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MGGHAT: ELLIPTIC PDE SOFTWARE WITH ADAPTIVE REFINEMENT,

MULTIGRID AND HIGH ORDER FINITE ELEMENTS

William F. Mitchell
GE Advanced Tech Labs

Moorestown, NJ 08041

SUMMARY

MGGHAT (MultiGrid Galerkin Hierarchical Adaptive Triangles) is a program for the solu-
tion of linear second order elliptic partial differential equations in two dimensional polygonal

domains. This program is now available for public use. It is a finite element method with linear,
quadratic or cubic elements over triangles. The adaptive refinement via newest vertex bisection
and the multigrid iteration are both based on a hierarchical basis formulation. Visualization is
available at run time through an X Window display, and a posteriori through output files that can
be used as GNUPLOT input. In this paper, we describe the methods used by MGGHAT, define

the problem domain for which it is appropriate, illustrate use of the program, show numerical and
graphical examples, and explain how to obtain the software.

INTRODUCTION

MGGHAT (MultiGrid Galerkin Hierarchical Adaptive Triangles) is a program for the solu-
tion of linear second order elliptic partial differential equations in two dimensional polygonal

domains. It solves equations of the form:

(PUx )x +(qUy )y +ru = f

u=g
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on 3f_2
_U
--+cu =g
On

where fl is a polygonal domain in R 2 and p, q, r, f, c, and g are functions of x and y, and n is the
unit normal direction.

MGGHAT uses a finite element method with linear, quadratic or cubic elements over trian-

gles. The adaptive refinement via newest vertex bisection and the multigrid iteration are both
based on a hierarchical basis formulation. Visualization is available at run time through an X

Window display, and for post-run analysis through output files that can be used as GNUPLOT

input. The program is now available in the public domain through mgnet and netlib.

NUMERICAL METHOD

The numerical method used by MGGHAT is a finite element method with adaptive

refinement of the grid and a multigrid solution of the equations. In this section we briefly
describe the method used. More details of the method can be found in [1], and a full description

and analysis in [2], which is contained in the MGGHAT software package.
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Discretization

MGGHAT solves elliptic differential equations using the standard Galerkin finite element
method. A triangular mesh is used over the 2D domain. The basis functions are C 1 continuous

piecewise polynomials of any specified degree. Currently, the program only handles linear, qua-
dratic and cubic polynomials, but can be modified to handle higher order polynomials by defining
a quadrature rule of the appropriate accuracy.

Adaptive refinement

The program provides automatic adaptive refinement of the grid to ensure the highest accu-
racy for the number of nodes used. The refinement of triangles is performed using the newest
vertex bisection method. This method divides pairs of triangles through the midpoint of their com-
mon edge, which is equivalent to enhancing the approximation space by one hierarchical basis
function (in the linear case). The error estimate, used to determine which triangles should be
divided, is based on an estimate of the coefficient of the new hierarchical basis function.

Solution

The equations are solved using a hierarchical basis multigrid method. The relaxation phase
consists of red-black Gauss-Seidel iterations on the nodal basis equations. The number of itera-
tions can be user specified, but usually a red phase before coarse grid correction and a red and
black phase after coarse grid correction suffices for optimal convergence rates. The grid transfers
are a natural consequence of the transformation between the nodal and hierarchical bases, and can
be shown to lead to a method equivalent to the "Galerkin" multigrid method in simple cases.

MGGHAT SOFTWARE

MGGHAT is written in Standard FORTRAN 77, and is callabie as a Subroutine. An exam-
pie main program for MGGHAT is shown in Figure 1. The program has been tested on 3 com-

puter configurations: 1) a Pyramid computer using the f77 compiler under a dual port of UNIX
SysV Release 2.0, 2) a Sun workstation using the f77 compiler under SunOS 4.I.T,, _d 3) an i486
based PC using the f2c translator and gcc compiler under the Linux operating system. The pro-
gram is easily installed with the makefile provided in the distribution, and requires only a FOR-
TRAN compiler for the basic functionality. A C compiler is required for the UNIX dependent
supplied timer routine (which can be replaced by the user). A C compiler and X Window
libraries are required for the (optional) X Window graphics capability.

