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EXECUTIVE SUMMARY:

Under the Small Business Innovative Research (SBIR) Program, a contract was awarded

by NASA's Lewis Research Center to develop high-frequency, high-performance packaging

for microwave and millimeter-wave monolithic integrated circuits (MMICs). The primary

technology thrust was the use of fused silica as the package substrate material to improve

the radiofrequency (RF) performance at operating frequencies through the Ka-band. The

research effort proceeded from a Phase I study (contract NAS3-25565) through Phase II

fabrication demonstrations (contract NAS3-25870). This report documents the findings of
the Phase II research effort.

Packaging is an important technology area that is essential for utilizing MMIC devices in

systems. Unfortunately, packaging is generally available only at frequencies below

approximately 12 GHz and is electrically and mechanically inappropriate for high frequency

operation. Much work needs to be done to develop high frequency packages that provide

minimum degradation to an electrical signal and are physically suited to integration into

systems. This SBIR program aggressively attempts to develop packaging for high frequency
operation using new packaging materials, processes, and concepts.

In its simplest form, a MMIC package consists of several parts. The primary part is the RF

substrate which carries the electrical signals to and from the MMIC device. The MMIC

device must then be enclosed to protect it from environmental hazards, which requires that

"walls" and a lid be added to the RF substrate. Finally, a "base" is added to the assembly
to provide mechanical and thermal support to the package and MMIC device. The SBIR

contract effort described in the following report utilizes this structure as a baseline, then

adds many advanced features such as multilayers, multicavities, power dividers, and integral
radiating elements.

For this effort, the operating frequency and overall antenna configuration require MMIC

spacing (package size) of a fraction of an inch. The designs described in this report address

several problems and challenges associated with high frequency operation and results in a

phased array module of dimensions 1" by 2", including radiating elements: representing a
substantial increase in circuit density.

The SBIR Phase II research utilized the StratEdge Process, a co-lamination of fully fired

ceramics, to fabricate the components. Three separate package designs were fabricated: 1)

a broadband single chip carrier, 2) a multilayer, multicavity module, and 3) a phased array

module. A top-level discussion of the process and the detailed component results will be
presented in this report.



INTRODUCTION:

The primary objective of this research and development effort was to develop monolithic

microwave integrated circuit (MMIC) packaging which will operate efficiently at millimeter-
wave frequencies. The packages incorporated fused silica as the substrate material which

was selected due to its favorable electrical properties and potential performance

improvement over more conventional materials for Ka-band operation. The first step

towards meeting this objective is to develop a package that meets standard mechanical and

thermal requirements using fused silica and to be compatible with semiconductor devices

operating up to at least 44 GHz. The second step is to modify the package design to add

multilayer and multicavity capacity to allow for application specific integrated circuits

(ASICs) to control multiple phase shifters. The final step is to adapt the package design
to a phased array module with integral radiating elements.

To reiterate, the goals of this program are:

1) Develop and build a standard package with fused silica substrates,

2) Modify the design into a multichip module, and

3) Develop the design into a phased array module.

For this program the three goals correspond to Tasks 1, 2, and 3. Task 1 was a

continuation of the SBIR Phase I work. Phase I identified fused silica as a viable substrate

material by demonstrating various plating, machining, and adhesion properties. In Phase

II Task 1, a package was designed and fabricated to validate these findings. Task 2 was to

take the next step in packaging and fabricate a multilayer, multichip module (lVlCM). This

package is the predecessor to the phased array module and demonstrates the ability to via
fill, circuit print, laminate, and to form vertical interconnects. The final task was to build

a phased array module. The radiating elements were to be incorporated into the package

instead of connecting to it with wire or ribbon bonds. The dimensions for the proposed

fused silica module for this contract are l'x 2" and that includes the radiating elements and

operates at 30 GHz. On an industry wide basis, there has been little or no progress in the

design and manufacture of T/R modules that can exploit the use of MMIC devices without

negating their size and system cost advantages. Most packaging has been cumbersome,

frequency limiting, and fails to address power and hermeticity concerns.

In order to achieve the proposed higher performance, several issues had to be addressed

such as material and electrical characteristics. Gallium arsenide (GaAs) MMIC phase

shifters which operate at about 30 GHz are to be used. This requires that the cavity size

be kept small, both for facilitation of interconnecting ribbon or wire bonds as well as to

ensure resonances outside the frequency band. The substrate materials considered were

silica and alumina. However, silica had the more desirable electrical characteristics of lower

dielectric constant and lower loss tangent.

The dielectric constant, er, for silica is 3.83 and 9.9 for 99.6% alumina. With a lower er, the
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microstrip trace widths can be wider for a given substratethickness,or the substratecanbe
thinner for a given trace width. A wider trace will provide lower DC lossesthrough the
trace sincethe cross-sectionalarea will begreater. In addition, larger line widths areeasier
to fabricate. If the substrate thicknessis reduced, then the packagewill be smaller. The
loss tangent is 0.000002for silica and 0.0002for 99.6% alumina at 1 MHz. The lower the
value the lessenergy is lost to the material asheat. Also, the less material there is, the loss

value will decrease. The choice was to design the single-chip carriers and the phased array
module with fused silica.

Several characteristics that make fused silica undesirable are its poor thermal conductivity,

low coefficient of thermal expansion (CTE), and low strength. Therefore, design issues and

processing modifications needed to be addressed prior to completing any packages. Since

there was no readily available processing data on building a silica MCM, the entire material

set and processes had to be developed for this program.
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PACKAGE DESIGN:

Task 1 Design: Single Chip Package

This design followed from the Phase I effort so that fused silica could be validated

as a packaging material. The package consisted of a 10 mil kovar base, two RF

feedthroughs and ten DC I/Os printed on a 5 mil fused silica substrate, a 10 mil silica

seal ring, and a 10 mil kovar lid. It was designed to operate at 30 GHz. The

dimensions were 0.430"x0.300"x0.025",excluding the lid.

Figure 1 shows the construction of the package. The top of the RF layer employed

a thick-film etchback process to ensure fine line definition for good electrical

performance. The 5 mil RF substrate was selected to permit flush mounting of the

MMIC, and also to keep the microstrip line width nearer the width on the GaAs

chip. A seal glass was be printed on the top of the RF traces and the bottom of the

seal ring for assembly. The subassembly had the vias drilled and cavity cut with a

CO2 laser.

The vias were filled with gold and the top and bottom ground planes printed to

complete the electrical grounding. The base were attached with a Au/Ge preform.

The base supports the fragile fused silica subassembly and also acts as electrical

ground and heat sink for the MMIC. The lid were attached with a Au/Sn preform

for sealing after die attach and bonding.

Task 2 Designs: Multichip Module

The prototype multichip module design from NASA includes one 50 ohm RF input

and four outputs through multibit, solid-state phase shifters. See Figure 2. In order

to accommodate this requirement, a Wilkinson power divider was necessary to

distribute the energy evenly to the four MMIC phase shifters. A Wilkinson power

divider was an obvious choice for balanced distribution of power from a single source

to the set of 4 phase shifters. The Wilkinson, by theory, would evenly split the

source power into 2 equal half power source units. This can be accomplished if the

source transmission line and two split transmission lines maintain the characteristic

impedance of the source, namely 50 ohms. The power of each branch would be

ideally 50% of that of the input source. A simple resistive network determines that
a 100 ohm delta resistance across the branches would result in maximum transfer of

power with zero reflective loss. In addition, there are two ASICs that will control

the phase shifters through buried DC bias traces. To avoid crosstalk, the traces were

be routed with multilayer capability. The actual design was refined through

breadboarding as required.

