
3nd NASA Symposium on VLSI Design 1991

N94-18344
2.5.1

Fault Tolerant Sequential Circuits
Using Sequence Invariant State

Machines

M. Alahmad and S. Whitaker

NASA Space Engineering Research Center

for VLSI System Design

University of Idaho

Moscow, Idaho 83843

Abstract - The idea of introducing redundancy to improve the reliability of

digital systems originates from papers published in the 1950s. Since then,

redundancy has been recognized as a realistic means for constructing reliable

systems. This paper will introduce a method using redundancy to reconflgure

the Sequence Invariant State Machine (SISM) to achieve fault tolerance. This

new architecture is most useful in space applications, where recovery rather

than replacement of faulty modules is the only means of maintenance.

1 Introduction

Fault tolerance is essential feature for digital systems where reliability, availability and

safety are of vital importance. Such systems include aerospace missions, where a recovery

procedure must be employed as means of maintenance, rather than replacement procedures

which would be impossible during such missions.

Most digital systems can be divided into two functional blocks: the controller and

the data path. The controUer is a sequential circuit that performs certain tasks based

on external and internal information. A programmable hardware architecture has been

developed that enables a controller's hardware to be designed without a knowledge of the

exact sequence of the input data to be incorporated [1]. This programmable architecture

is called a Sequence Invariant State Machine (SISM).

This paper will introduce a method to achieve fault tolerance in the SISM design

using dynamic redundancy. With this method, faulty controllers can recover and resume

operation. Two different architectures are proposed and analyzed in terms of transistor

count, size and fault detection. One architecture is clearly superior to the other.

2 SISM Overview

With the SISM realization, any flow table can be implemented without a change in the

hardware configuration. That is given the number of states m and the number of inputs

n, a hardware circuit is easily derived, that can implement any sequence of states.

https://ntrs.nasa.gov/search.jsp?R=19940013871 2020-06-16T18:10:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42789699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2,5,2

A

B

C

D

E

F

C,I IB,i
D, 0 [ C, I

E, 0. I D, 0

F,! ]E,I

A, 01F, 0

B, 0 [A, 1

I3
A. 0]

B, 01

C. 01

D. 11

E, 11

Tab|c 1: G e_er_M _6-States, 3-!nput flow table.

_1 F2 y3
0 0 A

P ! B
1 0 C

I 1 D

0 0 E

! F

1 0 G

! I H

/1 /3
0 ! 0, I

0 1 1,0

400,0
! 0 I,I

0 0 0,0

0. 0 I,O

0 0 0,0

0 0 0,0

0 0 I,I

o 1 0, I

o 1 1,o

1 0 o, 1

I 0 1,0

o o 0, 1

0 0 0,0

0 0 0,0

0 0 0,0

0 0 1,0

0 I 0,0

0 1 i,I

I 0 0, 1

1 0 I,I

0 0 0,0

0 0 0,0

Table 2; StateAssignment _n4 Redu_da_t Statesfor Table 1.

! y

Destination I

St,_t¢ [ Input [
Codes I _ Switch

All

_ext

{ _ SNte_ Selecti°'_Lo_c

Figure !: General S!SM Architecture.



3nd NASA Symposium on VLSI Design 1991 2.5.3

Table 1 shows a general 6 states, 3-input flow table. The state assignment for this table

is shown in Table 2. Figure 1 shows the SISM architecture for one of the next state variables

in Table 2. There are two identical architectures for the remaining two variables. Only

the destination state codes are different. The Figure consist of the following components.

The destination state codes which are derived from the next state entries in the state

assignment table by inspection. For example, the destination state codes for state B

and state variable yl are the next state bits Y_ associated with state B. Therefore, the

destination state codes for state B are (000,110,101) under input states (/1;/2; I3)

and variables (yl; y_; y3)respectively.

The input switch matrix which is combinational logic that produces all the possible

next state entries for each current input state.

• The next state logic which consists of an independent path for each of the present

states in the state assignment flow table.

• The storage element, a D-FF, that preserves the present state.

The current input state selects the set of potential next states that the circuit can

assume (input column in the flow table). The present state variables select the exact next

state (row in the flow table) that the circuit will assume at the next clock pulse.

3 SISM Implementation

Two pass transistor networks which make the SISM fault tolerant will next be discussed

and compared in terms of space and the number of transistors. The input switch matrix

is shown in both structures as a logic block, since it is identical in both designs.

