https://ntrs.nasa.gov/search.jsp?R=19940017107 2020-06-16T18:47:05+00:00Z

IN-37 198065 112 P

NASA Technical Memorandum

NASA TM-108434

DETAILED STUDY OF OXIDATION/WEAR MECHANISM IN LOX TURBOPUMP BEARINGS

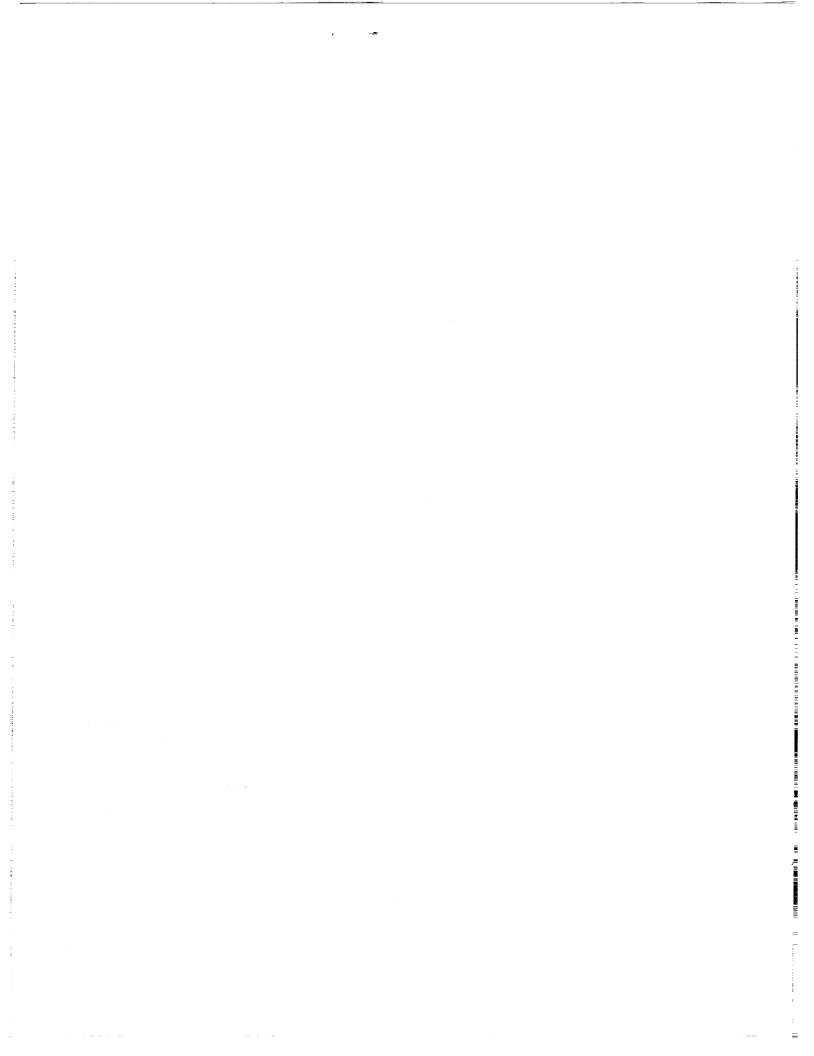
By T.J. Chase and J.P. McCarty

Propulsion Laboratory Science and Engineering Directorate

December 1993

(NASA-TM-108434) DETAILED STUDY OF OXIDATION/WEAR MECHANISM IN LOX TURBOPUMP BEARINGS (NASA) 112 P

N94-21580


Unclas

0198065 63/37

National Aeronautics and Space Administration

George C. Marshall Space Flight Center

REPORT DO	CUMENTATION PA	GE		rm Approved MB No. 0704-0188		
Public reporting burden for this collection of infor gathering and maintaining the data needed, and c collection of information, including suggestions fo Davis Highway, Suite 1204, Arlington, VA 22202-4	ompleting and reneting the concernet	the four land Of an example for lafe	constion One	rations and Reports 1215 Jefferson		
Davis Highway, Suite 1204, Arlington, VA 22202-4 1. AGENCY USE ONLY (Leave blank,		3. REPORT TYPE AND D	ATES COV	VERED		
T. AGENCT USE ONET (Leave Signa)	December 1993	Technical	Memor	andum		
4. TITLE AND SUBTITLE		5.	FUNDING	S NUMBERS		
Detailed Study of Oxidatior Bearings	n/Wear Mechanism in Lox	Turbopump				
6. AUTHOR(S)						
T.J. Chase* and J.P. McCar	ty					
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)	8.		NING ORGANIZATION		
George C. Marshall Space I Marshall Space Flight Center	-					
9. SPONSORING / MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)	10		DRING/MONITORING / REPORT NUMBER		
National Aeronautics and S	pace Administration		NASA	тм-108434		
Washington, DC 20546			INASE	A IM-100454		
11. SUPPLEMENTARY NOTES Prepared by Propulsion Lal *National Research Counci	il					
12a. DISTRIBUTION / AVAILABILITY S	TATEMENT	11	25. DISTRI	IBUTION CODE		
Unclassified—Unlimited						
13. ABSTRACT (Maximum 200 words	s)	A				
Wear of 440C angu	ular contact ball bearings o	of the phase II high pro	essure c	oxygen turbopump		
(HPOTP) of the space shut	ttle main engine (SSME) I	as been studied by m	eans of	various advanced		
nondestructive techniques	(NDT) and modeled with	reference to all known	n materi	ial, design, and		