The StratEdge process was used to laminate four silica layers together with a

combination of high, 850°C, and low, 475°C, temperature processes. The StratEdge
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Figure 1. Initial DC to 30 GHz package design with two RF feedthroughs and
10 DC I/Os.
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Figure 2. Initial 30 GHz mulitchip module design showing cavities for the two

ASICs and four MMIC phase shifters.
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process was employed to address two problem areas:

A) The modular testing of the individual thin and thick film substrates before
final assembly, and

B) The ability to combine thin and thick film layers with a low temperature
process that would not degrade the thin film metallization.

All silica layers were laser machined as necessary to form vias, recesses, cavities, and

walls. The two DC layers and the seal ring were fabricated with high temperature

processing. The standard thick film process were as follows: 1) Via filling and

2) Print conductors. The RF layer was fabricated with thin film processing to ensure
electrical performance.

The assembly consisted of printing high temperature seal glass and interconnects on

the DC layers and assembling. The RF layer and the seal ring were printed with the

low temperature sealing glass and interconnects. Then the DC subassembly, RF

layer, and the seal ring were aligned for final substrate assembly. The invar base was

attached with a Au/Ge preform providing structural support, electrical ground, and

a heat sink. Finally, the lid was sealed with a Au/Sn preform to complete the
package.

Breadboarding

Several design aspects for the antenna needed to be identified prior to locking in the

final design. This was accomplished by 'breadboarding' or testing an individual
circuit without building an entire package.

Aperture Coupled Patch:

The first design was an Aperture Coupled Patch. These were designed to verify the

microwave coupling action from the top of a substrate to the bottom. In addition,

this test was to determine if the radiating elements were to be 'broadside fire' or
'end fire'.

Task 2:

The second breadboarding experiment was the comparison between the one-quarter
and one-third wavelength Wilkinson power divider. Touchstone and Microwave

Design System software packages were used to model the power divider design.

Theory dictates that a one-quarter wavelength design should give the best

performance. However, the design model of the components indicated that

performance was optimal with a one-third wavelength design.
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OBSERVATIONS:

During fabrication and assembly of the package components, various parameters,

processes, and fabrication details were monitored. These details were monitored due

to the novelty of the design and the lack of previous assembly information. The

following paragraphs list and discuss some of the physical characteristics observed

during fabrication.

TASK 1: Single Chip Package

LAPPING/POLISHING

The substrates were received with a 0.1 microinch peak-to-valley finish. This polish

produces an optically clear finish on both sides of the substrate. Also, a smooth

surface is believed to enhance electrical performance by reducing resistive losses.

LASER MACHINING

The vias and cavities were drilled through the silica substrates using a CO2 laser.

There was minimal slag after processing. Slag is the spill over from the molten

material adhering to the via or cavity walls. When the substrates were received

in-house, they were ultrasonically rinsed in acetone for two minutes and isopropanol

for two minutes to remove most of the slag.

VIA FILL

Via filling is accomplished through our proprietary multiple step via fill process to

ensure adhesion and complete filling.

SCREEN PRINTING

A thick film screen printing process was used to define the electrical conductor

patterns and adhesive seal glass patterns on the silica substrates.

Conductor:

A high temperature, 850°C, thick film gold conductor was printed onto the
substrates. After the gold was fired, the adhesion was very good. However, due to

the assembly process, the gold conductors go through another 8 to 10 firings. When

the gold adhesion is tested after assembly, the gold usually peeled off the substrate.

The repeated thermal cycling weakened the gold conductor bond to the substrate.
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Seal Glass:

There were two candidates for the seal glass, one devitrifying and one vitreous. A

devitrifying glass will crystallize after heating and a vitreous glass will remain

amorphous. After many experiments, the vitreous glass, labelled 40-00070, was found

to be hermetic when fused silica substrates were assembled without any printed gold

traces. However, when the gold traces were printed on the substrates and then

assembled, hermeticity was not repeatably achieved. The project was continued in

order to build packages to verify electrical characteristics.

ASSEMBLY

The parts were aligned in a simple, edge-align ceramic fixture, of StratEdge design,

weighted with ceramic blocks, and run through the furnace together. A ceramic

fixture was required since the parts will be run at 900°C.

BASE AqTACH

The base, Au/Sn preform, and 2-layer silica subassembly were hand aligned under a

microscope and clipped together. The assembly was sent through a 15% hydrogen -
85% nitrogen atmosphere furnace at 400°C. There was a little excess solder near
the four corners of the package (Figure 4).

LID A'VI'ACH

A similar process was applied for the lid, Au/Sn preform, and package assembly.

ENDVIEW DESCRIPTION:

Lid: 0.370" x 0.235" x 0.010" lid - kovar

Preform - Au/Sn

Layer 2: Gold ground plane -40-00051 gold conductor

Via fill - 40-00006 gold via fill
0.430" x 0.300" x 0.005" fused silica

High temp seal glass- 40-00070 seal glass

Layer 1: High temp seal glass- 40-00070 seal glass

RF feedthroughs -40-00051 gold conductor
0.430" x 0.300" x 0.005" fused silica

Gold ground plane -40-00051 gold conductor

Base: Preform - Au/Ge

0.430" x 0.300" x 0.010" base - kovar
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Figure 4. Photo of the assembled DC to 30 GHz package.
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BREADBOARDING (Part 1)

APERTURE COUPLED PATCH-

The aperture coupled patch was built with two silica substrates laminated together

to simulate a broadside-fire radiating element. The substrates assembled were

printed, assembled, and electrically tested at NASA LeRC.

LAPPING/POLISHING

The 1.000" x 1.000" x 0.005" antenna substrate was received with a 0. I microinch

finish and the 1.000" x 1.000" x 0.030" patch substrate was received with a 10

microinch finish. Since the microstrip trace was on the 5 mil substrate, that layer was

polished to minimize resistive losses. However, the patch substrate had the

microwave energy passing normal to it and it was believed that the rougher surface

would not adversely affect the RF signal. Subsequently, a rougher finish was applied

to that substrate to increase thick film gold and glass adhesion on the patch

substrate.

CIRCUIT PRINT

The high temperature gold conductor was used for this application. Since there was

not any thin film circuitry, low temperature processing was not required. After

printing, drying, and firing, the conductors were etched to provide the required high

resolution patterns.

SEAL GLASS PRINT

The high temperature seal glass, 40-00070, was only printed on the 30 rail substrate.

This provided enough adhesion for this test.

ASSEMBLY

The two substrates were aligned on a simple, edge-align, ceramic fixture, weighted

with ceramic blocks, and run through the furnace for assembly. This was required

to ensure the glass would flow and adhere to the opposing face of the antenna

substrate.

ENDVIEW DESCRIPTION:

Layer 2: Gold Antenna -40-00051 H gold conductor

1.000" x 1.000" x 0.005" fused silica

Gold ground plane -40-00051 gold conductor
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Layer 1: High temp seal glass- 40-00070 seal glass
1.000" x 1.000" x 0.030" fused silica

Gold Patch -40-00051 gold conductor

WILKINSON POWER DIVIDER -

The modeling of the power divider was performed using the Touchstone simulator

from EEsof (Appendix A). Once the concept was proven from the ideal case, the

models were transferred from electrical to physical parameters. This meant including

line length, and both conductor and dielectric losses. Another analysis with

Microwave Design Software (MDS) was performed across the frequency band of

interest, and the design of the power divider was optimized. The analysis resulted

in differences from fundamental theory. With respect to the design, the physical

length of the divider branches should have been 1/4 wavelength (the theoretical

optimum) and the branch resistor 100 ohms. The MDS showed that the branches

should have been 1/3 wavelength and the resistors at 86.9 ohm (Appendix B).