3.1 FCS Design

A Fully Coded Structure (FCS) [4] network is defined as a fully specified pass network

circuit. A knowledge about the number of next state variables is sufficient to achieve this

design. Thus, the FCS is a design by inspection. Using Table 2 as a reference, three

state variables are required to implement this table. Therefore, eight unique states can be

represented. Each state will have an independent branch with all the variables as control

terms. Those branches are all connected to the output pass function. Only one branch

is activated by any combination of control variables at a given time, since each branch is

encoded uniquely. The output pass function is the logical OR or the summation of all

states. Figure 2 shows the complete FCS structure for the next state variable Y1 in Table

2. The other two variables have identical structure, but different destination state codes.



:].5.4

m _ m

o !_i1 Y_ Y_ Y_
0o i,,!! I J

0

o i _'

1. !_i I % Y2 Vll
0 I ] i I Io I I'

0 ,GI -
!

o_ _ _

1 i!_l I i i1

0

)_'[ t I I0 )/s
1 i

o I zl _ _ Y

I !
0 I "

Oo ,_tl_l t__

FF i

Figure 2: Structure of t_e next state variable Y_ using the FCS structure.



3nd NASA Symposium on VLSI Design 1991 2.5.5

3.2 BTS Design

A Binary Tree Structure (BTS) [3] network is defined as a pass network in which exactly

two branches join at every node and the control term of one branch is the complement of the

control term of the other branch. Generally, each control term is a single control variable

and the number of nodes exceeds one. A BTS network is constructed by partitioning

each next state variable in a specific manner until all the variables have been partitioned.

Therefore, a BTS network is also designed by inspection.

Consider the flow table shown in Table 1. Three variables are needed to implement this

flow table. The procedure is general and can be applied to any state machine. Firstly, start

with the output node and partition the variable Y3 into two branches. One of the branches

will have Y3 as the control variable and the other branch will have Y3 as the control

variable. Secondly, for each node at the end of each of the newly constructed branchs,

construct two more branches for the control variable Y2 and its complement. Thirdly, for

each node at the end of the new branch, construct two branches for the variable Y1 and

its complement. With this step the design structure is completed. Figure 3 shows the

complete BTS structure for the next state variable Y1. The other two next state variables

are identical in structure and only the destination state codes are different.

3.3 Comparison

The BTS and FCS structures both use pass transistor networks. The number of transistors

in the BTS structure is less than the number of transistors in the FCS structure, since

the BTS structure is partitioned around each control variable. In terms of space and size,

the BTS would appear to require less space. However, using the SISM compiler developed

by Buehler [2] to design the BTS structure, the space required for each design is basically

the same. The extra space available in the BTS structure is difficult to utilize. Using the

SISM compiler, a custom drawn SISM layout for one of the variables in Table 2, using

both structures, is shown in Figures 4 and 5.

3.4 Destination State Codes Implementation

The destination state codes are all the inputs that must be fed to either the BTS or the

FCS structure in order to implement a state table. The inputs can be driven in several

ways. They could be directly connected to VDD/VSS or they could be driven by the

output of a shift register. The input array could also be constructed as a programmable

memory such as EPROM.

In order to achieve programmability in the SISM structure, the data must not be hard-

wired. If data were implemented using VDD and VSS connections then, the programmable

nature of this design is limited to single mask programmability. Using a shift register will

achieve the programmability objectives. The shift register will, however, increase the size

of the circuit. If the EPROM is implemented on the IC, the size of the controller will also

increased but since an EPROM cell is considerably smaller than a D-FF, the size impact



2.5.6

/i
0 I

o ;121
o_

/!
o I

0 ' I31
o J

o,, ,,t io I_ i I

1 ,/i I;_,[ iY_
o I '

i ..3 t

! I
/3

o 111
o ' "z'_"t I I
o I/3

0 '

0 l

h

I

I

I

D

FF

Figure 3: Complete structure for the variab|e Y! using the BTS architecture.

r

|

i



3nd NASA Symposium on VLSI Design 1991 2.5.7

..::" : ; " :::_ i _."L": ."""': '" '

i t_ ,;.; i i 4

Figure 4: SISM layout using the BTS structure.

!

;? b7_

I$1157¢,$i;t:7 f_1

V, / O" ; _'/ ".

Figure 5: SISM layout using the FCS structure.



2.5.8

A c
B D

C E

D F

E A

F B

G A

H A

BIA
ClB
D[C

EID

FIE

AIF

AIA

AIA

. Table 3: Fully specified flow table.

is much less than [ha[/_or the shiK _s[e[ ai)proacIa.

4 Achieving  ult

"- .:--_-- , .... = - _-_..__.._ ___

In incorporating fault tolerance m any d]_td sys[e_, [_t_ approac]aes_=---:_--=can =be considered.

