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RELEASE: 93-204

FIVE SPACEWALKS TO SERVICE HUBBLE SPACE TELESCOPE HIGHLIGHTS

SHUTTLE MISSION STS-61

The December flight of Endeavour on Space Shuttle Mission STS-61 will

see the first in a series of planned visits to the orbiting Hubble Space

Telescope (HST). The 11-day mission has been designed to accommodate a

record five spacewalks with the capability for an additional two if needed.

The first HST servicing mission has three primary objectives: restoring

the planned scientific capabilities, restoring reliability of HST systems and
validating the HST on-orbit servicing concept. These objectives will be

accomplished in a variety of tasks performed by the astronauts in Endeaour's

cargo bay.

Replacement of the spacecraft's solar arrays -- HST's source of electrical

power m tops the primary servicing task list. This is because solar array

jitter, or excessive flexing which happens when the telescope passes from
cold darkness into warm daylight, may be compromising the structural

Integrity of the arrays.

The objective to restore the HST's science capabilities will be
accomplished with the installation of the Wide Field/Planetary Camera-II
and the Corrective Optics Space Telescope Axial Replacement, both of

which will compensate for the spherical aberration of the primary mirror.

The Installation of new gyroscopes, which are required to point and

track HST, along with fuse plugs and electronic units will increase the

reliability of the HST system.

Leading the seven-person STS-61 crew will be Mission Commander Dick

Covey. Pilot for the mission is Ken Bowersox. "Pne mission specialists for

the flight are Kathy Thornton, Claude Nicollier, Jeff Hoffman, Story

Musgrave and Tom Akers. Working in pairs, Hoffman and Musgrave and
Thorton and Akers, all of whom have previous EVA experience, will perform

the five spacewalks scheduled for flight days 4-8.

Launch of Endeavour on the STS-61 mission is currently scheduled for

no earlier than Dec. 1, 1993 at 4:57 a.m. EST. The planned mission

duration is 10 days, 22 hours and 36 minutes. An on-time launch on Dec. 1

would produce a 3:33 a.m. EST landing on Dec. 12 at Kennedy Space

Center's Shuttle Landing Facility.

STS-61 will be the 5th flight of Space Shuttle Endeavour and the 59th

flight of the Space Shuttle system. The Hubble Space Telescope is an

international cooperative program between NASA and the European Space

Agency.
end-

3



MEDIA SERVICES INFORMATION

NASA Select Television Transmission

NASA Select television is available on Satcom F-2R, Transponder 13,

located at 72 degrees west longitude; frequency 3960.0 MHz, audio 6.8
MHz.

The schedule for television transmissions from the orbiter and for

mission briefings will be available during the mission at Kennedy Space

Center, Fla; Marshall Space Flight Center, Huntsville, Ala.; Ames-Dryden
Flight Research Facility, Edwards, Calif.; Johnson Space Center, Houston and

NASA Headquarters, Washington, D.C. The television schedule will be

updated to reflect changes dictated by mission operations.

Television schedules also may be obtained by calling COMSTOR 713/483-
5817. COMSTOR is a computer data base service requiring the use of a

telephone modem. A voice update of the television schedule is updated daily
at noon Eastern time.

Status Reports

Status reports on countdown and mission progress, on-orbit activities

and landing operations will be produced by the appropriate NASA
newscenter.

Briefings

A mission press briefing schedule will be issued prior to launch. During

the mission, status briefings by a Flight Director or Mission Operations

representative and when appropriate, representatives from the science

team, will occur at least once per day. The updated NASA Select television

schedule will indicate when mission briefings are planned.
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Launch Date/Site:
Launch Time:
Orbiter:
Orbit/Inclination:
Mission Duration:
Landing Time/Date:
Primary Landing Site:
Abort Landing Sites:

Crew:

Cargo Bay Payloads:

HST Replacements:

Cargo Bay Equip:

STS-61 QUICK LOOK

Dec. 1, 1993/Kennedy Space Center, Fla., Pad 39B

4:57 a.m. EST (approximate)

Endeavour (OV-105) 5th Flight

320 nautical miles/28.45 degrees

10 days, 22 hours, 36 minutes (approximate)

3:33 a.m. EST (approximate) /Dec. 12, 1993

Kennedy Space Center, Fla.
Return to Launch Site - KSC, Fla.

TransAtlantic Abort Landing -

Banjul, The Gambia
Moron, Spain
Ben Guerir, Morocco

Abort Once Around - Edwards AFB, Calif.

Dick Covey, Commander (CDR)
Ken Bowersox, Pilot (PLT)

Kathy Thornton, Mission Specialist 1 (MS1/EV3)

Claude Nicollier, Mission Specialist 2 (MS2)
Jeff Hoffman, Mission Specialist 3 (MS3/EV1)

Story Musgrave, Mission Specialist 4 (MS4/EV2)
Tom Akers, Mission Specialist 5 (MS5/EV4)

HST SM-01 (Hubble First Servicing Mission)

SA (Solar Arrays)
WF/PC-II (Wide Field/Planetary Camera-II)
RSU-I, 2 & 3 (Rate Sensor Units 1, 2 and 3)

ECU-1 & 3 (Electronic Control Units 1 and 3)

MSS-1 & 2 (Magnetic Sensing Systems 1 and 2)

COSTAR (Corrective Optics Space Telescope

Axial Replacement)

SADE (Solar Array Drive Electronics)

HST FSS (HST Flight Support System)

ORUC (Orbital Replacement Unit Carrier)

SAC (Solar Array Carrier)
SIPE (Scientific Instrument Protective Enclosures)

ICBC (IMAX Cargo Bay Camera)



In-Cabin Payloads:

Other:

DTOs/DSOs: DTO
DTO
DTO
DTO
DTO
DSO
DSO
DSO
DSO
DSO
DSO
DSO
DSO
DSO
DSO
DSO
DSO

IMAX (IMAX In-Cabin Camera)

AMOS (Air Force Maui Optical Site)

648: Electronic Still Camera

656: PGSC Upset Monitoring

700-2" Handheld Laser Ranging Device

700-8: Global Positioning System Flight Test
1211:

326:

469:

483:

485:

487:

489:
604:

617:

624:

901:

902:
903:

Water Dumps at 10.2 psi Cabin

Window Impact Observation
Inflight Radiation Dose/Distribution

Back Pain in Microgravity

Inter-Mars Tissue Equivalent Counter
Immunological Assessment of Crew

EVA Dosimetry Evaluation

Visual-Vestibular/Function of Adaptation
Skeletal Muscle Performance

Cardiovascular Response to Exercise

Documentary Television
Documentary Motion Picture

Documentary Still Photography
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SPACE SHUTTLE ABORT MODES

Space Shuttle launch abort philosophy aims toward safe and intact

recovery of the flight crew, orbiter and its payload. Abort modes include:

* Abort-To-Orbit (ATO) - Partial loss of main engine thrust late

enough to permit reaching a minimal 105-nautical mile orbit

with orbital maneuvering system engines.

* Abort-Once-Around (AOA) - Earlier main engine shutdown with

the capability to allow one orbit around before landing at
Edwards Air Force Base, Calif.

* TransAtlantic Abort Landing (TAL) - Loss of one or more main

engines midway through powered flight would force a landing at

either Banjul, The Gambia, Moron, Spain, or Ben Guerir,
Morocco.

* Return-To-Launch-Site (RTLS) - Early shutdown of one or

more engines, and without enough energy to reach Banjul, would

result in a pitch around and thrust back toward KSC until within

gliding distance of the Shuttle Landing Facility.

STS-61 contingency landing sites are the Kennedy Space Center,
Edwards Air Force Base, Banjul, Moron or Ben Guerir.
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STS-61 VEHICLE AND PAYLOAD WEIGHTS

Vehicle/Payload Pounds

Orbiter (Endeavour) empty and 3 SSMEs

Flight Support System (FSS)

Imax Cargo Bay Camera (ICBC)
Imax (in cabin)

Orbital Replacement Unit Carrier (ORUC)

Solar Array Carrier (SAC)

Solar Array II
Rate Sensor Units (3)

Wide Field/Planetary Camera II

Corrective Optics Space Telescope Axial Replacement
Electronic Control Units (2)

Magnetic Sensing System (2)

Co-processor

Goddard High Resolution Spectrograph Redundancy Kit
Changeout complement total (launch)
High-Speed Photometer

WF/PC I
Solar Array I
RSU (3)

ECU (2)
Changeout complement total (Earth return)
DSOs/DTOs

Total Vehicle at SRB Ignition

Orbiter Landing Weight

173,014

4,200
608

329

6369

3829

702

73
613

660

35

30
140

7

2300

603

624

668
73

35

2135
104

4,511,115
209,383
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STS-61 SUMMARY TIMELINE*

Flight Day One*

Ascent

OMS-2 burn (310 n.m. x 297 n.m.)
ICBC activation

NC-1 burn (310 n.m. x 302 n.m.)

