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Abstract

We consider the problem of image reconstruction from a finite number of pro-

jections over the space La(Ft), where _ is a compact subset of J_t_2. We prove that,

given a discretization of the projection space, the function that generates the cor-

rect projection data and maximizes the Boltzmann-Shannon entropy is piecewise

constant on a certain discretization of gt, which we call the "optimal grid". It is on

this grid that one obtains the maximum resolution given the problem setup. The

size of this grid grows very quickly as the number of projections and number of cells

per projection grow, indicating fast computational methods are essential to make

its use feasible.

We use a Fenchel duality formulation of the problem to keep the number of

variables small while still using the optimal discretization, and propose a multilevel

scheme to improve convergence of a simple cyclic maximization scheme applied to

the dual problem.

PAC_" I_A_'_I( NOT FllL_

361

https://ntrs.nasa.gov/search.jsp?R=19940016992 2020-06-16T18:49:44+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42789341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 IhtrOduchon

In computerized tomography (CT), one encounters the problem of reconstructing an im-

age, or a density, defined by the function _(s, t), given only a finite number of projection

data. General references include [1] and [2].

The projection data is typically of the form

b_ = _,, Sc(s,t)dsdt (1.1)
]:

where the support of _ is assumed to lie in the bounded region f_ c __2 and f_' is the

k th strip orthogonal to the mth projection (see Figure 1). We assume that there are M

projections and that the mth projection has K m cells. Let b be the vector of projection

data, N the length of b, and ¢_ the characteristic function of f_. We then rewrite (1.1)

as

b = A_, (1.2)

where A : L 1(_2) --,/R N via

(Ax)k,m = f_ x(s,t)¢_'(s,t)dsdt. (1.3)

The reconstruction problem we study is: given the projection data b, find a density

function x such that Ax = b. Since A has an infinite-dimensional kernel, solutions, if they

exist, are not unique. The problem then becomes: find the "best" function x0 such that

Axo = b. The concept of "best" is ambiguous to be sure, but some criteria have been

gaining acceptance. In this paper we choose to study the solution with maximum entropy

as defined by Shannon [3] in information theory. For an informal discussion of entropy

and information theory, see for example [4]. For a discussion of maximum entropy in

image reconstruction, see [5].

In our context, we wish to find the function x0 E L 1(f2) such that x0 attains

sup{-f x(s,t)ln[x(s,t)]dsdt'Ax= b}. (1.4)

This is the maximum entropy solution to Ax = b. Simply because we would rather

minimize a convex function than maximize a concave function, we rewrite this as a convex

minimization program via

x(s,t) ha[x(s,t)]dsdt " Ax = b}. (1.5)

If we further define the function ¢ • R _ (-c_, +c_]

ulnu u > 0

0 u = 0 , (1.6)

+c_ u < O

This is called the primal problem.

by

= {
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Figure 1: The geometry setup.

then we can rewrite (1.5) as

p = inf { fa ¢(x(s, t))ds dt " Ax = b } , (1.7)

which is in a form that has been receiving much attention in the optimization community

of late. In particular, see Borwein and Lewis [6]. One of the features of this functional is

that it forces feasible functions to be nonnegative, as a density or image function should

be. We shall see that it has other properties that are computationally and theoretically

attractive, one of the most important being that solutions exist in LI(Ft) under rather

mild conditions.

In this paper we shall characterize solutions to (1.5) given some reasonable conditions

on the data, b, and show that the solution in Ll(ft) for the CT case is piecewise con-

stant, but usually not on a rectangular grid. While this result seems to be known in

the tomography community, it is rare that one finds a mathematically sound derivation

of the solution. The first half of this paper discusses the difficulties in addressing this

problem and references the literature to outline a correct proof of our characterization.

Note that we do r_ot initially impose a discretization of Ll(f2) or fl, only of the data. The

discretization we shall use arises as a consequence of the form of the functions ¢_.

The second half of this paper discusses implementation details. It will turn out that

the appropriate grid for optimal resolution (the "optimal grid") is very large compared

to the amount of data, N, one has. We shall also see that finding the optimal function

can be reduced to solving a problem in _N, but the intermediate calculations require use

of the (large) optimal grid. We have found that a simple cyclic coordinate maximization
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schemeapplied to the Fencheldual of (1.5), while convergent,tends to stall after a few
iterations. We describea multigrid approachto accelerateconvergence.