The first approach is called static redundancy, also known as fault masking, which uses

extra components such that the effect of a faulty ccirtip0rient is rhasked instantaneously.

The second approach is called dynainie redundancy, which has extra components but only

one component operates at a time. if a fault is detected in the operating module, it is

switched out aiid replaced by a Spkre. This dynamic redundanc_ _equlres consecutive

actions of fault detection and fault i:ecovery [5].

The idea of dynamic redundhncjr to achieve fault tolerance can be applied to the SISM

structure. Hence, the operating module re_'ers to all the paths (states) in the next state

selecti6n i-ogic that const_uu_ _e_ate-machine.._.nd the spare parts rd-er to tlae unuti_zed

logic (redundant states) in the architecture. Therefore, if a fault has been detected in a

given state (i.e. the path that identifies that state), a spare path is switched to replace the

current path and correct operation is resumed.

Most state machines do not u_ilize all available states. Therefore, some of those states

can be thought of tiS spare states and are redundhnt. To optimize the versatility and

robustness of a controller, the redundant states can be used to replace any state which

exhibits a malfunction. By applying a method for reconfigurabillty, the redundant states

can be used to improve the reliability and to enhaiice the performance of an IC.

WiLh reference to Table i, there are six states, therefore three variables are iieec]ed _o

irtiplement tills flow table. With three Variables, a maximum of eight States are available.

Six cif these states are tt_ed and two states are redundant. However, the next state entries

for each of the two redundant states have been assigned the initial value (which is a safe

output in all cases) as shtiwn in Table 3, with the _gtiinption that state A is the initial

state. If state B tested faulty, theii one of the redundan_ states, such as state G, could be

ttsed to replace state B to achie_re correct operation.

Both the BTS and the FCS will hK_'e extra logtc, aiad the reconfigurabillty method can



3nd NASA Symposium on VLSI Design 1991 2.5.9

be applied to use the extra logic. However, the location of a fault in the BTS can limit the

use of the redundant logic and therefore decrease fault tolerance. That is, if a fault affects

any of the transistors controlling Ya or its complement in Figure 3, then the method is valid

and redundant logic can be used to replace that faulty branch. However, if a fault affects

Y3 or its complement then, there is not enough redundant logic to replace the entire faulty

section. Therefore, the redundant logic has limited capabilities in the BTS structure. An

identical structure can be added, but in doing so static redundancy can be achieved easily,

at the cost of increasing the structure size by a factor of two.

The FCS structure, possesses a good structure. If any s-a-fault or s-op faults occur at

the input or in the structure, then only one path (state) is effected. However, if a stuck-on

faults occur in the structure, then two paths (states) will be affected at most. For example

if a stuck at fault affects state B, then only the path that represents state B is affected

and can be replaced. However, if a stuck-on affects state B, then two paths will be enabled

at the same time. Therefore, the redundant logic can be used to replace this malfunction

state. Hence the FCS structure is more applicable if dynamic redundancy is to be used.

Furthermore, the redundant logic in the FCS structure does not mask any of the faults

that could occur in the structure. The reason being that the redundant logic does not

replicate any of the existing states. Therefore, a fault in the structure or even in the

redundant logic itself is testable.

5 Design Procedure

If any path in the FCS architecture becomes faulty due to the input being stuck at 1 or

stuck at 0, a stuck open or shorted pass transistor, or any other malfunction, then the

entire path is no longer correct and therefore must be replaced or recovered. To achieve

fault tolerance, three methods must be used. They are error detection, fault location,

followed by replacement and recovery. The primary concern is with the replacement and

recovery technique. Once the designer has concluded that an error has occurred in a part

of the IC, fault detection and location techniques are then applied to detect and locate

the faulty part. If the faulty part is in the controller section of the circuit, then it must be

determined where the fault has occurred, and the kind of fault that occurred.

Referring to Table 3, assume that the fault diagnosis has shown that state B is a faulty

state. This corresponds to the path (Ya; ]I2; Y1) in Figure 2, then the following steps are

applied.

STEP1

Examine the flow table at hand and determine which of the redundant states will be used

to replace state B. Since this flow table has two redundant states, State G is chosen. State

H could have just as validly been chosen, but for simplicity the next state in order was

chosen. Hence state G, (Y3; Y2;_) is chosen to replace state B.

STEP2

Modify the flow table to reflect the new changes. That is scan the flow table and replace

each next state entry of B with the new state G. Therefore, every where in the next state



2.5.10

Table 4: Second step in

A CIG A

B DIC G
C E D C

D F E D

E A F E

F G A F

G A A A

H A A A

the replacement procedure.

