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Abstract

Langley Research Center developed a unique test bed for investigat-

ing the practical problems associated with the assembly of large space

truss structures using robotic manipulators. The test bed is the result

of an interdisciplinary effort that encompasses the full spectrum of as-

sembly problcms from the design of mechanisms to the development of
software. This paper describes the automated structures assembly tcst

bed and its operation, details the expert system executive and its devel-

opment, and discusses the planned system evolution. Emphasis is on

the expert system implcmentation of the program executive. The cxec-

utive program must direct and reliably perform complex assembly tasks
with the flexibility to recover from realistic system errors. The em-

ployment of an expert system permits information that pertains to the

operation of the system to be encapsulated concisely within a knowledge

base. This consolidation substantially reduced code, increased flexibility,
eased software upgrades, and realized a savings i7_ software maintena_ce
costs.

Introduction

Projected, crewed missions to the moon and Mars

depart from previous space endeavors because the

large vehicles involved require assembly and check-
out in space. The construction of these vehicles re-

quires extensive in-space operations that call for en-

hanced capabilities in assembly and servicing. To
perform these functions with the limited crew re-

sources available, a higher level of automation than

that presently available must be realized. As a first

step in this direction, Langley Research Center de-

veloped a unique test bed to investigate the practical

problems associated with the automated assembly of
large space truss structures using robotic manipula-

tors. The research program is an interdisciplinary ef-

fort that encompasses the full spectrum of assembly
problems from the design of mechanisms compat-

ible with automated operations to the definition of
the software structures and algorithms required for

their support.

This research program adheres to the following
design requirements:

1. All system development, testing, and demonstra-
tion are performed using full-scale test hardware

because fill-scale testing is considered the only

way to identify all the problems associated with

automated assembly.

2. System design and automation are integrated and

complementary technologies with solutions that
are developed cooperatively.

3. The program is targeted toward a filly auto-
mated system with either an astronaut or earth-

based operator as a monitor who is needed only

when the robotic system encounters a problem
that requires intervention or assistance. The last

requirement describes a mode of operation known

as supervised autonomy, which holds the most

promise for the accomplishment of large construc-
tion tasks with the limited crew resources avail-

able on orbit.

The purpose of this paper is to describe briefly

the automated structures assembly test bed and its
operation, to detail the expert system executive and

its implementation, and to discuss the system expan-

sion under development. The emphasis of the paper

is the application of expert system techniques to the

program executive; however, the hardware compo-
nents are described, and a narrative of the assembly

process is presented as a basis for the description of
the software and its functions.

Facility Description

The Automated Structures Assembly Laboratory
(ASAL) is shown in figure 1. Figure l(a) shows a

schematic of the assembly system with the major

components labele& and figure l(b) is a photograph
of the facility in operation. The assembly syst.em con-

sists of a robot arm, a motion base system, two spe-

cialized end effcctors, the assembly components for
the structure, and storage canisters for those compo-

nents. The ASAL uses commercially available equip-

ment when possible to minimize cost and to ease
modification as research needs dictate. The hard-

ware system is a ground-based research tool designed
to permit evaluation of assembly techniques, strut



andendeffectorcomponents,computersoftwarear-
chitectureand algorithms,and operatorinterface
requirements.

Thestructureselectedfor assemblyis a planar
tetrahedraltrussthat supportshexagonalreflector
panels.(Seefig. 2.) Thecompletedstructurecom-
prisesatrusswith 102strutmembers,each2m long,
and 12panelsapproximately2.3m acrossthe ver-
tices. The structurewasdesignedas a laboratory
prototypeto representthe structuresthat support
functionalsurfacesona numberof plannedor pro-
posedmissions,suchasantennasandaerobrakes.

A briefdescriptionof themajorcomponentsfol-
lows. The detailsof the facilityhardware,perfor-
mancecharacteristics,andassemblyprocedurescan
befoundin references1 3.