Experiments were set up to measure both the theoretical and the analytical designs.

LAPPING/POLISHING

The substrate dimensions required for this experiment were 2.25"x2.25"x0.010".

The plates were all polished to a 0.1 microinch finish. The smooth surface increases
thin film materials adhesion.

THIN FILM

There were two types of Wilkinson power dividers fabricated and tested. The first

design consisted of a one-quarter wavelength power divider with a 100 ohm nichrome

(NiCr) resistor. The second type was a one-third wavelength power divider with a

86.9 ohm tantalum nitride (Ta2N) resistor. Both designs used a thin film gold
conductor and thin film resistors.

The thin film vendor experienced difficulties processing the fused silica. For

example, metallization did not extend to within 3 mils of the substrate end, the test

resistors were shorted to ground, and the resistor values were not at specification.

However, after several plates, he was able to identify a process that ensured good

mechanical and electrical properties. The thin film vendor was also responsible for
dicing the 2.25" square plate into 1" square test circuits.

ENDVIEW DESCRIPTION:

Ta2N Layer 1: Gold conductor

Nickel barrier layer

Titanium/Tungsten adhesion layer
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Tantalum nitride resistor layer
1.000" x 1.000"x 0.010" fusedsilica
Titanium/Tungstenadhesionlayer
Nickel barrier layer
Gold groundconductor

NiCr Layer 1: Gold conductor

Nickel barrier layer

Titanium/Tungsten adhesion layer

Nichrome resistor layer
1.000" x 1.000" x 0.010" fused silica

Titanium/Tungsten adhesion layer

Nickel barrier layer

Gold ground conductor

TASK 2: Multichip Module

Several processing techniques were evaluated during assembly of this multilayer

package to improve manufacturability. They are discussed below and in the

RESULTS section.

LAPPING/POLISHING

It was believed that a rougher surface finish would increase gold trace adhesion.

This would allow for an increased mechanical bond between the gold and the

substrate. Therefore, the initial substrates were lapped to a 10 microinch finish.

This also lowered the substrate cost. During via fill firing though, about half of the

substrates cracked through the thermal via areas. Processing stopped while the cause

was investigated. After running several experiments, it was found that the optically

polished substrates withstood more handling that the lapped substrates. All

substrates were then sent to be optically polished to increase surface strength.

Although the rougher surface may have helped in gold adhesion, the smoother

surface appeared to remove any sharp radii that would initiate cracks due to the

CTE mismatch. Also, a smooth surface enhances electrical performance by reducing

resistive losses.

The gold that was used with the 10 microinch substrates was fired at 850°C. The

initial design included a high temperature DC subassembly and a low temperature

RF subassembly. When the decision was made to use the polished substrates, a

475°C gold was used for via fill and conductor printing. This would decrease the
thermal stresses during firing.
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LASER MACHINING -

Refer to the procedure mentioned in Task 1.

THIN FILM PROCESSING -

After learning how to process the fused silica from the power divider test circuits,

the next circuit pattern processed was the RF layer. This pattern included

transitions, three power dividers, and one test resistor. The substrate was polished,

laser drilled, and then thin film processed. The vendor had difficulty keeping the

cavity walls free from gold. Eventually, the gold was removed by selective placement

of etching solution and then rinsing the substrate. This was very tedious but worked

at the time. The vendor eventually developed an alternate method to remove any
excess gold.

In addition, the resistors needed to be processed so that they would have the

required value after final assembly. Several experiments were run to determine what

the starting resistor value should be.

VIA FILLING -

Thin Film Layers:

A low temperature gold conductor was used to fill the vias. This was done to

minimize the thin film resistor variation during heating cycles and to protect the thin

film metallization from oxidizing.

Thick Film Layers:

Via filling is accomplished through our proprietary multiple step via fill process to

ensure adhesion and complete filling.

As previously mentioned, the substrates began to crack severely during via fill firing.
The yield was only 50% at best. A low temperature, 475°C, conductor was then used

as a via fill material. Since there would be less stress induced by a lower

temperature, the substrate was able to withstand the via filling.

SCREEN PRINTING -

Conductor:

A low temperature, 475°C, gold conductor was used on the seal ring, DC bias, and
ground layers. The process used was that of 'print/dry/fire' which produced a trace
thickness of about 0.4 mils.
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Seal Glass:

The seal glassthat was initially chosenfor sealing the two DC layers together had
a high temperature, 900°C, sealingprofile, i.e. 40-00070. However, this glasscould
not be usedto sealthe RF layer and the sealring. A low temperature, 475°C, glass
was identified for this process. However, when the via fill and conductor inks were

changed to low temperature processes, all the seal glass needed to be changed to the
low temperature glass. This glass was identified as 40-00079.

Interconnect:

Low temperature interconnect was printed to connect vias from one layer to another.

CERAMIC ASSEMBLY-

The initial plan for assembly was to print the seal glass and interconnects on the tops

and bottoms of each layer separately and then assemble all the layers simultaneously.

However, it was determined that when one side of the substrate is printed and

glazed, there is not enough strength in the substrate to withstand the squeegee
pressure during the second print.

The assembly process was changed to print the top of layer 1 and the bottom of layer

2 and then assemble. Print the top of that composite subassembly and the bottom

of layer 3 and then assemble. Then print the top of that subassembly and the bottom
of layer 4 and then assemble.

BASE ATrACH -

Soldering the base on the package was the next step. A Au/Ge preform was

designed for base attach. Several experiments were run to determine the expansion

mismatch effect. All substrates cracked when assembled with Au/Ge performs.

Experiments were run with Au/Sn solder paste. This process worked with several of

the test samples and with two packages. However, on the next three packages, the
substrates cracked during cool down. The cool down was even extended to twice the

time and subsequent parts still fractured after assembly. The CTE mismatch is

believed to be the cause of the cracking.

In order to electrically test the packages, a process had to defined which would allow

base attachment without fracturing the package. A silver-filled epoxy was identified

which had a cure temperature of 150°C. An experiment was run to assemble a

package and no cracking was observed. In order to prove the concept of this

program, it was decided to use the conductive epoxy as the sealing material for the
remaining packages.
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50 OHM THROUGH LINES -

The 50ohm microstrip transmissionlines wereepoxiedin place with the samesilver-
filled material usedfor baseand lid attach.

LID ATI'ACH -

The lid/preform was supplied separately from the package. However, several

electrical tests required that the lid be attached to the package. Initially, the lid was

to be attached with a Au/Sn solder preform. However, when the base was attached

with the silver epoxy, the lid would also have to be attached with the silver epoxy.

