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Abstract- It has previously been shown that the Reed Solomon (RS) codes can
correct errors beyond the Singleton and Rieger Bounds with arbitrarily small
probability of a miscorrect [1]. That is an (n,k) RS code can correct more than
(n-k)/2 errors. An implementation of such an RS decoder is presented in this
paper. An existing RS decoder, the AHA4010, is utilized in this work. This
decoder is specially useful for errors which are patterned with a long burst
plus some random errors.

1 Introduction

It is well known that an (n,k) RS code can correct up to (n-k)/2 random errors. When
burst errors are involved, the error correcting ability of the RS code can be increased
beyond (n-k)/2 with arbitrarily small probability of a miscorrect [1]. Errors considered in
this paper, called composite errors, have a single burst plus random error pattern.

RS codes are powerful error correcting codes. There is a rich history of work developing
decoding algorithms for RS codes. Virtually all of the work focuses on the general case
of t unknown error locations. It is possible to extend the error correction capability of a
RS code if error location information is available from some external source. This is called
erasure decoding.

The extended decoding technique presented in this paper assumes that the locations
of the burst are known and treats them as erasures. All possible burst error positions are
given to the decoder sequentially as "guesses” to the burst error location. That is, the
burst part of the error becomes an erasure and an erasure-locator polynomial is generated
from the erasure locations for each burst location guess. By sending this erasure-locator
polynomial along with a received code word to a general purpose RS decoder, such as

AHA4010, the RS decoder will decode the received codeword. The result outputted by the
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RS decoder is either a corrected data or a signal which indicates no correction can been
made.

The erasure-locator polynomial is generated iteratively for all possible locations during
the decoding procedure. It is possible that more than one error polynomial results from
this iterative procedure. When more than one error is obtained, the error that has higher
probability of occurrence should be chosen. It is assumed in this paper that an error with
smaller weight has higher probability of occurrence. This is true for most channels.

If the chosen error is not the true error, a miscorrect occurs. The probability of mis-
correct is a function of the size of the error that is detected and the channel statistics. It
is usually very low as shown in rgicggggq .

The implementation presented in this paper is based on the AHA4010 RS decoder.
The purpose is to increase the error correction capability with very little increase on the
hardware and software.

2 Standard Decoding Description
The standard procedure for décoding the RS code is summarized below:

STEP 1: Compute syndromes ™

- STEP 2! From the syndrAc;mes,form the ei‘;rzr-lgcat'io rpolyin'ornri;ajl./;\r(z),;vlflrexr‘e'
Alz) = (1 -=X,)(1 - zX;) ... (1 —zX;) and X, X;,,... and X; are

the error locations.

STEP 3: Find error location X; ( =1,...,1) by finding zeros of A(z).

STEP 4: Find error magnitude ¥; (j = 1, ..y1) by calculating first 1 syndrome
equations.

STEP 5: Correct the error.
Two polynomials are needed during the decoding and they are:

2% A
S(z) =) S;a! (1)
i=1 o S
and

Qz) = S(x)A(m) (modz?) (2)

This second equation is commonly known as the Key Equation, because solving it is

the key to decoding the RS code. After obtaining the error locations, the error magnitudes
can be found as:
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_Xxioa(xi)

l/t = A'(Xt_l (3)
For 50 =1,
_ XY
TR @

It is now clear that the decoding procedure becomes one of finding the A and § poly-
nomials from S(z), and then finding the location and magnitude of the errors from those
two polynomials.

When erasures are involved, an erasure-locator polynomial is created.

(e) =1(1 - 2X;)
where the X,’s are the erasure locations.

The Key equation can be solved for A and 2 in several ways. One of them is Euclid’s
recursive algorithm. The Euclid’s recursive algorithm is briefly described below. First let

Q(—l)(m) =z

Q(O)(m) — S(z)r(m) (modmh)
» A('l)(m) =0
A(z) =T(z)

the recursive equations are

Q"(:c) = Rn((—x)(z)[ﬂ(i_z)(m)], (5)
or equivalently,
Qli - 2)(z) = ¢V (2) + 20(z) (©
and
A (z) = ¢ (2)AE D (=) + AL (z) (7)

The recursion is continued until the degree of 2 is less than t + p/2 , where p is the
number of erasures.