Robot Arm

The robot arm is an electronicallydriven,six-
degree-of-freedomindustrialmanipulatorselectedfor
its reachenvelope,payloadcapacity,positioning
repeatability,and reliability. The robotarm com-
puter is basedona Motorola68000microprocessor,
and all robot motionsareprogrammedin a mod-
ifiedBASICprogramminglanguage.Nomodifica-
tionshavebeenmadeto themanipulatorotherthan
thoseavailablefromthemanufacturer.

Motion Base System

The motion base system includes a linear trans-
lational x-y Cartesian carriage and a rotating turn-
table. The robot arm is mounted on the car-

riage, and the structure is assembled on the rotating

turntable. (See fig. 1.) Motion base drive motors
oil all three axes are commanded by an Intel 80286

microprocessor-based indexer.

End Effectors

The end effectors, shown in figure 3, are special-
ized tools mounted on the robot arm that perform

the strut and panel installation and removal oper-

ations. Figure 3(a) shows the strut end effector,

and figure 3(b) shows the panel end effector. All
end effector operations are controlled by an onboard

microprocessor mounted near the robot arm wrist.

Typical microprocessor operations are detailed in ref-
erence 4. All end effector mechanisms are equipped

with simple sensors such as microswitches and linear

potentiometers to monitor end effector operations so
that the operator can be notified if a problem occurs.

The processor is programmed in ANSI-compatible C

and includes sufficient inout/output (I/O) to moni-

tor the sensors associated with the operations of the

end effector mechanism. A commercial force/torque
load cell is mounted between the end effector and the

robot arm to provide compliant movement capability
during strut retrieval and installation operations.

Truss and Panel Elements

The truss joint and the node design for the truss

assembly are shown in figure 4. The joint is composed

of two parts: the connector (consisting of a face and

a plunger), which is bonded to the graphite-epoxy
tube to form a strut, and the receptacle, which is

mechanically attached to the node. The strut end ef-

fector uses pneumatically actuated receptacle fingers

to grasp passive guidance v-grooves on the recepta-
cles, providing stability during strut installation and

removal (ref. 5). After the end effector inserts the

connector into the node receptacle, locking nuts are
turned by a small electric gear-head motor to secure

the strut into place. Assembly begins by connecting
struts to the three nodes that are premounted on the
motion base turntable.

As the truss assembly progresses, the panels are

placed on nodes at the top of the truss using the

panel end effector (ref. 6). The panel is an aluminum
hexagonal frame with a reflective covering. The

panels are positoned, then locked into place using
end effector actuator pins.

Storage Canisters

The struts are stored in nine trays that are

stacked in the working canister directly behind the
robot arm. Each tray is fitted with handles that al-

low the strut end effector to remove empty trays from

the working canister and transfer them to the storage
canister located at one side of the robot arm.

The panels are stored vertically in a large canister

at one end of the y carriage. The same actuator pins
that are used to attach the panels to the truss are

also used to secure the panels in the canister.

Assembly Procedure

The assembly process begins when the strut end

effector acquires the first strut from the top tray in

the working canister. After acquired, the strut is
carried above the working canister, and the motion
bases are positioned so that the robot arm can reach

the required installation position. The robot arm

then moves through a sequence of predetermined

points to arrive at an approach point approximately



12 in. from the intendedinstallationpoint in the
structure.At thisapproachpoint, controlis turned
overto a machinevisionsystem.

Themachinevisionsystemusestwosmallvideo
camerasmountedoneachendof theendeffectorto
viewtargetsplacedon the receptacles,asshownin
figure4. Thevideoimageof thetargetis processed
to distinguishthe target from the backgroundand
to determineits positionwith respectto the cam-
era. This informationis usedto directrobot arm
movestowardthe targetlocationfor strut installa-
tion. Detailsof the visionsystemcanbe foundin
reference7. After tile armreachesthe installation
point, the visionsystemrelinquishescontrol.Next,
theendeffectorgrapplesthenodereceptaclesin the
structure,repositionstile robotarmto reduceforces
andtorquesat tile endeffectorthat arecausedby
minorpositioningerrors,andinsertsand locksthe
strut intoplace.Therobotarmthenreturnsto the
workingcanisterfor anotherstrut.

