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Abstract- This paper considers the use of an adaptive fuzzy control algorithm

implemented on a VLSI chip for the control of a magnetic bearing. The archi-

tecture of the adaptive fuzzy controller is similar to that of a neural network.

The performance of the fuzzy controller is compared to that of a conventional

controller by computer simulation.

1 Introduction

Magnetic levitation is receiving increasing attention as a viable alternative to conventional

methods of moving and positioning objects [1]. NASA, for example, has developed a

cryogenic cooler that uses magnetic bearings and actuators exclusively [2]. One of the

more difficult aspects of the application of magnetic bearings is the control of the position

of the shaft in the bearing housing. Considerable attention has been given to this problem

recently. Williams et. al. [3] reported on the digital control of active magnetic bearings and

showed how the flexibility of digital control was extremely useful in implementing a number

of control algorithms including second-derivative and integral feedback. Chen and Darlow

[4] describe an analog control system for an active magnetic bearing that uses velocity and

acceleration observers to improve damping and cancel imbalance and other disturbance

forces to greatly improve the overall system performance. Keith et. al. [5] discuss the

magnetic support of flexible shaft at speeds up to 14,000 RPM using a PC-based digital

controller implementing a proportional-derivative control algorithm. A comparison with an

earlier analog proportional-derivative controller is also made. Chen [6] describes an active

magnetic bearing control scheme using three parallel feedback loops to achieve dynamic

stiffness, static stiffness, and damping, lie presents a closed-form solution for controller

parameters in terms of desired stiffness and damping, liumphris et. al. [7] present a

comprehensive treatment of the active magnetic bearing control problem and compare the

relative performance of low bandwidth and high bandwidth controllers. Scudiere et. al. [8]

used a Texas Instruments TMS32010 digital signal processor to implement a proportional-

integral-derivative control algorithm to successfully control the position of a number of

small spheres and rotors. Feeley et. al. [9] described root locus design of a double lead-lag

controller mapped into an equivalent digital controller via the Tustin transformation. The

resulting algorithm has been implemented on an Intel 80KC196C microprocessor and used

to control an analog computer model of the NASA magnetic bearing.

The difficulty of the control problem stems from two basic causes. The first is due
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to the physical nature of the magnetic bearing system itself. As shown in Section 2, the

uncontrolled magnetic bearing system is unstable, uncertain, and highly nonlinear. The

instability is due to the relentlessness of gravity in causing any suspended object to fall.

The uncertainties arise from the difficulties in modeling viscous friction, eddy currents,

leakage flux, and accounting for disturbance forces due to vehicle acceleration, motion of

the shaft, and other random events. The nonlinearities arise in the square-law nature of

magnetic forces, the nonlinear relationship between actuator current and magnetic flux,

and the nonlinear properties of materials in the magnetic circuit. The second basic cause of

difficulty in the control problem stems from the decision to use digital control. Sampling is

inherent in digital control and it is reasonable to expect poorer performance from a digital

control system using data samples than from its ideal analog equivalent using continuous

data. This inevitable degradation in performance encountered =in=moving from analog to

digital control must be compensated for by the use of more sophisticated digital control

algorithms and the other advantage s !nherent in digit_ con__ro!.

A control scheme that is effective in overcoming these two basic causes of difficulty

in the control problem is presented in this paper. The scheme !s b ased on the theory of

fuzzy systems. The modeling problem is addressed by substituting the imprecise linguistic

model of fuzzy theory for the precise model of physical theory. The sampling problem is

addressed by implementing the fuzzy algorithm in a parallel architecture suitable for VLSI

implementation thereby reducing processing time and allowing high sampling rates.