A

B

C

D

E

F

G

H

Table 5: Third step

-= ?_

z, t3
C G AI

D C GI .....

E D C[

F E DI

A F El .....

G A F]

D C GI

A A AI

in the replacement procedure.

entry of the state table, replace B with a G. Table 4 reflects this replacement process.
STEP3

Fill the next state entry of state G with the same next state entry as that of state B. That

is the next state cntrles for G will be the same next state entries for B providing that step2

was completed. Table 5 shows the result of this step.

STEP4

The next state e_ntries for state B are modified in such a way that masks the kind of

permanent fault in the hardware.

1. Ifa stuck at fault, s-op or s-on faults occur at the input of the destination state codes

or in the input switch matrix or a s-a-1 or s-a-0 fault on the destination codes, then

disabling the B state is sufficient.

2. If a s-op is occurred in arty of the variables, then the path is already disabled.

3. If a s-on fault occurs in any of the variables, then the destination state codes to the

faulty path must be identical to those of the new path the fault assumes. That is,

if the variable _ in state B is stuck on, then this state becomes (1;]7_2; Y1) which is

the same as state F. Therefore, the next state entries of state B must be the same as

that of state F. Hence, when state F is enabled, state B is also enabled. To achieve



3ncl NASA Symposium on VLSI Design 1901 2.5.11

111213
A C G!A

B G AF

C E D C

D F E D

E A F E

F GIA F

G D _ G

II A[A A

Table 6: modified flow table.

Yl Y2 Y3
0 0 0 A

0 0 1 B

0 1 0 C

0 1 1 D

1 0 0 E

1 0 1 F

1 1 0 G

1 1 1 H

/1 /2 /3
0 1

1 1

1 0

1 0

0 0

1 1

0 1

0 0

0 1 1

0 0 0

0 0 1

1 1 0

0 1 0

0 0 0

1 0 1

0 0 0

0 0

0 1

1 0

0 0

1 1

0 1

0 1

0 0

0 0

0 1

1 0

1 1

0 0

0 1

1 0

0 0

Table 7: Modified flow table.

correct operation, both states must have the same next state entries. As a result,

the fault is masked. Table 6 shows the resulting flow table.

STEP5

The new state assignment is then reflected in the modified flow table. Table 7 shows the

state assignment and the next state entries assignment.

STEP6

The destination state codes derived from the modified flow table determine the new data

entries for the shift register.

With the completion of Step6, the operation of the circuit can be resumed with the

same expected results.

Two final points are worth discussing. Firstly, if the state machine does utilize all

of its states then an additional state variable must be added to allow this procedure to

be employed. In order to demonstrate the procedure, the flow table shown in Table 8

is considered. As can be seen there are no extra states. Therefore, a new state variable

is added and then the state assignment is revisited during the initial design to achieve

redundancy. The next state equations and the hardware implementation will reflect this

modification. The modified flow table is shown in Table 9.

Secondly, this method can be extended to achieve fault tolerance in the remaining parts

of the circuit. This would be achieved by determining the faulty part and reconfiguring



_.5.12

0 0

0 1 B

1 0 C

1 1 D

Table 8: General 4-states,2-input flow table.

0 0 0 A

0 0 1 B

0 1 0 C

0 i 1 D

1 0 0 E

1 0 1 F

1 1 0 G

1 1 1 H

D B

C C

A D

BiA

A!A

AIA

AiA

AIA

Table 9: Modified flow table.

the state machine in such a way as not to enable the faulty part, and to activate another

part to replace it.

References

[1] S. Whltaker, S. Manjunath and G. Maki, _Sequence invariant State Machines", IEBE

Journal of Solid Slate Circuits, Voi. SC-26, Aug. 1991, pp .

[2]David M. Buehler, "Sequence In_zariantState Machine Compiler", Master Thesis,

Dept. of Elect Engr., University 0f idaho, Moscow, idaho, Dec. 1990.

[3]G. Peterson and G. Maid, t_Binary Tree Structured Logic Circuits: Design and

Fault Detection", Proceedings of IBEE International Conference on Computer De-

Sign: V[,SI in Computers, Port Chester, NY, Oct., 1984, pp. 671-676.

[4] D. Radhakrishnan and G. Maid, Digital Systems Desion , EE 440 Lecture Note§, Uni-

[5] Paxag K. Lain, Fault Tolerant _ Fault Testable Hardware Design, Prentice-Hall Inter-

national, Inc., London 1985.


