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SUMMARY

The NASA STRuctural ANalysis (NASTRAN) (Ref 1) program is one of the most extensively

used engineering applications software in the world. It contains a wealth of matrix operations and

numerical solution techniques, and they were used to construct efficient eigenvalue routines. The

purpose of this paper is to examine the current eigenvalue routines in NASTRAN and to make

efficiency comparisons with a more recent implementation of the Block Lanczos algorithm by

Boeing Computer Services (BCS). This eigenvalue routine is now available in the BCS mathe-

matics library as well as in several commercial versions of NASTRAN. In addition, CRAY main-

tains a modified version of this routine on their network. Several example problems, with a

varying number of degrees of freedom, were selected primarily for efficiency bench-marking.

Accuracy is not an issue, because they all gave comparable results. The Block Lanczos algorithm

was found to be extremely efficient, in particular, for very large size problems.

INTRODUCTION

In NASTRAN the real eigenvalue analysis module is used to obtain structural vibration modes

from the symmetric mass and stiffness matrices, MAA and KAA, which are generated in the pro-

gram using finite element models. Currently the user has a choice of four methods for solving

vibration mode problems: Determinant Method, Inverse Power Method with Shifts, Tridiagonal

Method (Givens' Method) and Tridiagonal Reduction or FEER Method. NASTRAN provides all

these options for user convenience as well as for analysis efficiency. For example, the Givens'

Method is most appropriate when all the eigenvalues are of equal interest. By the same token, it is

not suitable (because of the need for excessive computer resources) when the number of degrees

of freedom is too large (greater than three to four hundred) unless preceded by Guyan reduction

(ASET or OMIT). The Inverse Power. Determinant and FEER Methods are most suitable when

only a small subset of the eigenvalues are of interest. These methods take advantage of the

sparseness of the mass and stiffness matrices and extract one or a small subset of eigenvalues at a

time.
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*NASTRAN without qualification refers to COSMIC-NASTRAN (or government version) in the paper.
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The purpose of this paper is to examine, in some detail, the real eigenvalue analysis methods cur-

rently available in NASTRAN and to make efficiency comparisons with the Block Lanczos algo-

ridun as implemented by Boeing Computer Services (BCS) and currently available in some

commercial versions of NASTRAN (for example MSC-NASTRAN and UAI-NA$TRAN). The

accuracy of the eigenvalues is not an issue in this paper, because all the methods gave comparable

results. Efficiency in terms of computer time is the only issue in this bench-marking. This study

was made, for all cases, on a single platform, the CRAY XMP. The genesis of the Block Lanczos

Method in all the NASTRANs, as well as the CRAY version, is the one implemented by BCS with

some modifications.

Section I discusses the general form of the eigenvalue problem for vibration modes. In Section 2

a mathematical formulation of the four methods in NASTRAN is given with emphasis on the

FEER Method as a precursor to the Lanczos Method. A detailed mathematical description of the

Block Lanczos Method is given in Section 3. Also reference is made to the Lanczos method in

MSC NASTRA.N and to its implementation by CRAY Research, Inc. In Section 4 selected fre-

quencies are calculated for five structures of varying complexity using the Inverse Power Method,

the FEER Method, MSC/NASTRAN Lanczos Method and CRAY Lanczos Method. Results are

discussed in Section 5 and recommendations are made for possible implementation into NAS-

TRA.N •

143



1.1

1.0 The Eigenvalue Problem

The general form of the eigenvalue problem for vibration modes is

,f

Kx = _,Mx (1)

where M and K are the symmetric mass and stiffness matrices, the eigenvalue _. = t02 the square

of the natural vibration frequency, and x is the eigenvector corresponding to _.. The dimension of

the matrices K and M is nxn, where n is the number of degrees of freedom in the analysis set. For

this paper it is assumed that K and M are at least positive semi-definite. Thus associated with Eq

( 1) are n eigenpairs Xi, x i such that

Kx i = _.iMxi i = 1, 2 ..... n (2)

Properties of the eigenvectors include:

xTMx j = ( Miifor i=J
0 for i;ej

(3)

where Mii is referred to as the modal mass or generalized mass. It is evident from Eq (3) that the

eigenvectors are orthonormal with respect to the mass matrix. Also the eigenvectors are orthonor-

real with respect to the stiffness matrix, i.e.

xTKx, = ( Kii for i = j (4)
k 0 for i;_j

where Kii is the modal stiffness or generalized stiffness.

The Rayleigh quotient shows that the modal mass, Mii, and modal stiffness, Kii, are related to the

eigenvalue Xi, i.e.

xTi Kxi Kii
_.. - - (5)

t xTMxi Mii

For normalized eigenvectors with respect to modal mass, Eqs (3) can be written as

xTMxj = ( 1 for i=jOfor i;_j
(6)

Now using Eqs (5), Eqs (4) can be written as

T (_..for i=jx Kxj= J
0for i¢:j

(7)
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The central issue of a real eigenvalue or normal modes analysis is to determine the eigenvalues,

Xi, and the eigenvectors, x i, which satisfy the conditions stated by Eqs (1-7). The next sections

present the important elements of the eigenvalue methods of interest.
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2.0 Eigenvalue Extraction Methods in NASTRAN

2.1 For real symmetric matrices there are four methods of eigenvalue extraction available in

NASTRAN: the Determinant Method, the Inverse Power Method with shifts, the Givens'

Method of Tridiagonalization and the Tridiagonal Reduction or FEER Method. Most methods of

algebraic eigenvalue extraction can be categorized as belonging to one or the other of two groups:

transformation methods and tracking methods. In a transformation method the two matrices M

and K are simultaneously subjected to a series of transformations with the object of reducing them

to a special form (diagonal or triadiagonal) from which eigenvalues can be easily extracted.