The remainder of the paper is organized as follows. Section 2 describes the magnetic

bearing system aud presents a mathematical model developed by Feeley et. al. [10]. In

Section 3 some essential elements of fuzzy control theory are presented and an adaptive

fuzzy controller is developed. In Section 4 the performance of the fuzzy controller is

analyzed using a comPuter simulatjpn baseA o n the npnlinear model of Section 2. A

adaptive fuzzy control VLSI chip architecture is outlined in Section 5 and some conclusions

and recommendations are given in Section 6

2 Magnetic Bearing Syste m_

A schematic cross-sectional side view of NASA's magnetic bearing is shown in Figure 1

supporting one end of a rigid shaft. An end view would show the _ircui_r cross-section

shaft centered in the annular gap created by the bearlng housing and the shaft, :Figure

! also shows the shaft magnetic material ifiiays that provide patils f0r the magnetic flux

produced by the adjacent bearing actuators: The actuators are symmetrlcal]ylocated in

the bearinghousing and consist of magnetic material pole pieces and coils of copper wire.

A position sensor is iocated close to each actuator t0 measure the posi-ti-0n of the shall A

total of four actUa[tor and position sensor assemblies are located at 900 increments around

the circumference of the housing. Coordinated control of opposing actuators permits posi-

tioning of the endoftheshaft anywhere in the annular gap. An ident!cal bearin _ assembly

supports the other end of the shaft. For simplicity, rotationaaV forces are not dlrectiy ac-

counted for and half of the shaft mass isassumed to be concentrated at the point of aCtiOn
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of the magnetic forces of each bearing assembly.
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Figure 1: Schematic cross-section of magnetic bearing assembly

Assuming motion in the one-dimensional coordinate system defined in Figure 1, appli-

cation of Newton's second law yields

d2___y_y= F1 - F2 - Fa-F l
dt _ M

where y is the position of the shaft, F1 is the magnetic force exerted by the upper

actuator, F2 is the magnetic force exerted by the lower actuator, Fa is a disturbance force,

and F! is a viscous friction force. F1 and F2 are, in turn, defined by

and

#oA [ N¢il ] 2
Ft- 4 [y0-Yl

#oA[ N, i2]
F2- 4 [Y0-YJ
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where/z is the trtagnetic permeability, A is the area of one pole face, Nc is the number of

coil turns, it and i2 are the coil currents, and ?10is the initial gap distance. The friction force

is assumed proportional to the square of the shaft velocity and is modeled mathematically

as Fl = KlVlV[, and the disturbance force is taken as an exogenous input.

The electromagnetic of the actuator are modeled with the aid of the circuit diagram

of Figure 2. The circuit model consists of two loops, one for the primary coil current i,,

and a second for the induced eddy current i,. Applying Kirchoff's voltage law to each loop

yields the circuit equations

= R,i, + N_ + N,c ddpc0
dt

where vc is the voltage appged _o _Iae coil, Nc iS _he number of turns in the coil, _bc

is the flux produce_=_he coli eiii'ient, __e-lS _e humber ot turns of the coil _nked by

the flux produced by the eddy CUrrentS, $, is the flux produced by the eddy currents, R,

is the resistance of the eddy current paths, N, is the number of turns in the equ_v_eni

eddy current coil, and N** is the number of turns in the equivalent eddy current coil linked

by the flux produced by primary current. Assuming the entire mmf drop of the magnetic

circuit is taken across the two air gaps, the fluxes can be expressed in terms of the currents

as _b_ = _2u.g and qS, = _2u., where V,0 is the distance between the pole piece and the

shaft, Y0 - V for the upper gap and V0 +y for the lower gap. Solving these equations for

the time derivatives of the currents leads to

where L1 = _, L2 = _, A = N_Ne- N.,N**, and k = -_, = _. The

equations presented in this section constitute a consistent mathematical model relating

the input voltages applied to the actuator coils, V,l and v,2 , to the position of the shaft,

V.

3 Fuzzy Control .....

Conventional feedback control systems measure, relatively precisely, certain process vari-

ables, operate on these measurements with a control algorithm to produce precise command

signals, and apply these command signals to the process to control its behavior in some

desired way. The control aigorlthm generally relies on an explicit mathematical model

of the system to be controlled antisome expression of desired system performance. A
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Figure 2: Circuit model of actuator.

crucial element in control algorithm design is the development of a suitable mathematical

model of the system; in general, performance of the controlled system will be no better

than the system model on which the control algorithm is based. The model should be

neither too complicated, making the control algorithm too complex to implement, nor too

simple, missing essential features of system behavior. Since most systems requiring au-

tomatic feedback control are dynamic and nonlinear, the development of a simple model

that still captures th e essence of important system performance characteristics is usually

a time-consuming, and in some cases, impossible, task.

