View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by NASA Technical Reports Server

STRUCTURAL SIMILITUDE AND DESIGN OF
SCALED DOWN LAMINATED MODELS

IW IR
N

by

G. J. Simitses* and J. Rezaeepazhand'

[ — _

N94-20172

TURAL

(NASA-CR-194687) STRUC

SIMILITUDE AND DESIGN OF ?CAFEgati

DOWN LAMINATED MODELS (Cincsn Uncl as

Univ.) 40 Pp

t;\!‘\l‘ t

G3/24 0195937

I"u L]
.

December, 1993


https://core.ac.uk/display/42789457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i 10
“,,,ulll\ll

A Technical Report
Entitled

" STRUCTURAL SIMILITUDE AND DESIGN OF
SCALED DOWN LAMINATED MODELS

by
G. J. Simitses* and J. Rezaeepazhand'

Department of Aerospace Engineering and Engineering Mechanics
University of Cincinnati, Cincinnati, OH 45221

Submitted To

NASA Langley Research Center

Hampton, Virginia

(NASA Grant NAG - 1 - 1280)

December, 1993

* Professor and Head.

t Graduate Research Assistant.



Contents

ADStract -« v e

DISCUSSIOIL -+t vverrrrerraa ettt

Appendices .........................................................

e Structural Similitude For Laminated Structures.
e Structural Similitude and Scaling Laws for Cross-Ply Laminated Plates.

e Design of Scaled Down Models for Stability and Vibration Studies.



o

I L]
v

lm "

Abstract

The excellent mechanical properties of laminated composite structures make them
prime candidates for wide variety of applications in aerospace, mechanical and other
branches of engineering. The enormous design flexibility of advanced composites is ob-
tained at the cost of large number of design parameters. Due to complexity of the systems
and lack of complete design based informations, designers tent to be conservative in their
design. Furthermore, any new design is extensively evaluated experimentally until it
achieves the necessary reliability, performance and safety. However, the experimental
evaluation of composite structures are costly and time consuming. Consequently, it is
extremely useful if a full-scale structure can be replaced by a similar scaled-down model
which is much easier to work with. Furthermore, a dramatic reduction in cost and time
can be achieved, if available experimental data of a specific structure can be used to
predict the behavior of a group of similar systems.

This study investigates problems associated with the design of scaled models. Such
study is important since it provides the necessary scaling laws, and the factors which
affect the accuracy of the scale models.

Similitude theory is employed to develop the necessary similarity conditions(scaling
laws). Scaling laws provide relationship between a full-scale structure and its scale model,
and can be used to extrapolate the experimental data of a small, inexpensive, and testable
model into design information for a large prototype. Due to large number of design param-
eters, the identification of the principal scaling laws by conventional method( dimensional
analysis) is tedious. Similitude theory based on governing equations of the structural
system is more direct and simpler in execution. The difficulty of making completely sim-
ilar scale models often leads to accept certain type of distortion from exact duplication
of the prototype (partial similarity). Both complete and partial similarity are discussed.
The procedure consists of systematically observing the effect of each parameter and corre-
sponding scaling laws. Then acceptable intervals and limitations for these parameters and
scaling laws are discussed. In each case, a set of valid scaling factors and corresponding
response scaling laws that accurately predict the response of prototypes from experimen-
tal models is introduced. The examples used include rectangular laminated plates under
destabilizing loads, applied individually, vibrational characteristics of same plates, as well

as cylindrical bending of beam-plates.



DISCUSSION

The importance of employing small scale models in designing advanced composite
structures has been gaining momentum in recent years. With a view to better under-
standing the applicability of these models in designing laminated composite structures,
an analytical investigation was undertaken to assess the feasibility of their use. Em-
ployment of similitude theory to establish similarity among structural systems can save
considerable expense and time, provided the proper scaling laws are found and validated.

Before small scale models can be used, the technical barriers that must be overcome

are:
e What are the proper scale factors.
o What is the effect of these scale factors(scale effect).

In this study the limitation and acceptable interval of all parameters and corresponding
scale factors are investigated. In the present studies, the material behavior was assumed

to be linearly elastic. Therefore, scale effects are not present.

Completed Tasks

An analytical investigation has been conducted in order to establish the applicability
of similitude theory to laminated rectangular plates. Particular emphasis is placed on the
case of free vibration and buckling of plates under uniaxial compressive and shear loads.

Angle ply, cross ply and quasi-isotropic configurations were chosen for investigation.

Current Tasks

i) Nonlinear Kinematics, Linear Constitutive Relations

The large deflection analysis is performed on composite beam- columns subjected to

an eccentric axial compressive load. The loads are static. The objective of this investi-
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gation is to develop and validate the scaling laws for nonlinear kinematic behavior(large

deformation) of simple generic structural elements.
ii) Failure Analysis

The laminate failure analysis is investigated for first ply failure of composite beam-
columns. The beam-columns are subjected to static eccentric compressive loads. The
objective of this study is to develop and validate the necessary scaling laws corresponding
to stress analysis of laminated structures. In particular we like to predict the stress profile

in prototype by projecting the corresponding stresses of its scale model.
iii) Curved Configuration

The development of scaling laws which pertain to the elastic stability response of
laminated shells is currently being investigated. Particular emphasis is placed on the case

of buckling of orthotropic laminated cylindrical shells under axial compressive load.

Future Tasks

The following research and development must be done before small scale model can

be used in design and analysis of the composite laminated structures.
o Complete the investigation of curved configurations.

Study the effect of boundary conditions.

Study the applicability of scaled down models to geometrically stiffened structures.

o Study the effect of geometric imperfections.

Design prototype and scaled down models for experimental validation( at this time it

is anticipated that tests will be performed at the “NASA Langley Research Center”
labs).
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e Structural Similitude For Laminated Structures.
e Structural Similitude and Scaling Laws for Cross-Ply Laminated Plates.

o Design of Scaled Down Models for Stability and Vibration Studies.
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— STRUCTURAL SIMILITUDE FOR
LAMINATED STRUCTURES

G. J. SovrTses and J. REZAEEPAZHAND
University of Cincinnati, Cincinnati, OH 45221, US.A.

.- Abstract—Due to special characteristics of advanced reinforced composite materials, they require
extensive experimental evajuation. Thus, it is extremely useful to use available experimental data
of specific structural systems to predict the behavior of all similar systems. This study describes the
establishment of similarity conditions between two structural systems. Similarity conditions
provide the relationship between a scale model and its prototype, and can be used to predict the

Z behavior of the prototype by extrapolating the experimental data of the corresponding small scale
model. Since satisfying all the similarity conditions simultaneously is in most cases impractical,
distorted models with partial similarity (with at least one similarity condition relaxed) are
employed. Establishing similarity conditions, based on direct use of governing equations, is

\ discussed and the possibility of designing distorted models is investigated. The method is demon-
strated through analysis of the cylindrical bending of othotropic laminated beamplates subjected
to transverse loads and buckling of symmetric laminated cross-ply rectangular plates subjected to
uniaxial compression.

NOMENCLATURE

plate length

laminate extensional stiffnesses
plate width

laminate coupling stiffnesses
plate flexural stiffness

laminate flexural stiffnesses
Young’s moduli of elasticity
stiffness ratio

total laminate thickness

bending curvature in the laminate
number of half waves in x and y
M cross-ply ratio
M, moment resultant
N number of layers
N, stress resultant
N,

P

q

ch 4

moeaxs
< <

<

x> mib

3
b

inplane load per unit width
total transverse load

: ' transverse load intensity
; j» Oy lamina stiffness elements
t ply thickness
» u, v, w reference (midplane) surface displacements
x, y, T reference axes
£ midplane extensional strain
[} fiber orientation angle
A transformation matrix
A; scale factors
v, vy Poisson's ratios
B ol® normal stress in the kth lamina
— . m model
: K p prototype
E pr. predicted
th. theoretical

INTRODUCTION
b Aircraft and spacecraft comprise the class of aerospace stuctures that require efficiency
and wisdom in design, sophistication and accuracy in analysis and numerous and careful
______ experimental evaluations of components and prototype, in order to achieve the necessary
system reliability, performance and safety.
751
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752
ot design entails the assemblage of system mission require-
s and their

Preliminary and/or concs
ments, system expected performance and identification of component
connections as well as of manufacturing and system assembly techniques. This is

accomplished through experience based on previous similar designs, and through the
possible use of models to simulate the entire system characteristics.