Problem Definition

The differential equation, boundary conditions and domain are defined by user supplied
subroutines. Figure 2 contains examples of these routines. The subroutine pde defines the equa-
tion by providing the value of the functions p, q, r and f at any point (x,y). Subroutine bcond

contains the boundary conditions. The boundary is partitioned into a set of pieces in the initial
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triangulation. The piece containing the point (x,y) is passedto bcond through ipiece, bcond
retums the functions c and g and sets itype to flag the boundary condition as Dirichlet or Mixed
(including Neuman if c=0). If the true solution is known, the user can supply functions true,
truex, and truey to obtain error calculations. The initial triangulation (coarse grid) is defined by
the user in subroutine inittr (not shown).

Parameters

The user has control over the program through several parameters.
mavert, mxtri, mxlev, mxnode and mxtime: maximum values for the number of vertices, triangles,
refinement levels, nodes and execution time can be used_as termination criteria.
tol: an error tolerance that can be used as a terrh_atlon criterion.

outlev: controls the amount of printed output. Can be 0 for no output, 1 for summary at the end
of execution, 2 for summary after each program phase, 3 for detailed information, and 4 and 5 for
debugging level output. An extraction from a level 2 output is illustrated in Figure 3.
iorder: specifies the order (degree+ 1) of the piecewise polynomial basis functions.
nul and nu2: number of (half) red-black Gauss-Seidel iterations to perform before and after coarse
grid correction, respectively.
ncyc: number of multigrid cycles to perform in each solution phase.

unifrm: a logical variable to indicate a uniform refinement should be used rather than adaptive
refinement.

Graphics

Graphics support is provided in two forms: run time graphics on an X Window display,
and output files suitable for input to GNUPLOT. The run time graphics use a small set of rou-
tines which call on the X Window graphics library. The user can expand this to support other
graphics devices by writing equivalent routines (draw a point, draw a line, print some text, etc.)
for the desired device. There are nine forms of run time graphics:

1) contour plot of computed solution with triangulation
2) contour plot of true solution with triangulation
3) contour plot of error with triangulation
4) color plot of computed solution
5) color plot of true solution
6) color plot of error
7) triangulation
8) graph of number of nodes vs. relative error in energy norm (or error estimate)
9) contour plot of both computed solution and true solution

Either one or two of these forms can be displayed during one run. When two are
displayed, additional numerical information is printed on the display, including grid size informa-
tion, norms of the error and error estimate, and execution time. Figure 4 contains an example of
the run time graphic displays.

The user can select to save information in data files for later processing by GNUPLOT.
These files contain the triangulation, computed and true solutions, and convergence data. Figures
5 and 6 contain plots generated by GNUPLOT.
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OBTA/NING MGGHAT

MGGHAT is now availablein the public domain. It canbe obtainedeither from mgnetor
netlib.

mgnet

To obtain MGGHAT from mgnet (the multigrid network) ftp to casper.cs.yale.edu.Login
asanonymous and use your email address as the password. Change to the mgghat directory by
typing cd mgnet/mgghat. Then type Is to see what files are available, and get filename for each
file you desire. To learn more about mgnet, also get the file mgnet.README from the mgnet
directory.

netlib

MGGHAT can be obtained from netlib using ftp, the mail server, or xnetlib. For ftp

retrieval, ftp to research.att.com and follow the anonymous login procedure described above.
Look for MGGHAT in the directory netlib/pdes/mgghat. To obtain MGGHAT via email, send a

message to netlib@oml.gov, netlib@research.att.com, or one of the other netlib servers with the
message send index from pdes/mgghat. To learn how to obtain materials from netlib through an
X Window interface, send the message send index from xnetlib to one of the netlib mail servers.
For more information on netlib, send the message send index to one of the netlib mail servers.
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programmain
include 'commons' ! all parametersarepassedthrough common

c

c set maximum allowed values based on dimensions

C

C set

mxvert = ndvert

mxtri = ndtri

mxlev = ndlev

mxnode = ndnode

program parameters

mxtime = 12.'60.'60.

ioutpt = 6
outlev = 2

iorder = 2

nul = 1 !

