (29) is easily

obtained by back substitution since U; has the form

P91 "
P42 72
U. = - - - (30)
- - ~Pp-19n-1
P,

L -

The eigenvectors of the original coefficient matrix, A, are then obtained from Eq (24).

Note that in the Givens' method the dimension of A equals the dimension of A The major share
of the total effort expended in this method is in converting A to A,. Therefore the total effort is not
strongly dependent on the number of eigenvalues extracted.

2.5 Tridiagonal Reduction or FEER Method

The tridiagonal Reduction or FEER method is a matrix reduction scheme whereby the eigenval-
ues in the neighborhood of a specified point, A, in the eigenspectrum can be accurately deter-
mined from a tridiagonal eigenvalue problem whose dimension or order is much lower than that
of the full problem. The order of the reduced problem, m, is never greater than

m= 2q+10
where 7 is the desired number of eigenvalues. So the power of the FEER method lies in the fact

that the size of the reduced problem is the same order of magnitude as the number of desired
roots, even though the actual finite element model may have thousands of degrees of freedom.

There are five basic step in the FEER method:

1. Eq(8)isconvertedto a symmetric inverse form

Bx = AMx a3n
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where

A= (32)

and lo is a shift value.

2. The tridiagonal reduction algorithm or Lanczos algorithm is used to transform Eq (31) into a
tridiagonal form of reduced order.

3. The eigenvalues of the reduced matrix are extracted using a Q-R algorithm similar to that
described in Section 2.4.

4. Upper and lower bounds on the extracted eigenvalues are obtained.
5. The corresponding eigenvectors are computed and converted to physical form.

To implement Step 1, consider Eq (8),
Kx = AMx

When vibration modes are requested in the neighborhood of a specified frequency, A, Eq (8) can
be written

Kx—A Mx = AMx— A Mx
(K—)».OM)x = (X—lo)Mx 33)
Let K = K-A Mand A’ = A— A . Then from Eq (33)
Kx = M'Mx (34)
x = X'I?_IMx
Mx = MK Mx
MVI_(_—lMx = Xl—,Mx (35)

Factor K by Cholesky decomposition, i.e.
K =LaL’ (36)

where L is a lower triangular matrix and 4’ is a diagonal matrix. Then Eq (35) can be written
R 1
M[ " a7L ‘]Mx = o Mx

ie.
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Bx = AMx

T -1 ~1y=-1 1 1 .
where B= M| (L') dL" [MandA = 5 = . Now step 1 is complete.
[ ] il v

To implement Step 2 rewrite Eq (31) as
Bx = Ax

where B = M"'B. Now B is reduced to tridiagonal form, A, using single vector Lanczos recur-
rence formulas defined by

a;, = ViBY,
T _ 12
di+l= {Vi+lMVi+1}
V. .o=_L17 i=1,2..m-1
i+1 di+l i+1 i

where vector V,=0, V; is a random starting vector and d; =(0. The reduced tridiagonal eigenvalue
problem is now given as

ayy d, ]
dy ay dy
ay=| %9 % y = Ay (38)
v \
dm—l am-l,m—l dm
! 9 Gmm

where A approximates the eigenvalue A of Eq (31), and y is an eigenvector of A. The Lanczos
formulas generate a V matrix, vector by vector, i.e.

V= [V,Vy..V (39)

m)

and Eqgs (37) are modified by NASTRAN such that each vector Vi, is re-orthogonalized to all
previously computed V vectors, i.e. V is orthonormal to M.

vIMy = 1 (40)
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Thus
A = VIBy 41)

Note from Eq (41) that A is an nuom matrix.

For step 3 the eigenvalues, A, and eigenvectors, y, of Eq (38) are obtained as described for the
Givens’ method in Section 2.4. The eigenvectors are normalized so that

y?'yi =1 i=1,...,m 42)

For step 4 the following error bound formula has been derived and serves as a criterion for select-
ing acceptable eigensolutions

dm+l “Ymi

A (1 +on,.)

<

(43)

i
In Eq (43) A, is an approximation to the exact eigenvalue A, in Eq (8), 4, , , is calculated from

Eqs (37), y,,,; is the last component of the mrh eigenvector, v, , of A, and A ; is the ith eigenvalue
of A. The ith eigenvalue A, is acceptable, if €, is less than or equal to a preset error tolerance.