Aftera specifiednumberof strutshavebeenin-
stalled,panelscanbesecuredto thetopof thestruc-
ture. This taskinvolvesstowingthestrutendeffec-
tor by latchingit to thetrayin thetopofthestorage
canisterandpickingup tile panelendeffectorstored
at oneendof the panelcanister.Thisendeffector
changeisaccomplishedby a commerciallyavailable
pneumatic,quick-changemechanism.Panelsarere-
trievedusingy-carriage motion base moves and are
installed at predetermined points on top of the truss.
Machine vision is not used for the placement of pan-

els at this time.

Combinations of strut- and panel-installation se-

quences are executed m_til the structure is completed
with 102 struts and 12 panels.

System Control and Communications

Tile ASAL facility is managed by several digi-

tal computers that are serially connected through
RS232 communication lines. The program executive

and operator interface hmctions are performed on
a minicomputer. The robot arm motions, carriage
movements, and end effector operations, as well as

tile computations required by the vision system, are
executed on individual processors.

Software Design

The design layout for the assembly system soft-
ware is illustrated in figure 5 and detailed in ref-
erence 8. The software is arranged in four hierar-

chical levels of commands (administrative, assembly,

device, and component). Each level decomposes into

a sequence of commands for the next lower level. The

preliminary setup of the system is performed at the

highest, or administrative, level. The operator can
examine and modify data and system options and call

select, create, and modify command and assembly se-

quence files. A goal-directed task sequence planner
is intended to interface with this level. Currently

the assembly sequence is manually determined and
maintained in a file. Each entry in the assembly se-

quence file represents an appropriate assembly-level

command (see fig. 5), which specifies tile operations

to be performed on a given element (that is, strut or

panel). The standard operating mode is centered at
the assembly level and reflects the automated aspects

of the system. At this level the software manages
all the devices, data verification, and error recovery.

The assembly-level commands decompose into a se-
ries of commands for each of the three devices: the

motion bases, the robot arm, and the end effector.

Although the assembly system is intended to op-
erate in a fully automated mode, it is imperative

that the operator is provided with sufficient internal
information and has command access and authority

at all levels to deal effectively with assembly errors.

The operator completely controls error recovery and
makes the final decision on error resolution. The op-

erator can decide that an error is not severe, then

command the system to proceed. Also, if none of tile

recovery options presented are suceessflll, the oper-
ator can instruct the system to abort the failed op-

eration and automatically roll the assembly process

back to a known, successful condition. During assem-

bly operations, the operator can pause the assembly
process at any point and examine system details us-

ing a vide() display, before either continuing or revers-

ing the sequence.

The executive portion of the assembly system
software directs and monitors assembly-level opera-

tions across the different processors and reports cur-
rent status information to the operator. The ex-
ecutive maintains the conditions and constraints of

the assembly operations such ms details of the geom-

etry of both the structure and the storage canisters.

During an assembly, the executive determines what
end effector to use and maintains the procedures re-

quired for its use. Finally, the executive tracks pos-

sible problems and recovery techniques for all assem-

bly scenarios. To perform these functions effectively,
the executive has fllll access to the current status

of the assembly operation and the system hardware,

which includes complete, detailed descriptions of the
state of the assembled structure, the motion base,

the robot arm, and the end effector hardware. This



informationiscontinuouslyupdated,basedonsensor
verification.

Initially, theassemblysystemsoftwarewaswrit-
ten in FORTRAN.Theprocedurallanguagewasfa-
miliar to developersinASALsocouldbeusedto ver-
ify andrefineassemblysystemoperationsrelatively
quickly.Theinitial taskwasto constructasimplified
structureof 102struts,usinga single,premounted
endeffector.Thefunctionsof theendeffectorwere
commandedby therobotarmcomputer.Tile robot
armmovedto predefinedinstallationpositionswith-
out themachinevisionsystem.However,asthescope
of tile researchprojectgrewwhenpanels,a second
endeffector,anddistributedprocessorswereadded,
thecomplexityof the informationto bemanagedby
theassemblysystemsoftwareincreased.Becausetra-
ditionalprogramminglanguages were slow to keep up
with system upgrades, portions of the software were

rewritten using an expert system. The first level of
code targeted for this transition was the decision-

intensive program executive. The following sections

describe the application of expert system techniques
to the executive. Examples are presented.