ENDVIEW DESCRIPTION:

Lid: 1.000" x 0.925" x 0.010" Lid - Kovar

Preform - 80% Au 20% Sn OR (Conductive epoxy - 400102)

Layer 4: Top conductor - 40-00040 low temp gold conductor

Via fill - 40-00040 low temp gold conductor

Glass pull -40-00070 high temp seal glass
1.000" x 1.000" x 0.010" fused silica - seal ring

Bottom seal glass - 40-00079 low temp seal glass

Bottom interconnect - 40-00080 low temp interconnect

Layer 3: Top interconnect - 40-00080 low temp interconnect

Top seal glass - 40-00079 low temp seal glass

Via fill - 40-00040 low temp gold conductor

1.000" x 1.000" x 0.010" fused silica - RF Subassembly

Bottom seal glass - 40-00079 low temp seal glass

Bottom interconnect - 40-00080 low temp interconnect

Layer 2: Top interconnect - 40-00080 low temp interconnect

Top seal glass - 40-00079 low temp seal glass

Top conductor - 40-00040 low temp gold conductor

Via fill - 40-00040 low temp gold conductor

Glass pull - 40-00070 high temp seal glass

1.000" x 1.000" x 0.010" fused silica - DC Bias layer

Bottom seal glass - 40-00079 low temp seal glass

Bottom interconnect - 40-00080 low temp interconnect

Layer 1: Top interconnect - 40-00080 low temp interconnect

Top seal glass- 40-00079 low temp seal glass

Top conductor - 40-00040 low temp gold conductor

Via fill - 40-00040 low temp gold conductor
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Glass pull -40-00070 high temp sealglass
1.000"x 1.000"x 0.010" fused silica - DC Bias layer

Bottom seal glass - 40-00079 low temp seal glass

Bottom interconnect - 40-00080 low temp interconnect

Base: Conductive epoxy - 400102
1.000" x 1.000" x 0.015" base - invar

BREADBOARDING (Part 2)

RADIATING ELEMENT TEST CIRCUITS -

LAPPING/POLISHING

The substrate dimensions required for this experiment were 2.25"x2.25"x0.010".

The substrates were all 0.1 microinch polished. The smooth surface increases thin
film materials adhesion.

THIN FILM

The next test circuit pattern was the radiating elements. These were processed

separately so that NASA could test the two designs and identify the design with the

best performance. This processing went relatively well except that there was a

requirement of a one mil gap in one of the element designs and the thin film vendor

only provided a 1.2 to 1.5 mil gap. Since the vendor could not produce the circuit

with required dimensions, this design was not integrated into the radiating element

portion.

The thin film vendor had identified a process by this time and was able to produce

the test circuits with a relatively good yield. The thin film vendor was also

responsible for dicing the 2.25" square plate into 1.0"xl.l"test circuits.

ENDVIEW DESCRIPTION:

Layer 1: Gold conductor pattern (Two possible patterns)

Nickel barrier layer

Titanium/Tungsten adhesion layer
1.000" x 1.000" x 0.010" fused silica

Titanium/Tungsten adhesion layer

Nickel barrier layer

Gold radiating element conductor pattern (Two possible patterns)
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TASK 3: Phased Array Module

LAPPING/POLISHING -

Same procedure as stated in Task 2.

LASER MACHINING -

Same procedure as stated in Task 2.

THIN FILM PROCESSING -

The final pattern was the combined power dividers and radiating elements. When

the vendor began processing the lasered fused silica, the substrates warped. The

cause for the warpage was never identified. Stresses built up during laser machining

was thought to be the primary cause. The vendor was able to develop a flattening

procedure which made the parts usable for further processing. In addition, the

process for removing excess gold was defined by using an extra mask developed by

the vendor at his expense. However, 25 two-up substrates only yielded 26 completed

parts. The CTE mismatch over the l"x2" area is believed to cause the decreased

yield.

VIA FILLING

Same procedure as stated in Task 2.

SCREEN PRINTING -

Conductor:

Same procedure as stated in Task 2.

Seal Glass:

All the DC layers and packages containing the 50 ohm through lines used the same

procedure as stated in Task 2.

However, the RF and Seal Rings required conductive and non-conductive epoxies

to complete package assembly.

Interconnect:

Same procedure as stated in Task 2.
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CERAMIC ASSEMBLY

The same assemblyprocedure was used as on Task 2. Twelve packageswere
assembledusing the low temperature process. When a 100% DC continuity check
was performed, none of the packagespassed. These parts were used for the
packagesrequiring the 50ohm through lines. The processwaschangedto createan
increasedcontinuity betweeninterconnectbumpsbetweenlayers. The RF substrates
would be printed twice with sealglassand interconnectbumps. After glazing, there

was about 40 mils camber across the substrate length. This caused a new assembly
technique to be developed.

The top of the DC subassembly was printed with a non-conductive epoxy and a

conductive silver-filled epoxy. The bottom of the RF layer had to have the epoxies

hand painted since the substrates were too warped to be screen printed. The DC

subassembly and RF layer were assembled and placed in a dryer to cure the epoxies.

Next, the top of the RF layer and the bottom of the seal ring had the epoxies applied

to them. They were then assembled and placed in a dryer to cure.

BASE ATTACH

The silver-filled epoxy was used for base attach as on Task 2. After NASA tested

the packages with the 50 ohm through lines and the l"x2"x0.050 °' bases, they
requested that StratEdge build the functional packages with a l"xl'x0.050". NASA

would cut the bases in half and StratEdge would assemble the base with the silver

epoxy (Figure 5).

50 OHM THROUGH LINES -

Same procedure as stated in Task 2.

LID A'I_FACH

Same procedure as stated in Task 2.

ENDVIEW DESCRIPTION:

Lid: 1.000" x 0.925" x 0.010" Lid - Kovar

Preform - 80% Au 20% Sn OR Conductive epoxy - 400102

Layer 4: Top conductor - 40-00080 low temp gold conductor

Via fill - 40-00079 low temp gold conductor

Glass pull -40-00070 high temp seal glass

1.000" x 1.000" x 0.010" fused silica - seal ring

Bottom seal glass - Low temp seal glass -40-00079 OR

21



Figure 5. Photo showing assembled Phased Army Module with ASICs and

MMICs in their respective cavities.
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Layer 3:

Layer 2:

Layer 1:

Base:

Bottom interconnect

Non-conductive epoxy - 400103

- Low temp interconnect - 40-00080 OR

Conductive epoxy - 400102

Top interconnect - Low temp interconnect - 40-00080 OR

Conductive epoxy - 400102

Top seal glass - Low temp seal glass - 40-00079 OR

Non-conductive epoxy - 400103

Via fill - 40-00040 low temp gold conductor

1.000" x 2.000" x 0.010" fused silica - RF Subassembly

Bottom seal glass - Low temp seal glass - 40-00079 OR
Non-conductive epoxy - 400103

Bottom interconnect - LOw temp interconnect - 40-00080 OR

Conductive epoxy - 400102

Top interconnect Low temp interconnect - 40-00080 OR

Conductive epoxy - 400102

Top seal glass - Low temp seal glass - 40-00079 OR
Non-conductive epoxy - 400103

Top conductor - 40-00040 low temp gold conductor

Via fill - 40-00040 low temp gold conductor

Glass pull -40-00070 high temp seal glass

1.000" x 2.000" x 0.010" fused silica - DC Bias layer

Bottom seal glass - 40-00079 low temp seal glass
Bottom interconnect - 40-00080 low temp interconnect

Top interconnect - 40-00080 low temp interconnect

Top seal glass - 40-00079 low temp seal glass

Top conductor - 40-00040 low temp gold conductor

Via fill - 40-00040 low temp gold conductor

Glass pull -40-00070 high temp seal glass
1.000" x 2.000" x 0.010" fused silica - DC Bias layer

Bottom seal glass - 40-00079 low temp seal glass

Bottom interconnect - 40-00080 low temp interconnect

Conductive epoxy - 400102
1.000" x 2.000" x 0.050" base - Invar OR

1.000" x 1.000" x 0.050" base - Invar
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TEST RESULTS:

TASK 1: Single Chip Package

MECHANICAL

While Phase I addressed the feasibility of incorporating fused silica as a substrate

material, Phase II Task 1 must demonstrate that all processes in the physical

construction techniques applied can be combined on a single unit without degrading
any of its critical components or connections.

