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1 Introduction

The H,, control problem has been studied extensively. First in continuous-time (see e.g. [3,
4, 10, 13]) and later in discrete time (see e.g. [1, 8, 6, 141). For a more extensive reference list
we refer to two recent books [2, 15].
The ob jectivc of this paper is to present a solution of the general discrete-time H„ control
problem. One way to approach this problem is to transform the discrete-time H,o optimal
control problem into an equivalent continuous time Ha, control problem via bilinear trans-
formation. Then the continuous-time controllers that are solutions to the auxiliary problem
can be obtained and transformed back to their discrete-time equivalent using inverse bilinear
transformation. However, in our opinion it is more natural to solve this problem directly
in discrete-time setting and in terms of the original system's performance. This approuth
leaves the possibility of directly observing the effect of certain physical parameters which
might otherwise be blurred ► y the transformation to continuous-time. In view of this, and
in accordance with earlier literature [1, 6, S. 12], we take this direct approach in solving the
discrete-time H,,, optimal control problem.

Compared to the existing literature, we solve this problem under weaker assumptions. All the
existing literature on the discrete-time H,,, control ,p roblem mail the following assumptions
on the system:

9 The subsystem from the control input to the control output should be left invertible
and shoed not have invariant zeros on the unit circle.

The subsystem from the disturbance to the measurement output should be right invert-
ible and should not havp. invariant zeros on the unit circle.

These conditions are the discrete time analogon of what is called regular problems in contin-
uous time H,,, control problems. In this paper, we remove the above mentioned left and right
invertibility condition.
Moreover, we give a representation of one controller in a suitable form such that it becomes
very transparent that this controller is a state and disturbance estimator in conjunction with
a full-information feedback (i.e. a feedback of both state and disturbance). Such an interpre-
tation was not available before and due to the involved formulas it was not very clear what
kind of structure discrete time H,,,, controllers should have.
Finally, a novel aspect of this paper is that we show that if certain states or disturbances are
observed directly, then this yield's the possibility of deriving a controller of lower McMillan
degree. Tlus result again corresponds to those obtained in continuous-time case (see [16]).

The notation in this paper will be fairly standard. By N and R we denote the natural
numbers and the real numbers, respectively. Moreover by o we denote the shift:

(az)(k) :_ x(k + 1) bk E Ar

rankx denotes the rank as a matrix with entries in the field K. By 1Z(z) we denote the field of
real rational functions. Moreover, by X t we denote the Moore-Penrose inverse of the matrix
X. Finally, by p(X) we denote the spectral radius of the matrix X.



2 Problem formulation and main results

We consider the following time-invariant system:

ax = ::,x + Bu + E'w,

E:	 y = C`I r	 + D12u , ,	 (2.1)

Z = C2z + Daru + D22w,

where for all k E 9, x(k) E T" is the state, u(k) E R'" is the control input, y(k) E RI is
the measurement, w(k) E R9 is the unknown disturbance and z(k) E RP is the output to be
controlled. A, B, E, Cr, C2, D I 2 , D21 and D22 are matrices of appropriate dimension.
If we apply a dynamic feedback law u = Fy to E then the closed loop system with zero initial
conditions defines a convolution operator E,,,,p from w to y. We seek a feedback law u = Fy
which is internally stabilizing and which mi-aimizes the 4-induced operator norm of Ej,F
over all internally stabilizing feedback laws. We will investigate dynamic feedback laws of the
form:

EF:

	

	 ap= lip + Ly,	
(2.2)

{ u = Alp + Ny.

We will say that the dynamic compensator E F, , given Ly (2.2), is internally stabilizLg when
applied to the system E, described by (2.2 ), if the following matrix is asymptotically stable:

A + RNCI Bhl

LCl	 l Y (2.3)
i.e. all its eigenvalues lie in the open unit disc. Denote by GF the closed loop transfer matrix.
The L2 -induced operator norm of the convolution operator E <<, F is equal to the H„ norm of
the transfer matrix GF and is given by:

IIGFI'I.	 sup	 IIGF(eie)II

	

6E(0,Zn] 

Iswp 	 Ilulllz I 
w E c2 , w O o

where the L2-norni is given by:

a	 l/2

IIPI12	 p''(k)p(k))
k-0

and where 11.11 denotes the largest singular value. We shall refer to the norm IIGFII,,. as the
H. norm of the closed loop system.
In this paper we will derive necessary and sufCirient conditions for the existence of a dynamic
compensator EF which is internally stabilizing and which is such that the closed loop transfer
matrix GF satisfies 

IIGFII„ < 1. By scaling the plant we :,an thus, in principle, find the
infimum of the H,o norm of the closed loop system over 

all
 stabilizing controllers. This will

involve a search procedure. Furthermore, if a stabilizing EF exists which makes the H„ norm
of the closed loop system less than 1, then we derive an explicit formula for one particular F
satisfying these requirements. We also give an alternative non-minimal representation for this
controller whose structure makes clear that this controller is the interconnection of a current



state and current disturbance estimator and a static full-information feedback. In section 5
we show that in some cases we cart reduce the dyna ►nic:J order of the estimator and we will
derive an explicit method to derive controllers of lower dynamical order.
In the formulation of our main result we will need the concept of invariant zero. Recall that
zo is called an invariant zero of the system (A, B, C, D) if

ranks ^ i0 C A ^ ^ < rankRl=1 (
zl C, 

A -^ )

We can now formulate one of our main results. This is an extension of (1, 8, 14).

Theorem 2.1 : Consider the system (2.1). Assume that the systems (A, B, C 2 , D20 and
(A, E,C 1 , D 12 ) have no invariant zeros or1 the unit circle. The following statements are
equiralcr ► t;

(i) There exists a dynantic compensator SF of the form (2.2) such that the resulting closed
loop system is ink rnally stable and the closed loop transfer matrix CF satisfies 11 CFI1a <
1.

(ii) There exist symmetric matrixes P > 0 and Q > 0 such that

(a) We hate

R > U,	 (2.4)

inhere

V	 BT PB + DTD21,
R	 1-DT2 2 D22 —ET PE+(ETPB+ D2D21)1't (BTPE +DpiD22),

(b) P satisfies the discrete algebraic Riecati equation;

T
P= A T PA + C2 — 

BT PA + D21 C2	 t BT P.4 + 1^2-,, C2
(ET PA + U^2C.) 