operation variables. Three	modes dominating the we	ar scenario were foun	d to be	the adhesive/sneer		
peeling (ASP), oxidation,	and abrasion. Bearing wea	r was modeled in terri	ns of un nodeled	e unee moues. Lack-		
ing a comprehensive theor lished theories of sliding w	y of rolling contact wear t	o date, each mode is i	ted to n	nicrosliding in hall-to-		
ring contacts. Microsliding	vear, while shulling velocity	other contact variable	s are ev	valuated with analyti-		
cal software packages of S	SHARERTH TM /SINDA TM \leq	and ADORE TM . Empiri	rical co	nstants for the models		
are derived from NIST ext	neriments by applying the	models to the NIST w	vear dat	a. The bearing wear		
model so established preci	are derived from NIST experiments by applying the models to the NIST wear data. The bearing wear model so established precisely predicts quite well the average ball wear rate for the HPOTP bearings.					
The wear rate has been statistically determined for the entire population of flight and development						
bearings based on Rocketo	lyne records to date. Num	erous illustrations are	given.	-		
14. SUBJECT TERMS			1	5. NUMBER OF PAGES 115		
angular contact bearings,		bearings, lox turbopu	mp 1	16. PRICE CODE		
bearings, wear modes/mec				NTIS 20. LIMITATION OF ABSTRACT		
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICA OF ABSTRACT		20. LIMITATION OF ABSTRACT		
Unclassified	Unclassified	Unclassified		Unlimited		

Standard Form 298 (Rev. 2-89)

PAGE II INTENTIONALLY BLANK

TABLE OF CONTENTS

Ρ	a	Ø	e

I.	PURPOSE OF THE STUDY AND MAJOR OBJECTIVES	1
П.	BACKGROUND	1
Ш.	BEARING ENVIRONMENT AND OPERATING CONDITIONS	3
IV.	MATERIALS	4
V.	ANALYTICAL MODELING OF MAJOR WEAR MODES	5
	 A. On Wear Modeling in General	5 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
VI.	STATISTICAL ANALYSIS OF FIELD DATA AND APPRAISAL OF BALL WEAR MEASUREMENT METHODOLOGY	14
	 A. Statistical Analysis of Field Data B. Appraisal of Ball Wear Measurement Methodology 	14 15
VII.	COMPARISON OF RESULTS OF WEAR MODELING TO WEAR STATISTICS	16
REFE	RENCES	17
APPE	NDIX A	83
APPEI	NDIX B	89
APPE	NDIX C	93
APPE	NDIX D	95