Now step 5 is implemented for acceptable eigenvalues. If (A, y) is an eigenpair of Eq (38), then
Ay = Ay
or from Eqs (30) and (41)
vIBVy = AVIMVy
BVy = AMVy (44)

Now if x=Vy, then
Bx = AMx

ie. (A, x) is an eigenpair of Eq (31).
Thus for step 5 the eigenvectors of Eq (31) or equivalently Eq (8) are calculated from
x=Vy (45)

and the eigenvalue A is calculated from Eq(32)ie.

A= %+xo (46)

Note that in the FEER method the matrix B enters the recurrence formulas, Eqgs (37), only through
the matrix-vector multiply terms BV,. Therefore B is not modified by the computations. Lanczos
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procedures for real symmetric matrices require only that a user provide a subroutine which for
any given vector, z, computes B:z.
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3.0 Block Lanczos Method

3.1 Recall that the eigenvalue problem in vibration analysis is given by Eq (8), i.e.

Kx = AMx

where K and M are symmetric positive definite matrices. Generally the eigenvalues of interest are
the smallest ones, but they are often poorly separated. However, the largest eigenvalues which are
not interesting have good separation. Also convergence rates are very slow at the low end of the
spectrum and fast at the higher end. Convergence rates can be accelerated to the desired set of
eigenvalues by a spectral transformation, i.e. consider the problem

MK -oM) 'Mx = uMx @47

where O, the shift, is a real parameter. It can be shown that (A, x) is an eigenpair of Eq (8) if and
only if (klo"') is an eigenpair of Eq (47). The spectral transformation does not change the
eigenvectors, but the eigenvalues of Eq (47) are related to the eigenvalues of Eq (8) by

1
=3 48)

This transformation will allow the Lanczos algorithm to be applied even when M is semidefinite.

Consider the effect of the spectral transformation on a satellite problem which will be discussed in
detail in Section 4. Figure 1 shows the shape of the transformation. Table A shows the effect of
the transformation using an initial shift of ¢ = .046037. Note that the smallest 8 eigenvalues are
transformed from closely spaced eigenvalues to eigenvalues with good separation.
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tellite Problem

12
o = 0.046037
u = 1
A-0C
FIGURE 1
ORIGINAL TRANSFORMED
I A u (i) gap rel gap gap rel gap
1 .07229| 38.09088| .03611 05357 22.05574| 60158
2 .10840| 16.03514| 01716 02546 3.46017 | 09438
3 | .12556| 1257497 .18740 27800 8.82857 | .240803
4 1 31296| 374640 | 6.000x 10°>| 8.9006x 10| .00084 2.29114x 107
5 31302| 3.74556 | 27055 ' 40134 1.88521 | 05142
6 .58357| 186035 | .16180 . .24002 | 43042 | 01174
7 745370 1.42993 © 00103 00183 00210 572784 x 107
R 7640 142783
Table A

Our objective is to define the Spectral Transformation Block Lanczos algorithm. Let’s consider
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first the Basic Block Lanczos Algorithm.
3.2 Basic Block Lanczos Algorithm

Consider the Lanczos Algorithm (Refs 2.3) for the eigenvalue problem.
Hx = Ax 49)

where H is symmetric
The block Lanczos iteration with block size p for an nxn matrix H is given as:
Initialization:
setQ,=0
setB; =0
choose R; and orthonormalize the columns of R) to obtain O,
Lanczos Loop:
Forj=1,23,..
setUj = HQ; - Q;.1 B]
setA; = QJT U;
SetR jos = U j- O
Compute the orthogonal factorization Q;, 1B, = R;y;
End Loop

Matrices @;, U;, and R; for j= 1, 2, ... are nxp; A; and B; are pxp. A; is symmetric and B; is upper
triangular. The blocksize p is the number of column vectors of Q;. So if p = 1, then Q; is a column
vector, g. Thus the matrix H is not explicitly required, but only a subroutine that computes Hq for
a given vector q. A; and B; are generalizations of the scalers a;j and d; in the ordinary Lanczos
recurrence.

The recurrence formula in the Lanczos loop can also be written as
- _ T
Rjv1=QjuiBjyy = HQj=0A;-0;_\B; 0

The orthogonal factorization of the residual. R;, ;. implies that the columns of Q; are orthonormal.
Indeed it has been shown that the combined column vectors of the matrices. Q;. Q0>. ... O}, called
the Lanczos vectors. form an orthonormal set.