C(P) 
(ET PA + D22G2)	

(2.5)

where

D21Dt1	
DZ	 T1D2=C(P)	 B )P( B E) .	 2.6

D2? D 1 DT D22 _ 
1 l + 

ET	
f

(c) For all z E C with 1_1 > 1. tre have

-1 — A	 —B	 —E
rank	 BT PA + D21 C2 BT PB + D2 1 D21 BT PE + D21 D22

ET PA + DT. C2 ET PB + D22 D21 	 ET PE + DT2 D22 — I

n + q + rank^ ( ,IC2(zI — A)' 1 B + D21



(d) bb'e have

S > 0,	 (2.7)

where

W	 D12Di2 +C1QCi
S	 1— D22 Di2 — C2QCT + (C2QCi + D22D r ) W t (CIQC2 + D i2 D22) .

(e) Q satisfies the following discrete algebraic Riecati equation,

T

Q = AQA T
 + EE  — CiQAT + D12ET 

H (Q) t
 I C1QAT + D1 2 ),,, '^	 (2.8)

	

(C2QA T + D22 ET)	 \C2QAT + D2,•ET

where

1
(2.9)H (Q) .,= 

D
"D12	 D12D 

z I + (C') 
Q (CI)T.

(D22D s D22 D22 — 1 r	 C-	 C2

(f) For all z E C with jzj > 1, we have

z1— A AQC1T + EDP	AQC2 +EDT
rank 	 —Cl C1QCi + D12 D12	 C1 2T .QC  D'12D212

—C7 C2QC + D22 D'I , ;',' QC^ + D22DT _I

= n+9+rank,O)CI(zI— A)-1E+D12

(g) P( PQ) < I.
	 O

Remarks s

(i) Necessary and sufficient conditions for the existence of an internally stabliaing feedback
compensator which makes the H,,,, norni of the closed loop system less than some, a
priori given, upper bound y > 0 can be easily derived from theorem 2.1 by scaling.

(ii) In this paper, we only investigate controllers of the form (2.2). This is not an essential
restriction, since it can be shown that we can not make the H„ norm less by allowing
more general, possibly even non-linear, causal feedbacks.

For the special cases of full-information and state feedback we can dispense with the second
Iticcati equation. Moreover, in these cases there always exist suitable static controllers. More
specifically:

s Full information case • C, ( 
0 / , D

12 = ( 
0

In this case we have yl = x and y2 = w, i.e. we know both the state and the disturbance
of the system at time k. It is easy to check that Q = 0 satisfies conditions (d)-(f).



Moreover this guarantees that the coupliiig condition (g) is automatically satisfied.
Therefore there exists a stabilizing controller which ,yields a clotted loop system with the
B. norm strictly less than I if and only if there exists a positive semi definite matrix P
f-atisfying conditions (a)-(c). Moreover in that case we call find static output feedbacks
it = Fix + F2 u) with the desired properties. One particular choice for F = (Ft , F2 ) is
given by:

Fi :- -'t't (BT PA+ IU2 I C2 ) +(1 - V t l')Fo	 (2.10)
F2	  Vt(BTPE+ D,21D22) 	 (2.11)

where Fa is an arbitrary tna.trix such that A + BF, is stable.

• State jeedbark cast : Cl = 1, D i2 = 0.

In that case, it is easy to see that a necessary condition for the existence of v positive
sem-definite matrix Q satisfying conditions (d)-(f) is that 11 D2211 < 1. In that. case, it is
easy to check that,

Q = E(I - D22D22)-tlr

satisfies coedit io!ts (d)-(f), Condition (g) i hen reduces to

1 -D22 D12 - F,T PE> 0	 (2.12)

Moreover, condition (2.12) implies that condition (a) is automatically satisfied. There-
fore there exists a stabilizing controller which ,yields a closed loop system with the
H,, norm strictly less than 1 if and only if there exists a positive semi-definite matrix
P satisfying conditions (b),(c) and additionally condition (2.12).

In that case we call 	 a static output feedback u = Fx with the desired properties.
One particular choice for F is given by:

F:=-Vt (B"PA+ D2iC2 ^(f^TPE+ D2iD2!2)H- i((ETPA,+D22C:}) +(1-VtV)FO

where FO is an arbitrary matrix such that A + BF is stable (which can be shown to
always exist) and

A x	 _ A - BVt (DT PA + D2, C2) ,	 (2.13)
Cr	 C2 - D21 1' t CBTPA + D2i C'2 j 	 (2.14)

3 The proof of theorem 2.1

The proof of theorem 2.1 is divided into three parts. Each part estabfishes the proof for a
certain part of the theorem. Every part is framed up as a subsec6m with a heading theA
represents a significant feature of its proof technique or its overall achievement. The rational
for dividing the proof into three ;carts is mainly due to the length and the complexity of the
proof.



3.1 The existence of a solution to the Algebraic Riccati equation

In this subsection we assume that part (i) of the theorem 2,1 is satisfied we win show that the
existence of P satisfying condition: (a)-(c) in (ii) of the theorem 2.1 is necessary. We begh;
with the following definition.

Definition 3.1 , Let a system E. = ( A, B, C, D) be given. The controllability subspace ?Z'("")
is the largest subspace X of T" for ti.hich a snapping F crisis such that

(A + BF)X C X

(C + DF)X = (0)

and such that (A, B 1 ) is controllable where 13 1 is dc ctned by:

Ito B t = .1' n B lier D
	

O

We next perform a basis transff , rmation oil 	 state and input spaces of S. %Ve decompose
the state space ,1' =	 , A2 where So = (A. B, C2 , D2 ) and choose a basis adapted to
this decomposition. %\'e also decompose t lie controller input space hl her V + U2 where
V is as defined in theorem 2.1. In the new bases, the matrices in the realization of E have a
special form:

A = 
(

A li + 13 12 F All	
B — P11 13 11	 E,	 El

 B, F	 A,, ) '	 0 B, ) -	 (E2)'

C l = (	 C'>>	 C12) ,	 D12 = D 12	 (3.1)

C2= ( D F	 C,) , D21 = ( 0 Dr/ , D22 = D22

The above matrices have the following properties:

• (A ll ,B, 1 ) is controllable,

• (A„ B,,Cr, Dr) is left invertible,

• (A„ B,) is stabilizable.

