
SYSTEMS INC

C931033-U-2R00

AN EXPERT SYSTEM SHELL FOR INFERRING
VEGETATION CHARACTERISTICS -

FINAL REPORT 1993

November 1993

Prepared for:

National Aeronautics and Space Administration
Goddard Space Flight Center

Greenbelt, MD 20771

Prepared by:

JJM Systems, Inc.
1225 Jefferson Davis Hwy, Suite 412

Arlington, VA 22202

https://ntrs.nasa.gov/search.jsp?R=19940015811 2020-06-16T17:28:31+00:00Z

SY5TEM5 INC

TABLE OF CONTENTS

C931033-U-2R00

Page i

Section/Description

LIST OF ACRONYMS

INTRODUCTION

REFERENCES

APPENDIX A: AN EXPERT SYSTEM SHELL FOR INFERRING
VEGETATION CHARACTERISTICS - CHANGES TO THE
HISTORICAL COVER TYPE DATABASE (TASK F)

APPENDIX B:

APPENDIX C:

APPENDIX D:

AN EXPERT SYSTEM SHELL FOR INFERRING
VEGETATION CHARACTERISTICS - ATMOSPHERIC

TECHNIQUES (TASK G)

AN EXPERT SYSTEM SHELL FOR INFERRING
VEGETATION CHARACTERISTICS - INTERFACE FOR THE

ADDITION OF TECHNIQUES (TASK H)

AN EXPERT SYSTEM SHELL FOR INFERRING
VEGETATION CHARACTERISTICS - PROTOTYPE HELP

SYSTEM flASK I)

ii

1

3

SYSTEM5 INC

LIST OF ACRONYMS

C931033-U-2R00

Page ii

KEE

VEG

Knowledge Engineering Environment

VEGetation Workbench

SYSTEMS INC

C931033-U-2R00

Page 1

INTRODUCTION

The NASA VEGetation Workbench (VEG) is a knowledge based system that infers

vegetation characteristics from reflectance data. VEG is described in detail in several references

(e.g., 1, 2). The first generation version of VEG has been extended.

In the first year of this contract, an interface to a file of unknown cover type data was

constructed. An interface that allowed the results of VEG to be written to a file was also

implemented. A learning system that learned class descriptions from a data base of historical cover
type data and then used the learned class descriptions to classify an unknown sample was built.
This system had an interface that integrated it into the rest of VEG. The VEG subgoal
PROPORTION.GROUND.COVER was completed and a number of additional techniques that
inferred the proportion ground cover of a sample were implemented. This work was described in

reference (3).

This report describes the work carried out in the second year of the contract. The historical

cover type database has been removed from VEG and stored as a series of flat files that are external
to VEG. An interface to the files has been provided. The framework and interface for two new

b oals that estimate the atmospheric effect on reflectance data have been built. A newVEG su g . • " VEG without assistance from the developer
interface that allows the scientist to add techmques to
has been designed and implemented. A prototype Help System that allows the user to get more

information about each screen in the VEG interface has also been added to VEG.

VEG is written using the Knowledge Engineering Environment (KEE) by Intellicorp. Data

and methods are contained in KEE units in the file veg4.u. VEG also uses Lisp methods contained

in Lisp files. The file veg-methods.lisp contained the Lisp methods for the first generation version
of VEG. Additional Lisp files were created to hold the Lisp code for each of the extensions to
VEG. However, each extension of VEG also required some minor changes to the file

veg-methods.lisp. The current versions of all the VEG files have been delivered to the NASA

GSFC technical representative on a Sun cartridge tape.

The changes to the historical cover type database were described in detail in the JJM

Systems report C931020-U-2R05. This report is included as Appendix A. All the subgoals in
VEG make use of a database of historical cover types. This database contains results from

experiments by scientists on a wide variety of different cover types. The learning system uses the
database to provide positive and negative training examples of classes that enable it to learn

distinguishing features between classes of vegetation. Other VEG subgoals use the database to
estimate the error bounds involved in the results obtained when various analysis techniques are

applied to the sample of cover type data that is being studied.

In the previous version of VEG, the historical cover type database was stored as part of the
VEG knowledge base. This database has been removed from the knowledge base. It is now
stored as a series of fiat files that are external to VEG. An interface between VEG and these files
has been provided. The interface allows the user to select which files of historical data to use. The
files are then read, and the data are stored in KEE units using the same organization of units as in

the previous version of VEG. The interface also allows the user to delete some or all of the
historical database units from VEG and load new historical data from a file. The database of
historical cover types in the previous version of VEG occupied 123 units. Removing this database
to external files and only loading a subset of the data, has reduced the memory requirements for

VEG. Allowing the user to select the historical data to load has made VEG more flexible. VEG is

now useful to a wider group of scientists. Scientists with different areas of interest can use

SYSTEMS INC

C931033-U-2R00

Page 2

different sets of historical data with VEG and restrict the use of VEG to the data that are of interest
to them.

The structure of the subgoals in VEG has been modified. Subgoals are now divided into
categories. Two new subgoals in the category ATMOSPHERIC.TECHNIQUES, have been
added to VEG. The basic framework and interfaces for these subgoals have been implemented.

The subgoal Atmospheric Passes allows the scientist to take reflectance data measured at ground
level and predict what the reflectance values would be if the data were measured at a different
atmospheric height. The subgoal Atmospheric Corrections allows atmospheric corrections to be
made to data collected from an aircraft or by a satellite to determine what the equivalent reflectance
values would be if the data were measured at ground level. The new subgoals were described in
JJM Systems report C931031-U-2R06 which is included as Appendix B.

VEG provides the scientist with several different analysis techniques which are stored in
the knowledge base. When VEG is run, rules assist the scientist in selecting the best of the

available techniques to apply to the sample of cover type data being studied.

In the previous version of VEG, the addition of a new technique was a complex process.
For each new technique, extra units were added manually to the VEG knowledge base and
additional Common Lisp code was added to the methods file. Changes were also made manually
to the interface that allow the scientist to select which techniques to use.

A new interface that enables the scientist to add techniques to VEG without assistance from
the developer has been designed and implemented. This interface does not require the scientist to
have a thorough knowledge of KEE or a detailed knowledge of the structure of VEG. The
interface prompts the scientist to enter the required information about the new technique. It
prompts the scientist to enter the required Common Lisp functions for executing the technique and
the left hand side of the rule that causes the technique to be selected. A template for each function
and rule and detailed instructions about the arguments of the functions, the values they should
retum, and the format of the rule are displayed. Checks are made to ensure that the required data
have been entered, the functions compiled correctly and the rule parsed correctly before the new
technique is stored. The additional techniques are stored separately from the VEG knowledge
base.

When the VEG knowledge base is loaded, the additional techniques are not normally
loaded. The interface allows the scientist the option of adding all the previously defined new

techniques before running VEG. When the techniques are added, the required units to store the
additional techniques are created automatically in the correct places in the VEG knowledge base.
The methods file containing the functions required by the additional techniques is loaded. New
rule units are created to store the new rules. The interface that allows the scientist to select which

techniques to use is updated automatically to include the new techniques. The interface that allows
the scientist to add new techniques to VEG was described in JJM Systems report C931021-U-
2R07 which is included in Appendix C.

A prototype Help System has been designed and implemented. The Help System allows
the scientist to get more information about each screen in the VEG interface. It was designed to
help the new user of VEG to learn how to operate the system. An interface that allows the scientist
to add and modify help messages has also been integrated into the "Administration" part of the

VEG system. This enables the scientist to evolve the Help System over time.

Since the Help System may not be needed by an experienced user, it had been configured
so that it is not loaded until the first time the user clicks on the Help System option in the Tool Box
Menu. This minimizes the overhead for the VEG environment. JJM Systems report C931032-U-

2R08, which described the prototype Help System, forms Appendix D of this report.

SYSTEMS INC

REFERENCES

C931033-U-2R00

Page 3

o

.

.

Kimes, D. S., Harrison, P. R. and Ratcliffe, P. A. A Knowledge-Based Expert System

for Inferring Vegetation Characteristics, International Journal of Remote Sensing, Vol 12,
10, pp. 1987-2020, 1991.

Kimes, D. S., Harrison, P. A. and Harrison, P. R. New Developments of a Knowledge

Based System (VEG) for Inferring Vegetation Characteristics, Proceedings of International
Geoscience and Remote Sensing Symposium, Houston, Texas, May 1992.

JJM Systems Inc., October 1992. An Expert System for Inferring Vegetation
Characteristics - Final Report. Ivyland, PA B921020-U-2R00.

SYSTEMS INC

C931033-U-2R00

APPENDIX A

AN EXPERT SYSTEM SHELL FOR INFERRING VEGETATION
CHARACTERISTICS - CHANGES TO THE HISTORICAL COVER TYPE

DATABASE (TASK F)

SYSTEMS INC;

C931020-U-2R05

AN EXPERT SYSTEM SHELL FOR INFERRING VEGETATION
CHARACTERISTICS - CHANGES TO THE

HISTORICAL COVER TYPE DATABASE (TASK F)

26May 1993

Prepared for:

National Aeronautics and Space Administration
Goddard Space Flight Center

Greenbelt, MD 20771

Prepared by:

JJM Systems, Inc.
1225 Jefferson Davis Hwy., Suite 412

Arlington, VA 22202

SYSTEM5 INC

TABLE OF CONTENTS

C931020-U- 2R05

Page i

Section/Descripti0n

LIST OF FIGURES

LIST OF TABLES

LIST OF ACRONYMS

1.0 INTRODUCTION

2.0 BACKGROUND

2.1 THE USE OF THE HISTORICAL COVER TYPE DATABASE
2.2 ORGANIZATION OF HISTORICAL COVER TYPE DATABASE UNITS

3.0 CHANGES TO VEG

3.1 CHANGING THE HISTORICAL COVER TYPE DATABASE
3.2 CHANGES TO THE PICK SUBSET SCREEN
3.3 CHANGES TO THE BROWSER

4.0 TESTING AND RESULTS

4.1 TEST 1
4.2 TEST 2
4.3 TEST 3
4.4 TEST 4
4.5 TEST 5
4.6 TEST 6
4.7 TEST 7

5.0 CONCLUSIONS

REFERENCES

APPENDIX A

ii

Ul

iv

1

2

2
2

6

6
14
15

16

16
16
17
17
21
21

21

23

24

r //

SYSTEMS INC

LIST OF FIGURES

C931020-U-2R05

Page ii

2-2

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

4-1

Description

Some of the Units in the Historical Cover Type Database in the
Previous Version of VEG

Slots in the Unit HISTORICAL.COVER.TYPES

The Processing Mode Screen in the Current Version of VEG

The Administration Screen

The Change Historical Database Screen

The Add Cover Types Option Before Any Cover Types have
been Added

Adding Cover Types

KEE Units that Might Hold the Data from Table 3-1

Removing Cover Types

The Current Version of the Pick Subset Screen

The Cover Type Description Screen in the Browser

The User Picks Restricted Data Set Screen After the Cover Types
that Match the Chosen Parameters have been Identified

The Pick Subset Screen After a Cover Type has been Removed

The Output Screen at the End of Test 4

3

4

6

7

8

9

10

12

13

14

15

18

19

20

SYSTEMS INC

LIST OF TABLES

C931020-U-2R05

Page iii

Table

3-1

Description

Historical Data File Format and an Example of Typical Values

SYSTEMS ING

LIST OF ACRONYMS

C93 I020-U-2R05

Page iv

KEE

VEG

Knowledge Engineering Environment

VEGetation Workbench

_YSTEMS INC

SECTION 1.0

INTRODUCTION

C931020-U-2R05

Page 1

All the options in the NASA VEGetation Workbench (VEG) make use of a database of
historical cover types. This database contains results from experiments by scientists on a wide
variety of different cover types. The learning system uses the database to provide positive and
negative training examples of classes that enable it to learn distinguishing features between classes
of vegetation. All the other VEG options use the database to estimate the error bounds involved in
the results obtained when various analysis techniques are applied to the sample of cover type data

that is being studied.

In the previous version of VEG, the historical cover type database was stored as part of the
VEG knowledge base. This database has been removed from the knowledge base. It is now
stored as a series of flat files that are external to VEG. An interface between VEG and these files

has been provided. The interface allows the user to select which files of historical data to use. The
files are then read, and the data are stored in Knowledge Engineering Environment (KEE) units
using the same organization of units as in the previous version of VEG. The interface also allows
the user to delete some or all of the historical database units from VEG and load new historical data

from a file.

This report summarizes the use of the historical cover type database in VEG. It then
describes the new interface to the files containing the historical data. It describes minor changes
that were made to VEG to enable the externally stored database to be used. Test runs to test the
operation of the new interface and also to test the operation of VEG using historical data loaded
from external files are also described.

Task F has been completed. A Sun cartridge tape containing the KEE and Common Lisp
code for the new interface and the modified version of the VEG knowledge base has been delivered

to the NASA GSFC technical representative.

SYSTEMS INC

SECTION 2.0

BACKGROUND

C931020-U-2R05

Page 2

The need for the historical cover type database in VEG is summarized in this section.
Then, the organization of units in the historical cover type database in the VEG knowledge base is
described.

2.1 THE USE OF THE HISTORICAL COVER TYPE DATABASE

All the options in VEG make use of the historical cover type database. This database
contains results from experiments by scientist on a wide variety of different cover types.

When the learning system is in use, VEG selects positive and negative training examples
from the historical cover type database. From these training examples, VEG determines
relationships that discriminate between classes of vegetation. These classes can then used to
classify an unknown sample. The learning system was described in detail in Kimes, Harrison and
Harrison (1992) and JJM Systems report B921014-U-2R03. The historical cover type database is
a fundamental part of the learning system.

All the other options in VEG use the historical cover type database in order to estimate the
error terms when various analysis techniques are applied to the sample of cover type data being
studied. A subset of historical data, referred to as the "restricted data set," is selected for each run.

VEG can automatically select the restricted data set that best matches the sample. Alternatively, the
user can indicate the bounds on each parameter of interest in and instruct VEG to select the subset
of the historical cover type data that falls within the set bounds. Once the restricted data set has
been selected, the reflectance data in each cover type are interpolated and extrapolated so that they
match the exact view angles of the input spectral data. The restricted data set contains the true
results, for example the spectral hemispherical reflectance, for each cover type. Each technique
that is applied to the sample that is being studied is also applied to each cover type in the restricted
data set. A difference score based on errors (true results minus calculated result) for the restricted

data set is calculated for each technique. This score provides an estimate of the error involved in
applying the technique to the sample being studied. The use of the historical cover type database
was described in detail in Kimes, Harrison and Ratcliffe (1991) and JJM Systems report B921019-
U-2R04.

2.2 ORGANIZATION OF HISTORICAL COVER TYPE DATABASE UNITS

The historical cover type database in the previous version of VEG was stored permanently
in units in the VEG knowledge base. These units were subclasses and instances of the unit
HISTORICAL.COVER.TYPES. Figure 2-1 shows part of this hierarchy of units. All the units
that were children of the unit HISTORICAL.COVER.TYPES inherited slots from the parent unit.
Figure 2-2 shows the slots in the unit HISTORICAL.COVER.TYPES.

Units such as COVER.TYPE. I held data that were common for all the data sets for the

particular cover type. These data were inherited by all the units such as CT1-26 and CT1-26-1 that
were descendants of the unit COVER.TYPE. 1. Data shared by all data sets for a particular cover
type included the description, cover type, solar azimuth, solar zenith angles and the zenith interval.
The DESCRIPTION slot of COVER.TYPE.1 contained the description "PLOWED FIELD -
TUNISIA AFRICA - KIMES DATA SET." This description referred to all data sets collected at

SYSTEMS INC

C931020-U-2R05

Page 3

HISTORICAL. COVER. TYPES

COVER. TYPE. I

. CT1.26-1

CT1-26-2
CTI-26 _-" ""

CTI-30-1
CTI-30 < CT1-30-2

CT1-45 _ _ CT1-45-1

• CT1-45-2

p CT10-28-1

/t CT10-28-2

CT10-es

_ CT10-49-1

CT10-49 I _ CT10-49-2

COVER. TYPE. 10 CT10-63 _= CT10-63-1

_" CT10-63-2

CT10-76 _e

COVER. TYPE. 9

f

CT9-23 _ ""

• CT9-23-1

CT9-23-2

CT9_6

CT9-68-1

• CT9-68-2

C931020GI

Figure 2-1
Some of the Units in the Historical Cover Type Database

in the Previous Version of VEG

SYSTEM5 INC

C931020-U-2R05

Page 4

AZIMUTH.INTERVAL
COVER.TYPE
DATE
DESCRIPTION
DRY.BIOMASS.KG.HC
GROUND.COVER
HEIGHT.CM
LEAF.AREA.INDEX
LEAF.ORIENTATION.DISTRIBUTION

LOCAL.STANDARD.TIME
MAX.ZENITH.DATA

PROPORTION.GREEN
RAW.DATA
SOLAR.AZIMUTH
SOLAR.ZENITH.ANGLE
SOLAR.ZENITH.ANGLES
SPECTRAL.HEM.REFLECTANCE
STRUCTURE
TOTAL.HEM.REFLECTANCE
WAVELENGTH.MAX
WAVELENGTH.MIN
WAVELENGTHS
WET.BIOMASS.KG.HC
ZENITH.INTERVAL

Figure 2-2
Slots in the Unit HISTORICAL.COVER.TYPES

the particular location. The SOLAR.AZIMUTH slot contained the value 180. The slot
SOLAR.ZENITH.ANGLES held the list of solar zenith angles for which data were available for
the cover type. The ZENITH.INTERVAL slot contained the value 15 indicating that
measurements of reflectance for COVER.TYPE. 1 were collected at 15 degree zenith intervals in
each set of data.

The units such as CTI-26 and CT1-39 held data for COVER.TYPE. 1 that were collected at

solar zenith angles 27 ° and 39 °, respectively. The data stored in these units were collected at the
same location but at different times of the day when the sun was at different positions in the sky.
The slot SOLAR.ZENITH.ANGLE in the units, such as CT1-26 and CT1-39, held the value of

the solar zenith angle at the time that the data were collected. At each solar zenith angle, data were
collected in one or more different wavebands.

The units CT1-26-1 and CTI-26-2 were instances of the unit CT1-26. These units held

data collected at solar zenith angle 26 ° and in the wavebands 0.58 - 0.68 lam and 0.73 - 1.1 lam,
respectively. The maximum and minimum wavelength in the wavebands were stored in the slots
WAVELENGTH.MAX and WAVELENGTH.MIN. The spectral hemispherical reflectance
measured in a particular waveband was stored in the slot SPECTRAL.HEM.REFLECTANCE.
Reflectance data were stored in the slot RAW.DATA. The reflectance data consisted of reflectance

measurements taken at different zenith and azimuth combinations. Each data point was specified

by a zenith, azimuth and reflectance value. The data were stored in the slot RAW.DATA as a list
of lists; e.g. ((0 0 0.231) (15 0 0.1968) (15 45 0.2094)). In this example, data at the nadir

SYSTEMS INC

C931020-U-2R05

Page 5

(zenith and azimuth both zero) and at two other points were recorded. The reflectance values at
the three points were 0.231, 0.1968 and 0.2094, respectively.

SYSTEMS INC

SECTION 3.0

CHANGES TO VEG

C931020-U-2R05

Page 6

This section describes the interface that allows the user to load historical cover type data
from external files and subsequently delete the loaded data from VEG. The format of the files that
hold the historical data, and the structure of the units that hold the database when it is loaded into
VEG are also described. The removal of the historical database from within the VEG hierarchy of
units to a series of external files necessitated various minor changes to the operation of VEG and to
the VEG user interface. These changes are described in this section.

3.1 CHANGING THE HISTORICAL COVER TYPE DATABASE

In the previous version of VEG when the user left-clicked on RUN.VEG, VEG was run
and the Processing Mode Screen was displayed. This screen enabled the user to specify whether
VEG should be run in the Automatic or Research mode. An additional option,
"ADMINISTRATION," has been included in the menu as shown in Figure 3-1. This option

allows the user to make various changes to VEG before processing the data.

rocessin_Mode

AUTOMATIC

RESEARCH

ADMINISTRATION

QUIT

$ Y ST/.1*1 D£$C 1_IPTIO _

II£'tP SYST £1,1

rX_L0_ SX/_CTf 0r _$T_TCAL g_TA

Figure 3-1
The Processing Mode Screen in the Current Version of VEG

SYSTEMS INC

C931020-U-2R05

Page 7

If the user selects the ADMINISTRATION option from the Processing Mode menu, the

screen shown in Figure 3-2 is opened. This screen enables the user to either change the historical
database or add techniques. The CHANGE.HISTORICAL.DATABASE option is described in
this section of this report. The ADD.TECHNIQUES option was implemented as Task H of this
contract, and it was described in JJM Systems Report C931021-U-2R07. More options may be
added to this menu at a later date.

o+I B+ z
rEG Administration

ptions

CHANGE.HISTORICAI.DATABASE

ADD.TECHNIQUES

QUIT

SYST£M Dt$C_Ir'IIO_

W_.P$¥_rEM

_LOI'_IN_ IlOlJTTBI_S

FXPLORE _I_ETT_ Or H_TORICAt _ATA

Figure 3-2
The Administration Screen

SYSTEMS INC

C931020- U- 2R05

Page 8

Left-clicking on the CHANGE.HISTORICAL.DATABASE option of the
ADMINISTRATION menu, reveals the Change Historical Database Screen as shown in
Figure 3-3. This screen allows the user to load historical data from an external file or delete
previously loaded historical database units.

The unit CHANGE.HISTORICAL.DATABASE has been created in VEG. The

subwindows (KEE Activelmages) in the Change Historical Database Screen are attached to slots in
this unit. The unit also holds the slots required by the methods that are used to add and remove
cover types. For example, the names of the loaded databases are stored in the slot
LOADED.DATABASES in this unit.

The database files are stored in the "historical-data" subdirectory of the directory containing
the VEG files. All the database file names are in upper case letters. Each time the Change
Historical Database Screen is opened, the names of the available databases are stored in the
VALUECLASS facet of the AVAILABLE.DATABASES slot of the unit CHANGE.

HISTORICAL.DATABASE. This enables the names of the available databases to be displayed

using a "Vertical Pushbutton" KEE Activelmage attached to the slot so the user can select a
database by simply left-clicking on the database name.

_*I Box

_hanle Hisaorical)atabase

,tions

ADD.COVER.TYPES

REMOVE.COVER.TYPES

QUIT

Figure 3-3
The Change Historical Database Screen

SYSTEMS INC

C931020-U-2R05

Page 9

If the user selects the ADD.COVER.TYPES option (as shown in Figure 3-4) from the
Change Historical Database Screen, the names of any databases that have already been loaded are
displayed on the screen. A subwindow that is a Vertical Pushbutton Activelmage attached to the
AVAILABLE.DATABASES slot is opened. This subwindow contains the names of the available
databases. The user is prompted to select the name of the database to load by left-clicking on the
appropriate option in this subwindow.

VEG cannot run without a historical database. If the user attempts to run VEG before
loading historical data, the Change Historical Database Screen is automatically opened. In this
case, the ADD.COVER.TYPES option is automatically selected, indicating that the user should
load historical data. The screen depicted in Figure 3-4 shows this situation.

_dB_x

an.e Hi_torital Database

REMOVE.COVER.TYPES

QUIT

No databases are currently loaded.

Select a database to load:-

I DEERING-DATA

HL'_P SYSTEM

rLO?'TTNO _O_TT_r_

XPLO _'tr_g?_ OF 141_TO_ICAL DATA

PII_T CU_Rt'J'T $C_g£_

Figure 3-4
The Add Cover Types Option Before Any Cover Types have been Added

SYSTEMS INC

C931020-U-2R05

Page 10

In the example shown in Figure 3-5, the database KIMES-DATA has already been loaded,
and the user has selected the database "DEERING-DATA." The message "Loading " in the

"Messages" box indicates that the data are being loaded from the file. When the loading has been
completed, this message is removed. The newly loaded database is added to the list of loaded
databases stored in the unit CHANGE.HISTORICAL.DATABASE. Its name is also displayed on

the screen. If the user attempts to load data from a database that has already been loaded, a
message is displayed and the database is not re-loaded. A message is also displayed if the user
attempts to load data from an empty or missing database.

The format of the cover type data files, and an example of typical values are shown in
Table 3-1. Data that apply to all data sets for the same cover type are stored first. These are
followed by the data at each wavelength for the first solar zenith angle. The data for each
wavelength for the remaining solar zenith angles are then listed. For clarity, only part of each set
of reflectance data is shown in the table. In this example, data are available at solar zenith angles
26 °, 30 ° and 45 °. At each solar zenith angle, data are available in the wavebands 0.58 - 0.68 p.m
and 0.73 - 1.1 p.m. In this example, the reflectance data beginning (0 0 0.231) and the spectral
hemispherical reflectance value 0.1892 correspond to the solar zenith angle 26 ° and the waveband
0.58 - 0.68 p.m. The reflectance data beginning (0 0 0.2733), and the spectral hemispherical
reflectance value 0.2268 correspond to the solar zenith angle 26 ° and the waveband 0.73 - 1.1 pm

_lBoz
ln.e Hirtorical Dltllbllle

REMOVE COVER, TYPES

QUIT

Currently loaded dalabases. KIMES DATA

Selecl a dalabasc Io add:-
cs_g¢_

DEERING-DATA

H_.PSYST£M

111_0'.*_ 'L'N'I'Ft :¥_T[_

r_OT'rN_ ROUT,_

P_T CUR_Err SC_ZZ_

Im.ding

Figure 3-5
Adding Cover Types

 ',tl
SYSTEM5 INC

Historical Data

Table 3-1

File Format and an Example of Typical

C931020-U-2R05

Page 11

Values

TYPICAL VALUES DESCRIPTION

"PLOWED-FIELD - TUNISIA AFRICA"

45

SOIL

(4 28 1983)

0.0

0.0

0.0

0.0

UNKNOWN

(0909 1045 1217)

75

0.0

180

HOMOGENEOUS

0.0

((0.58 0.68) (0.73 1.1))

0.0

15

(26 30 45)

((0 0 0.231) (15 0 0.1968) ... (75 315 0.1115))

0.1892

((0 0 0.2733) (15 0 0.2362) ... (75 315 0.137))

0.2268

((0 0 0.204) (15 0 0.1599) ... (75 315 0.101))

0.1813

((0 0 0.244) (15 0 0.1921) ... (75 315 0.1262))

0.2173

((0 0 0.1738) (15 0 0.1451) ... (75 315 0.0923))

0.1868

((0 0 0.2033) (15 0 0.1691) ... (75 315 0.1103))

0.2219

Description

Azimuth Interval

Cover Type

Date

Dry Biomass

Ground Cover

Height

Leaf Area Index

Leaf Orientation Distribution

Local Standard Times

Maximum Zenith Data

Proportion Green

Solar Azimuth

Structure

Total Hem. Reflectance

Wavelengths Available

Wet Biomass

Zenith Interval

Solar Zenith Angles

Reflectance Data

Spectral Hem. Reflectance

Reflectance Data

Spectral Hem. Reflectance

Reflectance Data

Spectral Hem. Reflectance

Reflectance Data

Spectral Hem. Reflectance

Reflectance Data

Spectral Hem. Reflectance

Reflectance Data

Spectral Hem. Reflectance

SYSTEMS INC

C931020-U-2R05

Page 12

When data for a cover type are read from a file, a hierarchy of KEE units is created to hold
the data. Data which are common to all sets of data for the same cover type are stored in a unit
which is created as a subclass of the unit HISTORICAL.COVER.TYPES. The name of this unit

begins with "COVER.TYPE." This name is automatically generated. The name of the data file
from which the cover type data has been read is also stored in the cover type unit. The purpose of
this is to identify the data file that was the source of the data so that all data from a selected data file
can later be identified prior to deletion. A subclass of the cover type unit is created for each solar
zenith angle for which data are available. Instances of these units are created to hold the reflectance
data, spectral hemispherical reflectance value and the maximum and minimum wavelengths in each
waveband. This is the same organization of units that was used in the previous version of VEG.
As the data are read from the file, the required units are created and data are stored in the units.
Each data value is checked before it is stored. If the value is of the wrong type, or it is out of range
for the slot in which it is to be stored, an error message is displayed on the screen. If an error is
detected, processing of the data file is aborted and all the data for the cover type that is currently
being stored are deleted from VEG. Any cover types that have been previously stored correctly are
not deleted. Figure 3-6 shows a hierarchy of KEE units that might be created to hold the data
shown in Table 3-1.