Detail design is heavily dependent on information and concepts derived from the
previous step. This information identifies critical design areas which need sophisticated
analyses, and design and redesign procedures to achieve the expected component
performance. This step may require several independent analysis models, which, in many

instances, require comporient testing.

The last step in the design process, before going to production, is the verification of
the design. This step necessitates the production of large components and prototypes in
order to test component and system analytical predictions and verify strength and
performance requirements under the worst loading conditions that the system is expected

to encounter in service.
Clearly then, full-scale testing is in many cases necessary and always very expensive.
In the aircraft industry, in addition to full-scale tests, certification and safety necessitate
large component static and dynamic testing. The C-141A ultimate static tests include eight
wing tests, 17 fuselage tests and seven empennage tests (McDougal, 1987). Such tests
are extremely difficult, time consuming and definitely absolutely necessary. Clearly, one
should not expect that prototype testing will be totally eliminated in the aircraft industry.
t we can reduce full-scale testing to a minimum.
full-scale tests and several drop

It is hoped, though, tha
Moreover, crashworthiness aircraft testing requires
tests of large components. The variables and uncertainties in crash behavior are so many

that the information extracted from each test, although extremely valuable, is nevertheless
small by comparison to the expense. Moreover, each test provides enough new and
unexpected phenomena, to require new tests, specially designed to explain the new

observations.
site, a specified sequence of erection events must be followed in order to avoid collapse.

In the building construction industry, when the skeleton frames are erected at the
This was discovered through (expensive) experience, but it is not widely known. A small-
scale testing of similar structures would definitely have been safer and less costly.

Finally, full-scale large component testing is necessary in other industries as well.

Ship building, automobile and railway car construction all rely heavily on testing.
Regardless of the application, a scaled-down (by a large factor) model (scale model)

which closely represents the structural behavior of the full-scale system (prototype) can

prove to be an extremely beneficial tool. This possible development must be based on the
existence of certain structural parameters that control the behavior of a structural system

when acted upon by static and/or dynamic loads. If such structural parameters exist, a
scaled-down replica can be built, which will duplicate the response of the full-scale
system. The two systems are then said to be structurally similar. The term, then, that best .

describes this similarity is structural similitude.

Similarity of systems requires that the relevant system parameters be identical and
these systems be governed by a unique set of characteristic equations. Thus, if a relation
or equation of variables is written for a system, it is valid for all systems which are similar
to it (Kline, 1965). Each variable in a model is proportional to the corresponding variable

of the prototype. This ratio, which plays an essential role in predicting the relationship
between the model and its prototype, is called the scale factor. In establishing similarity

conditions between the model and prototype two procedures can be used, dimensional
analysis and direct use of governing equations.

Models, as a design aid, have been used for many years, but the use of scientific
models which are based on dimensional analysis was first discussed in a paper by Rayleigh

(1915). Similarity conditions based on dimensional analysis have been used since Rayleigh’s

time (Macagno, 1971), but the applicability of the theory of similitude to structural
systems was first discussed by Goodier and Thomson (1944) and later by Goodier (1950).

They presented a systematic procedure for establishing similarity conditions based on

dimensional analysis.
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In the 1950s and 1960s many interesiing works were published in this area. Most of
these authors discussed similitude theorv based on dimensional analysis. Kline (1965)
gives a perspective of the method based on both dimensional analysis and the direct
use of the governing equations. Szucs (1980) is particularly thorough on the topic of
similitude theory. He explains the method with emphasis on the direct use of the
governing equations of the system.

Due to special characteristics of advanced reinforced composite materials, they have
been used extensively in weight efficienr aerospace structures. Since reinforced composite
components require extensive experimental evaluation, there is a growing interest in small
scale model testing. Morton (1988) discusses the application of scaling laws for impact-
loaded carbon-fiber composite beams. His work is based on dimensional analysis. Qian
er al. (1990) conducted experimental studies of impact loaded composite plates, where
the similarity conditions were obtained by considering the governing equations of the
system. These works and many other experimental investigations have been conducted to
characterize the size effect in material behavior for inelastic analysis.

In recent years, due to large dimensions and unique structural design of the proposed
space station, small scale model testing and similitude analysis have been considered as the
only option in order to gain experimental data. Shih er al. (1987), Letchworth er al.
(1988), Hsu et al. (1989), and McGowan er al. (1990) discussed the possibility of scale
model testing of space station geometries especially for vibration analysis. Most of these
studies have used complete similarity berween model and prototype.

The present study presents the applicability of small scale models, especially distorted
models, in analysing the elastic behavior of large and complex structural systems. By
applying similitude theory, we try 1o find a set of conditions between two similar
structural systems (scaling laws). Later, these conditions can be used to design a model,
the experimental data of which can be projected in order to predict the behavior of the
prototype. The objectives of the investigarion described herein are:

® create necessary similarity conditions in order to design an accurate distorted
model;
o cvaluate the derived similarity conditions analytically.

Similarity conditions provide the relationship between mode! and its prototype, and
can be used to extrapolate the experimental data of a small and less expensive model
in order to predict the behavior of the prototype. In all of our work in this area we will
restrict ourselves to linearly elastic material behavior. Furthermore, it is assumed that the
laminates are free of damage (delaminations, matrix cracking, fiber breaks, etc.).

THEORY OF SIMILITUDE

Similitude theory is concerned with establishing necessary and sufficient conditions
of similarity between two phenomena. Establishing similarity between systems helps to
predict the behavior of a system from the results of investigating other systems which have
already been investigated or can be investigated more easily than the original system.
Similitude among systems means similarity in behavior in some specific aspects. In other
words, knowing how a given system responds to a specific input, the response of all
similar systems to similar input can be predicted.

The behavior of a physical system depends on many parameters, i.e. geometry,
material behavior, dynamic response and energy characteristic of the system. The nature
of any system can be modeled mathemarically in terms of its variables and parameters. A
prototype and its scale model are two different systems with similar but not necessarily
identical parameters. The necessary and sufficient conditions of similitude between
prototype and its scale model require that the mathematical model of the scale model can
be transformed to that of the prototype by a bi-unique mapping or vice versa (Szucs,
1980). It means, if vectors X, and X, are the characteristic vectors of the prototype and
model, then we can find a transformarion matrix A such that:

X, = AX, orX,=A"X,. (1)
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The elements of vector X are all the parameters and variables of the system. A
diagonal form of the transformation matrix A is the simplest form of transformation.
The diagonal zlements of the matrix are the scale factors of the pertinent elements of the
characteristic vector X.

- i, O 0
N R )
0 0 A

where ,, = X;,/X, denotes the scale factor of x;. In general the transformation matrix is
not diagonal.

Since similitude theory gives many alternative ways for investigating a system, it has
been used in areas which primarily involved many experimental investigations, such as
fluid mechanics, aerodynamics, hydraulics and modal analysis.

In establishing similarity conditions between the model and prototype two procedures
can be used, dimensional analysis and direct use of governing equations. The similarity
conditions can be established either directly from the field equations of the system or, if
it is a new phenomenon and the mathematical model of the system is not available,
through dimensional analysis. In the second case, all of the variables and parameters
which affect the behavior of the system must be known. By using dimensional analysis,
an incomplete form of the characteristic equation of the system can be formulated. This
equation is in terms of nondimensional products of variables and parameters of the
system. Then, similarity conditions can be established on the basis of this equation.

In this study, we consider only direct use of the governing equations procedure.
This method is more convenient than dimensional analysis, since the resulting similarity
3 conditions are more specific. When governing equations of the system are used for estab-
lishing similarity conditions, the relationships among variables are forced by the govern-
ing equations of the system.

The field equations of a system with proper boundary and initial conditions
characterize the behavior of the system in terms of its variables and parameters. If the

R

{

Bt

and A~ then the two systems are completely similar {eqn (1)]. This transformation
defines the scaling laws (similarity conditions) among all parameters, structural geometry
and cause and response of the two systems.