It is interesting to compare these automatic control systems with manual control sys-

tems where a human operator makes seemingly imprecise measurements, processes them

rapidly in the brain, and produces the correct control command to, say, ride a bicycle.

While it may not be impossible to build an automatic control system to control a bicycle

(although we have never seen one), it would certainly be quite difficult. Yet, a young child

can become a proficient rider after only a short training session with no knowledge whatso-

ever of the mathematics of bicycle dynamics. It is this paradox that led Zadeh [11] to the

development of the theory of fuzzy sets, Mandami [12] to consider the linguistic synthesis

of fuzzy control systems, and, most recently, Kosko [13] to explore its connections with

neural networks in the adaptive control of dynamic systems.

As with neural network controllers, fuzzy controllers try to emulate the functions of

the human brain. A fundamental difference between the two is that neural controllers

assume no a' priori knowledge of system behavior, while fuzzy controllers start with a

linguistic description of whatever is known about the system. There is, however, a striking

similarity at the implementation level between neural network controllers and adaptive

fuzzy controllers [13].
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3.1 Fuzzy Variables and Fuzzy Values

The notions of fuzzy control are rooted in the theory of fuzzy sets [11]. The basic difference

between conventional (crisp) set theory and fuzzy set theory lies in the values assigned to

the variables. Consider, for example, a variable called position, V- In crisp theory V could

take on values, say, from 0m to +10m. At any particular point in time, the position of an

object could be given by the value, say, 4m. In fuzzy theory, however, the values assigned

to the position variable, V, are of not thefamillar, crisp, numerical type but, rather, an

unfamiliar, fuzzy, linguistic type; e.g. "ciose', or "far", or "very far". This is consistent

with the child bicyclist's assessment of position relative to an upcoming tree. Since one

of the strengths of fuzzy theory is that it is basically quantitative in nature, it remains

to relate the fuzzy values "close", etc. to appropriate numerical values in a fuzzy way

consistent with our notion of the meanings of the corresponding linguistic v Mues. In the

example considered above, "close", "far", and "very far" may be characterized by the

distributions shown in Figure 3 where the abscissa is the distance from the tree and the

ordinate is the degree to which "close", etc. is an accurate representation of the distance

to the tree. Certain_, if the cyc_s3_ is about to hit the tree it is "close" while if it is 10m

away it is not. If, however, it is 4m away it is only "close" to a degree; more specifically

"close" is an accurate description of the distance 4m with degree 0.21, while "far" is an

accurate cIe_on of this same _ce with degree 0_-4, and Uvery far" is not at alI

accurate and, so, is descriptive with degree 0.0. This subjective assessment of "closeness",

etc. is introduced by the designer in the development of these distributions, or as they are

known in fuzzy theory, "membership functions". To summarize, it is correct to think of the

the fuzzy values "close", etc. as "fuzzy numbers" whose relationship to "crisp numbers"

is provided by a defining membership function.

i2
[-_tF Very Far

?.

3 4 5 6 7 ,5 9 i0

" Unive'rse Of discourse

Figure 3: Membership functions for the fuzzy values "Close", "Far", and "Very Far" of

the fuzzy variable :_Position'.

Z

m_.
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3.2 Fuzzy Functions

Analogous to the function of crisp mathematics that maps crisp input variables into crisp

output variables, fuzzy mathematics uses a relational matrix to map fuzzy input variables

into fuzzy output variables. The relational matrix is constructed from a linguistic rule

base relating fuzzy input variables to fuzzy output variables. The linguistic rule base

may be generated from a set of logical implications of the "IF-THEN" type. Consider,

for example, a system with two fuzzy input position variables and , and one fuzzy output

steering variable 8. Lct the possible fuzzy values of be "left" (L), "center" (C), and "right"

(R), let the possible fuzzy values of be "close" (C), "far" (F), and "very far" (VF), and

the possible fuzzy values of be "left" (L), "center" (C), and "right" (R). A brief linguistic

rule base might then consist of the following logical implications:

1. IF [z is L and y is C] THEN [_ should be R]

2. IF [z is R and y is C] THEN [8 should be L]

3. IF [z is C and y is V] THEN [0 should be Cl

The relational matrix embodying these rules is shown in Figure 4, and is seen to be

a concise display of the relationship between the pairs of fuzzy values of the fuzzy input

variables and the fuzzy values of the fuzzy output variable. It is interesting to note that

the relational matrix is not necessarily full. An important and powerful aspect of fuzzy

control is that only those rules that are well known need be specified, the fuzzy calculations

will "interpolate" or "extrapolate" to fill in missing rules. The fuzzy calculations will also

resolve conflicting rules in an optimal way consistent with the specified linguistic rule base

and defined fuzzy variables.

>-,

d
v

t_
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+-,

0
n
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H

Fuzzy position variable, x

L C R

R L

Figure 4: Relational matrix mapping fuzzy input variables z and y to fuzzy output variable
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3.3 Fuzzy Controller

Fuzzy control systems inevitably interact with the physical world of crisp measurements

and actuators. On input to the controller,crisp values of crisp variables arc converted to

fuzzy values of fuzzy variablesaccording to the membership function of the fuzzy variable.

For example, in Figure 3 a crisp value of "4" of the crisp variable position wou.l_dtake

on two fuzzy values "close" and "far" of the fuzzy position variable. The membership

functions indicate that the crisp value "4" is the fuzzy value "close" with degree 0.21 and

the fuzzy va_uc nfax_ with degree 0.{34.Thus, a singlemeasurement of a crisp variable may

activate a number of rules in linguisticrule base or, equivalently, the relational matrix.

Each rule will operate on its i'uzzyinput variables,an_dTheir membership functions, to

produce a modified membership function, or fuzzy value,for the the fuzzy output variable.

The specificform o{ ti_eoutput membership function may be determined either by the

correlation-minimum or the correiation-product ]nferencing technique [13]. Since more

than one rule may be activated by a single measurement i(_o]]ows, then, that a number

of fuzzy values of the output may also be generated. The output membership functions

generated by the firing of several rules may be combined in a number of different ways

to produce a single crisp output to activate a physical actuator. Two commonly used

methods are the mean-of-maxlma and the centroid methods[13]:

The fuzzy controller under development for the magnetic bearing has two fuzzy input

variables, position y and, change in position dy; and one fuzzy output variable, actuator

voltage v. Each fuzzy variable may take on eachofseven fuzzy values: "negative large"

(NL), "negative medium" (NM), _negative small" (NS), "zero" (ZE), "positive small"

(PS), "positive medium" (PM), and "positive large" (PL). The fuzzy values of the input

variables are shown over their corresponding universe of discourse in Figure 5. The universe

of discourse ranges from -5 volts (corresponding to a shaft position of -19#m) to +5 volts

(corresponding to a position of +19gin). Fuzzy values are trapezoidal in shape with a

maximum overlap of 25%, and are narrower near zero to provide finer control close to the
desired value.

Degree of membership (unils)

NL NM NS ZE PS PM PL

0-- t 1 t .... 1 -{- I

-5 --4 -3 -2 -1 0 t 2 3 4

Universe of discourse (volts)

5

Figure 5: Fuzzy values of input variables y and dy.

Fuzzy values of the output variables are shown in Figure 6. They are triangular in

=
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shape, have a maximum overlap of 25%, and are closer together near zero to provide finer

control. The exact shapes and locations of the fuzzy input and output variables are design

parameters whose optimal values are found by numerical experimentation.

-6

Degree of membership (units)

-5 --4 3 -2 -I 0 1 2 3 4 5 6

Universe of discourse (volts)

Figure 6: Fuzzy values of the output variable v.

The 7 x 7 relational matrix relating the fuzzy input pairs to fuzzy values of the output

is shown in Figure 7. The relationship between the relational matrix and the corresponding

set of forty nine IF-THEN implications is obvious.

The correlation-minimum inference procedure is used to process activated rules result-

ing in a truncation of the output membership function at the minimum value of the two

input membership functions. Note that since a maximum of two input values overlap, a

maximum of four (as opposed to a possible maximum of forty nine) rules can be activated

at once. Combining of output fuzzy values and subsequent defuzzification is performed

using the centroid method.