These transformations involve pre and post multiplication by elementary matrices to annihilate

the off-diagonal elements in the two matrices. This process preserves the original eigenvalues in

tact in the transformed matrices. The ratio of the diagonal elements in the two matrices gives the

eigenvalues. In a tracking method the roots are extracted, one at a time, by iterative procedures

applied to the dynamic matrix consisting of the original mass and stiffness matrices. In

NASTRAN the Givens' and the FEER methods are transformation methods, while the

Determinant and the Inverse Power methods axe tracking methods. Both tracking methods and

the Givens' method will be discussed briefly in this section while the Lanczos algorithm, the main

emphasis of this paper, is outlined here and in more detail in the next section.

2.2 Determinant Method

For the vibration problem

Kx = _,Mx (g)

the matrix of coefficients, A, has the form

A = K-_,M (9)

The determinant of A can be expressed as a function of _,, i.e.

D(A) = IAI = (_,-_,1) (_-_,2)...(_-_,n)

where _'i' i = 1, 2...n are the eigenvalues of A. In the determinant method D(A) is evaluated for

trial values of _,, selected according to an iterative procedure, and a criterion is established to

determine when D(A) is sufficiently small or when _, is sufficiently close to an eigenvalue. The

procedure used for evaluating D(A) employs the triangular decomposition

A = LU (I0)
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for an assumed value of X where L is a lower unit triangular matrix and U is an upper triangular

matrix. D(A) is equal to the product of the diagonal terms of U. Once an approximate eigenvalue,

Xi, has been accepted, an eigenvector, x i, is determined from

LUx i = 0 (II)

by back substitution where one of the elements of x i is preset. Since L (_,i) is nonsingular, only

U (7_ i) is needed. The determinant method may not be efficient in some cases if more than a few

eigenvalues are desired because of the large number of triangular decompositions of A.

2.3 Inverse Power Method with Shifts

The Inverse Power Method with shifts is an iterative procedure applied directly to Eq (1) in the

form

[K - _.M] x = O (12)

It is required to find all the eigenvalues and eigenvectors within a specified range of _,. Let

_,=_, +A
0

(13)

where _'o is a constant called the shift point. Therefore A replaces _, as the eigenvalue. The iter-

ation algorithm is defined in the nth iteration step by:

[K - _,o M] w n = Mx n _ 1

1

Xr/ -- _ W?l
Cn

(14)

(15)

where c n, a scaler, is equal to that element of the vector w n with the largest absolute value. At

convergence l[cn converges to A, the shifted eigenvalue closest to the shift point, and x n con-

verges to the corresponding eigenvector Oi" Note from Eq (14) that a triangular decomposition of

matrix K - kM is necessary in order to evaluate w n. The shift point Xo can be changed in order to

improve the rate of convergence toward a particular eigenvalue or to improve accuracy and con-

vergence rates after several roots have been extracted from a given shift point. Also ko can be

calculated such that the eigenvalues within a desired frequency band can be found and not just

those that have the smallest absolute value.

For calculating additional eigenvalues, the trial vectors, x n, in Eq (14) must be swept to eliminate

contributions due to previously found eigenvalues that are closer to the shift point than the current

eigenvalue. An algorithm to accomplish this is given as follows:

m

i=I

(16)
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where _,, is the trial vector being swept, m is the number of previously extracted eigenvalues, and

_i is defined by

xi, N (17)

where Xi, N is the last eigenvector found in iterating for the ith eigenvalue.

The inverse power method allows the user to define a range of interest [_'a' _'b ] on the total fre-

quency spectrum and to request a desired number of eigenvalues, ND, within that range. When

ND is greater than the actual number of eigenvalues in the range, then the method guarantees the

lowest eigenvalues in the range.

2.4 Givens' Method of Tridiagonalization

In the Givens' method the vibration problem as posed by Eq (8) is first transformed to the form

Ax = _,x (18)

by the following procedures. The mass matrix, M, is decomposed into upper and lower triangular

matrices such that

M = LL T (19)

If M is not po_tive definite, the decomposition in Eq (19) is not possible. For example, when a

lumped mass model is used, NASTRAN does not compute rotary inertia effects. This means that

the rows and columns of the mass matrix corresponding to the rotational degrees of freedom are

zero resulting in a singular mass matrix. In this case the mass matrix must be modified to elimi-

nate the massless degrees of freedom.

Thus Eq (8) becomes

Kx = _,LL T" (20)

which implies after premulitplying by L "1 and post multiplying by (LT) "1 that

L-I K (LT)-lx = _.x (21)

i.e.

where A=L'IK(LT) "1.