COVER. TYPE. 57

/ CT57-26-1
° CT57-26-2

CT57-26 _ ""

... - CT57-30-1
CT57-30 _ --.. CT57-30-2

CT57-45 _¢ --
" CT57-45-1

" CT57-45-2

Figure 3-6
KEE Units that Hold the Data from Table 3-1

If the user selects the REMOVE.COVER.TYPES option from the Change Historical
Database menu, a different subwindow is opened and the names of the currently loaded databases
are displayed on the screen, as shown in Figure 3-7. The user is prompted to select the database to
be removed or to select "ALL" if all the databases are to be removed. If the user selects "ALL," all
the units that are descendants of the unit HISTORICAL.COVER.TYPES are deleted from VEG,
and all the values are removed from the LOADED.DATABASES slot of the unit

CHANGE.HISTORICAL.DATA. The message on the screen is then updated to indicate that no
databases are currently loaded, and the subwindow showing the loaded databases is removed from
the screen. Alternatively, if the user selects a database to be removed, VEG searches through all
the cover type units that are subclasses of the unit HISTORICAL.COVER.TYPES and identifies
the cover types that originated from the selected database file. These cover type units and all their
subclass and member units are then deleted. The name of the deleted database is removed from the
LOADED.DATABASES slot of the unit CHANGE.HISTORICAL.DATA and the subwindow

containing the names of the loaded databases is updated on the screen. If no databases are loaded,
the subwindow containing the names of the loaded databases is removed from the screen. Note
that when databases are removed from VEG, the underlying files are not modified or destroyed.

Selecting QUIT from the Change Historical Databa_ menu closes this screen. If the user
previously selected the Change Historical Database option from the Administration menu, the

SYSTEM ¢; INC

C931020-U-2R05

Page 13

Administration menu is again displayed. If the Change Historical Database Screen was opened
automatically by VEG when either the automatic or the research mode was selected because no
historical data was present, the Processing Mode Screen (Figure 3-1) is reopened.

>,tB_x

_e HistoricalDatabase

QUIT

Select the name of the database to remove, or

ALL to remove all the databases:-

ALL

DEERING-DATA

KIMES-DATA

H£'LP._YSTYM

_LOTTIW G i_OI/TII_'_

r_P_.o_l: _'_,sc_ or mrro_c^L OA_'A

rX_NT ruF_scF,z'rN

Figure 3-7
Removing Cover Types

SYSTEM5 INC

C931020-U-2R05

Page 14

3.2 CHANGES TO THE PICK SUBSET SCREEN

The names of the historical cover type database units were hard-wired into various slots in

the previous version of VEG. Changes have been made to these slots and the screens that use
them to provide the greater flexibility required in the current version of VEG.

In all the VEG options except the learning system, the user can choose to select the
restricted data set manually. If the manual Pick Restricted Data Set option is selected, the Pick
Restricted Data Set Screen is opened. This screen allows the user to enter the maximum and
minimum values to be considered for parameters such as height and solar zenith angle. The
historical cover type database is then searched to find the cover types that match the criteria entered
by the user. The user can select a subset of the matched data using the Pick Subset Screen shown
in Figure 3-8. In the previous version of this screen, the user selected a cover type by left-clicking
on a choice in a menu of available cover types that were hard-wired into a slot in VEG. In order to

provide the additional flexibility required by the current version of VEG, the subwindow
(ActiveImage) labeled "Current Cover Type" is updated to show the names of currently available
cover types each time the Pick Subset Screen is opened. This is done by changing the
VALUECLASS facet of the slot to which the ActiveImage is attached. The operation of the Pick

Subset Screen is the same as in the previous version of VEG.

Sun. Anglcs. Sele_'tod: Unknown Unknown
45

Figure 3-8
The Current Version of the Pick Subset Screen

[' _/

SYSTEM5 INC

C931020-U-2R05

Page 15

3,3 CHANGES TO THE BROWSER

In the previous version of VEG, the names of the historical cover type units were
hard-wired into a slot that was displayed on the Cover Type Descriptions Screen of the Browser
(shown in Figure 3-9). This screen can be selected by choosing the
EXPLORE.SUBSETS.OF.HISTORICAL.DATA browser option and then picking the

SEE.DESCRIPTIONS option. The Lisp code controlling the Cover Type Descriptions Screen has
been modified. Each time the Cover Type Descriptions Screen is opened, the names of the

currently available cover types are stored in the VALUECLASS facet of the slot CT.TO.USE of
the unit DATA.MATCHER. This causes the updating of the Vertical Pushbutton Activelmage

(subwindow) labeled "Cover Type" in Figure 3-9 which is attached to the slot. As in the previous
version of VEG, when the user left-clicks on a cover type in the "Cover Type" subwindow, the

description of the cover type is displayed in the "Description" subwindow. If no cover types are
available, the message "No cover types are currently available" is displayed in the "Description"
subwindow and the "Cover Type" subwindow is removed from the screen. The screen is closed

by selecting the QUIT option at the foot of the screen.

The Cover Type Descriptions Screen may be open at the same time as the Change
Historical Database Screen. In this case, the Cover Type Descriptions Screen is updated every
time cover types are added to or removed from the historical cover type database.

_Boz

_t T Dmeri "ore
:ev_ D..ac

COVER.TYPE208
COVER.TYPE .207

COVER.'IYI_E206

COVERTYPE205

COVER.TYPE204

COVERTYPE203

COVER.TYPE.202
COVER.TYPE.201

COVER.TYPE200

COVER.TYPE.199
COVER.TYPE.198

COVER.TYPEI97
COVER.TYPE. 196

COVERTYPE. 195

COVERTYPE 194
COVER TYPE 193
COVERTYPE 192

COVER TYPE 191

t_owTt _l_?lr r F.¢_rrl..

t tDl"_[_5 _ouTirrz_

m_ _,._:l,la,i :a=,.m *)it:Din _o,:1_,¢_lu°_._w.a

lz_sege_

Figure 3-9
The Cover Type Description Screen in the Browser

SYSTEMS INC

SECTION 4.0

TESTING AND RESULTS

C931020-U-2R05

Page 16

All the Change Historical Database options were tested using both valid and invalid inputs.
All the VEG goals, including the learning system, were tested using historical cover type data
loaded from external files. After some minor changes necessitated because the available

wavelength data were stored in a different format than in the previous version of VEG, all the
options were found to be operating correctly. The test runs are described in detail in this section.

3.1 TEST 1

The purpose of Test 1 was to test the navigation back and forth through the various menu
levels from the VEG top level to the Change Historical Database Screen. The user left-clicked on
RUN.VEG, ADMINISTRATION and CHANGE.HISTORICAL.DATABASE on successive
screens. As expected, the Change Historical Database Screen was opened. The user then selected
QUIT in each successive menu to navigate back to the top level of VEG. This test showed that the
screens between the VEG top level and the Change Historical Database Screen were opened and

closed in the correct sequence.

3.2 TEST 2

This test was designed to test the ADD.COVER.TYPES option of the Change Historical
Database menu. This option was selected, and the user was prompted to select the database to add
to the historical cover type database. According to the display, the databases KIMES-DATA and
DEERING-DATA were available. The user selected "KIMES-DATA." The message

"Loading " appeared in the "Messages" box while the database was being loaded.
Inspection of the KEE knowledge base confirmed that the database had been correctly loaded.

The user then attempted to load the same database again by again selecting
"KIMES-DATA" as the database to be loaded. The message "Database KIMES-DATA has already

been loaded" was displayed in the "Messages" box. The database was not reloaded.

The next part of this test, was designed to confirm that a second database could be loaded.
The database "DEERING-DATA" was selected. The DEERING-DATA database was successfully
loaded in addition to the KIMES-DATA database.

The operation of the ADD.COVER.TYPES option with invalid databases was tested in the
final part of this test. Three new files were added to the historical-data subdirectory. These were
named "EMPTY," "MISSING" and "FAULTY-DATA." The file "EMPTY" was empty. The files
"MISSING" and "FAULTY-DATA" were copies of the file "KIMES-DATA." Several data items
that were part of the second cover type in the file "FAULTY-DATA" were deleted so that the file
had an incorrect format. The ADD.COVER.TYPES option was deselected and selected again.
The names of the newly created files were then shown in the "Available Databases" subwindow.
The user selected the "EMPTY" database. The message "Database file is empty" was displayed in
the "Messages" box. The user then deleted the file "MISSING" from the historical-data
subdirectory. When the user selected the "MISSING" file in the Change Historical Database

screen, the message "Database file not found" was displaycd in the "Messages" box. Finally, the
user selected the "FAULTY-DATA" file. The first cover type was successfully loaded from this
file. The message "File reading aborted - the data (843 1053 1254) is invalid for the slot

_YSTEM5 INC

C931020- U- 2R05

Page 17

LEAF.AREA.INDEX." was then displayed in the "Messages" box and the reading of the file was
aborted.

Test 1 showed that the ADD.COVER.TYPES option was working correctly with both valid
and invalid databases.

3.3 TEST 3

The REMOVE.COVER.TYPES option was thoroughly tested in Test 3. At the beginning
of this test, both databases were loaded, as in the previous test. Then the

REMOVE.COVER.TYPES option was selected. The prompt confirmed that both databases were
loaded and asked the user to select the database to remove, or "ALL" if all databases were to be
removed. The user selected "KIMES-DATA." The database KIMES-DATA was removed.

Inspection of the VEG knowledge base confirmed this. The content of the "Database to Remove"
subwindow changed to report that the only database now loaded was DEERING-DATA.

The user then specified that the DEERING-DATA database should be deleted. After the
deletion, the prompt on the screen indicated that no databases were currently loaded and the
"Database to Remove" subwindow was removed from the screen.

The final part of this test was designed to test the option that causes all loaded databases to
be removed. First, both databases were again loaded. The option REMOVE.COVER.TYPES was
then selected again, and the user selected "ALL." As expected, all the databases were deleted, the

prompt on the screen then reported that no databases were loaded, and the "Database to Remove"
subwindow was removed from the screen.

Test 3 confirmed that all parts of the REMOVE.COVER.TYPES option were operating
correctly.

3.4 TEST 4

Test 4 was designed to test the operation of VEG using historical data loaded from external
files. At the beginning of this test, the historical cover type database was empty. The user
left-clicked on RUN.VEG and then RESEARCH. The Change Historical Database Screen was
automatically opened and the ADD.COVER.TYPES option was automatically selected. The
databases KIMES-DATA and DEERING-DATA were then loaded. When the user selected QUIT,

the Processing Mode menu was again revealed. The user left-clicked on RESEARCH again. This
time, the Goals menu was displayed and the user selected the goal
SPECTRAL.HEMISPHERICAL.REFLECTANCE. This option was run using SAMPLE3 from

the VEG knowledge base.

In this test run, the user chose to manually select the restricted data set. Using the User
Pick Restricted Data Set Screen, the user indicated that cover types with the same wavelengths as
SAMPLE3, solar zenith angles between 45 ° and 60 ° and height less than 500 cm should be placed
in the restricted data set. Figure 4-1 shows this screen after the cover types that match the chosen
parameters had been identified. The user then decided to pick a subset of the matched data using
the Pick Subset Screen. The sun angle 58 ° for the COVER.TYPE.27 was removed using this
screen as shown in Figure 4-2.

SYSTEMS INC

C931020-U-2R05

Page 18

0 92

CT8 45-2CT9 50 2CTI1 51-2CT15 59 2CT18 56 2CT19 46 2

_'T24-49 2(T2L45-2CT27 58-2

less^_es

Figure 4-1
The User Picks Restricted Data Set Screen After tile Cover Types

that Malch the Chosen Parameters have heen Identified

SYSTEMS INC

C931020-U-2R05

Page 19

+olBct
I

ICK SUBSE"
WavelengthsAvailabh

0.92 0.68

_rt_r W.vdtn_._

0.92

C,,v_r T_i,++ Fu,u,4
CTq-45 C)_-%0 2CT_d-b1-2CI_5-5_ 2EU78-b6-2CTI9-46-2CT24-4_-?CT2Y'4%'2CT,!7"Sq'2

Cov_ T_e_ Sub stt
CT_ t'_-2 ,7,_- SC- 2 2TI ;-51- 2 CTI S-5O- 2 CTI g- 56- 2 CTI O+£6- 2 CT_ 4-dg- 2 CT27-4 5-2

ttFo_d:_rl_rCovesTj_e

(OV ER ,T3 PE._O

COVER .T_" PE 35

C OVF, R.T3" PE3.t

C OVF_.TY PF.J)

COVER 13+PE33

COVER.TY PE J0

COV FJr .TY P_ ._q

CO%_ER _T_ pE_IQ

COVER _TY PE_IR

COVlE.R _TYPE_I7

COVER _TY l_|6

COV f_ ,TY PF_ I_t

COVER _TT PE,t !

C o_r.R _TYPE_

C O_EIR _TY PE_

_ _t2 _ _y?_ VE_T_I_ D_ _Q 19 _ L_ $_d T_ 0002 _5 735 _t_ L _! Az_ _ !_t _ _ _ L_I _ _ _
m _ _7 IKI _WI_ _ _n_ C_ _ _ _ _ 0 6_ Dry B_m_ (k_D! _ 1_?_ W_ _ _rr _ (_ _0 _i

+L,_ET=-aE,.7'7. P.SH/.?aL 'J?.,'._S U£DABELFe+']_n)I..-:q.:d;_U','. l--'.{E.>

2'ATA ._ET (5_. 45)

S_%_RT_?E24,_DYBg_a_; - b%'DAB_LTSV1LLEId, AP',q+A_,P3U!_A KIIvIESDATA_E7

Z9%_ TrWE !9 CORN + L_DA I_EL'I_WtLLE MARYLAN'D L_A - KI_._F._ D, ATA SET (46)

2_,_R Tf'PE 1_ LAWN - GP,AgS - t_DA BELTSVILLE iqAY!",'LM ID USA - KI_S DATA

_ET (56i

"J_',_RT_?E!5I_.PdGATEE, W_IEAT+ TU1ZSIAAF_CA KII_SDATASET($_,

i _ "_-d_ T_'PE 11 HAP_ - _._IE AT - "l_q] SI A AF P_CA - Eh_$ DATA SET C51

S_VE-R'E_PE9AI,_,rOA£ GP_L_LAI,'g TUNTSIAAF_,A KlbC_SDATASETi_O:,

2_VER TYPE 8 PLOWED-FIELD - TI_IISIA AF_CA - RIMES DATA _ET (45)

le_$nges

Figure 4-2
The Pick Subset Screen After a Cover Type has been Removed

SYSTEMS INC

C931020-U-2R05

Page 20

The processing of the sample was then completed and the results were displayed as shown
in Figure 4-3. This test showed that SPECTRAL.HEMISPHERICAL. REFLECTANCE operated
correctly using historical cover type data loaded from external files. The test also showed that the
Pick Subset Screen that had been modified to deal with the historical data loaded from files was

operating correctly.

eel Box

:'STIMATE SPECTRA L HEMISPHERICAL REFLECTANCE

Wavclengths.Availablc:0.920.68]

. ii j ,i A-.'J''e/'_r ,_t _. i

0.68 I

Gr_a_3 Cover T,/_L Lt_l Are_ lndez NIL Propom_ Gre_ NIL

Dry B:ome_s k_I. Wet B_er_++ ¢ I'lL Hu_t HIL

L_' _t_ Index 2 6937 Ozo-sad Covtt 0 9270

$-,-yl tr _ DL_E FH 7JJ!,

HCLP !'¢_T_M

_L_T

Figure 4-3
The Output Screen at the End of Test 4

SYSTEMS INI::;

C931020-U-2R05

Page 21

4.5 TEST 5

In Test 5, VEG was run in Automatic Mode and the operation of all the VEG goals except

the Learning System was tested. In Automatic mode, the restricted data set is selected
automatically by the system. Several of the test runs from Task B used the VEG Automatic mode.
When Task B was performed, the historical cover type database was stored in the VEG knowledge
base. The test runs were reported in JJM Systems Report B921016-U-2R02. In Test 5 of the
current task, databases KIMES-DATA and DEERING-DATA were loaded into VEG. The selected
Task B tests were then repeated. The results of the current runs were compared with the Task B
results. The results from the two sets of runs were found to be very similar but not identical. In

particular, there were small but insignificant differences in the error terms and coefficients. The
differences can be explained by the fact that the restricted data set is organized in a different order
in the current version of VEG compared with the previous version. The algorithm that selects the
restricted historical data picks the first ten statistical matches. For example, if the
DEERING-DATA database is loaded before the KIMES-DATA database, the first ten matches may
not be the same as in the case in which the KIMES-DATA database is loaded after the
DEERING-DATA database. If the first ten matches are different, a different set of cover types are

selected for calculating the coefficients and the error terms. This leads to slightly different results.

Test 5 showed that all the VEG goals tested were operating correctly using historical cover
type data loaded from external files.

4.6 TEST 6

The Learning System was tested in Test 6 to confirm that it would operate correctly using
historical cover type data loaded from external files. The Learning System was developed in Tasks
C and D. When these tasks were tested, the historical database was part of the VEG knowledge
base. In Test 6 of the current task, test runs 1, 2 and 3 from the Task C and D report, JJM

Systems Report B921014-U-2R03, were repeated using the current version of VEG, including
historical data loaded from external files. The results of Test 6 were identical to the results from

the Tasks C and D in the earlier report. This provided further confirmation that the historical data
loaded from external files had been correctly incorporated in VEG.

4.7 TEST 7

In this test the Cover Type Description Screen of the Browser was tested. The Lisp code
controlling this screen had been modified so that it would work with historical data loaded from
external files. This screen was selected by choosing the EXPLORE.SUBSETS.OF.
HISTORICAL.DATA browser option and then picking the SEE.DESCRIPTIONS option. The
display indicated that cover types 564 through 581 were available. The user selected
COVER.TYPE.570. A description of this cover type was displayed.

The second part of this test was designed to test whether the Cover Type Description
Screen would be correctly updated if cover types were added to or removed from the historical
cover type database while the screen was open. Without closing the Cover Type Description
Screen, the user opened the Change Historical Database Screen. The user then removed all the
historical cover type data from VEG. Next, the user reloaded the KIMES-DATA database and then
the DEERING-DATA database. Finally, the user removed the DEERING-DATA database.
Inspection of the Cover Type Description Screen after each step in this test confirmed that it was
being correctly updated.

SYSTEMS INC

C931020-U-2R05

Page 22

Test 7 showed that the Cover Type Description Screen of the Browser was operating

correctly.

SYSTEMS INC

SECTION 5.0

CONCLUSIONS

C931020-U-2R05

Page 23

The historical cover type database has been removed from VEG and stored as a series of
external files. An interface has been implemented. This interface allows the user to load historical
cover type data from the files into VEG and subsequently delete the loaded data from VEG. Some
minor changes were made to VEG to enable it to operate with the loaded data.

All the options provided by the new interface were tested. Data were loaded from external

files into VEG and the operation of all the VEG goals was then tested. The test runs showed that
the interface was working correctly and that the data had been loaded successfully from the external
files into VEG. The tests also confirmed that the historical cover type data were correctly
integrated into VEG.

The database of historical cover types in the previous version of VEG occupied 123 units.
Removing this database to external files and only loading a subset of the data has reduced the
memory requirements for VEG.

Allowing the user to select the historical data to load has made VEG more flexible. VEG is

now useful to a wider group of scientists. Scientists with different areas of interest can use
different sets of historical data with VEG and restrict the use of VEG to the particular types of data
that are of interest to them.

Relational database environments could easily be used to hold the historical cover type data
in place of the flat files. However, the cost of the KEE interface to a relational database is
presently prohibitive.

 ',tl
SYSTEMS INC

REFERENCES

C931020-U-2R05

Page 24

JJM Systems, Inc. April 1993. An Expert System for Inferring Vegetation Characteristics -
Interface for the Addition of Techniques flask H). Ivyland, PA. C931021-U-2R07.

JJM Systems, Inc. October 1992. An Expert System for Inferring Vegetation Characteristics -
Implementation of Additional Techniques (Task E). Ivyland, PA. B921019-U-2R04.

JJM Systems, Inc. September 1992. An Expert System for Inferring Vegetation Characteristics -
The Learning System (Tasks C and D). Ivyland, PA. B921014-U-2R03.

JJM Systems, Inc. September 1992. An Expert System for Inferring Vegetation Characteristics -
Output of Results to a File (Task B). Ivyland, PA. B921016-U-2R02.

Kimes, D.S., Harrison, P.R. and Harrison, P.A.. March 1992. Learning Class Descriptions from

a Data Base of Spectral Reflectance with Multiple View Angles. In IEEE Transactions on
Geoscience and Remote Sensing, Vol. 30, No 2, pp. 315-325.

Kimes, D.S., Harrison, P.R. and Ratcliffe, P.A.. October 1991. A Knowledge-Based Expert

System for Inferring Vegetation Characteristics. International Journal of Remote Sensing, Vol 12,
no 10: pp. 1987-2020.

SYSTEMS ING

C931020-U-2R05

APPENDIX A

LISTING OF CODE FOR CHANGING THE HISTORICAL DATABASE

_YSTEM5 INC

;;; veg-methods4.1isp
*,°

;;; Task F
;;; Methods for making historical cover type database external to VEG
o,o

;;; Written by Ann & Patrick Harrison
;;; Created March 16 1993

;;; Last Modified May 21 1993

(in-package "kee)

(defun input-historical-data-from-file (file db-name)
"Controls the input of historical cover type data from a file."

(catch 'invalid-historical-data

(my-documentation-print "Loading ")
(with-open-file (str file :direction :input)

(store-historical-data db-name str)))

(update-current-cover-types))

(defvar * historical-data-ct-slot-list*
'(azimuth.interval cover.type date dry.biomass.kg.hc ground.cover

height.cm leaf.area.index leaf.orientation.distribution local.standard.time
max.zenith.data proportion.green solar.azimuth structure total.hem.reflectance
wavelengths wet.biomass.kg.hc zenith.interval solar.zenith.angles)
"Slots in which to store historical data at the cover type level.")

(defvar *historical-data-wavelength-slot-list*
'(raw.data spectral.hem.reflectance)

"Slots in which to store historical data at the wavelength level.")

;;; Note that the function read-file is included in the methods file

,,,'"veg-methods 1.lisp .

(defun store-historical-data (db-name str)
"Stores the data for any number of cover-types."

(add.value 'change.historical.database 'loaded.databases db-name)
(do ((first-slot (read-file str)(read-file str)))

((null first-slot)(clear-prompt))
(let ((new-cover-type (create.unit

(gentemp "COVER.TYPE.")
'veg 'historical.cover.types 0))

(wavelengths nil)
(solar-zenith-angles nil))

(put.value new-cover-type 'description first-slot)
(put.value new-cover-type 'database db-name)
(dolist (slot *historical-data-ct-slot-list*)

(let ((data (read-file str)))
(cond ((null data)

(abort-historical-data-reading new-cover-type 'eof))
;Eof in wrong place

((not (valid-historical-ct-data data slot))
(abort-historical-data-reading new-cover-type data slot))

(t (put.value new-cover-type slot data)))
(when (eq slot 'wavelengths)

C931020-U-2R05

Page A- 1

SYSTEMS INC

(serf wavelengths data))
(when (eq slot 'solar.zenith.angles)

(serf solar-zenith-angles data))))
(process-sun-ang-data str new-cover-type solar-zenith-angles

wavelengths))))

(defun process-sun-ang-data (str new-cover-type solar-zenith-angles
wavelengths)

"Creates the required units and stores the sun angle data."
(dolist (sun-ang solar-zenith-angles)

(let ((new-sun-ang (create.unit
(get-sun-angle-unit-name new-cover-type sun-ang)

'veg new-cover-type)))
(put.value new-sun-ang 'solar.zenith.angle sun-ang)
(process-wave-data str new-cover-type new-sun-ang wavelengths))))

(defun process-wave-data (str new-cover-type new-sun-ang wavelengths)
"Creates the required units and stores the data at the wavelength level. These
data consist of the maximum and minimum wavelengths, raw data and spectral

hemispherical reflectance."
(let ((n 1))

(dolist (wave wavelengths)
(let ((new-wave (create.unit

(get-wave-unit-name new-sun-ang n)
'veg nil new-sun-ang)))

(put.value new-wave 'wavelength.min (first wave))
(put.value new-wave 'wavelength.max (second wave))
(dolist (slot *historical-data-wavelength-slot-list*)

(let ((data (read-file str)))
(cond ((null data)

(abort-historical-data-reading new-cover-type 'eof))
;Eof in wrong place

((not (valid-historical-wave-data data slot))
(abort-historical-data-reading new-cover-type data slot))
(t (put.value new-wave slot data)))))

(incf n)))))

(defun get-sun-angle-unit-name (new-cover-type new-sun-ang)
"Returns the name of a unit composed of the combination of the cover-type name

and the sun angle."
(intern (format 0 "CT-A--A"

(string-trim "COVER.TYPE."
(string (unit.name new-cover-type)))

new-sun-ang)))

(defun get-wave-unit-name (new-sun-ang n)
"Returns the name of a unit composed of the combination of the sun-angle unit
name and a number."

