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Abstract- This paper describes the technology, design, simulation, and evalu-

ation for improvement of the $EP hardness of gate-array and SRAM cells.

Through the use of design and processing techniques, it is possible to achieve

an SEP error rate less than 1.0E-10 errors/blt-day for a 90worst-case geosyn-

chronous orbit environment.

1 Single Event Upset

Single Event Phenomenon (SEP) occurs when a particle or heavy ion interacts with the

silicon, depositing charge on critical circuit nodes, causing data loss. Devices that retain

data (RAMs and fllp-flops, for example) are subject to SEP, and a particle interaction

in one part of the chip can cause data loss in a circuit located far away. Non-storage

nodes can propagate the pulse to other circuit nodes, but no permanent data will be lost.

Storage devices like RAMs, latches, and flip-flops may detect false clock pulses, or reset

signals caused by a pulse on a circuit node somewhere in the clock, or reset generation and

buffering circuitry, and lose data.

The storage node critical charge, Qc, is the amount of charge that must be deposited

on the storage node in order to upset the stored data. Increasing the critical charge for

the sensitive nodes in a cell will decrease the SEP error rate by lowering the probability of

encountering an ion with sufficient LET value to upset the cell. This critical charge can

be increased by changing the transistor sizes to make the cell more stable, adding parallel

paths in the cell, and increasing the feedback switching time. A more stable storage cell

will require a greater voltage change on the storage node, or a longer voltage pulse to

disturb the data.

2 Charge Deposition Model

In the past, the literature has implied that the charge generated by a single event may

be modeled by using an ideal current source with an exponential time decay. Using this

method, the current source is connected directly to the sensitive node, and the charge

applied is the time integral of the current pulse. This method can over-predlct the value

of the critical charge for the memory cell because the current source causes the junction

to which the current source is applied to become forward biased and sink a significant
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amount of charge to the power supply. Physically, the charge collection process is self-

limiting, and the junction will never conduct current in the forward direction. This is a

very common error which has led to substantially over-predicting the SEP hardness of a

particular design. This can lead to substantially higher SEP error rates in the circuit than

can be tolerated by file system e_e_h:. I-n _h]s paper, we describe process, simulation, and

design techniques that may b e usedto improve the SEP hardness of CMOS circuits.

3 SEP Simulation

We have used both HSPICE and DAVINCI (tm) [1] to model SEP phenomenon. In the

SPICE simulation, the cell sub-circuit is accurately modeled using device parameters which

have been demonstrated to correlate with rneasure_con values. Figure i shows the sub-

circuits that model the charge deposition. They use idealized MOS devices as switches,

and standard SPICE components for everything else. This modeling techniqti_ pre4rents

forwardLbJasing of the junction and provides a more accurate Simulation of the charge

required for circuit upset [2]. An internad node , Ndep, _s ihlt!_ze_]to a_v_kge, Vd_p,

by switch N3 where Vd_ep x Cdep = Qdep (Qdep is the simulated deposited charge). A

_swiiich, P2 or N2, is turned 6i_ i-n al@roxlm_e]y _I ns, s-hor{ing t_e_nocIe Ul_aer_es{i_

power supply through a resistor that represents the resistance of the bulk silicon.
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Figure 1: SPICE Charge Deposition Circuit

As charges are added to the node under test,the sameamount of charge is removedfrom

the internal node Ndep. Whenthe internal node Ndep is depleted of charge, a switch, P1

or _, tur_o_lTso tTe _rcu_{ c_ rec_ts nocle voltages. ._ similar but _g_htly _J_eren{

version of this charge deposition modeI is used for p+/n- and n-/p+ junciion interact!ons.
_ais iechnique has proven extremely valuable to optimize the design and layout of logic

and memory-circu_S-_r-SEP .karclness.
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Numerical simulation of the charge deposition from a heavy ion hit has been attempted

by others. [3,4] We have performed three-dimensional numerical simulation of single event

upset using the three-dimensional simulator, DAVINCI tin. The simulations were per-

formed on an n-channel junction of a twin-tub CMOS device with approximately 4 um of

an epitaxial layer. In figure 2, the potential contours of the device junction are shown 48

ps after a single event hit with a gold ion. Note that the n+ junction is no longer at five

volts and that the distribution of the funnel favors the epi/p-well junction. As the voltage

at the n+ junction is reduced, there is less potential difference to the funnel as opposed to

the potential difference of the funnel to the epi, which is held at five volts.