The blocks of Lanczos vectors form an /s.yjp matrix W i Where

W, = (0.0 . 0] S
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From the algorithm itself a jpxjp block tridiagonal matrix, Tj, is defined such that

. ;

AB} 0 .. 0
T

B,A, B} .. O

T = (52)
T
0 ..B;_,A;_ B
0. 0 B; A

Since the matrices B; are upper triangular, T} is a band matrix with half band width p+1. The first
j formulas defined by Eq (50) can be combmed using Eqs (51) and (52) into a single formula

T
HW, = WT;+0;, B;, E (53)

where E;is an nxp matrix of zeros except the last pxp block is a pxp identity matrix.

Premulitplying Eq (53) by W; implies

T _wT T T
WjHWj = Wj WjTj+Wj Qj+lBj+1Ej
ie.

Tyw. =
WIHW, = T (54)

since

W.TW. =1 and W.TQJ.H =0
Eq (54) implies that 7} is the orthogonal projection of H onto the subspace spanned by the col-
umns of W;. Also if ( 9 5) is an eigenpair of 7}, i.e. Tjs=56, then (LW, 5) is an approximate
eigenpair of H. A discussion on the accuracy of the approximation will be delaycd until the spec-
tral transformation Block Lanczos Algorithm is considered. Basically the Lanczos algorithm

replaces a large and difficult eigenvalue problem involving H by a small and easy eigenvalue
problem involving the block tridiagonal matrix T.

3.3 Spectral Transformation Block Lanczos Algorithm

Since our primary consideration is vibration problems, consider the eigenprobem posed by
Eq47)ie.

M (K —oM) 'Mx = uMx
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N

The Lanczos recurrence with block size p for solving Eq (47) is given by
Initialization
setQ,=0
setB; =0
choose R; and orthonormalize the columns of R; to obtain Q; with QTM 0, =1,
Lanczos Loop
Forj=1,2,3,..
set U; = (K-oM)"! (MQ) - ;.1 B;
set A; = U] (MQ))
set RH_1 = Uj-QjAj
Compute Q. , and (MQ;, ) such that
a) Q;,1Bj41 = Rjs)
b 0., (MQ;,)) =1,
End Loop

Note that the algorithm as written requires only one multiplication by M per step and no factoriza-

tion of M is required. The matrices Q; are now M orthogonal, rather than orthogonal, i.e.

T
.MO. =1
07MQ,
Also the Lanczos vectors are M orthogonal, i.c.
T
W -MW. =
J M J
The recurrence formula in the Lanczos loop can also be written as

0, 1Bj41 = (K—0M)'MQ;= QA0 0;_ B}

Now, as before, combining all j formulas of Eq (56) into one equation yields

= T
(K—oM)™'MW; = WT,+ 0, B, E

where W;, T}, and E; are as defined in Eq (53). Premulitplying Eq (57) by W].TM implies

T -1 T 1
WIM (K- oM)™' MW, = WiMWT +W; 704 1B; 41

ie.

WJ.TM (K - oM)'lMWj =T,
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since
- T =
WjMWj—I and Wij+1—0

Eq (58) implies that T is the M-orthogonal projection of (K — M) 1 onto the subspace spanned
by the columns of W;. The eigenvalues of T; will approximate the eigenvalues of Eq 47). If
(8, 5) is an eigenpair of T, then (6, Wls) will be an approximate eigenpair of Eq (47).

Recall that our main interest is in solving Eq (8). From Eq (48)

or V=o+% (59)

i.e. if O is an approximate cigenvalue of T}, then from Eq (59) V is an approximate eigenvalue of
Eq (8). Recall that the spectral transformation does not change the eigenvectors, therefore
y=W;sisan approximate eigenvector for Eq (8).

Let’s examine the approximations obtained by solving the block tridiagonal eigenvalue problem
involving the matrix Tj. Let (O, s) be an eigenpair of Tj ie.

Tjs = 50
andlety = W_js. Then Premulitplying Eq (57) by M and post multiplying by s gives
-1 _ T
-1 T
-1 T
M (K —cM) My - My =MQj+lBj+1Ejs (60)

Recall for any vector g, llqll . = qTM'lq (Ref 4).
Therefore, taking the norm of Eq (60) and using Eq (55)

-1 T
MK -oM) ™ My-My®|| = [IMQ;, 1B Ejs Il
= T =

Note that BJ. is easily computed for each eigenvector s. It is just the norm of the p vector obtained
by multiplying the upper triangular matrix B, | with the last p components of s.