(intern (format () "-A--A"
(unit.name new-sun-ang)
n)))

C931020-U- 2R05

Page A-2

SYSTEMS INC

C931020-U-2R05

Page A-3

(defun valid-historical-ct-data (data slot)
"Returns t if the data are valid for the slot and nil otherwise."

(case slot

(azimuth.interval (and (integerp data)
(>= data 0)
(<= data 45)))

(cover.type (member data "(soil vegetation)))
(date t)

(dry.biomass.kg.hc (or (eq data 'unknown)
(and (numberp data)

(>= data 0)
(<= data 25000))))

(ground.cover (or (eq data 'unknown)
(and (numberp data)

(>= data 0)
(<= data 1))))

(leaf.orientation.distribution t)
(local.standard.time t)
(max.zenith.data (and (integerp data)

(>= data 0)
(<= data 90)))

(proportion.green (or (eq data 'unknown)
(and (numberp data)

(>= data 0)
(<= data 1))))

(solar.azimuth (and (integerp data)
(>= data 0)
(<= data 360)))

(structure (member data '(homogeneous heterogeneous)))
(total.hem.reflectance (and (numberp data)

(>= data 0)
(<= data 1)))

(wavelengths (and (consp data)
(dolist (waves data t)

(unless (and (consp waves)
(= (length waves) 2)
(dolist (wave waves t)

(unless (and (numberp wave)
(>= wave 0)
(<= wave 10))

(return nil))))
(return-from valid-historical-ct-data nil)))))

(wet.biomass.kg.hc (or (eq data 'unknown)
(and (numbcrp data)

(>= data 0)
(<= data 25000)))) ;Dan confirm

(zenith.interval (and (integerp data)
(>= data 0)
(<= data 45)))

(description (stringp data))
(leaf.area.index (or (eq data 'unknown)

(and (numberp data)
(>= data 0)
(<= data 10))))

SYSTEMS INC

(height.cm (and (numberp data)
(>= data 0)
(<= data 3000)))

(number.wavelengths (and (integerp data)
(>= data 0)
(<= data 10)))

(solar.zenith.angles (and (consp data)
(dolist (dat data t)

(unless (and (integerp dat)
(>= dat 0)
(<= dat 90))

(return-from valid-historical-ct-data nil)))))))

(defun valid-historical-wave-data (data slot)
"Returns t if the data are valid for the slot and nil otherwise."

(case slot
(raw.data (valid-reflectance-data data))

(t (and (numberp data) ;Must be spectral hemispherical reflectance
(>= data 0)
(<= data 1)))))

(defun abort-historical-data-reading (new-cover-type data &optional slot)
"Displays an error message and aborts the reading of the file if invalid data
are encountered or the end of file is encountered in the wrong place."

(put.value 'methods 'general.message
(if (eq data 'eof)

"File reading aborted - end of file encountered prematurely"
(format 0

"File reading aborted - the data -S is invalid for the slot -S"
data slot)))

;;; Remove from the historical data base all data for this cover type."
(dolist (sun-ang (unit.children new-cover-type 'subclass))

(dolist (wave (unit.children sun-ang 'member))
(delete.unit wave))

(delete.unit sun-ang))
(delete.unit new-cover-type)

(throw 'invalid-historical-data nil))

(defun open-admin-menu 0
"Opens and initializes the Admin menu."

(remove.all.values 'admin 'options)
(unitmsg 'viewport-admin. 1 'open-panel !))

(defun open-change-historical-databa_-menu 0
"Opens and initializes the Change Historical Database menu."

(unitmsg 'viewport-historical.database. 1 'open-panel!)
(remove.all .values 'change.historical.database 'options)
(put.value 'change.historical.database 'entry.box)
(put.value 'change.historical.database 'message))

C931020-U-2R05

Page A-4

SYSTEMS INC

(defun empty-db-file (db)
"Retums t if the file is empty and nil otherwise."

(with-open-file (str db :direction :input)
(let ((len (file-length str)))

(or (null len)
(zerop len)))))

(defun correct-empty-db ()
"This function is called when the historical cover type database is found to be
empty. The Change Historical Database screen is opened and set to prompt the
user to add cover types."

(unitmsg 'viewport-historical.database. 1 'open-panel !)
(put.value 'change.historical.database 'entry.box)
(put.value 'change.historical.database 'options

'add.cover.types)
(put.value 'change.historical .database 'message

(format 0

"No databases are currently loaded. Select a database to load:-"
(show- available- databases))))

(defun show-available-databases 0

"Updates the interface to show the available databases."
(let ((dbs (list-available-databases)))

(cond ((null dbs) (put.value 'change.historical.database 'message
"No databases are available"))

(t (remove.all.values 'change.historical.database
'available.databases)

(put.facet.value 'change.historical.database 'available.databases
'valueclass (cons 'one.of dbs))

(unitmsg
'windowpane-available.databases-of-change.historical.database. 1
'update!)

(unitmsg
'windowpane-available.databases-of-change.historical.database. 1
'open !)))))

(defun list-available-databases 0
"Returns a list of all the files in the subdirectory historical-data."

(let ((dbs nil))
(dolist (item (directory "historical-data/*") dbs)

(let ((file (file-namestring item)))
(unless (equal file)

(push file dbs))))))

(defun show-loaded-databases 0

"Updates the interface to show the available databases"
(let ((dbs (get.values 'change.historical.database 'loaded.databases)))

(cond ((null dbs) (put.value 'change.historical.database 'message
"No databases are currently loaded"))

(t (remove.all.values 'change.historical.database
'database.to.remove)

(put.facet.valuc 'change.historical.database 'database.to.remove
'valueclass (cons 'one.of (cons 'all dbs)))

C931020-U-2R05

Page A-5

SYSTEM5 INC

(unitmsg
'windowpane-database.to.remove-of-change.historical.database.2
'update!)

(unitmsg
'windowpane-database.to.remove-of-change.historical.database.2
'open!)))))

(defun remove-historical-database (db)
"Remove all the historical database units originating from the named database
from VEG."

(remove.value 'change.historical.database 'loaded.databases db)
(dolist (cover-type (unit.children 'historical.cover.types 'subclass))

(when (equal db (get.value cover-type 'database))
(dolist (sun-ang (unit.children cover-type 'subclass))

(dolist (wave (unit.children sun-ang 'member))
(delete.unit wave))

(delete.unit sun-ang))
(delete.unit cover-type)))

(update-current-cover-types))

(defun remove-all-historical-database 0
"Remove all the historical database units from VEG."

(remove.all.values 'change.historical.database 'loaded.databases)
(dolist (cover-type (unit.children 'historical.cover.types 'subclass))

(dolist (sun-ang (unit.children cover-type 'subclass))
(dolist (wave (unit.children sun-ang 'member))

(delete.unit wave))
(delete.unit sun-ang))

(delete.unit cover-type))
(update-current-cover-types))

(defun update-data-matcher-if-necessary 0
"If the see descriptions screen of the data matcher in the browser is currently
open, update this screen."

(when (eq (get.value 'viewport-data.matcher.2 'openp) 'open)
(update-browser-see-descriptions-screen)))

(defun update-current-cover-types 0
"Updates the current cover types slot of the unit historical cover types."

(put.value 'historical.cover.types 'current.cover.types
(get-unit-names (unit.children 'historical.cover.types 'subclass))))

(defun update-pick-subset-screen 0
"Updates the pick subset screen for selecting restricted historical data."

(remove.all.values '3.create.restricted.data 'ct.to.use)
(put.facet.value '3.create.restricted.data 'ct.to.use 'valueclass

(cons 'one.of (get.value 'historical.cover.types
'current.cover.types)))

(unitmsg
'windowpane-ct. to .u se-of-3 .create.restricted .data. 3
'update!))

C931020-U-2R05

Page A-6

SYSTEM5 INC

C931020-U-2R05

Page A-7

(defun update-browser-see-descriptions-screen 0

"Updates the see descriptions screen from the browser."
(let ((cts (get.value 'historical.cover.types

'current.cover.types))
(current-ct (get.value 'data.matcher 'ct.to.use)))

(remove.all.values 'data.matcher 'ct.to.use)
(put.value 'data.m atc her 'ct. full.description)
(cond (cts

(pu t.facet, value 'd ata.m atcher 'ct. to. use 'valueclass
(cons 'one.of cts))

(unitmsg
'windowpane-ct.to.use-of-data.matcher.4
'update!)

(unitmsg
'windowpane-ct.to.use-of-data.matcher.4 'open !)

(when (unit.exists.p current-ct)
(put.value 'data.matcher 'ct.to.use current-ct)))

(t (put.value 'data.matcher 'ct.full.description
"No cover types are currently available")

(unitmsg
'windowpane-ct.to.use-of-data.matcher.4 'close!)))))

Report Documentation Page

I. Report No.

4. Title and Subtitle

2. Government Accession No. 3. Recip,ent's Catalog No.

5. Report Date

May 1993
An Expert System Shell for Inferring Vegetation Characteristics -
Changes to the Historical Cover Type Database (Task F)

7. Author(s)

P. Ann Harrison and
Patrick R. Harrison

9. Performing Organization Name and Address

JJM Systems, In.c.
One Ivybrook Blvd., Suite 190
Ivyland, PA 18974

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546-0001
NASA/Goddard Space Flight Center
Gre.enhelt. MD 20771

15. SupplementaQ,, Notes

6. Performing Organization Code

8. Performing Organization Report No.

C931020-U-2R05

10. Work Unit No.

462-61-14

11, Contract or Grant No.

NAS5-30127

13. Type of Report and Period Covered

Task Reoort for Task F
March - May 1993

14. Sponsoring Agency Code

The Lisp and KEE code for this work is available on a Sun Cartridge Tape.

16. Abstract

The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation
characteristics from reflectance data. All the options in VEG make use of a database of historical cover
types. This database contains results from experiments by scientists on a wide variety of different

cover types. In the previous version of VEG, the historical cover type database was stored as part of
the VEG knowledge base. This database has been removed from the knowledge base. It is now
stored as a series of flat files that are external to VEG. The report summarizes the use of the historical
cover type database in VEG. It then describes the new interface to the files containing the historical
data. Runs to test the operation of the new interface and to test the operation of VEG using historical
data loaded from external files are also described.

17 Key Words (Suggested by Author(s))

EXPERT SYSTEM, ARTIFICIAL
INTELLIGENCE, REMOTE SENSING,
LEARNING, DISCRIMINATION

18 Distribution Statement

UNCLASSIFIED - UNLIMITED

19 Security Classif (of this report)

UNCLASSIFIED

20 Security Classi£ (of this page)

UNCLASSIFIED

21 No of pages

37

22 Price

NASA FORM 1626OCI

For sale by the National Technical Information Service, Springficld, VA 22161-2171

SYSTEMS INC

C931033-U-2R00

APPENDIX B

AN EXPERT SYSTEM SHELL FOR INFERRING VEGETATION

CHARACTERISTICS - ATMOSPHERIC TECHNIQUES (TASK G)

SYSTEMS INC

i/__ _ .2_ .,_ ., ".;.-" /

- /-- _. J---P I

C931031-U-2R06

AN EXPERT SYSTEM SHELL FOR INFERRING
VEGETATION CHARACTERISTICS -

ATMOSPHERIC TECHNIQUES (TASK G)

October 1993

Prepared for:

National Aeronautics and Space Administration
Goddard Space Flight Center

Greenbelt, MD 20771

Prepared by:

JJM Systems, Inc.
1225 Jefferson Davis Hwy., Suite 190

Arlington, VA 22202

SYSTEMS INC

TABLE OF CONTENTS

C93103 I-U-2R06

Page i

Section/Description

LIST OF FIGURES

LIST OF TABLES

LIST OF ACRONYMS

1.0 INTRODUCTION

2.0 THE SUBGOAL CATEGORY ATMOSPHERIC TECHNIQUES
IN THE VEG RESEARCH MODE

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

ENTER PLATFORM DATA

CHARACTERIZE INPUT

CHARACTERIZE TARGET

ENTER ATMOSPHERIC CONDITIONS

GENERATE TECHNIQUES

RANK TECHNIQUES

EXECUTE TECHNIQUES
OUTPUT RESULTS

3.0 THE SUBGOAL CATEGORY ATMOSPHERIC TECHNIQUES
IN THE VEG AUTOMATIC MODE

4.0 TESTING AND RESULTS

4.1 TEST l

4.2 TEST 2

4.3 TEST 3

4.4 TEST 4

4.5 TEST 5

4.6 TEST 6

4.7 TEST 7

5.0 CONCLUSIONS

REFERENCES

APPENDIX A

ii

°°°

IU

iv

1

2

6

9

9

9

10

11

11

11

13

16

16

16

17

18

18

18

19

20

21

SYSTEMS INC

LIST OF FIGURES

C931031-U-2R06

Page ii

iF2e,am

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

3-1

3-2

Description

Categories of Subgoals in VEG

The Atmospheric Techniques Menu

Menu for the Subgoal ATMOSPHERIC.PASSES

Menu for the Subgoal ATMOSPHERIC.CORRECTIONS

The Screen for Entering Original Platform Data

Selecting Historical Data

A Complete Set of Selected Historical Data

The Enter Atmospheric Conditions Screen

The Output Screen for the Subgoal ATMOSPHERIC.PASSES

The VEG Automatic Mode Categories Menu

Running the Subgoal ATMOSPHERIC.CORRECTIONS
in the VEG Automatic Mode

2

3

4

5

6

7

8

9

12

13

14

SYSTEMS INC

LIST OF TABLES

C93103 I-U-2R06

Page iii

Table Description

3-1 Input File Format for Atmospheric Techniques and an Example of

Typical Values 15

SYSTEMS INC

LIST OF ACRONYMS

C931031-U-2R06

Page iv

KEE

VEG

Knowledge Engineering Environment

VEGetation Workbench

SYSTEM {; INC

SECTION 1.0

INTRODUCTION

C931031-U-2R06

Page 1

The NASA VEGetation Workbench (VEG) infers vegetation characteristics from
reflectance data. For a detailed description of VEG, see references 1 and 2. A number of subgoals
are available in VEG. In the previous version of VEG, the subgoals
SPECTRAL.HEMISPHERICAL.REFLECTANCE, TOTAL.AND.SPECTRAL.HEMISPHERI-
CAL.REFLECTANCE, PROPORTION.GROUND.COVER, VIEW.ANGLE.EXTENSION and

LEARN.CLASS.DESCRIPTIONS were implemented.

The structure of the subgoals in VEG has been modified. Subgoals are now divided into
categories. Two new subgoals in the category ATMOSPHERIC.TECHNIQUES have been added
to VEG. The basic framework and interfaces for these subgoals have been implemented. No
techniques for these subgoals were yet available so dummy techniques for each subgoal were
included in VEG. Replacement of the dummy techniques with the real techniques when they
become available should require little additional work.

This report describes the reorganization of VEG subgoals into categories and the new
subgoals ATMOSPHERIC.PASSES and ATMOSPHERIC.CORRECTIONS. The code for the
Lisp methods involved is included in Appendix A. A Sun cartridge tape containing these Lisp
methods and the current version of VEG including the subgoal category
ATMOSPHERIC.TECHNIQUES has been delivered to the NASA GSFC technical representative.

SYSTEMS INC

SECTION 2.0

C931031-U-2R06

Page 2

THE SUBGOAL CATEGORY ATMOSPHERIC TECHNIQUES IN THE VEG
RESEARCH MODE

The structure of the VEG subgoals has been reorganized into four categories as shown in
Figure 2-1. When the user runs VEG and selects Research Mode, the Categories menu is
displayed. This menu allows the user to select the required subgoal category. Selecting the
category VEGETATION.PARAMETER.TECHNIQUES allows the user to select the VEG
subgoals TOTAL.AND.SPECTRAL.HEMISPHERICAL.REFLECTANCE, SPECTRAL.
HEMISPHERICAL.REFLECTANCE, PROPORTION.GROUND.COVER and VIEW.ANGLE.

EXTENSION. Selecting the category LEARNING.SYSTEM invokes the learning system. The
option NEURAL.NETWORK is included in the categories submenu although this category has not
yet been implemented.

I VEG J

I
HEMISPHERICAL

REFLECTANCE

I 1l INEURAL LEARNING

NETWORKS SYSTEM

I
I

TOTAL AND [

SPECTRAL

HEMISPHERICAL

REFLECTANCE

1 I

PROPORTION l
GROUND

COVER

LEARN

CLASS

C931031G1

ANGLE

EXTENSION

I
I ATMOSPHERICTECHNIQUES

I
I

PASSES

DESCRIPTION
L LEARN CLASS

DESCRIPTIONS

AND

CHARACTERIZE

SAMPLE

Categories

!
I
!

T

Goals

I

I :
1'ATMOSPHERIC

CORRECTIONS

I
LEARN CLASS

DESCRIPTIONS

AND DETERMINE

CLASSIFICATION

AC CUR ACY

Figure 2-1
Categories of Subgoals in VEG

SYSTEMS INC

C931031-U-2R06

Page 3

A new category, ATMOSPHERIC.TECHNIQUES, has been added to VEG. When this
category is selected, the menu shown in Figure 2-2 is displayed. The subgoal
ATMOSPHERIC.PASSES allows the scientist to take reflectance data measured at ground level

and predict what the reflectance values would be if the data were measured at a different
atmospheric height. The subgoal ATMOSPHERIC.CORRECTIONS allows atmospheric
corrections to be made to data collected from an aircraft or by a satellite to determine what the
equivalent reflectance values would be if the data were measured at ground level.

!$TIMATE ATMf)SPHERIC EFFECT

ATMOSPHERIC.PASSES

ATMOSPHERIC.CORRECTIONS

QUIT

t'reel"_l

SELECT.OPTION

SYST£M D£$C_]P¢_Oh

H£LP $¥$TZM

[XPLO_ SVI_t_ Or HISl"OI_ICa,L D/*'_A

]'kiN'r CUltl_'t ,SC_[]E_

Figure 2-2
The Atmospheric Techniques Menu

SYSTEMS IN _-

C931031-U-2R06

Page 4

When the user selects the subgoal ATMOSPHERIC.PASSES from the menu shown in
Figure 2-2, the menu shown in Figure 2-3 is displayed. Selecting the subgoal
ATMOSPHERIC.CORRECTIONS reveals the menu shown in Figure 2-4. The steps involved in
the subgoals ATMOSPHERIC.PASSES and ATMOSPHERIC.CORRECTIONS are similar. The
subgoal ATMOSPHERIC.PASSES will be described in detail in this section. Any variations for
the subgoal ATMOSPHERIC.CORRECTIONS will be mentioned in the description.

The menu shown in Figure 2-3 enables the user to invoke the steps involved in processing
reflectance data to estimate the reflectance values at different atmospheric heights. Before each step

is carried out, a check is made to make sure that the necessary prerequisite steps have been carried
out. For example, the results cannot be output before the techniques have been executed. If any
prerequisite steps have not been carried out, a message is displayed and the user is prompted to
complete the necessary prerequisite steps.

ations

ENTER.GROUND,DATA

CHARACTERIZE.INPUT

CHARACTERIZE.TARGET

ENTER.ATMOSPHERIC.CONDITIONS

GENERATE.TECHNIQUES

RANKTECHNIQUES

EXECUTETECHNIQUES

OUTPUT.RESULTS

SELECT.ALL.OPTIONS

INITIALIZE.SYSTEM

QUIT

i I':_ I, i,i

H£.LP -_YsT£M

[XP_R£ SUIS["r_. OF HI_T{_IC_L DATA

IHT CU£NT _EN

m

Figure 2-3
Menu for the Subgoal ATMOSPHERIC.PASSES

SYSTEMS INC

C931031-U-2R06

Page 5

I

Jtions

ENTER.PLATFORM.DATA

CHARACTERIZE.INPUT

CHARACTERIZE.TARGET

:NTER.ATMOSPHERIC.CON DITIONS

GENERATE.TECHNIQUES

RANK.TECHNIQUES

EXECUTE.TECHNIQUES

OUTPUT.RESULTS

SELECT.ALLOPTIONS

INITIALIZE.SYSTEM

QUIT

S'YS T£ M DLSC_;I'T:DI_

H_-r SYSTEM

tXPl_Ol_E SUlI_'_ or H_STC)ItlCAt nA'rA

Pglrt! Ctl_,I_Za_', SC_t_N

Figure 2-4
Menu for the Subgoal ATMOSPHERIC.CORRECTIONS

SYSTEMS INC

C931031-U-2R06

Page 6

2.1 ENTER PLATFORM DATA

The code and interface that were originally developed for the step ENTER.DATA for the
VEG subgoal SPECTRAL.HEMISPHERICAL.REFLECTANCE have been modified for re-use in

this step. When the user selects the step ENTER.DATA, an interface opens. This interface allows
the user to either enter a new original set of data for an unknown cover type or select one of a

number of samples of cover type data stored in the VEG historical database. If the user chooses to
enter original data, another interface opens as shown in Figure 2-5. This interface allows the user
to enter data for the new sample. In addition to the data required for the subgoal
SPECTRAL.HEMISPHERICAL.REFLECTANCE, the subgoal ATMOSPHERIC.PASSES

requires the entry of the atmospheric height to which the reflectance data will be projected. A
subwindow labeled "Atm Ht (m or (A)bove))" has been added to the screen. This subwindow
enables the user to enter the number of meters to which the data should be projected or "A" if the
data are to be projected to above the atmosphere. Each data value is checked as soon as it has been
entered to make sure that it is of the correct type and is in the valid range for the data item it
represents. The user can left click on the menu button "SAVE.DATA" at the bottom of the screen
in Figure 2-5 to store the data. Before a set of cover type data is stored, the system checks that at a
minimum the solar zenith angle, wavelength, reflectance data and atmospheric height have been
entered. If any of these items is missing, the user is prompted to supply the missing items before
the data are stored.

• • II

II 1

Enter Origin al Data

I W0v_tr, gths AvatlaMt I
Ur,kz_wn

J I ' 'Ill

I II II I [] I

Fill in the template with any available data about the unknown target.

Data at the sample level:-

Unknown

I t.:nknown

i Unknown Unknown

Data at the wavdength level:-

Unknown

Unknown Unknown

Unknown Unknown

Unknown

|xow,'_£ zItT;_ [SYSTEM

Figure 2-5
The Screen for Entering Original Platform Data

SYSTEMS INC

C931031-U-2R06

Page 7

If the user elects to process a sample of cover type data from the historical cover type
database, the screen shown in Figure 2-6 is opened. It is important that the user enter data into this
screen in the correct order. When this screen is first opened, only the message and atmospheric
height subwindows are opened. The other subwindows in this screen are automatically opened in
turn, after the user has entered the necessary prerequisite data. If the user enters a data value and
then subsequently changes it, the appropriate subwindows are closed to backtrack the data entry
process to where the changed data value was first entered. The user is required to first enter the
atmospheric height. Next the user must select the required cover type from the historical cover
type database, followed by the sun angle. Figure 2-6 shows the "Select Historical Data" screen at
this stage of data entry. Once the sun angle has been selected, the user is prompted to select the
waveband of interest. The user is then prompted to enter the directional data. If invalid directional
data is entered, the user is prompted to reenter the data in the correct format. Once valid directional
data have been entered, VEG automatically interpolates and extrapolates the reflectance data for the
selected historical database cover type to the specified view angles. The complete directional
reflectance data, including the interpolated and extrapolated reflectance values, are displayed in the
subwindow labeled "Directional Reflectance Data," as shown in Figure 2-7.

Select the sun angle for COVER.TYPE. 186

42

56
70

22

COVER .T'l(l_.ll_

C OV rt.R.TYI_.I S4

C OV F_,K.TI'FE.Igl

¢'ov Eg .'I_PIL.I_

COYKR .'IWFK.161

COV IGR.T_'PIs.IW

CO%'ER.TVI_.I79

m

Figure 2-6
Selecting Historical Data

SYSTEM':; INC

C931031-U-2R06

Page 8

II

4;,_ t:--II Illi1,11 *l IILqCl I wJ_ I wr I I

Wavd_ t,rJas _ _"_

l.hd_0'wa

cov_.r_n.t_ Now save the data

COVrJR .TY]_e-lgg

COVR.R.TY I_,IB_ _ t

7 0 (0.73 1.1)

COV Fall .'I_FF...I_

C OV ¢I' .TY P[.. 1$4

C O%' KIR.TY PI_.. 1KI

COVLR TY|'E. I_12

C O'¢ KIlt .'rY PE.181

C ov R,R .TY PIL.I 1_

COVglI.TYI_.I?9

22

((0 0) (15 30) (45 30))

((0 0 0.0408) (15 30 0.0404) (45 30 0.0585))

|!'_1; u

_'I'ST_M _u.,Jc:,WTI_r,

1112.1__'tST[Id

| IL{_ltr_dzt'[IITIIL [SYSTEM

IDLO'/'TINO It O,/T,II'_S

Figure 2-7
A Complete Set of Selected Historical Data

Once the data has been entered, they can be saved. If the user attempts to save an
incomplete data set, the user is prompted to supply the missing data before saving them. The
interface allows the user to select multiple wavebands of the same historical data sample. If the
user selects "NEW.WAVELENGTH" from the "Options" at the bottom of the "Select Historical
Data" screen, the "Directional Reflectance Data" subwindow is cleared and highlighting of the

previously selected waveband is removed. When the user selects a different waveband, the
historical cover type data for the new waveband is automatically interpolated and extrapolated to the
required view angles. The set of directional reflectance data for the new waveband is automatically
displayed in the "Directional Reflectance Data" subwindow. The user also has the option of

entering a different set of directional view angles for the new waveband. Selecting "QUIT" returns
the user to the screen shown in Figure 2-3.