nu2 = 2 !

ncyc = 1
tol = 0.001

mgfreq = 2.

unifrm = .false.

igrfl = 0

igrf2 = 0

grflst = O.

grfsiz =. 1

grffmn = O.

grffmx = 2.

gptri = 0

gpsol = 0

gpconv = 0

call mgghat

stop
end

! maximum execution time in seconds

! unit for printed output

! amount (level) of printed output

! polynomial order (linear in this case)
number of relaxation iterations before

and after coarse grid correction

! number of multigrid cycles
! error tolerance for termination

! how often to do muhigrid cycle

! flag for uniform/adaptive grid

! run time graphics selections (no

! graphics in this example)

! a value for which a contour line is drawn

! and the spacing between contours

! bounds for determining the color

! map for color contour plots

! set to 1 to save triangulation for gnuplot

! set positive to save solution for gnuplot

! set to 1 to save convergence info for gnuplot

! invoke mgghat

Figure 1. Sample main program.
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subroutinepde(x,y,p,q,r,f)
real x,y,p,q,r,f

c
c return the valuesof thepde coefficentsat (x,y)
C

C

C

-(p(x,y) * u ) -(q(x,y) * u ) + r(x,y) * u = f(x,y)

p--1.

q=l.

r_0°

f=-20.*(x**3 + y**3))

return

end

subroutine bcond(x,y,ipiece,c,g,itype)

real x,y,c,g

integer ipiece,itype

c

c returns boundary condition coefficients-at (x,y)

C

c u + c(x,y)*u = g(x,y) or u = g(x,y)

C n

c In this example, the b.c. is Dirichlet on piece 1, and 0 Neuman on piece 2

C

if (ipiece.eq. 1) then

itype = 1
C--0.

g = tme(x,y)
else

itype = 2
c=0.

g=0.
endif

return

end

real function true(x,y)

real x,y

true = x**5 + y**5

return

end

! true solution of the pde

Figure 2. Examples of subroutines to define the problem.
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MULTIGRID GALERKIN HIERARCHICAL ADAPTIVE TRIANGLES (MGGHAT)

Version 0.9 (March 1993)

input parameters:

output level 2

polynomial order 2

number of cycles 1

relaxes before cgc 1

relaxes after cgc 2

multigrid frequency 2.00

error tolerance 0.0E+00

refinement adaptive

begin initialization

initializations complete
time for initialization .00

begin refinement

refinement complete

number of vertices 18

number of nodes 18

number of triangles 22

number of levels 3

time for refinement (this grid)

time for refinement (all grids)

.02

.02

begin solution

solution complete

norms of error:

max norm at vertices

max norm at nodes

max norm at quad pts

continuous energy norm

relative energy norm

1.20466471E-01

1.20466471E-01

2.12660193E-01

3.30431342E-01

1.49259701E-01

time for solution (this grid)

time for solution (all grids)

.01

.0i

Figure 3. Sample level 2 output.
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beginerror indicators
error indicatorsandestimatescomplete

maximumerror indicator 1.99157119E-01
errorestimate 4.55372840E-01
effectivity index 1.37811637E+00
relative errorestimate 1.96938977E-01
relative effect index 1.31943834E+00

time for error estimates (this grid) .00

time for error estimates (all grids) .00

time for this refinement/solution step .03
total time so far .03

final solution complete

maximum error at vertices

maximum error at nodes

maximum error at quad pts

continuous energy norm

maximum error indicator

error estimate

effectivity index

relative energy norm
relative effect index

7.39555359E-02

7.39555359E-02

1.25789344E-01

2.70688415E-01

1.41879827E-01

4.30013269E-01

1.58859134E+00

1.87541485E-01

1.58822513E+00

number of vertices 32

number of nodes 32

number of triangles 45
number of levels 5

time for initializations .00

time for refinement .08

time for solution .02

time for error estimates .00

total time .10

termination due to achieving maximum nodes

execution sucessful

Figure 3. Sample level 2 output (continued).
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Figure 5. gnuplot plot of triangulation and solution.
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Figure 6. Convergence plot for 3 runs using gnuplot.
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