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1 Introduction

As the trend toward acquisition and storage of earth science imagery increases, the

availability of good compression and coding techniques becomes more and more im-

portant. The particular compression needs among the earth science community are
somewhat diverse. For some classes of images, there is a reluctance to accept any

coding distortion. This can severely limit the amount of compression that can be
achieved. In other cases, restrictions are milder and some amount of distortion can

be tolerated as long as the visual results axe perceptually indistinguishable from the

original. There are also cases in which small but visible forms of distortion may be ac-

ceptable as long as the nature of the distortion does not interfere with the features of
interest. In addition to quality, other system-related features may be important. For

example, fast decompression capability for browsing archival databases, fast encoding

capability for real-time transmission, and reduced sensitivity to channel coding errors

for applications requiring transmission through noisy channels are sometimes high

priority features. Given this variance in compression needs, a variety of compression

approaches should be considered to address individual requirements.
In this paper, we discuss compression based on some new ideas in vector quan-

tization and their incorporation in a subband coding framework. Several variations

are considered, which collectively address many of the individual compression needs
within the earth science community. The approach taken in this work is based on

some recent advances in the area of variable rate residual vector quantization (RVQ).

This new RVQ method is considered separately, (in the next section) and in con-

junction with subband image decomposition (in the following section). Very good
results were achieved in coding a variety of earth science images. The last section of

the paper provides some comparisons that illustrate the improvement in performan_
attributable to this approach relative to the JPEG coding standard. Due to page

limitations in these proceedings, only one earth science image is prese_-nted for iUus-

tration. However, a variety of coded earth science image examples will be presented

at the conference.
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2 Residual Vector Quantization (RVQ)

Residual Vector Quantization (RVQ), whicli is also called multistage vector quanti-

zation in the literature, consists of a cascade of VQ stages, each operating on the

"residual" of the previous stage. Typically an RVQ will have many stages which can

be indexed i - 1,2,..., P. Each stage codebook contains N_ code vectors. Thus the

total number of vectors in the RVQ is _,_P=1 N_; however, the number of direct sum

I'l_=l N_. Hence the RVQcode vectors uniquely representable by the RVQ is N - P

requires only a very modest amount of memory while being able to effectively rep-

resent a tremendous number of distinct code vectors. Each of these distinct vectors

or direct-sum code vectors is obtained by adding the appropriate code vectors from

each stage, hence the name direct-sum. The codeword associated with each direct-

sum code vector is simply the concatenation of appropriate indices from each stage.

Consequently, each direct-sum code vector is defined by one of N indices, each of the

same length.
Fixed rate RVQ is always upper bounded in performance by (conventional ex-

haustive search) vector quantization. The observed RVQ degradation in performance

is believed to result from entanglements in the RVQ tree and from the direct-sum

codehook structure. Thus it is important to design the RVQ carefully to obtain the

best possible performance.

First, it has been shown in [2] that better performance can be achieved by de-

signing the RVQ in a way that jointly optimizes each stage codebook. Necessary

conditions for optimal fixed rate RVQ have been derived [2], and a jointly optimal

RVQ design algorithm has been used [2, 11] to design fixed rate RVQ codebooks.

While one of the conditions (the nearest-neighbor rule) suggests that all direct-sum

vectors in the RVQ codebook are exhaustively searched (which is computationally

demanding), earlier RVQ implementations were based on sequential search [2]. How-

ever, this fast searching technique leads to substantially reduced performance, as was

observed in [2]. Multipath searching (introduced in [8] for tree searching) was shown

[2, 9] to be very effective in trading a substantial reduction in computations for a small

loss in performance. Interestingly the value of M (number of searching paths) does

not have to be very large in order to achieve performance close to that of exhaustive

search. In particular, values of M as low as 2 and 4 lead to significant improvement in

performance. Therefore, an M-search RVQ design algorithm usually achieve a good

compromise between performance and complexity.

2.1 Variable Rate RVQ

When the codewords axe allowed to be variable, the average bit rate for the coded

image can most often be reduced below that of a fixed rate system. Variable rate

schemes usually exploit the entropy of the input signal thereby allowing a reduction

in rate without a further reduction in quality.