When the VEG subgoal ATMOSPHERIC.CORRECTIONS is in use, platform data rather

than ground data must be entered. The interface for entering platform data is the same as the
interface shown in Figure 2-5, except that the atmospheric height subwindow is replaced by a
subwindow for entering the platform height. All the cover type data sets in the current historical
database were collected at ground level. Thus, the option of selecting data from the historical
database for the ATMOSPHERIC.CORRECTIONS subgoal is not yet available.

SYSTEMS INC

C931031-U-2R06

Page 9

2.2 CHARACTERIZE INPUT

The unknown cover type data at each wavelength are characterized using code that was
developed for the VEG subgoal SPECTRAL.HEMISPHERICAL.REFLECTANCE. Sets of view
angles in the same azimuthal plane are identified as "strings." Strings are characterized as full-
strings if they contain both forwardscatter and backscatter data and half-strings if they contain
either backscatter or forwardscatter data.

2.3 CHARACTERIZE TARGET

If the sample data do not contain a value for ground cover or leaf area index, an estimation
of these values is made. The code developed for the VEG subgoal SPECTRAL.
HEMISPHERICAL.REFLECTANCE is re-used for this purpose.

2.4 ENTER ATMOSPHERIC CONDITIONS

When the user selects the option ENTER.ATMOSPHERIC.CONDITIONS from the menu
shown in Figure 2-3, the screen shown in Figure 2-8 is opened. This screen allows the user to
define the atmospheric conditions for the target data in each waveband. VEG automatically selects
the first waveband and prompts the user to define the atmospheric conditions for that waveband.
The user can select a standard atmosphere, such as "sub-arctic winter," by left clicking on the name
of the standard atmosphere. The NASA GSFC technical representative was unable to provide the
specifications of the standard atmospheres so dummy values were used for the development of this
option. The dummy values will be replaced with the correct values when they become available.
When a standard atmosphere has been selected, the user has the option to change the value of any
of the atmospheric parameters as required. Alternatively, instead of selecting a standard
atmosphere, the user can enter the value of each parameter independently. The type and range of
each parameter value is checked after it is entered. If the user enters an invalid value, an error
message is displayed, prompting the user to enter another value. Once a complete set of data has
been entered, the data can be saved. If the user attempts to save an incomplete set of data he/she is

prompted to supply the missing data before the data can be saved. After the data have been saved,
if the target data contains more than one waveband, the prompt at the top of the screen is changed
to include the next waveband. The values for the other parameters are not changed. The user has
the option of changing the parameter values before saving the data for the next waveband. When
atmospheric conditions have been saved for all the selected wavebands, the Enter Atmospheric
Conditions Screen is automatically closed.

SYSTEMS INC

C931031-U-2R06

Page 10

For each wavelength, either choose a standard atmosphere and then modify the
ry or enter all new parameters.

Enter the data for wavdength 0.63.

Figure 2-8
The Enter Atmospheric Conditions Screen

2.5 GENERATE TECHNIQUES

Techniques can be generated automatically by the system or selected by the user. The code
for generating techniques for the VEG subgoal SPECTRAL.HEMISPHERICAL.
REFLECTANCE was copied and modified for this step. A new screen was created to allow the
user to select the atmospheric passes techniques, but many existing functions were used to operate
this screen. The NASA GSFC technical representative advised that the atmospheric techniques
were not yet available in the appropriate format for incorporation into VEG. Thus, dummy rules
and technique functions were incorporated in VEG at this stage. The dummy rules and functions
should be replaced with the actual atmospheric technique rules and functions when they become
available.

If the user elects to have the system generate the techniques, the rules in the rulebase
ATMOSPHERIC.PASSES.RULES are run. The rules operate on the unknown sample data at the
wavelength level and determine the techniques that are suitable for estimating the reflectance data of
a sample at a particular height. The names of the selected techniques are stored in the
TECHNIQUES slot of the wavelength level unit.

If the user elects to choose the techniques manually, the Pick Techniques screen is opened.
When the user left clicks on the name of a dummy technique, a brief description of the technique is
displayed. A function is callcd to check whether the technique is suitable for the sample. If the

SYSTEMS INC

C931031-U-2R06

Page 11

technique is suitable for the sample, the message "Technique is suitable for this sample" is
displayed, and the technique is selected. Otherwise, an error message is displayed in the same
subwindow and the technique is not selected. When the user left clicks on
PICK.SELECTED.TECHNIQUES at the bottom of the screen, the selected techniques are stored

in the TECHNIQUES slot of the unknown cover type unit.

Dummy rules for selecting atmospheric correction techniques were constructed in the
ATMOSPHERIC.CORRECTIONS.RULES rulebase. An additional screen that allows the user to

select atmospheric corrections techniques was also constructed.

Minor changes were made to the Add Techniques interface and the code for adding
techniques. These changes enabled the scientist to add new techniques for the subgoals
Atmospheric Passes and Atmospheric Corrections without the assistance of the developer. The

Add Techniques option is described in detail in Reference 3.

2.6 RANK TECHNIQUES

The code from the same step for the subgoal SPECTRAL.HEMISPHERICAL.
REFLECTANCE was re-used for this step. The techniques are ranked according to a simple
weighting scheme and the ranked techniques at each wavelength are displayed on the screen. The
user can select the best one, two or three techniques for each wavelength, pick all the selected
techniques, or repeat the previous step and generate the techniques again.

2.7 EXECUTE TECHNIQUES

The code providing the framework for this step from the VEG subgoal
SPECTRAL.HEMISPHERICAL.REFLECTANCE was re-used for this step. Dummy functions

for generating the coefficients and calculating the projected reflectance data for each technique were
written. When the step EXECUTE.TECHNIQUES is selected, the techniques are applied to the
data in the unknown cover type sample. If a technique requires coefficients, the user is asked
whether all or half the restricted data set should be used for generating the coefficients and
estimating the error. The appropriate coefficient methods are applied as necessary. A hierarchy of
units is set up to hold the calculated projected reflectance data for each technique.

2.8 OUTPUT RESULTS

The results are displayed on the screen shown in Figure 2-9. This screen was originally
constructed for the VEG subgoal SPECTRAL.HEMISPHERICAL.REFLECTANCE. The title
has been changed to "Atmospheric Passes Results." The results are displayed one wavelength at a
time. The atmospheric conditions specified for the wavelength are displayed in the subwindow
labeled "Wavelength Results." For each technique, the name of the technique is displayed together
with the results from applying that technique to the sample of cover type data. In Figure 2-9, the
dummy technique B has been applied to the sample of cover type data. The results displayed for
this technique are meaningless since technique B is a dummy technique that returns the reflectance
value at the first view angle. When atmospheric techniques have been added to VEG, the correct
results will be displayed on the "Output Results" screen. The user can view the results for
different wavebands by left clicking on "NEXT.WAVELENGTH" or "PREVIOUS.
WAVELENGTH."

SYSTEMS INC

C93103 I-U-2R06

Page 12

$YST£M DESCh;PTIO_

H]CL_ SYSTE_

|_OW'I£ E,NTIkt SYSTZM

P_O'_TIN_ _OUTIN_S

XPLO][SUJS_TS 0_- :_:_TO_CAL _ATA

o9_5 ((o _ o _e_,, (_5 3o o 5_er) (e_ _5 o s2o7))

WAVF_J.E_ JO TH pRE'ClOt,I_ _'AVEI.E/.KI I"H Q6qT

Figure 2-9
The Output Screen for the Subgoal ATMOSPHERIC.PASSES

SYSTEMS INC

SECTION 3.0

THE SUBGOAL CATEGORY ATMOSPHERIC TECHNIQUES
AUTOMATIC MODE

C931031-U-2R06

Page 13

IN THE VEG

The menus for the VEG Automatic Mode were modified to accommodate the restructuring
of VEG subgoals into the four categories described in Section 2.0. When the user selects the
Automatic Mode from the Processing Mode menu, the screen shown in Figure 3-1 is opened. This
screen enables the user to select the category of subgoal for automatic processing.

IASA/GSFC VEGET ATION WORKRF+NCH AUTOMATIC M(3DF.

VEGETA'nON PARAMETER TECHNIQUES

LE ARIq]I'_ SYSTEM

KtEURAL NETWORK

ATh4OSF*H ER]C TECHhOQUES

QUIT

|esfef¢_

I I
GO

._YS'ITM Dc_cr :P1:DS

PI£LP _YST[M

|to_E rX¢?i_ _ ._Y.<ttH

I'LDTTI_ I_OUTIW£S

I:XPLOItt SU_SE'P_O, HIS'rOklCA_ D/,'r A

Iqtl_! CUItItrJT SCrtLCPI

Figure 3-1
The VEG Automatic Mode Categories Menu

SYSTEMS INC

C931031-U-2R06

Page 14

When the user selects the ATMOSPHERIC.TECHNIQUES option from the screen shown

in Figure 3-1, the "Categories" subwindow is replaced by the "Atmospheric Techniques"
subwindow. Selecting the option ATMOSPHERIC.PASSES or ATMOSPHERIC.
CORRECTIONS causes additional subwindows to be opened, as shown in Figure 3-2. These
subwindows enable the user to name the input and output files, select the output file format and

specify how many techniques should be applied to each unknown cover type data sample.

IASA/GSFCVEGETATION WORKBENCH - AUTOMATICMODE

a..la t aa J.t,l I'/_goI, lq 1 [

A ."M_'. SPH HR_C P._.SSE$

:raw _ im,_l, ._ m,t,m gl

PICK BEST TECH t.aQ IrE

PICK BEST 2 TECHNIQUES

QUIT

[Proce_ing complete I

NO'FREADY

u llll I

Figure 3-2
Running the Subgoal ATMOSPHERIC.CORRECTIONS

in the VEG Automatic Mode

The input file for an atmospheric technique must contain atmospheric conditions data and
the data platform elevation or atmospheric height as well as the cover type data that are required for
subgoals in the other VEG categories. A standard file format for input files to atmospheric
techniques has been defined. The file format and an example of typical values are shown in Table
3-3. Global variables *STANDARD-ATM-PASS-SAMPLE-FORMAT*, *STANDARD-ATM-
CORR-SAMPLE-FORMAT* and *STANDARD-ATM-WAVELENGTH-FORMAT* have been

SYSTEMS INC

C931031-U-2R06

Page 15

created in the file "veg-methodsl .lisp." This file contains the methods used for inputting data from
a file into VEG. The new global variables hold the list of fields in the standard format for an
atmospheric techniques input file. The field names correspond to the names of slots in which the
data should be stored. When the input file is named by the user, the values from the appropriate
field list global variables are put in the slots AUTO.INPUT.SAMPLE.FORMAT and
AUTO.INPUT.WAVELENGTH.FORMAT of the unit AUTOMATIC.PROCESS. When the file

is read, these slots are referenced to determine the file format.

Table 3-1

Input File Format for Atmospheric Techniques and an Example of Typical Values

FIELD NAMES [TYPICAL VALUES

COVER.TYPE.DESCRIPTION "Dense Vegetation Canopy"

SOLAR.ZENITH LEAF.AREA.INDEX 45 3.5

GROUND.COVER PROPORTION.GREEN 0.7 0.3

DRY.BIOMASS WET.BIOMASS HEIGHT 0.2 0.5 1000

DATA.PLATFORM .ELEVATION 30

NUMBER.WAVELENGTHS 2

WAVELENGTH 0.68

NUMBER.VIEW.ANGLES 1

REFLECTANCE.DATA ((0 0 0.043))

AEROSOL.OPTICAL.THICKNESS 1.6 2
SIZE.DISTRIBUTION

PHASE.FUNCTION OZONE 0.6 360

PRECIPITAL.WATER 5 0.8
SINGLE.SCATrERING.ALBEDO

WAVELENGTH 0.68

NUMBER.VIEW.ANGLES 1

REFLECTANCE.DATA ((0 0 0.043))

AEROSOL.OPTICAL.THICKNESS 1.8 2
SIZE.DISTRIBUTION

PHASE.FUNCTION OZONE 0.6 400

PRECIPITAL.WATER 5 (1.8
S INGLE.SCA'Iq'ERING.ALBEDO

When the user left clicks on "GO," the unknown cover type data are read from the file
using the correct format. The input data and the target are then characterized as in the Research
Mode. The rules are run, and the best techniques for the sample are selected. The selected
techniques are then executed and the results are written to the named file using the specified format.
The code in the file "veg-methods.lisp" that was originally written for the automatic processing of
data for the vegetation parameter techniques was modified for the processing of data for

atmospheric techniques.

SYSTEMS INC:

SECTION 4.0

TESTING AND RESULTS

C93103 I-U-2R06

Page 16

tested:
The following capabilities of the VEG Atmospheric Techniques subgoal category were

• Test 1 -

• Test 2 -

• Test 3 -

• Test 4 -

• Test 5 -

• Test 6 -

• Test 7 -

Navigate through the category and subgoal menus in the Research Mode.

Atmospheric Passes Subgoal using data entered by the user

Atmospheric Passes Subgoal using historical data

Atmospheric Corrections Subgoal

Automatic Mode, Atmospheric Passes Subgoal

Automatic Mode, Atmospheric Corrections Subgoal

Add Techniques for Atmospheric Passes and Atmospheric Corrections Subgoals

All the tests were successful, showing that the system was working correctly. The tests are
described in detail in this section.

4.1 TEST 1

This test was designed to test the new sequence of menus in the VEG Research Mode that
was implemented as a result of the subgoals being divided into categories. After left clicking on
"RUN.VEG," the user selected the Research Mode. Because no historical data were loaded, the

Change Historical Database screen automatically opened. The user indicated that both the Kimes
and the Deering databases should be added. After quitting the Change Historical Database screen,
the user again selected the Research Mode from the Processing Mode screen. The categories
screen was then opened. The user selected the VEGETATION.PARAMETER. TECHNIQUES
category. The Vegetation Parameters Techniques Goals screen was opened. The user then
selected and successfully ran the Estimate Spectral Hemispherical Reflectance option before
navigating back to the Categories menu. Subsequently, the user successfully opened and quit the
Learning System and Atmospheric Techniques goal screens. When the user selected the
NEURAL.NETWORK option, a message indicating that the option was not available was
displayed. This message was removed when another option was selected. The user then
navigated out of the VEG system back to the KEE interface. This test showed that the new menus

were operating correctly.

4.2 TEST 2

Test 2 was designed to test the Atmospheric Passes Subgoal using original data entered by
the user. The user navigated to the Atmospheric Passes main menu. The data were processed by
carrying out the steps in the ATMOSPHERIC.PASSES menu, as shown in Figure 2-3.

The user selected the ENTER.GROUND.DATA option, and elected to enter original data.
The user entered various invalid values for the atmospheric height and the message "Atmospheric
Height out of range error" was displayed in the "Messages" box. The user attempted to save an

SYSTEMS INC

C931031-U-2R06

Page 17

incomplete data set. VEG prompted the user to supply the missing data before the data set could be
saved. Valid data for the solar zenith angle, atmospheric height, wavelength and reflectance data
were then entered and the data were saved. Next, the input data and target were characterized.

The interface for entering atmospheric conditions was thoroughly tested. The user entered
invalid values for each parameter. In every case, an error message was displayed in the
"Messages" box and the user was prompted to reenter the data. When attempting to save an
incomplete set of atmospheric conditions data, the user was prompted to supply the missing data
before the data could be saved.

The user elected to select the techniques manually. The Pick Techniques screen was
opened. When the user left clicked on a technique to select it, a description of the technique was
displayed. If the technique was suitable for the sample, the message "Technique is suitable for this
sample" was displayed and the technique was selected. Otherwise, an error message was
displayed and the technique was not selected. The test showed that the Pick Techniques screen
was operating correctly.

The techniques were ranked and all the ranked techniques were selected. The techniques
were then executed. The results were displayed on the screen. The atmospheric conditions were
included in the results displayed in the "Wavelength Results" window. The results of applying the
dummy techniques to the sample were also displayed.

Test 2 confirmed that the subgoal "Atmospheric Passes" was operating correctly when
original data were entered and the techniques were generated manually.

4.3 TEST 3

In Test 3, the Atmospheric Passes Subgoal was tested using cover type data from the
historical cover type database. The user selected the step ENTER.GROUND.DATA and the
option SELECT.HISTORICAL.DATA. The Select Historical Data screen was opened. At this
stage, only the "Message," "Option," and "Atmospheric Height" subwindows were opened. The
user entered the value "300" into the "Atmospheric Height" subwindow. The "Cover Types"
subwindow then opened. The user selected COVER.TYPE.7. The user then selected sun angle
59 and waveband (0.58 0.68) in successive subwindows. The user then changed the cover type
selection to COVER.TYPE. 11. The "Wavelengths" and "Directional Reflectance" subwindows
were automatically closed and the sun angle deselected. This part of the test showed that the data
entry process was correctly backtracked when previously entered data were changed. The user
reselected the previous values for cover type, sun angle and waveband. The user entered the
directional view angles ((0 0)(15 30)(30 45)). Directional reflectance data for these view angles
were displayed in the "Directional Reflectance Data" subwindow. The user saved the data by left
clicking on the "SAVE.DATA" Option at the bottom of the screen. The user then selected the
waveband (0.73 1.1) with the same view angles and saved the data. This part of the test showed

that the Select Historical Data Screen was operating correctly.

The data and target were then characterized. The user selected the NO.AEROSOLS

standard atmosphere in both wavebands for the data. The techniques were generated automatically
by running the rules. The techniques were then ranked and the best technique for each wavelength
was selected. After the techniques had been executed, the results were displayed on the screen.
Since the techniques were dummy, the results were not meaningful. This test showed that the
select historical data step and the technique generation rules of the Atmospheric Passes Subgoal

were operating correctly.

SYSTEMS INC

C931031-U-2R06

Page 18

4.4 TEST 4

This test was designed to test the steps in the subgoal Atmospheric Corrections that were
different from the steps in the subgoal Atmospheric Passes. The subgoal
ATMOSPHERIC.CORRECTIONS was selected from the Atmospheric Techniques menu. The
user selected the step ENTER.PLATFORM.DATA and then the option
SELECT.HISTORICAL.DATA. The message "This option is not yet available" was displayed.
The user then selected ENTER.ORIGINAL.DATA. The Enter Original Data screen opened. As
expected, the screen included a subwindow for entering the Data Platform Elevation. The user
entered and saved a complete set of data.

The steps Characterize Input, Characterize Target, and Enter Atmospheric Conditions were
then executed. Initially, the user chose to pick the techniques manually. The Pick Techniques
screen worked correctly. The user then activated the rules to generate the techniques automatically.
The correct techniques were selected. The techniques were then ranked and the best technique for
each wavelength was selected. The techniques were executed and the results displayed. The
output screen included the Data Platform Elevation in the data at the sample level. Since the
techniques were dummies, the actual values of the results were not relevant.

Test 4 confirmed that all the options in the subgoal Atmospheric Corrections were operating

correctly.

4.5 TEST 5

This test was designed to test the new sequence of menus and the operation of the subgoal
Atmospheric Passes in the VEG Automatic Mode. The user selected the Automatic Mode from the
Processing Mode menu. The Automatic Mode screen with the Categories subwindow was
opened. Tests confirmed that subgoals in the Vegetation Parameters and Learning System
categories could be successfully operated via the new menu structure. When the user selected the
category NEURAL.NETWORK, the message "This option is not yet available" was displayed.

The user selected the ATMOSPHERIC.TECHNIQUES Subgoal category and the

ATMOSPHERIC.PASSES Subgoal. The "Atmospheric Techniques," "Input File Name," "Output
File Name," and "Number of Techniques" subwindows opened. The user entered the file name
DATA-2-ATM as the input file and RESULTS-ATM-PASS as the output file. Standard template
number 1 was selected as the output file format. The option to test all techniques was selected.
When the user left clicked on "GO," the data were processed. Inspection of the output file

indicated that the data had been processed correctly.

This test showed that the new sequence of menus and the subgoal Atmospheric Passes
were operating correctly in the VEG Automatic Mode.

4.6 TEST 6

In this test, Test 5 was repeated using the subgoal Atmospheric Corrections. Inspection of
the output file confirmed that this subgoal was operating correctly.

SYSTEMS INC

C931031-U-2R06

Page 19

4.7 TEST 7

The Add Techniques Option allows the scientist to define new techniques and add them to
VEG without the assistance of the developer. Test 7 was designed to test the operation of the Add
Techniques Option when the user attempted to add new techniques for the subgoals Atmospheric
Passes and Atmospheric Corrections.

Using the DEFINE.NEW.TECHNIQUE option from the Add Techniques menu, the user
defined a new technique for each of the Atmospheric Passes and Atmospheric Corrections
Subgoals. The user then add the new techniques to VEG using the ADD.PREVIOUSLY.
DEFINED.TECHNIQUES option form the Add Techniques menu. Subsequently, the user ran
both the Atmospheric Passes and the Atmospheric Corrections Subgoals. It was confirmed that the

new techniques had been correctly incorporated in VEG.

SYSTEMS INC

SECTION 5.0

CONCLUSIONS

C93103 l-U- 2R06

Page 20

The report described the implementation of the VEG subgoal category
ATMOSPHERIC.TECHNIQUES in both the Research and Automatic Modes of VEG. It then

described the testing of the new components of VEG to demonstrate their basic functionality.

The addition of Atmospheric Techniques to VEG illustrated that additional functionality can
easily be added to the system without any major problems being encountered. The new subgoals
Atmospheric Passes and Atmospheric Corrections were integrated into the overall VEG interface so
that they worked smoothly as part of the overall system. The additional functionality provided by

these new subgoals allows the scientist to take data measured at ground level and predict what the
reflectance values would be if the data were measured at a different atmospheric height. It also

allows atmospheric corrections to be made to data collected from an aircraft or by a satellite to
determine what the equivalent reflectance values would be if the data were measured at ground
level.

SYSTEMS INC

REFERENCES

C931031-U-2R06

Page 21

.

.

.

Kimes, D. S., Harrison, P. R. and Ratcliffe, P. A. 1991. A Knowledge-Based Expert
System for Inferring Vegetation Characteristics. International Journal of Remote Sensing:

Vol 12, 10, pp. 1987-2020.

Kimes, D. S., Harrison, P. A. and Harrison, P. R. 1992. New Developments of a
Knowledge Based System (VEG) for Inferring Vegetation Characteristics. International
Geoscience and Remote Sensing Symposium. Houston. Texas. May 1992.

JJM Systems Inc. April 1993. An Expert System Shell For Inferring Vegetation
Characteristics - Interface for the Addition of Techniques (Task H). Arlington, VA.
C931021-U-2R07.

SYSTEMS INC

C93103 I-U-2R06

APPENDIX A

LISP CODE FOR THE VEG SUBGOAL CATEGORY ATMOSPHERIC

TECHNIQUES

SYSTEMS INC

;;; veg-methods6.1isp
°..

;;; Code for VEG Atmospheric Techniques

;;; Created April 27, 1993
;;; Last Modified October 18, 1993

(in-package q_ee)

(defun open-atmospheric-screen 0
"Opens the screen that allows the user to select the atmospheric technique

goal."
(remove.all.values 'atmospheric 'goals)
(put.value 'atmospheric 'message)
(put.value 'atmospheric 'options 'view.possible.options)
(unitmsg 'viewport-atmospheric. 1 'open-panel!))

(defun atm.pass.p 0
"Returns t if the current goal is atmospheric passes and nil otherwise."

(eq (get.value 'atmospheric 'goals) 'atmospheric.passes))

(defun initialize-atmospheric-screen-research 0
"Initializes the main atmospheric category screen in the VEG research mode."

(remove.all .values 'atmospheric 'goals)
(put.value 'atmospheric 'error.message))

(defun open-atmospheric-passes-interface 0
"Opens the interface for the atmospheric passes main menu."

(remove.all.values 'atmospheric.passes 'ap.menu)
(unitmsg 'viewport-atmospheric.passes. 1 'open-panel !))

• °._ ...

;;; Methods for Atmospheric Correction
..

(defun atm.corr.p 0
"Returns t if the current goal is atmospheric corrections and nil otherwise."

(eq (get.value 'atmospheric 'goals) 'atmospheric.corrections))

(defun open-atmospheric-corrections-interface 0
"Opens the interface for the atmospheric corrections main menu."

(remove.all.values 'atmospheric.corrections 'ac.menu)
(unitmsg 'viewport-atmospheric.corrections. 1 'open-panel!))

C931031-U-2R06

Page A- 1

 ',tl
SYSTEMS INC

(defun open-enter-ground-data-interface 0
"Opens the interface that allows the user to select between entering original
ground data and selecting historical data."

(put. value 'atmospheric 'error.message
"Reinitializing the system")

(unitmsg 'initialize.system 'initialize.system)
(put.value 'atrnospheric 'error.message)
(remove.all.values 'atmospheric.passes 'options)
(remove.all.values 'estimate.hemispherical.reflectance 'current.sample)
(remove.all.values 'estimate.hemispherical.reflectance

'current.sample.wavelengths)
(unitmsg 'viewport-atmospheric.passes.2 'open-panel!))

(defun enter-original-ground-data ()
"Opens the enter data interface, including the atmospheric height subwindow."

(enter-original-data)
(unitmsg 'windowpane-atmospheric.height-of-atmospheric.passes. 1 'open !))

(defun open-enter-platform-data-interface 0
"Opens the interface that allows the user to select between entering original
platform data and selecting historical data."

(put.value 'atmospheric 'error.message
"Reinitializing the system")

(unitmsg 'initialize.system 'initialize.system)

(put.value 'atmospheric 'error.message)
(remove.all .values 'atmospheric.corrections 'options)
(remove.all.values 'estimate.hemispherical.reflectance 'current.sample)
(remove.all.values 'estimate.hemispherical.reflectance

'current.sample.wavelengths)
(unitmsg 'viewport-atmospheric.corrections.2 'open-panel!))

(defun enter-original-platform-data ()
"Opens the enter data interface, including the platform elevation subwindow."

(enter-original-data)
(unitmsg 'windowpane-data.platform.elevation-of-atmospheric.corrections.2

'open!))

C931031 -U-2R06

Page A-2

SYSTEM5 INC

°-o ..

;;; Methods for Selecting Historical Ground Data
_ ..

(defun update-cover-type-window 0
"Update the cover types subwindow of the select historical ground data screen."

(remove.all.values 'atmospheric.passes 'historical.cover.types)
(put.facet.value 'atmospheric.passes 'historical.cover.types 'valueclass

(cons 'one.of (get.value 'historical.cover.types 'current.cover.types)))

(slot-image-toggle-enable
(unit

'windowpane-historical.cover.types-of-atmospheric.passes.2))
(slot-image-toggle-enable
(unit
'windowpane-historical.cover.types-of-atmospheric.passes.2)))

(defun select-historical-ground-data 0
"Opens the select historical ground data screen."

