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ABSTRACT

The natural abundance 13C/12C ratio of methane from anoxic

marine and freshwater sediments in temperate climates varies

seasonally. Carbon isotopic measurements of the methanogenic

precursors, acetate and dissolved inorganic carbon, from the marine

sediments of Cape Lookout Bight, North Carolina have been used to

determine the sources of the seasonal variations at that site.

Movement of the methanogenic zone over an isotopic gradient within

the dissolved CO 2 pool appears to be the dominant control of the

methane 13C/12C ratio from February to June. The onset of

acetoclastic methane-production is a second important controlling

process during mid-summer. An apparent temperature dependence on

the fractionation factor for CO2-reduction may have a significant

influence on the isotopic composition of methane throughout the

year.
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INTRODUCTION

Methane, like other carbon-containing materials, is comprised

of approximately 99% 12C and 1% 13C (20). Small but distinct source-

related variations in the 13C/12C ratio are well documented (52,59).

It is important to understand the processes which control the •

isotopic composition of methane for a variety of reasons. The

13C/12C of biogenic methane may provide information concerning the

methanogenic ecosystem and the relative rates of methane-producing

pathways as a function of season (7,9,15,44) or environment (59i.

The increasing concentration of tropospheric methane and its

potential impact on global temperature and the stratospheric mixing

ratios of water vapor and chlorine radicals (8,16,25) require a

better understanding of the sources and sinks of that gas. A carbon

isotope budget of atmospheric methane which includes seasonal

effects would be a powerful constraint on source estimates (44,55).

An understanding of the controls of the isotopic compositio_ of

biogenic methane would also aid hydrocarbon exploration as

approximately 20% of the world's natural gas resources are biogenic

in origin (50).

Attempts to model the carbon isotopic composition of methane

have been hampered by insufficient information concerning the rates

of the methanogenic processes and the isotopic signatures of the

methanogenic precursors. Early models used a Rayleigh distillation

calculation to simulate the isotope effects associated with methane

production in a marine sediment (17,46). These models had three
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major assumptions: 1. Methane was produced only via CO2-reduction,

2. Net CO 2 consumption occurred in the methanogenic zone, and 3.

The system was closed to material fluxes of CO 2 and CH 4. No

information was available concerning the importance of acetate

dissimilation or other pathways. Ignoring the C02-production which

occurs during methanogenesis (57) led to a significant error in the

models. Subsequent treatments, which involved freshwater systems,

considered both C02-reduction and acetate dissimilation pathways as

well as net CO2-production in the methanogenic zone (28,36). It was

assumed that the acetate was utilized only by methanogens in the

methanogenic zone, a point which is contradicted by 14C-tracer

studies (12,37,60). The isotopic composition of sedimentary acetate

was not measured in those studies.

This report reviews our attempts to model the carbon isotopic

composition of biogenic methane (5; N.E. Blair and S.E. Boehme,

submitted). The ultimate goal of this project is to determine the

source of the seasonalvariations observed in the 13C_12C ratio of

methane from the organic-rich marine sediments of Cape Lookout

Bight, North Carolina (44). In general, the 13C/12C ratio increased

in the summer months when methane production rates were h/ghest

(Table 1). Similar seasonal variations have been observed in

freshwater environments (15) and may be a common phenomenon. The

general approach in this project has been to measure the natural

abundance 13C/12C ratios of methanogenic precursors, CO 2 and

acetate, and combine those values with estimates of the relative

rates of C02-reduction and acetate dissimilation, to simulate the
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seasonal variations with an open system model. In doing so,

hypotheses concerning the controls of the isotopic composition of

methane are tested. In a second study reported in this volume,

results from a laboratory microcosm experiment are used to test the

model (1).
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Field Slte

Cape Lookout Bight, North Carolina, is a 1-2 km 2 coastal basin

located 115 km SW of Cape Hatteras on the Outer Banks (Fig.

1;40,43). Fine-grained sediment, with an organic content up to 4%

dry weight (41), accumulates at a rate of 8-12 cm/yr (11,13) at the

sampling station, A-1. The organic matter appears to be derived

from phytoplankton and seagrass debris (32).

The rapid flux of metabolizable organic matter to the seabed

results in a high rate of organic carbon remineralization (41).

Sulfate reduction, occurring in the upper 10 cm of sediment during

summer months, and methanogenesis, which occurs in the underlying

zone (21), are the dominant diagenetic processes at this site and

respectively account for 68±20% and 32±16% of the organic carbon

remineralization (41). Approximately 20-30% of the methane is

produced via acetate dissimilation and the remainder of the gas is

formed primarily by CO2-reduction (22).
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All 13C/12C ratios (R)

is defined (20) as:

are reported in the 613C notation which

613C =[ (Rsample - RpDB)/RpDB] X 103 •

RpD B is the carbon isotopic ratio of the international standard,

Peedee Belemnite, and has the accepted value of 0.0112372 (33).

The preparation of samples for isotopic analysis is discussed below

in the appropriate sections.

Diver-collected cores were obtained at A-1 with 9.5 cm

diameter lucite tubes. Pore water samples for sulfate and ZCO 2

measurements were collected with a sediment press (49). Pore water

samples for acetate 613C measurements were isolated with the press

or by centrifugation. The porewater samples were frozen immediately

after collection and stored at -860C until analysis.

The acetate samples were treated as described previously

(5,6,7). The acetate fraction was isolated by a series of

cryogenic distillations coupled with a preparative liquid

chromatography step. The acetate was converted to CO 2 for isotopic

analysis with a gas chromatograph - combustion system (24,39).

The isotopic analysis of the acetate methyl group was

accomplished by the pyrolysis of sodium acetate (6,45,47). A 200:1

mixture of NaOH and acetate (from the last distillation) was dried

under N 2 at 135°C in a quartz tube (9 mm i.d. x 20 cm long). The

tube was evacuated after drying and heated to 500°C. Methane, which



is derived from the methyl group, was quantitatively collected,

measured and injected into the gas chromatograph-combustion system

via a Toepler pump.

One to two milliliter subsambles of porewater were injected

into evacuated 120 ml serum bottles (Wheaton) sealed with crimped

20 mm rubber stoppers (Alltech Assoc.) and frozen until analysis

for ZCO 2 concentrations and 613C values. Immediately prior to

analysis, one ml of IM phosphoric acid saturated with cupric

sulfate was added to the thawed sample. The cupric sulfate was

added to precipitate sulfide. The resulting CO 2 was removed from

the bottle through a 23 gauge hypodermic needle connected to a

vacuum line via a 1/4" Ultratorr union (Cajon). The CO 2 was

purified cryogenically, quantitated with a manometer and sealed in

a 6 mm o.d. pyrex tube for isotopic analysis. The analytical

precision and accuracy of the ZCO 2 extraction procedure were ±4%

and ±0.5mM respectively as determined by the measurement of CO 2 and

bicarbonate standards (S.E. Boehme, M.S. thesis, North Carolina

State University, Raleigh, 1989). The accuracy of the 613C

measurements, as determined by the analysis of the NBS-20 carbonate

standard (19), was ±0.02 per mil.

The methane bubbles were collected from stirred sediment and

stored in sealed bottles (44). The methane was converted to CO 2 at

7800C with CuO and purified cryogenically for isotopic analysis

(24,39) •

The 613C measurements of the CO 2 from the various preparations

were analyzed on either a modified Nuclide 6-60 RMS (NASA-Ames
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Research Center) or one of two FinniganMAT 251 mass spectrometers

(NCSU Stable Isotope Laboratory and the University of Georgia

Center for Applied Isotope Studies). A cross-calibration of a CO 2

standard by the three facilities produced results consistent to

within 0.25 per mil. Procedural blanks were collected and used to

correct the results of all analyses.

Dissolved sulfate was measured on 5 mL of pore water by the

gravimetric analysis of the precipitated barium salt (J.P. Chanton,

Ph.D. thesis, Univ. North Carolina, Chapel Hill, 1985; 14). Sulfide

was removed immediately after the recovery of the pore water sample

by the addition of ZnCl 2 followed by the filtration of the zinc

sulfide precipitate. The accuracy of this procedure is typically

±0.5 mM.
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REBULTB_ND DISCUSSION

Ebullition is the primary mode of transport of methane from

the sediments of Cape Lookout Bight, accounting for approximately

86% of the total flux of 7.4±2 mol-m-2-yr -1 (41,42, S.E. Boehme et

al., in prep.). The rapid bubble transport from the methanogenic

zone through the overlying sediments limits the exposure of the

methane to oxidizing conditions which could alter its isotopic

composition (2,18). Concordance between the 613C values of

naturally- and diver-released bubbles and pore water methane

supports that conclusion (44). Thus the 613C value of the methane

is controlled primarily by its production.