The Task 1 results showed that the concept of making a package with fused silica as

the substrate material is feasible but that several areas still need to be addressed,

such as gold adhesion, hermeticity, electrical performance, and manufacturability.

In addition to the Task 1 packages there was a concurrent contract with Hughes
Aircraft Company to fabricate three types of single-chip, fused silica hermetic

packages. The operating frequencies were 32 GHz, 35 GHz, and 44 GHz. Figure 6
shows the 44 GHz package.

The manufacturability of the NASA packages and the Hughes packages was very low.

The 5 rail and 10 rail fused silica substrates were very difficult to handle without

breaking or cracking. Also, the Coefficient of Thermal Expansion (CTE) mismatch

was the main cause of cracking during processing. The CTE of silica is 0.5 x 10_

in/in/°C and the CTE of gold is 15 x 10 .6 in/in/°C. The rule of thumb for processing

various materials is that roughly a 10% difference in CTEs is acceptable. The

difference in CTE between the silica and gold is 3000%. Needless to say this caused
many processing difficulties.

Eventually, a process was defined so that packages could be built consistently. All

assembled parts were tested for hermeticity on a Varian Porta-Test II portable

helium leak detector. If the parts held to greater than lxl0 8 atm-cc/sec during
helium spray then they were considered hermetic.

Most of the packages built were able to pull vacuum down to 10 .9 atm-cc/sec.

However, when the parts were sprayed with helium, the leak rate was greater than

lxl0 _ atm-cc/sec. The parts were airtight but did not pass MIL-STD-883C, Notice

9, Method 1014.9. This was the final iteration for the single-chip carriers. The

hermeticity and electrical performance could not be met and the manufacturability
yield was at best 10%.

ELECTRICAL

Electrical data from Task 1 showed encouraging results. Although none of the parts
met all target values, excellent performance was achieved to well above 30 GHz.
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Figure 6. t"hoto showingthe DC to 44GHz package.
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There were two notable examples 1) a Hughes designed 44 GHz hermetic package

was built and tested favorably up to 35 GHz (Figure 7), and 2) a modified Hughes

designed 44 GHz non-hermetic package was tested to 50 GHz with excellent results

(Figure 8). Unfortunately, the performance could not be duplicated between parts.

It was thought that when the processing parameters were sufficiently defined, the

electrical design could be refined allowing higher performance and greater

consistency among parts. Eventually, the project was descoped due to the inability

to duplicate the previous success within the fixed cost of the program.

WILKINSON POWER DIVIDER DESIGN:

MECHANICAL

There were several test patterns and circuit patterns required for this program. The

first pattern was to evaluate whether the Wilkinson power divider should have

nichrome or tantalum nitride resistors. There were errors in the initial layout and

the vendor had difficulties with the placement of the test resistor. After this was

corrected, the processing proceeded acceptably with the tantalum nitride.

ELECTRICAL

There was a discrepancy between the theoretical design and a modeled design. The
two designs were fabricated on thin film and tested on an HP 8510C Network

Analyzer. The results showed that the modeled design had slightly improved

performance over the theoretical design. The decision was made to build the Task

2 and Task 3 power dividers with the one-third wavelength design.

TASK 2: Multichip Module

MECHANICAL

Task 2 showed that a multichip, multilayer package can be assembled in fused silica.

Although the yield was relatively low, the concept was proven. The Multichip

Module required innovative processing techniques in order to minimize damage to

the thin film circuitry and to optimize the CTE mismatches. The first requirement

being polished substrates to provide increased substrate strength and increased gold

adhesion. The second being a low temperature assembly process to protect the thin
film circuitry and to minimize CTE stresses. The base had to be attached with a

silver-filled epoxy since Au/Sn soldering caused the package substrates to crack. This
would suffice for electrical evaluations.

ELECTRICAL

DC continuity testing was measured with a Hewlett-Packard E2378A Multimeter.
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After assemblyof each section, the parts were tested for DC connection between
various points on the subassemblies. The parts were not 100% electrically tested but

only random points were checked. Of the points checked, all were connected. This

proved to be inadequate since when NASA received the packages and performed DC

testing, about half of the finished Task 2 packages were not completely connected.

The assembled Task 2 packages were sent to NASA LeRC for mounting on a test

fixture. The parts were sent back to StratEdge to be tested on the Hewlett-Packard

8510C Network Analyzer for electrical performance. The package parameters were

measured from 28 to 33 GHz for a 5 GHz bandwidth window. The insertion loss

($21) was measured on the module (Figure 9) with and without a lid to determine

the amount of resonance effects the lid produced. The insertion loss measured from

port 2 to port 1 included the losses of the microstrip lines, the transitions through

three walls, the power division through 2 Wilkinson power dividers, two ribbon

bonds, and a microstrip insert through the phase shifter cavity of 0.250"

Theoretically, assuming no loss in any part of the path, the magnitude of $21 would

be the 3 dB times 2 power dividers, or 6 dB. NASA requested markers be placed

at the center frequency, and at both 500 MHz and 1 GHz bandwidths to determine

the windows of operation for the module. The magnitude of $21 measured on the

module varied from approximately 10 to 13 dB within a 1 GHz bandwidth at the

center frequency of 31.5 GHz (Figure 10). Subtracting the 6 dB loss from the 2

power dividers, between 4 and 7 dB of loss was induced across the band due to the
other transmission line effects. The center frequency of 31.5 GHz was chosen

because the 1/4 wave node was at that frequency. The $21 response ranged from

10.3 to 11.8 dB across the 1 GHz bandwidth with the lid placed on the module

(Figure 11), reducing the variance of the power loss from 3 dB to 1.5 dB across the
band. The return loss was better than 12.9 dB over the bandwidth with no lid

(Figure 12) and better than 10 dB with the lid (Figure 13). The presence of the lid

not only reduced the variance of the insertion loss, but also reduced the magnitude

of the return loss by coupling to the RF line. It should be noted that there are

secondary effects with respect to the RF performance due to the lid (Appendix C).

Although the module will perform differently when MMICs are inserted, at least

some of the transmission parameters can be determined from the measured behavior

of the module using the current methodology.

BREADBOARDING

APERTURE COUPLED PATCHES:

MECHANICAL

Assembly requirements for the Patches were much less demanding. Since there were

no thin film circuits, a high temperature assembly process could be employed. After

the thick film gold was printed and etched, the 40-00070 glass was used to assemble

the two layers together to form the Aperture Coupled Patch.
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Figure 9. Port configuration on the Multichip Module as tested on the HP

8510C Network Analyzer.
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ELECTRICAL

NASA performed the testing on the broadside-firepackagesin order to determine
if this configuration would be acceptablefor the Task 3 design. The resultswere
acceptablebut were slightlyunder theperformanceof end-fire elements. In addition,
there were concerns with the fused silica not having enough strength and would
require a metal basefor support. With this in mind, NASA LeRC decidedto usethe
'end-fire' radiating element due to required structural support.

RADIATING ELEMENT DESIGN:

This processingwent relatively well exceptthat there wasa one mil gaprequirement
in the horn of the Microstrip/Slotline Taper element. The vendor only provided a
1.2to 1.5mil gap. Sincethe vendor could not consistentlyprovide the one mil gap,
NASA LeRC decided to use the alternate design,i.e. the Microstrip Taper/Slotline
design. The two designsare shownin Figure 14.