In order to demonstrate the applicability of the method, we consider the following
example. Suppose we want to design a reasonable (able to test) model for a large
rectangular plate. The plate is simply supported at all edges and loaded with a uniform
transverse load of intensity g. Assuming uniform cross section and isotropic material, the

- governing differential equations and boundary conditions are well known (Timoshenko
G and Woinowsky-Krieger, 1959):

d*w d*w d*w ¢
°r AT A A 3
; & PPt TyTD ®)
and B.C.atx =0, ¢
°. w=20
d*w
& =0 @
andaty=0,0b
- w=10
2
.‘1%’:0 ()

(=%
<

field equations of the scale model and its prototype are invariant under transformation A
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For model and prototype we may write:

4 4 4
d*w,, 7dw,,, d*w,,

dm
&~ 3 3 =T 6
o Teer T oL D, ©)
d4 4 4
w d*w d*w, - 9 0

2 P
& 'yl S D,
where subscripts m and p refer to model and prototype, respectively.
By defining scale factors A;, the variables of the prototype can be written as
Xip = Ay X;m. The response similarity conditions between model and prototype (complete
similarity) are determined by substitution of the i, x,, into the differential equation of
the prototype and by requiring that the result be the differential equation of the model

[eqn (5)].
A0\ d*w, A d*w, A diw Ao\ @
_W m w - m __W m = q _l . 8
<A:> o 2(151;) T (A;) O (AD D,, ®)

Equations (5) and (8) are the same if the terms in parentheses of eqn (8) are all equal.

e A A A
AR A Ap

®

Now to find the scaling laws from eqn (9), we have three choices. Dividing eqn (9) by
first term, yields:

Ay =4y, lw=%ﬁ—:. - (10)
Dividing eqn (9) by the second term, yields:
A, =1, Aw=f‘ﬁ%lyz, an
and finally dividing eqn (9) by third term:
=4, A,= A;j;;. (12)

Note that all three, eqns (10)-(12), are equivalent. This means that as long as
Ax = Ay, the behavioral condition that relates the response factor, 4, to the cause scale
factor, 4,, is the same for all three cases (complete similarity).

By applying similitude theory to a specific system, the result will be a set of
conditions among pertinent parameters (scale factors of the parameters) of this system
and its similar models. If all similarity conditions are satisfied, the two systems are
completely similar. Suppose the system has m variables and similitude analysis of the
governing equations of the system defines n relationships among m unknowns (scale
factors of these variables). If the two systems are completely similar m — n scale factors
can be chosen freely and the values of the other scale factors are found by using the n
similarity conditions. The arbitrary scale factors are usually chosen based on the
experimental facility, available material, and measurement techniques. By having the
parameters of the prototype and scale factors, the model parameters can be calculated
easily. Often complete similarity is difficult to achieve or even undesirable. This problem
is usually caused by limitations on conducting the experiment. When at least one of the
similarity conditions cannot be satisfied, partial similarity is achieved. In this case, the
model which has some relaxation in similarity conditions is called a distorted model.
Distorted models are more practical, since relaxation of each similarity condition
eliminates some restrictions on the model design. These relaxations in the relationship
between two systems cause model behavior to be different from that of the prototype.
Understanding of these relaxations (and their effect on model behavior) can be used to
modify the model test data so as to predict the behavior of the prototype. Since each

COE 3:7/8-1
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variable has different influence on the response of the system, the resulting similarity
conditions have different influence. By understanding the effect of variables and
similarity conditions over desired intervals, the similarity conditions which have the least
influence can be neglected without introducing significant error (Kline, 1965).

APPLICATIONS

In this section, as an initial effort, similarity conditions are developed in order to
design reasonable, distorted, scale models for orthotropic laminated beamplates and
plates.

a. Cylindrical bending of laminated beamplates

a.1. Deflections. We desire to find the maximum deflection of beamplates. Beam-
plates are subjected to transverse line loads. By assuming that the displacement functions
are independent of y, or u = u(x), v = 0, w = W(x) (cylindrical bending), from Ashton
and Whitney (1970) the governing differential equations and boundary conditions are
reduced to:

d*w gA

= 1D B’ (13)

dx‘ AllDll - 11

d*u B, d*w
= 14
& A, dx (14
and the B.C.s at x = 0, g are:

w=0, (15)

du d*w
N“=A“5-B“?x'f=°’ (16)

du d*w
Mxx"-Bna‘DuEx‘:‘:O- 7

Equation (13) can be written as:
d*w

(AuDyy - B%l)?xT =qA,;. (18)

By applying similitude theory, the resulting similarity conditions, eqn (18), are:

Aa Aoy he = Ak, A = 4,422, (19)

or
AAHADH = Aiu' (20)
A dp, = Adq. 1)

Similarly from eqns (14), (16) and (17) we have:
AA“'J'HAX = )‘WA'B]“ (22)
A,B”Aullx = lw)‘D“' (23)

The condition depicted by eqn (23) does not give any new information, since it can
be obtained by combining eqns (20) and (22). So, eqns (20)-(22) denote the necessary
behavioral conditions for complete similarity between the scale model and its prototype.
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a.l.l. Parenthesis: for better understanding the restrictions of eqn (20), consider the
definition of A,,,, Bms and D,,,.

A
Amn = Z (an)j(zj - Zj-l)’

- i=1

1Y
an = E Z (an)j(zjz - zjz—l)!
j=1
l N _ 3 3
Dp, = 5 z (an)j(zj - zj—l)v
=

J

where z; is the coordinate of the upper surface of the jth lamina (measured from the plate
reference surface). Let z; = ¢;4 where —0.5 < ¢; < 0.5 and % is the total thickness
(J=0,1,...,N). (Qmn);, the transformed stiffnesses for the jth lamina are given in terms
of the engineering orthotropic constants and the fiber orientation angle 6.

Q = f(6,E\1, Exz, V12, Gy

_ _. _ S This allows us to express A,,,, B,., and D,,, in terms of 4 and functions of all §, N
T T and the stacking sequence.

Amn = hfa(an-N)’
an = hsz(émn’N)’
- Dmn = thd(an' N)!

— 7 or as scale factors:
. AA,,,,, = AhFa(an ’ N)’ (24)
g, =X Fy(Omns N), (25)
? A, = B Fs(Omns N), (26)
o i where:
- ' £H(O,N) .
F'i == P , i=4a, b, d.
Ji(@, N

Substitution of egns (24)-(26) into eqn (20) yields:

v E(Qu’N)Fa(Qu,N) = sz(Qu:N)- 27

Equation (27) states that the first similarity condition, eqn (20), is independent of
total thickness of the plate, and it is only a function of material properties, number of
plies and stacking sequence of the model and its prototype. This condition, eqn (27), is
satisfied if the model and prototype are made of the same material with identical N and
the same stacking sequence of the lamina.

Now, the accuracy of the derived behavioral similarity conditions, egns (20)-(22) is

evaluated analytically, in order to determine the level of confidence that can be expected
in interpreting the data from the distorted model experiments (partial similarity).
i Consider a cross-ply laminated E-Glass/Epoxy plate composed of 96 orthotropic
layers (0/90/0/...)ss as the prototype. We desire to find the maximum deflection of the
: prototype by extrapolating the pertinent values of a small scale model. The model has the
same stacking sequence as the prototype but with a smaller number of layers (distorted
model). The prototype and its scale model have the following characteristics:

prototype (0(90/0/...)gs: @ =90in. & = 100in. h = 0.858in. N =096,
model (0/90/0/...),s: a=5.0in. b=6.139in. h =0.143in. N =16,
scale factors: A, = 1§ A, = 16.29 =6 Ay =6.
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Fig. 1. Theoretical and predicted maximum deflections of prototype (0/90/0/...)es When model
(0/90/0/...)q is used {Ag, = Ag, = 4, = 1 Aa= 18,4, =1, =1692, 4 = Ay = 6).

For simplification we assume that model and prototype have the same material
properties (Ag,, = 4g, = 4,,= 1) and A, = 4,. By employing only the similarity con-
dition of eqn (21) (note that A = A,4,; therefore the condition becomes A,Ap, = Aip)
the theoretical maximum deflections of the model are projected in order to predict the
maximum deflections of the prototype. Figure 1 presents the theoretical and predicted
maximum deflections of the prototype and corresponding theoretical values of the scale
model. The derived scaling laws can be used with a high level of accuracy in predicting the
prototype behavior. Note that the model was designed by employing the free scaling
factors (partial similarity).

a.2. Stress analysis. For the kth lamina, the normal stress in terms of the strains and
curvatures (cylindrical bending) is:

o = 0®el, + k), (28)

where &2, is the extensional strain on the reference surface (z = 0) and k,, represents the
change in curvature of the reference surface.
By substituting the expressions for €2 and k.

ol = QP + Ik — W) (29)
Applying similitude theory for the normal stress, Oy,
ho = AQWC—: + i—zz Y %) (0)
The resulting similarity conditions are:
Ao = AgwA, A7t (31
Agr = Aégﬁ)).f,,l;z, (32)
Ao = ).Qy;)lzlwl;z, (33)

where 1, = A24,A5! and A, = A,,A7'45, A7) [see eans (21) and (22)].