Expert System Executive

The task of the program executive is to decide
what actions to take (and the order in which to take

them) during the construction of a given structure.

To make informed decisions, the executive must have

access to all current system information and the abil-

ity to evaluate that information in light of the desired
task. This decision-making component of the assem-

bly system software is best suited to implementation

using expert system techniques.

Methodology

An expert system is a computer program that

uses knowledge and reasoning techniques to solve
problems that normally require the services of a hu-

man expert. A subset of the general area of expert

systems concentrates on explicit representation of the

knowledge of an expert about a class of problems,
then provides a separa.te reasoning mechanism (called

an inference engine) that operates on this knowledge
to produce a solution. These systems are known

as knowledge-based expert systems. The knowledge

base is a file that contains the facts that compose

expert knowledge about a specific domain. An in-

ference engine is a program that applies reasoning

techniques to the facts, as defined by the knowledge
base, to draw conclusions. Inference engines vary ac-

cording to the representation of the knowledge and
the strategy for applying the knowledge.
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A variety of expert system development tools are

available to assist programmers in building power-

ful systems that can solve a wide range of problems.

The commcrcially available Knowledge Engineering
System (KES), as described in references 9 and 10,

was selected for use in ASAL. The KES tool provides

the inference engine, the knowledge representation

schemes, and the facilities for creating an operator
interface. The KES also provides an embedding util-

ity to integrate expert systems with existing soft-

ware by allowing the procedural language code to

send, receive, and modify data from a knowledge base
through special data types and run-time functions.

The KES inference engine uses rules to represent
knowledge. This knowledge representation scheme

is particularly well-suited to an application such as

automated assembly, which organizes facts in the
form of branching logic or if-then constructs. The

KES uses deductive reasoning ms the technique for
problem solving; that is, certain outcomes follow

directly from certain inputs.

The pursuit of a solution (or goal) drives the rea-

soning methodology used by the KES. This goal-
driven, inferencing technique is known as backward

chaining. Implicit subgoals are set up to determine
values for attributes that appear in the antecedent
of a rule that infers a value for some other attribute

until a value for the goal attribute has been deter-

mined. In addition to goal-driven inferencing, the

KES also performs event-driven inferencing through

the use of demons. Event-driven (forward-chaining)
inferencing occurs when the expert system responds

to an event rather than pursues a goal.

The following section describes how this method-

ology was applied to the assembly system software in
ASAL using the KES.

hnplemcntation

As mentioned, the executive portion of the assem-

bly system software was the first to be implemented

as an expert system. The executive is responsible
for managing all the devices (the motion bases, the

robot arm, the end cffectors, and the vision system),
performing data verification, and enacting error re-
covery. Figure 6 illustrates where the knowledge base

fits into the overall software system architecture. By

embedding the knowledge base in the existing assem-
bly system software, the executive has access to ex-

pert system methodologies for making decisions; at

the same time, the familiar operator interface and ex-
isting data base management schemes are left intact.

The operator gains access to the executive

through a menu-driven interface. By implementing a



menu-driveninterfacetheoperatorispresentedwith
onlythecommandsneededatagiventime.Asshown
in figure6, a layerof proceduralcode(FORTRAN
and C routines)surroundsthe knowledgebaseand
handlesthe menufunctionsand informationex-
changebetweenthe knowledgebaseandthe hard-
ware. Data baseinformationis also transferred
throughthissurroundingcode.Theknowledgebase
containsthedataconstructs(attributesandclasses),
rules,anddemonsnecessaryto makeinformeddeci-
sionsabouttheassemblyprocess.