From Ref 5 the error in eigenvalue approximations for the generalized eigenproblem is given by
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-1
1M (K- My-My® ||,

= B, 62)

||MyI|M.| J

Thus B ; is a bound on how well an eigenvalue of T; approximates an eigenvalue of Eq (47).

Recall that if 6 is an approximate eigenvalue of T, then from Eq (48)

V=o+s
- 0
is an approximate eigenvalue of Eq (8). Consider
pvt = [hmo-

= 3 -0 (25 -9
0 -C
1 B,

< —A-olf.< - (63)
gt -oiBs o

Therefore |A-v| s ;i; . Thus % is a bound on how well the eigenvalues of Eq (47) approximate the

eigenvalues of Eq (8).

3.4 An Analysis of the Block Tridiagonal Matrix T;

The eigenproblem for T, is solved by reducing T to a tridiagonal form and then applying the
tridiagormal Q; algorithm. The eigenextraction is accomplished in three steps:

1 An orthogonal matrix Q is found so that Tj is reduced to a tridiagonal matrix H, i.e.
T
QT Qr=H (64)

2. An orthogonal matrix Q is found so that H is reduced to a diagonal matrix of eigenvalues,
A, le.

T
QutHQy = A (65)
3. Combining Egs (64) and (65) gives

T
(QROP T;(Q7Qy) = A (66)

where Q10 is the eigenvector matrix for Tj. The orthogonal matrices @, and Q7 are a product
of simplex orthogonal matrices, Givens’ rotations, QH‘QHZ"'Q y or Qr QT,...QT. The algo-
] ] ’
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rithms used for steps (1) and (2) are standard and numerically stable algorithms drawn from the
EISPACK collection of eigenvalue routines.

Note from Eq (61) that only the bottom p entries of the eigenvectors of Tj are needed for the eval-
uation of the residual bound. Therefore it is unnecessary to compute and store the whole eigen-
vector matrix for Tj. Only the last p components of the eigenvector matrix are computed.

The error bounds on the eigenvalues Eq (62) and (63) are used to determine which eigenvectors
are accurate enough to be computed. At the conclusion of the Lanczos run the EISPACK subrou-
tines are used to obtain the full eigenvectors of T;. Then the eigenvectors for Eq (47) are found
through the transformation

y=st

3.5 Other Considerations in Implementating the Lanczos Algorithm.

The use of the block Lanczos algorithm in the context of the spectral transformation necessitates
careful attention to a series of details:

a. The implications of M-orthogonality of the blocks

b. Block generalization of single vector orthogonalization schemes

c. The effect of the spectral transformation on erthogonality loss

d. The interactions between the Lanczos algorithm and the shifting strategy.
All of these issues are addressed in detail in Refs. 5,6.

3.6 The Block Lanczos algorithm as described in the previous sections was developed as a
general purpose eigensolver for MSC NASTRAN (Ref 7). Boeing designed the software such
that the eigensolver was independent of the form of the sparse matrix operations required to
represent the matrices involved and their spectral transformations. The key operations needed
were matrix-block products, triangular block solves and sparse factorizations. These, and the data
structures representing the matrices, are isolated from the eigensolver. Therefore, the eigensolver

code could be incorporated in different environments.

For this paper we tested the block Lanczos algorithm as incorporated in MSC NASTRAN and as
further developed by Boeing and incorporated into code by Cray Research, Inc. The block Lanc-
zos algorithm in MSC uses the factorization and solve modules which are standard operations in
MSC. The Cray Lanczos code uses the Boeing eigensolver with matrix factorization, triangular
solves, and matrix-vector products from the mathematical libraries supplied by Boeing computer
services (BSCLIB-EXT). For vibration problems the CRAY code can be used with the stiffness
and mass matrices, K and M, as generated by NASTRAN. NASTRAN is run to generate binary
files containing the K and M matrices. These files are input files to the Cray code which calculates
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cigenvalues, checks the orthogonality of the eigenvectors, X, via x Kx, calculates the Rayleigh
quotient x Kx/x Mx to compare with the computed eigenvalues, and calculates the norm of the
eigenvector residual. In addition binary eigenvalue and eigenvector files output from the CRAY
are suitable for input to NASTRAN for further processing if desired. Since the commercial
(MSC) and the government COSMIC) NASTRANS do not give M and K in the same formats,
they need to be reformatted before calling the CRAY code. CSAR-NASTRAN was used to repre-
sent NASTRAN on the CRAY XMP.
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4.0 Test Problems