For complete similarity, eqns (31)-(33) give the same result. However, for the
distorted model each similarity condition gives different results. To find which one of
eqns (31)-(33) gives the best prediction for the prototype behavior (partial similarity), the
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Fig. 2. Predicted and theoretical normal stress o, distributions in various layers of the prototype
(04/904/05) when (0/90/0/...),4 is used as model.

theoretical stresses of the model are projected with each condition and compared to
theoretical stresses of the prototype. -

Figures 2-4 present the predicted and theoretical distributions of the normal stress g,
in various layers of the prototype for a cylindrical bending test. It is observed that the
predicted stresses by eqn (33) agree very well with the theoretical results. Equation (32)
cannot predict the behavior of the prototype accurately. Equation (31) is not a suitable
similarity condition, since its predicted data does not match the theoretical results. The
figures do not include the predicted stresses using eqns (31) and (32). This is purposely
done in order to simplify the figures. Since the results came from a three-point bending
case, it is expected that the similarity condition based on bending normal stresses, eqn
(33), would yield accurate stress predictions.

0.08
p : Kevlar/Epoxy
0\- m : Keviar/Epoxy
0.06 R
0.04 \\
0.02
£ ;
=4
~ 0.00
~N
~0.02 4
-0.04
-0.06 :
GeeeO th, p; i K"o
se=es prp Eq(sjl H
-0.08 p 7
-3000.0 -2000.0 -1000.0 c.0 1000.0 2000.0 3000.0

Stress  (Ksi)

Fig. 3. Predicted and theoretical normal stress o,, distributions in various layers of the prototype
(0¢/90,/05} when (0,/90,/0,/90,/0,) is used as model.



re

|~ _J

760

G. J. SimiTses and J. REZAEEPAZHAND

0.08 : -

p : E-GClass/

m : E£-Gloss/|

ooty

0.06 -

0.04 A

preed IR S

-0.08 T T T
-3.0 =20 -1.0 0.0 1.0 2.0 3.0

Stress  (Ksi)

Fig. 4. Predicted and theoretical normal stress g, distributions in various layers of the prototype

(0/90/0/...)y3 when (0/90/0/...),4 is used as model.

It is necessary to note that the stress distribution in various layers of the prototype is
completely different from the stress distribution in the model. But, the derived similarity
condition, eqn (33), can be used successfully to predict the stress distribution in the

prototype.

b. Buckling of symmetric laminated cross-ply rectangular plates

Consider the case of cross-ply symmetric laminated plates (B; = 0, Djg = Dy =
A, = Ay = 0). The plates are subjected to inplane uniaxial compression in the x

direction (N,).
The buckling loads are described only by one differential equation:

0 ) 0 0 N o _
Dllw.xxxx + 21)12 W oy + Dzzwmy - wa,xx = 0,

where ﬁlz = DIZ + 2D66'
For simply supported plates, the boundary conditions are:

atx=0,a
aty=0,0
The solution:

. (mrx\ . (nay
w=A,,sin e sin >3 )

satisfies the boundary conditions and governing differential equation if:

R OB AR IC)]

By applying similitude theory to eqn (35):

A2 12 A0z
ANX = ).D“Ii— = lblzi—i = ADZZ—A.;A’Z;’

(34

(33)

(36)



Structural similitude for laminated structures 761

which yields to the following scaling laws:

A%
AN: = )'Dn 1-2- 4 (37)
1 ;LD 0.25
g, = — | — , 38
R! }"n (lDu) ( )
A

3

AR

]
|

2

0.25
()"
Au AD,

Boundary conditions do not yield any similarity condition. Equation (37) can be
written as:

Ap, rm
ig, = 40
Ak, A'Du'l;k ’ (40)
where:
NV Ap, A3AZ,
K, = ——2—‘ = .
' Dy = Ax Ap,As

Conditions (38) and (39) are considered as design scaling laws and condition (40) is
considered as response scaling law.

b.1. Complete similarity. The necessary condition for complete similarity between
the model and its prototype is that all the design scaling laws predict the behavior of the
prototype with the same accuracy. In other words Ag, = Ag,. This equality is satisfied if
[see eqns (38) and (39)):

)'Dlz = A'Dss’ ADulDzz = A%u‘ C2))

From Tsai (1964), the bending stiffnesses Dy, can be expressed as a function of the
total number of layers, N, the cross-ply ratio, M, and stiffness ratio, F,

h3
D, =1F-Dy+ llﬁQu-

h!
Dy, =[(1-Fy+ FIEQUr

hl
Dy, = E Qs

where F = E,/Ey; = Qp2/Q); and

_ 1 + MN - HMN - 1) + 2N + 1]
S+ MY W=D+ MY
where M is the cross-ply ratio and N is the total number of plies. For the common special

case of symmetric cross-ply laminates (0/90/0/...),, in which the laminae are all the same
thickness and have the same material properties:
N+ 1

M= .
N-1

v

Substituting into eqn (41)

[ (F, = Dy, + 1][ (= Fv, +Fi]lé.. = 13 “2

(1:’m—l)'1um+l (I_Fm)Wm+Fm

In general, by choosing the model material and using eqn (42), the number of plies
of model (N,,) can be determined. Since N, must be an integer, it is difficult to satisfy
eqn (42), therefore partial similarity with a distorted model is pursued.
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For simplification we assume that model and prototype have the same material
properties (g, = Ag,, = 4,, = 1). If the model and prototype have the same material
properties then 1o, = Ao, = land F, = F, = F and eqn (42) can be simplified as:

((F- Dy, + 1[I - Py, + F1 = (F - Dy, + 1I(1 - Py, + Fl,
Wy Wp = 1) =W (- 1),

W, (w, — 1) -1

S0 N =y =1

The numerical values of f(.V,, N,,) are plotted over a large range of N,, for several
T N, in Fig. 5. From Fig. 3, it is verified that complete similarity is achieved if Ay = 1. It
is also important to notice that, as the number of plies of prototype increases, 4y = 1 also
satisfies the condition f(N,,N,) =1 and complete similarity is achieved. Since the

number of plies, N, and N,, are integer numbers this condition exists for large N,.
So far we proved in the special case when iy = 1, condition f(N,,N,) =1 is
satisfied and complete similarity is achieved. However, there are some constraints, such
, RS as the geometry of the model, the model material, the number of plies and the stacking
T sequence of laminates. Since this still appears to be restrictive, we proceed with the
EE determination of distorted models, for which some of these restrictions can be relaxed.

1.10 T
p: Kevlcr:/Epoxy 49  (0/90,40..),
- m: Keviar/Epoxy 43 (0/900..)x,
' 1.05
- ,\E 1.0Q —pmeeeeees "\XYN‘-."—— ¥4
— { p-d —— ! b
% a ' 17
: R
. Z 13
o 0.5 - \\mm g .
- o : ] et
0.90 U
0 10 20 30 40 50 60 70
N

Fig. 5. Sensitivity of complete similarity condition A,,“A,,n = ).ZDH for different 4
(f(N, Ny = dp, Ap, /4p, = | complete similarity).

5
o mup \
L §

b.2. Partial similarity. When at least one of the design scaling laws cannot be
satisfied, partial similarity is achieved. In this case, since each parameter has different
: influence on the response of the system, the resulting design scaling laws have different

' influence on the accuracy of the predicted response. By understanding the effect of the

! various parameters and accuracy of the design scaling laws over desired intervals, the
i ' ' design scaling laws which have the least accurate prediction can be chosen as the “right”’
type of distortion.