Theexpertsystemusesthe knowledgebaseas
tile prinlarysourceto (let.ernfinethecomnmndsent
to a particulardeviceat a giventinie. Commands
associatedwith thespecifchardwaredevicearesent
to the individualprocessorsfor interpretationand
execution.Sensorsarepolledthroughdeviceinter-
faces,andinformationis returnedto theknowledge
basewhenhardwarestatusisneeded.Afteradevice-
specificprocessorhascompleteda conunand,a re-
turn codeis forwardedto theknowledgebasesothe
nextactionCallbesent.If thecodeisreturnedsuc-
cessfully,thedatabaseisupdate(t,andthenextcom-
niandin thesequenceof assemblyactionsis deter-
mined.If anerroroccurs,instructionsto return to
the lastknownsuccessfulstatemaybeissued.Infor-
mationaboutall systeuifunctionsisconstantlyup-
datedandreportedto theoperatorby wayofstatus
windows.

Tile structureandcontentof theknowledgebase
liesat theheartof theexpertsystemtherefore,flir-
ther considerationis warranted.Tile nextsections
detailthemoreimportantcomponentsoftheknowl-
edgeba_seandpresentexamplesof their application.

Classes. The KES tool lisps a structure called a

class to describe a group of objects with the same

set of characteristics. Each object is referred to as a
member of the class, and each characteristic is main-
taine(1 in a (:lass construct known as an attribute.

Two (:lasses are defined in the current: autolnated as-

sembly knowledge base: one for struts and one for

panels.

The strut class contains 102 mfique members,
one for each strut in the structure. The format of

the class definition for struts, wtiich inchldes the
attribute declarations for strut members, is shown

in figure 7. The attribute vahics associated with

the physical aspects of the strut for the individual
members are stored in a data base. As indicated

in figure 7, 13 attributes are identified for struts:

three that are associated with naming conventions
(OBSERVER NAME, ALTERNATE NAME, and ROBOT

NAME); two that identify the canister storage location

(TRAY, SLOT); five that contain information at)out

the physical characteristics of the strut (NODE END)

and any special conditions for installation (CAP END,

FLIP, CAN_FLIP, and NODE DIRECT); one that tracks

the current location of the strut (WHERE); anti two
that define carriage positions of the robot arm during

installation (MB_INDEXl and MB_INDEX2). Additional
information about these attributes can be foun(t in
reference 8.

A class has also been defined for panels; this class
contains information that pertains to the installed

location for the t)anel an(t the paiml installation
status.

Rules. Rules form the knowledge source avail-

able to the inference engine. They represent expert
knowledge, and the3, direct the actions of the expert

system towar(t a desired goal. The general format of
the rules is

if antecedent then consequent endi:[.

When the logical coniparison in the antecedent is
true, tile rule "fircs," and the KES comnlands in the

consequent are perforined, which drives the system
toward a goat. For the expert systeni executive, the

rules formulated require knowledge of the physical

operations, the potential system states, and the ca-
pabilities of the hardware. Rules have been defined

to capture information that pertains to tray-transfer

operations and path-segment selection for strut- and

panel-installation and/or removal operations.

The path the robot arm travels, from a rest posi-
tion above the working canister to the installation

point in the structure, is defined by a nunlt)er of
states. Figure 8 presents two rules that are used to

determine the next state (next_state) in the instal-
lation path for a strut. For this illustration, the robot

arm is poised above the working canister, waiting for
directions to proceed to the grasp point of the current

strut (current_strut) in the canister. The current

location of the robot arm (current_state) and the

direction of the robot arni motion (phase) determine
the next state in the path of the robot.. The robot

phase (either into or out of the structure) is (teter-
nlined from the current location of the robot arm

(current_state), the current location of the strut

(current_strut>where), and the task or goal spec-

ified by the operator (target_state). The current
location of the robot arm is nlaintaine(l in a data

base, and the location of the strut is held within the
class member for that strut. To determine whether

the consequence of the state rule is performed, the



phaserulemustbeevaluated.Thefiring of a rule
oftendependsonthesatisfactionofotherrules.This
backward-chainingtechniquemakesrulesextremely
powerful.

Thestrut-installationpath fromthegrasppoint
of thestrut at the canisterthroughthe installation
point at the structureand backrequires22 rules.
Thetotalknowledgebasecurrentlycontains59rules:
22rulesto determinestrutassemblypathspreviously
indicated,22 for panelpaths, and 15 to transfer
traysto andfromtheworkingcanisterto thestorage
canister.

