
3rd NASA Symposium on VLSI Design 1991 10.1.1

Formal Specification of a
High Speed CMOS Correlator

P. J. Windley

Department of Computer Science

University of Idaho

Moscow, ID 83843

208.885.6501

Abstract: The formal specification of a high speed CMOS correlator is presented.

The specification gives the high-level behavior of the correlator and provides

a clear, unambiguous description of the high-level architecture of the device.

1 Introduction.

The use of formal specification in designing VLSI circuits has many benefits. Perhaps

the most important result is a clear description of the design's behavior that can be used

for communication among design engineers, production engineers, test engineers, technical

writers, and, perhaps most importantly, customers. Formal specifications also provide a

firm foundation upon which analysis of the circuit design can take place. This analysis

has the potential to significantly reduce design errors as well as providing a basis for

demonstrating that the design has desired properties.

This paper presents the formal specification of a high-speed CMOS correlator [2]. The

correlator, which is designed to be used in a space-born spectrometer, contains 32 channels

and is capable of sampling at 25MHz.

2 Formal Specification and Verification.

VLSI devices can be specified at many levels of abstraction [8]. Generally, we need at least

a behavioral and a structural specification [4]. The behavioral specification is written in

logic and unambiguously describes the expected behavior of the device. The behavioral

specification is declarative rather than imperative, giving a clear relationship between the

inputs, current state, and outputs.

The structural specification describes, again using logic, how the circuit is put to-

gether. Ideally, the structural specification can be derived from design information cap-

tured by conventional CAD tools or translated from a hardware description language such

as VHDL [6].

Verification is nothing more than a mathematical analysis of the behavioral and struc-

tural models. Ideally, we would like to show that the intended behavior follows from the

structure. This analysis, which is a type of symbolic simulation, can be done by hand or

with the aid of mechanical verification tools [5]. These mathematical models can also be

used to analytically demonstrate selected behavioral properties for a computer system.

https://ntrs.nasa.gov/search.jsp?R=19940013898 2020-06-16T18:06:31+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42789672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

10-.1.2

3 A Brief introduction to HOL.

To formally modei hardware and to ensure the accuracy of our proofs, we felt that it

wag necessary to develop the proofs and properties using a mechanical verification system.

T_his prevents proofs from containing - logical mistakes, and assures that the foundations

on which the work is b_sed are sound. Due to the nature of the proofs, which include

q_anfiflcation over sets of objects, we felt that a system which supports higher-order logic

and a typed lambda calculus would facilitate our efforts. The HOL system was selected for

this project due to its support for higher-order logic, generic specifications and polymorphic

ype c0nstructs.]¢Urthermore its-ava_ab_ty, ruggec[ness, ioca[support, and a growing

world-wide user base made it a very attractive selection. In this section we will provide a

brief description of HOL.

HOL is a general theore m pr0ving "system developed at the Um_'versity Of Cambridge

[5:t] that is based on Church's theory of simple types, or higher-order logic [3]. Although

Church developed higher-order logic as a foundation for mathematics, it can be used for

reasoning about computational-systems o1¢all kinds. Similar to predicate logic in allowing

quantification over variables, higher-order logic also allows quantification over predicates

and functions thus permitting more general systems to be described.

HOL is not a fully automated theorem prover but is more than simply a proof checker,

falling somewhere between these two extremes. HOL has several features that contribute

to its use _s _ verification environment:

.

.

.

Several built-in theories, including booleans, individuals, numbers, products, sums,

lists, and trees. These theories build on the five axioms that form the basis of higher-

order logic to derive a large number of theorems that follow from them.

Rules of inference for higher-order logic. These rules contain not only the eight basic

rules of inference from higher-order logic, but also a large body of derived inference

rules that allow proofs to proceed using larger steps. The HOL system has rules that

implement the standard introduction and elimination rules for Predicate Calculus as

well as specialized rules for rewriting terms.