The multistage structure of RVQ can be exploited, leading to a variable rate

quantizer where the input vectors are encoded using different numbers of stages [10].



For eachinput vector, the encodingterminatesonce the distortion falls below a pre-

determined threshold. Then, the number of stages used to encode an input vector

is sent to the decoder as side information, which can be very costly. However, when

relatively large vector sizes (such as 8 x 8 or 16 x 16) are used, side information

requires only a small fraction of the total bit rate [10].

The variable rate RVQ as described above does not exploit the signal entropy

explicitly. Another variable rate RVQ (described in [12, 14]) is based on a mathemat-

ical formulation that includes entropy explicitly as a parameter of the RVQ design

problem. Very recently, necessary conditions for the optimality of variable rate resid-

ual vector quantizers were derived [12, 13], and s jointly optimal entropy-constrained

RVQ (EC-RVQ) design algorithm (described next) was used to design locally optimal

EC-RVQ codebooks.

2.2 The Entropy-Constrained RVQ Design Algorithm

The new entropy-constrained RVQ (EC-RVQ) design algorithm [12, 14] attempts to

jointly optimize each stage codebook to minimize the reconstruction error over all

training data subject to s constraint on the output entropy of the RVQ. It is an

iterative descent algorithm based on a Lagrangian minimization (similar to the EC-

VQ design algorithm [4]), where each iteration tries to simultaneously satisfy the

necessary conditions given in [12, 13]. As in the design of optimal fixed rate RVQ

codebooks, rnultipath searching is used in the encoder optimization step of the EC-

RVQ design algorithm to closely satisfy the nearest-neighbor encoding rule. The

M-search algorithm is found [14] to be very efficient in substantially reducing the

encoding complexity of EC-RVQ for only a small loss in performance. Also in the

design of EC-RVQ codebooks, the optimization of the decoder is the same as the one

used in the design of fixed rate RVQ. The Gauss-Seidel algorithm (described in [13]) is

used to find optimal stage code vectors (i.e. they simultaneously satisfy the centroid

condition). Finaily, the optimization of the lengths of the stage codewords can be

done by incorporating an optimal coder design algorithm (such as the HulTman coding

algorithm) into the EC-RVQ design algorithm, or by assuming an ideal entropy coder

and using the self-information of a P-tuple index j - (jl,j2,.-. ,JP) as the optima]

length of the fictional variable length codeword associated with that index j. It is

shown in [12] that the self-information of s P-tuple index j is also equal to the sum

of P stage conditional self-information components. Therefore, a sufllciently large

training set can be used to find the conditional stage probabilities which will be used

during the next iteration. The memory required to store all tables of stage probabil-

ities can be very large, but a substantial reduction in memory requirements can be

achieved if the lengths of the pth stage codewords are approximated or estimated by

making a Markov-like assumption and using conditional probabilities which depend

only on the last m < p- 1 stages. As expected, the performance of EC-RVQ improves

as rn approaches P. Empirical results in [11, 12] show that this improvement is very

rapid and performance levels close to that of the optimal Pth order EC-RVQ can be

achieved with small values of m.



Entropy-constrained residual vector quantization or EC-RVQ has several impor-

taut advantages over entropy-constrained VQ (EC-VQ) [3l, [4] and the alphabet and

entropy constrained VQ or AEC-VQ discussed in [16]. While EC-VQ has been shown

to lead to a significant improvement in performance, it usually requires a large volume

of memory for codebook storage and has a high level of computational complexity.

A substantial reduction in memory could be made using AEC-VQ [16], which re-

suits in some small loss in perform_ce but significantly less memory. However, the

computational complexity still remains high. EC-RVQ is shown to be capable of

achieving quality surpassing that of both AEC-VQ and EC-VQ, and its memory re-

quirements are typically 30 times less than that of EC-VQ. Most important is that

the computational requirements are only about 3% of that of EC-VQ and AEC-VQ.