Demons. Demons provide a method for event-

driven inferencing within KES. The rules actively
seek additional information to satisfy a specific goal,

whereas demons remain passive until an event occurs
that initiates execution. Demons modularize the

procedural portions of the knowledge base and are
useful for monitoring attributes for new or changed
values.

A demon is composed of two parts: a guard and

a body. A guard is similar to the antecedent of a rule
and contains conditional statements to be evaluated.

The body contains a list of commands that KES

executes sequentially. Assigment of a new value to
an attribute in a guard constitutes an event, which

causes all associated demons (that is, demons with
that attribute in their guard) to be evaluated. If

the guard is true, then KES executes the commands
in the body of the demon. In the expert system

executive, when a value is assigned to an attribute in

the consequent of certain rules, a demon is activated,
which initiates event-driven inferencing.

For example, suppose the state rule of figure 8 is

true, and the next state in the strut installation path
is determined to 1be the canister grasp point (GP_CAN).

The assignment of GP_CAN to the next_state at-
tribute causes the demon in figure 9 to be evaluated.

This demon is used to generate the command strings

necessary to move the robot arm to GP_CAN. After

some preliminary flags are set, the demon executes

as follows (see fig. 9):

(a) By assigning a value of true to the attribute
check_scar, another demon is activated, which en-
sures that the end effector is in the configuration nec-

essary to make a safe approach to the canister.

(b) The value returned by the end effector is

stored in the attribute ee response, which is exam-

ined before continuing.

(c) An uncorrectable error during the end effector

operation would cause a rollback of the system to the
last successful state.

(d) A successful return from the end effector

permits the expert system to send a command to
the processor associated with the robot arm to reset

the force/torque load cell.

(e), (f), and (g) Installation conditions for the
current strut are examined, and the command string

is synthesized.

(h) and (i) The slot and tray numbers for the
current strut are appended to the command string,
and the command is sent to the robot. The assign-
ment of true to the send_merlin attribute consti-

tutes an event which activates yet another demon,

which sends the command and evaluates the robot

response.

(j) If the device operates successfully, the cur-
rent state is updated. The message command is

the means for sending the new value for the robot
arm state to the data base through the embedded

interface.

(k) and (1) An unsuccessful robot operation re-
suits in a reverse, or rollback, to the last known suc-
cessful state.

A demon can change the value of the attribute

that triggered its execution and resulted in recursive
behavior. The body of a demon can also determine
the value of another attribute that may itself contain

associated demons. (See items (a) and (i) in fig. 9.)

These demons can be triggered, which invokes for-
ward chaining. By blending forward and backward

chaining in a recursive environment, the expert sys-
tem executive has evolved into a concise and powerful

mechanism for representation of assembly knowledge.

Benefits

The concise represcntation afforded by the rule-

based system reduced the lines of code significantly

compared with the procedural (FORTRAN) version.
In the initial implementation, the strut-installation

path from the approach point above the working
canister to the installation point in the structure

and back required 19 rules and 26 demons. Each

rule requires 3 lines of code; with the demons, about
445 executable lines of code were required for the im-

plementation. These simplificd constructs replaced

approximately 1615 lines of executable FORTRAN,
for a 72-percent reduction in code. Since this ini-

tim implementation, several additional capabilities
have been added to the system (tray and panel op-

erations, end effector changes, and machine vision),
and the number of lines of code is still below that

of the original FORTRAN version. This reduction
in code increased maintainability and allowed rapid

performance of modifications and upgrades.