In this section several test problems were solved using the inverse power and FEER cigenvalue
extraction methods in COSMIC NASTRAN, the Lanczos algorithm in MSC NASTRAN and the
Lanczos algorithm as implemented by CRAY Research. These problems were chosen based on
the complexity of the finite element model in terms of the kinds of elements used and the number
of degrees of freedom. All methods as expected gave approximately the same numerical results.
The only criterion used to compare the different methods was the number of seconds needed to
reach a solution given that all problems were solved on the same platform, a CRAY XMP.

4.1 Problem1 Square Plate

A square 200 in x 200 in plate in the x-y plane was modeled with QUAD4 elements only. Five
meshes were defined. Details are given in Table 1. All elements were 1.0 in thick. Material prop-
erties were constant for all meshes. Each plate was completely fixed along the x-axis and the y-
axis at x=200 in.

MESH

10x 10 20x 20 30x 30 40 x 40 50x 50
Number of Grid
Points 121 441 961 1681 2601
Number of
Elements 100 400 900 1600 2500
Number-of
Degrees of 515 2015 4515 8015 12515
Freedom

Table 1: DETAILS OF THE FIVE MESHES DEFINED ON THE SQUARE PLATE

For all cases 5 frequencies were requested in the interval [0, 20hz]. Table 2 gives the results for
the 10 x 10 plate, and Table 3 gives the results for the 50 x 50 plate. As expected within each case
the numerical results from the different eigenextraction techniques are approximately the same.
The differences in numerical results between the 10 x 10 case and the 50 x 50 case reflect the fine-
ness of the mesh for the 50 x 50 case. Both Lanczos algorithms were run with a fixed block size
ofp=7.
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COSMIC Inverse
Power

COSMIC FEER
MSC Lanczos
CRAY Lanczos

COSMIC Inverse
Power

COSMIC FEER
MSC Lanczos
CRAY Lanczos

Table 4 gives the CPU time in seconds from the CRAY XMP needed to extract five frequencies
for each case. Recall that the CRAY Lanczos algorithm needs to obtain the mass and stiffness
matrices in binary form from NASTRAN. Thus the time given for this algorithm is the total time
from two computer runs, i.e. the time to obtain the mass and stiffness matrices plus the time to run

FREQUENCIES IN Hz

1 2 3 4 5
62980 | 7.1720 | 11.6374 | 17.4440 | 18.3096
62980 | 7.1720 | 11.6374 | 17.4440 | 18.3096
62730 | 7.2173 | 11.7181 | 17.2125 | 18.3392
62730 | 72173 | 117181 |17.2125 | 18.3392

Table 2: 10 x 10 SQUARE PLATE
FREQUENCIES IN Hz

1 2 3 4 5
64048 | 7.6103 | 12.5487 |17.6764 | 19.3642
64048 | 7.6103 | 12.5487 | 17.6764 | 19.3642
64054 |7.6159 |12.5599 |17.6745 |19.3739
64054 | 7.6159 | 12.5599 | 17.6745 | 19.3739

Table 3: 50 x 50 SQUARE PLATE

the Lanczos algorithm separately.
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1010 | 20x20 | 30x30 | 40x40 | 50x50
COSMIC Inverse
Power 14734 | 50936 |97.801 |197.769 |328.830
COSMICFEER | 8.085 | 19363 |39.877 |77.994 |132.179
MSC Lanczos 4783 | 13641 | 30973 |59283 |103.188
CRAY Lanczos | 4174 | 11.170 | 23.785 | 45433 | 78.009

MESH SIZE

Table 4;: CPU TIME IN SECONDS TO OBTAIN 5§ FREQUENCIES

Figure 2 is a plot of the degrees of freedom versus the CPU time in seconds on the CRAY for the
four eigenvalue extraction techniques.