The large computational complexity and memory requirements usually limit the

codebook size used in EC-VQ and AEC-VQ, leading to variable rate VQs with rather

limited output alphabet sizes. Therefore, the peak bit rate is usually not high (around

0.75 bits per pixel for 4 × 4 vectors), and EC-VQ and AEC-VQ fall short of achieving

their performance potential. However, the EC-RVQ design algorithm can be used

to design high rate codebooks, codebooks with high peak rates, and codebooks with

relatively large vector sizes (such as 8 × 8). Since relatively high average encoding rates

(typically 2.0 or 3.0 bits per pixel) are usually needed to encode low frequency image

subbands, EC-RVQ can even be used to code these bands, resulting in a completely

EC-RVQ based subband image coder. Indeed, subband/EC-RVQ systems work very

well and are shown to achieve good quality at very low bit rates.

3 Coding Image Subbands Using EC-RVQ

The front-end of a subband image coding system (called the analysis system) de-

composes the input into subband images by using maximally decimated filter banks.

The dual process is called the synthesis system. It recombines the subbands using an

interpolation filter bank. There are many factors that must be considered in design-

ing and implementing the analysis/synthesis system, such as the frequency domain
characteristics of the filter banks, the step response characteristics of the filters, the

computational efficiency, the method for handling the image boundaries, and the sub-

band decomposition structure. In this system we employ the computationally efficient

IIR allpass polyphase filter banks based on two-band decompositions. A two-band

systems is shown in Figure 2 and the corresponding polyphase structure is shown in

Figure 3. The subband decomposition considered here is a rectangularly separable
one in which the rows are first split into highpass and lowpass sequences and then

the columns of the result are split in the same way. Four subband images result from

this process, each with a distinct region of the frequency domain associated with

it. In this implementation, the lowest frequency subband is further subdivided into

four subbands producing a total of seven subband images. The recursive filter banks

considered in this implementation are attractive from a computational efficiency view-

point since they can be designed to have narrower transition regions than FIR filters

of the same order of complexity.
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Figure 1: Two-Band Analysis/Synthesis System
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Figure 2: Two-Band Polyphase Implementation of the Analysis/Synthesis System

A few words are in order about the filters and their properties. The two-band

system, shown in Figure 2, contains four filters: Ho(z) and Go(z), the analysis and

synthesis lowpass filters; and Hi(z) and G_(z), the analysis and synthesis highpass

filters. The analysis filters have the form

where

Ho(z)= Po(z2)+ Pl(z2)z-1

Hi(z) = Po(z2)- Pl(z2)z-1
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and a0 = b0 = 1. Ansari and Lui [1] have shown this class of filters to be extremely

cost effective for sampling rate alteration applications. The high efficiency is due to

the fact that each filter Po(z) and Pl(z) is an allpass filter and symmetry can be

exploited in the difference equation.

As discussed in [6] the set of synthesis filters for exact reconstruction are

Go(z) = QoC,z2) + QiCz2)z -' (5)



and

a,(z) = QoCz 2) - Q,(z2)z-' (6)

As before, the synthesis filters Go(z) and Gl(z) may be implemented in the polyphase

form shown in Figure 3 where Qo(z) and Ql(z) are called the synthesis polyphase

filters. The polyphase synthesis section is exactly reconstructing when

1 (7)

and
1 (8)p-7 i

In subband speech coding systems, (where input sequences may be viewed as

being infinite in length), each channel is decimated to its respective Nyquist rate so

that the number of input samples and analysis section output samples is essentially

the same. Directly extending this idea to subband image coding systems (where the

rows and columns are filtered as discussed), however, results in system which do not

have this property. The sum of the pixels in the subband images is not equal to, but

greater than the total number of pixels in the original. The problem in this 2-D case

is that the image sizes are not infinite. Thus the convolution of the spatially limited

image and the filter increases the size of the resulting image. The subband images,

even though maximally decimated, have altogether a larger number of pixels than

the original. To address this problem the method of circular convolution described in

[6] was used to implement the systems. This method essentially treats the image as

being periodically replicated. Filtering a periodic signal results in another periodic

signal with the same period. It has been shown that by decimating and extracting

one period of the result, data expansion can be avoided and ex.act reconstruction can

be achieved [6].

In the next step, EC-RVQ is considered for coding the subband images. Entropy-

based VQ has been considered previously for subband image coding and results were

shown to be very good. In particular, Rao and Pearlman designed a set of codebooks

using an AEC-VQ design algorithm [16]. In their work, only very small vectors (i.e.