(remove.all.values 'atmospheric.passes 'directional.data)

(put.value 'atmospheric.passes 'historical.data.options 'new.sample)
(put.value 'atmospheric.passes 'error.message

"Enter the atmospheric height")
(unitmsg 'viewport-atmospheric.passes.3 "open-panel!))

(defun valid-directional-data (data)
"Returns t if the directional data is valid and nil otherwise."

(and (consp data)
(dolist (point data t)

(unless (and (listp point)
(= (length point) 2))

(return-from valid-directional-data nil))

(let ((z (zenith point))
(a (azimuth-360 point)))

(unless (and (numberp z)(>= z 0)(<= z 90)
(numberp a)(>= a 0)(< a 360))

(return-from valid-directional-data nil))))))

(defun get-appropriate-cover-type 0
"Returns the name of the cover type unit at the wavelength level that has been
selected, i.e. The descendant of the selected cover type with the selected sun

angle and waveband."
(let* ((this-sun (get.value 'atmospheric.passes 'sun.angles))

(this-waves (get.value 'atmospheric.passes 'wavelengths))
(this-wave-max (second this-waves))
(this-wave-min (first this-waves)))

(dolist (sun (unit.children

(get.value 'atmospheric.passes 'historical.cover.types)
'subclass))

(when (= (get.value sun 'solar.zenith.angle) this-sun)
(dolist (wave (unit.children sun 'member))

(when (and (= (get.value wave 'wavelength.max) this-wave-max)
(= (get.value wave 'wavelength.min) this-wave-min))

(return-from get-appropriate-cover-type wave)))))))

C931031-U-2R06

Page A-3

SYSTEMS INC

C931031-U-2R06

Page A-4

(defun find-matching-reflectance-values (view-angles)
"Interpolates and extrapolates the cover type data to match the entered
directional view angles and returns a list of points, each having zenith,
azimuth and reflectance values."

(put.value 'atmospheric.passes 'directional.reflectance
(match-unaltered-target-data view-angles

(get-appropriate-cover-type))))

(defun reset-hct-sample-data 0
"Initializes all the select historical data screen."

(remove.all.values 'atmospheric.passes 'cover.types)
(remove.all.values 'atmospheric.passes 'sun.angles)
(re m ove.all, val ues 'atmospheric. passes 'wavelengths)
(remove.all .values 'atmospheric.passes 'directional.reflectance)
(remove.all.values 'atmospheric .passes 'atmospheric.height))

(defun reset-hct-wavelength-data 0
"Initializes the wavelength and directional reflectance data in preparation for
selection of a different wavelength in the select historical data screen."

(remove.all.values 'atmospheric .passes 'wavelengths)
(remove.all.values 'atmospheric.passes 'directional.reflectance)
(put.value 'l.enter.data 'successful.save t))

(defun insufficient-data-hct-sample 0
"Displays an error message because the data at the sample level is incomplete
and hence cannot be saved."

(my-documentation-print
"DATA NOT SAVED - Insufficient data - minimum data required is solar zenith, wavelength,

directional data and atmospheric height")
(put.value 'l.enter.data 'successful.save nil)
(put.value 'l.enter.data 'sample.flag 'sample))

(defun insufficient-data-hct-wavelength 0
"Displays an error message because the data at the wavelength level is
incomplete and hence cannot be saved."

(my-documentation-print "DATA NOT SAVED - Insufficient data - minimum data required is
wavelength and directional data")

(put.value 'l.enter.data 'successful.save nil)
(put.value '1 .enter.data 'sample.flag 'wave))

(defun save-hct-sample-data 0
"If sufficient data is present, calls a function to save the data at the sample
level."

(let ((solar-zenith (get.value 'atmospheric.passes 'sun.angles))
(wavelength (get.value 'atmospheric.passes 'wavelengths))
(reflectance-data (get.value 'atmospheric.passes

'directional .reflectance))

(atmospheric-height (get.value 'atmospheric.passes
'atmospheric .height)))

(if (and solar-zenith wavelength reflectance-data atmospheric-height)
(save-hct-samplc-data-aux solar-zenith wavelength reflectance-data

atmospheric-height)
(insufficient-data-hct-sample))))

SYSTEMS INC

(defun save-hct-sample-data-aux (solar-zenith wavelength reflectance-data
atmospheric-height)

"Saves the data at the sample level."
(let ((new-sample

(create.unit (gentemp "SAMPLE-UNKNOWN-TARGET")
'veg 'target.data nil)))

(put.value new-sample 'solar.zenith solar-zenith)
(put.value new-sample 'atmospheric.height atmospheric-height)
(put.value 'estimate.hemispherical.reflectance 'current.sample

new-sample)
(save-hct-wavelength-data-aux wavelength reflectance-data)))

(defun save-hct-wavelength-data 0
"If sufficient data is present, calls a function to save the data at the
wavelength level."

(let ((wavelengths (get.value 'atmospheric.passes 'wavelengths))
(reflectance-data (get.value 'atmospheric.passes

'directional.reflectance)))

(if (and wavelengths reflectance-data)
(save-hct-wavelength-data-aux wavelengths reflectance-data)
(insufficient-data-hct-wavelength))))

(defun save-hct-wavelength-data-aux (wavelengths reflectance-data)
"Saves the data at the wavelength level."

(let* ((parent-sample
(get.value 'estimate.hemispherical.reflectance 'current.sample))

(new-wavelength (create.unit (gentemp "W") 'veg nil parent-sample)))

(put.value new-wavelength 'wavelength
(/(+ (first wavelengths)(second wavelengths)) 2))

(put.value new-wavelength 'reflectance.data reflectance-data)
(put.value 'atmospheric.passes 'error.message "Data saved")

(put.value 'l.enter.data 'successful.save t)))

(defun open-enter-atmospheric-conditions-interface 0
"Opens the interface for entering the atmospheric conditions."

(initialize-enter-atmospheric-data)
(put.values 'atmospheric 'wavelengths.left

(get.values 'estimate.hemispherical.reflectance
'current.sample .wavelengths))

(next-wavelength)
(unitmsg 'viewport-atmospheric.2 'open-panel !))

C931031-U-2R06

Page A-5

SYSTEM5 INC

(defun initialize-enter-atmospheric-data 0
"Initializes the enter atmospheric conditions interface."

(remove.all .values 'atmospheric 'standard.atmospheres)
(remove.all.values 'atmospheric 'aerosol .optical.thickness)
(remove.all.values 'atmospheric 'size.distribution)
(remove.all.values 'atmospheric 'phase.function)
(remove.all.values 'atmospheric 'ozone)
(remove. all. values 'atmospheric 'precipital.water)
(remove.all.values 'atmospheric 'single.scattering.albedo)

(put.value 'atmospheric 'enter.atmospheric.data.options 'enter.data))

(defun save-atmospheric-data 0
"If sufficient data has been entered, calls a function to save the atmospheric

data. Otherwise displays an error message."
(let ((current-wavelength

(get.value 'estimate.hemispherical.reflectance
'current.wavelength))

(aero (get.value 'atmospheric 'aerosol.optical.thickness))
(size-dist (get.value 'atmospheric 'size.distribution))
(phase-function (get.value 'atmospheric 'phase.function))
(ozone (get.value 'atmospheric 'ozone))
(precipital-water (get.value 'atmospheric 'precipital.water))
(single-scattering-albedo (get.value 'atmospheric

'single.scattering.albedo)))
(if (and aero size-dist phase-function ozone precipital-water

single- scattering-albedo)
(save-atmospheric-data-aux current-wavelength aero size-dist

phase-function ozone
precipital-water single-scattering-albedo)

(insufficient-atmospheric-data))))

(defun save-atmospheric-data-aux (current-wavelength aero size-dist
phase-function ozone
precipital-water single-scattering-albedo)

"Save the atmospheric data in the currently selected wavelength level unit."
(put.value current-wavelength 'aerosol.optical.thickness aero)
(put.value current-wavelength 'size.distribution size-dist)
(put.value current-wavelength 'phase.function phase-function)
(put.value current-wavelength 'ozone ozone)
(put.value current-wavelength 'precipital.water precipital-water)
(put.value current-wavelength 'single.scattering.albedo

single-scattering-albedo)
(put.value 'atmospheric 'successful.save t)
(next-wavelength))

C931031-U-2R06

Page A-6

SYSTEMS INC

C931031-U-2R06

Page A-7

(defun next-wavelength 0
"Prompts the user to enter atmospheric data at the next wavelength or closes
the screen is all wavelengths have been processed."

(let ((new-wavelength (get.value 'atmospheric 'wavelengths.left)))
(cond ((null new-wavelength)

(quit-enter-atmospheric-conditions-interface))
(t (remove.value 'atmospheric 'wavelengths.left new-wavelength)

(put.value 'estimate.hemispherical.reflectance 'current.wavelength
new-wavelength)

(put.value 'atmospheric 'error.message (format 0
"For each wavelength, either choose a standard atmosphere and then modify the values as

necessary or enter all new parameters. Enter the data for wavelength -S."
(get.value new-wavelength 'wavelength)))))))

(defun quit-enter-atmospheric-conditions-interface 0
"Closes the enter atmospheric conditions interface."

(put.value 'atmospheric 'error.message)
(unitmsg 'viewport-atmospheric.2 'close-panel!)
(put.value 'atmospheric 'done.enter.atmospheric.conditions.p t)
(when (get.value 'estimate.hemispherical.reflectance 'select.all)

(open-generate-techniques-interface)))

(defun insufficient-atmospheric-data 0
"Displays an error message if insufficient atmospheric data has been entered."

(my-documentation -print
"DATA NOT SAVED - Insufficient data - all boxes must be f'dled before data can be saved")

(put.value 'atmospheric 'successful.save nil))

(defun set-up-standard-atmosphere (name)
"Sets up the correct arguments and calls a function to assign the correct slot
values for a standard atmosphere. This function is a dummy at present. It should
be replaced by the correct descriptions of standard atmospheres when they are
available."

(case name
(no.gaseous.absorption (set-up-standard-atmosphere-aux 1 2 0.5 300 5 0.8))
(tropical (set-up-standard-atmosphere-aux 1.2 2 0.6 350 5 0.8))
(mid.latitude.summer (set-up-standard-atmosphere-aux 1.3 2 0.6 350 5 0.8))
(mid.latitude.winter (set-up-standard-atmosphere-aux 1.4 2 0.6 360 5 0.8))
(sub.arctic.summer (set-up-standard-atmosphere-aux 1.5 2 0.6 370 5 0.8))
(sub.arctic.winter (set-up-standard-atmosphere-aux 1.6 2 0.6 380 5 0.8))
(us.standard.62 (set-up-standard-atmosphere-aux 1.7 2 0.6 390 5 0.8))
(no.aerosols (set-up-standard-atmosphere-aux 1.8 2 0.6 400 5 0.8))
(continental.model (set-up-standard-atmosphere-aux 1.9 2 0.6 250 5 0.8))
(maritime.model (set-up-standard-atmosphere-aux 2 2 0.6 260 5 0.8))
(urban.model (set-up-standard-atmosphere-aux 2.1 2 0.6 270 5 0.8))))

SYSTEMS INC

(defun set-up-standard-atmosphere-aux (aero size-dist phase-function ozone
precipital-water
single-scattering-albedo)

"Assigns the appropriate slot values for a standard atmosphere."
(put.value 'atmospheric 'aerosol.optical.thickness aero)
(put.value 'atmospheric 'size.distribution size-dist)
(put.value 'atmospheric 'phase.function phase-function)
(put.value 'atmospheric 'ozone ozone)
(put.value 'atmospheric 'precipital.water precipital-water)
(put.value 'atmospheric 'single.scattering.albedo single-scattering-albedo))

• °o ..

;;; Methods for Generating Atmospheric Passes Techniques
°o° ..

(defun user-pick-atm-pass-techniques 0
"Opens the interface that selects each wavelength in turn to allow the user to

select atmospheric passes techniques."
(unitmsg 'viewport-6.generate.techniques.3 'open-panel!)
(dolist (thisunit (get.values 'estimate.hemispherical.reflectance

'current.sample.wavelengths)
(all-generate-techniques-finished-message))

(put.value 'estimate.hemispherical .reflectance 'current.wavelength
thisunit)

(user-pick-atm-pass-techniques-aux)
(remove.all.values '6 .generate.techniques 'push.button)
(wait-for-mouse-g0))

(defun user-pick-atm-pass-techniques-aux 0
"Opens the interface to allow the user to select atmospheric passes
techniques."

(reset-initial-values-pick-atm-pass-techniques)
(unitmsg 'viewport-atmospheric.passes.4 'open-panel!))

(defun reset-initial-values-pick-atm-pass-techniques ()
"Initializes the user pick atmospheric passes techniques screen."

(remove. all. values 'atmospheric. passes 'selected .techniques)
(put.value '6.generate.techniques 'error.message)
(put.value'6.generate.techniques 'description.of.technique)
(put.value 'atmospheric.passes 'action.on.selecting.techniques

'select.techniques))

(defun pick-selected-values-atm-pass 0
"Stores the selected atmospheric passes techniques in the correct wavelength
level unit and displays a list of the selected techniques."

(let ((techs (get.values 'atmospheric.passes 'selected.techniques))

(current-wave (get.value 'estimate.hemispherical.reflectance
'current.wavelength)))

(unless (null current-wave)

(put.values current-wave 'techniques techs))
(tech-message (format 0

"Techniques selected for the sample at wavelength -S are:--{ -S- }"
(way current-wave) (get-unit-names techs)))))

C931031-U-2R06

Page A-8

SYSTEMS INC

°*° ..

;;; Methods for Generating Atmospheric Corrections Techniques
• ,. ..

(defun user-pick-atm-corr-techniques 0
"Opens the interface that selects each wavelength in turn to allow the user to
select atmospheric corrections techniques."

(unitmsg 'viewport-6.generate.techniques.3 'open-panel !)
(dolist (thisunit (get.values 'estimate.hemispherical.reflectance

'current.sample.wavelengths)
(all-generate-techniques-rmished-message))

(put.value 'estimate.hemispherical.reflectance 'currenLwavelength
thisunit)

(user-pick-atm-corr-techniques-aux)
(remove.all.values '6.generate.techniques 'push.button)
(wait-for-m ouse-gt)))

(defun user-pick-atm-corr-techniques-aux 0
"Opens the interface to allow the user to select atmospheric corrections

techniques."
(reset-initial-values-pick-atm-corr-techniques)
(unitmsg 'viewport-atmospheric.corrections.3 'open-panel !))

(defun reset-initial-values-pick-atm-corr-techniques 0
"Initializes the user pick atmospheric corrections techniques screen."

(remove.all.values 'atmospheric.corrections 'selected.techniques)
(put.value '6.generate.techniques 'error.message)
(put.value '6.generate.techniques 'description.of.technique)
(put.value 'atmospheric .corrections 'action.on .selecting.techniques

'select.techniques))

(defun pick-selected-values-atm-corr 0
"Stores the selected atmospheric corrections techniques in the correct
wavelength level unit and displays a list of the selected techniques."

(let ((techs (get.values 'atmospheric.corrections 'selected.techniques))
(current-wave (get.value 'estimate.hemispherical.reflectance

'current.wavelength)))
(unless (null current-wave)

(put.values current-wave 'techniques techs))
(tech-message (format 0

"Techniques selected for the sample at wavelength -S are:--{ -S-}"
(way current-wave) (get-unit-names techs)))))

*., ..

;;; Select all options for atmospheric techniques
-** ..

(defun select-all-atm-options 0
(determine-atm-starting-point-and-start)
(put.value 'estimate.hemispherical.reflectance 'select.all t))

C931031-U-2R06

Page A-9

SYSTEM5 INC

C931031-U-2R06

Page A- 10

(defun determine-atm-starting-point-and-start 0
(cond ((not (get.value 'estimate.hemispherical.reflectance

'done.enter.data.p))
(if (atm.pass.p)

(open-enter-ground-data-interface)
(open-enter-platform-data-interface)))

((not (get.value 'estimate.hemispherical.reflectance
'done.characterize.input.p))

(open-characterize-input-interface))
((not (get.value 'estimate.hemispherical.reflectance

'done.characterize.target.p))
(open-characterize-target-interface))

((not (get.value 'atmospheric 'done.enter.atmospheric.conditions.p))
(open-enter-atmospheric-conditions-interface))

((not (get.value 'estimate.hemispherical.reflectance
'done.generate.techniques.p))

(open-generate-techniques-interface))
((not (get.value 'estimate.hemispherical.reflectance

'done.rank.techniques.p))
(open-rank-techniques-interface))

((not (get.value 'estimate.hemispherical.reflectance
'done.execute.techniques.p))

(open-execute-techniques-interface))
(t (open-output-results-interface))))

"--I. Report No.

4. Title and Subtitle

Report Documentation Page

2. Government Accession No. 3. Recipient's Catalog No.

5. Report Date

October 1993

An Expert System Shell for Inferring Vegetation Characteristics -

Atmospheric Techniques (Task G)

7. Author(s)

P. Ann Harrison and Patrick R. Harrison

9. Performing Organization Name and Address

JJM Systems, Inc.
One Ivybrook Blvd., Suite 190
Ivyland, PA 18974

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546-0001
NASA/Goddard Space Flight Center
Greenbelt, MD 20771

6. Performing Organization Code

B. Performing Organization Report No.

C931031-U-2R06

10. Work Unit No.

462-61-14

11. Contract ol Grant No.

NAS5-30127

13. Type of Report and Period Covered

Task Report for Task G
April - October 1993

14. Sponsoring Agency Code

15. Supplementary Notes

The Lisp and KEE code for this work is available on a Sun Cartridge Tape.

16. Abstract

The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation
characteristics from reflectance data. The VEG Subgoals have been reorganized into categories. A
new subgoal category "Atmospheric Techniques" containing two new subgoals has been
implemented. The subgoal Atmospheric Passes allows the scientist to take reflectance data
measured at ground level and predict what the reflectance values would be if the data were
measured at a different atmospheric height. The subgoal Atmospheric Corrections allows
atmospheric corrections to be made to data collected from an aircraft or by a satellite to determine
what the equivalent reflectance values would be if the data were measured at ground level. The
report describes the implementation and testing of the basic framework and interface for the
Atmospheric Techniques Subgoals.

17. Key Words (Suggested by Author(s))

EXPERT SYSTEM, ARTIFICIAL
INTELLIGENCE, REMOTE SENSING

19 Security Classif, (of this report)

UNCLASSIFIED

NASA FORM 1626 OC] B_

20. Security Classif. (of this page)

UNCLASSIFIED

lB. Distribution Statement

UNCLASSIFIED - UNLIMITED

21. No of pages

35

For sale by the National Technical Information Service, Springfield, VA 22161-2171

22 Price

SYSTEMS INC

C931033-U-2R00

APPENDIX C

AN EXPERT SYSTEM SHELL FOR INFERRING VEGETATION
CHARACTERISTICS - INTERFACE FOR THE ADDITION OF TECHNIQUES

(TASK H)

SYSTEMS INC

C931021-U-2R07

AN EXPERT SYSTEM SHELL FOR INFERRING VEGETATION
CHARACTERISTICS - INTERFACE FOR THE

ADDITION OF TECHNIQUES (TASK H)

22 April 1993

Prepared for:

National Aeronautics and Space Administration
Goddard Space Flight Center

Greenbelt, MD 20771

Prepared by:

JJM Systems, Inc.
One Ivybrook Boulevard, Suite 190

Ivyland, PA 18974

SYSTEMS INC

TABLE OF CONTENTS

C931021 -U-2R07

Page i

Section/Description

LIST OF FIGURES

LIST OF TABLES

LIST OF ACRONYMS

1.0 INTRODUCI'ION

2.0 THE ADD TECHNIQUES INTERFACE

2.1
2.2
2.3

DEFINING A NEW TECHNIQUE
ADDING PREVIOUSLY DEFINED NEW TECHNIQUES
PURGING PREVIOUSLY DEFINED NEW TECHNIQUES

3.0 TESTING AND RESULTS

3.1 TEST 1
3.2 TEST 2
3.3 TEST 3
3.4 TEST 4
3.5 TEST 5
3.6 TEST 6

3.7 TEST 7
3.8 TEST 8
3.9 TEST 9
3.10 TEST 10
3.11 TEST 11
3.12 TEST 12

4.0 CONCLUSIONS

ii

iii

iv

1

2

3
8

10

11

11
11
11
12
12
13
13
14
14
15
15
15

17

APPENDIX A

_YSTEM5 INC

LIST OF FIGURES

2-1

2-2

2-3

2-4

2-5

2-6

Description

The Add Techniques Interface

The Define New Technique Screen When it is First Opened

Slots in the Unit ADD.TECHNIQUES

The Define New Technique Screen After All the Data for a

New Technique have been Entered

The Pick Techniques Screen for the Goal
SPECTRAL.HEMISPHERICAL.REFLECTANCE

The Add Techniques Interface with the Option
PURGE.PREVIOUSLY.DEFINED.TECHNIQUES Selected

The Output Screen at the End of Test 5

C931021-U-2R07

Page ii

2

3

4

5

9

10

3-1 13

SYSTEMS INC

LIST OF TABLES

C931021-U-2R07

Page iii

Table Description

2-1 The Format in which the Data taken from the Activelmages in

Figure 2-4 would be Stored in the File "new-tech-data"

7

SYSTEMS INC

LIST OF ACRONYMS

C931021 -U-2R07

Page iv

KEE

VEG

Knowledge Engineering Environment

VEGetation Workbench

SYSTEMS INC

SECTION 1.0

INTRODUCTION

C931021-U-2R07

Page 1

All the NASA VEGetation Workbench (VEG) goals except the Learning System provide
the scientist with several different techniques. When VEG is run, rules assist the scientist in

selecting the best of the available techniques to apply to the sample of cover type data being
studied. The techniques are stored in the VEG knowledge base. The design and implementation
of an interface that allows the scientist to add new techniques to VEG without assistance from the

developer have been completed.

In the previous version of VEG, the addition of a new technique was a complex process.
For each new technique, extra units were added manually to the VEG knowledge base and
additional Common Lisp code was added to the methods file. Changes were also made manually
to the interface that allow the scientist to select which techniques to use.

A new interface that enables the scientist to add techniques to VEG without assistance from
the developer has been designed and implemented. This interface does not require the scientist to
have a thorough knowledge of Knowledge Engineering Environment (KEE) by Intellicorp or a
detailed knowledge of the structure of VEG. The interface prompts the scientist to enter the
required information about the new technique. It prompts the scientist to enter the required
Common Lisp functions for executing the technique and the left hand side of the rule that causes
the technique to be selected. A template for each function and rule and detailed instructions about
the arguments of the functions, the values they should return, and the format of the rule are
displayed. Checks are made to ensure that the required data have been entered, the functions
compiled correctly and the rule parsed correctly before the new technique is stored. The additional
techniques are stored separately from the VEG knowledge base.

When the VEG knowledge base is loaded, the additional techniques are not normally
loaded. The interface allows the scientist the option of adding all the previously defined new

techniques before running VEG. When the techniques are added, the required units to store the
additional techniques are created automatically in the correct places in the VEG knowledge base.
The methods file containing the functions required by the additional techniques is loaded. New
rule units are created to store the new rules. The interface that allow the scientist to select which

techniques to use is updated automatically to include the new techniques.

Task H has been completed. The interface that allows the scientist to add techniques to
VEG has been implemented and comprehensively tested. The Common Lisp code for the Add
Techniques system is listed in Appendix A. A Sun cartridge tape containing KEE and Common
Lisp code for the new version of VEG, including the new interface, has been delivered to the
NASA GSFC technical representative.

i r-- //_

SYSTEMS INC

C931021-U-2R07

Page 2

SECTION 2.0

THE ADD TECHNIQUES INTERFACE

When the ADD.TECHNIQUES option is selected from the VEG Administration screen, the

Add Techniques interface, shown in Figure 2-1, is opened. The option DEFINE.NEW.
TECHNIQUE allows the user to define a new technique and store it ready for subsequent loading

into VEG. Selecting the menu option ADD. PREVIOUSLY.DEFINED.TECHNIQUES causes the
data, functions and rules for previously defined new techniques that have been defined using
DEFINE.NEW.TECHNIQUE to be read from files and added to VEG. The option
PURGE.PREVIOUSLY.DEFINED.TECHNIQUES is used to delete all the techniques defined

using DEFINE.NEW.TECHNIQUE from the files so they are no longer available to VEG. All
three options are described in detail in this section.

_tions

ADD.PREVIOUSLY.DEFINED.TECHNIQUES

DEFINE.NEW.TECHNIQUE

PURGE.PREVIOUSLY.DEFINED.TECHNIQUES

QUIT

Figure 2-1
The Add Techniques lnlerface

SYSTEMS INC

C931021-U-2R07

Page 3

2.1 DEFINING A NEW TECHNIQUE

When the user selects the option DEFINE.NEW.TECHNIQUE from the Add Techniques
Interface (Figure 2-1), the Define New Technique Screen is opened. This screen allows the user
to enter the data, functions and rule for the new technique, store the new technique, abandon the
new technique or quit the screen. When the screen is first opened, only the "Technique Name" and
"Options" subwindows are opened. The user is prompted to enter the name of the new technique.
Figure 2-2 shows this. When the Define New Technique Screen is open, the KEE Typescript
Window is visible. This allows the user to see any error messages that are displayed in the

Typescript window when the functions for the new techniques are compiled or the rules are

parsed.

_'ine Ne'¢ To:'.hnique

Unknown

Enter the technique name

Figure 2-2
The Define New Technique Screen When it is First Opened

SYSTEMS INC

C931021 -U-2R07

Page 4

A new unit called ADD.TECHNIQUES has been created in the VEG knowledge base.

Figure 2-3 shows the slots in this unit. Each subwindow in the Define New Techniques Screen is
a KEE Activelmage connected to a slot in the unit ADD.TECHNIQUES. Data for the new
technique are entered via the interface and stored in slots such as DESCRIPTION and GOALS of
the ADD.TECHNIQUES unit. The slots ENTER.DESCRIPTION, ENTER.ERROR.MESSAGE,
ENTER.FUNCTIONS, COMPILE.FUNCTIONS, ENTER.RULE and COMPILE.RULE are

methods slots. They contain methods which are executed when the user left-clicks on the method-
actuator Activelmage attached to the slot.