If part (i) of theorem 2.1 holds, i.e., if the measurement feedback problem is solvable, then
we also know that the full-information H,,,, control problem is soluble. Let FO be such that
A ll — Bl j Fo is stable. Then it is easy to see that, after the prenminary feedback u =
—( F Fo )z + v the subspace does not affect the output to be controlled and the
d ynamics restricted to ?Z'(V,i ) is stable. Hence the achievable H,_, norm using full-information
feedback its completely determined by the following subsystem:

Er 
1 O'z2 = Ariz + BTv2 + Ezu},

z	 CrZ2 + Dr v2 + D22w,

However, for this subsystem the operator mapping the input V2 to the output z is left invert-
ible. Therefore we can apply the results from (2, 15) to obtain the following result:



Lemma 3.2 : Consider flit systems r, and*--;, defined by(,',.]) and (9.2) respectively. Assume
that the system (A, B, C2, D21 ) has no invariant zeros on the unit circle. Then also the system
(A,., B,. C„ Dr) has no invariant :eras on the unit circle. Moreover, the following Matements
are equivalent;

(i) There exists a full information feedback u = FI x + F2 w for the system E such that the
resulting closed loop system is internally stable and the closed loop transfer matrix GF
satisfies (}G F jjx, < 1.

(ii) There exists a full information feedback. u = FI ,,x + F2 ,rw for the system E, such that
the resulting closed loop system is internally stable and the closed loop transfer matrix
GF,, satisfies IIGF,,jj,, < 1.

( iii) There exists a symmetric matrix P, > 0 such that

(a) O"t havc

1',>0.	 R,>0

whem-

6', : = B; Pr Br + D D,-,
R,. = I -DTD22 E;P► E,+(E P, Br + D22 Dr) Vr 1 (B;P,E,+D;D22)

(b) P, satisfies the disc ►y tt algcbraic Riccuti equation;

A"	 z	 B; P, Ar + D; C'* 
Cr ( Pr)

_. ( BrT, Pr A, + D Cr
P► = Ar Pr A, + C, ' C'r -

	

	 r	 1 ET P,A, + D24CrE Pr:1, + D.,., C,

u!here

G,(P.) —` Dl'.,Dr D^2 D2., - I + E; P B E,

(c) The matrix A,, ,P is asymptotically stable where

n 
A — 

( B, -Er ) 
G, (Pr) 1 Br PrAr + D^ Cr

Ei P^Ar t D22Cr

r

Proof : The implication (ii) q (iii) can be found in [15). The implication (ii) * (i) can be
easily checked using the arguments given before this lemma.
The implication ( i) -* (ii) can be derived in the following manner. First note that we can
apply, without ioss of generality the transformation u = Fox, + v where F O is such that
A ll + BI FO is stable. Suppose a stabilizing feedback, t , = F1 1 x i + F12x2 + F2 w exists for the
system E (after our preliminary transformation) which yields a closed loop transfer matrix



GF satisfying IIGFII,, < 1. Then it is easy to check that the following dynamic compensator
stabilizes E, and yields the same closed loop transfer matrix GF:

EF	
ox1 = (A ll + B12 Fo)x 1 + A l2r2 + F1W,

U =	 F11x1 + F12 x2 + F2W,

However, E, has a subs ystem from v2 to z which is left -invertible and hence, from [14), we
know that the existence of a suitable dynamic full-information feedback also guarantees the
existen^ a of a static full-information feedback.	 n

THs lemma yieldb a solution P, of a discrete time Riccati equation for the reduced order
system. We can extend ibis matrix to the original state space by setting it zero on R'(E j),
i.e. if we define P by

P= (0 0	 (3.3)
^0 P.

then P,, satisfies the conditions of lemma 3.2 if and only if P satisfies the conditions of (a)-(c)
of theorem 2.1. The above tail )e combined to yield:

Lemma 3.3 : Assume (.A, B. C2 , D21 ) has no invariant zcroc on the unit circle. If part (i)
of theorem 2.1 is satisfied then there exists a symmOr•ic matrix P > 0 satisfying (a)-(c) of
part (ii) of theorem 2.1.	 O

We also need to know whether any solution P satisfying conditions (a)-(c) of theorem 2.1
can be connected to a matrix P, satisfying the conditions of lelnrna 3.2. This is done in the
following lemma.:

Lemma 3.4 Let P > 0 be a matrix satisfying the conditions (a)'-(c) of theorem 2.1. Then

Hence, in our new bases, P will be of the form (3.3) for some matrix P,. Moreover P, satisfies
the conditions in part (iii) of lemma 3.2.	 0

Proof : First note that condition (b) implies that

P > Ai PA, + CI Cr

where At and C= are defined by (2.13) and (2.14) respectively. It is easily seen that this
implies that Tier P is controlled invariant.
Secondly conditions (a) and (r) imply that

rant: (BT PB + D21D21 ) = rankr tZl C2 (ZI — A)' 1 B + D21



These two properties, when combined with the decomposition of the state space as introduced
in the beginning of this section, yield the desired result..	 n

Using P* , or equivalently P, we can also derive explicit formulas for static full-information
compensators which achieve tine desired objectives in parts ( i) or (ii). This is outlined in the
following lemma which is an extension of results in [2, 15].

Lemma 3 .5 : Let the systems E and E, be defined by (2.1) and (9. 2) respectively. 4ssume
that a matrix P,, > 0 exists satisfying the conditions in part (iii) of lemma 8.2. Moreover,
define P by (8.8).

• A controller satisfying the conditions of part (ii) of lemma 2.2 is described by:

r1 t	 --l' - ' (B  P,. A, + DT C )
F2 ,,	 V-' (BT Pr E,, + DT D22 )

• A controller sa isfying the conditions of part (i) of lemma 3.2 is described by

Fi	
^((

 -F Fi ,T - Fo

F2 = l 0	 F2,*

where F and FO are the parameters of the preliminary feedback described befre lemma
3.2.

Alternatively, we can also describe a suitable controller for E in terms of the original
system parameters of

Fl :_ -Vt (BT PA+D21C2)+(1--VtV)P
F2 : - -1' t (BT PE + D21D22)

where F is an arbitrary matrix such that A + BF, is stable.