seuTgoldS0 let Potential 48.0ps sou7- Node Voltages

Figure 2: Junction Potential After Ion

Strike

Figure 3: n+ junction vs. p-weU and sub-

strafe

Figure 3 shows the potential of the n+ junction relative to the p-well contact and epi

substrate contact. Note that the time constant is _5-10 ps. Whether a flip-flop will change

state as a result of this SEP event will depend upon how long the n+ junction potential is

below the switch point of the cell. The n+ junction can go to zero volts and not cause an

upset if it recovers before the zero can propagate back through the cross-coupled logic. We

have found DAVINCI tm useful for looking at wafer fabrication process methods for SEP

hardening of CMOS devices, as it enables the evaluation of effects of doping concentration,

epi thickness, etc.
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4 Heavy Ion Testing And SEP Numerical Calculation

Heavy ion testing for this work was performed at Brookhaven National Laboratories, using

their Tandem Van de Graaff system. Three ion conditions were chosen for this testing.

They included Gold at 350 MeV, Iodine at 320 MeV and Bromine at 285 MeV. The LET

values were further varied by adjusting the angle of incidence from 0 to 60 degrees.

To determine the SEP error rate from measured data, the effective cross- section is

selected at an LET or i00 _ x cm_./mg (surface value). The upset rate calculation

can be performed using either CREME [5] or SpaceRad [6] programs. The simulation

conditions for determining the error rates quoted in this paper are as follows:

1. Geosynchronous circular orbit, 35000 km;

5

2. Orbital inclination, 0 degrees;

3. Adams tg0_0 worst-case environment, including the eari h-s s]aad0w and_geom_=a-gnetic

storlllS; - =_:: - --_- ..............

4. All ions from Hydrogen through Uranium 1<Z<92.

Process Techniques For SEI 3 Hardening Of CMOS

Wafer fabrication processing can have a strong effect on the SEP Sensitivity o_MOS

circuits. As shown in the DAVi-NCi tm SimuIation_a_oove, overcharge a_eposited

by a heavy ion can be collected at the epitaxlal junction, away from sensitive circuit nodes,

if the epitaxial layer is sufficiently thin. Also, because the drive curreni of pV-c_aannel devices

is typically less than that of n-channel devices, the most SEP-sensitive nodes tend to be

n-channel nocles Supported by p:c_tanne_l transistors. TIaere_ore,_t0 minimize the charge

collection on these nodes, a p-wen type process is desirable since the p-well-to-substrate

junction will help to collect a substantial portion of the deposited charge.

Also, because n-type dopants (n:_ype Substrates are Used for a p-well process) diffuse
much slower than p-type dopants, it is possible to fabricate much thinner epitaxial lay-

ers for a p-well process, further improving the SEP sensitivity of the technology. The

lower sheet resistances and (typically) higher doping of a p-well process also help to elimi-

nate SEP-induced latch-up. High doping concentrations also help to increase the junction

capacitance, further improving SEP susceptibility. Thin gate oxide also increases node

capacitance, thereby increasing the critical charge on a node and improving SEP hardness.

Poly-resistors or natural p-channel transistors can also be added to the process to allow

the design of high-density SEP-hardened memory cells.

SOS and SOI (Sillcon-On-Sapphire and Silicon-On-Insulator) processes reduce the

amount of charge collected on the junction and the effective critical charge on each node.

Thin-film SOl devices are also sensitive to bipolar snap-back. This has the effect of making
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the channel region of the n-channel transistors sensitive to SEP upset. Therefore it is not

sufficient to process a design on SOS/SOI substrates to obtain good SEP performance.

Design and special processing techniques must be used also to assure SEP hardness of the

circuits.

Commercial CMOS wafer fabrication processes usually do not consider SEP upset and

latchup in their design. They are optimized for speed and density, both of which east

compromise good SEP performance. UTMC has designed its twin-tub epitaxial p-well

CMOS process (including poly-resistors) and layout rules to provide an optimum balance

between good SEP performance, latchup immunity, speed, and density.

6 SEP Hardening Techniques For Memory Circuits

In the design of memory systems, several techniques may be used to provide SEP-insensitive

memory systems. These include the use of redundant memory with voting logic and/or

error detection and correction. Both of these techniques require additional system overhead

and result in a degradation of system performance, as well as increased cost and weight.