1 × 2 and 2 × 2) were used for practical reasons. The use of larger vector sizes such

as 4 × 4 requires a high computational demand and a large memory requirement

(even though AEC-VQ requires the storage of only one codebook). However, the new

EC-RVQ is very manageable in both regards and in fact allows for the use of larger

vectors.

To achieve good coding performance, bit rates must be carefully allocated among

the subbands. The average rate allocated to each of the N subbands can be deter-

mined by minimizing the average distortion

N

subject to the constraint that

D = d,(,-,) (9)

N

_ri _ R (10)
i----I
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Figure 3: A four-band bit allocation tree

where n is the average bit rate of the ith subband required to achieve a distortion

di(n), and R is the maximum average bit rate for the entire image.

One approach to finding an optima] or near-optimal bit allocation is to determine

the minimum of equation (9) by exhaustively searching all possibilities. In practice,

however, the number of possible subband assignments may be astronomically large.

Thus a more efficient solution is needed. Indeed, the a]gnrlthm derived in [15] can

be used to efficiently allocate average rates among the subbands. In the procedure,

a tree is constructed where the root node has N children, one per subband, and the

subtree rooted at each child i is a unary tree of length Li, where Li is the number of

rate-distortion points available for the ith subband. Thus, each branch has L+ nodes

where each node (i,j) (1 <_ j <_ Li) corresponds to a rate-distortion pair (bij, D+j),

where b+j is the number of bits used to encode the ith subband by quantizer j and



D_3 is the corresponding distortion such that (for i = 1,2,..., N)

b_,l < bi,2 < ... < bi,L_ (11)

and

Di,1 _ D,,2 _... _ D_,L,. (12)

Therefore, the node (i, I) (the node closest to the root node) corresponds to the pair

(b_,1, Di,1), and the node (i, L_) (the node farthest from the root node) corresponds to

the pair (b_,n,, DI,L,). A four-band bit allocation tree is depicted in Figure 4.

Let _ be a pruned subtree of the constructed tree T, where the subband associated

with the ith branch has now a rate l_ and a distortion _i. The average rate of the

subband EC-RVQ associated with X is

N

and the average distortion is

I(X) : _/, (13)
i----1

N

6(7_) - _ 6, (14)
i-1

where bd,1 <_ ld <_ bd,L, and Dd.1 >_ _ >__Dd,L,. The bit rate assignment problem can now

be solved by finding the rates l_, i_, ..., l_ that minimize 5(7_) subject to l(X) _< R

(R is the maximum average rate) over all pruned subtrees 7_ __ T. The optimal

pruning algorithm described in [15] gives such bit rates. Once the optimal average
rate for each subband is determined, the encoder used for a particular subband is the

one specified by the leaf node of the branch (associated with that subband) of the

optimal tree 7_'.

4 Experimental Results and Comparisons

A variety of earth science images were considered in the training data set. In all cases,

the test image was not included in the training set. Subhand EC-RVQ codebooks

were designed in the following way. First, a set of training images composed of a

variety of earth science images was decomposed (as described in the previous section)

into seven subband training sets. Vectors were extra£ted from the images within each

subband to form seven sets of training data. These data were then used to train seven

EC-RVQ coders. The peak bit rates ranged from 0.1 bits/pixel (bpp) to 4.00 bpp.

Figure 5a shows an original image of Mofl'ett Field. Figure 5b shows the same

image coded at 0.3994 bpp using the JPEG standard coding algorithm. For com-

parison, the same image is coded with the new subband/EC-RVQ coder at 0.4011

bpp. This image is shown in Figure 5c. The quality is better for the subband/EC-

RVQ coder both objectively (28.05 dB for the JPEG image and 30.18 dB for the

subband/EC-RVQ image) and subjectively (as seen in Figure 5). Our investigation

thus far suggests that this coding approach has potential for improving the quality

of compression of earth science images.
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Figure 5: a) Ori_n_ Mo_ett image

Figure 5: b) Moifett image coded using Figure 5: c) Mofl'ett image coded using
JPEG Bit rate is 0.3994 bpp. PSNR is
28.05 dB.

subband/EC-RVQ Bit rate is 0.4011 bpp.
PSNR is 30.18 dB
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