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	ASP (microfatigue) mode of wear. Ball surface of a heavily worn bearing No. 352. Note many surface cracks and wear debris. Optical microscopy (magnification: \times 200 top, \times 1,000 bottom)	29
2.	ASP (microfatigue) mode of wear. Wear track of a heavily worn inner ring of bearing No. 352. Scanning electron microscopy	30
3.	Abrasion mode of wear. Wear track of a heavily worn inner ring of bearing No. 352. Scanning electron microscopy	31
4.	Wear debris collected from the NASA-MSFC's "Bearing, Seal, and Materials Tester (BSMT)." Note numerous thin flakes and broken pieces of glass fibers. Optical microscopy (× 100)	32
5.	HPOTP shaft support configuration and bearing preload arrangement. The "balance piston" design is supposed to balance major axial loads on the shaft	33
6.	Experimental setup, extent of study and a representative worn specimen, from the NIST report by Slifka ¹¹	34
7.	Kinematic relations of wear scar growth on the ball in Slifka's experiment ¹¹	35
8.	Derivation of the molecular component of friction stress "t" using the Kragelsky's definition (right) and methodology in application to Slifka's ¹¹ frictional data (left)	36
9.	Adapting models of sliding wear to rolling bearings. Conversion of linear wear rate " T " and average pressure " p "	37
10.	SHABERTH [™] convergence for case " <i>M</i> ," an example	38
11.	Variation of contact angles for inner and outer rings around the bearing	39
12.	Variation of ball angular velocity components with reference to the cage around the bearing	40
13.	Variation of contact load and contact stress in the outer ring/ball contact around the bearing	41
14.	Variation of contact load and contact stress in the inner ring/ball contact around the bearing	42
15.	Variation of cage force, ball excursion, and spin to roll ratio around the bearing	43

ž

÷

ł

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
16.	Maximum " pV ," the pressure \times sliding velocity product, along the major axis of the outer ellipse of contact	44
17.	Maximum " pV ," the pressure \times sliding velocity product, along the major axis of the inner ellipse of contact	45
18.	Profile of " pV " along the major axis of contact with the outer ring of a ball located at azimuth 150°	46
19.	Profile of " pV " along the major axis of contact with the inner ring of a ball located at azimuth 150°	47
20.	Frictional power loss in contact of ball No. 1 with the outer ring along the major axis of the ellipse of contact	48
21.	Frictional power loss in contact of ball No. 2 with the outer ring along the major axis of the ellipse of contact	49
22.	Frictional power loss in contact of ball No. 3 with the outer ring along the major axis of the ellipse of contact	50
23.	Frictional power loss in contact of ball No. 4 with the outer ring along the major axis of the ellipse of contact	51
24.	Frictional power loss in contact of ball No. 5 with the outer ring along the major axis of the ellipse of contact	52
25.	Frictional power loss in contact of ball No. 6 with the outer ring along the major axis of the ellipse of contact	53
26.	Frictional power loss in contact of ball No. 7 with the outer ring along the major axis of the ellipse of contact	54
27.	Frictional power loss in contact of a ball with the outer ring along the major axis of the ellipse of contact. Combined diagram (remember symmetry about the load vector)	55
28.	Comparison of power dissipation in contact with the outer ring of a ball traveling around the bearing	56
29.	Effect of wear on frictional power dissipation in contact of ball No. 1 with the outer ring	57

.

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
30.	Frictional power loss in contact of ball No. 1 with the inner ring along the major axis of the ellipse of contact	58
31.	Frictional power loss in contact of ball No. 2 with the inner ring along the major axis of the ellipse of contact	59
32.	Frictional power loss in contact of ball No. 3 with the inner ring along the major axis of the ellipse of contact	60
33.	Frictional power loss in contact of ball No. 4 with the inner ring along the major axis of the ellipse of contact	61
34.	Frictional power loss in contact of ball No. 5 with the inner ring along the major axis of the ellipse of contact	62
35.	Frictional power loss in contact of ball No. 6 with the inner ring along the major axis of the ellipse of contact	63
36.	Frictional power loss in contact of ball No. 7 with the inner ring along the major axis of the ellipse of contact	64
37.	Frictional power loss in contact of a ball with the inner ring along the major axis of the ellipse of contact. Combined diagram (remember symmetry about the load vector)	65
38.	Comparison of power dissipation in contact with the inner ring of a ball traveling around the bearing	66
39.	Effect of wear on frictional power dissipation in contact of ball No. 1 with the inner ring	67
40.	Frictional power dissipation in contact due to interfacial (Heathcote) slip and spin around the bearing for both contacts	68
41.	Combined frictional losses for all balls in contact with the outer ring on one side of the bearing, at their respective locations along the track	69
42.	Combined frictional losses for all balls in contact with the inner ring on one side of the bearing, at their respective locations along the track	
43.	Computed wear track developed along the bearing circumference for both rings. Note the location of bearing center line	70 71

÷.