Proof : The first part of this lemma is a direct result of [14]. The second part of this lemma
gives two controllers of which it can be easily shown that when applied to the reduced order
system they yield the same closed loop transfer matrix as the controller given in the first
part of this lemma when applied to the original system. Hence she closed loop system has
HO,, norm strictly less than 1. Remains to check existence of a suitable P to yield internal'
stability of the closed loop system. This is shown by using the decomposition introduced
in the beginning of this section together with stability of A,. + B,Fr and stabilizability of
(A1l + B12 F, B1i ).	 n

In the next subsection we show that the part ( i) of theorem 2.1 also implies the remaining
statements of the part ( ii) of theorem 2.1.



3.2 A first system transformation

In this subsection we assume th,3t part (i) of theorem 2.1 is satisfied and we show that part
(ii) of the theorem 2.1 holds, ;A central component of the proof in this subsection is to
transform the 3rigi al system ( 2 .1) into a new systern. This transformation is designed such
that the problem of finding an internally stabilizing; feedback which makes the H ,o norm of
the closed loop system less than 1 for the original system would be equivalent to the problem
of finding an internally stabilizing feedback which makes the H„ norm of the closed loop
system less than 1 for the new transformed system. Moreover, this new system has some
very desirable properties which makes it much easier to work with. In particular, for this new
syst%m the disturbance deco,,pling problem with measurement feedback is solvable. We will
perform the transformation in two steps. First we will perform a transformation related to
the full-information H. problem and next a transformation related to the filtering problem.
We assume that we have a positive semi-definite matrix P satisfying conditions (a)-(c) of
theorem 2 . 1. We define the following system:

Oxp = Apxp +	 Bup + Epu,,,,

EP : I yp = CI,Pr P	 + D17,pt!)p,	 (3.4)

= 03,Pr P + D21,P u P + D72,PU'P,

where,

Ap	 A+E14-1(ET PA, +D22Cr),

Ep	 = ER-•11',

CI,P	 C'1 + D 22 R -r (ET PAr + D22Cr).

C2,P = (^ ^^^) t RT PA + D21 C2 +'(BT PE + D21 D22JR-r J(ETPA, + D2ZGrJ)

D 12,P	
DryR-1/2t

Ds ,P	 4'1/21
D,,,p	 {1'1/2)t (BT PE + D 21 D22) R-O,

where the matrix P satisfies parts (a)- ( c) of theorem 2.1 and the matrices Ar and Cr are
defined by (2.13) and (2.14), respectivel%.
In order to continue, we need the systetu to be in the special basis as defined in the previous
section. Using lerrrma 3.4, we know that P is of the form (3.3) for some matrix P,.. We can
then define the following system:

ox tr = A trxu + Btrutr + Et, u,,
Ecr	 yu = C.,,u x t,	 + D12,t , iv,	 (3.5)

Ztr = C2,trxu + D21 , t rutt + D„,trur.

where

L*	 BrPTBr+D Dr

Au	 A, - Br1 r 1 (BrPrAr + DrC'r)

Bt, 	 BT l0 4 r r^')

Eu	 E2 - Br r1 (Br P, E2 + Drn22)



Cz,u	 C. - D,1;- ' ( BrP .A. + D; C, )
C,,v	 -R -112 (E

 T PfAv+ 	 DT C,,v )

D,z,u	 R1/a

D21N	 A.

D22.11 D22 - D, V̂  1 (B; P,E2 + D: Dz2)

where R is as defined in theorem 2.1. We will show that Ev has a very nice property. In
order to do this, we first, recall the definition of the so -caLed inner systems. Moreover, some
of the important properties of inner systems are also recalled in the following two lemmas.

Definition 3.6 : A system is called inner if the system is internally stable, square (i.e. the
number of inputs is equal to the number of outputs) and the transfer matrix of the system,
denoted by G, satisfies:

G(z)GT(z-1 ) = 1	 (3.6)

Lemma 3.7 : Let the following square system be given:

Eat	
ox = As• + Bit,	

(3.7)
Z =Cx+Du.

Assume that A is asymptotically stable. The system E, t is inner if there exists a matrix X
satisfying:

(a) X =ATXA+CTC

(b) DTC+BTXA=O

(c) DT D+BT XB=I	 q

Proof': See (6, 15).

Lemma 3.8 : Suppose we have the following interconnection of ,two systems El and Ez, both
described by some state space representation:

z	 10

^i
y;	 u

E2

(3.8)



Assume E 1 is inner. Denote its transfer matrix from ( w, u) to (z, y) by L. Moreover, assume
that if we decompose L compatible with the sizes of w, u, z and y:

	

L C

w	 L11 Lt2 
l( w l (z
	 (3.9)

	U	 (Lz	 /'1 L2z/ \u/—\y)

we have Lz1 E E. and L22 is strictly proper. Then the following two statements are equiva-
lent:

(i) The closed loop system (L".8) is internally stable and its closed loop transfer matrix has
H,,,, norm less than 1.

(ii) The system Ez is internally stable and its transfer matrix has H... norm less than 1. O

Proof : See [9, 13].	 0

Now, we are ready to conic back to the system Eu and establish some of its properties in the
following lemma.

Lem.yna 3.9 : The system Ev as def neu by (3.5) iF inner. Denote the transfer matrix of Ev
by U. We decompose U compatible with the sizes of w, uv, zv and y,,,:

( u) ( ^z^ ;22 ( w) _ ( yLl
Then U21 is invertible and its inverse is in Ha . Moreover U22 is strictly proper.	 O

Proof : It can be easily checked that P, satisfies the conditions ( i)-(iii) of lemma 3.7.
Condition (i) of lemma 3.7 turns out to be equal to the reduced order discrete algebraic
IUccati equation as given in lemma 3 . 2. Conditions ( ii) and (iii) follow by simply writing out
the equations in terms of the system parameters of s ystem (2.1).
The stable matrix A,, ,P , as defined in lemma 3.2, can be written in the following form:

Aa.p = Au — EvD-' C,,v	 (3.10)

Next, we show that Av is asymptotically stable. We know F. > 0 and

P. = ArT,P.Av + C a Ci v) Cr,u 1	 (3.11)
Cz;er J

It can be easily checked that x # 0, A,,x = ax, C,,,,x 0 and C2,ux = 0 implies that
A,,,px = ax. Since A,, ,p is stable we have Re J► < 0. Hence the realization (3.5) is detectable.
By standard Lyapunov theory the existence of a positive semi definite solution of (3.11)
together with detectability guarantee asymptotic stability of Ai,.