TASK 3: PhasedArray Module

MECHANICAL

On the Task 3 parts, it wasdeterminedthat to get the l"x2" RF substratesto adhere
to the two DC layers without cracking,it wasnecessaryto useconductiveand non-
conductive epoxies. The two DC layerswere assembledwith the low temperature
glass and interconnect, but the RF layer and seal ring were attached with the
conductive and non-conductiveepoxies. The two epoxieswere used insteadof the
sealglassand interconnect materials. Due to the cracking in the RF layers,only one
fully functional module wasableto be fabricated. However, all five 50ohm through
moduleswere able to be fabricatedsinceelectrical connection wasnot requirement.
All packageswere visually inspectedfor workmanship. Wherepossible,thepackages
were reworked for minor cosmetic flaws.

ELECTRICAL

A 100%continuity testingof subassemblieswasnot incorporated until after all the
Task 3 DC subassemblieswere complete. When the DC subassemblieswere tested,
there was about a 50% electrical yield. Several of the subassembliescould be
repaired. The onesthat could not be repaired were usedfor the packagesrequiring
the 50 ohm microstrip through lines. NASA wasable to get the radiation patterns
with thesepackages. The remaining electrically good subassemblieswere used to
fabricate functional packages.Functional testingwill be conductedby NASA LeRC
at their facility.

35



MICROSTRIP l $LOTLINE TAPER

M|CR_STR|P_

1.00 .450

MICROSTRIP TAPER / SLOTLINE

;_x .OIO

,- IJO0

_;_X )-.]O0 -I

L_

246

2X a85_

..L

Jt-,_=

_L
_o-EX 435

Figure 14. Two possible designs for the Task 3 radiating elements.

36



SUMMARY

Much was learned about processing fused silica on this program. There were positive and

negative aspects for using fused silica in microwave packages. On the positive side,

StratEdge learned how to get the package to perform electrically at the specified frequency.
The complex thin film designs worked for the modules.

On the negative side, StratEdge learned that fused silica is very difficult to handle and

process into packages. The CTE mismatch is the major cause of low adhesion strength and
that there are no compatible processing materials like there are with alumina. The thin film

vendor ran into many processing difficulties partly due to the stresses caused by lasering the
substrate.

The primary question that needs to be asked is whether the program met the specified
goals. The goals of this program were:

1) Develop and build a standard package with fused silica substrates

2) Modify the design into a multichip module (Task 2), and

3) Develop the design into a phased array module (Task 3).

(Task 1),

TASK 1"

The Task 1 package was fabricated with a high temperature process. The Task 1 packages

met many of the mechanical and electrical goals as stated in the Task 1 Summary report.

Similar packages, developed under an alternate program, were electrically tested through

44 GHz but only a few yielded hermetic results. Several package configurations were

designed and fabricated which increased StratEdge's fused silica processing knowledge.

Unfortunately, resources did not permit us to obtain consistent results. Packages developed

in this configuration at similar dimensions appear viable with only moderate additional
resources.

TASK 2:

The Task 2 process pushed the processing limit of packaging. First, the processing

temperature needed to be kept below 500°C in order to minimize resistor degradation.
Second, conductors and glasses needed to be developed to have minimal stress during firing

due to the CTE mismatch between the silica and the inks and glasses. Third, since the

soldering materials were not able to be matched to the low CTE silica, a conductive epoxy

had to be used for base and 50 ohm through attach. Mechanically, the process goal was met

with respect to substrate lamination. However, the bases could only be attached with a
conductive epoxy.

Electrically, only a few of the modules were 100% DC electrically connected. One module

was tested on the Network Analyzer and found to have approximately 11 dB insertion loss
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acrossa 5 GHz bandwidth centeredat 31.5GHz. After analysisthis value appearsto be
reasonable. This wasthe first time that a multilayer, multichip module that combinedthick
and thin film processingwasassembled.The overall electrical performance was acceptable

within the frequency band of interest, but further optimization should offer enhanced

performance.

TASK 3:

Only one of the Task 3 products was able to be completely assembled that met the DC

electrical requirements. However, not all of the mechanical requirements were met. The

two DC layers were assembled with the low temperature glass but the RF and seal ring had

to be attached with conductive and non-conductive epoxies. There were five 50 ohm

through modules that were assembled. The substrates were assembled with the low

temperature seal glass and interconnect. They will be tested radiation patterns. The

functional package will have the MMIC chips attached, wire bonded, and electrically tested.

NASA will perform these tests at a later date.

Recommendations:

In order to address a low cost package produced in large quantities (greater than 100,000),

a number of process steps must be modified. The following recommendations should yield

a more reliable and affordable approach.

1. To address the stress cracking of the substrate:

A)

B)
C)
D)

Use a material system that has a CTE greater than that of fused silica. For

example: alumina, cordierite, a silica based low temperature cofire system, or

combinations of more compatible materials to increase strength and electrical

performance.

Consider the use of ultrasonic machining instead of laser machining.

Redesign the corner radii in the cavities.

Use thicker silica on the DC layers

, To address the costly thin film layer which includes RF circuitry and a resistive

network:

A)

B)

Examine the electrical performance of this layer in thick film. For example,

StratEdge Corp's etchable thick film gold provides 3 rail lines and spaces and

holds 0.25 rail tolerance.

The thin film resistor needs to be addressed. From a processing perspective,

the thin film profile needed to accommodate the resistive network is not

compatible with many seal glasses employed to bond the silica layers together.
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To address the issue of substrate fracture due to Au/Sn soldering:

A) Consider using alumina for the DC layers so that there is no CTE mismatch
between the base/solder and the substrate.

Other possibilities include:

A)
B)

c)
D)

Redesign in 99.6% alumina

Redesign DC circuitry and interconnect distances

Use one substrate for DC layers

Use dielectric build up for DC bias and grounding.
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APPENDIX A

Power Divider Model
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APPENDIX B

Actual Package Power Divider Results and Discussion



To: G. Holz, R. Bub

Fr: M. Goetz

Dt: 1/27/92

Re: Summary Report - Wilkinson Power Divider Measurements

INTRODUCTION

The following is a summary of the measurement procedure, technique,

and results from the thin film, 1/4 and 1/3 wavelength, Wilkinson

power dividers. The measurement plots are referred to by the thin

film resistor value incorporated in the divider, and the time of

the measurement, i.e. 100-20:26:06. No conclusions are made to

specific results, as they are determined by the customer's results

and expectations. Since there were no electrical specifications

supplied by the customer, only general performance observations can
be made.

_EASUREMENT PROCEDURE AND TECHNIQUE

Measurements were made on the power dividers using the HP8510C

Network Analyzer, interfaced with the Wiltron 3680K Universal Test

Fixture. Cable adapters were used to transition from 2.4mm to

2.92mm connectors. A 3.5mm right angle launch was also used to

connect port 1 of the VNA to the PDI (source). Port 2 of the VNA

was connected to PD2, and PD3 was terminated with 50 ohms. This

configuration afforded measuring the following scattering

parameters: SII, $21, S12, S22. Port 1 was then connected to PD3

while PDI was terminated with 50 ohms. From that connection, $32
was measured.

A Thru-Reflect-Line (TRL) calibration was developed within the

network analyzer with the following configuration: 401 pts., step

mode, fstart=IGHz, fstop=50GHz. The bandwidth of interest was then

set between 26-34GHz. The marker(s) were set initially for a

center frequency of 30GHz, which was the designed frequency of
operation.