400
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Figure 2: Degrees of Freedom versus CPU Time in Seconds.
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4.2 Problem 2 Intermediate Complexity Wing

A three spar wing shown in Figure 3 was modeled with 88 grids and 158 elements of the follow-
ing types: 62 QUADA4, 55 SHEAR, 39 ROD and 2 TRIA3. All elements varied in thickness or
cross-sectional area. Material properties were the same for all elements. The wing was com-
pletely fixed at the root which left 390 degrees of freedom. Five frequencies were requested in the
interval [0, 300hz]. Table 5 gives the frequencies calculated and the CPU time in seconds for the
four eigenextraction algorithms. As for Problem 1 both Lanczos algorithms were run with a fixed
block size of p = 7.

Figure 3: Intermediate Complexity Wing

CPU TIME IN

FREQUENCIES IN Hz SECONDS

1 2 3 4 5

COSMIC
Inverse Power 46.574 135.924 | 176.813 | 205.030 | 254.713 10.314

COSMIC FEER | 46.574 135.924 | 176.813 | 205.030 |254.713 | 8.085

MSC Lanczos \ 46.573 135.918 | 176.811 | 205.029 | 254.690 4.886

CRAY Lanczos l 46.573 135918 | 176.811 | 205.029 | 254.690 4.873

Table 5: INTERMEDIATE COMPLEXITY WING RESULTS
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4.3 Problem3 Radome

A composite radome shown in Figure 4 was modeled with 346 grids and 630 elements of the fol-
lowing types: 34 TRIA2, 284 BAR and 292 QUAD4. The QUADA4’s were both isotropic and
composite with 46 elements isotropic and 246 elements modeled as four cross-ply unsymmetric
laminates of 40, 38, 36, and 32 layers, respectively. The radome was completely fixed at the base
which left 1782 active degrees of freedom. Ten frequencies were requested in the interval
{0,100 hz]. Table 7 gives the frequencies calculated and the CPU time in seconds for the four
eigenextraction algorithms. Both Lanczos algoirthms were run with a fixed blocksize of p = 7.

im

COSMIC
Inverse Power
COSMIC
FEER
MSC
Lanczos
CRAY
Lanczos

Figure 4: Radome

CPU
FREQUENCIES IN Hz TIME IN
SECS
1 2 3 & 1 5 6 7 8 9 10
|

56.325 67.946{69.290 81.486{90.835 90.971{92.074]92.410{93.365(101.441| 63.986

i56.325167.946 69.290i81.486590.835190.97li92.074 92.410193.365/101.4411 21.318

] . , \ .

! ! : | ;

'56.068(66.958 68.213180.843»89.715190.248190‘768‘91.676 02.365/ 98.729 | 17.768

i £ |

56.068/66.958|68.213|80.843189.715 90.248‘90.768 91.676(92.365| 98.729 | 13.854

Table 6: Radome Results
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4.4 Problem 4 Satellite

A satellite shown in Figure 5 was modeled with 2295 grids and 1900 elements distributed as

shown in Table 7.

Figure 5: Satellite

ELEMENT TYPE
ROD BEAM[ELASI ELAS2 | TRIA3 QUAD4| BAR | HEXA |PENTA| RBE2
Number of ‘
Elements @ 15 | 134 | 30 ; 8 | 45 777 297 40 56 498

Table 7: Satellite Element Distribution

Sixteen different materials were referenced. and 34 coordinate systems were used. All elements
varied in thickness and cross-sectional area. and concentrated masses were added to selected
grids. The satellite has 5422 active degrees of freedom. Fifty frequencies were requested in the
interval [0, 20hz]. Table 8 gives every fifth frequency calculated and the CPU time in seconds for
the four eigenextraction algorithms. Again both Lanczos algorithms were run with a fixed block
sizeof p=7.
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COSMIC
Inverse
Power

COSMIC
FEER

MSC
Lanczos

CRAY
Lanczos

FREQUENCIES IN Hz

CPU

IN SEC

10

15

20

25

30

35

40

45

50

NO SOLUTION IN 2000 SECS

072

313

1.497

1.663

2419

5414

9.000

10.974

13.328

17.474

19.758

294.759

072

313

1.497

1.634

2.406

5417

9.056

10.975

13.267

17.104

19.649

121.065

072

313

1.497

1.635

2.406

5418

9.056

10.975

13.268

17.111

19.650

81.016

Table 8: SATELLITE RESULTS

4.5 Problem 5 Forward Fuselage - FS 360.0 - 620.0

A section of a Forward Fuselage from FS 360.0 to 620.0 shown in Figure 6 was modeled with
1038 grids and 3047 elements distributed as shown in Table 9.