Z	 w

y	 U

EF

uU=ZP

EP

UP

^F

y(r = WP

We can immediately write dawn a realization for U211:

_^	 oxu =	 Aci.Pxu + Eu D»l tu',

u"	 yu = —DT21 Cl,u xu + D^^1utu,

Since A,,,P is stable we know that UjI l is an H,o function. Finally, the claim that U22 is

	

strictly proper is trivial to check.	 n

We will now formulate our key lemma:

Lemma 3.10 : Let P satisfy theorem 2.1 part (ii) (a)-(c). Moreover, let EF be an arbitrary
linear time-invariant finite-dimensional compensator in the form (2.2). Consider the following
two systems, where the system on the left is the interconnection of (2.l) and (21) and the
system on the right is the interconnection of (3.4) and (2.2)

Z	 w	 zP	 WP

EP

yU	 yP	 UP

EF	 EF
(3,12)

Then the following statements are equivalent :

(i) The system on the left is internally stable and its transfer matrix from w to z has
Ha norm less than 1.

(ii) The system on the right is internally stable and its transfer matrix from wP to zP hasH. norm less than 1. 	 13

Proof : We investigate the following systems:

W

(3.13)



The system on tite left is the same as the system oil 	 left in (3.12) and the system on the
right is described by the system (3.5) interconnected with the system oil 	 right in (3.12).
A realization for the system on the right is given by:

xu — x2,P	 Act,P	 0 0 r„ — r9,P 0
a	 ZP	 =	 •	 A + BNCI BAI rP +	 E + BN D 1 z w

P	 *	 Lam'► I+ P LD12

X U — r,,P

zv	 =	 *	 Cz + Dz 1 NC1 D21 111) T +(D22 + D21 ND 12 ) w

P

where A,, ,P is defined by (3.10). The +'s denote matrices which are unimportant for this
argument. The system oil right is internally stable if and onl y if the system described
by the above set of equations is internally stable. If we also derive the system equations for
the system oil left: in (1.13) we immediately see that, since A,,, ,P is asymptotically stable,
the system on the left is internally stable if and wily if the system on the right is internally
stable. Moreover, if we take zero initial conditions and both systems have the saute input w
then we have z = z,,, i.e. the input.-output, behaviour of both systems are equivalent. Hence
the system oil 	 left. has II,,. nortn less than l if and only if the system on the right has
II,,, norm less than 1.
Ily lemma. 3.9 we may apply lemma 3.8 to the system oil right in (3.13) and hence we
find that the closed loop system is internally s.a le and has II,,, norm less than 1 if and only
if the dashed system is internally stable and has II„ storm less than 1.
Since the dashed system is exactly the system oil 	 right: in (3.12) and the system on the
left in (3.13) is exactly equal to the system on the left in (3.12) we have completed the proof.

n

Using the previous lemma, we know that we only have to investigate the system Ep. This
new system has a: nice property which is outlined in the following lemma:

Lemma 3.11 : Thad exists a matrix 10' such that if u7c define:

F,.P = —D21,PC2,P + (I — D11j.PD21,P)FO
Fz,P = —Dzj,PDzz,P

that we have:

O A P + BF, ,P is stable,

(ii) Cz,P + D21,PF,,P = 0,

(iii) Das,P + D21, ,Pj z ,P = 0.

Proof : We firs! write everything in terms of the new basis introduced in the previous
section. Hence the system parameters have the special form described by (3.1). Then it is



easily checked that conditions ( ii) and ( iii) are always satisfied, independent of the specific
choice for FO . If we also write the matrix FO in the new basis,

Fo =
F'o,11 Fo, 12

FO,zl Fo,22

then we have:

AP + BFI,p
All + Bl l F'o,ll= 

C 0	 Ac,, p

where * denotes a matrix which is unimportant for our argument. According to lemma 3.2, the
matrix A,, ,p is asymptotically stable. Moreover, as noted in the previous section ( A,,,Bil ) is
controllable. Hence, any matrix FO such that Al l + Bll Fojl is stable satisfies the conditions
of our lemma. Moreover, controllability guarantees the existence of such matrices F O .	 n

Remark: The above lemma implies that the full-information feedback u = F, ,pxp ♦ FZ,pwp
applied to Ep yields a stable closed loop system for which the closed loop H. norm is equal
to 0.

Text, we will look at the Riccati equation for the system EP. It can be checked immediately
that X = 0 satisfies (a)-(c) of theorem 2.1 for the system Ep.
We dualize Ep. We know that (A, E, C l , D 12 ) has no invariant zeros on the unit circle. It
can be easily checked that this implies that (Ap,E,C, ,p,D 1 z) has no invariant zeros on the
unit circle. Hence for the dual of Ep we know that ( AT

P
, C; p, ET , DT ) has no invariant zeros

on the unit circle. If there exists an internally stabilizing feedback for the system E which
makes the H,,. norm of the closed loop system less than 1 then the same feedback is internally
stabilizing and makes the H. norm of the closed loop system less than 1 for the system Ep.
If we dualize this feedback and apply it to the dual of E p then it is again internally stabilizing
and again it makes the H« norm of the closed loop system less than 1. We can now apply
lemma 3 .3 which exactly guarantees the existence of a matrix Y > 0 satisfying the following
conditions

(i) Y is such that Sp > 0 where

WP 	 D13,PD12,P + C, ,pYCI P+

TTSP	 I — Dz, pD 2,P — G.P"'C2, P

+ (C2,P YCI P + D,2,PD?,P/ 
tj

^P (CI,PS ,C P + D1z,PDs P) .