Flight Day Two*

Remote Manipulator System checkout

Cabin pressurization to 10.2 psi

Space Support Equipment checkout/survey

Configure Flight Servicing Structure
NPC burn (310 n.m. x 302 n.m.)
NSR burn (310 n.m. x 304 n.m.)

Extravehicular Mobility Unit checkout
NC-2 burn (317 n.m x 305 n.m.)

Flight Day Three*

HST rendezvous operations
NH burn (320 n.m. x 305 n.m.)
NC-3 burn (320 n.m x 310 n.m.)

NCC burn (320 n.m. x 310 n.m.)

TI burn (320 n.m. x 312 n.m.)

HST grapple (320 n.m x 313 n.m.)
HST berth

HST survey

Group B powerdown

Flight Day Four*

HST Extravehicular Activity 1

(Hoffman and Musgrave: Two Rate Sensor Units/Secondaries)

Flight Day Five*

HST Extravehicular Activity 2

(Thornton and Akers: Solar Arrays)

Flight Day Six*

HST Extravehicular Activity 3

(Hoffman and Musgrave" Wide Field/Planetary Camera; Two Magnetic
Sensing Systems)
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Flight Day Seven*

HST Extravehicular Activity 4

(Thornton and Akers: Corrective Optics Space Telescope Axial

Replacement/Secondaries)

Flight Day Eight*

HST reboost burns (320 n.m. x 313 n.m.)

HST Extravehicular Activity 5

(Hoffman and Musgrave: Solar Array Drive Electronics/Secondaries)

Flight Day Nine*

Group B power up

HST grapple
HST unberth

HST release (320 n.m. x 313 n.m.)

Separation burns 1, 2 and 3 (320 n.m. x 311 n.m.)

Group B power down

FUght Day Ten*

Cabin pressurization to 14.7 psi

Off-duty half day (MS1, MS3, MS4, MS5)

Off-duty half day (CDR, PLT, MS2)

Flight Day Eleven*

Group B power up
Flight Control Systems checkout

Reaction Control System hot fire
Cabin stow

Flight Day Twelve*

Space Support Equipment power down

Deorbit preparations
Deorbit burn

Entry

Landing

*SPECIAL NOTE ON STS-61 SUMMARY TIMELINE

On every Shuttle mission, some day-to-day replanning takes place to

adjust crew and event timelines according to unforeseen developments or

simply to optimize the use of time in orbit.

During STS-61, the bulk of the daily replanning will be undertaken,
while the crew sleeps, by the planning shift in mission control. During the

EVA days, this team will play a crucial role in making the most of the
astronauts time in Endeavour's payload bay.
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To maximize crew productivity and to adapt to any unexpected
challenges, the planning team will have the ability to reorder the sequence
of individual tasks within any given spacewalk or to shift tasks from one
day's agenda to another.

Each day's replanning effort will produce an execute plan defining the
approach for the next day's activities in space and on the ground.

STS-61 ORBITAL EVENTS SUMMARY

EVENT START TIME VELOCITY CHANGE ORBIT

(dd/hh:mm:ss) (feet per second) (n.m.)

OMS-2 00/00:45:00 461 310 x 297

NC-1 00/05:33:00 8 310 x 302

(adjusts the rate at which Endeavour is closing on HST)

NPC 00/23:12:00 .5 310 x 302

(fine-tunes Endeavour's ground track to be exactly in line with HST track)

NSR 01/03:57:00 5.5

(adjusts Endeavour's closing rate on HST)

310 x 304

NC-2 01/04:32:00 12

(adjusts Endeavour's closing rate on HST)
317 x 305

NH 01/17:22:00 4 320 x 305

(adjusts altitude of Endeavour's orbital high point, fine-tunes course to

arrive at a point 40 nautical miles behind HST at same altitude)

NC-3 01/18:10:00 10 320 x 310

(fired at 40 n.m. behind HST, begins closing in on HST; initiates closing
rate of about 16 n.m. per orbit aimed to arrive at a point 8 n.m. behind HST,
at same altitude as HST, two orbits later)

NCC 01/20:23:00 TBD 320 x 310

(first burn calculated by onboard computers using onboard navigation
derived from orbiter star tracker sightings of HST; fired while orbiter is
about closing on point 8 n.m. behind HST to fine-tune course)

TI 01/21:23:00 3 320 x 312

(fired upon arrival at point 8 n.m. behind HST; begins terminal
interception of HST)

MC 1 -MC4 TBD TBD TBD

(mid-course corrections; calculated by onboard computers, double-

checked by ground; fine-tune final course toward HST, may or may not be
required)

12



MANUAL 01/22:57:00 TBD TBD

(Begins about 45 minutes prior to HST grapple, less than 1 nautical mile
from HST. Commander takes manual control of orbiter flight, fires braking

maneuvers to align and slow final approach)

GRAPPLE 01/23:42:00 n/a

(HST captured with mechanical arm)

n/a

HST REBOOST 06/17:45:00 TBD TBD

(Performed only if amount of available propellant allows, lifts Endeavour's
orbit to reboost HST's orbit while HST is in cargo bay)

HST REBOOST 06/18:33:00 TBD TBD

(Performed only if amount of available propellant allows, lifts Endeavour's
orbit to reboost HST's orbit while HST is in cargo bay)

HST RELEASE 08/00:43:00 n/a

(HST is released from Endeavour's mechanical arm)

n/a

SEP-I 08/00:44:00 1 320 x 313

(Begins a slow separation of Endeavour from vicinity of HST)

SEP-2 08/01:08:00 2 320 x 313

(Increases rate at which Endeavour is departing vicinity of HST)

SEP-3 08/01:32:00 3 320 x 311

(Puts Endeavour on final course departing vicinity of HST)

DEORBIT 10/20:31:00 508

LANDING 10/21:45:00

NOTE: All planned burns are recalculated in real time once the flight

is underway using the latest information for the position of HST and will

likely change slightly. Depending on how accurate the orbiter's navigation
and course is at certain times, some smaller burns listed above may not be

required. However, the times for major burns and events are unlikely to

change by more than a few minutes.
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HUBBLE SPACE TELESCOPE/SERVICING MISSION-01
(HST-SM-01)

OVERVIEW OF MISSION

History

Launched on April 24, 1990, NASA's Hubble Space Telescope was
designed to be the most powerful astronomical observatory ever built. And

indeed, HST far surpasses the capabilities of ground-based optical

telescopes for many types of research. The keys to Hubble's power are its
operation in space, far above the interference of the Earth's atmosphere,

and to the unique instruments it carries as it orbits the planet. In addition

HST was the first observatory designed for extensive on-orbit maintenance
and refurbishment.

While the launch on the Space Shuttle Discovery more than 3 years ago

was flawless, Hubble was not. Two months after HST was deployed Into

orbit 370 miles (595.5 km) high, Hubble produced a disquieting discovery

not about space, but about itself. The curvature of its primary mirror was
slightly -- but significantly -- Incorrect. Near the edge, the mirror Is too fiat

by an amount equal to 1/50th the width of a human hair.

A NASA investigative board later determined that the flaw was caused by
the Incorrect adjustment of a testing device used In building the mirror.
The device, called a "null corrector," was used to check the mirror

curvature during manufacture.

The result is a focusing defect or spherical aberration. Instead of being
focused into a sharp point, light collected by the mirror is spread over a

larger area in a fuzzy halo. Images of extended objects, such as stars, planets

and galaxies, are blurred.

NASA has been coping with Hubble's fuzzy vision with computer

processing to sharpen images. For bright objects, this technique has yielded

breathtaking detail never seen from the ground. NASA also has been

concentrating on the analysis of ultraviolet light, which ground-based

telescopes cannot see because of the Earth's intervening atmosphere.

To realize the full potential of HST, however, the spacecraft must be

serviced. The telescope mirror itself cannot be fixed or changed. However,

corrective optics can be applied to the HST instruments to compensate for
the aberration, much the same as glasses or contact lenses correct human

sight. The new optics should allow Hubble to accomplish most, if not all, of"

it's originally planned objectives.

The mission, though, will accomplish much more than improved vision.

Hubble was designed to spend 15 years in space. Even before the spherical

aberration was known, several servicing missions, including one In 1993,

had been planned so that failed parts could be replaced and others Improved

with better technology. This mission will perform that type of servicing In
addition to Installing corrective optics.

14



Endeavour will carry some 16,000 pounds (7,257 kilograms} of servicing
hardware into space. During nearly 2 weeks in orbit around the Earth,
astronauts will use the Shuttle as a kind of orbiting service station from

which they will venture to work on the 12.5-ton (11.34-metric ton)
telescope as it hurtles around the planet at 18,000 miles (28,968 km) an
hour.

The crew will spend some 30 hours in space during at least five separate
spacewalk periods, undertaking a series of tasks more complex than any
ever attempted in orbit, to ensure that Hubble remains a viable and
productive national resource throughout its planned 15-year lifetime.

Mission Objectives and Success

The three objectives of the first Hubble servicing mission are to restore
the planned capabilities of the telescope by correcting the optics, to restore
reliability of the spacecraft and to validate that the concept of Hubble on-
orbit servicing is viable.