The choice of the right type of distortion is investigated as follows. In each case, all
of the model parameters except one, are chosen to be identical to its prototype. Then, the
effect of this relaxation for a wide range of this parameter is investigated.

i

i

’

:
K
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b.2.1. Number of plies: since we assume all the laminae to have equal thickness, the
distortion in thickness is the same as the distortion in number of plies (Aigra1 = N * Alaminac)-
In other words, thickness is only a function of the number of plies. Consider that the
model and prototype have the same material properties (Kevlar/Epoxy 49) with a
different number of layers (N,, # N,). Figure 6 presents the per cent of discrepancy
between theoretical and predicted values of the normalized critical load (K,) for simply
supported rectangular plates. In these cases, the prototype is a laminated cross-ply
(0/90/0/...),; square plate with R, = 1. The accuracy of the designed distorted models
with the same stacking sequence but with a different number of layers [(0/90/0/...);] is
investigated. The R,, is determined by using both design scaling laws [eqns (38) and (39)].
Figure 6 shows that, as the number of plies of the model increases, the accuracy of the
model increases very quickly. Models with N = 1, or 3 do not have acceptable accuracy.
Equation (39) is the best design scaling law, especially for a model with 5 = N,,, < 40. For
N,, > 40 all conditions yield the same accuracy.

The accuracy of a model with N = 13 in predicting the buckling behavior of proto-
types with N = 101 is also investigated. It is shown that, the model with N, = 13 can
predict the critical load of any prototype with N, = 101, ..., 500 with the same accuracy
as prototype with N, = 101. In other words, the accuracy is independent of N, when
N, = 101.

This study indicates that a distorted model with a smaller number of layers can
predict the critical load of its prototype with good accuracy. "

40.0
P : Keviar/Epoxy 49 (3/90/0...)
m Kevvlnr/ Epoxzy 49 ((/90//0...)‘:|
30.0
20.0
X
. 10.0 -
[&]
U
o
®R
0.0 - -2 -3 — —a
0014
4 Q0000 Ry
ad4As Ry
-20.0
a 20 40 60 a0 100 120
Nm

Fig. 6. % discrepancy of normalized buckling loads (K,) when Ny, < N, (distortion in N).

b.2.2. Material: now we consider the distortion in model material. For this purpose
two different groups are considered: isotropic materials (which include metals and
plastics) and fiber-reinforced composites. In all cases the prototype is considered to be an
orthotropic laminated plate.

The model and its prototype have the same stacking sequence, number of plies
[(0/90/0/...),5] and aspect ratio. Figure 7 presents the per cent of discrepancy when the
model and prototype have different material properties. For the Kevlar/Epoxy prototype,
a Boron/Epoxy, a Boron/Polymide and most of the Graphite/Epoxys can be be used as
the model material and vice versa. However S-Glass/Epoxy is not a good choice for
predicting a Kevlar/Epoxy prototype and vice versa. The design scaling laws of eqn (38)
yvield the best accuracy.
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Model Materials
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Fig. 7. % discrepancy of normaiized buckling loads (X,) for different composite materials. Model
and prototype rave the same stacking sequences (0/90/0/...);.
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Fig. 8. W discrepancy of normalized buckling load for different isotropic materials. Model and
prototype have the same stacking sequences (0/90/0/...),;.
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Since plastics are used extensively for the experimental study of the behavior of the
structures, the possibility of a plastic model or in general a model with isotropic materials
is considered. Figure 8 presents the per cent of discrepancies for models with isotropic
materials. The prototype is Kevlar/Epoxy plate [(0/90/0/...);5]. Almost all of the
plastics, copper and aluminum which are used, give the same accuracy for the design
scaling law of eqn (39) (30% discrepancy). But the design scaling law of eqn (38) yields
better accuracy (less than 5.3%).

DISCUSSION

An extensive study based on analytical investigations has been conducted in order to
establish the applicability of similitude theory to simple structural elements. Theory of
similitude is used to design scale models for orthotropic laminated beamplates and to
predict the behavior of the prototype, with reasonable accuracy. Similarly data of scale
models are projected to predict prototype behavior. Even for models with different
numbers of plies and stacking sequence of layers (distorted models) the predicted data are
well-matched with full scale prototype data.

By establishing similarity conditions the model parameters are specified. First, there
is a need to verify the derived similarity conditions. The verification should be based on
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exact analytical solution of the system. Furthermore, a validation procedure based on
experimental data of two or three small scale models of the actual system (prototype)
should be conducted. For example, at l2ast two different small scale models of the proto-
type should be designed and tested. One of these models should serve as prototype and the
other one as scale model. The experimental data of the model should be used to predict
the behavior of the other one. This increases the confidence factor.

CONCLUSIONS AND RECOMMENDATIONS

While several experimental studies can be done on prototype or large scale models,
size constraints will limit experimentation on complete structures in most cases to small
scale models. Small scale models can be used as a complement for analytical and
computational investigations in solving the design problems of complex structures. The
investigation in this study indicates that the use of small scale models can predict the
behavior of the prototype very well.

Partial similarity based on direct use of governing equations is more convenient than
dimensional analysis, because additional relationships are not needed and the derived
similarity conditions are based on satisfaction of the field equations of the system.

In the present study, similitude theory was used by employing systems for which the
experimental results are not known. In this case, one systermn was considered to be the
prototype and another its scale model. Then through the use of the proper scaling laws the
theoretical data of the model were used to predict the behavior of the prototype. Success
was measured by comparing the predicied behavior to the analytical resuits.

Some recommendations for future research:

o develop the method for designing and employing scale models for more complex
systems, i.e. stiffened and/or laminated curved configurations;

e one of the major problems associated with inelastic analysis of the small scale
model is the effect of size. A need exists to evaluate the size effect in material
behavior expecially for geometries with higher scale factors. This is also true in
dealing with establishing the strength of laminated structures, since strength is
affected by the accumulation of damage.
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Structural Similitude and Scaling Laws for
Cross-Ply Laminated Plates

G. J. SIMITSESt AND J. REZAEEPAZHAND*

Abstract. The increasing use of laminated composite components for a wide variety of
applications in aerospace, mechanical and other branches of engineering requires extensive ex-
perimental evaluation of any new design. Thus, it is extremely useful if a full-scale structure can
be replaced by a similar scaled-down model which is much easier to work with. The objective of
this study is to investigative problems associated with design of scaled models. Similitude theory
is employed to develop the necessary similarity conditions. Both complete and partial similarity
are discussed. The procedure consists of systematically observing the effect of each parameter
and corresponding scaling laws. Then acceptable intervals and limitations for these parameters
and scaling laws are discussed. In each case, a set of valid scaling factors and corresponding re-
sponse scaling laws that accurately predict the response of prototypes from experimental models
is introduced. Particular emphasis is placed on the cases of buckling of rectangular cross-ply
laminated plates under uniaxial compressive and shear loads. This analytical study indicates
that distorted models with a different number of layers, material properties, and geometries than
those of the prototype can predict the behavior of the prototype with good accuracy.

Nomenclature
a plate length Qi;, Qi; lamina stiffness elements
A;j laminate eztensional stiffnesses R aspect ratio
b plate width u,v,w reference surface displacements
B;; laminate coupling stiffnesses t ply thickness
D;; laminate flezural stiffnesses A scale factors
E;; Young’s moduli of elasticity Vi Poisson’s ratios
h total laminate thickness m model
K.z, K,, K, non-dimensional critical loads p prototype
M., M, moment resultants pr.  predicted
N.z, N,, inplane normal loads th.  theoretical
N.y inplane shear load
INTRODUCTION

The last step in the design process, before going to production, is the verification of

t Professor and Head, ™ Graduate Research Assistant, Departmen! of Aerospace Engineering and

Engineering Mechanics, Universily of Cincinnati, Cincinnali, OH 45221.
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266 DESIGN

the design. This step necessitates the production of large components and full scale pro-
totypes in order to test component and system analytical predictions and verify strength
and performance requirements under the worst loading conditions that the system is ex-
pected to encounter in service. A scaled-down (by a large factor) model, scale model,
which closely represents the structural behavior of the full-scale system, prototype, can
prove to be an extremely beneficial tool. This possible development must be based on
the existence of certain structural parameters that control the behavior of the structural
system when acted upon by static and/or dynamic loads. If such structural parameters
exist, a scaled-down replica can be built, which will duplicate the response of the full-scale
system. The two systems are then said to be structurally similar. The term, then, that
best describes this similarity is Structural Similitude.