Some systems cannot afford this additional overhead, and therefore require the use of

SEP-hard SRAMs.

Several SEP hardening techniques for SRAM memory cells have been reported in the

literature. These include the use of cross-coupled resistors, cross-coupled capacitors, and

cross-coupled p-channel transistors. [7,8] A schematic diagram of a memory cell with cross-

coupled resistors (as used in UTMC's rad-hard 64K SRAM) is shown in figure 4. All of

these techniques serve to increase the write time constant of the cell, thereby increasing the

effective critical charge on the internal nodes of the cell. All of the techniques increase the

wafer fabrication processing complexity and the area of the SRAM cell. The advantages

and disadvantages of each are shown in Table 1.

ROW _I_ --

VDD VDD
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_0_o _ =_---o cL.

N

VSS VSS

Figure 4: Memory Cell Schematic

Today, cross-coupled resistors are used in many SEP-hard designs primarily because

the processing required to add and control the resistors is a relatively straight forward

extension of standard CMOS SRAM processing techniques. However, if proper care is not

taken to optimize the cell layout for performance, SEP sensitivity, and resistor tolerance,
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SRAM Cell

Hardening Technique

Cross-coupled

resistors

Cross-coupled

capacitors

Cross-coupled

transistors

Advantages

Known processing.

First published

technique.

Minimum variation of

SEU with temperature.

Minimum cellarea.*

* Technology and layout'de

Disadvantages

TCR of resistorcauses SEP

sensitivityto change

over temperature.

Cell area.

Effects of resistor geometry.

Cap oxide defect sensitivity.
Cell area.

Process control on transistor

Vt.

)endent

Table 1: Advantages and Disadvantages of SRAM SEP-Hardening Techniques •

SEP performance may be greatly degraded at high temperature (above 85 C), and write

cycle time may be degraded at low temperature (-55 C).

6.1 SEP-YIardened Memory Design

We have taken great care to optimize the performance oi"the rad-hard 64K SRAM over

the entire military temperature range (-55 C to 125 C). The size of the transistors in
the cell Were optimized in concert with the cross-coupied resistor vaiues using the SPICE
simulation techniques descried earl_& to assure tI_at the product would bemanu_acturabIe
and meet data sheet specifications, including a_lE-10 error/bit/day requirement-,-over the
entire military temperature range. U'PMC's 64K SRAM memory c_ is more stabie than

most SRAM memory cells because the p-channel transistor in the 64K SRAM memory
celt is larger than the n-channel transistor and will supply almost as much current. The
increased p-channe! slze increases _-he switch point oi_ the cross-coupled inverters from

approximately Vtn (0.8 V) to approximately Vdd/2 (_..5 V). The increased switch point
requires that a particle-induced voltage pulse on one of the storagenodes exceeds Vdd/2
instead of Vtn before the other storage node can be affected. A more stable memory ceil
is harder to write and requires additional area. The increased p-channel transistor size
increases the die size by approximately 7%.

In UTMC's 64K SRAM, the write time specification can be met even with the more
stable memory cell because the write circuitry forces the memory cell columns to Vdd and
Grid during a write operation. Although the write circuitry that provides Vdd and Gnd

is larger than a standard write circuit that only provides Grid, it increases the die size by
less than 0.5%.

The 64K SRAM uses high-valued polysilicon resistors in series with the gates of both

cross-coupled inverters and increased capacitance on the storage nodes to increase the
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feedback switching time. Increased stability and increased feedback switching time pro-

vide improved SEP protection. The 64K SRAM can use a lower valued resistor because

the memory cell is more stable than a typical SRAM. The lower valued resistor is more

manufacturable and is less affected by temperature. The polysilicon resistor process pro-

vides a tighter than typical control over the resistor value. This tight resistaxtee control

provides greater SEP protection over a wider temperature range and also allows shorter

write times. Including a resistor in the memory cell increases the die size by less than 9%.

The cross-coupled resistors are incorporated in the single layer of polysilicon which also

forms the gates of the transistors. Metal contacts for power and ground are incorporated

in every cell to help collect some of the charge deposited by a particle passing through a

nearby junction.