In organic-rich marine sediments, methane is formed by CO 2-

reduction (17,22,46) and acetate dissimilation (22,35) with the

latter process accounting for 20-50% of the total production.

Accordingly, the isotopic composition of methane produced will be

the result of a mass balance of material from those two sources.

The isotopic composition of the methane from each pathway is

dependent on the isotopic composition of the precursor, CO 2 or

acetate, and the fractionation factor, u, (k12/k13) associated with

each process.

Acetate Dissimilation

Acetoclastic methanogenesis is accomplished by the

Methanosarcina and Methanothrix genera (58). Acetate is converted
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to acetyl-CoA, after which the carbon-carbon bond of the acetyl

moiety is cleaved (31,58). The methyl is reduced to methane and the

carboxyl is oxidized to CO 2 (10,54,61). The fractionation factor

associated with the formation of methane via acetate dissimilation

by cultures of Methanosarcina barkerii is 1.02-1.03 (34; J.B.

Risatti a_ J.M Hayes, Geol. Soc. Am. Abstr. Progr.,1983, 15:671).

The 613C value of the acetate methyl group and the in situ

fractionation factor for acetate dissimilation in Cape Lookout

Bight sediments have been determined via intramolecular carbon

isotope measurements of acetate isolated from pore water samples

(5,7). The 613C value of the total acetate molecule ranges from -

17.6 per mil in non-methanogenic surficial sediments to -2.8 per

mil in methane-producing sediments (Fig. 2; 5). Near the sediment

surface, the similarity of the 613C value of the acetate to that of

the average particulate organic carbon fraction (-19.1±0.3; 5,7)

indicates that little net fractionation occurs during acetate

cycling in the sulfate-reducing zone. However, a large

fractionation occurs in the methanogenic zone which leaves the

acetate enriched in 13C.

Isotopic analysis of the methyl group and a mass balance

calculation of the 613C value of the carboxyl group indicates that

the fractionation affects both carbon atoms of acetate (Fig. 2).

The magnitude of the 13C-enrichment correlates well with the

parameter f, which is defined by the equation

f = rc.4/(rcH4+rc02) (1)
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where rCH 4 and rco 2 are the respective rates of the conversion of

the acetate methyl group to CH 4 and CO 2 (5). The downcore profile

of f (Fig. 2) was determined from the turnover rate of U-14C

acetate in Cape Lookout sediments (22,51). On average, 38±11%

(f=.38) of the methyl group is reduced to methane in the uppermost

sediments of the sulfate-depleted zone (10-20 cm) at this site.

The in situ fractionation factor for the dissociation of the

methyl group from acetate (Udi,s) was estimated with the equation

_di., = 1 + (16obs -6syn)/[f(6syn + i0_)]
(2)

where 6ob . is the average 613C value of the methyl group in the i0-

20 cm interval (-11.2±3.0) and 6syn represents the 613C value of the

newly synthesized acetate (5). The average 613C value of the methyl

group in the 0-5 cm interval (-23.2±2.2) was used as an estimate

for 6sy n because, as noted earlier, the similarity of the isotopic

composition of the total acetate from that interval with the

particulate organic fraction suggests that little fractionation

occurs during the synthesis or uptake in the surficial sediments.

The assumption is made that the synthetic isotope effect is also

small in the methanogenic zone. It is assumed that the

fractionation factor for the conversion of acetate to CO 2 and other

non-methane products is 1.000. Using f=.38±.11, _diss was calculated

to be 1.032±0.014. The excellent agreement between our estimate of

the in situ _diss with the culture-derived values of 1.02-1.03 (34;

J.B. Risatti and J.M. Hayes, Geol. Soc. Am. Abstr. Progr. 15:671)
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indicates that our assumptions are reasonable to a first

approximation.

Under steady state conditions (33), the 613C value of the

methane produced from acetate is given by

613C(CH4/Acet) = 6sy n - (l-f) (Udiss-l)103.
(3)

Using the same _alues and assumptions as above for the appropriate

parameters, the 613C value of the methane is calculated to be -

43±10 per mil. A similar 13C-enrichment relative to methane

produced via C02-reduction (see below) has been observed in the

laboratory microcosm experiment (I).

Approximately, 20 and 26% of the methane is derived from

acetate in the upper 30 cm of sediment at Cape Lookout in July and

August, respectively, with the remainder formed via C02-reducti0n

(22). Direct measurements of the relative rates of the two

methanogenic processes are not available for other months. The 613C

value of the acetate methyl group in the 8-16 cm interval in June,

1984 was -26 per mil (7), which is a value more similar to that

found in the sulfate reducing sediments than in the underlying

methanogenic zone. That suggests that little of the acetate was

dissimilated to CH 4 and CO 2 (f=0) at that time. On the other hand,

one must consider the possibility that the June value is the

combined result of a synthetic isotope effect, similar to that

associated with acetogenesis (30,48), and a methanogenic isotope

effect. For the purposes of the model, the simpler scenario is
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assumed, i.e. the synthetic isotope effect remains small and

unchanged throughout the summer and f=0 in June. Accordingly, when

f=O, then the proportion of methane produced from acetate relative

to total methane production (F) must be zero. There is no

information concerning F for any other months. For the purposes of

the model F=O for all months except July and August, where it

equals .20 and .26 respectively (Fig. 3b).

CO2-Reduction

12CO2 is selectively converted to CH 4, creating an isotopic

gradient in the dissolved inorganic carbon (ZCO 2) pool as buried

sediment encounters and passes through the methanogenic zone (46,

Fig. 4; Table 2). At Cape Lookout Bight, the methanogenic zone

moves along the 613C gradient in response to the seasonal changes

in the depth of sulfate penetration (Fig.4). In addition, the 613C

profiles of ZCO 2 respond to the seasonal changes in organic matter

remineralization rates. Thus, the methanogens are exposed to

different isotopic compositions of CO 2 throughout the year because

of the two phenomena. The temporal CO 2 signal has been estimated by

calculating the isotopic composition of CO 2 in equilibrium with

HCO 3- at the peak of the CO2-reducing zone for each month that ZCO 2

profiles were available (Blair and Boehme, submitted; S.E. Boehme,

Ph.D. thesis, North Carolina State University, Raleigh, in prep.).

The peak of the CO2-reduction zone approximately coincides with the

shallowmost depth where the sulfate concentration is less than
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1.0±0.5 mM (21,22). The relative contributions of the C02, HCO 3- and

CO 3" to the ZCO 2 pool were estimated, assuming mutual chemical

equlibrium (53), for the average pore water pH of 6.95 (J.P.

Chanton, Ph.D. thesis, Univ. North Carolina, Chapel Hill; N.E.

Blair, unpublished results). The isotopic composition of the CO 2

was estimated by solving the following equations simultaneously,

613C(TCO2) = x613C(C02) + y613C(HC03 =) + z613C(C03 z) (4)

:(HCO3-/CO2) = [103+613C(HCO3-)]/[zo 3 + 613C(CO2)] (5)

_13C(HC03-) = 613C(C03:), (6)

where x,y,z represent the fractions of each of the dissolved

components. The 613C values of the HCO 3- and C03 = ions are assumed

to be equivalent (equation 6) to simplify the calculations.

Theoretical studies indicate that the HCO 3- ion may be enriched in

13C by 1.4-1.7 per mil for the temperature range involved (23). For

the given pH, the C03 m ion represents less than 1% of the ZCO 2 pool,
¢

thus the small isotopic difference is considered insignificant. The

equilibrium fractionation factor is given by

Ina(HC03-/C02) =(9.552/T)- 0.0241 (v)

where temperature (T) is in Kelvin (26). The resulting CO 2 613C

values as a function of time are shown in Fig. 3c. The seasonal
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isotopic variations are large and clearly must have a significant

effect on the methane 613C values.

The fractionation factor for CO_-reduction ranges from 1.03 to

1.06 incultures (3,4,27,29). The evidence for a temperature effect

on the fractionation factor, while expected, is equivocal and may

be dependent on culture conditions. We have attempted to estimate

the in situ fractionation factor using data associated with the two

temperature extremes at this site. At 7.8°C (Feb.), the 613C values

of the CH 4 and CO 2 were -61.7 and -3.6, respectively. Using the

equation

= [613c(c°2) + 103]/[ 13C(CH4) + 103]' (8)

Uco2 was calculated to be 1.062, during a period of time when it has

been assumed that methane was produced predominantly via CO 2-

reduction. In August (T=26.5°C), the 613C of the methane was -57.7.