A = L-1K(LT) -1

mx -- _.x

Note that L -1 is easy to perform, since L is triangular. Also

is a symmetric matrix. The matrix A is then transformed to a tridiagonal
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matrix, A. by the Givens' method, i.e a sequence of orthogonal transformations, Tj, are defined

such that

TrTr- 1"" T2T1Ax = _'TrTr - 1"" T2TIX (22)

Recall that an orthogonal transformation is one whose matrix T satisfies

TTT= TTT= I (23)

the identity matrix. The eigenvalues of A are preserved by the transformation, and ff

T T T T
x = T1T2...Tr_ 1Tr y (24)

then from Eq (22)

T
TrT r_ 1...T2T1ATTTI...TS_ 1TrY = _TrTr - l " "T2T1TTTI2 """TrTy

i°e °

TrZ r_ 1...T2T1ATTTT...TS_ ITrTy = _y (25)

by repeatedly applying Eq (23). Eq (25) implies that y is an eigenveetor of the transformed matrix
Trrrr_ 1...T2T-iA_Tr2..._- iTr • Thus x can be obtained from y by Eq (24).

The eigenvalues of the tridiagonal matrix, A r, are extracted using a modified Q-R algorithm, i.e.,
T

Ar+ 1 = QrArQr such that A r is factored into the product QrRr where R r is an upper triangular

matrix and_ Qr is orthogonal. Thus

A r = QrRr (26)

and

T
Ar+l = QrArQr

T
-- Or arRrar

from Eq (26)

Since Qr is orthogonal, then

Ar + 1 = RrQr (27)

In the limit as r _ .0 and A is symmetric, A r will approach a diagonal matrix. Since eigenvalues

are preserved under an orthogonal transformation, the diagonal elements of the limiting diagonal

matrix will be the eigenvalues of the original matrix A.

To obtain the ith eigenvector, Yi, of the tridiagonal matrix, Ap the tridiagonal matrix A r -_./is
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factored such that

A r- _.ff = LiU i
(28)

where L i is a unit triangular matrix and U i is an upper triangular matrix. The eigenvector Yi is then

obtained by iterating on

Uiy_n) = y_n-1) (29)

where the elements of the vector y:O) are arbitrary. Note that the solution of Eq (29) is easily

obtained by back substitution since U i has the form

-Pl ql rl

P2 q2 1"2

" Pn- 1 qn-

Pn

(30)

The eigenvectors of the original coefficient matrix, A, are then obtained from Eq (24).

Note that in the Givens' method the dimension of A equals the dimension of A r The major share

of the total effort expended in this method is in converting A to A r Therefore the total effort is not

strongly dependent on the number of eigenvalues extracted.

2.5 Tridiagonal Reduction or FEER Method

The tricliagonal Reduction or FEER method is a matrix reduction scheme whereby the eigenval-

ues in the neighborhood of a specified point, _'o, in the eigenspectmm can be accurately deter-

mined from a tridiagonal eigenvalue problem whose dimension or order is much lower than that

of the full problem. The order of the reduced problem, m, is never greater than

m = 2_ + 10

where _ is the desired number of eigenvalues. So the power of the FEER method lies in the fact

that the size of the reduced problem is the same order of magnitude as the number of desired

roots, even though the actual finite element model may have thousands of degrees of freedom.

There are five basic step in the FEER method:

1. Eq (8) is converted to a symmetric inverse form

Bx = AMx (31)
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where
I

A = (32)
X-_,

O

and _. is a shift value.
O

2. The tridiagonal reduction algorithm or Lanczos algorithm is used to transform Eq (31) into a

tridiagonal form of reduced order.

3. The eigenvalues of the reduced matrix are extracted using a Q-R algorithm similar to that

described in Section 2.4.

4. Upper and lower bounds on the extracted eigenvalues are obtained.

5. The corresponding eigenvectors are computed and converted to physical form.

To implement Step 1, consider Eq (8),

Kx = _,Mx

When vibration modes are requested in the neighborhood of a specified frequency, _o, Eq (8) can

be written

Kx- _. Mx = _.Mx- _. Mx
0 0

(K - _,oM) x = (_. - _,o ) Mx (33)

L.

Let R = K- _o M and Z,' = _,- k o. Then from Eq (33)

Kx = _.'Mx (34)

-1
x = _,'K Mx

_-1
Mx = _,'MK Mx

_-1 1

:: M K Mx = _Mx (35)

Factor K by Cholesky decomposition, i.e.

Y, = Ld'L r (36)

where L is a lower triangular matrix and d' is a diagonal matrix. Then Eq (35) can be written

M[ (LT)-Id'-IL-11Mx = _,Mx

i.e.
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Bx = AMx

1 1
MI (LT)-ld"L-I_M and A = _-_ = __:--_. Now step 1 is complete.whcl'C B

o

To implement Step 2 rewrite Eq (31) as

Bx=Ax

where B = M"]B. Now B is reduced to tridiagonal form, A, using single vector Lanczos recur-

fence formulas defined by

ai, i -- vTi Bvi ]

Vi+l = BVi-ai,iVi-diVi-I Ii =
di+ 1 = {_T+ iM(:i+ 1} 1/2

1, 2, ..., m (37)

1

Vi+ =d..-_ Vi+l i = 1,2,...m-11

where vector Vo=O, V1 is a random starting vector and dl =0. The reduced tridiagonal eigenvalue

problem is now given as

Ay =

all d2

d 2 a22 d 3

d 3 a33

\

d 4

\ \

dm-1 am-l,m-I

d m

d m

atom

y = Ay (38)

where A approximates the eigenvalue A of Eq (31), and y is an eigenvector of A.

formulas generate a V matrix, vector by vector, i.e.