2 Maximum Entropy Solutions

2.1 The Entropy Functional

Using the entropy functional

f" Ll(ft) --_ (-c_, +c_]" x _ - fn ¢(x(s,t))dsdt (2.1)

to pick a "best" density function x has been popularized by Shannon in information

theory, but also arises in the context of thermodynamics with Boltzmann. For this reason

we call this the Boltzmann-Shannon entropy.

Entropy is, in short, the expected amount of information present in a probability

density x. In our context, one can think of an image (appropriately scaled) as a probability

density function, and computing the feasible density with maximum entropy yields the

density carrying the most information. The standard reference is Shannon and Weaver [3],

but many basic probability books contain some discussion of information and entropy (see

[4, 7] for example). References that deal specifically with entropies in image reconstruction

are [5, 8]. _ _ : _ :

We remark that the theory and methods developed here apply directly to other objec-

tive functionals, in particular, minimum L2-norm solutions. In fact, with the minimum

L2-norm functional, our iterative method is essentially only changed by replacing • by +

and / by -.,

2.2 Existence of Solutions

In this section we prove that solutions to (1.5) exist. Usually, this point is ignored, but is

nevertheless an important issue ....................

Throughout, let X be a linear normed space with topology T. We begin with some
definitions .................

Definition 2.1 lVe say a .get K C X :is r:_quentialiy compact if _i,f,.y ._qu_ncc from

K has a 1"-convergent .subsequencc.

Definition 2.2 Given o function f • X _ (-c_,+c_]. for a E _, we d(fi,( the lower

level sets L,_ of f to bc

L,_ = {x" f(x) <_ a}. (2.2)

The following is a general existence theorem for solutions to constrained optimization

problems.
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Theorem 2.3 Let f be v-lower semicol_lil_uo_,_ (lsc) possessing v-sequentially compact

lower level :_ets, and let C be a v-closed s(t. Th_l_

p = inf {f(x)'x • C} (2.3)

is attained for some Xo • C.

Proof: Let {xn} C C be a sequence such that f(x,_) _ p. Letting a = p+ 1, eventually

all x_ E L_, for n >_ N. By v-sequential compactness of Lo there is a subsequence x,,_

that converges to a point x0 • L_. Since C is v-closed, then x0 • C; f is v-lsc, so

p = lim f(x,_.) >_ f(xo) >_ p (2.4)
k_ oG

and, thus, p = f(xo). •

We are interested in the case where the T-topology is the weak topology on L 1(_).

Let C = {x : Ax = b} for A • X --_ _N linear and continuous. Then C - A -1 ({b})

is closed (since A is continuous) and convex (since A is linear) and, hence, weakly closed.

This is called Mazur's theorem; see [9, Corollary 4 Chapter 2], for example.

We now direct our attention to the functional

f(x) = fa x(s,t) ln[x(s,t)]dsdt. (2.5)

From [10, Theorem 2.2], we see that f is weakly lsc with weakly compact lower level

sets, provided _t is of finite measure. To apply Theorem 2.3, we need weakly sequentially

compact lower level sets. The Eberlein-Smulian theorem [9] states that a subset of a

Banach space is weakly compact if and only if it is weakly sequentially compact, and thus

we see that the lower level sets of f are weakly sequentially compact, so we can apply

Theorem 2.3 to obtain the following:

Theorem 2.4 With f defined as in (2.5) and C = {x " Ax = b} for A : Ll(12) ---* _:_N

lin_a.r and continuous, the infimum

p = inf{f(x)" Ax = b}, (2.6)

if finite, is attained for some Xo • LI(_) such thai Axo = b.

Note that if X = L '-_, then the level sets L_ of f are not bounded in the norm

topology. Hence L_ is not compact for any of the norm, weak or weak-, topologies,

which is a consequence of the fact that a continuous function attains its maximum on a

compact set, of the theory of dual pairs[ill, and of the principle of uniform boundedness,

respectively. Thus, although it is tempting to approach the image reconstruction problem

in L _', the initial problem of existence is much more difficult. However we will see that

LLoptimal solutions are actually L_-optimal solutions as well. We will also see why one

might want to pose the problem in L _'.
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2.3 Uniqueness of Solutions

In this section we show that solutions to (1.5) are unique.

Definition 2.5 A function g " X -_ (-oc, +cx_] is convex ;_ for all x, y E X (t_d all

)_ E (0, 1), u,__h(Tve

g(Ax + (1 - A)y) _< Ag(x) + (1 - A)g(y). (2.7)

Also, g is strictly convex if. whcnct, er x _ y and g(x), g(y) E _, this i_7equ(dily is strict.