Given that 26% of the methane is derived from acetate

dissimilation, and 613C(CH4/Acet) = -43, then the 613C value of the

methane produced via CO2-reduction (6_3C(CH4/CO2) should be

approximately -62.1. Finally, with 613C(CO2 ) = -9.8, we estimate

Uc02 = 1.056 at 26.5°C. Fitting the two estimates to an Arrhenius

temperature dependence, one obtains

in Uco2 = (25.0/T) -0.029
(9)

where temperature is in Kelvin. The seasonal variation of Uco2 is
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shown in Figure 3d. The isotopic composition of the methane

produced from the CO 2 for the other months was calculated using

613C(CH4/CO2 ) =[[613C(C02 ) + 103]/=] - 103 (10)

and is shown in Figure 5a.

613C (CH4) '

The isotopic composition of the methane produced at A-1 is

described simply by the mass balance relationship,

613C(CH4) = F613C(CH4/Acet) + (1-F)613C(CH4/CO2). (11)

The calculated monthly 613C values, using the parameters in Figures

3a-d, are in excellent agreement with measured values for the

period February to September (Fig. 5b). The movement of the

methanogenic zone over the ZCO 2 613C gradient and the temporal

variation of _c02 are responsible for the gradual depletion of 13C

in the methane between February and June. The onset of acetate

dissimilation in July-August coupled with the change in 613C value

of the CO 2 within the methanogenic zone results in a dramatic
I

enrichment of 13C in those months. The trend is reversed when

acetate dissimilation ceases in late August. The subsequent 13C-
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depletion in October and November is caused by changes in Uco 2 and

the 613C value of theCO 2. The relatively poor fit of the model to

the observed values in October and November may be because the

model estimates instantaneous 613C values and the measured values

represent a pooled product. The largest deviation between modelled

and observed values would be expected at this time when the

reservoir of methane is large and bubbling rates are low.

Implications for Freshwater Sediments

Methane produced in freshwater environments is often enriched

in 13c relative to biogenic gas from marine sediments (59). It has

been hypothesized that this is due to the relatively greater

importance of acetate dissimilation as a methane-producing pathway

in freshwater systems (59). 14C-tracer studies indicate that 50-70%

of methane production is via acetoclastic processes (F=0.5-0.7;

12,37,53,60). Our_calculations indicate that the methane derived

from the acetate methyl group is enriched in 13C relative to that

from C02-reduction, thus apparently confirming the hypothesis. The

13C-enrichment is a consequence of the smaller fractionation factor

and large degree of conversion of the methyl group to methane

(f=0.4, see equation 3). In freshwater sediments, where f=0.7-0.9

(12,37,53;60), the potential 13C-enrichment could be greater if the

synthetic pathways of acetate and the associated isotope effects
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are comparable to those at Cape Lookout. Other investigators, using

culture and modelling results, have proposed that acetate synthesis

in freshwater sediments occurs by a very diTferent process, i.e.

acetogenic CO2-reduction (30). Acetate produced in this manner

would be significantly depleted in 13C because the acetogenic

process exhibits a large (u _ 1.06) isotope effect (30,48)°

However, 14C-tracer studies indicate that <2% of the acetate in

eutrophic lake sediments is produced by C02-reduction (38). The

results from Part 2 (1) suggest that the ecological niche of the

acetogenic bacteria may be an opportunistic one. Application of the

approach summarized in this report to freshwater systems should

resolve the issue. Such work is currently underway.
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SUMMARY

The isotopic composition of methane varies seasonally at a

variety of sites (15,44). In the organic-rich marine sediments of

Cape Lookout Bight, North Carolina, the carbon isotopic variations

appear to be the result of three factors. During the period

February-June, CO2-reduction is the dominant methanogenic pathway

and the 613C variations are driven by the movement of the

methanogenic zone along an isotopic gradient within the dissolved

co 2 pool. Changes in the -relative rates of CO2-reduction and

acetate dissimilation become the dominant factor from July to

September. Throughout the whole time period, a temperature

dependence on the fractionation factor for C02-reduction may play

a role controlling the methane 613C value.

The Cape Lookout model is the first to combine measured

isotopic compositions of both methanogenic precursors, CO 2 and

acetate, with measured rates of methanogenic processes. The

agreement between model predictions and observed 613C values of

methane verifies estimates of in situ fractionation factors

associated with acetate cycling and methanogenesis. The model also

indicates that methane produced by acetate dissimilation should be

enriched in 13C relative to that produced via CO2-reduction, thus

verifying, in general terms, earlier hypotheses concerning the

isotopic differences commonly observed between methane from

freshwater and marine sediments (59).
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TABLE 1. Carbon isotopic compositions of methane bubbles from

Cape Lookout Bight, North Carolina

613C

Month _1 19841 19862

February -63.4

April -63.8

May -66.2
June -64.5 -64.1

July -62.2 -60.0

August -59.6 -57.6

September -60.3 -58.0
October -60.0

November -62.2

-60.0

-61.7

-60.8

-58.5

-55.9

-58.0

-58.3

-59.4

1 Data from (44)°

2 Data from S_E. Boehme, Ph.D. dissertation, North Carolina State

University, Raleigh, in progress.
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TABLE 2: Carbon isotopic composition (613C) of porewater ZCO 2 from

Cape Lookout Bight, North Carolina.

2120186 711186
co c

bottom water 0.7
0-i -2.6 -10.4

1-2 -1.0 0.4 -11.6

2-3 -i.0 1.2 ° -12.0

3-4 -i.0 -11.8

4-5 -1.9 -11.5

5-6 -2.7 -Ii.I

6-7 -2.2 -2.9
-3.5 -9.7

7-8 -3.2
8-9 -7.5
9-10 -1.6 -2.4

10-12

11-12 0.0
- -2.2

12-14 -0.5 -1.9

16-18 1.4
20-22

24-25 4.6 3.8

24-26 5.1
28-30

29-31 6.6

32-34 6.7

35-36 8.1

36-38 8.0

37-39 7.8

•-9.4

-10.3

-11.2

-9.5

-9.6

2.8

7.0
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FIGUI_ CLI_TZO_B

Figure i: Cape Lookout Bight, North Carolina. The sampling

station i_ designated A-1.

Figure 2: The 613C values of acetate and its methyl group as a
function of depth. The 613C values are averages of

results from 8186 and 7/87 (5). The fraction of the

methyl group which is converted to methane (f) as a

function of depth (22,51).

Figure 3: Model parameters as a function of time.

3a: Average monthly temperature at Cape Lookout (40,41,44

this study).

3b: The fraction of methane derived from the dissimilation

of acetate (F).

3c: The 613C value of dissolved CO 2 in the methanogenic

zone.

3d: The fractionation factor (a) for CO2-reduction.

Figure 4: The 613C values of ZCO 2 as a function of depth within
the sediment from Cape Lookout. Profiles from February

and July, 1986 are shown. The dotted horizontal lines

represent the depths at which dissolved sulfate

concentrations are equal to or less than 1.0±0.5 mM in

February and July.

Figure 5: The measured and calculated 613C values of methane from

Cape Lookout.

5a: Calculated 613C values of methane produced from CO 2-

reduction.

5b: The monthly average measured 613C values of methane

bubbles for the period 1983-1984 and 1986 (e). The
calculated 613C values using the model described in the

text (----).
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Abstract--The _ _3C value of porewater acetate isolated from the anoxic sediments of Cape Lookout

Bight, North Carolina, ranged from -17.6%0 in the sulfate reduction zone to -2.8%o in the underlying
methanogenic zone. The large _3C-enrichment in the sulfate-depleted sediments appears to be associated

with the dissimilation of acetate to CH4 and CO,,. Fractionation factors for that process were estimated

to be 1.032 + 0.014 and 1.036 + 0.019 for the methyl and carboxyl groups. A subsurface maximum in

_3C of the total acetate molecule, as well as the methyl and carboxyl carbons at 10-15 cm depth within

the sediment column indicates that changes in the relative rates of acetate cycling pathways occur in the

methanogenic zone. The methyl group of the acetate was depleted in 13C by 7-14%0 relative to the
carboxyl moiety. The intramolecular heterogeneity may be the result of both synthetic and catabolic
isotope effects.