(ii) Y satisfies the following discrete algebraic Riccati equation:

Y= ApYAP + EP ETP

	

	 (3.19)

T
 + D1^ P EP '	 C1,P}'AT + Dn,PET(C, , pYAT

C.,PYAP + D.., P EP) Hp(Y )t (C,,PYAP + D,,,pEP)

where

DDT DID PDT 	
+(C.,P) (C..P)T

Hp(Y) := 	1a,P	 99,P Y (3.15)
D2 , PDl,P D,,, P DT,P - C"P 	 C2.P'



(iii) Y satisfies a stability condition: for all z E C with jzj > 1, we have

z1 - A C,, PYAP + D.^,PEP	 CPYAP + D^^.PEP
P + D,,, PD P	 C,, PYC P + D,,, P D23rank 	 -C,,P C,, PYC	 p

-C,,p C,,,YCT p + D»,pD ,gy p Ca, pYC, p + Da9 , pD^ ,P - 1

= n + q + rank t(,)CI(zl - A) - 'E + D12

Note that Y satisfies the conditions (d)-(f) of theorem 2.1 for the system Ep.
The following lemma relates the existence and the solution of the above conditions to the
conditions in theorem 2.1:

Lemma 3.12 :There exist a matrix Y > 0 satsfying the above conditions if and only if there
exist matrices P > 0 and Q > 0 satisfying the conditions in part (ii) of theorem 2.1. Moreover,
in that case we have:

Y = ( I - Q P)'l Q	 o

The above derivation yields the necessity part of theorem 2.1:

Lemma 3.13 :Let E, described by 2.1), be given with zero initial condition. Assume that
(A, B, C2 , D21 ) and (A, E, CI , D12) have no invariant zeros on the unit circle. If part (i) of
theorem 2.1 is satisfied then there exist matrices P and Y satisfying (a)-(f) of part (ii) of
theorem 2.1.	 O

This completes the proof (i) =o, (ii). In the next section we will prove the reverse implication.
Moreover in case the desired compensator EF exists we will derive an explicit formula for one
choice for E.r which satisfies all requirements.

3,3 The transformation into a disturbance decoupling problem with mea-
surement feedback

In this section we assume that there exist matrices P and Q satisfying part (ii) of theorem 2.1
for the system (2.1) and we show that the part (i) of theorem 2.1 holds. First we transform
our original system S into another system Epy. We will show that a compensator is internally
stabilizing and makes the H,o norm of the closed loop system less than 1 for the system E
if and only if the same compensator is internally stabilizing and makes the H„ norm of the
closed loop system less than 1 for our transformed system Epy. Next we will show that Epy
has a following very special property ( see [11]):

There exists an internally stabli--ing compensator which makes the closed loop
transfer matrix equal to zero, i.e. w does not have any effect on the output of the
system z. This property of Epy haj a special name: "the Disturbance Decoupling
Problem with 11!Ieasurement feedback and internal Stability (DDPMS) is solvable"'.



We know a matrix Y :_ (I - QP)- t Q exists satisfying the conditions as outlined in the
previous section. Next, we define Ep y. We start by transforming!"into Ep. Then we apply
the dual transformation on Ep to obtain Ep,y:

Oxpy = Ap,yrp,y + Bpyupy + EP,Ywpy,

EP,)'	yp,^ 	 = C, pz P,^	 + D,2,P,,.wp,,•,	 (3.16)
ZP,Y = C2,P,1' x P.Y + DT1,P,Y uP.Y + D22,P,YU'P,Y,

where

AV	A
p

 - (AP 
1. + EPD i ,P) tvpcl,P

Ev	 E, - (APf̀•CT P + EPD T,P) It PD1,.P

A P,Y	 Ap + ( Av YCT P + EvDi,P)SP'C,,P
[+ 1/2c"

BP , V	 B + ( AV G; P + EI D ^,P))SP' D,,,P

EP,Y	 (Ao^'CIP+EPD3.P+[AIXCI,P+EjD Plsi ' I^',,P}^ CTP + D,,,PD 7.P1)(r,'0/` t

D,,,P,,	 tt'.

D,I,P 1	 Sp'1'D,,,R

D.,,,.,,	
S; 1/ 2

 ( C, , Pj•CT P + D„.PD ^,P) (11'P/^)t

When we first apply lemma 3 . 10 on the transformation from E to Ep and then the dual of
lemma 3 . 10 on the transformation from Ep to Ep, y we find:

Lemma 5.14 : Let P satisfy theorem 2.1 part (ii) (a)-(c). Moreover let an arbitrary linear
time- in variant finite -dimcnsional compensator EF be given, described by (2.2). Consider the
following two systems. u,hcrr the system on the left is the interconnection of (2.1) and (2.2)
and the system on the right is the interconnection of (3.16) and (2.2):

z	 Ut	 zp.)•	 U'p'),

u	 rP,)'

_y	 u	 yp.l+	 up.).

JF	 vF

Then the following statements are equivalent :

(i) The system on the left is internally stable and its transfer mairiz from w to z has
H,,. norm less than 1.

(ii) The system on the right is internally stable and its transfer matrix from wpy to zpy
has H,p norm less than 1.	 O

It reirains to be shown That for Spy the (DDPMS) is solvable. We first need the following
preliminary lemma



Lemma 3.15 : Then exist a matrix KO such that if we define:

Kj,P,Y = -EP,1' D17,P,1• + Ko(I - D19,p,1'DIJ,P,Y)

K9, p,Y = -Df9.P,1-

then we have:

(i) Apy + K,,p,yC,.p is stable,

(ii) EP.Y + KI,P,1'D, 2,P,1' = 0,

( iii) D22.r,Y + K2,P,Y D,2,P,1' _ 0•

Moreover, let F,,p and F, , p be as defined in lemma 8.11. If we define

F1,P,Y	 Fl,p,
F2, p, 1.:- -D,,,p,l, D,,,p,Y

then we have:

(iv) Ap, y + BF, , p,,, = Ap + BF,,p is stable,

(v) C7,P,Y + D21,P,Y FI,P = 0,

(vi) D,,,P,Y + D21.P,Y F9,P,Y = 01

Proof : The construction of a suitable matrix KO satisfying conditions (i)-(iii) is dual to the
derivation of a suitable Fo satisfying the conditions of lemma 3,5. Hence details are omitted.
Conditions (iv)-(vi) can be checked via, straightfoprward algebraic mawpulations. 	 n

Remark: The first part of the lemma is dual to lemma 3.11 and shows that because of the
dual transformation we can now observe the states of Ep,y perfectly. Surprisingly enough the
property that Ep could be controlled perfectly is preserved: the second part of the lemma
shows that also for Epy we can find a full-information feedback that stabilizes the system
and yields a closed loop system with H,o norm equal to 0.
Now we are ready to show the solvability of (DDl'MS) for the system Ep,yin the following
lemma.