V = [V I,V 2, ...V m]

The Lanczos

(39)

and Eqs (37) are modified by NASTRAN such that each vector Vi+ 1 is re-orthogonalized to all

previously computed V vectors, i.e. V is orthonormal to M.

vTMv = I (40)
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Thus

A = vTBv (41)

Note from Eq (4I)thatA isan mxm matrix.

For step3 the eigenvalues,A, and eigenvectors,y,of Eq (38) are obtained as described for the

Givens' method in Section2.4. The eigenvectorsare normalized so that

yTy i = I i = I, ...,m (42)

For step 4 the following error bound formula has been derived and serves as a criterion for select-

ing acceptable eigensolutions

E.=

In Eq (43) _'iisan approximation to the exact eigenvalue _'iin Eq (8),d,,+ l iscalculatedfrom

Eqs (37),Ymi isthe lastcomponent of the rutheigenvector,y,,,,of A, and A i isthe itheigenvalue

of A. The itheigenvalue _'iisacceptable,ifEiislessthan or equal to a preseterrortolerance.

Now step5 isimplemented foracceptableeigenvalues. If (A, y) isan eigenpairof Eq (38),then

Ay = F,y

or from Eqs (-40) and (41)

vTBVy =  ,vTMvy

SVy = (44)

Now if x=Vy, then
w

Bx = AMx

i.e. (A, x) is an eigenpair of Eq (31).

Thus for step 5 the eigenvectors of Eq (31 ) or equivalently Eq (8) are calculated from

x = Vv

and the eigenvalue _, is calculated from Eq (32) i.e.

(45)

= -=1 + _, (46)
A o

Note that in the FEER method the matrix B enters the recurrence formulas, Eqs (37), only through

the matrix-vector multiply terms BV i. Therefore B is not modified by the computations. Lanczos
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procedures for real symmetric matrices require only that a user provide a subroutine which for

any given vector, z, computes Bz.
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3.0 Block Lanczos Method

3.1 Recall that the eigenvalue problem in vibration analysis is given by Eq (8), i.e.

Kx = kM.v

where K and M are symmetric positive definite matrices. Generally the eigenvalues of interest are

the smallest ones, but they axe often poorly separated. However, the largest eigenvalues which are

not interesting have good separation. Also convergence rates are very slow at the low end of the

spectrum and fast at the higher end. Convergence rates can be accelerated to the desired set of

eigenvalues by a spectral transformation, i.e. consider the problem

M (K - aM)-lMx = uMx (47)

where o, the shift, is a real parameter. It can be shown that (k, x) is an eigenpaix of F_,q(8) if and

_) is an eigenpait of Eq (47). The spectral transformation does not change theonly if cx-o'

eigenvectors, but the eigenvalues of Eq (47) are related to the ¢igenvalues of Eq (8) by

1 (48)

This transformation will allow the Lanczos algorithm to be applied even when M is semidefinite.

Consider the effect of the spectral transformation on a satellite problem which will be discussed in

detail in Section 4. Figure 1 shows the shape of the transformation. Table A shows the effect of

the transformation using an initial shift of _ = .046037. Note that the smallest 8 eigenvalues are

transformed from closely spaced eigenvalues to eigenvalues with good separation.
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_atellite Problem

22

18

10

6

2

.l

o = 0.046037

FIGURE 1

i
l .07229

2 .10840

31 .12556

4 ', .31296

5 .31302

6 .58357

' .74537
I

,_ .74640

ORIGINAL

u(i)

38.09088

16.03514

12.57497

3.74640

gap

.03611

.01716

.18740

6.000 x 10 .5

tel gap

TRANSFORMED

gap tel gap

.05357

.02546

.27800

8.9006 x 10 -5

22.05574

3.46017

8.82857

.00084

.60158

.09438

.240803

2.29114 x 10.5

3.74556 .27055 .40134 1.88521 .05142

1.86035 i .16180 .24002 .43042 _ .01174

1.42993 .00103 .00153 .00210 5.72784 x l0 "5

1.42783

Table A

Our objective is to define the Spectral Transformation Block Lanczos algorithm. Let's consider

156



first theBasic Block Lanczos Algorithm.

3.2 Basic Block Lanczos Algorithm

Consider the Lanczos Algorithm (Refs 2.3) for the eigenvalue problem.

Hx = ka" (49)

where H is symmetric

The block Lanczos iteration with block size p for an nxn matrix H is given as:

C Initialization:

set Qo = 0

set B 1 = 0

choose R 1 and orthonormalize the columns of R1 to obtain Q1

Lanczos Loop:

For j = 1, 2, 3 ....

setvj =.Qj- Qj. BT
setAj= vj
set R j+_l = U j- QjAj

Compute the orthogonal factorization Qj+IBj+I -- Rj+ 1

End Loop

Matrices Q.i, Uy, and Rj for j= 1, 2 .... are nxp; Aj and Bj are pxp. Aj is symanetric and Bj is upper

triangular. The blocksize p is the number of column vectors of Qj. So ifp = 1, then Qy is a column

vector, q. Thus the matrix H is not explicitly required, but only a subroutine that computes Hq for

a given vector q. Aj and Bj are generalizations of the sealers aj and dj in the ordinary Lanczos

recurrcrlce.

The recurrence formula in the Lanczos loop can also be written as

Rj+ 1 = Qj+ IB/+ I = HQj-QjAj-Qj_ IBT (50)

The orthogonal factorization of the residual. R i+l. implies that the columns of Qj are orthonormal.