INTRODUCTION

ACETATE IS A KEY INTERMEDIATE in the early diagenesis of

organic matter. Acetate can be produced by anaerobic bacteria

via the degradation of a wide variety of organic compounds,

including amino acids ( BARKER, 1981 ; STAMS and HANSEN,

1984), carbohydrates ( WINTER and WOLEE, 1980; BIIARATI

et al., 1980; LAUBE and MARTIN, 1981; LJUNGDAttL and

WooD, 1982; JONES et al., 1984; and many others), and

organic acids and alcohols (BRYANT et al., 1977: MCINERNEY

et al., 1979; MCINERNEY and BRYANT, 1981; KOCH et al.,

1983: E1CHEER and SCHINK, 1984; STH-B and SCttINK, 1985,

1986; KREMER et al., 1988). Bacteria capable of producing

acetate via CO2-reduction with H2 have also been identified

(BRAUN et al., 1979, 1981; LEIGH et al., 1981: LJUNGDAItL

and WOOD, 1982). The dominant microbial populations re-

sponsible for acetate synthesis and the relative importance

of the different synthetic pathways in marine sediments are

poorly understood.

Acetate is rapidly consumed in sediments by microorgan-

isms linked with terminal oxidative processes such as sulfate

reduction and methanogenesis. Sulfate-reducing bacteria ap-

pear to be responsible for the oxidation of>95% of the acetate

in organic-rich marine sediments (WINFREY and WARD,

1983; SHAW et al., 1984). In sulfate-depleted marine and

freshwater sediments, acetate is disproportionated to CH4

and CO2 (WARFORD et al., 1979; WINFREY and ZEIKUS,

1979a; SANSONE and MARTENS, 1981, 1982; LOVLEY and

KLUG, 1982; CRILL and MARTENS, 1986; SCHUTZ et al., 1989;

KUIVILA et al., 1990). Approximately 25-50% of the methane

production in organic-rich marine sediments and as much

as 60-70% in freshwater sediments results from the dissimi-

lation of acetate (CAPPENBERG and PRINS, 1974; WINFREY

and ZEIKUS, 1979a; LOVLEY and KLUG, 1982; CRILL and

MARTENS, 1986; KUIVILA et al., 1990). The dissimilation

process occurs only in the sulfate-depleted portion of the sed-

* Present address: Archer Daniels Midland Co., PO Box 10640,
Southport, NC 28461. USA.

1247

iment column because of the competition for acetate between

the methanogens and sulfate reducers (SCHONHEIT et al.,

1982; LOVLEY and KLUG, 1983a).

In addition to the methanogenic archaebacteria, other mi-

croorganisms may be involved in the catabolism of acetate

in sulfate-depleted sediments. Van Niel proposed the meth-

ane-producing pathway:

CH3COOH + 2H20 "-_ 2CO2 + 4H2

CO., + CH4 + 2H20 ( 1 )

as an alternative process to the direct dissimilation of acetate

to methane and CO2 (BARKER, 1936). An organism capable

of the first step of the reaction, the production of CO_ and

H2 from acetate, has been isolated from a methane-producing

thermophilic digester (Z1NDER and KOCH, 1984). The mi-

croorganism, nicknamed "Reversibacterium," exists in a

syntrophic relationship with hydrogen-utilizing methanogens.
_4C-tracer studies have indicated that acetate oxidation to

CO2 is an important process in sulfate-depleted marine sed-

iments (WARFORD et al., 1979; SANSONE and MARTENS,

1981, 1982; CRILL and MARTENS, 1986). It has been pro-

posed that an interspecies H2-transfer consortium between a

sulfate reducer and a methanogen may be responsible for

pathway ( 1 ) in marine sediments (SANSONE and MARTENS,

1982 ). Alternatively, the acetate oxidation may be mediated

by a sulfur-reducing bacterium (WARFORD et al., 1979:

WINFREY and ZEIKUS, 1979b) similar to the freshwater De-

sulfuromonas acetoxidans (GEBHARDT et al., 1985).

Isotope effects which might be associated with acetate cy-

cling would have a significant, if not dominant, influence on

the isotopic composition of the diagenetic products, ZCO2

and CH4 (LAZERTE, 1981: WHITICAR et al., 1986). For in-

stance, differences in the _5'-_C and 6D values of methane

from marine and freshwater environments have been attrib-

uted to differences in the relative importance of the acetate

dissimilation and CO2-reduction pathways ( WHITICAR et al.,

1986). Similarly, seasonal variations in the isotopic com-

position of methane from anoxic sediments have been hy-
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pothesized to result from changes in acetate cycling processes

(MARTENS et al., 1986, BURKE et al., 1988; CHANTON and

MARTENS, 1988). Our ability to test those hypotheses, and

more generally the development of quantitative models which

describe the biogeochemical controls of the carbon isotopic

compositions of 2_CO2 and CH4, have been limited by the

lack of information concerning the isotopic systematics of

acetate turnover (GAMES and HAYES, 1976; LAZERTE, 1981 ).

In an attempt to address some of the issues in question

concerning acetate cycling pathways and the associated iso-

topic fractionations, we have made 6 _3C measurements of

acetate and its methyl group isolated from the anoxic marine

sediments of Cape Lookout Bight, North Carolina. Prelim-

inary measurements suggested that large carbon isotope effects

accompany the natural turnover of acetate (BLAIR et al.,

1987). The measurements presented in this report provide

new information concerning the relative rates and spatial

distribution of acetate cycling processes, and the carbon iso-

tope fractionation which occurs during the turnover of

acetate.

FIELD SITE

Cape Lookout Bight, North Carolina, is a !-2 km 2 coastal

basin located 115 km SW of Cape Hatteras on the Outer

Banks (MARTENS and KLUMP, 1980; MARTENS et al., 1980).

Fine-grained sediment with an organic content up to 4% dry

weight ( MARTENS and KLUMP, 1984), accumulates at a rate

of 8-12 cm/yr (CHANTON et al., 1983; CANUEL et al., 1990)

at the sampling station, A-1. The organic matter appears to

be derived from phytoplankton and seagrass debris (HADDAD

and MARTENS, 1987).

The rapid flux of metabolizable organic matter to the

seabed results in a high rate of organic carbon remineraliza-

tion (MARTENS and KLUMP, 1984). Sulfate reduction, oc-

curring in the upper 10 cm of sediment during summer

months, and methanogenesis, which occurs in the underlying

zone (CRILL and MARTENS, 1983), are the dominant dia-

genetic processes at this site and, respectively, account for 68

+ 20% and 32 + 16% of the organic carbon remineralization

( MARTENS and KLUMP, 1984). Acetate concentrations over

100 tiM have been found in the summer months at the in-

terface between the sulfate-reducing and methane-producing

zones (SANSONE and MARTENS, 1982). Approximately 20-

30% of the methane is produced via acetate dissimilation

(CRILL and MARTENS, 1986 ).

METHODS

Diver-collected cores were obtained at A-I with 9.5 cm diameter
lucite tubes. Normally, the acetate cores were processed immediately
after collection onboard ship. The porewater from cores collected on
August 14, 1986, was isolated with a sediment press (REEBURGH,

1967 ). The porewater samples were frozen immediately after collec-
tion and stored at -86°C until analysis. One core from that date was
transported to and processed at the Institute of Marine Sciences
(Morehead City) in the same manner. Because of our concern for
potential artifacts associated with the use of the sediment press and
the possibility that the isotopic signature of the acetate may change
rapidly after core recovery, samples collected on July 21, 1987, were
treated in one of two methods. Each sampling interval was split with

one portion immediately centrifuged at 8000 rpm for 10 min. The
porewater sample (40 mL) was passed through a Whatman GFA
filter, acidified with 5 mL of HPLC grade 85% H3PO4 (J. T. Baker)

and frozen in polypropylene bottles (Nalgene). The second portion
of each sediment interval was rapidly mixed with 50 mL of a 1:1
methanol-H20 mixture and frozen. The cores were sampled in less
than 15 min. after retrieval. The methanol-porewater mixture was
isolated later in the laboratory by centrifugation as described above.