A large collection of tactics to support goal directed proof. Examples of tactics

include Rv.WRITE_'rAc which rewrites a goal according to some previously proven the-

orem or deflnition, 0V.ILTAC which removes unnecessary univerS_y quanti-fled vari-

ables from the front of a goal, and IgQ_TAC which says that to show two things are

equivalent, we should show that they imply each other.

A proof management system that keeps track of the state of an interactive proof

s_sslon.

o A metaianguage, ML, for programming and extending the theorem prover. Using

the metalanguage, tactics can be put together to form more powerful tactics, new

tactics can be written, and theorems can be aggregated to form new theories for later

use. The metalanguage makes the verification system extremely flexible.

3rd NASA Symposium on VLSI Design 1991 10.1.3

Operator

P

A

V

=:_

AppIication

tl = t2

tl,t2

tl A t2

tl V t2

tl _ t2

Meaning

tl equals t2

the pair tl and t2

tl and t2

tl or t2

t 1 implies t 2

Table 1: HOL Infix Operators

Binder

V

3

g

Application

Vx. t

3x. t

¢ x. t

Meaning

for all x,t

there exists an x such that t

choose an x such that t is true

Table 2: HOL Binders

In the HOL system there are several predefined constants which can belong to two

special syntactic classes. Constants of arity 2 can be declared to be infix. Infix operators

are written "randl op rand2" instead of in the usual prefix form: "op rand1 rand2".

Table 1 shows several of HOL's built-in infix operators.

Constants can also belong another special class called binders. A familiar example of

a binder is V. If c is a binder, then the term "c x.t" (where x is a variable) is written as

shorthand for the term "c(_ x. t)". Table 2 shows several of HOL's built-in binders.

In addition to the infix constants and binders, HOL has a conditional statement that

is written a -* b [c, meaning "if a, then b, else c."

4 The Correlator Design.

The correlator is designed for a space borne spectrometer. The design accepts two 2-

bit data streams clocked at a maximum of 25MHz. Delayed versions of one stream are

multiplied (using a biased multiplication) with the undelayed signal on the other stream.

The products are accumulated. The process continues for the duration of the integration

cycle which is defined by the int control line. When the end of an integration period

is signaled, the results are latched into a register, the accumulators are cleared, and the

datardy line goes high to signal that data is ready to be read from the chip. A new

integration cycle can begin immediately. Concurrent with the new integration period, the

data from the previous integration period can be read on the output lines. Data is read in

either a word serial or byte serial mode depending on the value of a control line.

Readers interested in additional detail are referred to [2].

5 The Correlator Specification.

This section presents the behavioral specification of the correlator.

I0.I.4

A B rn int

Interpreter

rn byte

IO

Figure 1: Architecture of the correlator shows the producer--

consumer relationship between the INT interpreter and the

tO interpreter.

The overall architecture of the behavioral description is shown in Figure 1. The archi-

tecture is based on two separate state machines which, along with the datapath, function

as single instruction interpreters [7]. The interpreters are arranged in a producer-consumer

architecture with a register serving as the shared link between the two interpreters.

The producer portion of the design is the INT interpreter. INT performs the integra-

tion of the incoming signals in 32 channels. The interpreter controls the following state
variables:

• acc--A bank of 32, 4-bit accumulators.

• dolay--A bank of 32, 2-bit delay elements.

• sr--A bank of 32, 24-bit shift registers.

• count--A bank of 32, 24-bit counters.

Each of these state variablesisparamcterized for time and channel number and has type

:time--4num---_w,where w varieswith registerwidth.

The specificationfor INT relatesthe state variablesat time g + 1 to the their value at

time t and the value of the inputs at time t.

Fdt] _tegrate_int (acc, delay, st, count, datardy)

(a, b, int, rn) =

Vt.

let nextstato = ((int t) -_ integrate I dump) : (

(acc (t+l), delay (t+i), Jr (t+l), count (t+l), datardy (t+l)) =

nextstate (ace t, delay t, sr t, count t, datardy t)

Ca t, b t, int t, x'n t))

3rd NASA Symposium on VLS[Design 1991 10.1.5

The function nextstate evaluates to either integrate or dump depending on the value of

the int line.