Erasures are the errors which have been located prior to decoding. Utilizing this infor-
mation will improve the error correction capability of the decoder. Since the burst is a big

part of a composite error, a burst erasure will make the error correction capability much
greater. This idea leads to the following approach:

STEP 1 Set stop conditions, the maximum iteration time N and n=0.

STEP 2 Assume the burst begins at location a and n=n+1.
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Flgure 1 Block Diagram

STEP 3 Decode the error with t:l_lgburst as erasures.

STEP 4 If the result satisfies the stop conditions or n;N, go to STEP 5. Else, increase
the beginning location of the burst go to STEP 2.

STEP 5 Report the result,

In other words, the decoding method, used Hy the extended decoder, is to guess where
the burst part of the error is and try to decode it.

3 Extended Decoder Design

The extended RS decoder has an AHA4010 decoder at its center. An erasure- -locator poly-

- nomial generator, an error choice unit and a data buffer are attached to the AHA4010
decoder. The top level block diagram of this extended decoder is shown in Figure 1.

The erasure-locator polynomial generator generates I'(z). T'(z) could be generated for
every possible error location. However, this may not be necessary. For example, let error,

e(z), be defined as:

ei(z) = a® + o’z' + a®2? + a2 + otz (8)

The error, e(z), can be interpreted as

1. e(z)i?ig?-il_t_a6+a9ml -i-a +a4z13 o

A burst length of 5 (0z~! + +a 1+ abz? + a°:c3 ) and one random error ( z13).

2. e(z) =027 + 0z~ + a® + a®z! + af2z? + 2% + atz??
A burst length of 5 (0272 + 0z™' + a® + o®z! + a®z? ) and two random errors

(a0m3 (.‘(4213)

I
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CONTROLS:

T = P+ Pl*CORRECT*(Ctl),

T,= P‘*CORRECT*(C=1) + Pz*(CA>CB),

T,= P, + PI*CORRECT*(C=1) + Pz*(CA>CB),
T,= P, + PI*CORRECT*(Ctl).

Figure 3: Error Choice Unit
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3. e(z) = a® + a®z' + abe? + a%® + 0zt + 025 + a1

A burst length of 5 (a®+ o®al +afa? +a®a® 4 0a?) and one random error (025, atz?3,

4. e(m) =0z1 + o® + 2! + afz? + a2 + Ozc")

A burst length of 5 (027! + o® + a®z! + a®2? + a%23 + 0z* ) and two random error
(O:t: a‘:c“)

A RS code Wxth the ablhty of correctmg a burst of length 5 and 2 random errors
will correct all the e errors above. Usmg this loglc, I‘(z) can be generated every m error

locatlon blts The user must decxde the value of m under the _consideration of the number

of iter hmes and the size of the correctable Error.

Meanwlule the ¢ error choice unit stores the ta correcjed bLtlE A 10 decoder
and reverses it back to the error polynomial. If the size of the error is less than t (ie.
This error has the }ughest probability of occurrence), the error ch01ce unit 1nterrupts the

1terat10n a.nd outputs the corrected data. Otherwxse the Jteratlon contmues If more than

one error is found, the error choice unit compares these errors and the smallest error is
chosen (It is assurned that the smallest error has the }ughest probablhty of occurrence).

4 Erasure-Locator Polynomlal Generator

Assume the recelved code words Have a composite error error qucterned with i random ertots

and one burst error of Iength v. The burst Iocatlons rnay be a™t! « '+2 e wheré t
is from 0 to 255. The erasure-locator polynomial, I‘(a:) has a form

= a" ([z" + Tz* ' + ... + Tz + a7)

where Ty, T;,andT, are constaint and r is form 1 to 255.