A test wasperformedto assessthe impactof
addinganadditionalstatein thepathforastrut in-
stallationonboththeFORTRANversionandtheex-
pertsystemversionof theassemblysystemsoftware.
Thismodificationis typicalof thechangesmadet.o
the softwareoil a regularbasis.In the FORTRAN
version,114executablelinesof codewereadded,and
22existinglinesweremodified.Thesemodifications
affectedfiveexistingsubroutinesand requiredfive
additionalsubroutines.In theexpertsystemversion,
45 linesof codewereencapsulatedin 2rules(3 lines
each)and2 demonsfor theadditionof a newstate.
Fiveexistinglineswerealsomodified.The knowl-
edgebasewaseasierto debugand modifybecause
the knowledgeis separatefromthe algorithmsand
isreadilyaccessibleat.run time,trottheFORTRAN
versionwasspreadacrossarangeof routinesandre-
quiredcontinuedcompilation.TheFORTRANpro-
grammerestimatedapproximately8 man-hrto im-
plement,delmg,and test the change,yet the task
wascompletedin theexpertsystemin only2 hr.

Thisstructuralassemblyprojectisrelativelysin>
piecomparedwithmanyofthein-spacecheckoutand
servicingtaskscurrentlyproposed.This first appli-
cationof expertsystemtechniquesto theoperations
in ASALhasprovenmandatoryfor effectivesyst.em
Inanagement.Knowledge-basedmethodologiesarea
requirementforthetimelydevelopnmntandmainte-
nanceof thesecomplexsystems.

Research Opportunities

Thegoalof tile ASAL researchis to developa
completeintegratedassenlblysystemthat incorpo-
rateson-line,mltomatedplanningand scheduling
fimetions.Tileexpertsystemexecutivedescril)edin
this paperrepresentsa first stepin anevolutionto-
wardtheseadvancedcapabilities.

The expert systemexecutivehas successflllly
demonstratedtile complete assemblyof tile
102-nmmbertrussstructurewith the 12 attached
panelsusingmachinevisionandthemicroprocessor-
controlledendeffectors.This test.verifiedthecapa-
bilitiesof tile hardwarean(lthesoftwareandestab-
lishedtheutility ofasupervised-autonontyoperation
mode.In addition,perfornmneedataweregathered
that helpdirecttheevolutionof tile system.Quan-
tificationof errorrecoveryactionstakenbytheoper-
atorwith thegoalofautomatingninnyerrorrecovery
proceduresis nowin tilework.

Currently,,whenanerroroccurs,amenuofpoten-
tial solutionsispresentedto theoperator.Theoper-
ator nmstfirst assesstile errorby visuallyverifying
sensordata,thenselectoneor moreoptionsfroman

errorrecoverymenu.By recordingandstudyingsuch
informationastheoperatorchoices,thestateof the
systemwhentheerroroccurred,the orderin which
error recoveryactionsareattempted,andthe suc-
cessfulactionsaswellasthefailures,manyprocesses
canbeautomated.Thefinal decisionon errorres-
olutionstill restswith theoperator;however,some
historicallysuccessfulerror recoveryactionscanbe
attemptedbeforeoperatorinterventionisrequested.

Theenhancementwith the largestsoftwareim-
pactwithinASALis thechangeoverfromtile current
systemarchitectureto tile highlydistributedarchi-
tecturedepictedin figure10. With this newarchi-
tecture,the deviceshavetheir ownprocessorsand
arecontrolledby anexpertsystemscheduler.Main-
tenanccofseparatedevicesfor individualprocessors
allowsfor concurrentactivityamongninnyassembly
operations.

Severaladvancedplanners,eachonewith its own
knowledgebase,arealsoincludedin thedesignofthe
newarchitecture.In this system,knowledgebases
existforthefollowing:
1. A task plannerto developassemblyscenarios,

basedona definitionof trussgeometryandstiff-
nesscharacteristics

2. A tray-storageplannerto determinestrut storage
andretrievaloperations

3. A pathplannerto specifyacollision-freepathto
the structurewithoutrelianceon predetermined
approachpoints

4. A sequenceplannerto combinethe information
fromtheotherplannersto producea scriptof as-
semblyoperationsthat highlightstheconcurrent
actions

To managethe increasednumberof knowledge
basesand individualprocessors,an advancedap-
plicationsdevelopnlenttool knownastile Strategic
NetworkedApplicationsPlatform(SNAP)waspur-
chasedfrom the supplierof KES.The SNAPtool
supportsthedevelopmentof applicationsthat oper-
ate in a distributedhardwareenvironment.Exist-
ingKESapplicationscanbedirectlyconvertedinto
SNAP-compatibleapplications.