The individual instructions produce new values for the state variables. In the case

of the integrate instruction new values are calculated for the ace, delay, and count

Variables. The shift register (sr) is unchanged.

b-d,! integrate (ace. delay, st, count, datardy)
(a, b, int, rn) =

let lignal_product n = mapper (delay n) b in (

let new_ace n -----

rn --_ (bt4 ival O) [

(add4 (signal_product n. accn)) in

let nee_delay n = (n=O) -_ a] (delay (n--l)) in

let nee_count n =

_ (wordn o) I
(c_ry4 (si_al_product n, acc n)) _ inc (count n) [

(count n) in

(new_acc, new_delay, st, new_count, datardy)

The new values are precisely described. For example, the new value of the n th accumulator

is calculated by adding a biased multipfication of the n-delayed signal and the undelayed

signal to the current value in the same accumulator.

The consumer portion of the circuit is the I0 interpreter. The interpreter controls the

following state variables:

• sr--A bank of 32, 24-bit shift registers. This is the same register as the sr register

in the INT interpreter.
t

• ¢ounter--A 7-bit counter for counting the output.

• out--A 16-bit register that latches the values on the output lines.

• borw--A state variable that indicates whether output is byte or work serial.

The specification for the I0 interpreter is similar to the specification of the INT inter-

preter. The I0 interpreter has six instructions. The interpreter can be reset, it can start

the read cycle, it can end the read cycle, it can dump data from the output registers a

byte at a time, it can dump data a word at a time, or it can do nothing.

!0.1.6

O-dr! io_:J_t (s_, countor, out, bore, datardy, bog£n)

(byte, rn, outck) =

Vt .

let nextstate :

((rn t)

((datardy t) ^

((datardy t) ^

((datardy t) A

((datacrdy t) A

Tosot I

bogin -_ start_road [

((val (counter t)) = 0)) --* ond_road j

(borv t) A (outck t) --_ dump_byte [

(bore t) A (outck t) - dump_word J

noop) in (

(st (t+l), counter (t+l), out (t+l), bore (t+l), datardy (t+l)) =

nextstate (st t, counter t, out t, bore t, datardy t, begin t)

(byte t, rn t, outck t))

The operation of 10 is more complicated that the operation of INT. Whenever the reset

llne is raised, the state is reset as described in the specificationof the reset operation.

When the datardy line goes high, the interpreterbegins a read cycle. When the outck

lineisraised and the datardy lineishigh, wc dump eitherbytes or words depending on the

value of the borw line. There is a counter so that the correct number of bytes and words

are dumped. When the counter reaches 0 we end the read cycle (by pulling the datardy

linelow). Otherwise, wc do nothing. I

As an example of the instructionsin I0, consider the dump_word instruction.

_dd dump_eord (st, counter, out, borv, datardy, begin)

(byte, rn, outck) :

lot nee_counter : (dec counter) in

let i = (val counter) in

lot now_out : short (mr i) in

(st, nee_counter, nov_out, bore, datardy, begin)

The instruction updates the counter by decrementing the old value. The value on the

output is determined by 16 most significantbits from the ith shiftregister,where i is the

value of the counter.

The most interestingfeature of the specificationof INT and 10 isthat they share state.

For example, both specify changes to sr, the variable representing the shiftregister.INT

produces a value that is placed in sr by its dump instruction. I0 uses that value when

asked to present the resultsof the integration on the output lines.

Both interpreters also specify changes to datardy, the variable representing whether

or not data is ready to bc output. INT sets datardy when ithas dumped the contents of

the the counter into the shiftregister.10 resets datardy when it is done outputting the

data.