2.5mm(100 mils) of line was calibrated out on the power divider

using the Wiltron TRL cal kit. This was for the purpose of de-
embedding the connectors.

One effect on the measurements was the assembly of the right angle

launch. The TRL cal was made on the two standard ports of the UTF,
using the 2.4mm cables. The right angle launch had a 3.5mm

connector, so the port 1 cable was replaced with a 3.5mm cable.

The magnitude of the effect of this replacement is unknown. 3.5mm

connectors and cables are designed to be mode-free to 26.5GHz, but
the frequency range of measurement was 26-34GHz.

DISCUSSION

There were two types of Wilkinson power dividers designed, manu-

factured, and tested. The first is a i00 ohm, 1/4 wavelength, NiCr

substrate, the second is an 86.9 ohm, 1/3 wavelength, TaN sub-

strate. Both designs used a thinfilm gold conductor and thinfilm
resistors.



100 ohm NiCr

*The insertion loss ($21) mag/phase matched well for the five

devices measured, (100-19:09:09). The phase was aligned using
electrical delay for each device. The magnitude of the insertion

loss ranged from 4-5 dB across the band. On graph 100-17:07:48,
the magnitude had a range of 5-6 dB.

*The return loss ($11) mag was between 13-23 dB at the center

frequency 30.2775GHz, (100-18:44:37, 100-17:09:13).

*The $12 and $22 mag were measured on graph 100-20:15:52. The

result again show a good match, with the range of $12 between 4-5

dB, and $22 >i0 dB across the band. A desirable return loss for
$22 would be >15 dB in the operating band.

*The $32 mag/phase was measured on two devices. On graph I00-

16:01:44, the magnitude had a range of >12 dB. Graph 100-15:58:57

had an $32 response of 5-10 dB. No conclusions were made as to the

desired value, but it should be noted that there was a significant

difference between the two parts. The effect is possibly
attributed to inconsistencies in the thinfilm resistor.

*Graphs 100-19:11:00, -19:03:26, and -19:20:19 were individual

measurements on a single I00 ohm device. The insertion loss was

greater than expected, with a range of 6-8 dB. The return loss was

>28 dB at the designed center frequency of 30GHz, and the phase was
linear across the band.

86.9 ohm TaN

*The insertion loss ($21) mag/phase matched well for the five

devices measured, (86.9-19:22:52). The phase was aligned using
electrical delay for each device. The magnitude of the insertion

loss ranged from 3-6 dB across the band. On graphs 86.9-16:34:51,
and -16:55:14, the magnitude ranged from 3.5-5.0 dB.

*The return loss ($11) mag ranged from 17-30 dB at the center

frequency 30.2775GHz, (86.9-19:43:05). Individual $11 measurements

were made, with >22 dB return loss at the center frequency (86 9-
16:41:35, -16:49:49).

*The $12 and $22 mag were measured on graph 86.9-20:23:54. The

insertion loss ranged from 3-4 dB, with the return loss >i0 dB

across the band. Again, the S22 mag should be >15 dB.

*The S32 mag/phase was measured on graph 86.9-16:10:56. The
insertion loss was >ii dB across the band.

*Graphs 86.9-19:43:27, -19:38:31, and -19:48:03 were individual

measurements on a single 86.9 ohm device. The insertion loss

ranged from 7-10 dB. The return loss was >32 dB at the center

frequency of 30GHz, and the phase was linear across the band.

Graphs 86.9-20:22:06, -20:19:11, and -20:23:26 were also individual

measurements on a singlee 86.9 ohm device. The insertion loss

ranged from 3-4 dB. The return loss >28 dB at a frequency of
30.4GHz, and the phase was linear across the band.

CONCLUSIONS

Although there were no electrical specifications for performance

requirements, either to previous measured data, or to existing

design, a Touchstone model was developed for the purpose of

determining some ideal or reasonable results. An ideal bandpass

power divider would have a narrow operating range, where the



divider elements would be matched and balanced to the input port of
the device. The return loss (SII) of the input port should be
great at the designed center frequency (>20 dB). The impedance of
the divider elements should be matched to the resistor element and
the input port, and would have a minimal insertion loss (3-4 dB)

across the band. The elements should be balanced, such that the
same loss is attained on each.

An MDS circuit is presently being designed from the physical

properties of the devices. Measurement data will be imported from

the network analyzer, and an optimization will be performed to

determine the modifications made to the physical model to match the

electrical model. The model can therefore be used for future
designs.



N

C OJ 0
W w

_.J @ E r,- @
w r',- GO !W r,,. LP

._ LTi Y I"l.JOJ
• . []-'

_OJ I __O-J I

0

1-
12

\
o o

o QU+7

@
--'ILL I
OdW

IT <_tJ
l

E

O]
0

I]1]_ EEl
Od Og
Z Q I_l t.[l

< 6 r,;n7
<q-

-'-ill I
OJl,I

E
)

I
]

)

U

N _

COO
r<

[i:n,j @
Ld @ f'-

07@
12 •

;,2__I-rj I

_

/

---7-

h
ZE

Llii

n

t
-4
/

N
I

q-om

EU]
W@lO
Y@W
E
_CrO_

L___

/

I

!

F-

T

KF--

Z °-

G_
7_

e_

OCO

NN
II
O0

O0
t90

O0

mK
0) 0

ID_r
1111"0

H
En
GO
FI--



T]]

"_ Or, ,
rd I.D
r\- D

(:0[o
oj I

l]J
@
rl]

..E
CL J"_

LL
[_]
I---I

\ Z
0 0

o @@._

0_

CdW

_oO: <3nJ

LL
W
E]

i>

C[ L%
_L

Oi
13] -"
0 fl

I

y

]] rU-
N

Eg @ O_ I

dr6e o"E]
'q- 3)

-_L I
nJW q.

rj] IZ _1_> _:
&

OJ

0:
W
Y
Or
G
2_
A

N I_
I-0
©

f_- LD
[\- FtJ
RJ

[T] I

N@
I]3

FOO
DJ

05 nJ @.
Ld@@
Y[OLO
01

E@I

Nil]
T_

Ld@_

E@ I
FU

£
:T]

N
I
0

r\

,r-OF,,"

EEFLI
II

111@
",/lq,-.

J
G
Z

h-

E
,--I

0
0_

L]

/

h

\

T_
O-I 00_

Z ""
IS f\

NN
IT
0 0

El@
©-@
@@
EgE_
@@

@N
@@

OJ O)

R
FT[L
_0
I-F--
EO CO



I]3

[Ul

t]

Z

I
O

[]

A.

tL
W
O

Z
rr

O] Z
0 n

v

m _1 ,.KI] CO

F_Q@ I

_d[9
_L I

Amrrm_>

Nm
Ill

COt9
8]

8fm_
WF_[D

n"

Zml
&

N
i

O-J
!>

EE[d

,Icj

G

t]

NO]

C0t9
8]

rr [u _9
w_oj
_ .

(I_.a

Nm
I]3

_-©
[TO

",'19 -
IT ._
(IM-_

O]

--I

0
EL

<_<._---<-=J

/

ml_
83

Z--I
(I_l
_1

IIll

[9011
_1

!