Due to special characteristics of advanced reinforced composite materials, they have
been used extensively in weight efficient aerospace structures. Since reinforced composite
components require efficiency and wisdom in design, sophistication and accuracy in anal-
ysis, and numerous and careful experimental evaluations, there is a growing interest in
small scale model testing[4].

By applying similitude theory, we try to find a set of conditions between two similar
structural systems (scaling laws). Later, these conditions can be used to design a model,
the experimental data of which can be projected in order to predict the behavior of the
prototype.

The objectives of the investigation described herein are:

e create necessary similarity conditions in order to design an accurate distorted model

— distortion in stacking sequence and number of plies (N)

* ply - level scaling

* sublaminate - level scaling

— distortion in material properties Ejj,vij,p
o evaluate the derived similarity conditions analytically.

Similarity conditions provide the relationship between model and its prototype, and
can be used to extrapolate the experimental data of a small and less expensive model in
order to predict the behavior of the prototype. This study presents the applicability of
small scale models, especially distorted models, in analyzing the elastic behavior of cross-
ply laminated plates. Furthermore, it is assumed that the laminates are free of damage
(delaminations, matrix cracking, fiber breaks, etc.).

In this study, we consider only the procedure that is based on the direct use of the
“governing equations”. This method is more convenient than dimensional analysis, since
the resulting similarity conditions are more specific and the relationships among variables
are forced by the governing equations of the system.

Often complete similarity is difficult to achieve or even undesirable. When at least
one of the similarity conditions can not be satisfied, partial similarity is achieved. In this
case, the model which has some relaxation in similarity conditions is called a distorted
model. Distorted models are more practical, since relaxation of each similarity condition
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eliminates some restrictions on the model design. These relaxations in the relationship
between two systems cause model behavior to be different from that of the prototype.
Since each variable has different influence on the response of the system, the resulting
similarity conditions have different influence. By understanding the effect of variables
and similarity conditions over desired intervals, the similarity conditions which have the
least influence can be neglected without introducing significant error(3).

Buckling of Symmetric Laminated Cross-Ply Rectangular Plates

Consider symmetric cross-ply laminated plates (B;; = 0 ,Dig = Dyg = A = A2s =
0), The plates are subjected to inplane normal and shear loads ( Nz , Nyy 5 Nzy). The
governing differential equations for buckling and vibration of symmetric cross-ply rectan-
gular plates are as follow (1]

Anu&z + Auv?yr 4 Ase(u?w + Ug:y) =0 (1)
Ass(u®, +v%,) + Ay, + Aypvl, =0 (2)
Duw?xrﬂ + 2D12w2=2w + an?yyyy - erw?xz - jvww?w - nyw?ry = Pw?t: (3)

where Du = D12 + 2D66

For simply supported plate, the approximate boundary conditions are

atm:O,a w=0 , .M;-'—_"Dllw&.'::[]
at y=0,b w=0a1A{y=—D22w?yy=0

I.  Uniazial Load : Consider the plates to be subjected to inplane uniaxial
compression load in z direction ( Nzz). The buckling differential equation is:

an?,,_-,, + 2D12w2u.yy + Dggw?ywy - szw?u. =0 (4)

The solution

. ,mmz, . NTY
= Amn 7
w sin( - )sin( 2 )
satisfes the boundary conditions. Then,
- m _n n.,a
N = Wz[Dn(;')z + 21312(?2 + Dzz(g)q(‘rg)q (5)
By applying similitude theory to Eq.( 5)
A A Ane
AR, = Abugg = Aa3s = Apu ey (6)
which yields to following scaling laws
ADy, ’\311 (7)

Ao = Am
Ras ’\Ezz)‘i X‘I’?
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A
. - 2 th
Akzs Ant\E.;,AJ (8)
ADas
A ,\*/\2
Kxx AE.nAJ n (9)
N, b
where K,,=E 73
22

Boundary conditions do not give any similarity condition. These conditions, Eqgs.( 7)—
(9), involve response(Ak,,, Am, An) and structural geometric parameters (Api,, Any AR)-

II.  Shear Buckling: We now consider a simply supported plate which is sub-
jected to the an in-plane shear stress (V. = N,, = wd, = 0).

0
+ D?'-’w.va

Duwnu + 2D12w - QJV:ng_y =0 (10)

*TYY

The solution of the form

N . ,mTz_ . nT
= ZZA,,msm( " ysin( by)

m=1n=l

satisfies all B.C.’s, but does not satisfy the buckling equation, Eq.( 10). Use of the
Galerkin procedure, yields

D11 m* D12 m2n2 Dgg 4 32mn
(E22h3 R3 + 2E22h3 R + Epnh3 B Amn = K= r;l qz—: AreQmnse ()
for m,n =1,2,--+,00 ; subject to the constraints m + p = odd and n + q = odd.
N_ b a q
K, = == =7 mnpg =
Bg? 3 0 Qmom (m? — p?)(n? - ¢?)
Applying similitude theory to Eq.( 11)
Ap, M Ap, AZAL ADs Ak
—==-I = LR AR = — . 12
’\Ezz ’\2 ’\?2 A1'32'.' ’\i AR AEn’\s ’\Amn Anda ( )
where o o
Q= Z Z Apq@rmnpq
p=lg¢=1
Parenthesis;

m,n,p, and ¢ are integers which depend on the number of terms needed to approxi-
mate well the buckling mode shape (Symmetric/Anti-symmetric). By assuming the same
aspect ratio for the model and its prototype (Agr = 1) and similar construction, model
and prototype both can be well approximated by the same number of terms in the series
with the same contribution of terms to the buckling mode and thus

Am=An=/\p=/\q=l = /\Q———l,/\,q,“:l

P = ~oa
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Eq.( 12) yields to the following scaling laws
A
Ak, = D (13)

Ak, = _ by (14)
Ak, = —)lDLAR (15)

These conditions, Eqs.( 13)—( 15), also involve response and structural geometric param-
eters.
Complete Similarity :

The necessary condition for complete similarity between the model and its prototype
is that all scaling laws be satisfied. This requirement yields

/\Du = ADu = ’\Dzz (16)

By inspection it can be seen that these conditions, Egs.( 16), are independent of ply
thickness and they only depend on material properties and number of plies. So, two plates
with different ply thickness but the same stacking sequences (i.e.(0/90); and (0,/90,)s)
satisfy Egs.( 16). This is called ply-level scaling and it is the easiest way to achieved
complete similarity. Table 1 presents the ply-level scaling for cross-ply plates under inplane
shear loads.

So far, we have shown that in the special case of ply-level scaling similarity can be
achieved. However, there are some constraints, in designing the model. These constraints
involve the geometry of the model, the model material, the number of plies and the
stacking sequence of laminates. Since this still appears to be restrictive, we allow the use
of distortion in the design of the model.

Table 1 Comparison of shear buckling loads of Kevlar/Epozy plates with ply - level
scaling(complete similarity).

)

- model K, = g:z:a %Dsisc.
Configuration || model | prototype predicted th.(p)&pr.(p) th.(p)&th.(m)

[ (02/902)s 32.74 | 32.74 32.74 0.0 0.0

" (010/9010)s 32.74 | 32.74 32.74 0.0 0.0
(020/9020)s || 32.74 | 32.74 32.74 0.0 0.0

|theory — predicted|
theory

% Disc.(th.&pr.) = 100 X

Partial Similarity :  When at least one of the design scaling laws cannot be
satished, partial similarity is achieved. By understanding the effect of parameters and
accuracy of the scaling laws over desired intervals, the scaling laws which yield the most
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accurate prediction for the prototype can be chosen as corresponding to the “right” type
of distortion.

The choice of the “right” type of distortion is investigated as follows. In each case, all
of the model parameters except one, are chosen to be identical to its prototype. Then,
the effect of this relaxation for a wide range of this parameter is investigated.

Number of Plies : There are three ways to scale down the number of plies in
a model. a) ply-level scaling((0,/90,),) b) sublaminate level scaling[2]((0/90).,) and
c) general reduction of plies. The ply-level scaling leads to complete similarity(as al-
ready discussed). But the two other methods yield partial similarity. Figures 1 and
2 present the compressive and shear buckling loads for models with different number of
plies than those of the prototype and the predicted loads by using scaling laws depicted by
Egs.( 8)and( 14). Both sublaminate level and general scaling are presented. It is shown
that all models(except for (0/90/0)) can predict the prototype behavior with excellent
accuracy.