4 Performance of Magnetic Bearing with Fuzzy Con-

troller

A linearized version of the nonlinear model presented in Section 2 was programmed using

Matlab to test the performance of the fuzzy controller. Figure 8 shows the response to a

3.8#m (1 volt) step demand change in position. The figure shows that the fuzzy controller

was successful in stabilizing the bearing and that response time is short. Sampling fre-

quency was 10 K Hz. Oscillations are small and can be further reduced by reducing the

size of the fuzzy sets representing zero error. Steady state error can be further reduced

by adding an integral mode to the controller. These results are not surprising since the

present fuzzy controller uses only position and velocity inputs and is essentially operating

as a proportional-plus-derivative controller. Additional work is being conducted to cor-

rect these deficiencies. Several promising adaptive control policies are being investigated

including modifying the input fuzzy set sizes and overlap, the output fuzzy set centroids,

and the scaling gains Ke, Kc, and K.. Best results were obtained with 25% set overlap

and Ke = 1, Ke = 18, and K_ = 5.
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Figure.7: Relational matrix for the magnetic bearing controller.

5 Architecture for a Fuzzy VLSI Chip

The archiiecture of a fuzzy VLSi ....... - - :...............chip is outlined in Figure 9. The basic fuzzy control,

algorithm is contained on a single chip. Rules are downloaded from a host computer at

start-up and can be modified by the host computer later. The chip is of the all-digital

type so off-chip A/D and D/A converters are required. The fuzzy control algorithm has

four parts: 1) input calculations, 2) input membership determination, 3) rule evaluation,

and 4) output defuzzification as described below.

5.1 Input Calculations

The single input to the chip is the position error in volts. The current error er(n) and

the previous error er(n - 1) are each stored in a separate registers. The current change in

error ch(n) -- er(n) -5 er(n - 1)is computed and stored in a tiaird register: The va_ableS

ER and CH, used in membership function determination are found by multiplying er(n)

by K, and ch(n) by Kc, respectively. The scaling gains K, and Kc are down'loaded from

the host compu{er and may be modified as required.

5.2 input Membership Determination : ::=_= :

The input membership determination is made by a table look-up. There are two look-up

tables one ofor-EH_na One for CH. The output of the table look-up iS the modified fit

vector (A, mA,ms). Each look up table is of size 3 by m by n ...... :

i

|
|
i

i
=

z

_=

tm

7=
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Figure 8: Response of fuzzily controlled magnetic bearing to 3.9#m step change in position.
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5.3 Rule Evaluation

Four rules are evaluated for each input pair. Each evaluation finds the minimum of the

input fuzzy sets and the centroid of the output fuzzy set. A 4 by n hold the minimum

input membership values and a 4 by m register hold the corresponding centroids.

5.4 Output Defuzzification

Defuzzification is done in three steps. First, the minimum membership value is multiplied

by the centroid for each of the rules activated. Second, each of these products is summed

to produce; at the same time each of the minimum membership values is also summed.

Finally, the sum of the minimum membership-centroid products is divided by the sum of

the minimum memberships to produce the desired result. The result is then multiplied by

an output voltage scaling gain K..

6 Summary and Conclusions

A mathematical model of a magnetic bearing was presented and was used to develop a

computer simulation model to test alternative magnetic bearing control systems. A fuzzy

control system for was developed and tested by computer simulation. Initial results show

that the fuzzy controller stabilizes the magnetic bearing and produces acceptable steady-

state and transient behavior. Further research is being conducted to optimize the fuzzy

controller and to develop suitable adaptive algorithms. Particular emphasis is being placed

on achieving zero steady-state error and rejecting acceleration disturbances. Performance

comparisons between the fuzzy controller and a linear-quadratic-gaussian regulator are

being conducted. A candidate VLSI chip architecture has been proposed to implement

the fuzzy control algorithm and provide rapid sampling for real-time control. VLSI-based

fuzzy control appears feasible for real-time control of uncertain nonlinear systems like an

active magnetic bearing.
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