The isotopic analysis of porewater acetate followed a modified
procedure of BLAIR et al. ( 1985, 1987 ). The porewater sample was
acidified to pH 1 with concentrated HsPO4 and distilled in vacuo
cryogenically to produce a volatile acid fraction. The basified (pH
> 11 ) distillate was dried in a Teflon_ beaker under N2 at 135°C.
The dried salts were dissolved in 1.0 mL water and 0.9 mL concen-

trated HsPO4. The resulting mixture was distilled in vacuo cryogen-
ically. The distilling pot was maintained at 90-95°C. The resulting
solids in the pot were redissolved with 1.0 mL of water and distilled
as above. This procedure was repeated a third time with 2.0 mL of
water. The volatile acids were concentrated approximately 25-fold
with this method.

The volatile acids were separated on a 10 tim RP-8 Lichrosorb
column (25 cm × 4.6 mm i.d., Alltech Assoc.) and detected at 210
nm( Lambda-Max Model 481, Waters Chromatog. Div.). The mobile
phase was 0.01 M H2SO4 maintained at 0.63 mL/min. The acetate
was separated from the H2SO4 and concentrated by the following
drying/distillation steps. The acetate fraction collected from the liquid
chromatograph was brought to pH I 1 with 20% NaOH and dried,
as described above. The salts were dissolved in 50 _L water and 200

uL H3PO4, and the resulting solution was distilled as above. The
distillate was stored frozen until needed.

The isolated acetate was converted to CO2 for isotopic analysis
with a gas chromatograph-combustion system (MATTHEWS and
HAYES, 1978; DES MARAIS, t978). The Carlo Erba HRGC 5300
Mega series was outfitted with a packed column injector (150°C)
and a Superox-FA wide bore capillary column (0.53 mm o.d., 30 m
length, Alltech Assoc.). The helium flowrate was 3 mL/min and the
temperature was programmed to hold at 80°C for 15 min. and ramped
to 110°C at 10°/rain. The sample was swept through the combustion
furnace (2 mm i.d. quartz tube packed with 80-100 mesh CuO, 780-
790°C) with a make-up gas ( 12 mL/min He). The resulting CO2
was monitored with a thermal conductivity detector (Gow-Mac Model
40-400) and collected in a _/8in. stainless steel multiple loop trap
immersed in liquid nitrogen. The CO2 was then purified cryogenically
and stored in a 6 mm o.d. Pyrex breakseal until isotopic analysis.
Acetate standards producing >0.3 ttmoles CO2 per 10 uL injection
were found to have _5_sC values within 0.4%0 of the accepted values,

which were determined by either bomb combustion (BLAIR et al.,
1985 ) or direct gas chromotograph (GC) combustion of large samples.

This sample size would typically translate into an original porewater
concentration of >30 zM. Smaller standards were depleted in _3C
by more than 0.5%0. Accordingly, all 8 _3Canalyses reported in this
paper were from samples > 0.3 ttmoles C/injection. The sensitivity
of this procedure is comparable to that reported for an alternative
method (GELWICKS and HAYES, 1990).

The isotopic analysis of the acetate methyl group was accomplished
by the pyrolysis of sodium acetate (OAKWOOD and MILLER, 1950;
MEINSCHEIN el al., 1974; BLAIR et al., 1985). A 200:1 mixture of
NaOH and acetate (from the last distillation) was dried under N2 at
135°C in a quartz tube (9 mm i.d. × 20 cm long). The tube was
evacuated after drying and heated to 500°C. Methane, which is de-
rived from the methyl group, was quantitatively collected, measured,
and injected into the GC combustion system via Toepler pump. The
purification of the methane was accomplished on a 2.5 m long × 2
mm i.d. stainless steel column packed with 100-150 mesh Porasil B
(Alltech Assoc.) at room temperature. The CO2 resulting from the
combustion of the methane was treated as above for isotopic analysis.
As little as 1.6 umoles of acetate could be analyzed with an accuracy

and precision of 0.3%o.
Samples for the 6JsC measurements of the total organic carbon

(TOC) fraction were prepared by one of two methods. Samples from
1983 were prepared by a bomb combustion method described pre-
viously (BLAIR et al., 1987). Samples from 1986-87 were treated
with a modified procedure. Between 0.7 and 1.0 grams of wet sediment
were slurried with IN HCI until bubbling ceased, after which the
sample was lypholized. Approximately 20-30 mg of the homogenized
sample were combusted in tin boats with a Carlo Erba 1500 CNS
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analyzer(UNC-ChapelHill,MarineSciences).TheresultingCO2
wascollectedinaYsin.stainlesssteelmultipleloopedtrapimmersed
inliquidnitrogen.TheCO2wassubsequentlytransferredcryogenically
andsealedina6mmo.d.PyrextubeforlaterisotopicanalsisThe
613 Y ,

C values of standards prepared by the CNS analyzer were within
0.3%o of those prepared by the bomb combustion method referenced
above.

Lipid fractions were prepared for isotopic analysis by sonicating
150 mg of freeze-dried sediment with 5 mL of 1:1 methanol-toluene

(Burdick and Jackson) for 10 min. The mixture was vortexed for 2

min. The extract-sediment mixture was separated by centrifugation,
and the sediment was reextracted as above. The extracts were com-

bined, and the solvent was removed by rotary evaporation. The sample
was saponified with a 1:1 aqueous 1 M KOH-methanol solution
(J. T. Baker, Burdick and Jackson) at 77°C for 2 h. The KOH pellets
had been pretreated by heating at 490°C for 25 rain to remove organic
contamination. The saponified lipid mixture was extracted three times

with previously distilled petroleum ether (40-45 °C) to produce the
neutral lipid fraction. The KOH mixture was then acidified and reex-

tracted with previously distilled CHC13 to produce the fatty acid frac-
tion. The volumes of both fractions were reduced by rotary evapo-
ration. The samples were transferred to Ag boats with CHCI3, and
the solvent was removed in vacuo. The samples were converted to

CO2 for 6 _3C analysis by bomb combustion (BLAIR et al., 1985).
The 6 '3C measurements of the CO2 from the various preparations

were analyzed on either a modified Nuclide 6-60 RMS (NASA-Ames
Research Center) or one of two Finnigan MAT 251 mass spectrom-

eters (NCSU Stable Isotope Laboratory and the University of Georgia
Center for Applied Isotope Studies). A cross-calibration of a CO2
standard by the three facilities produced results consistent to within
0.25%o. Procedural blanks were collected and used to correct the
results of all analyses.

Dissolved sulfate was measured on 5 mL ofporewater by the gravi-
metric analysis of the precipitated barium salt (CHANTON, 1985;
CHANTON et al., 1987). Sulfide was removed immediately after the
recovery of the porewater sample by the addition ofZnCl2, followed
by the filtration of the zinc sulfide precipitate. The accuracy of this
procedure is typically _+0.5 mM (CHANTON, 1985).

RESULTS

The _'3C values of the TOC from Cape Lookout Bight

averaged - 19.08 _+0.26%0 (Fig. 1), indicating that the organic

matter is predominantly of marine origin (HAINES, 1976;

GEARING et al., 1984; HADDAD and MARTENS, 1987). The

fatty acid and neutral lipid fractions averaged -22.1 __+.5

and -22.9 + .3%0, respectively (Fig. 1). Similar a3C-depletions

relative to the TOC have been observed in lipid fractions

isolated from estuarine sediments (PARKER, 1964), the

Eocene Messel shale (HAYES et al., 1987), and a wide vari-

ety of biological samples (ABELSON and HOERING, 1961;

PARKER, 1964; DEGENS et al., 1968; DENIRO and EPSTEIN,

1977: MONSON and HAYES, 1982a, b). The nearly ubiquitous

_3C-depletion of lipids has been attributed to isotope effects

associated with the biosynthesis and cycling of the lipid pre-

cursor, acetyl CoA (DENIRO and EPSTEIN, 1977; MONSON

and HAYES, 1982a,b; BLAIR et al., 1985).

Porewater sulfate and acetate concentrations (Fig. 2) were

similar to those observed previously at this site (SANSONE

and MARTENS, 1982; CHANTON, 1985; CRILL and MARTENS,

1987). A subsurface maximum in acetate concentration fre-

quently occurs between June and August at the same depth

horizon where dissolved sulfate concentrations fall below 1

mM (SANSONE and MARTENS, 1982 ). The magnitude of the

subsurface maximum was highly variable, similar to that seen

in other studies at this site using different sediment processing

and analytical methods (M. Alperin, per. comm.). The vari-
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ability between cores is thought to result from spatial het-

erogeneities in acetate cycling processes. No systematic dif-

ferences were observed between splits of cores, which were

processed by either the immediate centrifugation or metha-

nol-poisoned/centrifugation treatments (Fig. 2C).