Readers of this specification who are familiar with the design may be surprised to find

that some details in the circuit are not found in the specification. For instance, after the

end of the integration period ends, there is an 8 cycle delay before data can be read from

tNote that count in INT and counter in I0 are two different state variables.

3rd NASA Symposium on VLSI Design 1991 10.1.7

the chip (i.e.datardy goes high). In the specificationshown above datardy goes high the

time period afterthe ±nt lineispulled high. This isan example of the temporal abstraction

going on between the circuitlevelsof the specificationand the behavioral specifications

given here.

6 The Top-Level Specification

The final specification combines the specifications of the two interpreters and operates

them in parallel.

_de] corr_top rep (acc, delay, st, count, datardy,

beg£n, counter, out, borw)

(byte_e, rn, outck, a, b, int) =

((integrate_in_ rep (ace, delay, sr, count, datardy)

(a, b, int, rn)) A

(io_int rep (st, counter, out, borw, da_ardy, begin)

(byte_e, rn, outck)))

The specification does not explicitly answer questions regarding the shared use of the

sr and datardy lines. For example, do INT and It] correctly coordinate the writing and

reading of sr correctly? This and other important questions regarding the operation of

the correlator can be answered by analysis of the specification.

7 Conclusion.

This paper has presented the behavioral specification for a VLSI correlator design. Previ-

ous to this specification being written, the design was described in design documents and

papers such as [2]. These descriptions were necessarily ambiguous since they were written

in English. Deriving the specification by reading the design documents and talking to the

design engineer provides an interesting perspective on the design process. The behavioral

specification of the correlator documents the design and is useful for enhancing communi-

cation between designers, customers, and users by unambiguously describing the function

of the device.

The specification presented in this paper is a snapshot of the design. A specification is

constantly subject to revisionto bring itup to date with current expectation and to correct

errors that are part of any written description. Future work willextend the specification

in two ways:

• We intend to show that the specification meets certain requirements for correct op-

eration. For example, the analysis will make explicit the synchronization conditions

that must exist between the two interpreters for the chip to function correctly and

show that they are met.

10.1.8

• We will specify the structural level by deriving it from the design information cap-

tured in the HDL description of the circuit. We intend to show that this structural

specification implies the architecture we have described above.

Acknowledgments

This work was sponsored by NASA under Space Engineering Research Center grant NAGW-
1406. i _ :_ :

References

[1]

[2]

Albert CamiUeri, Mike Gordon, and Tom Melham. Hardware verification using higher

order logic. In D. Borrione, editor, From HD£ Descriptions to Guaranteed Correct

Circuit Designs. Elsevier S.cientific Publishers, 1987.

J. Canaris and S. Whitaker. A high speed CMOS correlator. In NASA Space Engi.

neering Research Center Symposium on VLSI Design, pages 3.3.1-3.3.11, November
1990.

[3]

[4]

[5]

[6]

[7]

[s]

Alonzo Church.

Logic, 5, 1940.

A formulation of the simple theory of types. Journal of Symbolic

Michael S.C. Gordon. Why higher-order logic is a good formalism for specifying and

verifying hardware. In G. J. Mi!ne and P. A. Subrahmanyam, editors, Formal Aspects

of VLSI Design, pages 153-177. Elsevier Scientific Publishers, 1986.

Michael S.C. Gordon. HOL: A proof generating system for higher-order logic. In

G. Birtwhist!e and P.A Subrahmanyam, editors, VLSI Specification, Verification, and

Synthesis. Kluwer Academic Press, 1988.

IEEE Std 1076-1987. IEEE Standard VHDL Language Reference Manual, 1987.

PhiUip J. Windley. The Formal Verification of Generic Interpreters. PhD thesis,

University of California, Davis, Division of Computer Science, June 1990.

Phillip J. Windley. A hierarchical methodology for the verification of micropro-

grammed microprocessors. In Proceedings of the IEEE Symposium on Security and

Privacy, May 1990.