NN
II
O0

EgEg
[g[9
1919
EgEg
1919
_]Eg

U]D_
meg

8J_

[rs_
<[o
_-
olin



NOil

_0
@

Z flJ@
11I',._p.

y'@
131 • flJ

C)
H

Z

.q-

I
C,

@
[q
---t

W
Cl
H

ro
.r_%

z
!1
z

0 [-I

I

y

\ H

-'13 LO--
_N

[9@@I
• CI

@LOP,-©
_N

_LL I
_bJ q

Lo rr flj[_> ,#-
A

N@

nj ©
LD

lib ITI
OJ

IZ .Ix.
Cl:@_
.z_p] I
A

N
Z
0

U3

CE[q

Oi l'J

G
Z

U

\

8]

iI

E

0
EL

NED
IU

F00
[yl

I1" n JU_j
U@[\
YU-J -
ill .LD

E@ I

Nm
113

WO
P,

fl" U3 P-
111@_

.IF)
C M ---.d
5- M I

<

Y

%_
J

i
J

%
.1 j

f

/

N
T
0

@
Q
@
@
@
U3
p,
LD
@

IN
BJ

H
n _
c[
k-
LO

ETIP3

Z ""

GEn
N@

u3p,

N
l
O

E_
@
@
@
[9
Q
@
P_
@

_T
P)

[1
O
t-
CO



IW rq

°

com
oj i

NTO
T-O

OJ ©
,q,-

I'_ LI-j

E •

Z0] I
A

N_
2-(9

rO©
--4

EnJ/N
Wffl_

rr
ff ,..-iI.EI
z ("r-j i

N_
IT]
0

OJ

W_nJ

ff .

z_FJ I

Z -°

ii

(U ('1,1

0
(I
E

(7)
0

0
(I
E

O)
0

U

NN
Z[T
(DO

@ISI
19@
IS119
li]@
r,,.._
_ I",-
@19

I..i3_
(.,i,ii-.r}

H
EE
([0
HH
O]Og



Nm

lqD

-_©09

0J I

0

N 09
Z-0

0J O
0J

- flJ

Zo-j I
A

L]

N 09
T-0

F00
_O

OS[O_
W 0J G
YLD
01 -f0
(I_
IS--[-rji

Fu

Z °-

ml

NN
Zi
O©

@@
@©
@@
@@
©@
@@
p.@
@N
M@

H
I-1"0_
_r 0
t-t-
u] LO



N

rJr\
W@O

_ ,.£,.r,:.
_cn_"-OJ I

[_ _

U"i [IJ
ro PG
r- r.s}
EL

LL
_]

H

\ Z
0 0

o GEOI
• _ 0

e S_e

_L I '-'
OJW

u) _ _tj

LL
W
D

C
7_

0 n

N
@QBI

"_0

I'-- m
qL I
nJW q

LO _ _ <"
A

N @
-r]3

oJo
@

[£b]©
Ld 'q- r-d

f'r .
(I IZl f",.
7@ I
,i

N @
i]]

m.O
OJ

WO.]@
Ym_r
[]" . .

7 {"r) I

/'
/

Z
0
h-4

t---4

LFI
0
EL

bJ
Z
m

_J

kkJ t"
"-4

zLm

_tJ@
Fl"

J__

W

L]

CU

rtJ

\

l
ll"f'_
,,j_

t

\
---I

_dgl
oral

i.r-JTJ I
•<--t ,,_--II

NN.
II
OO

@@
@@
@@
@@
@@

P-U]
@N
@-@,

H
ELEL
07 0
HI-
LOtO



P) I

(.9

"-T

I
0

@
[q

LL
LO
N

n

Of
O] '±
0 N

Y

z-D LD
',,I

© "('@_Jl T
'-'1

[2_ -rj
_LL I
_W q

A

N
T
0
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APPENDIX C

1/3 and 1/4 Wavelength Power Divider Results



INTRODUCTION

This section of the report will discussthe design, analysis, and measurement of the

Wilkinson power divider incorporated into the T/R module. Included will be the

reasoning for the design, the assumptions made in order to optimize, and the

comparison to the actual devices.

DISCUSSION

The Wilkinson power divider was an obvious choice for balanced distribution of

power from a single source to a set of 4 phase shifters. The Wilkinson, by theory,

would evenly split the source power into 2 equal half power source units. This can

be accomplished if the source transmission line and two split transmission lines

maintain the characteristic impedance of the source, namely 50 ohms. The power

of each branch would be ideally 50% of that of the input source. A simple resistive

network determines that a delta resistance across the branches of 100 ohms would

result in maximum transfer of power with zero reflective loss.

The modeling of the power divider was performed using the Touchstone simulator

from EEsof (Appendix A). Once the concept was proven from the ideal case, the

models were transferred from electrical to physical parameters. This meant including

line length, and both conductor and dielectric losses. Another analysis was

performed across the frequency band of interest, and the design of the power divider

was optimized. The analysis resulted in differences from fundamental theory in that

the physical length of divider branches was not 1/4 wavelength (the theoretical

optimum) and the branch resistor was not 100 ohms. Experiments were set up to

measure both the theoretical and the analytical designs.

There were two type of thin film on SiO2 Wilkinson power dividers fabricated and

tested. The first was a 100 ohm NiCr resistor, 1/4wavelength substrate. The second

was a 86.9ohm TaN resistor, 1/3wavelength substrate. Both designs used a thin film

gold conductor and thin film resistors.

RESULTS

The measurement results of the two different power divider designs are included

(Appendix B). It was determined that the modified design of the 1/3 wavelength

TaN power divider performed better across the frequency band. This design was

then incorporated into the final T/R module.

A complete module was assembled with microstrip feedthrus ribbon bonded into the

cavities reserved for the phase shifters. The RF ports were configured to facilitate

microwave coplanar probing.



Basedon a previousMMIC packagedesign,the probepitch was400microns. Three
of the four output ports were terminated with high frequency50 ohm chip resistors
connected by wirebonds. The package was measured at each of the ports to
determine the effectivenessof the Wilkinson power divider. The return lossnode
was in an acceptablefrequencyrange,but the insertion loss through the two setsof
power dividers was excessivelyhigh relative to theory. Since the power was
transferring through two different power dividers, there shouldbe a 6 dB difference
between the input and output ports. The measured results show a drop of
approximately 11dB acrossthe frequencyband.

ISSUES AND CONCERNS

Since the concept, design and fabrication of the Wilkinson power divider were
transferred through manypeople, someof the information needed to produce an
optimal module may have been lost. What was learned about the design of the
power divider from the measuredversus modeling exercise, was that, based on
materials, process,frequency,and testingmethodology,there wassomediscrepancy.
More understandingof the processand materials needsto be attained to produce
an accurate model used to predict an actual results. The difference between
theoretical and actual insertion lossof the module was so dramatic that a number
of questionsneed to beansweredin order to determinewhere important information
was left out. For example:a) wasthe value of resistancechangedwhen processing
the module, b) wasthe probing technique and calibration adequate to measurethe
module, c) wasthe 1/3wavelengthTaN designreally optimal, d) were the microstrip
insert, bonding, and terminations reasonable?

RESULTS AND CONCLUSIONS

The resultsof designing,fabricating,and testinga 30 GHz Wilkinson Power Divider
for integration into a multi-element phasedarray application indicate that there is
the potential to usea power divider approach for efficiency and densification within
a T/R module. From the information availableabout materialsand processes,it was
determined that the theoretical 1/4 wavelength, 100 ohm resistor power divider
network may not be optimal at 30 GHz.

More work needsto be performed in a follow-on manner to fabricate variations of
the power divider design, using different materials and measurement techniques.
This will result in identifying thepotential deteriorating effectscausedbythe physical
and material boundariesusedin power divider development. Initial results from a
small databaseindicatepotential successof incorporating a Wilkinson PowerDivider
into a 30 GHz T/R module.