The top priorities are installation of the replacement solar arrays; two
rate sensing units, one with an electronics control unit; the Wide
Field/Planetary Camera II (WF/PC-II) and fuses; the Corrective Optics Space
Telescope Axial Replacement (COSTAR); at least one new magnetometer;
and a new Solar Array Drive Electronics unit.

For the first servicing mission to be considered fully successful, these top

priority items must be accomplished. In addition, other tasks may be
performed on a time-available basis. The minimum criteria for mission
success are to leave Hubble with three newer-design gyroscope systems and

either an operational WF/PC-II or COSTAR.

First Corrected Image Availability

The first fully corrected Hubble images are estimated to be available 6 to
8 weeks after the servicing mission. This time is necessary for adjustments
to ensure telescope stability and the best possible focus. During this period,
telescope operators on the ground will remotely calibrate the gyros, which
help keep the HST fixed on its targets, and position the corrective mirrors
in the Corrective Optics Space Telescope Axial Replacement (COSTAR) and
the Wide Field/Planetary Camera 2 (WF/PC-II).

COSTAR is being installed to remedy the blurred vision of three
observing instruments on HST. The WF/PC-II is a replacement camera that
has its own corrective optics.

More information on activities after STS-61 necessary to produce a fully

corrected Hubble image can be found in the section on Servicing Mission
Orbital Verification.

15



Science Accomplishments

Despite the flaw in the primary mirror, the bus-size Hubble still has been

able to gather a wealth of scientific data, most of which would have been

impossible to collect if the telescope did not exist. In the last 3 years, HST

has conducted a variety of scientific investigations that have rapidly

expanded knowledge of what lies beyond the Earth, from the relatively
nearby planets in Earth's solar system to the most distant reaches of the
universe.

Hubble's studies have ranged from Earth's neighbor Mars, to the

evolution of stars from birth to death, to the characteristics of galaxies
beyond, and finally to a field known as cosmology, which probes the
fundamental nature of the universe itself.

The following is a small sampler of some of Hubble's discoveries and

work in progress:

• The Planets

Even prior to the servicing mission, Hubble conducted and continues to

conduct long-term observations of global weather changes on Mars.

Hubble has observed the development of a rare, planet-wide storm on

Saturn. The telescope also resolved, as two distinct objects, the most
distant planet in the solar system, Pluto and its moon Charon. Previously, no

telescope had been able to separate clearly the two bodies.

HST also has been studying long-term weather changes on Jupiter and its
auroral activity. Hubble also has been measuring the extent of the

atmosphere of the Jovian moon Io and also has looked for changes in the
satellite's surface.

• Stellar Evolution

Hubble uncovered the strongest evidence yet that many stars form

planetary systems. This evidence was the discovery of disks of dust around

15 newly formed stars in the Orion Nebula, a starbirth region 1,500 light-

years away. Such disks are considered a prerequisite for the formation of
solar systems like Earth's. The HST images confirm more than two

centuries of speculation, conjecture and theory about the genesis of a solar

system.

• Star Clusters

HST discovered young globular star clusters at the core of a peculiar

galaxy. The discovery of these stars early in their evolution was the

equivalent of finding a "Jurassic Park" in space.

The space telescope found "blue straggler" stars in the core of globular

cluster 47 Tucanae, providing evidence that some stars "capture" others

and merge with them.
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• Gallaxies

HST uncovered circumstantial evidence for the presence of a massive

black hole in the core of the neighboring galaxy M32 as well as the giant

elliptical galaxy M87. Both galaxies have a central concentration of starlight

that probably is shaped by the gravitational field of the black hole. This

implies that massive black holes may be quite common among "normal"

galaxies, perhaps even Earth's.

Hubble yielded direct evidence for galaxy evolution by resolving the

shapes of galaxies that existed long ago. lIST revealed that many ancient

spiral galaxies have since disappeared, possibly through fading or collisions

and mergers with other galaxies.

• Cosmology

The space telescope allowed astronomers to take a major first step in

determining the rate at which the universe is expanding. HST detected 27

stars called Cepheld variables. These stars are "standard candles" for

estimating distances to galaxies. The expansion rate, known as the Hubble
Constant, is one of two critical numbers needed for making a preclse

determination of the size, age and fate of the universe.

HST discovered boron, the fifth lightest element, in a very ancient star.
This star would have been one of the earliest formed after the Big Bang

explosion that most scientists believe began the universe. If boron was

produced in the first few minutes of the birth of the universe, it Implies that

the Big Bang was not a uniform explosion.

Hubble precisely determined the ratio of deuterium to hydrogen in

interstellar gas clouds. This value shows that the universe has only 6

percent of the observable matter required to prevent itself from expanding
forever.

European Space Agency (ESA) Role in HST

The Hubble Space Telescope is a program of joint cooperation between
NASA and ESA. ESA provided Hubble's deployable solar arrays, the major

source of electrical power, which collects energy from the sun to recharge

the spacecraft's six nickel-hydrogen batteries. ESA's second contribution
was the Faint Object Camera (FOC), which was intended for imaging of the

faintest objects in the visible and ultraviolet spectral regions at very high

spatial resolution. These elements are discussed further in the section

addressing replacement hardware and instruments.

Claude Nicollier, a mission specialist on this flight, is an ESA astronaut.

SERVICING MISSION ORBITAL VERIFICATION (SMOV)

The purpose of SMOV is to "recommission" HST so that it can begin
science operations as soon as possible following the firs{ servicing mission.

This involves a thorough engineering checkout of all serviced subsystems;
17



optical alignment and initial calibration of all science instruments; and the
phasing in of astronomical observations. SMOV begins when HST is released
from the Shuttle and is expected to last approximately 13 weeks.

Key Activities During SMOV

• Activation and engineering checkout of the science instruments.

* Optical alignment and focusing of WF/PC-II and COSTAR.

• Initial calibration of WF/PC-II and the COSTAR-corrected science
Instruments.

• Early science observations.

Engineering Checkout Activities

• Decontaminate the WFPC II detectors (charge-coupled devices or CCDs)

of any foreign substances by heating the detectors to "drive-off'
contaminants.

• Establish proper operating temperature of WFPC II CCDs by monitoring
ultraviolet (UV) light from a calibration star.

• Monitor pressure drop (due to outgassing) until it is safe to turn on high
voltage to the COSTAR-corrected science instruments.

• Determine the effects of the servicing mission on the basic
(pre-COSTAR) optical performance of the science instruments.

Steps in Focusing the Science Instruments

• Check out the first generation instruments and conduct prefocusing
tests.

• Adjust the secondary mirror in HST's Optical Telescope Assembly to set
focus for WF/PC-II and correct for residual coma in the Optical Telescope
Assembly.

° Deploy COSTAR arms.

• Adjust COSTAR and WF/PC-II optics and mirrors, including mirror tilt,
coarse adjustment, fine alignment and focus.

Science Instruments Calibration

• A series of tests and measurements to establish the actual performance of
the science instruments in the areas of sensitivity, resolution and detector
response characteristics.
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KEY HST SCIENTIFIC GOALS FOLLOWING THE FIRST SERVICING MISSION

• Hubble will determine, precisely, the expansion rate of the universe by

measuring the light curve of Cepheid Variable stars in galaxies out to the
distance of at least 50 million light-years.

Cepheids are pulsating stars that become alternately brighter and fainter
with periods (duration of the states of brightness or faintness) ranging from
10 to 50 days. Astronomers have known for over 50 years that the periods
of these stars precisely predict their total luminous power, which allows
their distance to be measured.

In the expanding universe, the Hubble Constant (Ho) is the ratio of the
recession velocities of galaxies to their distance. (Recession velocity is the

speed at which the galaxy is moving away from Earth.) The age of the
universe can be estimated from the Hubble Constant. The age currently is
estimated to be between 10 and 20 billion years, but a more precise
measurement of the Hubble Constant is required to narrow this range to an

accuracy of 10 percent.

• HST will look for the gravitational signature of massive black holes in the
cores of normal and active galaxies. A black hole is a theoretical object that

is so compact and dense, nothing can escape its gravitational field. The HST
spectrographs will measure precisely the velocities of gas and stars orbiting
the center of a galaxy. If the stellar velocities increase rapidly toward the
galaxy center, it would be the signature of a massive, compact central object.

• Hubble will be able to determine the shapes of galaxies that are very
distant. Because remote objects also are relics of the early universe, HST
will be able to study how galaxies have evolved since the beginning of the
universe. Nearby galaxies have spiral, elliptical and irregular shapes,
however, these shapes should have changed over time because the universe

is evolving.

• Hubble will be able to precisely measure the ages of globular clusters by
observing the faintest stars in the clusters. Globular clusters are considered
to be the oldest objects in the universe, and their ages provide insights into
how stars evolve and also provide an independent estimate of the age of the
universe.

HUBBLE SPACE TELESCOPE RENDEZVOUS AND RETRIEVAL

The rendezvous and retrieval operations associated with Hubble Space

Telescope will be similar to those conducted on previous missions requiring
capture of a free-flying satellite in orbit.