Eleven different materials were referenced. All elements varied in thickness or cross-sectional
area. The fuselage was fixed in the 123 directions at FS 620.0. The model had 6045 active
degrees of freedom . Sixty frequencies were requested in the interval [0, 20hz]. Table 10 gives
every fifth frequency calculated plus the last one and the CPU time in seconds for the four eigen-
extraction algorithms. Both Lanczos algorithms were run with a fixed block size of p = 7.
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FALUARM /0

CNOOST ANV OPTION

Number of Elements

Figure 6: Forward Fuselage

ELEMENT TYPE
BEAM | CONROD | SHEAR | TRIA3 | QUAD4 | BAR
1141 885 395 15 572 39

Table 9: Forward Fuselage Element Distribution
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CPU

FREQUENCIES IN Hz mm"E
SECS
TT 5 T 101 151 20| 25| 30 | 35 ] 40 | 45| 50 | 55 | 59
COSMIC
Inv Power NO SOLUTION IN 3000 SECS
COSMIC
FEER 461 |.819 [2.093 [3.090 |5.577 {7.467 12.247115.175116.097|17.515|18.183 119.403 [22.658 180.348
MSC
Lanczos 462 [.823 [2.507 [3.440 |5.546 |7.362 10.767114.020{15.682 |16.688 |17.805 {18.303 |19.063 135.812
CRAY
Lamezos | 462 | 823 [2.507 [3.440 [5.546 [7362 |10.767|14.020|15.682 16,688 |17.805 |18.303 |19.063 |66.011

Table 10: Forward Fuselage Results
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5.0 Summary and Recommendations

The current real eigenvalue analysis capability in NASTRAN in quite extensive and adequate for
small and medium size problems. In particular the FEER Method’s performance is reasonable at
least for the problems tested in this paper. However, the Block Lanczos Method as implemented
by BCS is more efficient for all the problems.

An analysis of Section 4 results clearly shows that the Block Lanczos Algorithm merits consider-
ation for possible implementation into NASTRAN. - Comparing CPU secs Table 4 implies that the
CRAY Lanczos method runs 94% to 64% faster than the FEER method. Similarly from Tables S,
6, 8 and 10 the CRAY Lanczos runs 66%, 54%, 260% and 177%, respectively, faster than the
FEER method.

The comparisons are not near as striking when we consider the CRAY Lanczos and the MSC
Lanczos. Comparing CPU seconds the CRAY Lanczos runs from .2% faster in Table 5 to 105.7%
faster in Table 10. The difference in CPU time reported for these two methods can be attributed to
two factors: (1) algorithm enhancements and (2) the Boeing Extended Mathematical Subprogram
Library (BCSLIB-EXT) versus the standard mathematical modules in MSC. The CRAY Lanczos
is based on [Ref 5] which is, most recent, dated July 1991. The MSC Lanczos is based on [Ref 6}
which is dated 1986 plus subsequent updates by MSC. All problems were run under MSC NAS-
TRAN Version 66a. Recent communications with Roger G. Grimes at Boeing, one of the devel-
opers of the_shifted Block Lanczos algorithm, reveals that the Lanczos algorithm is continuously
being refined and improved.

The problems chosen to test the four eigenextraction methods while diverse in terms of the num-
ber of degrees of freedom and element distribution were stable with no clusters of multiple eigen-
values. The multiple eigenvalue problem and its relation to the user chosen blocksize, p, is
discussed in detail in [Ref 5]. The authors conclude that based on timing results for the selected
problems, the shifted Block Lanczos Algorithm should be considered for possible implementation
into NASTRAN.

Boeing Computer Services is reluctant to sell or lease their Block Lanczos routine to public
domain programs such as COSMIC-NASTRAN or ASTROS. In view of this the authors recom-
mend the following alternatives:

» Modify the FEER Method from a single vector Lanczos algorithm to a Block
Lanczos algorithm.

e Obtain the Block Lanczos algorithm from an alternate source.

e Provide links for calling subroutines from the commercial math libraries such as
the BCS or CRAY library.
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