The effect of the cross-coupled resistors is to increase the threshold LET for SEP upset

and reduce the effective saturated cross-section of the device. [9] These effects for UTMC's

64K SRAM are shown in figure 5 and 6. Using the LET threshold and effective cross-section

from these graphs, the error rate in errors/bit/day as a function of resistor value may be

calculated for any space environment using CREME or SpaceRad as described above. The

error rate at 125 C (worst ease) for UTMC's 64K SRAM is shown in figure 7 as a function

of resistor value. By screening devices at the wafer level for resistor value and p-channel

drive current, we can guarantee an error rate of less than 1.0E-10 errors per bit per day at

125 C.
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Figure 6: Error Rate vs. Resistor Value

6.2 SEP-Hardened Flip-Flop Design

In logic systems, storage nodes such as flip-flops must retain data reliably, or the integrity

of the logic system can be severely compromised. A SEP-induced upset of a single bit in a

microprocessor register can send the system into an irrecoverable state. Detection of these

types of errors can require substantial overhead in software and hardware complexity and
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Figure 8: Resistor Application in Flip-flop

is possible to substantially improve the SEP performance without introducing additional

processing complexity. However, there is usually a penalty in increased die area.

If the wafer fabrication process technology has poly-resistors available (used for SEP-

hardening SRAM cells described above), these resistors may be used to increase flip-flop

hardness as shown in figure 8. This technique can result in some performance clegradati6fi

of the flip-flop over temperature as reported by Sexton et al. [10] If resistors are not ave-

able, circuit techniques, coupled with the simulation techniques similar to those described

above, can be used to develop flip-flop register cells which have improved SEP performance

over conventional flip-flop circuits. [11,12]

To determine the effectiveness of the simulation technlques described =above, we Sim-

ulated the SEP upset for a number of the flip-flop cells in UTMC's gate-array library.

The simulations for one of these cells, DFAPCB - a D-type flip-flop whose logic diagram is

shown in figure 9, was compared with experimental data from heavy ion tests performed at

Brookhaven National Laboratory. To accurately determine the Upsetrate Of the flip'flop,
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Figure 9: D-type Flip-flop Logic Diagram

it was necessary to determine the effective critical charge (the charge required to upset the

state of the flip-flop) for every node within the circuit for both a high-node state and a

low-node state. The effective critical charge, along with the junction area for each node,

was then used to determine the upset rate for the node using the SpaceRad program. The

sum of the upset rates for all nodes was then taken as the upset rate for the flip-flop. The

simulated error rate for the DFAPCB flip-flop was 4.24E-8 errors per cell per day. This

compares to an experimentally determined error rate of 3.38E-8 errors per cell per day for

this flip-flop cell.

We have also developed SEP-upset improved cells which support our radiation-hard

gate array cell library. Some of the cells are capable of providing an error rate of 1.0E-

l0 errors per cell per day. Fully redundant cells have also been designed which require

twice as many transistors as a non-redundant design, but are SEP-immune. The results of

this work have provided a number of guidelines for selecting and designing an SEP-hard

flip-flop. These guidelines are discussed in Table 2.

7 Conclusions

Use of the simulation techniques described in this paper substantially increases the con-

fidence that a design will meet its objectives for SEP hardness, and the cell layout can

be optimized without compromising circuit performance. We have demonstrated an SEP

error rate less than 1.0E-10 errors/bit-day for a 90% worst-case geosynchronous orbit en-

vironment over the entire -55 C to +125 C temperature range for a rad-hard 64K SRAM
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lffrobl_ Flip-Flop Design Approach

Minimize stacked

p-channel devices

Eliminate

transmission gates

Remove NOR gates and replace with NAND gates.

Remove transmission gates and replace with docked

inverters.

Minimize sensitive Simplify design as much as possible consistent with

node area functional requirements. Add redundant (parallel)

transistors on sensitive nodes internal to the cell.

Table 2: Design Considerations for Improving. SEP Hardness of Flip-Flops

while maintaining a less than 55 ns cycle time. We have also demonstrated the capability

to model the SEP error rate of gate array cells and have applied the simulation and design

techniques described in this paper to develop SEP-tolerant and SEP-hard flip-flop designs.

SEP hardness of integrated circuits cannot be assured by screening commercial devices,

or by normal system-level or logic-level design techniques. Good SEP hardness can only

be obtained by using a wafer fabrication process _ichprovides {he proper characteristics

and proper attention to good design practices _at_thetr ansistor level. Since commercial

semiconductor manufacturers do not consider SEP effects when designing their circuits,

it w_ Be necessary to develop custom circuits which are designed for SEP hardness _r

nnsslon-crlhcal appIicatmns.
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