For the HST mission, Endeavour's crew will perform many orbit adjust

bums to catch up with and retrieve the telescope on flight day three of the
mission using the Shuttle's robot arm.

Once the Shuttle is safely in orbit and the payload bay doors opened, the

space support equipment activation is performed. This includes activating
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the flight support system and orbital replacement unit carrier heaters.

Other pre-rendezvous activities will include checkout of the robot arm, the

orbiter Ku-band dish antenna used as a radar system during rendezvous and
the ground command system.

The terminal initiation burn occurs about 2 hours prior to capture at a

distance of approximately 40,000 feet (12,192 m) in front of the telescope.
Several small mid-course correction burns follow before the Commander

takes over manual control of the Shuttle about 1,200 feet (366 m) below and

500 feet (152 m) behind the telescope.

The orbiter approaches Hubble from underneath, just after orbital sunset.

This approach technique is designed to minimize potential contamination
from the Shuttle's thruster firings.

Prior to capture, a ground-commanded maneuver of the telescope will be
performed to align the grapple fixture on the HST with Endeavour's robot

arm. The size of the telescope maneuver will depend on the angle to the

Sun and ranges from about 70 degrees to 180 degrees.

When the telescope is grappled, using the robot arm's end effector, it

will be lowered into the payload bay and berthed in the flight support

system, a turntable likened to a lazy susan for Its rotation and tilt ability to
assist in the servicing tasks. An electrical cable is remotely attached to
provide orbiter power to the telescope.

COMMANDS TO HUBBLE

Commands to HST are issued from the Space Telescope Operations

Center (STOCC) at Goddard Space Flight Center, Greenbelt, Md., which
manages the orbiting observatory. The STOCC has been the nerve center for

Hubble operations since the telescope was launched. Commands to Hubble

are issued from the STOCC and data gathered by the spacecraft arrive there
first.

The STOCC is responsible for most commanding of the HST during
STS-61, although the crew can send a limited number of commands from

Endeavour. The STOCC will send commands configuring the space
telescope for retrieval by the orbiter; integrate commands with crew

activities during extravehicular activities (EVAs) to configure various
spacecraft hardware and perform hardware checkouts and send commands

to configure the space telescope for deployment from Endeavour.

STS-61 EXTRAVEHICULAR ACTIVITIES

A total of five spacewalks are planned on STS-61 to service the HST.

Unlike past Shuttle repair work performed on satellites such as Intelsat on

STS-49, HST was designed with the objective of servicing it in orbit through
Shuttle spacewalks. As such, it has two grapple fixtures for the Shuttle's

mechanical arm, many handholds for spacewalkers and bolts and electrical

connections designed to be serviced by a spacewalker.
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However, the amount of work to be performed on STS-61 has increased
above what originally was projected for the first servicing flight to the
telescope due to deficiences and equipment problems that have occurred or
been discovered since HST was launched. Since there is such a large
amount of work to be accomplished on STS-61, the various tasks have been

prioritized by the HST program officials.

The primary tasks on STS-61 will be to install two Rate Sensor Units,
one with an Electronics Control Unit, the Solar Arrays, the Solar Array Drive

Electronics, the Wide Field/Planetary Camera and four instrument fuse

plugs, the Corrective Optics Space Telescope Axial Replacement and one

Magnetic Sensing System.

Secondary tasks that may be performed during the spacewalks if time

permits Include installing the Goddard High Resolution Spectrograph

Redundancy Kit, a 386 Coprocessor, a second Magnetic Sensing System,

four gyro Fuse Plugs and one Electronic Control Unit. A third Rate Sensor

Unit is being carried in the payload bay for use if needed.

The spacewalks will be peformed by STS-61 extravehicular crew

members Jeff Hoffman, Story Musgrave, Kathy Thornton and Tom Akers.

Each spacewalk will be performed by two crew members, one of whom will
be in a foot restraint mounted at the end of Endeavour's mechanical arm.

During all EVAs, the crew member mounted at the end of the arm will be
referred to as Extravehicular Crew Member 2, or EV2, while the other

spacewalker will be designated EVI.

The EVA crew can be distinguished by markings on the legs of their

spacesuits. Hoffman will have a solid red stripe around the legs of his suit;

Musgrave will have no stripes on the legs of his suit; Thornton will have a

dashed red stripe around the legs of her suit; and Akers will have a diagonal,

broken red stripe around the legs of his suit.

In planning for the mission, the EVAs have been designed to take lnto

account the possibility that crew members may encounter unforeseen
difficulties either in tasks or equipment that could cause the preplanned

schedule for installation of various equipment to change. All four EV crew

members have cross-trained so that any one is capable of performing any

given task.

For all of the various tasks, the Flight Support Structure in Endeavour's

cargo bay on which HST will be mounted, once it is retrieved, will be

rotated so the area being worked on faces forward to allow better visibility.

Those specific tasks and the EVA work required to complete them are
described in the following sections.

REPLACEMENT HARDWARE AND INSTRUMENTS

While the servicing mission is complex, steps have been taken to make

the spacecraft as straightforward to work on as possible. Since HST was

designed for servicing in space from it's inception, many of, its subsystems
are modular, standardized and accessible.
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Hubble has 49 different modular subsystems designed for servicing,
ranging from small fuses to large scientific instruments. The space
telescope, which is 43.5 feet (13.25 meters) long, also has 225 feet (69
meters) of handrails and 31 footholds to aid astronauts in servicing tasks.
And more than 200 tools -- from screwdrivers to hardware designed
specifically for HST servicing -- are available for use on this mission.

NASA's Goddard Space Flight Center, Greenbelt, Md., ls responsible for
the components that will be serviced or replaced on Hubble. The
components make up a primary servicing task list that will be carried out
during the mission, followed by a secondary task list to be undertaken if
time and conditions allow.

The mission's primary objective ls to restore the HST's science
capabilities with the Wide Field/Planetary Camera-II and the Corrective
Optics Space Telescope Axial Replacement, both of which will compensate
for the spherical aberration of the primary mirror.

However, the replacement of the spacecraft's solar arrays -- HST's major
source of electrical power -- tops the primary servicing task list. This is
because solar array jitter, or excessive flexing, may be compromising the
structural integrity of the arrays. By replacing the arrays first, the
observatory still will be able to perform science even if an emergency causes
the mission to be called off and forces astronauts to release the telescope
from the Space Shuttle before installing the optics packages

Likewise the replacement of one gyro pair is second on the task list,
because If more gyros fail, the pointing of the spacecraft at science targets
cannot be accurately controlled.

The p_mary servicing task list includes:

• Solar Array II (SA II).
• Gyro Pair 2.
• Wide Field Planetary Camera 2 (WFPC2) and four instrument fuse plugs.
• Corrective Optics Space Telescope Axial Replacement (COSTAR)
• Magnetometer System 1.
• Gyro Pair 3 with Electronics Control Unit (ECU).
• Solar Array Drive Electronics 1 (SADE).

The secondary servicing task list includes:

DF-224.
• Magnetometer System 2
• Four gyro fuse plugs.
• Electronics Control Unit for Gyro Pair i.

===

A redundancy kit for the Goddard High Resolution Spectrograph
(GHRS). _

The 386 C0Zprocessor on the spacecraft's primary Computer, Called the
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PRIMARY SERVICING TASKS

Gyroscope Pairs (Rate Sensing Units) and Electronics Control Unit

Three gyroscopes (or gyros) are required to point and track HST. Three

more gyros are onboard as backups. The total of six gyros are packaged in

pairs of two, called Rate Sensing Units (RSU). One gyro failed in December
1990; a second failed in June 1991 and a third in November 1992.

Two of these three gyros, one located in pair 2 and the other in pair 3,

contain hybrid electronics that are suspected of causing the failures. Gyro

pairs 1 and 3 also have experienced a failure in one channel of their
Electronics Control Unit (ECU), the cause of which is suspected to be a

random electronic part failure. While these failures have not affected HST's

performance, replacing the failed hardware will increase system reliability.

The Rate Sensor Units are inside the housing of HST. To begin the

replacement work, the spacewalking astronaut, standing in a foot restraint
mounted on the end of the Shuttle's mechanical arm, will first back out

several bolts to open doors covering the star tracker near the base of HST.
One of the four bolts holding the doors, called the star tracker seal, must be

completely removed to unlatch the doors.

A programmable power wrench will be used to loosen and tighten all

bolts during the RSU replacement. While the arm-mounted astronaut
unlatches the doors, his fellow spacewalker, mounted on a foot restraint

attached to a support structure in the Shuttle's bay, will assist. Once the
doors are unlatched, they will be swung open to provide access to the bay

area.

The Rate Sensor Units are located behind the cone-shaped star tracker

shades in the bay area of the telescope. To replace an RSU, these shades

may have to be removed. If so, three bolts must be loosened and the shade
pulled off. The shade then can be temporarily stowed outside the work area.
The shades are reinstalled by pushing them back into place and then

retightening the three bolts.

To remove an RSU, the spacewalker, standing in an adjustable foot

restraint attached to the telescope, will loosen three bolts and disconnect

two electrical plugs. The RSU then may be removed by holding a handrail

located at the top of the unit.