For each received code word, the correspondmg decodmg process is performed N/m
hmes Wxth N/m dlfferent I‘(:c), Where N is the length of the RS code and m is the bxts that
locator polynom:al generator. The DONE 51gnal causes erasures to shift to the right m
bits. Therefore, a new I'(z) is generated. This operation repeats until a FOUND signal is
received or r > 255.
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The erasure-locator polynomial generator is depicted in Figure 2. The coefficients of
this polynomial, I';a?" (j from 0 to v), are not constant. I';a?” multiply by « whenever
INCREASE CONTROL (i.e. DONE signal) is assertive.

The operations can be described in a register transfer language where each P; is a
control state that defines the data transfers that take place when P; is active. A register
transfer language description for the erasure-locator polynomial generator is shown below:

e P, :r=0,if GO=1, then go to P;.

¢ P, : if FOUND=1 or r=255, then go to Py , else I'c = o",T1 = o™, T, =
e, ...,T, =T, and r =7+ 1.

o P,:T(z) =]I(1 —za"),if DONE=1, go to P, .

5 Error Choice Unit

During the decoding iteration, it is possible that more than one error results. The error
with the highest probability of occurrence should be chosen. It is assumed that will be the
smallest error. The diagram of the error choice unit is shown in Figure 3.

The first data corrected by the AHA4010 decoder is stored in register A, its correspond-
ing error is also calculated and the size of the error is stored in CA. If the size of the error
is less than t’, the CMP asserts the FOUND signal and outputs the data in register A.
The decoding process otherwise continues. The second corrected data is stored in register
B, the size of the second error is stored in CB. The CMP compares the values of CA and
CB. If CA > CB, A is replaced by B and CA is replaced by CB. If the value of CB is less
than t’, the CMP asserts the FOUND signal and outputs the data in register A. If CA <
CB, nothing changes. This comparison is performed every time a corrected data is output
from the AHA4010 decoder. It guarantees that the register A always has the data which
is corrected from the smallest error.

A signal from the erasure-locator polynomial generator tells the error choice unit that
the iteration is finished. The data in register A is the output.

A register transfer language description for the error choice unit is:

e P,: 05 A,0-B,1-C,FFH—- CB,if GO=1,goto P;.

e P,:if CA <t or CB < t’ or FLAG=1 (i.e. r=255), output data, set FOUND=1,
goto Py .

o if CORRECT=1 & C=1, correctedData — A, size (correctedData) — CA, c = c+1;
e if CORRECT=1 & C } 1, correctedData — B, size (correctedData) — CB;

e P,:if CA>CB,B— A,CB — CA, goto P,.

CORRECT is a signal from the AHA4010 decoder which indicates a correction has

or has not been made. C is a counter. It counts the number of correction times for one
received code word.
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6 An Example

Consider a (255,235) RS code over GF(2®) defined by the primitive polynomial p(z) =
z® + 27 + 27 + 2! + 1 with the primitive element o = z. This code can normally correct
ten random errors. Assume received errors have a burst of length 8 and 5 random errors.

After considering the number of iteration times and the size of the correctable error, let’s
set the m=4 and t’=11.

SOLUTION:
The received polynomial is:

v(:c) — zil+a3mi§+a200116+a8z17+a40z18+a23x19+a6320+z?1 +a54m183+a71m198+ax233.
(9)

I(z) = H(1 + gai). (10)

This I'(z) is sent to the AHA4010 decoder, the FOUND signal is zero. Multiply the

coefficients of I'(z) by a3? (i.e. " = a*® = a??). The erasure-locator polynomial becomies:

I'(z) = ﬁ[l(l + zalat)

and tinsnzwil‘(;):ssenf to the f&ﬁAlldlﬂ, the %’DUﬁﬁ s:gna] is stxll zeroi‘iusdeco&mg

process performs repeatedly until the FOUND signal is one. That gives the corrected data:

{0,0,0,...,0}
The corresponding erasure-locator polynomial is:

T(z) = '

8
J:

(1 + zala'?) (11)

1

and the corresponding error polynomial is:
v(z) = @ + o321 + o221 4 aBzlT 4 10218 | o519 4 8520 4 g2 4 54183 L (71 198 | 233

7 »Summary

An extended RS decoder has been presented in this paper. With two extra circuits, the
error correction capability of a general purpose RS decoder can be increased. This design
shows a way to improve the error correction capability of existing RS decoders.
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