Table 2 Accuracy of models with sublaminate level scaling (N, # Nm) using
non-dimensional load K,, Ag,, = A, = 1; (0/90)20,.

Ny b?

model K, = WK % Disc.
22 e
Configuration || model | prototype | predicted || th.(p)&pr.(p) | th.(p)&th.(m)
(0/90)2 32.740 34.040 32.740 3.82 3.82
(0/90)s, 34.009 | 34.040 34.009 0.09 0.09
(0/90)i0, || 34.034 | 34.040 | 34.034 0.02 0.02

Table 3 Accuracy of models with sublaminate level scaling (N, # Nn), using

non-dimensional load K, /\E.-, = /\,,‘.J =1,(0/90)20;-

- N bt

model K, = 5 % D1isc.
2
Configuration || model | prototype | predicted || th.(p)&pr.(p) | th.(p)&th.(m)
(0/90)2, 150.20 | 56.763 54.594 3.82 164.61
(0/90)ss 63.045 | 56.763 56.709 0.10 11.07
(0/90)10. || 58.718 | 56.763 | 56.752 0.02 3.45

Material : Now we consider distortion in model material. For this purpose two

different groups are considered: Isotropic materials (which include metals and plastics),
and fiber reinforced composites. In all of these cases the prototype is an orthotropic
laminated plate.
For the composite model, model and prototype have the same stacking sequence, number
of plies ((0/90/0...)13) and aspect ratio. Figures 3 and 4 present theoretical and predicted
buckling loads of prototype and theoretical ones of the models for some typical composite
materials. For the Kevlar/Epoxy prototype a Boron/Epoxy, Boron/Polymide, and most
of Graphite/Epoxy’s can be used as the model material or vice versa. But Glass/Epoxy
is not a good choice for predicting a Kevlar/Epoxy prototype or vice versa.
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Since plastics are used extensively in experimental studies of the behavior of the struc-
tures, the possibility of a plastic model or in general a model with isotropic materials is
considered. For isotropic materials, the assumption of Az = 1 yields a model which cannot
predict accurately the behavior of the prototype. By choosing R, as a design parameter
we are able to find isotropic models which yields excellent accuracy. Scaling laws depicted
by Eq.( 8) and Eq.( 14), yield acceptable aspect ratios for the models. Tables 4 and 5
present theoretical and predicted buckling loads for prototypes when the corresponding
models are isotropic material.

Table 4 Relazation in material properties by using isotropic model.
Prototype Is Kevlar/Epozy (0/90)20, -

model K.z= gj::ii % Disc.
material Rm_ || model | prototype | predicted || th.(p)&pr.(p) | th.(p)&th.(m)
Aluminum | 0.705 || 4.174 | 14.16 14.16 0.0 70.51
Brass 0.705 || 4.143 14.16 14.16 0.0 50.80
Copper 0.705 || 4.149 14.16 14.16 0.0 70.69
Steel 0.705 || 4.045 1416 | 14.16 0.0 71.36
PVC 0.705 || 4.374 14.16 14.16 0.0 69.1
Polyethylene | 0.705 || 4.760 14.16 14.16 0.0 66.38

Table 5 Relazation in material properties by using isotropic model. Prototype is
Kevlar/Epozy (0/90)20s-

model K, = %—j}% %Disc.

material Rm_|| model | prototype | predicted || th.(p)&pr.(p) [ th.(p)&th.(m)
Aluminum | 0.627 || 20.22 34.04 34.04 0.0 40.61
Brass 0.627 || 20.07 34.04 34.04 0.0 41.02
Copper | 0.627 || 20.10 | 34.04 | 3104 0.0 40,97
Steel 0.627 || 19.63 34.04 34.04 0.0 42.32
PVC 0.627 || 21.18 34.04 34.04 0.0 37.77
Polyethylene | 0.627 || 23.05 34.04 34.04 0.0 32.28

DISCUSSION

An analytical investigation has been conducted in order to establish the applicability of
similitude theory to cross-ply laminated plates. The results presented herein indicate
that for elastic response of a cross-ply rectangular plate, based on structural similitude,
a set of scaling laws can be found to develop design rules for small scale models. By
establishing similarity conditions, the model parameters are specified. The accuracy of
predicted prototype behavior by various models is investigated. The verification is based
on the exact analytical solution of the model and its prototype. Theoretical compressive
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and shear buckling loads of scale models are projected to predict corresponding prototype
behavior. Even for models with different number of plies and stacking sequences (distorted
models) the predicted data are well matched with full scale prototype data. For both load
conditions the enforcement of the same response scaling law Eq.( 8) and Eq.( 14) yields
models which yield accurate predictions. In the present study we assume that, except for
isotropic models, prototype and models have the same aspect ratio(Ag = 1). This is not a
necessary condition and in general (Ar #1). The accuracy of prediction is very sensitive
to the scale factor of the aspect ratios.

CONCLUSIONS AND RECOMMENDATIONS

Small scale models can be used as a complement for analytical and computational investi-
gations in solving the design problems of complex structures. This study indicates that a
distorted model with a fewer number of layers can predict buckling load of the prototype

with good accuracy.
Partial similarity based on direct use of governing equations is very convenient. There
s tremendous freedom in design scale models because the number of similarity conditions

is much smaller than the number of design variables.
Some recommendations for future research:

e Develop the method for designing and employing scale models for more complex
systems, i.e stiffened and/or laminated curved configurations.

o Experimental verification of the accuracy of the purposed scaled model.

o Implemention of the structural similitude to inelastic and failure analysis of com-

posite structures.
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DESIGN OF SCALED DOWN MODELS FOR
STABILITY AND VIBRATION STUDIES

J. Rezaeepazhand* and G.J. Simitses!

Department of Aerospace Engineering and Engineering Mechanics

University of Cincinnati, Cincinnati, OH 45221.

ABSTRACT

Use of reinforced composites in light-weight aerospace structures has increased stadily over
the years. The outstanding mechanical and physical properties of advanced composites
provide the engineer with potential to optimize properties specific to application. Since
reinforced composite components require efficiency and wisdom in design, sophistication
and accuracy in analysis, and numerous and careful experimental evaluations, there is a
growing interest in small scale model testing'. -

A scaled-down (by a large factor) model, scale model, which closely represents the struc-
tural behavior of the full-scale system, prototype, can prove to be an extremely beneficial tool.
This possible development must be based on the existence of certain structural parameters
that control the behavior of the structural system when acted upon by static and/or dynamic
loads. If such structural parameters exist, a scaled-down replica can be built, which will du-
plicate the response of the full-scale system. The two systems are then said to be structurally
similar. The term, then, that best describes this similarity is Structural Similitude.

Similitude theory is employed to develop the necessary similarity conditions(scaling laws).
Scaling laws provide relationship between a full-scale structure and its scale models, and can
be used to extrapolate the experimental data of a small, inexpensive, and testable model into
design information for a large prototype. The difficulty of making completely similar scale
models often leads to accept certain type of distortion from exact duplication of the prototype
(partial similarity). Both complete and partial similarity are discussed. The procedure
consists of systematically observing the effect of each parameter and corresponding scaling
laws. Then acceptable intervals and limitations for these parameters and scaling laws are
discussed. In each case, a set of valid scaling factors and corresponding response scaling laws

that accurately predict the response of prototypes from experimental models is introduced.

* Graduate Research Assistant. t Professor and Head, Associate Fellow of ATAA.



"

ll
8

'W I

tm !

"

IWI "

Particular emphasis is placed on the cases of free vibration and buckling of rectangular
angle-ply laminated plates under uniaxial compressive and shear loads. This analytical
study indicates that distorted models with a different number of layers, material properties,

and geometries than those of the prototype can predict the behavior of the prototype with

good accuracy.

The objectives of the investigation described herein are:

e create necessary similarity conditions in order to design a distorted model that accu-

rately predicts prototype behavior.

— distortion in stacking sequence and number of plies (N)

ply - level scaling and sublaminate - level scaling
— distortion in material properties E;j,vij, g

— distortion in fiber orientation angle 4
e evaluate the derived similarity conditions analytically.