During these activities, the astronaut standing on the end of the arm will

assist his partner from behind. The new RSU, carried aloft in an Orbital

Replacement Unit Carrier (ORUC) in the Shuttle's bay, will be Installed by

sliding it into place and then retightening the three bolts and hooking up

the two electrical plugs.

The time required to set up, remove two RSUs, install two RSUs and

then clean up the area during training has been around 3.5 hours, Including

the possible removal and reinstallation of the star tracker'shades.
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Electronic Control Units

The Electronic Control Units are the electrical brains for the Rate

Sensor Units and are located in a service bay on the Hubble Space
Telescope. Once the compartment door is opened, two of the three ECUs

will be replaced by removing four bolts and disconnecting each one's

electrical cable, The new units, which are retrieved from a protective
container in the payload bay, will be installed in a similar fashion.

Solar Array II

The Solar Arrays were built in Europe under the auspices of ESA. The
solar arrays provide the telescope and its instruments with 5kW of electrical

power at the start of their lifetime. They constitute the spacecraft's two

"wings" and consist of 50,000 silicon photoelectrical cells, covering a
surface area of 84 square yards/6.6 x 39.6 x 9.24 ft (70 square meters/2 x
12 x 2.8 m).

The arrays are the flexible "roll-out and roll-up" type and are made of

huge sheets of plastic (fiberglass-relnforced Teflon) held in place by

horizontal metal struts, which also unroll. Each wing weighs about 352 pds
(I 60 kg).

But the arrays create a jitter that interferes with spacecraft stability and

affects its pointing capability. The arrays now on Hubble were supposed to

accommodate the expansion and contraction caused by heating and cooling
as the space telescope moves in and out of daylight during its 96-minute
orbits. However, a compensation device that allows for the expansion and

contraction of the solar array blankets does not expand and contract as
smoothly as expected.

As a temporary fix, engineers created software that commanded Hubble's

pointing system to compensate for the jitter automatically. This procedure

occupies a large portion of the on-board computer memory, though, and to
truly fix the problem, the solar arrays must be replaced.

ESA redesigned and provided to NASA a set of spare solar arrays to
reduce the Jitter to an acceptable level. This set will be installed on the HST

after the existing arrays are removed; the arrays now on the spacecraft will

be returned to Earth. To significantly reduce jitter, the new arrays have
thermal insulation sleeves on the array supports, called bi-stems, to

minimize heating and cooling of the support during each orbit. Springs that
work like shock absorbers also will take up tension at the array ends.

To replace the HST Solar Arrays, first the old arrays are retracted by
commands from the Space Telescope Operations Control Center. Once they
have been retracted and stowed, the arm-mounted spacewalker will release

three latching points on the first array to be removed. Once the three

latches have been released, the array can be removed and handled using a
transfer handhold mounted to the array.
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The array then is carried by having the mechanical arm moved to

position the astronaut within reach of a temporary stowage bracket for the

old arrays, mounted on the right-hand side of the Solar Array Carrier in
Endeavour's cargo bay. While being moved from place to place at the end of

the arm, the crew member also may evaluate the handling characteristics of

the array to prepare for carrying the new array up to its installation position.

Thoughout the removal operation, the arm-mounted astronaut will be
assisted by his counterpart, who will be moving about via handholds on the

telescope and Shuttle.

The new solar array is removed from the SAC by disconnecting a power

and a data connection and then unlatching three latch points exactly like

the latch points on the telescope. A temporary transfer handle allows the
arm-mounted astronaut to carry the new array up to the installation location.

His counterpart will assist with the installation by standing in a foot restraint
mounted to the telescope near the work area.

While the array is being transported, the power and data connectors are

secured in temporary holding brackets on the array. To install the new

array, first it is moved into position and once seated, the three latch points

are locked in place and the connectors plugged in. The second array is
removed and its replacement installed in exactly the same fashion.

During training, the time required to perform a changeout of the solar

arrays was about 5 hours, and one full spacewalk is dedicated to this task.

The new arrays are not planned to be deployed during the spacewalk

performed to install them.

Wide Field/Planetary Camera-II (WF/PC-I_

The current WF/PC has been used to study bright, high-contrast objects,
such as major solar system planets and nearby star clusters and galaxies.

Spherical aberration, however, has hampered the ability of the camera to

provide high-resolution images of the very faintest objects, or objects in a

field crowded with other objects,

The WF/PC-II is a spare instrument developed, beginning in 1985, by the

Jet Propulsion Laboratory (JPL) team, Pasadena, Calif., that built the first
WFPC. When Hubble's mirror was found to be flawed, NASA and the WFPC

science team immediately began working on an optical correction that could

be built into WFPC2. The new design incorporates an optical correction by

the refiguring of relay mirrors already in the optical train of the cameras.

Each relay mirror is polished to a new "prescription" that will compensate

for the incorrect figure on HST's primary mirror. Small actuators will fine-

tune the positioning of these mirrors on orbit, ensuring the very precise

alignment that is required.

Through a servicing bay door built into the side of HST, astronauts will

slide out the 610-pound (277-kilogram), wedge-shaped WFPC, as they would

a giant drawer, and replace it with WFPC2. The removed WFPC will be
returned to Earth.
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The WFPC2 will have three wide-field cameras and one planetary camera

instead of the original total of eight. The WFPC2 team chose to reduce the
number of cameras to four in order to develop a system to align the

corrective relay mirrors on-orbit. Improved Charged Coupled Devices

(CCDs) are incorporated into WFPC2 to improve its sensitivity, particularly in
the ultraviolet.

To remove and replace the Wide Field/Planetary Camera (WF/PC), the

doors to the service bay at the base of the telescope are opened and specially

designed guide rails are installed to assist with removal of the instrument.

A temporary handhold then is installed on the WF/PC. Using this

handhold, the arm-mounted spacewalker pulls the WF/PC out of its installed

position while his counterpart watches the alignment of the WF/PC on the
rails and ensures it is level as it is removed. Once removed from the

telescope cavity, the arm-mounted astronaut is positioned within reach of a

temporary parking fixture for the old WF/PC in Endeavour's cargo bay,
where it is stowed.

A temporary handhold is installed on the new unit, WF/PC-II, in its
Scientific Instrument Protective Enclosure (SIPE) in Endeavour's cargo bay.

The WF/PC-II is pulled from the SIPE by the arm-mounted crew member,

who is later moved to the installation site by the arm operator. Meanwhile,

the SIPE door is temporarily latched by his crew mate.

Before sliding the WF/PC-II into place inside the telescope, a cover over

its mirror is removed. Then, the arm-mounted spacewalker slides it into

the telescope slot while his fellow spacewalker checks to ensure that it is

aligned on the guide rails. Once inserted in place, the handhold is removed
from the instrument and the guide rails are detached.

Finally, the old WF/PC is removed from its temporarily stowed postion in

the parking fixture and inserted into the SIPE that carried WF/PC-II, where

it is secured for Endeavour's trip home.

Removal of the old WF/PC and the installation of WF/PC-II has taken

about 4 hours and 15 minutes during training.

Coorective Optics Space Telescope Axial Replacement (COSTAR)

COSTAR is designed to optically correct the effects of the primary mirror
aberration on three instruments besides the WFPC: the Faint Object Camera

(FOC), the Faint Object Spectrograph (FOS) and the Goddard High

Resolution Spectrograph (GHRS).

The FOC, provided by ESA, is designed to detect very low-luminosity
celestial bodies and to provide the most detailed images on HST. It consists

of an electronic conventional scanning camera (of the television type),

whose front part is a powerful image intensifier tube. Its performance has

been degraded by the spherical aberration, but the sharp image cores still
allow the camera to detect details not seen by ground-based telescopes.
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The FOS analyses the light from very faint objects in the visible and

ultraviolet spectral regions. While the faintest objects now cannot be
reached, observations of brighter sources are only moderately degraded.

The GHRS is intended for very detailed analysis of ultraviolet radiation.

The instrument now loses spectral resolution on the faintest objects, but

observations of brighter sources are only moderately degraded.

COSTAR was invented by the Hubble Space Telescope Strategy Panel, a

group of scientists and engineers brought together at the Space Telescope
Science Institute, Baltimore, Md., in the fall of 1990 to consider how to fix

HST. Built by Ball Aerospace, Boulder, Colo., under contract to NASA,
COSTAR has no detectors or cameras. It will use precisely shaped mirrors,

ranging from about the size of a dime to a quarter, to correct for the

spherical aberration.

Through a servicing bay door, astronauts will pull out the 487-pound

(221-kilogram), phone booth-size High Speed Photometer (HSP) and install

in its place the identically sized COSTAR. Once in place, COSTAR will

deploy a set of mechanical arms, no longer than a human hand, that will
place corrective mirrors in front of the openings that admit light into the

Faint Object Camera, the Faint Object Spectrograph and the Goddard High

Resolution Spectrograph. COSTAR's corrective mirrors will refocus light

relayed by HST's primary mirror before it enters these three instruments.
COSTAR will restore the optical performance of these instruments very

close to the original expectations.