Indeed it has been shown that the combined column vectors of the matrices. QI. Q2 .... Qj, called

the Lanczos vectors, form an orthonormal set.

The blocks of Lanczos vectors form an nAjp matrix l_. where

Wj = [QI' Q2 ..... Qjl (51)
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From the algorithm itself a jpxjp block tridiagonal matrix, Tj, is defined such that

(52)

Since the matrices Bj are upper triangular, 1) is a band matrix with half band widthp+l. The first

j formulas defined by Eq (50) can be combined using Eqs (51) and (52) into a single formula

.w:-w::+Q:÷,B:+xET

Wf WjTj+ WTQj+ IBj+ IET

where Ej is an rap matrix of zeros except the last pxp block is a pxp identity matrix.

Premulitplying Eq (53) by W_ implies

w_.wj=
i.e.

(53)

wT.% - rj ¢_4_
since

wf - , wf - o
Eq (54) implies that T/is the orthogonal projection of H onto the subspace spanned by the col-

umns of Wj. Also if (0, s) is an eigenpair of Tj, i.e. Tfl=sO, then (_ W/s) is an approximate

eigenpair of H. A discussion on tiq_c:curacy of the approximation will be delayed until the spec-

tral transformation Block Lanczos Algorithm is considered. Basically the Lanczos algorithm

replaces a large and difficult eigenvalue problem involving H by a small and easy eigenvalue

problem involving the block tridiagonal matrix Tj.

3.3 Spectral Transformation Block Lanczos Algorithm

Since our primary

Eq (47) i.e.

consideration is vibration problems, consider the eigenprobem posed by

M (K- _M)-IMx = uMx
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The Lanczos recurrence with block size p for solving Eq (47) is given by

/"- Initialization

set Qo = 0

set B 1 = 0

choose R1 and oCLhonorrnalize the columns of R 1 to obtain Q1 with QTIMQ 1 = le

Iamczos Loop

For j = 1,2, 3,...

se,uj=_g-oMrI _MO._-O.j._B:
_, Aj= uT_M_?

Compute Qj+ 1 and (MQj+ 1) such that

a) Qj+ IBj+ I = Rj+ I

b) Qy+I(MQj+I) = lp

End Loop

Note that the algorithm as written requires only one multiplication by M per step and no factoriza-

tion of M is required. The matrices Qj axe now M orthogonal, rather than orthogonal, i.e.

Q_MQj= I

Also the Lanczos vectors are M orthogonal, i.e.

wTMwj :,
The recurrence formula in the Lanczos loop can also be written as

Qj+ IBj+ I = (K-oM)-IMQj-Q?j-Qj_ IBf

Now, as before, combining all j formulas of Eq (56) into one equation yields

(K-oM)-IMwj : WjTj+Qj+ IBj+ IE f.

where Wp Tj, and Ej are as defined in Eq (53). Premulirplying Eq (57) by W_M implies

(55)

i.e.

(56)

(57)

WTM (K-oM)-IMI_ = Tj (58)
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since

wTMwj =I WTQj+I =0
Eq (58) implies that Tj is the M-onhogonal projection of (K - aM)-l onto the subspace spanned

by the columns of Wj. The eigenvalues of Tj will approximate the eigenvalues of F,q (47). If

(0, s) is an eigenpaix of Tj, then (0, W_) wig be an approximate eigenpak of Eq (47).

Recall that our main interest is in solving Eq (8). From Eq (48)

1
0-

V--O

1 (59)
or V = O+_

i.e. if 0 is an approximate eigenvaIue of Tj, then from Eq (59) v is an approximate eigenvalue of

Eq (8). Recall that the spectral transformation does not change the eigenvectors, therefore

y = Wjs is an approximate eigenvector for Eq (8).

Let's examine the approximations obtained by solving the block tridiagonal eigenvalue problem

involving the matrix Tj. Let (0, s) be an eigenpair of Tj i.e.

Tjs = sO

and let y = Wjs. Then Premulitplying Eq (57) by M and post multiplying by s gives

M oM>-lMw/-Mw?/=Maj+l j+,Ef 
M (K-oM)-IMy-MB_ sO = MOj+ IBj+ l ETs

M (K - oM)-IMy - MyO = MQj + IBj + lETs (60)

Recall for any vector q, IIqH _f-, = qrM-lq (Ref 4).

Therefore, taking the norm of Eq (60) and using Eq (55)

IIM (g- oM) -IMy - MyO[t M-' = [IMQj+ IBj+ 1ETs ]IM-,

= tlBj+IE_ s ]12-_j (61)

Note that 13j is easily computed for each eigenvector s. It is just the norm of the p vector obtained

by multiplying the upper triangular matrix Bj + 1 with the last p components of s.

From Ref 5 the error in eigenvalue approximations for the generalized eigenproblem is given by
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IIM(K-oM)-IMy-MyO IIM..,

1 01 < =_j
_.- o - IIMyIIM.,

(62)

Thus _j is a bound on how well an eigenvalue of Tj approximates an eigenvalue of Eq (47).

Recall that if 0 is an approximate eigenvalue of Tj, then from Eq (48)

1
V=O+_

is an approximate eigenvalue of Eq (8). Consider

: I -o-01
01 1 0,I= (_,- o) (X-o

1
(63)

_ Thus _j is a bound on how well the eigenvalues of Eq (47) approximate the
Therefore Ig-vl g_i. _i

eigenvalues of Eq (8).