The 513C values of the porewater acetate exhibit excursions

of nearly 15%0 with a pronounced subsurface maximum at

the base of the sulfate reduction zone (Table 1; Fig. 3). The

downcore variation is similar to that observed previously

(BLAIR et al., 1987), but the absolute values are 5-10%0

heavier than the earlier data. The differences may represent

true temporal variations as the 1983-84 data set was from

June to early July. However, it should be noted that the core

handling procedures were different in the two studies. In the

original investigation, all cores were returned to the laboratory

and refrigerated at 4°C until they could be processed ( BLAIR

et al., 1987). One core was treated similarly in this study.

The results from that core (one total and two methyl 6'3C

values) were approximately 1%o lighter than those from a

core processed immediately after collection onboard ship.

Though the size of the data set prevents a rigorous statistical

evaluation of the differences, it appears that the sample pro-

cessing procedures were not responsible for the large differ-

ences between the two studies. Investigations are under way
to resolve this issue.
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The isotopic variability between cores from the same sam-

piing date (0.2-2%0) was also of concern. No systematic dif-

ferences were observed between the results of the different

sampling procedures; thus, we conclude the noise is due to

spatial heterogeneities on the meter scale within the seabed.

Accordingly, the results from all treatments on a sampling

date were averaged (Table I; Fig. 3).

The 6'3C values of the acetate methyl group are 2-7%o

lighter than the total molecule (Table 1 ). The depth profile

parallels that of the total acetate (Fig. 3 ). The 6 '3C values of

the carboxyl group were determined by a mass balance cal-

culation and are 5-14%0 enriched in '3C relative to the methyl

group.

DISCUSSION

In principle, the isotopic composition of sedimentary, ac-
etate should be controlled by the ( 1 ) isotopic composition

of its precursors, (2) isotopic fractionations associated with

its synthesis and consumption, and (3) relative rates of all

Table I: 613C values of pore water acetate.

8/14/86

Depth (cm) CH3COOH CH3-

0-5 -17-61 -21"4(0"7)2

5-i0 _ii.4(i.0) 2 -18.6(0 4) 2

i0-15 -4"6(0"2) 2 -I0"5(0"4)2

15-20 -ii'0(0"8) 2 -13"6(0"8)2

-COOH 4

-14.41

-4.2(2.4 2

1.2(0.112

-8.4(0.8) 2

7121187

Depth (cm) CH3COOH CH3-

0-5
-18 5(0.2)_5-10 -12";1 -24.9(0.8)?

i0-15 -2"8(1"6) 3 -8"3(0"3)z-

15-20 -7"2(2"I) 2 -14"4(0"5)2

-COOH 4

-5.3 _

4.4(1.2)_
0.0(3.7) z

i single measurement (n=l) 613C
2 Difference between duplicate core values and the mean.

3 Standard deviation (i0) for mean of triplicate core values.

4 Determined by mass balance calculation.
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processes which influence its pool size (BLAIR et al., 1985;

BLAIR et al., 1987; GELWICKS et al., 1989). The downcore

variations in the t5t3C value of acetate from Cape Lookout

Bight indicate that changes in one or more of those factors

occur as a function of depth within the sediment column.

Each of those factors is discussed below.

Carbon Sources

The metabolizable organic carbon, which is the ultimate

source of the acetate carbon, is estimated to have approxi-

mately the same average 6'3C value as the TOC fraction

(-19.08 _+ .26) because the 6 _3C value of the TOC remains

unchanged as a function of depth (Fig. 1 ), even though 20-

30% of the carbon is remineralized (MARTENS and KLUMP,

1984). The 6 _3C value reflects a mixture of isotopically dis-

tinct sources. The sedimentary organic matter, and by infer-

ence, the metabolizable fraction, are derived from a variety

of sources including phytoplanktic, microbial, and vascular

plant remains (HADDAD and MARTENS, 1987; MARTENS et

al., 1992). Visual inspection of cores and lignin analyses

have indicated that Haladule wrightii and Zostera marina,

the predominant seagrasses in the area (THAYER et al., 1978 ),

and Spartina alterniflora are sources of the vascular plant

matter (HADDAD and MARTENS, 1987). These plants typi-
cally have 6 _3C values of-6 to - 13%0 (THAYER et al., 1978;

MCMILLAN and SMITH, 1982; STEPHENSON et al., 1984; FRY

and SHERR, 1984). This is in contrast to the 6tJC values of

coastal plankton, which can range from -20 to -23%0

(HAINES, 1976; GEARING et al., 1984). The relative contri-

butions of the vascular and nonvascular plant sources to the

buried organic carbon pool have been estimated to be 17

_+23% and 83 __+47%, respectively (HADDAD and MARTENS,

1987). The relative importance of those sources to the me-

tabolizable fraction is unknown. While variations in the rel-

ative abundance of those sources within the sediment column

could influence the 6'3C depth profile of the acetate, no ev-

idence for significant variations is apparent in either the TOC

6L_C (Fig. l) or lignin profiles (HADDAD and MARTENS,

1987).

Isotopic heterogeneities which result from differences be-

tween compound classes also exist in the metabolizable frac-

tion. Identified amino acid, carbohydrate, and lipid carbon

represents 64 ___17% of the metabolizable pool (BURDIGE

and MARTENS, 1988, 1990; HADDAD, 1989; HADDAD and

MARTENS, 1990; MARTENS et al., 1992). Lipid fractions are

depleted in t3C relative to the TOC fraction (Fig. l). The

6 _3C values of the amino acid and carbohydrate fractions are

unknown. Large inter- and intramolecular carbon isotope

heterogeneities exist in amino acids produced in a variety of

algal and microbial cultures (ABELSON and HOERING, 1961 ;

BLAIR et al., 1985; MACKO et al., 1987), and similar patterns

may exist in sediments. The isotopic composition of carbo-

hydrates from different sources is poorly characterized but

the bulk carbohydrate pool is typically thought to be similar

to that of the total biomass fraction of an organism (DEGENS

et al., 1968; BLAIR et al., 1985 ). However, 3-49'00 differences

have been observed between different carbohydrate fractions

from marine plankton (DEGENS et al., 1968), and the leaves

from the CAM-plant Bryophyllum daigrmontianum (DE-

LEENS and GARNIER-DARDART, 1977). The importance of

the isotopic heterogeneity within the metabolizable carbon

pool is dependent on the extent to which specific organic

fractions bypass acetate as an intermediate during diagenesis.

Synthetic Isotope Effects

Little is known about the isotope effects associated with

the anaerobic biosynthesis of acetate; however, any synthetic

pathway could create a unique isotopic signature in the acetate

that it produces. For example, the 6 '3C values of the methyl

and carboxyl groups of acetate produced aerobically from
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glucose by Escherichia coli were approximately 0 and +26%0

relative to the glucose (BLAIR et al., 1985). The large en-

richment of13C in the carboxyl group was proposed to result

from the transformation of acetyl phosphate to acetyl-CoA.

Acetobacter suboxydan expressed a smaller fractionation

during the aerobic synthesis of acetate from ethanol where

the methyl and carboxyl groups were -9 and 0%0 relative to

the corresponding ethanol carbons (RINALDI et al., 1974).

The CO2-reducing anaerobe, Acetobacter woodii, produced

acetate which was isotopically homogeneous yet depleted in

'3C by as much as 57%o relative to the total carbonate fraction

(GELWICKS et al., 1989; PREUI3 et al., 1989). The isotope

effect was believed to be associated with the enzyme carbon

monoxide dehydrogenase (GELWlCKS et al., 1989). The de-

carboxylation of lactate by the sulfate reducer, Desulfovibrio

desulfuricans, produced COz depleted in 13C by 5-13%o rel-

ative to the lactate carboxyl group (KAPLAN and RITTEN-

BERG, 1964). The isotopic composition of the acetate which

was produced was not measured; however, the carboxyl group

of the acetate could be depleted in L_C if the fractionation

occurred during the actual decarboxylation step. A summary

of the culture studies is shown in Fig. 4.