To install COSTAR, the spacewalkers first will open doors to the bay, that

enclosed the HSP, by loosening several bolts. Once the doors are open,

latches that hold the HSP in place will be loosened and then four electrical

connectors and a ground strap will be disconnected from the instrument.

Then the HSP is lowered from its position to guide rails for the unit. The
arm-mounted spacewalker and his crew mate, standing in a foot restraint

attached to the telescope, will coordinate efforts to remove the device. The

arm-mounted crew member will slide HSP out while his fellow spacewalker

ensures that it is aligned with the guide rails.

Once removed, the HSP is held by the crew member standing on the end

of the arm while the arm is positioned so the HSP can be placed in a

temporary parking fixture mounted in the cargo bay. After it is temporarily
stowed, a handhold is attached to COSTAR and it is lifted from its protective

enclosure. A ground strap is disconnected and, while the arm-mounted

astronaut is lifting COSTAR out, his crew mate is assisting by ensuring

COSTAR is squarely aligned with the enclosure as it is extracted.

The arm-mounted crew member then is positioned up to the installation

area while his fellow spacewalker moves to the site via handrails on the

telescope. COSTAR then is aligned with the guide rails, with the arm-

mounted spacewalker watching the alignment of a rail at the upper left-hand
comer of COSTAR and his counterpart checking the alignment of a rail at

the lower right corner.
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Once COSTAR slides into place, the four electrical connections,
disconnected from HSP, are connected to COSTAR along with the grounding
strap, and the latches are tightened to hold COSTAR in place.

In training, removal of the HSP and installation of COSTAR has taken
about 3 hours and 15 minutes.

Solar Array Drive Electronics 1 (SADE)

Each solar array wing has an electronics control assembly that includes a
drive electronics unit. These units transmit positioning commands to the

wing assembly. One of these Solar Array Drive Electronics units has failed
due to transistor overheating. A replacement SADE, provided by ESA, will

restore that lost capability and provide better heat protection for the
transistors.

The Solar Array Drive Electronics are mounted on the inner side of one

of the doors to an HST service bay. Two electronics boxes are mounted on

the inside of the door, but only one is being replaced. Once the door is

opened, the two spacewalkers - one mounted on the arm and one holding
handrails on the telescope - will loosen six bolts to free the old SADE unit
and disconnect electrical connectors attached to the unit. The new SADE

unit is installed in the reverse of this process.

Magnetometer System 1

The HST's two magnetometers (also known as magnetic sensing

systems) measure the spacecraft's relative orientation with respect to the
Earth's magnetic field. Neither magnetometer is functioning at full

capability. Both replacements have improved electronics and thermal
blankets added. The replacement magnetometers will be snapped into

place over the existing magnetometers, which will not be removed from the
HST.

Both of the magnetic sensing systems are located near the top of the

telescope near the aperture door. The new units will be installed using four

rotating knob connectors and will be attached directly on top of the old
units by removing some insulation and removing and reinstalling the
electrical cable. These units are used to help measure the observatory's

position relative to Earth's magnetic field.

Fuse Plugs

Fuses for both the gyros and instruments will be replaced to correct ,

sizing and wiring discrepancies.

The fuses that will be replaced on the HST are located on the inside of a

compartment door. Eight of the fuse plugs will be removed and replaced by

the spacewalking astronauts. Once all have been replaced, checks will be

made to ensure they are working properly.
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SECONDARY SERVICING TASKS

Co-Processor

The DF-224 is the HST's flight systems computer. One of the

computer's six memory units has failed and another has partially failed.
Hubble requires only three memory units to fully function, so the failures

have not affected telescope operations. However, to restore the memory

redundancy and augment the telescope's memory capacity and speed, a co-

processor, based on 386-computer architecture, will be integrated into the

flight systems computer, which will increase both flight computer memory

and the speed of some operations.

The DF-224 co-processor will be installed on top of the HST computer

located in a compartment on the telescope. The memory upgrade is

installed using handles on the computer and attaching four bolts using a

power tool.

Goddard High Resolution Spectrograph Redundancy Kit

The GHRS has two detector systems. Because of the anomalous behavior

of a low-voltage power supply, the side-one detector no longer is used. The

redundancy kit consists of an externally mounted relay box that enhances

system redundancy so that the side-one detector can be used and the side-
two detectors will not be compromised if the anomaly recurs.

Made up of four cables and a relay box, the Goddard High Resolution

Spectrograph redundancy kit is designed to bypass an erratic detector
system on the science instrument located in an instrument bay on the lower

portion of the HST. The relay box is installed first using a power tool similar
to an electric drill. This is followed by attachment of the four cables.

HUBBLE SPACE TELESCOPE TOOLS AND CREW AIDS

The crew of STS-61 has more than 200 tools and crew aids with them

for the servicing of the Hubble Space Telescope. The tools and crew aids,

known as Space Support Equipment (SSE) hardware, range from a simple

bag for carrying some of the smaller tools to sophisticated, battery operated

power equipment. These tools will be used by the EVA crew members

servicing the spacecraft.

Crew Aids

Crew aids are defined as those that are fixed in place and those that are

portable equipment items but not hand tools, used to assist crew members

in accomplishing servicing mission tasks. SSE equipment crew aids permit
the crew members to maneuver safely or to restrain themselves, transfer

Orbital Replacement Units (ORUs) and other portable items, protect

equipment and themselves during changeout activities and temporarily stow

or tether equipment during EVAs.
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Examples of crew aids are handrails, handholds, translation devices,
transfer equipment, protective covers, tethering devices, grapple fixtures,
foot restraint sockets and stowage and parking fixtures.

Tools

Tools are hand-operated or manipulated devices that allow the EVA

astronauts to increase the efficiency of performing intricate, labor-intensive
tasks.

Stowage

The tools and crew aids will be stowed on or in the Solar Array Carrier
(SAC), Orbital Replacement Unit Carrier (ORUC), Flight Support System

(FSS), HST Tool Box, Sidewall-mounted adapter plates, Provisions Stowage
Assembly (PSA), an Adaptive Payload Carrier (APC), middeck lockers, aft

flight-deck and airlock. Tools and crew aids are provided by Johnson Space

Center, Houston, and Goddard Space Flight Center, Greenbelt, Md.

Uses

Tools and crew aids considered "general," with a wide variety of uses,

Include the Power Ratchet Tool (PRT), Multi-setting Torque Limiter (MTL),

adjustable extension with 7/16th-inch sockets, ingress aids, portable work-

light receptacle and a locking connector tool. Morespecific, but still
considered general, items are a low-gain antenna (LGA) cover, umbilical

connector covers, a flight support system (FSS), berthing and positioning

system (BAPS), support post and a multi-layer insulation (MLI) repair kit.

To be used on the changeout of the Wide Field Planetary Camera 2

(WFPC2) are the WFPC handholds, WFPC guide studs, quick-release zip nuts,
WFPC pick-off mirror cover, forward fixture, aft fixture and the HST radial

bay cover.

For the High Speed Photometer (HSP) replacement with the Corrective

Optics Space Telescope Axial Replacement (COSTAR), tools and aids to be

used will be the COSTAR contamination cover, a COSTAR handling aid, an
HSP handling aid, forward fixture, aft fixture and an axial Science

Instrument Protective Enclosure (SIPE) safety bar.

For the solar array replacement, the astronauts will use articulating foot

restraints, solar array primary drive mechanism handles, solar array

temporary stowage brackets (TSBs), solar array transfer handles, solar array
jettison handle, solar array spines, Portable Flight Release Grapple Fixture

(PFRGF) and a Marmon clamp.

For the changeout of the gyro rate sensor units, crew members will use a

Portable Foot Restraint (PFR) socket converter (90-degree), Fixed-Head Star

Tracker (FHST) light shade covers and a FHST delta plate cover.
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FLIGHT SUPPORT SYSTEM (FSS)
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Portable Foot Restraint

There are two Hubble Space Telescope portable foot restraints built for
use on the STS-61 mission. These restraints are used by the spacewalking

astronauts during the five extravehicular activities to provide a stable

platform from which to work. Both restraints are stowed in the payload bay,
one on the left side and the other on the flight support system.

Tool Box

The HST tool box is designed to stow individual tools, tool boards and tool
caddies that will be used throughout the mission. The box is mounted on

the right side of the payload bay. Each tool inside the box is stowed in a
specific location with markings to assist the astronauts in the retrieval and

stowage.

Power Ratchet Tool (PRT)

The Goddard-provided power ratchet tool (PRT) is powered by a 28-volt

battery. Made of titanium and aluminum, the 17-inch (43-centimeter) tool
will be used for tasks requiring controlled torque, speed or turns and can be

used where right-angle access is required. It will provide 25 foot-pounds of

pressure in the motorized mode and 75 foot-pounds of pressure in the
manual mode. It has a speed of 10 to 30 revolutions per minute. A spare

power ratchet will be carried on the mission, as will spares for all other

tools to be used by the astronauts.