3.4 An Analysis of the Block Tridiagonal Matrix Tj

The eigenproblem for Tj is solved by reducing Tj to a txidiagonai form and then applying the

tridiagonal Qz, algorithm. The eigenextraction is accomplished in three steps:

I An orthogonal matrix Qr is found so that Tj is reduced to a tridiagonal matrix H, i.e.

Q_.TjQ T - H (64)

2. An orthogonal matrix QH is found so that H is reduced to a diagonal matrix of eigenvalues,

A, i.e.

QT'HOHrt---- = A (65)

3. Combining Eqs (64) and (65) gives
T

(QTQT) Tj (QTQH) = A (66)

where QTQH is the eigenvector matrix for Tj. The orthogonal matrices QII and QT are a product

of simplex orthogonal matrices, Givens' rotations, Qtt, Qtq." Qtt, or Qr, Qr,...Qr,. The algo-
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rithmsused for steps (1) and (2) are standard and numerically stable algorithms drawn from the

EISPACK collection of eigenvalue routines.

Note from Eq (61) that only the bottom p entries of the eigenvectors of Tj are needed for the eval-

uation of the residual bound. Therefore it is unnecessary to compute and store the whole eigen-

vector matrix for Tj. Only the last p components of the eigenvector matrix are computed.

The error bounds on the eigenvalues Eq (62) and (63) are used to deten'nine which eigenvectors

are accurate enough to be computed. At the conclusion of the Lanczos run the EISPACK subrou-

tines are used to obtain the full eigenvectors of Tj. Then the eigenvectors for Eq (47) are found

through the transformation

y = Wjs

3.5 Other Considerations in Implementating the Lanczos Algorithm.

The use of the block Lanczos algorithm in the context of the spectral transformation necessitates

careful attention to a series of details:

a. The implications of M-orthogonality of the blocks

b. Block generalization of single vector orthogonalization schemes

c. The effect of the spectral transformation on orthogonality loss

d. The interactions between the Lanczos algorithm and the shifting strategy.

All of these issues are addressed in detail in Refs. 5,6.

3.6 The Block Lanczos algorithm as described in the previous sections was developed as a

general purpose eigensolver for MSC NASTRAN (Ref 7). Boeing designed the software such

that the eigensolver was independent of the form of the sparse matrix operations required to

represent the matrices involved and their spectral transformations. The key operations needed

were matrix-block products, triangular block solves and sparse factorizations. These, and the data

structures representing the matrices, are isolated from the eigensolver. Therefore, the eigensolver

code could be incorporated in different environments.

For this paper we tested the block Lanczos algorithm as incorporated in MSC NASTRAN and as

further developed by Boeing and incorporated into code by Cray Research, Inc. The block Lanc-

zos algorithm in MSC uses the factorization and solve modules which are standard operations in

MSC. The Cray Lanczos code uses the Boeing eigensolver with matrix factorization, triangular

solves, and matrix-vector products from the mathematical libraries supplied by Boeing computer

services (BSCLIB-EXT). For vibration problems the CRAY code can be used with the stiffness

and mass matrices, K and M, as generated by NASTRAN. NASTRAN is run to generate binary

files containing the K and M matrices. These files are input files to the Cray code which calculates
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eigenvalues, checks the orthogonality of the eigenvectors, x, via x Kx, calculates the Rayleigh

quotient x'Kx/x'Mx to compare with the computed eigenvalues, and calculates the norm of the

eigenvector residual. In addition binary eigenvalue and eigenvector files output from the CRAY

are suitable for input to NASTRAN for further processing ff desired. Since the commercial

(MSC) and the government COSMIC) NASTRANS do not give M and K in the same formats,

they need to be reformatted before calling the CRAY code. CSAR-NASTRAN was used to repre-

sent NASTRAN on the CRAY XMP.
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4.0 Test Problems

In this section several test problems were solved using the inverse power and FEER eigenvalue

extraction methods in COSMIC NASTRAN, the Lanczos algorithm in MSC NASTRAN and the

Lanczos algorithm as implemented by CRAY Research. These problems were chosen based on

the complexity of the finite element model in terms of the kinds of elements used and the number

of degrees of freedom. All methods as expected gave approximately the same numerical results.

The only criterion used to compare the different methods was the number of seconds needed to

reach a solution given that aLl problems were solved on the same platform, a CRAY XMP.

4.1 Problem I Square Plate

A square 200 in x 200 in plate in the x-y plane was modeled with QUAD4 elements only. Five

meshes were defined. Details are given in Table 1. All elements were 1.0 in thick. Material prop-

erties were constant for all meshes. Each plate was completely fixed along the x-axis and the y-

axis at x=200 in.

MESH

Number of Grid

Points

Number of

Elements

Number-of

Degrees of

Freedom

10 x 10

121

100

515

20 x 20

441

400

2015

30 x 30

961

9OO

4515

40 x 40

1681

1600

8015

50 x 50

2601

25OO

12515

Table 1: DETAILS OF THE FIVE MESHES DEFINED ON THE SQUARE PLATE

For all cases 5 frequencies were requested in the interval [0, 20hz]. Table 2 gives the results for

the 10 x 10 plate, and Table 3 gives the results for the 50 x 50 plate. As expected within each case

the numerical results from the different eigenextraction techniques are approximately the same.