Lemma 3,16 Let EF be liven by:

EF:
	 ap = 11 p,,,p + Lp,Yyp,Y+

I uP.y = hIP,1'p + NP,YbP,Y,

where

(3.17)

Np,Y	 F2^yIC2,p,y

MP.Y	 F1,P,Y - NP.1'C1,p

Lp,y	 BpyNP.Y - Ki,p,y

Kp, y	 AP,y + BP,1' AIP,1` + K1,P,1'CI,P

The interconnection of EF and Ep,y is internally stable and the closed loop transfer matrix
front wp y to zp,y is zero.	 0



Proof : We can write out the formulas for a state space representation of the interconnection
of E P,y and EF. We then apply the following basis transformation:

C xP P

—p

/ — \ 0 I / \xPYI

After this transformation one immediately sees that the closed loop transfer matrix from w P y
to zP,y is zero. Moreover the system matrix (2.3) after this transformation is (riven by:

C AP,y + Kj,P,)'CI,P	 U

LP,yC1,P	 AP,y + BP,1'F,^y

Lemm-k 3.15 guarantees that this matrix is asymptotically stable. Hence EF is internally
stabilizing.	 n

We know EF is internally stabilizing and the resulting closed loop system has II,. norm less
than 1 for the system Ep, 1•. Hence, by applying lemma 3,14, we find that EF satisfies part
(i) of theorem 2.1. This completes the proof of (ii) =::^ (i) of theorem 2.1. We have already
shown the reverse implication and hence the proof of theorem 2.1 is completed.

4 Controller structure

In the previous section, we found a controller for E which satin- ies all requirements, but its
structure is very cloudy. In this section we define a controller, which also achieves disturbance
decoupling when applied to S P,1•, but which has a very appealing structure.
We first need to construct a matrix with a desired stability property:

Lemma 4.1 : There exists a matrix !io such that

[I+ 1► o(I — D12,PyD i2,P y )C1,P, ( A P, y - EP,1 Di3,P.),)

is stable.	 0

Proof : According to lemma 3.15 there exists a matrix Ko such that A l + KOCI is stable
where

Al = ( A P, y — EP,yDIa,P,y)

C1 = (I — D,, .P,yD11,P,)')C1^P

Since, for discrete time systems detectability of (C l , A,) implies that the pair (CI A,, A,) is
detectable there exists a matrix ho such that At + IcoCI A, is stable. This implies that ko
satisfies the conditions of the lemma.	 8

Remark: This lemma might look rather strange but it is essential. If we use one-step-
ahead predictors then the estimator is stable if the filter gain 1 ► is such that A + KC is
stable. However, in this section we use current estimators where we also use the measurement



V(k) to estimate x(k). In that case the estimator is stable if the filter gain satisfies (1 + li C)A,
Intuitively the above lemma tells us that we can find a stable current estimator if we can find
a stable one-step-ahead estimator.

Note that an optimal full-information feedback for E P , Y is given by:

UP,Y = Fj^vz P,Y + Fl,P,YwP,Y

where we change F,,p,Y with respect to the previous section into:

F2,P,Y	 D71,P,YD?9,P,Y + (1 - D3t,^yD31,P,Y) FoI^C P(^'P )1.

It can be shown, along the same lines as the proof of lemma 3.16 that the following controller
stabilizes Epy and achieves disturbance decoupling:

op = Apyp + Bp,Yu^ , Y + Ep,ytb — Ko rl l( 7y — CI,P[ A P,Y p + BP,Y u P,, , + EP,Yw[)
w	 =	 D11,P.]'(yP,Y ` C1,Pp)

uP,Y = FI,P,Y ! 4	 F2,P.Yti'

where

nl .= I - D12,pyD;,,p,,. = 1- Wpl4'P

We aro ^ r ing to apply this controller to the system E. However, if we rewrite this controller
in terms of the original system parameters it has a very special structure:

ai =	 Ai + Bu + Ew + oKI(y - )
ow =	 ER-I (ET PA= + D 22C,,)[Ai + Bu + Ew)) + oli2(y - y)

up = C I [Ax + Bu + Ew]+ D 12 EN-I (ET PA.T + D2zC,r)[Ai + Bu + Ew])
U =	 Fl i + F2 lip

where

I> 1 = -ItoII I + 1''Ci P ivt( 1 + CI,pkon 1)

K2 = D 12 pjUP( I + C,,P1► on1)

while FI and F2 are defined by (2.10) and (2 . 11) respectively. We see that we have a full-
information feedback:

U = Fi x + F2 w
where we replace the state x and the disturbance w by their respective estimates i and w.
For the state and and the disturbance we have build a mators. If we write s(klk) for the
estimate of the variable s at time k using measurements y(0) .... y(k) and s(klk - 1) for the
estimate of the variable s at time k using measurements y(0), ... y(k --1) then we can express
the structure even clearer. We get the following form:

x(k+ ilk + 1) =x(k+ilk)	 +Kl[y(k + 1)- y(k + ilk))
w(k + 1 ) k + 1) = w(k + Ilk)	 +K2 [y(k + 1) - y( k + Ilk)).

EF x(k + Ilk)	 = Ax(klk) + Bu(k) + Ew(k)k)
w(k + Ilk)	 = ER-'(ET PA,. + D T Cs)x(k + Ilk)
y( k + 1)k)	 = Cl x(k + Ilk) + D 1 2w(k + Ilk)

u(k)	 Fix (klk) + F2w(klk)



Note that in the state feedback case we can identify a worst -case response for the disturbance
w:

w(k) = ER-1 (E r PA, + DT C,,)x(k)	 (4.1)

In the above controller we have to estimate w(k + 11k). Clearly past measurements do not
tell us anything. However, this controller expects the worst -case response (4.1) and estimates
this worst -case response.

5 Reduced order estimator based controller
In this section we show that for the singular H. optimal control problem satisfying part (i)
of theorem 2.1 we can always find a olution which has dynamical order less than that of
the plant and is of reduced order observer - based structure. This result is analogous to those
obtained in [16] for the continuous-time problems. Without loss of generality, we develop
such a reduced order observer -based controller for the system Epy def .ned in the previous
section. Consider the Spy defined by (3.16). There exists a constant output prefeedback law
Fp1e yp , ,, such that after applying this prefeedback law, namely setting

uP,Y —'~ Fpreypy + UP, ,.,	 (5.1)

the direct feed-through term from wpy from zp, Y disappears. Hence without loss of generality,
hereafter we assume that D2,,P,Y = 0. Also, there exists a state feedback gain Fp y such that

(c2,P.Y + D21,PFP,Y)(61 — AP,Y — BP,Y FP,}')_ 1EP,Y = 0.