.

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
44.	Ball wear record of standard phase II HPOTP flight bearings (F) for the 1987–1993 period, based on Rocketdyne data	72
45.	Ball wear record of standard configuration development bearings (D) for the 1987–1993 period, based on Rocketdyne data	73
46.	Combined ball wear record of standard phase II HPOTP flight bearings and standard configuration development bearings (F and D) for the 1987–1993 period, based on Rocketdyne data	74
47.	Histogram of ball wear for the standard phase II HPOTP flight bearings for the period of 1987–1993	75
48.	Histogram of ball wear for the combined (F and D) bearings for the period of 1987–1993	76
49.	Analysis of ball wear of bearing No. SN-477. Diameter/weight correlation for balls showing extremely low wear (0.0000 in)	77
50.	Analysis of ball wear of bearing No. SN-500. Diameter/weight correlation for balls showing medium wear (0.0003 in)	78
51.	Analysis of ball wear of bearing No. SN-857. Diameter/weight correlation for balls showing heavy wear (0.0004 in)	79
52.	Analysis of ball wear of bearing No. SN-352. Diameter/weight correlation for balls showing extremely high wear (>0.001 in)	80
53.	Wear modeling results on the background of field data for 1987–1993	81

LIST OF TABLES

Fable	Title	Page
1.	Operating conditions	19
2.	AISI 400C stainless steel	19
3.	SHABERTH [™] convergence to target loads " <i>M</i> ," an example	20
4.	SHABERTH TM convergence to target loads " M ," listing of data for quantities displayed in figure 9	21
5.	Comparison of the "base isothermal" and "worn thermal" cases	22
6.	Data modeled with SHABERTH [™] /SINDA [™]	23
7.	Wear record for flight (F) and development (D) bearings of the standard phase II HPOTP configuration for the 1987–1993 period	24
8.	Wear histograms data of ball wear for the phase II HPOTP (F) and development (D) bearings for the 1987–1993 period	26
9.	Linear regression analysis of the 1987–1993 ball wear data with QUATTRO PRO [™] , 99 DOF	27
10.	Linear regression analysis of the 1987–1993 ball wear data with QUATTRO PRO [™] , 98 DOF (forced zero)	28

.....

÷

ţ

en en la companya a producción democratica e est

TECHNICAL MEMORANDUM

DETAILED STUDY OF OXIDATION/WEAR MECHANISM IN LOX TURBOPUMP BEARINGS

I. PURPOSE OF THE STUDY AND MAJOR OBJECTIVES

The purpose of this study was to scientifically establish a viable wear model for the angular contact ball bearings operating in the liquid oxygen (lox) environment of the phase II (current flight configuration) high-pressure oxidizer turbopump (HPOTP) of the space shuttle main engine (SSME). This purpose has been accomplished in the three stages outlined below.

The goal of the first stage was to gain insight into physical phenomena occurring in these cryogenic bearings in flight service and to establish modes (mechanisms) of wear. Wear phenomenon of 440C angular contact ball bearings of the phase II HPOTP has been studied by means of various experimental analytical nondestructive techniques (NDT) described in detail elsewhere.¹ While most of the known modes of rolling contact bearing wear were evident on the ball and ring surfaces, the three modes dominating the wear scenario were found to be the adhesive/sheer peeling (ASP), oxidation, and abrasion.

The aim of the second stage was to mathematically model operation of the bearings in order to derive all static, kinematic, thermal, and dynamic quantities pertaining to wear modeling. This has been accomplished utilizing mathematical and numerical modeling shown below. Microsliding, stress, temperature, and other contact variables were evaluated with analytical software of SHABERTH[™]/ SINDA[™] and ADORE[™], all supplemented with pertinent engineering analyses.

In the third stage of this study, the aim was to propose a mathematical model of wear for the bearings and verify the model on the basis of fit with the statistical wear record. Bearing wear has been modeled in terms of the three modes named above and is shown in figures 1 through 4. Lacking a comprehensive theory of rolling contact wear to date, each mode has been modeled after well-known and established theories of sliding wear, while sliding velocity and/or distance has been related to microsliding in ball-to-ring contacts. Empirical constants for the models have been derived from the National Institute of Standards and Technology (NIST) experiments² by applying the models to the NIST wear data.