COEFFS.METHOD

COEFFS.P

COMPILE.FUNCTIONS

DESCRIPTION

ENTER.DESCRIPTION

ENTER.ERROR.MESSAGE

ENTER.FUNCTIONS

ENTER.RULE

ERROR.MESSAGE

GOALS

INITIALIZED .FUNCTION

INITIALIZED.RULE

INTERPOLATE.EXTRAPOLATE?

MESSAGE

NEW.TECH.OPTIONS

OK.TO.USE

OPTIONS

PARSE.RULE

PREVIOUS.TECHS

RULE.PARSED

TECH.NAME

TECHNIQUE.METHOD

WEIGHT

YES.NO

Figure 2-3
Slots in the Unit ADD.TECHNIQUES

The first step in defining a new technique is to enter the name of the new technique into the
subwindow labelled "Technique Name" (Figure 2-1). When the Define New Technique screen is
opened, the names of any previously defined new techniques are read from the file and stored in
the slot PREVIOUS.TECHS of the unit ADD.TECHNIQUES. If the name of the new technique
matches a value in the PREVIOUS.TECHS slot or an existing VEG unit, a message is displayed.

This message indicates that the technique has already been defined. In this case, the technique
name is not stored. Otherwise, the technique name is stored in the TECH.NAME slot of the

SYSTEM5 IN P-

C931021-U-2R07

Page 5

ADD.TECHNIQUES unit. For a function named "SID," for example, the function names "tech-
SID," "coeffs-SID" and "SID.ok" are then constructed and stored in the slots
TECHNIQUE.METHOD, COEFFS.METHOD and OK.TO.USE, respectively. After the function
name has been stored, the rest of the subwindows of the Define New Technique interface are

automatically opened. The user must enter or select data or activate methods in all the subwindows
of this interface before the technique can be saved. Figure 2-4 shows the Define New Technique
screen after all the data for a new technique has been entered. If the user enters a technique name

and then subsequently enters another technique name before storing the previously named
technique, the interface is re-initialized and any data, functions, or rule entered for the previously
named technique are lost.

Enter the data for the

technique SID

Figure 2-4
The Define New Technique Screen After All the Data

for a New Technique have been Entered

The "Weight" subwindow (Figure 2-4) holds a number between 1 and 5 which indicates

the priority to be given to the technique when the techniques are ranked. The highest priority is 5.
Selecting "YES" in the subwindow labelled "Coefficients" indicates that the function used for
executing the technique requires coefficients. The default selection for the "Interp/Extrap Strings?"
subwindow is "NO." If the technique requires the strings in the reflectance data to be interpolated

and extrapolated before the technique is applied, "YES" must be selected in this subwindow. The
string techniques for the goal SPECTRAL.HEMISPHERICAL.REFLECTANCE require this
extrapolation.

SYSTEMS INC

C931021-U-2R07

Page 6

The subwindow labelled "Goals" holds the VEG goal to which the technique applies. New
techniques can be added for the VEG goals SPECTRAL.HEMISPHERICAL.REFLECTANCE,
PORTION.GROUND.COVER (either single or multiple wavelength) and VIEW.ANGLE.
EXTENSION. Only one total hemispherical reflectance technique is currently available in VEG.
The interface to select or rank total hemispherical reflectance techniques has not yet been
implemented. If the user selects the goal TOTAL.HEMISPHERICAL.REFLECTANCE, a
message is displayed. The message indicates that the techniques for this goal have not been

implemented and the new technique will not be stored.

When the user is running VEG and chooses to select the techniques manually, the User
Pick Techniques screen is opened. Each time a technique is selected, a description of the technique
is displayed on the screen. If the selected technique is suitable for the sample being studied, the
message "This technique is suitable for this sample" is displayed. Otherwise an error message is
displayed. Left-clicking on ENTER-DESCRIPTION and ENTER-ERROR-MESSAGE in the
Define New Technique screen enables the user to enter the description and error message that will
be displayed in the User Pick Techniques screen when the technique is added to VEG.

When the user left-clicks on ENTER-FUNCTIONS, the temporary file "temp.lisp" is
opened. Templates for the functions required by the new technique are written to this file. The
names for the technique functions that were constructed when the technique name was entered, are
automatically incorporated in the templates. Then the editor is opened and the user is prompted to
enter the new functions. Functions are required to execute the technique, calculate the coefficients
(if any) required by the technique, and to determine whether the technique is suitable for a
particular sample. A prompt in the "Message" window tells the user how to save the temporary file
and exit the editor. The method actuator COMPILE-FUNCTIONS is used to compile the functions

for the new technique. The method first checks that functions have been entered. If the file
"temp.lisp" is not found, an error message is displayed and no attempt at compilation is made.
Otherwise, the function file is compiled and any compilation errors or warnings are displayed in
the KEE Typescript window. If the compilation is successful, the compiled functions are stored in
the binary file "temp.sbin." If any errors occurred during the compilation, this file remains empty.
Note that the functions are compiled both for efficiency and also to create additional error checking.
If the user reselects ENTER-FUNCTIONS while still entering data for the same technique, the
previously edited temporary file is opened once again. The changes made in the previous edit
session are not lost. This allows the user to edit a file repeatedly until the functions are correct and
the file compiles successfully.

When the user selects ENTER-RULE, another temporary file is opened and a template for
the rule is written to the file. The name of the new technique is incorporated in the template. The
editor is then opened, and the user is prompted to modify the template to create the rule required for
the new technique. If the user left-clicks on PARSE-RULE, checks are made to confirm that a rule
has been entered, and that the rule contains the same number of left and right parentheses. The
failure of either of these checks causes an error message to be displayed. Otherwise, an attempt is
made to parse the rule using a user-defined function named TEST-RULE-PARSES. This function
sets up the structure so that the KEE parser can parse the new rule. The function creates a
temporary rule unit as an instance of the KEE unit VEG.RULES. The newly entered rule is stored
in the EXTERNAL.FORM slot of the temporary rule unit. The KEE PARSE function is then
applied to the rule unit. If no parse errors occur, the function returns T. Otherwise the function
returns NIL. Before the value is returned, the temporary rule unit is deleted from VEG. If the rule
did not parse correctly, an error message is displayed in the "Message" box. The slot
RULE.PARSED in the ADD.TECHNIQUES unit is used as a flag to indicate whether or not a
correctly parsed rule has been entered. Note that even though a rule contains the same number of
left and right parentheses and parses correctly, it might still be incorrect.

SYSTEMS INC

C931021 -U-2R07

Page 7

When the user selects the option STORE-TECHNIQUES, checks are made to make sure
that all the required data has been entered, the functions have been defined and compiled
successfully, and a correctly parsed rule has been entered. If the checks are unsuccessful, nothing
is stored and the user is prompted to complete entry of the required data. Otherwise, the data and
rule are appended to the file "new-tech-data," and the functions are appended to the file "new-
tech.lisp" which is immediately compiled. Table 2-1 shows the format in which the data taken
from the Activelmages shown in Figure 2-4 would be stored in the file "new-tech-data." Next,
the new technique name is added to the PREVIOUS.TECHS slot of the unit ADD.TECHNIQUES.
The interface is then re-initialized, and the subwindows, except the "Technique Name" and

"Options" subwindows, are closed, as in Figure 2-2.

Table 2-1

The Format in which the Data taken from the Activelmages

in Figure 2-4 would be Stored in the File "new-tech-data"

Goal

DESCRIPTION

Technique Name

Description

Error Message

Technique function

Interp/extrap Strings?

Function uses Coefficients?

Coefficients function

Suitability Function

Weight

Rule

VALUE

SPECTRAL.HEMISPHERICAL.REFLECTANCE

SID

"TECHNIQUE SID - A NEW TECHNIQUE FOR
CALCULATING THE SPECTRAL HEMISPHERICAL
REFLECTANCE OF A SAMPLE THAT HAS DATA AT
4 VIEW ANGLES"

"TECHNIQUE SID IS UNSUITABLE FOR THIS
SAMPLE BECAUSE IT DOES NOT HAVE DATA AT 4

VIEW ANGLES"

tech-SID

NO

YES

coeffs-SlD

SID.ok

(IF (THE CURRENT.SAMPLE.WAVELENGTHS OF
ESTIMATE.HEMISPHERICAL.REFLECTANCE IS ?X)

(THE NUMBER.VIEW.ANGLES OF ?X IS 4) THEN
(LISP (ADD.VALUE ?X (QUOTE TECHNIQUES)

(QUOTE SID))))

SYSTEM..5 INC

C93102 I-U-2R07

Page 8

Selecting the option ABANDON-TECHNIQUE causes the deletion of any data, functions,
and rules that have been entered but not stored. The interface is then re-initialized. This is, in

effect, a panic button that the user can activate to stop the process at any point.

The Define New Technique interface can be exited by selecting the QUIT option. Any

partially entered technique is deleted when this option is selected. It is important to note that at this
stage any newly defined and stored techniques have been saved in files, but they have not yet been
added to VEG.

2.2 ADDING PREVIOUSLY DEFINED NEW TECHNIQUES

Adding a new technique to VEG involves several steps. A new unit must be created in the
VEG knowledge base to hold the data required by the technique. Another unit is required to hold
the rule that will enable the technique to be selected when it is appropriate for the cover type sample
being studied. The functions required by the technique must be loaded. The interface must be
updated so that the displays that list the available techniques for a VEG goal include the additional
techniques. It is important to note that this system automatically places newly created units in their

proper location in the system.

When the user selects the option ADD.PREVIOUSLY.DEFINED.TECHNIQUES from the
Add Techniques screen (Figure 2-1), VEG first checks that the files "new-tech-data" and "new-
tech.lisp" are present. These files hold the data, functions and rules for the new techniques. If
either of these files is missing, the message "No techniques available" is displayed in the

"Messages" box and processing stops. If the required files are present, the file "new-tech.sbin" is
loaded. This file is the compiled version of the file "new-tech.sbin" that contains the functions

required by the new techniques. Processing of the data then begins. The data are read from the
file "new-tech-data." The format of this file was shown in Table 2-1.

The VEG goal to which the new technique applies is read first. The techniques for each
VEG goal are stored in instances of different subclasses of the unit TECHNIQUES. For example,

techniques for the goal SPECTRAL.HEMISPHERICAL.REFLECTANCE are stored in instances
of the subclass unit SPECTRAL.HEMISPHERICAL.REFLECTANCE.TECHNIQUES. The

rules for each goal have names that reflect the goal to which they apply, and they are stored in
ruleclasses that are subclasses of the unit VEG.RULES. For example, rules for the goal
SPECTRAL.HEMISPHERICAL. REFLECTANCE have names that are prefixed by "HRTR,"

and they are stored in instances of the unit HEMISPHERICAL.REFLECTANCE.TECHNIQUES.
The techniques for different goals are displayed in different windows in the interface. After the
goal has been read from the file, the names of the technique subclass, rule prefix, ruleclass, and
interface window that apply to the goal are identified.

The technique name is next read from the file. The system will not allow the same
technique to be added more than once to VEG. If the technique has already been added to VEG,
the remainder of the data for this technique is skipped in the file. Otherwise, a new unit is created
as an instance of the correct VEG subclass to which the technique applies. Information about the

technique, such as its description, the name of the technique function, and whether the technique
function requires coefficients, are read from the file and stored in this unit. A rule unit is then
created in the correct ruleclass. The name of the rule unit is constructed using the appropriate

prefix. The rule is read from the file and stored in the "External Form" slot of the rule unit.

When VEG is running and a cover type sample is being processed, the user can select the

techniques to apply to the sample using the Pick Techniques Screen. The names of all the available
VEG techniques for the appropriate goal are displayed on this screen. The final step in adding a
new technique to VEG is to update this screen to include the new technique. Figure 2-5 shows the

SYSTEMS ING

C931021 -U-2R07

Page 9

Pick Techniques Screen for the goal SPECTRAL.HEMISPHERICAL.REFLECTANCE after two
new techniques called SID and BERT have been added. In the example in the figure, BERT is in
dark because it has already been selected. The user has attempted to select SID. However, an
error message is being displayed because SID is not suitable for the sample being studied.

Adding new techniques continues until the end of the file "new-tech-data" is reached. The
message "Loading " is then removed from the screen.

!STIMATE SPECTRAl. HEMISPHERICAL REFLECTANCE

WavelengthsAv ailable:
0.92 0.68

0.92

,nl,lF/_ i,_ o o u .I _

1FULL.1HALF.STRINGS
IFULL2HALF.STRINGS

1FULL.STRING

IHALF.STRING
1OFFNADIR.ANGLE.O

1OFF.NADItLANGLE1

1OFFNADIR.ANGLE2
1OFFNADIR.ANGLE3

1OFFNADIRANGLE.4

IC}FF.NADIR.ANGI_E.5
2FULL.1HALF.STRINGS

2FULLSTRINGS

2HAI,F.STRINGS
2OFF.NADIILANGLE.0

2OFF.NADIILANGLE.1

2OFF.NADIR.ANGLE2
20FF.NADIILANGLE3
2OFF.NADIR.ANGLE4

2OFFNADIRANGLE5
3FULLSTRINGS

3HALF.STRINGS
;I_Rtl

DIRECT.NADIR
NADIR

NORMAN

NORMAN.PLUS
SID

TECHNIQUE SID AVERAGES THE
REFLECTANCE VALUES AT 4 VIEW ANGLES
TO CALCULATE THE SPECTRAL
HEMISPHERICAL REFLECTANCE OF THE
SAMPLE.

TECHNIQUE SID IS NOT SUITABLE FOR THIS
SAMPLE BECAUSE IT DOES NOT HAVE 4 VIEW
ANGLES.

Figure 2-5
The Pick Techniques Screen for the Goal

SPECTRAL.HEMISPHERICAL.REFLECTANCE

SYSTEMS INC

C931021 -U-2R07

Page 10

2.3 PURGING PREVIOUSLY DEFINED NEW TECHNIQUES

This option allows the user to delete from the files any techniques defined using the
DEFINE.NEW.TECHNIQUE option. When this option is activated the techniques are

permanently deleted from the files so they are no longer available to VEG.

When the user selects the option PURGE.PREVIOUSLY.DEFINED.TECHNIQUES from
the Add Techniques Interface (Figure 2-1), additional subwindows are opened, as shown in Figure
2-6. The user is asked to confirm that the techniques should be deleted. If the user left-clicks on
"YES," the file "new-tech-data," that contained the data and rules for the new techniques, is
deleted. The technique functions are then removed form the file "new-tech.lisp." If the user
selects "NO," the techniques are not deleted. Finally, the additional subwindows are removed
from the screen.

Selecting QUIT from the Add Techniques screen (Figure 2-1) returns the user to the
Administration screen.

_tions

ADD.PREVIOUSLYDEFINED.TECHNIQUES

DEFINE.NEW.TECHNIQUE

QUIT

IAre you sure you wanl to permanently delete all previously defined new [

I

techniques? I

YES NO I

Figure 2-6
The Add Techniques Interface with the Option

PURGE.PREVIOUSLY.DEFINED.TECHNIQUES Selected

SYSTEMS INC

SECTION 3.0

TESTING AND RESULTS

C931021 -U-2R07

Page l l

The Add Techniques options were tested using both valid and invalid data. When errors
were detected, they were corrected and the test runs were repeated to ensure that the corrections
were successful. The tests were designed to test the typical range of user behavior. The test runs
and results are described in this section.

3.1 TEST 1

The purpose of Test 1 was to test the navigation back and forth through the various menu
levels from the VEG top level to the Add Techniques Screen. The user left-clicked on RUN.VEG,
ADMINISTRATION and ADD.TECHNIQUES on successive screens. As expected, the Add

Techniques Screen was opened. The user then selected QUIT in each successive menu to navigate
back to the top level of VEG. This test showed that the screens between the VEG top level and the
Add Techniques Screen were opened and closed in the correct sequence.

3.2 TEST 2

This test was designed to test the operation of the Add Previously Defined New Techniques
option before any new techniques had been defined. At this time, no additional techniques had
been defined so the file "new-tech-data" had not been created and the file "new-tech.lisp" contained

only comments. The option ADD.PREVIOUSLY. DEFINED.NEW.TECHNIQUES was selected
from the Add Techniques menu. The message "No techniques available" was displayed in the
"Messages" window. This test showed that the system could deal correctly with an attempt to add
previously defined new techniques before any new techniques had been defined.

3.3 TEST 3

Test 3 was intended to test the entry of valid data to define a new technique. The
DEFINE.NEW.TECHNIQUE option was selected from the Add Techniques menu. The Define
New Technique Screen was opened and the user was prompted to enter the name of the new
technique. At this time, most of the subwindows in the Define New Technique screen were
closed. The user entered the name "SID" for the new technique. Then the rest of the subwindows
were automatically opened and the user was prompted to enter the rest of the data for the new
technique. Note that the technique SID was invented by the developer for testing the system. It is
not a real technique. The user selected "NO" in both the "Coefficients" and the "Interp/Extrap?"
boxes. A weight of three was specified. The goal SPECTRAL.HEMISPHERICAL.
REFLECTANCE was selected. A description and an error message were entered. The user left
clicked on ENTER-FUNCTIONS. The function SID.ok was edited so that it would return T if the

sample had four view angles and nil otherwise. The function tech-SID was edited to return the
average reflectance value of the four view angles. Because the function to execute the technique
SID does not require coefficients, the function coeffs-SID was deleted. The file was then saved
and compiled. Compilation was successful. The user selected ENTER-RULE and edited the
template so that the rule would fire if the cover type sample had four view angles. The rule parsed
correctly. Finally, the STORE.TECHNIQUE option was selected from the menu at the bottom of
the screen. No error messages were displayed. Inspection of the files "new-tech-data" and "new-
tech.lisp" showed that the new technique had been successfully saved. The user was then
prompted to enter the nanae of the next new technique.

SYSTEMS INC

C931021 -U-2R07

Page 12

This test showed that the Define New Technique interface was working correctly when
valid data were entered. The data, functions, and rule for the new technique were entered via the

interface and successfully stored in the appropriate files. Inspection of the created files confirmed
this.

3.4 TEST 4

The Define New Technique Interface should not allow the same technique name to be used
more than once. In Test 4, attempts were made to use the same technique name twice.

In the first part of Test 4, the technique name "SID" was entered again. The message
"Technique SID has already been defined" was displayed in the messages box.

In the second part of Test 4, the technique name "NORMAN" was entered. The message
"Technique NORMAN has already been defined" was displayed in the messages box. Technique
NORMAN is a technique for estimating spectral hemispherical reflectance that is part of the VEG

knowledge base.

Test 4 showed that the Add Techniques interface will not allow the same technique name to
be used twice. It can detect attempts to re-use a technique name either already stored in VEG, or

saved in the file of previously defined new techniques.

3.5 TEST 5

This test was designed to test the addition of multiple, previously defined new techniques
to VEG from files and the operation of VEG using the newly added techniques. At the beginning
of this test, another new technique called BERT was defined for the goal SPECTRAL.
HEMISPHERICAL.REFLECTANCE. This technique was also invented by the developer for

testing purposes. The technique was effectively the technique DIRECT.NADIR, applied only to
samples with one view angle. Technique BERT was saved in the files "new-tech-data" and "new-
tech.lisp." Then the ADD. pREVIOUSLY.DEFINED.NEW.TECHNIQUES option was selected
for the Add Techniques interface. The message "Loading " was displayed. After loading
had been completed, this message was removed. Inspection of the VEG knowledge base showed
that new units had been created in the correct places in the VEG knowledge base. These units held

the data and the rules for the new techniques.

The user ran VEG in Research Mode using the goal SPECTRAL.HEMISPHERICAL.

REFLECTANCE. Techniques SID and BERT were designed to operate on samples with data at
four and one view angles, respectively. Sample 4 was selected as the sample to be studied so that
both new techniques could be tested. This sample has four view angles at wavelength 0.68 I.tm

and one view angle at wavelength 0.92 lam.

Sample 4 was processed. The manual method of selecting techniques was chosen for the
data at both wavelengths. As shown in Figure 2-5, both new techniques were displayed on the

User Pick Techniques screen. The user attempted to select both new techniques for the data at both
wavelengths. The functions that check the suitability of each technique for each sample worked
correctly. The user was prevented from selecting technique SID for the wavelength 0.92 lam since
data at only one view angle were available at this wavelength. Similarly, the user was prevented
from selecting technique BERT for the wavelength 0.68 lain. After selecting the techniques
manually, the user also chose to have VEG choose the techniques automatically. The purpose of
this was to test the rules for selecting the techniques. Technique SID was among the techniques
chosen for the wavelength 0.68 I.tm and technique BERT was among the techniques chosen for the

5YfTEM5 INC

C931021-U-2R07

Page 13

wavelength 0.92 gm. This proved that the new rules were operating correctly. Then the
techniques were ranked and the user chose to use the best two techniques for each wavelength so
that both new techniques were used. The techniques were then executed and the results were

displayed. Figure 3-1 shows some of the results obtained. The results were correct. Test 5
showed that newly defined techniques could be added to VEG and used correctly within VEG.

Wavelengths.Available:] ,
Gr0_d Ccv_ NIL Let* ArM badtx I_L _o?omoa Green NIL

Dr¢ Blot°ass bllL Wel Btorasts lqTL Heag_t NIL

I atget _.h_acTtnzauon

L_I ArM Index 2 6937 Grogud Covu 0 9270

to1 R,._

_LQTTJHG _OUTINL_

:z_tcu_sues[Ts ormsroltc,t n*TA

_ ta'alt_

Ttd.aqut SID E s_'r_at t O _lSd_ Enot I_ 1181 C_ethcteJar.$nolt¢

Ttd_aqut 2_FF NADIR ANGLE 0 E lmme_t 0¸0540 Erzo_ 0¸1414 Cot_ 0 m39 C 0158 1 1470

Res_cxed Hzstoncd DBta

C'l_8- 59-1 CD9-S9-1 ffT'lt12-28-1 ffr1_12-63-1 ff'/VT- 42-1 C1'100-$6-1 Cr9_-51-1 cr99-41-1 CTI00-42-1

_T302-49-1

D _11C _IE[i_[_-el 2 It]ol_

N:, irxa.n g s I¢ tu'x_

I_E _-[WA_LE! JOTH PREVIOUS WA_EL BqO TH _U1T

m

Figure 3-1
The Output Screen at the End of Test 5

3.6 TEST 6

In Test 6, new techniques were defined and added to VEG for the goals VIEW.ANGLE.
EXTENSION and PORTION.GROUND.COVER. Then VEG, along with the new techniques,
was run. The test showed that the addition of new techniques for these goals was successful.

3.7 TEST 7

In Test 7, a new technique was defined for the VEG goal TOTAL.HEMISPHERICAL.
REFLECTANCE. This option is not yet available. When the user selected this goal from the
Define New Technique Screen, an error message was displayed. The user ignored this error

message and continued to enter data for the new technique. When the user attempted to store the

SYSTEM5 INC

C931021-U-2R07

Page 14

data for the new technique, another error message was displayed and the data were not stored.
This test showed that the system was correctly blocking attempts to store new techniques for the
goal TOTAL.HEMISPHERICAL.REFLECTANCE.

3.8 TEST 8

Test 8 was designed to ensure that an incomplete set of data and functions for a new
technique would not be stored. It was also designed to ensure that attempting to compile functions
before they were defined, or to parse a rule before it was entered, would produce appropriate error

messages.

The user opened the Define New Technique screen and immediately attempted to store a
new technique, even though none had yet been defined. The message "Technique name not found
- data not stored" was displayed and nothing was stored. After entering a technique name, the user
again attempted to store the new technique. This time the user was prompted to select the goal.
The user continued to enter the data items, one at a time, in response to the prompts, each time

attempting to store the new technique. As expected, every attempt to save the incomplete technique
data was unsuccessful.

After all the data items had been entered, the message "Functions not found - data not
stored" was displayed when the user attempted to store the technique. The user then attempted to
compile the functions before entering them. This time the error message "Functions not found -
enter them before compiling" was displayed. The user entered the required functions and then
once again attempted to store the technique. This time the error message informed the user that the
functions must be compiled. The functions were then successfully compiled. The next attempt to
store the technique produced the error message "Rule not found - data not stored." The user
attempted to parse the rule before entering it. Again an error message was displayed. After
entering a rule, the user tried again to store the data. This time the user was prompted to parse the
rule. After the rule had been successfully parsed, an attempt to store the new technique succeeded.

This test showed that incomplete data for a technique could not be stored. It also showed

that an appropriate error message is displayed if the user attempts to compile functions before
defining them or to parse a rule before entering it.

3.9 TEST 9

The user may enter invalid functions for a new technique. The Add Techniques interface
tests whether new functions will compile and it does not store a new technique unless the new
functions compile correctly. Test 9 was designed to test the behavior of the system with invalid

technique functions.

Various errors such as unmatched right parentheses, undefined functions, incorrect
arguments to functions, and missing arguments to functions were introduced into the function file.
These produced warnings which were reported in the KEE Typescript window when the function
file was compiled. However, a compiled function file was created in each of these cases and
attempts to store the function were successful.

An unmatched left parenthesis error was also introduced into the function file. When this
file was compiled, the "End of file reading in a list" error was signaled and a list of debugging
action options was shown in the KEE Typescript Window. The user entered the debugging action
number 1 to kill the process in this case. No compiled file was created and the user was prevented
from storing the new technique.

SYSTEMS INC

C931021 -U-2R07

Page 15

This test showed that many errors in the technique functions produce warnings rather than
error messages. Although the interface prevents the user from storing a technique function that

produces a compiler error, it does not prevent the user from storing a function that produces a
compiler warning. The user should correct warnings before storing a technique, even though the
interface does not insist on this. Test 9 showed that there are limitations on the detection of invalid

functions by the Define New Function system.

3.10 TEST 10

This test was designed to test the parsing of a new rule and to determine the limitations of

the system in preventing invalid rules from being stored. Various errors were introduced into a
rule to determine how the system would respond. For example, an extra term was added to a rule

clause. It was interpreted by the rule compiler as a literal so the rule parsed successfully even
though it was incorrect. In this case, the invalid rule was stored.

In separate tests, extra left and right parentheses were added to the rule. These were
detected before the rule was parsed, and in each case, the technique with the invalid rule was not
stored.

In separate tests, the IF and THEN clauses of the rule were omitted. Despite these

omissions, the rules parsed successfully.

Test 10 showed that the use of the KEE rule parser to detect errors in a rule is limited to

some syntactic errors. Note that adding new rules is the most difficult part of the Add Techniques
system to control. It is quite possible to add rules that are nonsense. The user is cautioned,
therefore, to be careful when adding rules.