Without loss of generality but for simplicity of presenta!, ion, we assume that the matrices
C,,P and D, 2, p,Y are already in the form

`
C}.P	

0	 C1,o2	 and DI2,P,Y	
D12,0 1
	 (5.2)=	 =

IV_MO	 0	 0 I

where mo is the rank of D12, p,,. and D12.0 is of full rank. Then the given system Epy can be
written as,

C z2)	 A21

yoi 	 Ip_,„p

zP.Y

A12
 zl ^ +

A22 z2

C1,02 
l

x l	 +

^0	 / \ x2	 \

C2.P.Y
zl

X2

E1 l
F,2 ) wP }' ( B2 uP,Y

D12,0

0 ) 
WP Y

+ D2},P,Y uP,Y

(5.3)

where (xl, xz)' = zp,Y and (yo, yl)' = yp Y . We note that yl ;c,. Thus, one needs
to estimate only the state Z2 in the reduced -order estimator. Then following closely the
procedure given in [16], we first rewrite the state equation for z l in terms of the measured
output yl and state z 2 as follows,

oyl = Alt yl + Al2Z2 + El wp,,, + Blup,}•,	 (5.4)



where y1 and up y are known. Observation of x2 is made via yo and

P, = Al2 X2 + Elwp,Y = oy, — Ally, — BluP,Y . 	(5.5)

A re ►need-order system for the estimation of state Z2 is given by

Oz2 = AR x2 + ER wpy + ( AN B2 } 1 yl 1 ,

yR = CRx2 + DRwP,Y

where

( C1,02 1	 = r D12,o	 ( )AR = A22, ER := E2, CR ^— t\ 	 J , D
R : 1\	 5,7

Al2	 .E1 )

Based on (5.5), one can construct a reduced -order observer for x2 as,

oil = AR ?'2 +( A21B2	
yl 

J 
+ I► R (CRI 2 — YR)

(UP,,

where KI, is the observer gain matrix chosen such that AR + li RCR is asymptotically stable.
For the purpose of implementing (5.8), let us partition KR = (l RO, 1►R1) to be compatible
with the dimensions of the outputs (yo, j')', and at the same time define a new variable,

V:= i2 + 11 R19f-1

'VN'e then obtain the following reduced order estimator based controller,

av =	 (Alt + 1)RCR)'v + ( B2 + KRj Bl ) u P,)' + GRyP,1',

0	 0	 I	
(5.9)xP )	 ( In—Ptmo ) v	 \ 0	 A' ) 

yP,}'t

uFY = FP.14P,Y + FpreyP,Y+ 	 7

where

GR = [— KRo, A21 + 1) itl A ll — ( AR + 1►RCR)1► R1],

and FPY is state feedback gain and Fpr, is the output prefeedback gain. We know that there
exists an output injection such that:

All Ail+ K,, 1 12	 0	 C1,02	
(5.10)

( A21 A22) ( h21 K22 ) ( Ip—mo 0

is stable and

El + E11 IC12	 D12 ,0 _ 0	 (5.11)
E2 ) (A21 122)( 0 )

Because the matrix in (5.10) is stable there exists a matrix L such that

A22 + 1►21Ci 3O2 + L ( Al2 + .K11C1,02)



is stable. Moreover (5.11) implies that

E2 + Ii21 D12,0 + L(E1 + K11 D12,0) = 0.

Then it is easy to check that a suitable choice for K 1, is given by:

Ka = ( Kno K.I ) _ ( K21 + LK,, L

Remark : It is interesting to point out that the state space representation of the reduced
order estimator based controller in (5.9) might not be minimal and hence the McMillan degree
of this controller might be less than the dynamical order of its state space representation (5.9).
This is mainly due to the stable dynamics which are unobservable in the controlled output
zp,y and they are induced by the output prefeedback law (5.1). A very interesting example
is the state feedback case for C1 = I and D 12 = 0. In this case Fp y can be chosen as a zero
matrix and the output prefeedback law F,,, in (5.1) is equal to Fl,p given in Lemma 3.11.
In view of this, the reduced order estimator based controller (5.9) has McMillan degree equal
to zero and it reduces to the static state feedback solution

UPX = Fi,py•

6 Conclusion

In this paper, we removed some standard assumptions on the system parameters. Moreover,
we specified the structure of discrete time Ih controllers. Finally, we showed how to derive
controllers of lower dynamical order without loss of performance. This is done by deriving
reduced order observers. Our results are obtained under the assumption that both systems
(A, B, C2, D21 ) and (A, E, C1i D12) are free of invariant zeros on unit circle. A most trivial
technique to handle invariant zeros on unit circle is to perturbe the plant data such that the
perturbed plant satisfies our assumptions. However, the resulting criteria for the existence
of the solution to the H,, control' problem for the perturbed' plant are not algebraic in the
nature. Hence the derivation of algebraic criteria directly in discrete domain for this case is
an open problem.
Via the bilinear transform and our knowledge about the problems of invariant zeros on the
imaginary axis for H.,, control problems in continuous time (see [5, 7, 101), we know that in
the case of invariant, zeros on the unit circle several problems arise. These are mainly due to
the fact that H. controllers have a tendency of cancelling stable zeros of the system and will
try to achieve this approximately if there are zeros on the unit circle. Hence we have poor
stability margins. Moreover, the minimal achievable H,,. norm may depend discontinuously
on the system parameters if there are invariant zeros on the unit circle. Hence we also have
numerical difficulties. The main problem in this respect is the nonuniqueness of (sub)optimal'
H. controllers. Suppose we want to get closer and closer to the minimal achievable H,o norm.
When can we avoid almost pole-zero cancellations near the unit circle? For this question, very
little is known. However there are examples where we can get very good stability margins even
though there are zeros on the unit circle. Similarly there are examples where we always have
bad stability margins near optimality. What is needed is a characterization of the achievable
stability margin near optimality.
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