HST Power Tool

This tool is a modified, battery-operated power tool with torque and rpm

control. The design includes a 3/8-inch drive fitting, forward and reverse

drive rotation, torque ranges from 50 to 300 inch-pounds and a bracket for

mounting the tool to the spacesuit.

Mini-Power Tool

The mini-power tool is a battery-operated screwdriver intended for use

when a larger power tool is not required and when work space is limited. It
can be used as a power tool or with the power off, the output shaft is locked

automatically for use as a manual driver.

Multisetting Torque Limiter

This tool is provided to prevent damage to hardware due to the

application of torque which may exceed the design limits. Multisetting

torque limiters are used in conjunction with the power tools or hand tools
that interface with bolts and latches on the telescope.
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Adjustable Extensions

Several extensions were designed to be adjustable to ease the movement
of the astronauts while reducing the time required for tool changeouts. The

adjustable extensions replace several fixed length extensions by providing

adjustment from 12 to 16.5 inches. Another adjustable extension provides

lengths from 15 to 24 inches. When retracted, these extensions reduce the

potential for damage to other hardware.

IM

THE IMAX project is a collaboration between NASA and the Smithsonlan
Institution's National Air and Space Museum to document significant space

activities using the IMAX film medium. This system, developed by IMAX

Systems, Corp., Toronto, Canada, uses specially designed 70mm film
cameras and projectors to record and display very high definition large-

screen pictures.

An IMAX camera system will be flown on Shuttle Mission STS-61 and will

be used by Endeavour's crew to collect material for upcoming IMAX

productions. IMAX cameras have flown on several Shuttle missions and film
from those missions was used to form the IMAX productions The Dream is
Alive and The Blue Planet.

In-Cabin IMAX Camera Equipment

The IMAX system consists of a camera, lenses, rolls of film, two

magazines with film, an emergency speed control, a Sony recorder and
associated equipment, two photographic lights, supporting hardware In the

form of mounting brackets to accommodate the mode of use, two cables and

various supplemental equipment.

The IMAX and supporting equipment are stowed in the middeck for In-
cabin use. The IMAX uses two film magazines which can be interchanged as

part of the operation. Each magazine runs for approximately 3 minutes.

When both magazines are consumed, reloading of the magazines from the

stowed supply of film is required. Lenses are interchanged based on scene

requirements. The IMAX will be installed in the orbiter middeck

approximately 7 days prior to launch.

IMAX Cargo Bay Camera (ICBC)

During Shuttle Mission STS-61, an IMAX Cargo Bay Camera (ICBC) will be

carried in the payload bay of Endeavour and used to document activities
associated with the servicing of the Hubble Space Telescope. The camera is

mounted in a pressure sealed container with a viewing window. The

window has a sliding door which opens when the camera is in operation.
The camera ls controlled from the aft-flight deck, exposing the film through

a 30ram fisheye lens.
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AIR FORCE MAUI OPTICAL SYSTEM

The Air Force Maul Optical System (AMOS) is an electrical-optical facility

on the Hawaiian island of Maui. No hardware is required aboard Discovery to

support the experimental observations. The AMOS facility tracks the orbiter

as it flies over the area and records signatures from thruster firings, water
dumps or the phenomena of "Shuttle glow," a well-documented fluorescent

effect created as the Shuttle interacts with atomic oxygen in Earth orbit.

The information obtained by AMOS is used to calibrate the infrared and
optical sensors at the facility.

DTO-667: PILOT INFLIGHT LANDING OPERATIONS TRAINER (PILOT)

One of the challenges to flying long duration Shuttle missions is the issue

of orbiter landing tasks requiring a high level of skill and proficiency yet

data showing that a pilot's landing skills degrade after an extended absence

from a landing trainer such as the Shuttle Training Aircraft. During Shuttle

Mission STS-61, a portable scientific workstation designed to aid the

Shuttle commander and pilot in maintaining those landing skills will be
demonstrated for the second time.

The PILOT system hardware, which flew on Shuttle Mission STS-58 in

October 1993, consists of a portable scientific workstation, a high resolution

color display and a hand controller with orbiter look and feel. The software

used in the system was transferred from the Shuttle Engineering Simulator

software which is used to validate Shuttle flight software. This provides
PILOT with orbiter handling and guidance characteristics.

The PILOT system is stowed in lockers on the flight deck and mtddeck

areas of the Space Shuttle. When a member of the crew wants to use the

system, the workstation is mounted on a counsole directly in front of the

pilot's seat on the flight deck and the PILOT system hand controller is
attached to the orbiter's hand controller.

In addition to evaluating the ability to maintain landing skills of a Shuttle

crew in Earth-orbit, the PILOT system may be integrated into the standard

training activities of all Shuttle crews at the Johnson Space Center in
Houston.
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STS-61 CREW BIOGRAPHIES

Richard O. Covey, 47, Col., USAF, is Commander (CDR) of STS-61.
Selected as an astronaut in January 1978, Covey considers Fort Walton

Beach, Fla., his hometown and will be making his fourth space flight.

Covey graduated from Choctawhatchee High School, Shalimar, Fla., in
1964; received a bachelor of science degree in engineering sciences with a

major in astronautical engineering from the U.S. Air Force Academy in 1968,
and a master of science degree in aeronautics and astronautics from Purdue

University in 1969.

Covey first flew as Pilot for Shuttle mission STS 51-I in August 1985. He
next flew as Pilot on STS-26 in September 1988. On his most recent flight,
he was Commander for STS-38 in November 1990. Covey has logged over

385 hours in space.

Kenneth D. Bowersox, 37, Cmdr., USN, will serve as Pilot (PLT).

Selected as an astronaut in June 1987, Bowersox was born in Portsmouth,

Va., but considers Bedford, Ind., his hometown and will be making his

second space flight.

Bowersox graduated from Bedford High School, Bedford, Ind.; received a

bachelor's degree in aerospace engineering from the Naval Academy in 1978

and a master of science degree in mechanical engineering from Columbia

University in 1979.

Bowersox first flew as Pilot for Shuttle mission STS-50 in June 1992. He

has logged over 331 hours in space.

Tom Akers, 42, Lt. Col., USAF, will serve as Mission Specialist 5 (MS5)

and as one of the extravehicluar activity crew members. Selected as an
astronaut in June 1987, Akers was born in St. Louis, Mo., but considers

Eminence, Mo., his hometown and will be making his third space flight.

He graduated from Eminence High School and received bachelor and
master of science degrees in applied mathematics from the University of
Missouri-Rolla in 1973 and 1975, respectively. ....

Alters served as a mission specialist on STS-41 in October 1990. His

next flight was as a mission specialist on STS-49 in May 1992. Akers was
one of the EVA crew members of a three-person spacewalking team that

successfully captured the stranded International Telecommunications
Satellite. He also performed a second ,EVA on STS-49 to evaluate space
station construction techniques. He has logged over 311 hours of space

flight.

Jeffrey A. Hoffman, 49, will be Mission Specialist 3 (MS3) and serve as
one of the extravehicular a_tivity crew members. Selected as an astronaut

in January 1978, Hoffman considers Scarsdale, N.Y., his hometown and will

be making his fourth space flight.
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Hoffman graduated from Scarsdale High School, received a bachelor's
degree in astronomy from Amherst College, received a doctorate in

astrophysics from Harvard University and received a master's degree in

materials science from Rice University.

Hoffman first flew on STS-51D in April 1985, a mission during which he

performed a spacewalk in an attempt to rescue a malfunctioning satellite.
He next flew on STS-35 in December 1990. Hoffman made his third space

flight as Payload Commander and mission specialist on STS-46 in July 1992.

F, Story Musgrave. 58, will be Mission Specialist 4 (MS4). He also will

serve as Payload Commander and as a member of the extravehicular activity

team. Selected as an astronaut in August 1967, Musgrave considers

Lexington, Ky., his hometown and will be making his fifth space flight.

Musgrave graduated from St. Mark's School, Southborough, Mass., in
1953; received a bachelor's degree in mathematics and statistics from

Syracuse University in 1958; received a master's degree in operations
analysis and computer programming from the University of California at Los

Angeles in 1959; received a bachelor's degree in chemistry from Marietta

College in 1960; received a doctorate in medicine from Columbia University

in 1964; received a master's degree in physiology and biophysics from the

University of Kentucky in 1966 and received a master's degree in literature
from the University of Houston in 1987.

Musgrave flew as a mission specialist on STS-6 in April 1983, on
Spacelab-2 in August 1985 and on STS-33 in November 1989. More

recently, he served aboard Space Shuttle Atlantis, STS-44 in November

1991. He has logged more than 598 hours in space.

Claude Nicollier, 49, will be Mission Specialist 2 (MS2). Under an

agreement with the European Space Agency and NASA, he was selected as

an astronaut in 1980. Nicollier was born in Vevey, Switzerland, and will be

making his second space flight.

Nicollier graduated from Gymnase de Lausanne, Lausanne, Switzerland,
received a bachelor's degree in physics from the University of Lausanne and

received a master's degree in astrophysics from the University of Geneva.