In all of our work in this area we will restrict ourselves to linearly elastic material behavior.
Furthermore, it is assumed that the laminates are free of damage (delaminations, matrix

cracking, fiber breaks, etc.).
In this study, we consider only the procedure that is based on the direct use of the

“governing equations”. This method is more convenient than dimensional analysis, since the
resulting similarity conditions are more specific and the relationships among variables are

forced by the governing equations of the system.
Consider symmetric angle-ply laminated plates (Bi; = 0). The plates are subjected
to inplane normal and shear loads ( Nuz , Nyy , N_.,). The buckling loads and vibration

frequencies of symmetric angle-ply rectangular plates are described only by one differential
equation®:

o 0 T (1] 0] 0 ¥ 0 ¥ 0 \ o _ (]
Dllw,:x:z+4D15w,x:ry+2D12w‘:m+4D26w,zwy+D22w'yyw"N:zw,¢z"'Nww,w—nyw;y - pw'“

where Du = D12 + 2D66

For a simply supported plate, the boundary conditions are

at =0,a w=0 ,M,=—Duwg,,=0
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at y=0,b w=0,, M,=-=Dnpu’, =0

I Shear Buckling: We now consider a simply supported plate which is subjected

to the an in-plane shear stress (N = N,, = v = 0).

Duw?”:z + 4D16w?mzy + 2D12w?::w + 4D25w(;.wy + Dgg w?ywy - NzyW?:y =0 (2)

The solution of the form w® =y ~_ ¥, A masin( = )sm(—) satisfies all B.C.’s, but does

not satisfy the buckling equation, Eq.( 2). Use of the Galerkin procedure, yields

mi mn?
(Du— + 2D12 peTe + D22 )Amn =
32mn (m -+-p2 n? +¢%)
7r2ab ZZ ) ( b2 Dy + )A‘qumnpq (3)
p=1g=1
for m,n =1,2,-+,00 ; subject to the constraints m = p = odd and n £ ¢ = odd.

a o
where R=+ . Qmnpg = - — %)

m,n,p, and g are integers which depend on the number of terms needed to approximate

well the buckling mode shape(Symmetr1c/Ant1-symmetnc). By assuming the same aspect
ratio for the model and its prototype (Ag = 1) and similar construction, model and prototype
both can be well approximated by the same number of terms in the series with the same

contribution of terms to the buckling mode and thus
Am=An=Ap=Aq=1 = /\Q-_-I,AA,,.,,:]-

Applying similitude theory to Eq.( 3) yields the following scaling laws
Apy
= —2 4

Apy,
Mo = AR (5)

ADa,
= 6
Ak, v AiAR (6)

ADu
= —— 7
A TR ™

AD
Mg, = —3 (8)
’\Eaz A:Ii

N, b2
Eph3

where K, =
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These conditions, Eqs.( 4)—( 8), contain both response and structural geometric param-

eters.

Complete Similarity :  The necessary conditions for complete similarity between

the model and its prototype is that all scaling laws be satisfied. This requirement yields
)‘Dn = AD;; = Ap,, = ADys = ADss (9)

By inspection it can be seen that these conditions, Eqs.( 9), areindependent of ply thicknesses
and they only depend on material properties and number of plies. So, two plates with
different ply thickness but the same stacking sequences (i.e.(0/ + 45/90/ — 45), and (0n/ +
45,/90./ — 45,),) satisfy Eqs.( 9). This is called ply-level scaling and it is the easiest way to
achieved complete similarity. Table 1 presents the ply-level scaling for angle-ply plates under
inplane shear loads.

So far, we have shown that in the special case of ply-level scaling similarity can be
achieved. However, there are some constraints, in designing the model. These constraints
involve the geometry of the model, the model material, the number of plies and the stacking
sequence of laminates. Since this still appears to be restrictive, we allow the use of distortion

in the design of the model.

Table 1 Comparison of shear buckling loads of Graphite/Epozy plates with ply - level

scaling(complete similarity).

B
B model K,= %5:73- %Disc.
Configuration model | prototype | predicted th.(p)&pr.(p) | th.(p)&th.(m)
(0/ + 45/90/ — 45), 30.721 | 30.721 30.721 0.0 0.0

03/ + 453/903/ — 453), 30.721 | 30.721 30.721 0.0 0.0

(010/ + 4510/9010/ — 4510), || 30.721 | 30.721 30.721 0.0 0.0
where  %Disc.(th.&pr) = 100 x [theory - predicted]
theory
Partial Similarity :  Often complete similarity is difficult to achieve or even unde-

sirable. When at least one of the similarity conditions can not be satisfied, partial similarity
is achieved. In this case, the model which has some relaxation in similarity conditions is
called a distorted model. These relaxations in the relationship between two systems cause
model behavior to be different from that of the prototype. Since each variable has different

influence on the response of the system, the resulting similarity conditions have different

4
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influence. By understanding the effect of variables and similarity conditions over desired
intervals, the similarity conditions which have the least influence can be neglected without
introducing significant error®.

The choice of the “right” type of distortion is investigated as follows. In each case, all
of the model parameters except one, are chosen to be identical to its prototype. Then, the

effect of this relaxation for a wide range of this parameter is investigated.

Number of Plies : There are three ways to scale down the number of plies in a model.
[a] ply-level scaling (0n/+45x /90, /—45,),) [b] sublaminate level scaling* ((0/+45/90/—45),,) and
[c] general reduction of plies. The ply-level scaling leads to complete similarity(as already
discussed). But the two other methods yield partial similarity. Figure 1 presents the shear
buckling loads for models with different number of plies than those of the prototype and the

predicted loads by using scaling laws depicted by Egq.( 6).

Table 2 Accuracy of models with sublaminate level scaling (N, # Np) using
non-dimensional load K,, Ag,, = A, = 1; (0/ + 45/90/ — 45)10s-

7
model K, = %l,is %Disc.
Configuration model prototy;;e predicted || th.(p)&pr.(p) th.(p)&th.(m)
(0] $45/90/ — 45)s, || 37813 | 44218 | 44Tl 1.12 14.48
(0/ +45/90/ — 45)3, || 40.391 | 44.218 44.187 0.25 7 5.63

Material : Now we consider distortion in model material. For this purpose two
different groups are conmsidered: Isotropic materials (which include metals and plastics),

and fiber reinforced composites. In all of these cases the prototype is an angle-ply laminated

plate.

For the composite model, model and prototype have the same stacking sequence, number
of plies ((0/ + 45/90/ — 45)10.) and aspect ratio. Figure 2 presents theoretical and predicted
buckling loads of prototype and theoretical ones of the models for some typical composite
materials. For the Kevlar/Epoxy prototype almost all considered materials can be used as
the model material or vice versa.

Since plastics are used extensively in experimental studies of the behavior of the struc-
tures, the possibility of a plastic model or in gemeral a model with isotropic material is
considered. For isotropic materials, the assumption of \g = 1 yields a model which cannot
predict accurately the behavior of the prototype. By choosing Rm as a design parameter

we are able to find isotropic models which yields excellent accuracy. Scaling law depicted

5
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by Eq.( 6), yields acceptable aspect ratios for the models. Tables 3 present theoretical and

predicted buckling loads for prototypes when the corresponding models are made of isotropic

material.

Table 3 Relazation in material properties by using isotropic model,

prototype is Kevlar/Epozy (0/ + 45/90/ — 45)10s -

model K, = % % Disc.
material R.. | model | prototype | predicted th.(p)&pr.(p) th.(p)&th.(m)
Aluminum | 0.868 || 12.08 43.34 43.34 0.0 72.12
Copper | 0.868 || 12.01 43.34 43.34 0.0 72.29
pPvC 0.868 || 12.66 | 43.34 | 43.34 0.0 70.79

This study presents the applicability of small scale models, especially distorted models,
in analyzing the elastic behavior of angle-ply laminated plates. Distorted models are more
practical, since relaxation of each similarity condition eliminates some restrictions on the
model design. The results presented herein indicate that, for elastic response of an angle-ply
rectangular plate, based on structural similitude, a set of scaling laws can be-fdund to develop

design rules for small scale models. Results for buckling characteristics under uniaxial and

vibration characteristic will be presented in the full paper.
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Figure 2: Predicted and theoretical shear buckling load of the Kevlar/Epozy prototype when
model have different material properties.
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