,4 set C C_ X is convex if.. whenever x, y E C and A E (0, 1), then

Ax ÷ (1 - A)y E C. (2.8)

Lemma 2.6 If f(x) =/¢(_(,_))d,_, the, f is strictly convex if and only if dp is strictly
COTlt_6X.

Proof:

such that

(;b(Au + (1 - A)v) > ,_(;b(u) ÷ (1 - A,)q_(v).

Then let x(t) = u and y(t) = v, so that

f(Ax + (1 - A)y) >_ Af(x) ÷ (1 - A)f(y),

Assume that f is strictly convex and that there exists a u _ v and a A E (0, 1)

(2.9)

(2.10)

contradicting the assumption that f is strictly convex.

Conversely, let E = {t: x(t) _ y(t)} and assume that re(E) > 0. Then

+ (1- ¢(Ax(t) + (1 - A)y(t)dt + f_ ¢(x(t))dt

A¢(x(t)) + (1 - A)¢(y(t))dt + rE, ¢(x(t))dt

= _f(x) + (1 -- A)f(y)

where the strict inequality is due to the strict convexity of ¢.

(2.11)

(2.12)

(2.13)

It is easy to check that ¢(u) as defined in (1.6) is strictly convex, thus f from (2.5) is
as well.

Theorem 2.7 If f is strictly convex al_d C is a convex set, then ._olution.v lo

p = inf{f(x) : z e O} (2.14)

arc unique, prorid_d thty crier.
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lX--1Proof: Suppose p = fix) = f(y), where x _ y e C. Since C is convex, then _ + 5Y E C

and
2 "l

S(x/2+ y/2) <  f(x) + = p (2.15)

contradicting the definition of p. II

Putting together these results we have the following.

Theorem 2.8 If _ is a .._ct of finite measure, then the solution to (1.5) e.rist_" and is

unique.

2.4 Characterizing the Solution

In this section we characterize solutions to

m= l,...,M, k= l,...,Km}, (2.16)

where

ulnu-u u>O
¢(u) = 0 u = 0 (2.17)

+oo u<0.

This is the image reconstruction problem we introduced in Section 1. We have included

a linear factor in the objective functional; however, if we assume that the projections

cover the image, then this factor does not change the solution; it only simplifies certain

formulae. A typical approach is to attach a Lag-range multiplier )_ to the constraints and

differentiate the Lagrangian at the optimal x0 (which we now know exists) to obtain

xo(s,t) = (+,)-I (ATA(s,t)) __ exp(AT)t(s,t)), (2.18)

where
M K,n

AT'L°_'(fl) --+ Jl_ N via (AT)t)(s,t) = _ Y] A_¢_(s,t). (2.19)
rn----1 k------1

the functional f(x) = i¢(x(s, t))ds dt is not differentiable. Indeed, f = +oo onHowever,

a dense subset of L 1(fl) and is therefore not even continuous. It is for this reason that

some people have chosen to work in C(12) or L '_' (12) [12, 13] where f is differentiable, but

the question of existence and attainment is much more difficult there.

A correct approach is to use Fenchel duality with a constraint qualification (CQ).

While the classical CQ fails to apply in our example, in [6] a CQ is developed that does
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apply to CT. Heuristically, we assumea multiplier A exists so that

v = i_f{:(x)+ (b- Ax,X)}
= (b,_)+i,f{f(x)-(=,A_)}

= (b,X)-sup{(=,AV)- :(_1}.

For a convex function g: X --* (-c_, +oc] we define g*: X* --. (-oo, +cx_] by

g* (y) = sup { (x, y) - g(x)}. (2.23)
3g

This is called the Fenchel conjugate of g at y. Using this definition, we see from (2.22)

p = (b,A)- f* (ATA). (2.24)

Now, for any )_,

inf{f(x)+(b-Ax,,k)}=(b,A)-f*(ATA) <inf{f(x)'Ax=b}=p. (2.25)

Therefore, if _ exists, then

(2.2o)

(2.21)

(2.22)

p= max{(b,_)-f*i:A)}. (2.26)
_E _N

This is the Fenchel dual of (1.5). In our problem, it can be shown [14] that for y _ L_(_)

f*(y) = / ¢*(y(s,t))dsdt, (2.27)

that is, the conjugate of the integral functional f is given as an integral function of