The differences in numerical results between the 10 x 10 case and the 50 x 50 case reflect the fine-

ness of the mesh for the 50 x 50 case. Both Lanczos algorithms were run with a fixed block size

of p= 7.
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COSMIC Inverse

Power

COSMIC FEER

MSC Lanczos

CRAY Lanczos

6.2980

6.2980

FREQUENCIES IN Hz

2

7.1720

7.1720

3

11.6374

11.6374

4

17.4440

17.4440

6.2730 7.2173 11.7181 17.2125

6.2730 7.2173 11.7181 17.2125

5

18.3096

18.3096

18.3392

18.3392

Table 2:10 x 10 SQUARE PLATE

COSMIC Inverse

Power

COSMIC FEER

MSC Lanczos

CRAY Lanczos

FREQUENCIES IN Hz

6.4048

6.4048

6.4054

6.4054

1 2 3 4 5

7.6103 12.5487 17.6764 19.3642

7.6103 12.5487 17.6764 19.3642

7.6159 12.5599 17.6745 19.3739

7.6159 12.5599 17.6745 19.3739

Table 3:50 x 50 SQUARE PLATE

Table 4 gives the CPU time in seconds from the CRAY XMP needed to extract five frequencies

for each case. Recall that the CRAY Lanczos algorithm needs to obtain the mass and stiffness

matrices in binary form from NASTRAN. Thus the time given for this algorithm is the total time

from two computer runs, i.e. the time to obtain the mass and stiffness matrices plus the time to run

the Lanczos algorithm separately.
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COSMIC Inverse

Power

COSMIC FEER

MSC Lanczos

CRAY Lanczos

10 x 10

14.734

8.085

4.783

4.174

MESH SIZE

20 x 20

50.936

19.363

13.641

11.170

30 x 30

97.801

39.877

30.973

23.785

4Ox 40

197.769

77.994

59.283

45.433

50 x 50

328.830

132.179

103.188

78.009

Table 4: CPU lIME IN SECONDS TO OBTAIN 5 FREQUENCIES

Figure 2 is a plot of the degrees of freedom versus the CPU time in seconds on the CRAY for the

four eigenvalue extraction techniques.
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Figure 2: Degrees of Freedom versus CPU Time in Seconds.
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4.2 Problem2 Intermediate Complexity W-rag

A three spar wing shown in Figure 3 was modeled with 88 grids and 158 elements of the follow-

ing types: 62 QUAD4, 55 SHEAR, 39 ROD and 2 TRIA3. All elements varied in thickness or

cross-sectional area. Material properties were the same for all elements. The wing was com-

pletely fixed at the root which left 390 degrees of freedom. Five frequencies were requesmd in the

interval [0, 300hz]. Table 5 gives the frequencies calculated and the CPU time in seconds for the

four eigenextraction algorithms. As for Problem 1 both Lanczos algorithms were run with a fixed

block size of p = 7.

Figure 3: Intermediate Complexity Wing

FREQUENCIES IN Hz

CPU TIME IN

SECONDS

COSMIC

Inverse Power

COSMIC FEER

MSC Lanczos

1 2 3 4 5

46.574 135.924 176.813 205.030 254.713 10.314

146.574 135.924 176.813 205.030 254.713 !8.085
!

46.573 135.918 176.811 205.029 254.690 14.886

tCRAYLanczos 46.573 135.918 176.811 205.029 254.690 4.873

Table 5:INTERMEDIATE COMPLEXITY WINGRESULTS
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4.3 Problem 3 Radorr_

A composite radome shown in Figure 4 was modeled with 346 grids and 630 elements of the fol-

lowing types: 54 TRIA2, 284 BAR and 292 QUAD4. The QUAD4's were both isotropic and

composite with 46 elements isotropic and 246 elements modeled as four cross-ply unsymmetric

laminates of 40, 38, 36, and 32 layers, respectively. The radome was completely fixed at the base

which left 1782 active degrees of freedom. Ten fa,equencies were requested in the interval

[0,100 hz]. Table 7 gives the frequencies calculated and the CPU time in seconds for the four

eigenextraction algorithms. Both Lanczos algoLrthms were run with a fixed blocksize ofp -'- 7.

• •l|Wellll lllll

I, * I .....

1111 1 . l.il

I I x II

eOV. e - W.I

f • 41,1

I I All

• "" i "'''=

k:
nlul

Itwl a *s laee

• *lB*lm*l*tu e

Figure 4: Radome

COSMIC

Inverse Powe,

COSMIC

FEER

MSC

Lanczos

CKAY

Lanczos

FREQUENCIES IN Hz

1 2 3 4 I 5 6 7 8

t
56.325 67.946 69.290 81.486190.835 i90.971 92.074! 92.410

9 I0

CPU

TIME IN

SECS

93.365 101.441 63.986
I !

_ ' : t '
!56.325167.946 69.290 81.486i90.835!90.971i92.074i92.410 93.365[ 101.441

_56.068166.958168.213180.84. :89.715i90.248i90.768!91.676192.36. [ 98.729

, 1 I l' ' i I

156.068166.958t68.213180.843i89.715 90.248 90.768 91.676 92.365 98.729
I I I

Table 6: Radome Results

21.318

17.768

13.854
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4.4 Problem4 Satellite

A sateUiteshown in Figure 5 was modeled with 2295 grids and 1900 elements distributed as

shown in Table 7.

!

/

/

!