3.11 TEST 11

Test 11 was designed to test the ABANDON.TECHNIQUE option from the Define New

Technique screen. Several new techniques were entered. Each time, the entry of the new
technique was abandoned at a different point. In every case, the interface was initialized correctly
and all the data, functions and rule for the abandoned technique were correctly deleted. This test
showed that the ABANDON.TECHNIQUE option was operating correctly.

3.12 TEST 12

This test was designed to test the operation of the PURGE.PREVIOUSLY.DEFINED.
TECHNIQUES option from the Add Techniques interface (Figure 2-1). When this option was
selected, additional subwindows were opened. The user was prompted to confirm that the

techniques should be deleted. The user left-clicked on "NO." The message "Techniques not
deleted" was displayed in the "Messages" box and the subwindows were then closed. Inspection
of the files "new-tech-data" and "new-tech.lisp" confirmed that the techniques had not been
deleted. The user then selected the PURGE.PREVIOUSLY.DEFINED.TECHNIQUES option

again. This time the user left-clicked on "YES" to confirm that the techniques should be deleted.
The message "Techniques deleted" was displayed in the "Messages" box and the subwindows
were closed once again. Inspection of the files confirmed that the file "new-tech-data" had been
deleted and the file "new-tech.lisp" contained only headings. Test 12 showed that the
PURGE.PREVIOUSLY. DEFINED.TECHNIQUES option was operating correctly.

SYSTEMS ING

SECTION 4.0

CONCLUSIONS

C931021 -U-2R07

Page 16

The Add Techniques system implements a software component for defining additional

analysis techniques that are used to evaluate samples of cover type data. The system provides a
detailed, window driven, user interface which organizes the entry of the technique definitions.

Dynamic error checking, file management, object creation, and def'mition management facilities are
provided.

The technique definition has multiple components that include description, error message,
function body, rule for determining when the technique can be used, and technique priority. The
user follows ins_xuctions on various windows to input technique elements. Error checking is done
interactively by the system. The function component of the definition is compiled for efficiency.

The new definition is managed so that it is logically isolated from the basic VEG system.
In a separate step, the new technique may be loaded for use.

Testing of the Add Techniques system focused on the expected range of typical user
behavior. It proved to be reasonably robust and user-friendly.

SYSTEMS INC

C931021-U-2R07

APPENDIX A

LISTING OF METHODS FILES FOR THE ADD TECHNIQUES SYSTEM

SYSTEMS INC

;;; veg-methods5.1isp
o..

;;; Code to allow the user to add techniques to VEG
ooo

l,p,p

;;; Written by Ann Harrison
;;; Created April 1, 1993
;;; Last modified April 20, 1993

(in-package 'kee)

(defun open-add-techniques-menu 0
"Open the screen for adding techniques."

(unitmsg 'viewport-add.techniques. 1 'open-panel!)
(remove.all.values 'add.techniques 'options))

°.. ..

;;; Functions required to add previously defined techniques from files to VEG
.oo

..

(defun add-previously-defined-techniques 0
"Loads previously defined additional techniques from a file."

(cond ((and (probe-file "new-tech.sbin")
(probe-file "new-tech-data"))

(my-documentation-print "Loading ")
(load "new-tech") ; Load the file containing the functions

; required by the techniques

(with-open-file (str "new-tech-data" :direction :input)
(load- tech-data-from-file str))

(clear-prompt))
(t (my-documentaton-pfint "No techniques available"))))

;;; Note that the function> read-file is in the methods file veg-methodsl.lisp

(defun load-tech-data-from-file (str)
"Sets up the appropriate arguments and calls the function to create the units
to store the data for the technique and rule units in VEG."

(do ((goal (read-file str)(read-file str)))
((null goal) nil) ;End of file

(case goal
(total.hemispherical.reflectance

(my-documentation-print "This option is not yet implemented"))
(spectral.hemispherical.reflectance

(load-tech str

'spectral.hemispherical.reflectance.techniques
'hemispherical .reflectance.technique.rules
"HRTR."

(unit

'windowpane-selected.techniques-of-6.generate.techniques.3)))

C931021 -U-2R07

Page A- 1

SYSTEMS INC

C931021 -U-2R07

Page A-2

(proportion. ground.cover, single, wavelength
(load-tech str

'proportion.ground.cover.single.wavelength.techniques
'proportion. ground .cover. single, wavelength .rules
"PGCSWR."

(unit
'windowpane- selected.techniques-of-portion.ground.cover.5)))

(proportion.ground.cover.multiple.wavelength
(load-tech str

'proportion .ground .cover.multiple.wavelength .techniques
'proportion .ground.cover.multiple.wavelength.rules
"PGCMWR."

(unit
'windowpane-selected.mw.techniques-of-portion.ground.cover.5)))

(view.angle.extension
(load-tech str

'view.angle.extension.techniques
'view .angle.extension .rules
"VAER."

(unit
'windowpane-selected.techniques-of-view.angle.extension.6))))))

(defun load-tech (str tech-class rule-class prefix window)
"Creates the units to store the data for the technique and rule in VEG. Loads
the data from the file."

(let ((new-tech (read-file str)))
(if (unit.exists.p new-tech) ; Technique already read in

(dotimes (n 9) (read-file str)) ; Read past this technique
(let ((new-tech-unit ; Read in technique

(create.unit new-tech 'veg nil tech-class))
(new-rule-unit
(create.unit (gentemp prefix)'veg nil rule-class)))

(put.value new-tech-unit 'description (read-file str))
(put.value new-tech-unit 'error.message (read-file str))
(put.value new-tech-unit 'technique.method (read-file str))
(put.value new-tech-unit 'interpolate.extrapolate?

(if (eq (read-file str)'YES)
t

nil))

(cond ((eq (read-file str)'YES)
(put.value new-tech-unit 'coeffs.p t)
(put.value new-tech-unit 'coeff.method (read-file str)))

(t (put.value new-tech-unit 'coeffs.p nil)
(read-file str))) ;Ignore coeffs method from file

(put.value new-tech-unit 'ok.to.use (read-file str))
(put.value new-tech-unit 'weight (read-file str))
(put.value new-rule-unit 'external.form (read-file str))
(slot-image-toggle-enable window) ; Update the user pick

; technique interface

(slot-image-toggle-enable window)))))

SYSTEMS INC

C931021 -U-2R07

Page A-3

°,o ..

;;; Functions required to define a new technique
• .o ...

(defun define-new-techniques 0
"Opens and initializes the interface to guide the user through entering the
required data for a new technique."

(unitmsg 'viewport-add.techniques. 1 'close-panel!)
(unitmsg 'viewport-add.techniques.2 'open-panel!)
(remove.all.values 'add.techniques 'tech.name)

(initialize-add-techniques)
(put.value 'add.techniques 'new.tech.options 'enter.technique)
(store-previously-defined-tech-names)
(my-documentation-print "Enter the technique name"))

(defun close-new-tech-windows 0
"Close the subwindows of the define new technique interface."

(unitmsg 'windowpane-coeffs.p-of-add.techniques.4 'close!)
(unitmsg 'windowpane-interpolate.extrapolate?-of-add.techniques. 10 'close!)

(unitmsg
(unitmsg
(unitmsg
(unitmsg
(unitmsg
(unitmsg
(unitmsg
(unitmsg

'windowpane-weight-of-add.techniques.4 'close!)
'windowpane-goals-of-add.techniques.2 'close!)
'windowpane-enter.description-of-add.techniques.4 'close!)
'windowpane-enter.error.message-of-add.techniques.3 'close!)
'windowpane-enter.functions-of-add.techniques.6 'close!)
'windowpane-compile.functions-of-add.techniques. 1 'close!)
'windowpane-enter.rule-of-add.techniques.7 'close!)
'windowpane-parse.rule-of-add.techniques.2 'close!))

(defun store-previously-defined-tech-names 0
"If any techniques have been defined, calls the function to collect the

technique names."
(when (probe-file "new-tech-data")

(with-open-file (str "new-tech-data" :direction :input)
(remove.all.values 'add.techniques 'previous.techs)
(read-tech-names-from-file str))))

(defun read-tech-names-from-file (str)
"Saves the names of the techniques that have already been defined in the slot
PREVIOUS.TECHS of the unit ADD.TECHNIQUES."

(do ((data (read-file sa-)(read-file str)))
((null data) nil) ; End of file

(add.value 'add.techniques 'previous.techs (read-file str))
(dotimes (n 9)(read-file str))))

(defun already-defined (tech-name)
"Returns t if a technique of the same name has already been defined and nil
otherwise."

(or (unit.exists.p tech-name)
(member tech-name (get.values 'add.techniques 'previous.techs)

:test #'equal)))

SYSTEMS INC

C931021-U-2R07

Page A-4

(defun open-new-tech-windows 0
"Open the subwindows of the define new technique interace. This function is
called after the new technique has been named."

(unitmsg 'windowpane-coeffs.p-of-add.techniques.4 'open!)
(unitmsg 'windowpane-interpolate.extrapolate?-of-add.techniques. 10 'open!)
(unitmsg 'windowpane-weight-of-add.techniques.4 'open!)
(unitmsg
(unitmsg
(unitmsg
(unitmsg
(unitmsg
(unitmsg
(unitmsg

'windowpane-goals-of-add.techniques.2 'open!)
'windowpane-enter.description-of-add.techniques.4 'open!)
'windowpane-en ter.error.message-of- add.techniques. 3 'open !)
'windowpane-enter.functions-of-add.techniques.6 'open!)
'windowpane-compile.functions-of-add.techniques. 1 'open!)
'windowpane-enter.rule-of-add.techniques.7 'open!)
'windowpane-parse.rule-of-add.techniques.2 'open!))

(defun initialize-add-techniques0
"Initializes the slots in the unit ADD.TECHNIQUES, ready for entering the new
technique. If they exist, deletes the files that have temporarily held the
functions and the selection rule for a previously entered new technique."

(remove.all .values 'add.techniques 'technique.method)
(remove.all.values 'add.techniques 'coeffs.method)
(remove. all. value s 'add.tech n ique s 'ok. to. use)
(remove.all.values 'add.techniques 'goals)
(put.value 'add.techniques 'description)
(put.value 'add.techniques 'error.message)
(put.value 'add.techniques 'interpolate.extrapolate? 'no)
(put.value 'add.techniques 'coeffs.p 'yes)
(put.value 'add.techniques 'weight 1)
(put.value 'add.techniques 'initialized.function t)
(put.value 'add.techniques 'initialized.rule t)
(put.value 'add.techniques 'rule.parsed nil)
(when (probe-file "temp.lisp")

(lcl::shell "rm temp.lisp")) ; Remove temporary function file
(when (probe-file "temp.lsbin")

(lcl::shell "rm temp.sbin")) ; Remove temporary compiled function file
(when (probe-file "temp-rule")

(lcl::shell "rm temp-rule"))) ; Remove temporary rule file

(defun enter-description (self)
"Prompts the user to enter the description of a new technique into a file.
Then reads it from the file into the description slot of ADD.TECHNIQUES."

(declare (ignore self))

(my-documentation-print "Complete the description of the technique.
Save the file and exit the editor to save the description.")

(sleep 1)
(when (equal (get.value 'add.techniques'description))

(with-open-file (str "temp-desc" :direction :output :if-exists :supersede)
(princ (format () "Technique -A " (get.value 'add.techniques 'tech.name))

str)))
(lcl::shell "textedit temp-desc")

 ',ti
SYSTEMS INC

C931021 -U-2R07

Page A-5

(put.value 'add.techniques 'description
(with-open-file (str "temp-desc" :direction :input)

(let ((desc))
(do ((dat (read-file str)(read-file str)))

((null dat) desc)
(serf desc (format 0 "~A ~A" desc dat))))))

(clear-prompt))

(defun enter-error-message (self)
"Prompts the user to enter the error message of a new technique into a file.
Then reads it from the file into the error.merssage slot of ADD.TECHNIQUES."

(declare (ignore self))
(my-documentation-print "Complete the description of the error message.

Save the file and exit the editor to save the error message.")

(sleep 1)
(when (equal (get.value'add.techniques'error.message))

(with-open-file (str "temp-error" :direction :output :if-exists :supersede)
(princ (format 0 "Technique -A " (get.value 'add.techniques 'tech.name))

str)))
(lcl::shell "textedit temp-error")
(put.value 'add .techniques 'error.message

(with-open-file (str "temp-error" :direction :input)
(let ((desc))

(do ((dat (read-file str)(read-file str)))
((null dat) desc)

(serf desc (format 0 "~A -A" desc dat))))))

(clear-prompt))

(defun enter-functions(self)
"Enter the functions required by the new technique."

(declare (ignore self))
(let ((tech-name (get.value 'add.techniques 'tech.name)))

(cond (tech-name
(when (get.value 'add.techniques 'initialized.function)

(with-open-file (str "temp.lisp" :direction :output
:if-exists :supersede)

(princ (format 0
.....,,, Templates for adding technique -A

(in-package 'kee)

;;; Replace the body of this example function with the correct function for
;;; the new technique. The function checks whether the technique is suitable
;;; for the sample. Here the sample is the wavelength level unit. The
;;; function should return t if the technique is suitable for the sample and

;;; nil otherwise.
(defun ~A (sample)
\"Checks the suitability of the function -A for the sample.\"

(= (get.value sample 'number.view.angles) 1))

SYSTEM5 INC

C931021-U-2R07

Page A-6

;;; Replace the body of this example function with the technique function for
;;; the new technique. In this function the arguments are the sample unit at
;;; the wavelength level and the vector of coefficients, if any. The function
;;; should return a number which is the result of applying the technique to the

;;; sample.
(defun -A (thisunit coeffs)
\"Applies the function -A to the sample.\"

(declare (ignore coeffs)) ;Remove this line if technique uses coefficients

(third (first (get.value thisunit 'reflectance.data))))

;;; If the technique uses coefficients, replace the body of this example
;;; function with the coefficient function. Otherwise delete the template.
;;; In this function the argument is the list of restricted historical data
;;; units to be used for calculating the coefficients. The function should
;;; return the vector of coefficients of the correct length for the technique.
(defun -A (data)
\"Calculates the coefficients for the technique -A.\"

(declare (ignore data)) ;Replace these lines with the new function body
nil)~%"

tech-name

(get.value 'add.techniques 'ok.to.use) tech-name
(get.value 'add.techniques 'technique.method) tech-name
(get.value 'add.techniques 'coeffs.method) tech-name)
str))

(put.value 'add.techniques 'initialized.function nil))
(my-documentation-print

"Edit the file. Then save the file and exit the editor.")

(sleep 1)
(Icl::shell "textedit temp.lisp")

(clear-prompt))
(t (my-documentation-print

"Enter technique name before entering the functions")))))

(defun compile-functions (self)
"Compiles the functions for the new technique."

(declare (ignore self))
(when (not (probe-file "temp.lisp"))

(my-documentation-print
"Functions not found - enter them before compiling")

(return-from compile-functions nil))
(my-documentation-print "Compiling the new functions")
(when (probe-file "temp.sbin")

(lcl::shell "rm temp.sbin"))
(compile-file "temp.lisp" :messages nil :file-messages nil)
(my-documentation-print "Finished compilation"))

(defun compiled-ok ()
"Returns t if the function complied correctly and nil otherwise."

(when (probe-file "temp.sbin")
(with-open-file (str "temp.sbin" :direction :input)

(let ((len (file-length str)))
(and (numberp len)

(> len 0))))))

SYSTEMS INC

C931021-U-2R07

Page A-7

(defun enter-rule (self)

"Sets up a file to temporarily store the new rule. Prompts the user to enter
the rule. Attempts to parse it. If parsing fails, prompts the user to correct
the rule until it parses correctly."

(declare (ignore self))
(put.value 'add.techniques 'rule.parsed nil)
(let ((tech-name (get.value 'add.techniques 'tech.name)))

(cond (tech-name
(when (get.value 'add.techniques 'initialized.rule)

(with-open-file (strl "temp-rule" :direction :output
:if-exists :supersede)

(princ (format 0
";;; Template for rule for selecting technique -A

;;; Edit the lefthand side of this example rule to create the required rule
(IF (THE CURRENT.SAMPLE.WAVELENGTHS OF

ESTIMATE.HEMISPHERICAL.REFLECTANCE IS ?X)
(THE NUMBER.VIEW.ANGLES OF ?X IS 1)

THEN (LISP (ADD.VALUE ?X (QUOTE TECHNIQUES)
(QUOTE -A))))"

tech-name tech-name)
strl))

(my-documentation -print
"Edit the file. Then save the file and exit the editor.")

(put.value 'add.techniques 'initialized.rule nil))
(sleep 1)
(lcl::shell "textedit temp-rule"))

(t (my-documentation-print
"Enter technique name before entering the rule")))))

(defun parse-rule (self)
"Returns t if the rule parses correctly and nil otherwise. Note that parsing
is not a complete test of correctness for a rule."

(declare (ignore self))
(my-documentation-print "Parsing rule")
(when (not (probe-file "temp-rule"))

(my-documentation-print
"Rule not found - enter it before parsing")
(put.value 'add.techniques 'rule.parsed nil)
(return-from parse-rule nil))

(with-open-file (strl "temp-rule" :direction :input)

(cond ((not (parens-ok strl))
(my-documentation-print
"Rule has unequal number of left and right parens - edit again")

(put.value 'add.techniques 'rule.parsed nil))
((test-rule-parses strl)
(my-documentation-print "Rule parsed OK")
(put.value 'add.techniques 'rule.parsed t))

(t
(my-documentation-print
"Rule does not parse correctly - edit again.")
(put.value 'add.techniques 'rule.parsed nil)))))

SYSTEMS INC

C931021 -U-2R07

Page A-8

(defun test-rule-parses (strl)
"Sets up a temporary unit to hold the new rule. Attempts to parse it. Deletes
the temporary rule unit. Returns t if the rule parsed OK and nil otherwise."

(let ((new-rule-unit
(create.unit 'TEMP 'veg nil 'vegrules)))

(put.value new-rule-unit 'extemal.form (read-file strl))
(prog2 (unitmsg new-rule-unit 'parse)

(not (get.value new-rule-unit 'parse.errors))
(delete.unit new-rule-unit))))

(defun store-data 0
"Stores the data about the new technique in the file."

(let ((goal (get.value 'add.techniques 'goals))
(tech-name (get.value 'add.techniques 'tech.name))
(description (get.value 'add.techniques 'description))
(error-message (get.value 'add.techniques 'error.message)))

(cond ((not tech-name)

(my-documentatmn-pn nt
"Technique name not found - data not stored"))

((not goal)
(my-documentauon-pnnt
"Goal not found - data not stored"))

((eq goal 'total.hemispherical.reflectance)
(my-documentatxon-pnnt
"Techniques for this goal are not yet implemented - not stored"))

((equal description)
(my-documentation-pnnt
"Description not found - data not stored"))

((equal error-message)
(my-documentatlon-pnnt
"Error message not found - data not stored"))

((not (compiled-ok))
(my-documentauon-pnnt
"Functions not correctly compiled - data not stored"))

((not (probe-file "temp-rule"))
(my-documentatlon-pnnt "Rule not found - data not stored"))
((not (get.value 'add.techniques 'rule.parsed))
(my-documentation-print
"Rule not successfully parsed - data not stored"))

(t (store-data-on-file goal tech-name description error-message)))))

(defun store-data-on-file (goal tech-name description error-message)
"Stores the technique data in the file new-tech-data. Calls the function to

store the technique functions."
(my-documentation-print "Saving the new technique")
(with-open-file (str "new-tech-data" :direction :output :if-exists :append

:if-does-not-exist :create)

(princ (format 0
"-A-%-A-%\"-A\"~%k"-Ak"~%-A~%-A-%-A-%-A-%-A~%-A-%"

goal
tech-name

description
error-message
(get.value 'add.techniques 'technique.method)

 I_CIi'Z/
SYSTEMS INC

C931021-U-2R07

Page A-9

(get.value 'add.techniques 'interpolate.extrapolate?)
(get.value 'add.techniques 'coeffs.p)
(get.value 'add.techniques 'coeffs.method)
(get.value 'add.techniques 'ok.to.use)
(get.value 'add .techniques 'weight))

str)

(add.value 'add.techniques 'previous.techs tech-name)
(store-functions str)))

(defun store-functions (str)

"Adds the function for the new technique to the file new-tech.lisp. Compiles
the file. Adds the new rule to the file new-tech-data."

(lcl::shell "cat new-tech.lisp temp.lisp > tempi")
(lcl::shell "mv templ new-tech.lisp")

(compile-file "new-tech.lisp" :messages nil :file-messages nil :warnings nil)
(with-open-file (strl "temp-rule" :direction :input)

(princ (read-file strl) str) ; Read the rule from the temporary file and
(terpri siT)) ; store it in the file new-tech-data

(clear-prompt)

(remove.all.values 'add.techniques 'tech.name)
(initialize-add-techniques)
(close-new-tech-windows)

(my-documentation-print "Enter the name of the new technique")
(put.value 'add.techniques 'new.tech.options 'enter.technique))

(defun abandon-data 0

"Initializes the values in the add.techniques unit. Deletes any recently
entered but not yet stored functions or rules.""
stored."

(remove.all.values 'add.techniques 'tech.name)
(initialize-add-techniques)
(close-new-tech-windows)

(my-documentation-print "Enter the name of the new technique")
(put.value 'add.techniques 'new.tech.options 'enter.technique))

(defun read-char-file (str)

"Reads a charcter from a file. Returns the character read, or nil if the end
of the file has been reached."

(flet ((eof-p (obj)
(eq obj '*eof*)))

(let ((obj (read-char str 0 '*eof* 0)))
(if (eof-p obj)

nil

obj))))

(defun parens-ok (str)

"Returns t if the file contains the same number of left and right parens and
nil otherwise."

(let ((left 0)
(right 0))

(do ((char (read-char-file str)(read-char-file str)))
((null char) (if (zerop (- left right))

t
nil))

SYSTEMS INC

C931021-U-2R07

Page A- 10

(case char

(#X,)(incf right))
(#X((incf left))))))

(defun purge-previously-defined-techniques 0
"Opens the required subwindows ready to remove all previously defined
new techniques from the files."

(remove.all.values 'add.techniques 'yes.no)
(put.value 'add.techniques 'message

"Are you sure you want to permanently delete all previously defined new techniques?")
(unitmsg 'windowpane-message-of-add.techniques.2 'open-panel!)
(unitmsg 'windowpane-yes.no-of-add.techniques. 3 'open-panel!))

(defun purge-techniques0
"Removes all previously defined new techniques from the files so they are no
longer available to be added to VEG."

(when (probe-file "new-tech-data")
(lch:shell "rm new-tech-data"))

(with-open-file (str "new-tech.lisp" :direction :output
:if-exists :supersede)

(princ (format 0
..... tech lisp,,, new-
...

;;; Holds Functions Required by Newly Defined Techniques
;;; Functions are entered through the Define New Technique Interface

") str)))

Report Documentation Page

1. Report No

4, "l'ltle and Subtitle

2 Government Accesslon No. 3 Recipient's Calalo 9 No.

5 Report Date

April 1993

An Expert System Shell for Inferring Vegetation Characteristics -
Interface for the Addition of Techniques (Task H)

7. Author(s)

P. Ann Harrison

9 Performing Organization Name and Address

JJM Systems, Inc.
One Ivybrook Blvd., Suite 190
Ivyland, PA 18974

12 Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001
NASA/Goddard Space Flight Center
Greenbelt, MD 20771

6. Performing Organization Code

8. Performing Organization Report No

C93102]-U-2R07

10. Work Unit No

462-61-]4

11 Contract or Granl No

NAS5-30127

13 Type of Rej)on and Period Covejed
lask Report for TaskH
March - April 1993

14 Sponsoring Agency Code

15. Supplementary Notes

The Lisp and KEE code for this work is available on a Sun Cartridge Tape.

16 Abstract

VEG is an expert system that infers vegetation characteristics from reflectance data. VEG provides the
scientist with several different analysis techniques which are stored in the knowledge base. When VEG
is run, rules assist the scientist in selecting the best of the available techniques to apply to the sample of

cover type data being studied. In the previous version of VEG, the addition of a new technique was a
complex process. A new interface that enables the scientist to add techniques to VEG without assistance
from the developer has been designed and implemented. It guides the scientist through entering the data
Common Lisp functions and the rule required by the new technique. Once the technique has been
defined, adding it to VEG requires only the selection of the appropriate menu option. The Add
Techniques System was tested using both valid and invalid data. The tests were designed to test the
typical range of user behavior. They confirmed that the interface was operating correctly.

17 Ke_ Words (Suggesled by Author(s))

EXPERT SYSTEM, ARTIFICIAL
INTELLIGENCE, REMOTE SENSING

18 Distribulion Statement

UNCLASSIFIED - UNLIMITED

19 Securii_ Classit (of this report)

UNCLASSIFIED

20 Security Classi/ (of th,s page)

UNCLASSIFIED

21 No of pages

33

NASA FOAM "_r_ ocl

For sale by the National Technical Information Service, Springfield, VA 22161-2171

22 Price

SYSTEM5 INC

C931033-U-2R00

APPENDIX D

AN EXPERT SYSTEM SHELL FOR INFERRING VEGETATION

CHARACTERISTICS - PROTOTYPE HELP SYSTEM (TASK I)

SYSTEM5 INC

C931032-U-2R08

AN EXPERT SYSTEM SHELL FOR INFERRING
VEGETATION CHARACTERISTICS -

PROTOTYPE HELP SYSTEM (TASK I)

July 1993

Prepared for:

National Aeronautics and Space Administration
Goddard Space Flight Center

Greenbelt, MD 20771

Prepared by:

JJM Systems, Inc.
1225 Jefferson Davis Hwy., Suite 412

Arlington, VA 22202

SYSTEMS INC

C931032-U-2R08

Page i

TABLE OF CONTENTS

Section/Descriptign

LIST OF FIGURES

LIST OF ACRONYMS

1.0 INTRODUCTION

2.0 DESCRIPTION OF THE HELP SYSTEM

2.1
2.2

STORAGE OF HELP MESSAGES IN VEG
THE OPERATION OF THE HELP SYSTEM

3.0 ADDING AND MODIFYING HELP MESSAGES

4.0 TESTING AND RESULTS

4.1 TEST 1
4.2 TEST 2
4.3 TEST 3
4.4 TEST 4
4.5 TEST 5
4.6 RESULTS

5.0 CONCLUSIONS

ii

o..