¢*. From [6], if 3_ e nl(f_) where _ > 0 a.e., f(_) • Et and A_ = b (the constraint

qualification), then a Lagrange multiplier _ does exist. Also, if _ solves (2.26), then the

optimal Xo(S, t) for (1.5) is

=0(s,t)= (¢*)'(A_(s,t)). (2.28)

In the case ¢ is of the form (2.17), it is easy to show that ¢* (v) = e", and we get

Xo(S, t) = exp (ATA(s, t)), (2.29)

where _ solves (2.26). This matches the heuristic derivation, but this is no accident since

in fair generality, (¢,)-1 = (¢.),. Thus, solving the image reconstruction problem, (1.5), is

equivalent to solving the dual problem (2.26), which is an unconstrained finite-dimensional

differentiabIe concave maximization problem.
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Figure 2: The optimal grid.

2.5 The Optimal Grid

Rewriting the solution to the image reconstruction problem (2.29) in a more explicit form,

we have

• =exp , (2.3o)
rn=l k---1

see (2.19). It can be seen from the concavity of (2.26) that amy function x of the form

(2.30) that satisfies Ax = b must be optimal.

Recall that ¢_ is the characteristic function of the k th strip emanating from the

mth projection. Thus, the solution in (2.30) implies that the optimal function in L 1(12) is

piecewise constant on the grid obtained by intersecting all of the strips. This grid has been

observed for physical reasons, [8], but here we have shown that the best (from maximum

entropy considerations) function from L1(i2) is this piecewise constant function. For this

reason, we call this discretization of 12 the optimal grid.

A typical grid is shown in Figure 2. Here we have used 8 projections each divided into

12 cells. The central point of the theory presented above is that the exact solution of the

image reconstruction problem is piecewise constant on this grid.
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3 Implementation

3.1 Relaxation

Now we develop a simple iterative procedure to solve the image problem by solving the

dual problem (2.26) for the optimal A. Recall that to solve the dual problem we seek to
maximize

G(A) = (b,A) - f exp(ATA(s,t))dsdt. (3.1)

This is a simple matter once one observes that G is concave and differentiable, so maxi-

mizing G is just finding critical points. The derivative with respect to A is

VG(A) b -- A / exp(ATA(S, t))ds dr. (3.2)

This gives N equations for the N unknown A's.

An obvious iterative scheme is to cycle through the components, Ak, of VG, correcting
each Ak in turn so that the k th component of VG is zero, that is, so that G is maximal

with respect to each individual variable. We choose A_' so that

b'_ = (A exp(ATA))k, m = Jfw" exp(ATA(s' t))dsdt.
k

After some simplifications, a single step of this scheme can be written as

(3.3)

m !exp( k, ) *-
m !

b'_' bk,

:_' exp (_--_' A_n Cr) ,,,, 1-I' (#_n)¢_'
kl

(3.4)

where _' is the sum over all projections m and cells k except m' and k', I-I' is similarly
defined and #_' = exp(A_').

Now, because ATA is piecewise constant on the optimal grid, the integral of exp(ATA)

along any strip is just a sum over each polygon in that strip of the area of the polygon

times the product of the #'s that correspond to the particular cell from each projection
that makes up the polygon:

,,,,II ('k)¢k = E: area(p)II "k%
k, p_ni:' mere' j

(3.5)

where the product is only over the cells k,,, in projection m for polygon p.

The point of this discussion is twofold. First, we can see from (3.4) that we never

need to exponentiate since we only need the #'s. Second, the areas of the polygons can

be precomputed, meaning that these integrals can be calculated exactly; no numerical
integration is needed.
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Figure 3: A subsetof the optimal grid.

An important feature of this development is that there are no approximations or

discretizations being made in the whole program, except for the initial discretization of

the data into the vector b. We have characterized the Ll(ft) solution as a piecewise

constant function on the optimal grid, and the necessary integrals can be performed

exactly on this grid. For this reason, in our implementation we calculate the areas of each

of the polygons in the optimal grid; in fact, to obtain Figure 2, we in fact plotted the

polygons themselves, not just intersecting lines. To demonstrate this fact, in Figure 3 we

plotted 1000 of the 2096 polygons from Figure 2.

As can be observed in Figure 2, the number of polygons in the optimal grid can be very

large compared to the number of projections and cells per projection. This number grows

very quickly as a function of these two variables; for example, with 12 projections placed

uniformly around the circle and 10 cells per projection, we generate 2904 polygons; with

20 cells per projection we generate 12,561 polygons. While the optimal grid generation

is a time and storage intensive procedure, given a fixed geometry we need only run this

part of the program once. To reconstruct images using such large data sets, fast methods

are essential.