Nicollier first flew as a mission specialist on STS-46 in July 1992 and has

logged more than 191 hours in space.

Kathryn C. Thornton, 41, will serve as Mission Specialist 1 (MS1) and as

one of the extravehicular activity crew members. Selected as an astronaut.in

May 1984, Thornton was born in Montgomery, Ala., and will be making her
third space flight.

Thornton received a bachelor of science degree in physics from Auburn

University and a master of science degree and a doctorate in physics from

the University of Virginia. Thornton was awarded a NATO postdoctoral

fellowship to continue her research at the Max Planck Institute of Nuclear

Physics in Heidelberg, Germany.
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Thornton first flew as a mission specialist on STS-33 in November 1989.

On her second flight, she served on the crew of S'PS-49 in May 1992. On

STS-49, Thornton performed an extravehicular activity to evaluate space

station assembly techniques. She has logged over 333 hours In space.

STS-61 ACRONYMS AND ABBREVIATIONS

A-h

ac

ACE

ACP

AD

AFD

APS
AS

ATM

BAPS

BCU

BOD
BOL

BOT

BPRC

bps
BPRC
BPSK

BREC

C&DH

C/C
OC

COC

CCq'V
CDI

CDU

CFRP

CC_

CIF

CMD
COM

CORU

CPM

CPU

CSM

CSS

CU/SDF

D/A

DAK

DBA

dc

DCE

DIH

DISP

DIU

ampere -hour
alternating current
actuator control electronics

astronaut control panel

aperture door

aft flight deck

antenna pointing system
aft shroud

Apollo Telescope Mount

berthing and positioning system

bus coupler unit

bright object detector
beginning of life

beginning of travel

battery protection and reconditioning circuit

bits per second

battery protection and reconditioning circuit

biphase shift keyed
body rate error check
communication and data handling

configuration control

cargo control
charge current controller
closed-circuit television

command and data interface
command detector unit

carbon-fiber-reinforced plastic

contingency gravity gradient

computer Interface
command module

communications module

candidate orbital replacement unit

central processor module

central processing unit

cargo systems manual
coarse Sun sensor

control unit/science data formatter

digital to analog
double-aluminized Kapton

diode box assembly
direct current

deployment control electronics
discrete input high

display
data interface unit
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DIUI
DMS
DMU
DPC
ECA
ECU
ED
EDB
EMI
EOL
EOT
EP/TCE
EPS
ES
ESA
ESTR
EU
EVA
FEP
FGE
FGS
FHST
FHSTI
FIFO
FMDM
FOC
FOD

FOS

FOV

F/S
FPA
FPDA

FPSA

FS

FSS
FWH

GEA

GG

GGM

GPC

GSE

GSFC

GSTDN

HGA
HLD

HOSC

HRS

HSP

HST

HWL

I&C

ICAPC

DIU interface module

data management subsystem

data management unit
direct power converter

electronics control assembly
electronics control unit

engineering data
external data bus

electromagnetic interference
end of life

end of travel

electrical power/thermal control electronics

electrical power subsystem

equipment section

European Space Agency

engineering/science tape recorders
electronics unit or expander unit

extravehicular activity
fluorinated ethylene-propylene
fine guidance electronics

fine guidance sensor
fixed head star tracker

FHST interface
first in first out

flexible multiplexer/demultiplexer
faint object camera

Flight Operations Directorate

faint object spectrograph
field-of-view

filter/shaper

focal plane assembly

focal plane deck assembly

focal plane structure assembly
forward shell

flight support system
flexible wire harness

gimbal electronics assembly

gravity gradient
GG mode

general purpose computer

ground support equipment

Goddard Space Flight Center

ground spaceflight tracking and data network
high-gain antenna

high-level discrete

Huntsville Operations Support Center

high resolution spectrograph

high-speed photometer

Edwin P. Hubble Space Telescope
hardware load

instrumentation and communication

increased capacity adaptive payload carrier
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ICU
IDB

IMU

IOU

IPCU

IR
JSC

KA

kbps
KSC

LGA
LLD

LMU

LS

LMSC

instrumentation control unit

internal data bus

inertial measurement unit

input/output unit

interface power control unit
infrared

Lyndon B. Johnson Space Center

keep alive

kilo bits per second

Kennedy Space Center
low-gain antenna
low-level discrete

logical memory unit
light shield

Lockheed Missiles and Space Company

MA

Mbps
MCC

MCC-H

MCE
MCU

MDB

MET

MLD
MLI

MMS

MOD

MR

MRA
MSB

MSFC

MSS

MT

MTE

MTP

MTS

MU
N.m

NASA

NASCOM

NGT

nm

NSSC-I
OAO

OCE

OCS

C_-_XO

OLD

OPI

ORU

ORUC

multiaccess

megabits per second
Mission Control Center

MCC - Houston

monitor and control electronics

mechanism control unit

multiplexed data bus

mission elapsed time

manual locking device
multilayer insulation

multimission modular spacecraft

Mission Operations Directorate

main ring

main ring assembly
most significant bit

Marshall Space Flight Center

magnetic sensing system

magnetic torquer

magnetic torquer electronics

master timing pulse

magnetic torquing system

memory unit
Newton meter

National Aeronautics and Space Administration
NASA communications

NASCOM ground terminal
nanometer

NASA Standard Spacecraft Computer, Model I
Orbiting Astronomical Society

optical control subsystem

optical control subsystem

ovencontrolled crystal oscillator
offioad device

Orbiter payload interrogator

orbital replaceable unit
ORU carrier
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OSO
OTA
OV
P-E
PC
PCM
PCS

PCU
PDI
PDM
PDU
PI
PI/KUSP
PIT
PLBD
PLR
PM
PMA
PMB
PMT
PMU
PN
POCC
PRCS
PRI
PRIPL
PRLA
PROM
PSEA
psi
psia
PSP
PSP/PI
QD
RBM

RED

RF
RFI

RGA

RGAI

RIG

RIU

RMGA

RM

RMS

ROM

RPA

RSOC
RSU

RTC

RWA

Orbiting Solar Observatory
optical telescope assembly
orbital verification

Perkin-Elmer Corporation

planetary camera

pulse-code modulation

pointing control subsystem
pointing control system

power control unit

payload data interleaver

primary deployment mechanism

power distribution unit
payload interrogator

PI/Ku-band signal processor

process interface table

payload bay door

payload recorder

primary mirror
primary mirror assembly

primary mirror baffle
photomultiplier tube

physical memory unit

pseudorandom noise

Payload Operations Control Center

primary react ion control system

primary
unregulated Orbiter power

payload retention latch assembly

programmable read-only memory

pointing and safe-mode electronics assembly

pounds per square inch

pounds per square inch absolute
payload signal processor

PSP/payload interrogator

quick disconnect

radial bay module
redundant

radio frequency

radio frequency interface
rate gyro assembly
RGA interface

rate integrating gyro
remote interface unit

retrieval mode gyro assembly
remote module

remote manipulator system

read-only memory

reaction plate assembly

Rockwell Shuttle Operations Company
rate sensor unit
real-time command

reaction wheel assembly
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SA
SAD
SADA
SADE
SADM
SD
SDM
SI
SIC&DH
SIP
SIPE
SISS

S/M
SM
SMA
SMB
SMC
SMCH
SMSA
SM4
SOC
SPA
SPC
SPG

SQPSK
SS
SSA
SSC
SSE
SSM
SSM-ES
SSP
SSS
STACC
STDN
STINT
STOCC
STS
STSCI
TAG
TBD
TCE
TCS
TCXO
TDRS
TDRSS
TFC
TIM
TLM
TRI
TTL
UDM

solar array " : _:
SA drive " ' -", :: .....

SA drive adapter ....
SA drive electronics ....
SA drive mechanism ::_ " '....
science data or scientific data -

secondary deployment mechanism -'
scientific instrument

scientific instrument control and data handling
standard interface panel
scientific instrument protective enclosure
SI support structure
safe mode

secondary mirror
secondary mirror assembly
secondary mirror baffle
safemode computer
standard mixed cargo harness
secondary mirror subassembly
safe-mode utility
state-of-charge
solar panel assembly
stored program command
single-point ground
staggered quadiphased, shift-keyed
sating system
S-band single-access
Science Support Center
space support equipment
support systems module
SSM equipment shelf
standard switch panel
star selector servo

standard telemetry and command components
space flight tracking and data network
standard interface

Space Telescope Operations Control Center
Space Transportation System
Space Telescope Science Institute
two-axis gimbal
to be determined
thermal control electronics

thermal control subsystem
temperature controlled crystal oscillator
tracking and data relay satellite
TDRS system
TLM format control

timing interface module
telemetry
tape recorder interface
transistor-to-transistor logic
umbilical disconnect mechanism
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ULE
URM
UV
VATA
VCO
VSS
VSWR
WF/PC
WFC
WSGT

ultralow expansion
umbilical retraction mechanism
ultraviolet
Vehicle Assembly and Test Area
voltage controlled oscillator
vehicle support software
voltage standing wave radio
wide field/planetary camera
wide field camera
White Sands Ground Terminal

- end -
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