111

1

2

2
3

5

12

12
12
13

13
13
13

14

APPENDIX A

SYSTEMS INC

C931032-U-2R08

Page ii

LIST OF FIGURES

2-1

2-2

2-3

3-1

3-2

3-3

3-4

3-5

Descriplign

Slots in the Unit HELP.SYSTEM

Using the Help System

The Help Screen

VEG Administration Screen with CHANGE.HELP.MESSAGES

Add/Change Help Screen with Options

New Help Message Screen before a Message is Added

New Help Message Screen before an Existing Message is Modified

New Help Message Screen with New Help Message

2

3

4

6

7

8

9

10

SYSTEMS INC

LIST OF ACRONYMS

C931032-U-2R08

Page iii

KEE

VEG

Knowledge Engineering Environment

VEGetation Workbench

SYSTEM5 INI_

C931032-U-2R08

Page 1

SECTION 1.0

INTRODUCTION

The NASA VEGetation Workbench (VEG) infers vegetation characteristics from

reflectance data. VEG was developed using the Intellicorp, Knowledge Engineering Environment
(KEE). KEE is a mature development platform that supports a number of well-engineered
components including inference engines, windows, graphics tools, objects and inheritance,

procedural attachments and other support needed for prototyping expert systems using object-
oriented programming.

An extensive, window-oriented interface system was constructed for VEG using the KEE

graphics package called "Activelmages." This interface provides a variety of screens to enhance
dialogue between the scientist and the system. The interface is a key feature of this system. It was
designed to focus the scientist on the appropriate level of organization to carry out scientific work
without attention to "housekeeping" functions. The interface allows the scientist to run VEG and

select options at all stages of the run by clicking the mouse over the appropriate menu option. The
interface further allows the scientist to focus on the data and the functions performed by VEG as it

abstracts away most of the underlying, detailed complexity of the VEG system.

A prototype Help System has been designed and implemented. The Help System allows
the scientist to get more information about each screen in the VEG interface. It was designed to

help the new user of VEG to learn how to operate the system. The Help System is stored in
separate files from the VEG knowledge base and it is loaded only when needed. An interface that
allows the scientist to add and modify help messages has also been integrated into the
"Administration" part of the VEG system. This enables the scientist to evolve the Help System
over time.

Task I of this project required the design and implementation of a prototype Help System.
This task has been completed. The code for the Lisp methods used in this task is included in
Appendix A. A Sun cartridge tape containing the Lisp methods and the current version of VEG,
including the Help System has been delivered to the NASA GSFC technical representative.

SYSTEMS INC

SECTION 2.0

DESCRIPTION OF THE HELP SYSTEM

C931032-U-2R08

Page 2

The storage of help messages in the VEG system and the method of operation of the Help
System are described in this section.

2.1 STORAGE OF HELP MESSAGES IN VEG

The screens in the VEG interface were built using the KEE Activelmages package. The
attributes of each screen are stored in KEE units known as "Viewports" and a number of other

units that hold the attributes of the screen subwindows. The Help System provides help for each
VEG screen. When the Help System is loaded, an extra slot called "HELP" is created in each

viewport unit. This slot holds the help message for the screen to which the viewport unit refers.

The unit HELP.SYSTEM has been created in VEG. This unit holds the slots required by
the Help System. The slots in this unit are shown in Figure 2-1. The HELP.LOADED slot is
initialized with the value NIL to indicate that the Help system is not loaded. The scientist must
explicitly load the Help System. When the Help System is loaded, the value of HELP.LOADED is

changed to T for true. The rationale for this approach is that the Help System will be used less as
the scientist gains proficiency with the VEG system. Therefore, when possible, the VEG system
avoids the overhead of having the Help System loaded.

HELP.LOADED
MESSAGE
OPTIONS

Figure 2-1
Slots in the Unit HELP.SYSTEM

The VEG system uses four separate knowledge bases: VEG, LEARN, AZIMUTH.PLOT
and POLAR.PLOT. Each knowledge base contains at least one viewport. The help messages for
the four knowledge bases in the VEG system are stored in the files "help-messages-veg,"
"help-messages-learn," "help-messages-azimuth," and "help-messages-polar," respectively. The
files hold the viewport name and the appropriate help message for each viewport that has help
available. When the Help System is loaded, the slot "HELP" is first added to the units that are

parent units of the viewport units so that the HELP slot is inherited by each viewport unit. The
help messages for the VEG knowledge base are then read from the "help-messages-veg" file and
stored in the newly created HELP slots. Checks are then made to determine whether any of the
other VEG knowledge bases have been loaded. If any additional knowledge bases have been
loaded, then the help messages for these knowledge bases are also read from the files and stored in
the knowledge bases. The value of the HELP.LOADED slot of the unit HELP.SYSTEM is then

changed to T. If any of the knowledge bases LEARN, AZIMUTH.PLOT or POLAR.PLOT are

subsequently loaded, the help messages for the additional knowledge base are read from the
appropriate help message file and stored in the knowledge base immediately after it has been
loaded.

SYSTEM5 INC

C931032-U- 2R08

Page 3

2.2 THE OPERATION OF THE HELP SYSTEM

The user can activate the Help System at any time when VEG is loaded, by left clicking on
the HELP.SYSTEM option in the Tool Box Menu as shown in Figure 2-2. If HELP.SYSTEM is
moused in the Tool Box Menu, a Lisp method checks the value of the HELP.LOADED slot of the
HELP unit and loads the Help System if it has not been loaded. The Help Screen is then opened as
shown in Figure 2-3. The ActiveImages in this screen are attached to slots in the HELP.SYSTEM
unit. The user is prompted to mouse on the window he/she needs help with, and the cursor
changes to a cross shape. When the user left-clicks on a window, the Help System identifies the
window that has been moused on. If the window is a KEE viewport, the help slot of the viewport
unit corresponding to the window is examined. If a help message is found, the help message is
put into the MESSAGE slot and consequently displayed on the Help System Screen, as shown in
Figure 2-3. If no help for the window is available, the message "Sorry, no help is available for
this window" is displayed. If the user has selected a window that is not part of the VEG system,
such as the KEE typescript window or the Open Windows Workspace, the message "Not a VEG
window" is displayed on the Help System Screen.

foals

TOTALAN D.SPECTRALHEMISPHERICALREFLECTANCE

SPECTRAL.HEMISPHERICALREFLECTANCE

PROPORTION.GROUND.COVER

VIEW.ANGLE.EXTENSION

QUIT

m

SELECT.OPTION

11RQ'I;,¢s£ _TIL[SYSTEM

rLOtTIN3 kC_TI_ZS

[X_LOIZ _Z1_ OT H:_tOmlCAL _ATA

r_I_T CU_LZ3T $C_Z£_

Figure 2-2
Using the Help System

SYSTEM5 INC

C931032-U-2R08

Page 4

The user can continue to use VEG while the Help System Screen is open, although one or

more windows might be partially occluded by the Help System Screen. If the user left clicks on
MORE.HELP, the cursor changes to a cross again and the user is prompted to select another

screen for help. Once opened, the Help System Screen remains open until the user closes it by left

clicking on the QUIT option at the bottom right of the screen.

"OTALAN D.SPECTRALHEMISPHERICALREFLECTANCE

S PECT RA LHEMISPH ERICAl--REFLECTANCE

PROPORTION.GROUND.COVER

VIEW,ANGLE.EXTENSION

QUIT

Jliom

SELECT.OPTION

Vegetation Parameter

Techniques Menu, Select

the technique and then

click on
5ELECT.OPTION to

begin using the technique

MORE.HELP QUIT

Figure 2-3
The Help Screen

SYSTEMS INC

ADDING

SECTION 3.0

AND MODIFYING HELP MESSAGES

C931032-U-2R08

Page 5

An option that allows the scientist to add or modify help messages has been added to the
Administration part of VEG. This allows the scientist to evolve the Help System interactively. It

recognizes that help concepts will evolve and change as the scientist gains experience using various
system functions. VEG is also extensible in certain ways which might require the addition and/or

modification of help messages.

If the user left clicks on RUN.VEG and then selects ADMINISTRATION from the

Processing Mode menu, the Administration Screen is opened as shown in Figure 3-1. The option
CHANGE.HELP.MESSAGES has been added to the Administration Menu for handling message

changes. When the user selects CHANGE.HELP.MESSAGES, the Administration Screen is
closed and the Add/Change Help screen is opened, as shown in Figure 3-2. The user is prompted
to navigate through the VEG system until the screen is reached that is to be associated with the new
or modified help message. When the screen level is located, the user left clicks on
MODIFY.HELP in the option section of the Add/Change Help window. When this is done, the

cursor changes to a cross and the user is prompted to left click on the screen for which help is to be
added or modified. When the cursor is brought over the appropriate window and left clicked, the

New Help Message window is opened. This is shown in Figure 3-3. The Add/Change Help
Window allows the user to iterate the process of modifying and saving help messages. The New

Help Message window displays the value "Unknown" if this is a new help message as shown in
Figure 3-3. If the user is modifying an existing message, the current help message is displayed in
the window as shown in Figure 3-4. Once the new message is typed into the window, as shown

in Figure 3-5, or the existing message has been modified, left clicking on DONE will close the
window. This process can be continued by left clicking on MODIFY.HELP in the options section
of the Add/Change Help window. The user can choose to click on SAVE.HELP at any time in
order to save any changes made to the Help System. Finally, when the user is done adding and
modifying the Help System, left clicking on QUIT in the options section of the Add/Change Help
window will close the window and return control to the Administration window. If messages are

not saved, they will be lost when VEG application is exited.

SYSTEMS INC

C931032-U-2R08

Page 6

_olBL,x• G Administration

_tions

CHANGEHISTORICA LDATABASE

ADD.TECHNIQUES

CHANGE.HELP.MESSAGES

QUIT

_Y_TIM DEScxIrTIo_

RCZP FY_I"I:M

|_0_ glWTIRE _YS-tCM

PLOTTIff_ XO_TI_'g$

Figure 3-1
VEG Administration Screen with CHANGE.HELP.MESSAGES

SYSTEM5 INC

C931032-U-2R08

Page 7

o_JBoz * . •

RUN.VEG

HL_r _YST_

rL_TTIRO _ou_rE_

t_PL_RE _7_E_ or H_]_At DATA

ran/_t 5e/t,ra_ _at yel_ w,mt rE

d,''_e htl_ 'er xs vJ_le

_,_r_ 1_ c.bek _n MODIFY HELP

_'l't'/'r

M()DIFY.ItELP
SAVE.HELP

QUIT

Figure 3-2
Add/Change Help Screen with Options

SYSTEMS INC

C931032-U-2R08

Page 8

Wavelengths'Av ailable: IUnknown
ENTER.DATA

5nknown

Figure 3-3

New Help Message Screen before a Message is Added

SYSTEMS INC

C931032-U-2R08

Page 9

SPECTRA[

PR(

Vegetation Parameter Techniques
Menu. Select the technique and

DONE]

SAVE.HELP
QUIT

SELECT.OPTION

Figure 3-4

New Help Message Screen Before an Existing Message is Modified

SYSTEMS INC

C931032-U-2R08

Page 10

Wavelengths.Available:]Unknown
)tions

Unknown]

INT:

ENTER.DATA

IMain menu for the VEG subgoal
Estimate Hemispherical

Reflectance.

Choose the steps in order, or
choose SELECT.ALL.OPTION S

to have all the steps carried out
aulomatically in the correct order.

Select QUIT to exit this screen.

DONE I

SAVE.HELP
)U1T

Figure 3-5

New Help Message Screen with New Message

SYSTEMS INC

C931032-U-2R08

Page 11

The Help System works equally well if multiple knowledge bases (application components)
are loaded. The Help System automatically determines the knowledge base with which a window
is associated. When a save is initiated, the help message is saved in a file using a name that
includes the knowledge base name. For example, if a help message was added to a Learning
System window, then an ASCII file named "help-messages-learn" would be created (if it did not
already exist) and the message would be saved in the new file or appended to the existing file.
Currently, help files are saved as text files. The help files can be inspected outside of the VEG
system. It is possible to modify the help messages in the files using an editor. However, this is
not recommended. Any editing should be done with great care. The help messages are stored in
the files together with the object identifiers for the screens to which the messages apply. Changing
the organization of the help message files would cause errors which would prevent the Help
System being loaded. When help messages are added or modified and then saved using the VEG
interface, they are automatically saved in the correct format.

It should be noted that with minimal effort, the new help message entry window could be

replaced by an editor window tied to the editor favored by the user. This would allow more
extensive editing capabilities than are presently available.

SYSTEMS INC

SECTION 4.0

TESTING AND RESULTS

C931032-U-2R08

Page 12

tested:
The following capabilities of the VEG Help System and the Add/Modify Help option were

• Test 1 - Navigate through an empty Help System.

• Test 2 - Add help messages to windows. Save help messages and inspect saved files.

• Test 3 - Navigate through the Help System and read previously saved help messages.

• Test 4 - Modify help messages in existing windows.

• Test 5 - Add help messages to multiple knowledge bases.

All the tests were successful, showing that the system was working correctly. The tests are
described in detail in this section.

4.1 TEST 1

Test 1 simply navigated through the Help System before any help messages were added.
This was done with one and two knowledge bases active at the same time. Application windows

as well as KEE and OPENWIN application icons were tested. After left clicking on
HELP.SYSTEM in the Tool Box menu, the message "Click on the window you need help with"
appeared. The cursor became a cross shape. Placing the cross over the window of interest and

then left clicking produced the message, "Sorry, no help currently available for this window" if the
window was an application window, or "Not a VEG window" if the window was a KEE or

OPENWIN window. No errors occurred. When an application window was clicked regardless of
the knowledge base, the system behaved as expected. This test demonstrated the basic
functionality of the HELP system for navigating through an application.

4.2 TEST 2

Test 2 activated the ADMINISTRATION window and then activated the
CHANGE.HELP.MESSAGES window. The tester then navigated to the Automatic Mode Screen

and clicked left on the MODIFY.HELP option in the Add/Change Help Screen. The cursor

changed to a cross and the tester left clicked on the Automatic Mode Screen to indicate that help for
this screen was to be added. A New Help Message window appeared and a new message was
added. DONE was left clicked in the New Help Message window to indicate the message was
complete. The procedure was repeated using several different windows at different levels in the
VEG application. Each time a new message was added, MODIFY.HELP was left clicked to

reiterate the process. Once messages had been added to different screens, the Help System was
again invoked and the help messages successfully displayed. Finally, the SAVE.HELP option
was activated to save the help messages that had been entered so far. A file called "help-messages-
veg" was created and contained the help messages that had been entered.

j Zl
5YSTEM5 INC

C931032-U-2R08

Page 13

4.3 TEST 3

The VEG system was exited and re-loaded. The HELP.SYSTEM option was selected
from the Tool Box Menu. The Help System was loaded and the messages that had been added in
Test 2 were successfully accessed through the Help System.

4.4 TEST 4

In Test 4, the ADMINISTRATION window was again activated, and the
CHANGE.HELP.MESSAGES window activated. The tester then navigated to a window, for

which a help message existed, and clicked left on the MODIFY.HELP option. The cursor changed
to a cross and the tester left clicked on the window whose help message was to be modified. A
New Help Message window appeared and the current message was displayed. The message was
changed by writing a new message. DONE was left clicked in the New Help Message window to
indicate the modification was complete. This was repeated using several different windows at
different levels in the VEG application. Each time a message was modified, MODIFY.HELP was
left clicked to reiterate the process. Once this process was completed, the Help System was again
tested and the help messages successfully displayed. Finally, the SAVE.HELP option was
activated to append the modified help messages to the existing file. The file was inspected and
properly saved. The VEG system was exited and reloaded. The Help System was loaded and the
messages were successfully accessed through the Help System.

4.5 TEST 5

Test 5 replicated the elements of tests 1 through 4 with multiple knowledge bases
(modules) loaded in the VEG system. In addition to the VEG core, the AZIMUTH PLOT,
POLAR PLOT and LEARN knowledge bases were loaded. Then tests 1 through 4 were repeated
using windows from the four components. The system again performed as expected. The VEG
help file was properly updated and new help files called "help-messages-azimuth,"
"help-messages-polar," and "help-messages-learn" were created.

4.6 RESULTS

The test suite demonstrated the ability of the Help System to provide the range of behavior
expected of the Help System prototype.

SYSTEMS INC

C93 I032-U-2R08

Page 14

SECTION 5.0

CONCLUSIONS

The prototype Help System provides an interactive tool for adding help support to the VEG
system. It was designed to enable the scientist to control and shape the help facility without
bothering with the details of implementation. The Help System provides both a help system and a
tool for developing new help messages and modifying existing help messages. File management
and object management issues are transparent to the user. Currently, the editing facilities for
message modification are minimal. The Help System was designed so that it would be simple to
replace the current editing window with whatever editor (emacs, textedit, vi) the user might favor

for adding or modifying messages.

Since the Help System may not be needed by an experienced user, it was configured so that
it is loaded only when the user initially clicks on the Help System option in the Tool Box Menu.
This minimizes the overhead for the VEG environment.

-- C931032-U-2R08

SYSTEMS IN(::

APPENDIX A

LISP CODE FOR THE PROTOTYPE HELP SYSTEM

SYSTEMS INC

C931032-U-2R08

Page A- 1

;;; veg-methods7.1isp
.,.

;;; Created April 27, 1993
;;; Last Modified July 22, 1993

(in-package 'kee)

(defun start-help-system 0
"Starts the help system."

(remove.all.values 'help.system 'options)
(cond ((get.value 'help.system 'help.loaded)

(put.value 'help.system 'message
"Click on the window that you need help with")

(unitmsg 'viewport-help.system. 1 'open-panel!))
(t (put.value 'help.system 'message "Loading help ")

(unitmsg 'viewport-help.system. 1 'open-panel!)

(load-help)
(put.value 'help.system 'message

"Click on the window that you need help with")))
(show-text))

(defun load-help0
"Call the function to load help messages from the appropriate files into the

help slots of viewports."
(add-help-slots-to-viewports)
(add-help-messages "help-messages-veg")
(when (kb.exists.p 'learn)

(add-help-messages "help-messages-learn"))
(when (kb.exists.p 'azimuthplot)

(add-help-messages "help-messages-azimuth"))
(when (kb.exists.p 'polarplot)

(add-help-messages "help-messages-polar"))
(put.value 'help.system 'help.loaded t))

(defun add-help-messages (file)
"Load help messages from a file into the help slots of viewports."

(with-open-file (str file :direction :input :if-does-not-exist :nil)
(when str

(do ((win (read-file str)(read-file str)))
((null win) (values)) ; End of file

(if (unit.exists.p win) ; Window is found
(put.value win 'help (read-file str)) ; Read & store message
(read-file sLr)))))) ; Read past unused message

(defun add-help-slots-to-viewports0
"Modify the viewport parent units in the ACTIVEIMAGES knowledge base in
preparation for storing the help messages in the slots of each viewport unit."

(create.slot 'ai3-kb-viewports 'help 'member)
(add.value 'ai3-kb-viewports 'local.compact.unit.slotnames 'help)
(create. sl ot 'ai 3- u n it- vie wports 'help 'mere be r)
(add.value 'ai3-unit-viewports 'local.compact.unit.slotnames 'help)
(create.slot 'ai3-slol-viewports 'help 'member)
(add.value 'ai3-slot-viewports 'Iocal.compact.unit.slotnames 'help))

SYSTEMS INC

C93 I032-U-2R08

Page A-2

(defun get-more-help 0
"Prompts the user to select the screen for additional help."

(put.value 'help.system 'message
"Click on the window that you need help with")

(show-text))

(defun mouse-top-window 0
"This function allows the user to mouse directly on the window that represents
the object he needs help with."

(let ((pos (get-position)))
(window-stream-under-position pos)))

(defun unit-from-stream (window)

"Returns the name of the viewport corresponding to the window."
(getf (kwin-plist window) 'viewport))

(defun show-text 0

"Returns the help message from the moused window."
(let ((unit (unit-from-stream (mouse-top-window))))

(put.value 'help.system 'message
(if (not unit)

"Not a VEG window"

(let ((help (get.value unit 'help)))
(if help

help
"Sorry, no help currently available for this window"))))))

;;; Methods for Changing or Adding Help Messages

(defun open-change-help-menu 0
"Opens the top screen for changing or adding help messages."

(remove.all .values 'add.help 'options)
(cond ((get.value 'help.system 'help.loaded)

(put.value 'add.help 'message
"Navigate through the VEG system until the screen that you want to a66/cha_ge he_9 I[_ _s ,As'%\e.
Then left click on MODIFY.HELP.")

(unitmsg 'viewport-add.help.2 'open-panel!))
(t (put.value 'add.help 'message "Loading help ")

(unitmsg 'viewport-add.help.2 'open-panel!)
(load-help)
(put.value 'add.help 'message

"Navigate through the VEG system until the screen that you want to add/change help for is visible.
Then left click on MODIFY.HELP.")))

(remove.all.values 'workbench 'run.veg)
(unitmsg 'viewport-run.veg-of-workbench. 1 'open-panel!))

(defun modify-help 0
(put.value 'add .help 'message

"Left click on the window that you want to change the help on")
(add-help))

SYSTEMS INC

C931032-U-2R08

Page A-3

(defun save-help 0
"Saves the modified help messages to the help file."

(with-open-file (strv "help-messages-veg" :direction :output
:if-does-not-exist :create :if-exists :supersede)

(with-open-fde (strl "help-messages-learn" :direction :output
:if-does-not-exist :create :if-exists :supersede)

(with-open-f'de (stra "help-messages-azimuth" :direction :output
:if-does-not-exist :create :if-exists :supersede)

(with-open-file (strp "help-messages-polar" :direction :output
:if-does-not-exist :create :if-exists :supersede)

(dolist (uni (unit.children 'ai3-kb-viewports 'member))
(let ((mes (get.value uni 'help)))

(when mes

(let ((str (get-correct-stream uni strv strl stra strp)))
(princ uni str)

(princ "\ str)
(princ mes str)
(princ "\ str)))))

(dolist (uni (unit.children 'ai3-unit-viewports 'member))
(let ((mes (get.value uni 'help)))

(when mes
(let ((str (get-correct-stream uni strv strl stra strp)))

(princ uni str)
(princ"\ str)
(princ mes str)
(princ "\ str)))))

(dolist (uni (unit.children 'ai3-slot-viewports 'member))
(let ((mes (get.value uni 'help)))

(when mes

(let ((str (get-correct-stream uni strv strl stra strp)))
(princ uni str)
(princ "\ str)
(princ mes str)
(princ "\ str))))))))))

(defun get-correct-stream (uni strv strl stra strp)
"Returns the correct stream for the file holding the help messages for the
knowledge base containing the viewport."

(case (unit.kbname uni)
(VEG strv)
(LEARN strl)
(AZIMUTHPLOT stra)
(POLARPLOT strp)))

(defun add-help 0
"Adds help for a viewport."

(let ((unit (unit-from-stream (mouse-top-window))))
(if unit

(get-new-help unit)
(my-documentation-print "Not a VEG window - help cannot be stored"))))

SYSTEMS INC

C931032-U-2R08

Page A-4

(defun get-new-help (unit)
"Prompts the user to enter the new help message and then accepts the new

message."
(let ((old-mes (get.value unit 'help)))

(put.value 'add.help 'unit unit)
(cond ((or (null old-rues)

(equal old-mes)(equal old-mes)(equal old-mes))
(remove.all.values 'add.help 'help.message)

(put.value 'add .help 'message
"Enter the new help message. Left click on DONE when finished. <="))

(t (put.value 'add.help 'help.message old-mes)

(put.value 'add .help 'message
"Modify the previous help message. Left click on DONE when finished <=")))

(unitmsg 'viewport-add.help.4 'open-panel!)))

(defun make-one-long-string (list-of-strings)
"Concatenates a list of strings into one long string."

(make-one-long-string-aux list-of-strings))

(defun make-one-long-string-aux (result remaining-strings)

(if (null remaining-strings)
result

(make-one-long-string-aux (string-append result
(first remaining-strings))

(rest remaining-strings))))

(defun wipe-out-help 0
"Removes all the help slots and help messages from all loaded knowledge bases."

(delete.slot 'ai3-kb-viewports 'help)
(remove.value 'ai3-kb-viewports 'local.compact.unit.slotnames 'help)

(delete.slot 'ai3-unit-viewports 'help)
(remove.value 'ai3-unit-viewports 'local.compact.unit.slotnames 'help)

(delete.slot 'ai3-slot-viewports 'help)
(remove.value 'ai3-slot-viewports 'local.compact.unit.slotnames 'help)

(put.value 'help.system 'help.loaded nil))

Report Documentation Page

1. Report No.

4. Title and Subtitle

2. Government Accession No. 3. Recipient's Catalog No.

5. Report Date

November 1993

An Expert System Shell for Inferring Vegetation Characteristics -
Final Report 1993

7. Author(s)

P. Ann Harrison
Patrick R. Harrison

9. Performing Organization Name and Address

JJM Systems, Inc.
1225 Jefferson Davis Hwy, Suite 412
Arlington, VA 22202

12. Sponsoring Agency Name end Address

National Aeronautics and Space Administration

Washington, DC 20546-0001
NASA/Goddard Space Flight Center
Greenbelt, MD 20771

6. Performing Organization Code

8.

10.

11.

15. Supplementary Notes

13.

Performing Organization Report No.

C931033-U-2R00

Work Unit No.

462-61-14

Contract or Grant No.

NAS5-30127

Type of Report and Period Covered

Final Report
March - November 1993

14. Sponsoring Agency Code

The Lisp and KEE code for this work is available on a Sun Cartridge Tape.

16. Abstract

The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation
characteristics from reflectance data. The report describes the extensions that have been made to VEG in

1993. The historical cover type database has been removed from VEG and stored as a series of flat files
that are external to VEG. An interface to the files has been provided. The framework and interface for

two new VEG subgoals that estimate the atmospheric effect on reflectance data have been built. A new
interface that allows the scientist to add techniques to VEG without assistance from the developer has

been designed and implemented. A prototype Help System that allows the user to get more information
about each screen in the VEG interface has been added to VEG.

17. Key Words (Suggested by Author(s))

EXPERT SYSTEM, ARTIFICIAL
INTELLIGENCE, REMOTE SENSING,
LEARNING, DISCRIMINATION

1B D=stribution Statement

UNCLASSIFIED - UNLIMITED

19 Security Classif. (of this report) 20 Security Classif. (ot this page) 21. No of pages

UNCLASSIFIED UNCLASSIFIED 142
[

NASA FORM 1626 OCl

For sale by the National Technical Information Service, Springfield, VA 22161-2171

22 Price