The bearing wear model, so established, predicts quite well the ball wear rate for the HPOTP bearings. The wear rate has been statistically determined for the entire population of flight and development bearings, based on Rocketdyne records to date.

II. BACKGROUND

-

There are ambiguities in tribology literature^{3 4} regarding classification of wear. Wear terminology quite often reflects this situation by not having well-defined boundaries for such commonly used terms as "mode," "mechanism," and sometimes "process" of wear. Hereunder, the wear mechanism is a means of removal of wear debris from the surface, and wear mode is a broader term which classifies wear with reference to its mechanism(s), occurrence, appearance, etc.

This study has confirmed the existence of the following generic wear modes acting simultaneously in phase II HPOTP bearings:

1. ASP

- 2. Oxidation
- 3. Abrasion
- 4. Fatigue
 - a. Spalling (pitting)
 - b. Flaking (delamination)
- 5. Gauging (plastic deformation)
- 6. Corrosion.

Preloaded angular contact ball bearings are commonly used in a variety of spacecraft applications, ranging from very light duties of controlling movement of shutters or pointing antennas, to the very heavy duty of supporting turbine rotors. Under the best of circumstances, these bearings can reliably support the combined radial and axial loads and accommodate the unavoidable thermal distortions of the space hardware over a wide range of operational variables in a light duty service, wherein loads and/or speeds are low.

Lubrication in rocket motors, and in outer space in general, is difficult because of the weight limitations which virtually eliminate all heavy auxiliary lubrication equipment like pumps, motors, sumps, etc., as well as the limitations imposed by the vacuum environment. With a few exceptions, liquid lubricants cannot be used. The most successful solid lubricants used in outer space are the filled polytetrafluoroethylene (PTFE), sputtered MoS_2 , and ion-plated soft metals (e.g., Pb). Since solid lubricants cannot prevent the solid-solid interaction of the load bearing surfaces, a surface distress and resulting mechanical wear are unavoidable. Successful applications under these circumstances are the ones which result in manageable wear rates, in addition to satisfying various other requirements.

The phase II HPOTP bearings are lubricated with PTFE contained within the glass fiber reinforced cages. They operate at nearly 2 million DN (bearing pitch diameter (mm) by shaft speed (revolutions/minute)) in an environment of lox which precludes effective liquid film lubrication and imposes cryogenic temperatures, high thermal gradients, and heavy transient loads. In most other space applications, bearings operate well below 1 million DN.

Wear may be low in applications characterized by a low DN value and short or infrequent operation. However, a high DN value, heavy use, and a corrosive or contaminated environment tend to produce heavy wear. The useful life of phase II HPOTP bearings is limited to only two (or three) flights of the space shuttle, due to excessive wear.

Ē

į.

-

2

Many technical issues related to the HPOTP bearings have been studied recently, ranging from performance and materials to a new cage design, testing, and optimization of race curvatures for heat generation and stress. Naerheim, et al.⁵ have evaluated the maximum operating surface temperature of the bearings to be in the range of 600 °C, based upon the postmortem Cr/Fe ratio of oxides found on the wear tracks.

Failures of lubricated rolling bearings have been studied very extensively. Consequently, the combined body of knowledge on pitting, smearing, fretting, etc., is usually sufficient to design reliable bearing systems. However, wear of rolling element bearings remains largely unexplored in general, wear dynamics in particular, and participation of recognized modes of surface wear and effects of variables remained unknown until this publication.

III. BEARING ENVIRONMENT AND OPERATING CONDITIONS

A simplified cross section of the phase II HPOTP showing the main shaft support configuration is shown in figure 5. The bearings are of the type of separable angular contact ball bearings made of 440C stainless steel, have a customized internal geometry, and work in a back-to-back preloaded tandem. The bearing studied in this report is the second bearing from the left (marked 2). A carefully controlled axial preload is exerted by a custom design beam-spring placed between the outer rings of the bearings, as shown. Both bearings are cooled by the same steady stream of lox passing axially through them from the pump end, left to right.

Operating conditions for the No. 2 bearing of the phase II HPOTP are shown in table 1. The data listed in it are believed to average and approximate the overall conditions of operation. They do not represent a coherent set of recorded "test data," as most readers are accustomed to seeing in strictly controlled experiments, because each test specimen in this study comes from a different turbopump and a different flight of the space shuttle and not from a controlled tribology experiment.