Catabolic Processes and Isotope Effects

The potential for isotope effects during the consumption

of acetate is equally significant. Several biochemical strategies

are used by sulfate- and sulfur-reducing bacteria to oxidize

acetate to CO/(THAUER et al., 1989 ). Desulfobacter postgatei

activates acetate to acetyl CoA via the reaction:

Succinyl CoA + acetate --_ Succinate + acetyl CoA (2)

The acetyl CoA is subsequently oxidized to CO2 via the citric

acid cycle (BRANDIS-HEEP et al., 1983; GEBHARDT et al.,

1983). Desulfuromonas acetoxidans, an anaerobe which

grows on acetate and sulfur, utilizes similar pathways (GEB-

HARDT et al., 1985; THAUER et al., 1989). In contrast, De-

sulfotomaculum acetoxidans and Desufobacterium autotro-

phicum activate acetate to acetyl CoA by the intermediate

formation of acetyl phosphate. The acetyl CoA is oxidized

to CO2 via the carbon monoxide dehydrogenase pathway

(SCHAUDER et al., 1986, 1989; SPORMANN and THAUER,

1988, 1989). To our knowledge, the carbon isotopic frac-

tionation associated with the oxidation of acetate by either

of those pathways has not been reported.

The methanogenic genera, Methanosarcina and Methan-

othrix, are the only known microorganisms capable of dis-

similating acetate to CH4 and CO2 (THAUER et al., 1989).

In both genera, acetate is converted to acetyl CoA, after which

the carbon-carbon bond of the acetyl unit is cleaved (GRA-

HAME and STADTMAN, 1987; THAUER et al., 1989). The

methyl group is reduced to methane, and the carbonyl group

is oxidized to CO2 (BuSWELL and SOLLO, 1948; STADTMAN

and BARKER, 1949; ZEIKUS, 1983). The fractionation factor

( k J2/ k _3) for methane formation from acetate by Methan-

osarcina barkerii is 1.02-1.03 (RISAqqq and HAYES, 1983;

KRZYCKI et al., 1987). The fractionation factors for acetate

dissimilation by other species, including the marine meth-

anogen, Methanosarcina acetivorans (SOWERS et al., 1984),

have not been reported.

Relative Rates of Acetate Cycling Processes

The relative rates of the acetate cycling processes will have

a major influence on the isotopic composition of that com-

pound if any of the processes exhibit a significant isotope

effect. The results of _4C-tracer experiments can be used to

estimate the relative rates of two processes, the oxidative and

dissimilative pathways, by comparing the rates of conversion

of the acetate methyl group to CO2 or CH4. The fraction of

the acetate methyl group, which is converted to methane

(f), is defined by the equation:

f= rcH4/(rc., + rco2), (3)

where rc., and rco, are the rates of the conversion of the

acetate methyl group to CH4 and CO2, respectively. By in-

ference, frepresents the fraction of acetate that is dissimilated

directly by methanogens. If uniformly '4C-labelled acetate is

used to estimate turnover rate constants, fcan be determined

with the relationship:

f= 2kcH, + kco_), (4)

where kc., and kco, are the rate constants for CH4 and CO2

production from the total acetate molecule. It is assumed

that the methane is derived solely from the methyl group.

Similarly, the respiration index measurement (SANSONE and

MARTENS, 1982) can be related to fby:

f= 2(1 - RI), (5)

where the respiration index (RI) was determined with U-

_4C-labelled acetate and is defined as:
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RI = 14CO 2 Production/('4CO 2 Production

+ _4CH4 Production). (6)

Data from SANSONE and MARTENS (1982) and CRILL and

MARTENS (1986) were used to estimate ffor Cape Lookout

Bight (Fig. 5). The value of fincreases from zero in the

sulfate reduction zone to a maximum of 0.55 in the meth-

anogenic zone. In comparison, 70-86% of acetate (f= 0.70-

0.86) in freshwater sediments is dissimilated directly to CH4

and CO2 (CAPPENBERG and PRINS, 1974; WINFREY and ZEI-

KUS, 1979a; LOVLEY and KLUG, 1982). The fact that ./'is

significantly less than 1.0 indicates that an oxidative process

competes with the methanogenic dissimilation of acetate. The

similarity in the downcore profiles of fand the acetate 5_3C

values suggests that the relative rates of the oxidative and

dissimilative processes may be important isotopic controls.

This point will be tested with a model which is described in

the next section.

The absolute rate constants for acetate turnover, which

were reported in the two studies, differ by an order of mag-

nitude or more (SANSONE and MARTENS, 1982; fRILL and

MARTENS, 1986). This discrepancy has been attributed to a

difference in the incubation times used in the tracer experi-

ments (CRILL and MARTENS, 1986). The consistency of f

calculated from the two data sets argues that the relative rates

of the acetate cycling processes were insensitive to the dif-

ferences in methodology.

An Isotopic Model for Porewater Acetate

A simple model is proposed to describe the isotopic com-

position of acetate in this system. The following equation can

be used to describe the isotopic composition of the methyl
group, 6_:

6me = (rsyn + 10s)(adissf+ O_ox[l --f]) -- 103 , (7)

where 6sy, is the isotopic composition of the biosynthesized

methyl group before consumption, ad,ss is the fractionation

factor associated with the reduction of the methyl carbon to

methane, and aox is the fractionation factor associated with

the oxidation of the methyl group (BLAIR et al., 1985).

Steady-state or near-steady-state conditions for the short time

frame needed to turn over the acetate pool ( 15 min to one

day, SANSONE and MARTENS, 1982; CRILL and MARTENS,

1986) and first-order kinetics for the uptake of acetate are

assumed. The model is simplified by setting aox = 1.00. This

is a reasonable first approximation because the 6 JsC value of

the total acetate molecule in the 0-5 cm interval (f= 0) is

within 1.5%o of that estimated for the metabolizable organic

carbon fraction. Accordingly, bsy. = -23.2 + 2.2%0, which is

the average 'Smcvalue for the 0-5 cm interval. Average values

of fand 6me for the 10-20 cm depth interval, 0.38 + 0.11

and - 11.2 + 3.0, respectively, were used with the following

rearranged expression,

Otdiss= l + (6me-- _syn)/[f(6syn + 103)], 8)

to estimate ad_ss. The resulting estimate for ad,,, 1.032

--+0.014, is in good agreement with that observed in aceto-

clastic cultures (RISATTI and HAYES, 1983; KRZYCKI et al.,

1987). An analogous calculation can be done to determine

the apparent fractionation factor on the carboxyl group as-

sociated with the uptake by methanogens. In that case,

adi_(carboxyl) was found to be 1.036 + 0.019. The agreement

between the estimate of ad,s_ from the model and the culture

measurements suggests that the rate of the acetoclastic re-

action relative to acetate oxidation and the isotopic fraction-

ation associated with methanogenesis are the dominant con-

trols of the downcore variations in 6,,_. Source effects and

the presence of other sinks of acetate, such as biologically

unavailable dissolved and adsorbed pools (CHRISTENSEN and

BLACKBURN, 1982; SHAW et al., 1984: PARKES et al., 1984;

NOVELH et al., 1988; GIBSON et al., 1989: MICHELSON et al.,

1989), would appear to be limited to secondary roles as con-

trolling factors of the isotopic composition of the methyl

group.

The 4-6%o _3C-depletion of the acetate downcore within

the 10-20 cm interval indicates that the methanogenic zone

cannot be considered spatially homogeneous in terms of mi-

crobial processes and may be composed of smaller diagenetic

horizons. There is insumcient information to resolve with

confidence if the isotopic shift is due to a source or con-

sumptive effect. However, the _4C-tracer studies of fRILL and

MARTENS (1986) suggest that the relative rates of acetate

oxidation and dissimilation change within the methanogenic

zone with the oxidative process becoming progressively more

important below the depth of peak methane production. Ac-

cording to our model, such a trend would result in the

observed isotopic change.

The isotope model can be used to estimate the 6 _3C value

of methane produced by acetate dissimilation. Assuming

steady-state conditions ( HAYES, 1983 ), the 6 '_C of the meth-

ane is approximated by:

6(CH4/Acet) = 6_y, - ( 1 -.l')(Crd,_ - l )* 10 s. (9)
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Usingtheaveragevalueofffor the 10-20 cm methanogenic

zone, 6(CH4/Acet) was calculated to be -43 --- 10%0. Ap-

proximately 26% of the methane production at this site is

provided by acetate; the remainder is generated principally

by CO2-reduction (CRILL and MARTENS, 1986 ). A mass bal-

ance calculation using the average measured _'3C value of

-59.5 + 2.0%0 for methane produced in July and August at

A-I (MARTENS et al., 1986) indicates that the isotopic sig-

nature of the methane produced by CO2-reduction should

be -65 --- 5%0. This result appears to verify the hypothesis

that the acetate-dissimilating pathway produces methane

which is enriched in ]3C relative to that generated by CO2-

reduction (WHITICAR et ai., 1986). WHmCAR et al. (1986)

hypothesized further that the isotopic differences observed

between methane generated in freshwater and marine envi-

ronments are the result of the distinctive isotopic signatures

and the relative importance of the two pathways. Accordingly,

freshwater environments, in which acetate dissimilation is

the dominant pathway, typically produce methane which is

relatively enriched in IsC.