The iterative method described above tends to stall after a few iterations. This effect

can be observed in the reported data from [8]. In Figure 4 the top two curves represent the

rates of convergence using this scheme on a 3 projection, 4 cell per projection problem.

Here we have graphed both the rate associated with the residual IIAx - bl]_ and the

rate of convergence of the entropies computed as G(Anew). Since we give as initial data a

known function of given X's, we can compute the true entropy to which the iterates should -_

be converging; this is a useful debugging tool since we can monitor both the residual and =- _:=

J

• J 371

.t



O
k._

Q)

t:D

O

C_D

1.O

O.8

0.6

0.4

0.2

---_ i i i i i i i

f'°_..

/:

t.t t :
s$ i .;

i:1 -
r_

it
¢_" .:

g.:

/::: ...-"

0.0 I I I I I i I I I

0 1 2 5 4 5 6 7 8 9

No. of iterations
0

Figure 4: Residual and entropy rates, with and without MG.

F

the entropy. While convergent, note that the convergence is initially good, but the rate

degrades rapidly to steady off at about 0.85.

3.2 Multilevel Methods

- To improve the convergence rates observed, we have implemented a two-grid multilevel

: scheme with unigrid [15] corrections. In this section we describe our method and give
some preliminary results.

Coarsening is achieved by pairing adjacent cells in the projections and updating the

: associated #'s with a single correction that makes their average residual zero. On the

coarse grid, we iterate this relaxation process until the norm of the vector of average

r_idu_s is below a user supplied e, typically 0.05. All of the calculations are done in a

unigrid_ fashion on the fine grid. This makes the process more expensive than necessary,

but its performance is equivalent to the more efficient V-cycle multigrid scheme and it is

much easier to implement and manipulate.

Using the same geometry and data as before, but with relaxation accelerated by coarse

grid corrections, we obtain the rates given in the lower two curves in Figure 4. Note that

with only a two-grid scheme, we have reduced the convergence rate from about 0.85 to
about 0.72.

As a demonstration of the reconstructions we can obtain, we present Figures 5 and 6.

Recall that _he _econstructi0n_s computed off-the bptim_grld, but for- plotting purposes

we essentially use a square grid. While there are several ways of translating from the

optimal grid to a square grid, we have chosen simply to evaluate the optimal image
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Figure 5: Original image.

function as reconstructed from the optimal )_ via (2.30) at the lattice points of the square

grid without performing interpolation. Improving this process could be a direction of

future investigation.

Figure 5 is the original image. Note that this is not a piecewise constant function

on the optimal grid, so our reconstructions cannot be exact. In fact, the function of

maximum entropy with the data generated by this function is not the original image; as

shown previously, it is piecewise constant on the optimal grid, as are our reconstructions.

To obtain Figure 6, we use a simple two-dimensional integrator, based on Simpson's

rule, on the original function to make b using 5 projections each with 8 cells. We then

iterated our multilevel scheme to convergence (so that the g2 norm of the average residuals

was less than 10 -4) and plotted the result in Figure 6 as discussed above. This process

produces a set of A'S that :we then us-_ as our initial data in the routine to obtain a
reconstruction of the first reconstruction. This next reconstruction is virtually identical

to the first, as the theory predicts.
As a final note, an extra benefit of this scheme is data compression. Given a data

collection geometry, when we collect the N pieces of data, we need only solve the recon-

struction problem once to get the N #'s. From these we can reconstruct the image to any

level of resolution desired; indeed, we have shown that the piecewise constant function on

the optimal grid is the most information one can extract from the data.
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Figure 6: Reconstruction.

4 Conclusions

-y

We have seen that the solution to the maximum entropy image reconstruction problem

posed in L 1(_) is a piecewise constant function on the optimal grid. We have also seen

that each iterate of the simple iterativ_ scheme for solving the associated dual problem can

be computed exactly; no numerical integration or approximations are needed. Finally, we

observed that a unigrid scheme to accelerate convergence shows potential, though more

testing and analysis is needed.

As a final comment, we note that that the mathematics used to derive the optimal grid

and the iterative scheme can be applied to other objective functionals f and other geome-

tries, for example, minimum L2-norm, fan beam projections and non-symmetric placement

of the projections. These issues and a more complete discussion of the mathematics in

optimization techniques for image reconstruction from projections will be covered in a

future paper.
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