/
/

Y

i

Figure 5: Satellite

ROD

Number of

Elements 15

BEAM

134
i

El,AS 1

30

ELEMENT TYPE

ELAS2 TRIA3 QUAD41

; 8 45 777

BAR

297

Table 7: Satellite Element Distribution

HEXA

40

PENTA

56

RBE2

498

Sixteen different materials were referenced, and 34 coordinate systems were used• All elements

varied in thickness and cross-sectional area. and concentrated masses were added to selected

grids. The satellite has 5422 active degrees of freedom. Fifty frequencies were requested in the

interval [0, 20hz]. Table 8 gives every fifth frequency calculated and the CPU time in seconds for

the four eigenextraction algorithms. Again both Lanczos algorithms were run with a fixed block

size of p= 7.
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COSMIC

Inverse

Power

COSMIC

FEER

MSC

Lanczos

CRAY

Lanczos

FREQUENCIES IN Hz

I 5 I0 15 20 25 30 35 40

NO SOLUTION IN 2000 SECS

.072 .313 1.497 1.663 2.419 5.414 _.000 10.974 13.328

.072 .313 1.497ii.63412.406 5.417 9.056 I0.975 13.267

•072.313 1.497 1.635 2.406 5.418 9.056 10.975 13.268

45 50

CPU

TIME

IN SEC

17.474 19.758 294.759

17.104 19.649 121.065

17.111 19.650 81.016

Table 8: SATELLITE RESULTS

4.5 Problem 5 Forward Fuselage - FS 360.0 - 620.0

A section of a Forward Fuselage from FS 360.0 to 620.0 shown in Figure 6 was modeled with

1038 grids and 3047 elements distributed as shown in Table 9.

Eleven different materials were referenced. All elements varied in thickness or cross-sectional

area. The fuselage was fixed in the 123 directions at FS 620.0. The model had 6045 active

degrees of freedom. Sixty frequencies were requested in the interval [0, 20hz]. Table 10 gives

every fifth frequency calculated plus the last one and the CPU time in seconds for the four eigen-

extraction algorithms. Both Lanczos algorithms were run with a fixed block size ofp = 7.
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!

Figure 6: Forward Fuselage

ELEMENT TYPE

BEAM CONROD SHEAR TR/A3

Number of Elements 1141 885 I 395 15

Table 9: Forward Fuselage Element Distribution

QUAD4 BAR

572 39
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1 5

COSMIC

Inv Power

COSMIC

FEER .461 .819

MSC

Lanczos .462 .823

CRAY

Lanczos .462 .823

FREQUENCIES IN Hz

10 15 20 25 30 35 40 45 50 55 59

NO SOLUTION IN 3000 SECS

CPU

TIME

IN

SECS

2.093 13.090 5.577 7.467 12.247 15.175 16.097 17.515 18.183 19.403 22.658 180.348

2.507 3.440 5.546 7.362 10.767 14.020 15.682 16.688 17.805 18.303 19.063 135.812

2.507 3.440 5.546 7.362 10.767 14.020 15.682 16.688 17.805118.303 19.063 66.011

Table 10: Forward Fuselage Results
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5.0 Summary and Recommendations

The current real eigenvalue analysis capability in NASTRAN in quite extensive and adequate for

small and medium size problems. In particular the FEER Method's performance is reasonable at

least for the problems tested in this paper. However, the Block Lanczos Method as implemented

by BCS is more efficient for all the problems.

An analysis of Section 4 results clearly shows that the Block Lanczos Algorithm merits consider-

ation for possible implementation into NASTRAN. Comparing CPU sees Table 4 implies that the

CRAY Lanczos method runs 94% to 64% faster than the FEER method. Similarly from Tables 5,

6, 8 and 10 the CRAY Lanczos runs 66%, 54%, 260% and 177%, respectively, faster than the

FEER method.

The comparisons are not near as striking when we consider the CRAY Lanczos and the MSC

Lanczos. Comparing CPU seconds the CRAY Lanczos runs from .2% faster in Table 5 to 105.7%

faster in Table 10. The difference in CPU time reported for these two methods can be attributed to

two factors: (1) algorithm enhancements and (2) the Boeing Extended Mathematical Subprogram

Library (BCSLIB-EXT) versus the standard mathematical modules in MSC. The CRAY Lanczos

is based on [Ref 5] which is, most recent, dated July 1991. The MSC Lanczos is based on [Ref 6]

which is dated 1986 plus subsequent updates by MSC. All problems were nm under MSC NAS-

TRAN Version 66a. Recent communications with Roger G. Grimes at Boeing, one of the devel-

opers of the-shifted Block Lanczos algorithm, reveals that the Lanczos algorithm is continuously

being refined and improved.

The problems chosen to test the four eigenextraction methods while diverse in terms of the num-

ber of degrees of freedom and element distribution were stable with no clusters of multiple eigen-

values. The multiple eigenvalue problem and its relation to the user chosen blocksize, p, is

discussed in detail in [Ref 5]. The authors conclude that based on timing results for the selected

problems, the shifted Block Lanczos Algorithm should be considered for possible implementation

into NASTRAN.

Boeing Computer Services is reluctant to sell or lease their Block Lanczos routine to public

domain programs such as COSMIC-NASTRAN or ASTROS. In view of this the authors recom-

mend the following ahematives:

Modify the FEER Method from a single vector Lanczos algorithm to a Block

Lanczos algorithm.

Obtain the Block Lanczos algorithm from an alternate source.

Provide links for calling subroutines from the commercial math libraries such as

the BCS or CRAY library.
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