Similarly, the seasonal variations in methane (513C and t3D

values at Cape Lookout have been attributed, in part, to

changes in the relative rates of the two methanogenic pro-

cesses (MARTENS et al., 1986; BURKE et al., 1988). _4C-tracer

studies have suggested that the proportion of total methane

production from acetate increased from 20% in mid-July 1983

to 29% in late August (CRILL and MARTENS, 1986). The

statistical significance of the temporal trend cannot be eval-

uated; however, the apparent trend toward the greater im-

portance of the acetate dissimilatory pathway in late summer

should produce methane enriched in 13C. The observed

methane 6 _3C values for mid-July and late August are -61.4

_+ 1. I and -57.7 _ .3%0, respectively (MARTENS et al., 1986).

This consistency between the model predictions and actual

observations not only provides us with some measure of con-

fidence in the general features of the model but also in the

relative rates determined with the _4C-tracer experiments. This

is an important issue given the current controversial nature

of acetate turnover rate measurements (CHRISTENSEN and

BLACKBURN, 1982; SHAW et al., 1984; PARKES et al., 1984;

NOVELLI et al., 1988; MICHELSON et al., 1989; GIBSON et al.,

1989).

Speculations on Microbial Processes in Anoxic Sediments

The calculated 6 _3C values of the carboxyl group exhibit

a downcore trend nearly parallel to that of the methyl group

( Fig. 3 ) suggesting that they are controlled, in part, by meth-

anogenic activity. Two methanogenic-related processes may

influence the carboxyi 6 J3C value. The first involves the bond

cleavage between the methyl and carbonyl groups of the acetyl

intermediate in the acetoclastic reaction sequence. A normal

kinetic isotope effect associated with that reaction would ex-

plain the methyl group/_ _3C values as well. The fact that the

isotopic fractionations associated with both the methyl and

carboxyl groups are observed in the porewater pool of acetate

implies that the steps leading to the isotopically discriminating

reactions are reversible. Cell suspensions of Methanosarcina

barkeri catalyze rapid isotopic exchange between CO2 and

the carboxyl group of acetate (EIKMANNS and THAUER,

1984). Similarly, cell extracts of the same methanogen pro-

moted isotopic exchange between CO-, and acetyl-CoA, thus

providing direct evidence that the carbon-carbon bond

cleavage of acetyI-CoA is reversible (FISCHER and THAUER,

1990).

The second process is the isotopic exchange between the

carboxyl group and an external CO-, pool, as demonstrated

for Methanosarcina barkeri. Thus, the apparent fractionation

factor determined for the carboxyl group may not be simply

the result of a kinetic isotope effect as treated in our model.

The importance of the exchange reaction as an isotopically

controlling process will depend on the relative rates of the

isotopic exchange and the overall dissimilative process. Other

microorganisms, including Desu_)bacterium autotrophicum

(SCHAUDER et al., 1986), Acetobacteriurn woodii ( WINTER

and WOLFE, 1980), and the syntrophic acetate-oxidizer,

"Reversibacterium," (ZINDER and KOCH, 1984) have ex-

hibited similar isotopic exchange capabilities. Carbon mon-

oxide dehydrogenase appears to be the enzyme responsible

for the exchange reaction in all of those microorganisms

(DIEKERT et al., 1985; THAUER et al., 1989). The extent to

which isotopic exchange occurs between acetate and CO, in

Cape Lookout or other organic-rich marine sediments is un-

known but should clearly be investigated.

The similarity of the 6J3C value of the total acetate molecule

in the upper 5 cm of sediment with that of the TOC fraction,

along with the model results, suggests that the fractionation

associated with the uptake by bacteria in the sulfate reduction

zone is relatively small. This conclusion, which is admittedly

based on a modest data base, merits discussion because of its

implications. The intramolecular carbon isotopic difference

(ca. 7%o) in the 0-5 cm interval indicates that large isotopic

fractionations occur during the biosynthesis of acetate. For

an isotope effect of that magnitude not to be reflected in the

6J3C value of the total molecule, a large portion of the me-

tabolizable carbon must be shunted through acetate in the

sulfate reduction zone. This would also explain why the iso-

topic heterogeneity within the metabolizable organic carbon

fraction does not manifest itself more obviously. Qualitatively,

the isotope data is consistent with previous estimates that

40-60% of the remineralized organic carbon is shunted

through acetate in the sulfate reduction zone of coastal sed-

iments (SORENSEN et al., 1981; WINFREY and WARD, 1983).

A more quantitative estimate of the flow of carbon through

acetate would require substantial information concerning the

biosynthetic fractionations.

The similarity of the _3C value of the surficial acetate to

that of the TOC fraction would appear to preclude the pos-

sibility that a significant portion of the acetate could be pro-

duced by acetogenic CO2-reduction because of the large iso-

tope effect associated with that process (GELWlCKS et al.,

1989; PREUB et al., 1989 ). Instead, it is likely that the acetate

is synthesized via the more direct fermentation of organic

species. In contrast, isotope models have suggested that CO.,-

reduction is an important source of acetate in freshwater sed-

iments (LAZERTE, 1981; GELWICKS et al., 1989 ). This con-
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tradicts the results of other studies, which indicate that <2%

of the acetate in eutrophic lake sediments was produced via

CO2-reduction (LOVLEY and KLUG, 1983b). The apparent

contradiction clearly illustrates how little is known concerning

acetate cycling and the associated isotope effects in different

environments and points out the need for further studies.

SUMMARY AND CONCLUSIONS

The impressive intramolecular carbon isotopic heteroge-

neity and downcore _3C variations exhibited by the dissolved

acetate at Cape Lookout Bight are compelling evidence for

the presence of large isotope effects associated with some as-

pect of acetate cycling. The downcore 6 _3C profiles are con-

sistent with the hypothesis that both oxidative and dissimi-

lative processes consume acetate in the methanogenic zone

of the sediment (WARFORD et al., 1979: SANSONE and MAR-

TENS, 1982). The dominant isotopic fractionation appears

to be associated with the methanogenic dissimilation of ac-

etate. A fractionation factor for the conversion of the methyl

group of acetate to methane was estimated to be 1.032

_+ 0.014, which is in good agreement with that previously

measured in culture (RISATTI and HAYES, 1983; KRZYCKI

et al., 1987). The isotopic measurements of the acetate methyl

group coupled with estimates of rates of acetate cycling have

provided direct evidence in support of the hypothesis that

methane produced by the dissimilation of acetate is enriched

in _3C relative to that produced by CO2-reduction (WHIT1CAR

et al., 1986).

The secondary controls of the isotopic composition of ac-

etate are virtually unknown. Experiments employing chem-

ical inhibitors for microbial processes, e.g., MoO4 for sulfate

reduction, and radiotracer rate determinations coupled with

the natural abundance _3C/_2C measurements will provide

important information concerning both synthetic and cata-

bolic isotope effects. Culture studies of acetate-producing and

-consuming anaerobic microorganisms and their associated

isotope effects are needed to establish the isotopic signatures

of the different metabolic pathways. If the isotopic signature

of the sedimentary acetate can be understood, it would be a

sensitive indicator of in situ processes and their relative rates.

The isotopic measurements should prove useful in monitoring

temporal and spatial changes in the sedimentary microbial

ecosystem and the related diagenetic processes. As an example

in this study, the 6 _sC measurements have indicated that the

methanogenic zone should not be viewed as a homogeneous

microbial ecosystem but instead appears to be stratified with

respect to acetate cycling processes. The exact nature and

cause of the stratification is unknown.

Isotopic measurements of diagenetic intermediates such

as acetate provide information which is different from, but

complementary to, that generated by other methods. In prin-

ciple, by looking at the natural abundance isotopic compo-

sition of a compound from a sediment, we are viewing the

result of in situ processes which have not been subjected to

the same potential artifacts commonly associated with ra-

diolabel and microbiological methods. Because of that char-

acteristic, the isotopic measurements should serve as unique

constraints on models derived from the results of other

methodologies.
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