Concluding Remarks

Tile researchconductedin theAutomatedStruc-
tures AssemblyLaboratory (ASAL) successflllly
demonstrated the viability of using robotic manip-
ulators to automatically asseml)le and disassemble

large truss structures. During the construction of

a given structure, tile executive portion of the as-

sembly system software is responsible for deciding

7



what actions to take and the order in which to take

them. Due to the complexity of the executive soft-

ware, continued implementation in traditional pro-

gramming languages (i.e., FORTRAN) became pro-

hibitive. Thus, preliminary investigation into the

application of expert system technologies to perform

the decision-making portions of the assembly soft-

ware was extremely encouraging.

Future enhancements include implementation of

a distributed architecture and several advanced plan-

ners. Multiple devices, each one with its own proces-

sors, will be controlled by an expert system scheduler.

The addition of advanced planners with individual

knowledge bases will establish an assembly system

that promises to be both robust and reliable.

NASA Langley Research Center

Hampton, VA 23681-0001

June 22, 1993
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Figure 1. Automated Structures Assembly Laboratory.
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Figure 2. Tetrahedral truss with hexagonal panels.
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(a)Strutendeffector.

Figure3. ASALendeffectors.
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(b) Panel end effector.

Figurc 3. Concluded.
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Figure 4. Truss .joint and node hardware.
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Classes:

STRUTS:

attributes:

OBSERVER NAME: str.

ALTERNATE NAME: str.

ROBOT NAME: str.

TRAY: int.

SLOT: int.

NODE END: str.

CAP END: str.

WHERE: sgl (CANISTER, INSTALLED, ARM).
FLIP: str.

CAN_FLIP: truth.

NODE DIRECT: str.

MB_INDEX 1: int.

MB_INDEX2: int.

%

endclass.

Figure 7. Class definition of struts.

State:

if

current_state = AP_CAN* and

phase = out

then

next_state

endif.

= GP_CAN**

Phase:

if

current_state = AP_CAN and

target_state = GP_CAN and

current_strut>where = CANISTER

then

phase = out

endif.

I ARM

* AP_CAN • Canister approach point

** GP_CAN: Canister grasp point

Figure 8. Example rules for strut-path determination.
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State GP_CAN:

when

next_state = GP_CAN

then

reassert rule_flag = false.

erase status_mode.

(a) reassert check_scar = true.

(b) if ee response = reversed then

(c) reassert return = true.
else \ ee response = worked

if ((init = false and restart = false) or override) and

status_mode = false then

(d) message "COMMAND$reset fts".

endif.

(e) if current strut>CAN_FLIP then

(f) reassert tomerl = "GOTO GP_FLIP_CAN*".

else

(g) reassert tomerl = "GOTO GP_CAN*"

endif.

if determined (current strut) then

(h) reassert tomerl = combine(tomerl,current strut>SLOT,"*",

current strut>TRAY).

endif.

(i) reassert send merlin = true.

if halt_op = false then
if robot success then

(j) message "UPDATE$charstate,GP_CAN".

reassert current_state = GP_CAN.

else \ return to calling state

if current strut>CAN_FLIP then

(k) reassert tomerl = combine("GOTO REV_GP_FLIP",
|I _/C I|current strut>SLOT, ,current

strut>TRAY).

reassert send merlin = true.

endif.

(1) reassert return = true.
endif.

endif.

endif.

endwhen.

Figure 9. Demon for moving robot to canister grasp point.
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Path planner

* Approach req.'s

* Timing/max velocity

Task planner

* Order of assembly

* Structural integrity

Sequence planner

* Desired views

* End effector op.'s

* Set concurrency

Errors
Tray storage planner

* Stacking/clearance
* Element selection

* Tray movements

Scheduler

* Error management
* Guidance mode control

* Concurrency monitor

* Data log

I End effectorRobot CPU CPU Vision CPU

Figure 10. ASAL-distributed architecture.
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