Direct measurements for some variables listed in table 1 were impractical (e.g., loads) or even impossible (e.g., ball temperatures) to accomplish due to a lack of access to these bearings in the flight service and/or their explosive environment (lox). Also, there is no single source of information on which to rely in re-creating the conditions of operation. In various contractors reports, particular features are usually related to bearing malfunction and/or proposed remedies, while operational variables are treated as incidental information to the issues. Consequently, there is a considerable disagreement among experts on the operating conditions. This is an open issue in itself, too broad for an exhaustive treatment, and out of scope in this context. The "best" plausible estimates are shown, considering all the available information, in order to provide a feel for the extraordinary severity of this application. The following comments are offered in order to provide more insight.

The high power (30,000 hp), high speed (30,000 r/min), and short duration of the HPOTP work cycle renders many important variables of its operation highly time dependent due to thermal transients inherent in the turbopump and/or those which are generated in the bearing itself. Likewise, bearing operating conditions, except for the shaft speed, are transient. Also, individual variations in some component dimensions of the HPOTP, despite a strict scrutiny and individual certification, are probably sufficient to substantially influence bearing loads, especially if thermal effects are considered. Thus, a considerable scatter of bearing operation variables is unavoidable.

The angular velocity and acceleration of the bearing's inner ring are virtually certain and precise, although they vary with the power level. The oxygen environment is believed to locally change from liquid (lox) to gas (gox) on and near the hot surface tracks of balls. This upsets the heat balance within the bearing and is believed a major cause of a potential thermal instability.

Surface temperatures (table 1) of the race tracks and balls may reach 600 °C,⁵ while the outer race surface temperature in contact with the seat may remain at -150 °C. A thermally induced radial expansion of the inner ring and balls may cause a loss of a bearing operational clearance, resulting in an interference overload which generates more heat, and further thermal expansion, until the ongoing and thus accelerated wear processes restore the bearing clearance.

The initially applied coating of dry lubricant film wears away very rapidly, within a few seconds perhaps, and the PTFE transfer film produced by attrition from the ball retainer seats is not quite sufficient to keep the ball wear in check. Since solid lubricants cannot prevent the solid-solid interaction of the load bearing surfaces, a surface distress and the resulting mechanical wear are unavoidable. This is a favorite wear scenario for the HPOTP bearings related to their cooling and lubrication.

The radial load consists of constant and alternating parts (fig. 5). The constant radial load is due to the rotor weight and static fluid pressure. The alternating part is induced by the fluctuating fluid pressure and a dynamic unbalance. The axial load consists of a design preload component (approximately 1,000 lb) which is superposed on the load components due, primarily, to differential axial displacements of the bearing caused by the combined actions of the balance piston (fig. 5), thermal expansion, and changes in fluid pressure.

IV. MATERIALS

Cryogenic applications like this one require careful selection of materials for rolling bearing components. High strength, hardness, fracture toughness, and stress corrosion resistance are the usual prerequisites for rolling elements and rings which must withstand repetitive applications of high contact stresses and the resulting wear and rolling contact fatigue. In addition, dimensional stability at cryogenic and elevated temperatures, corrosion resistance, and compatibility with the lox environment, as measured by the NASA auto-ignition test, are required. The AISI 440C martensitic stainless steel (table 2) satisfies these requirements reasonably well except for the wear resistance. All bearings analyzed here are made of the 440C steel.

Other materials involved include ArmalonTM ball retainers, solid lubricants, and lox. They influence lubrication and cooling and, thereby, affect all tribological features of this very unique and technologically critical application. The phase II HPOTP bearings are prelubricated with a coating of dry lubricant and dry lubricated with a transfer film of PTFE from the ball retainers. The retainers are made of ArmalonTM, a composite material mode of polytetrafluoroethylene (PTFE, TeflonTM) which is reinforced with glass fibers whose chemistry is composed of the following oxides: 54.3 percent Si, 17.2 percent Ca, 15.2 percent Al, 8 percent Bo, 4.7 percent Mg, and 0.6 percent Na. Load-bearing surfaces of these bearings are initially sputter-coated and cured with a dry lubricant composed of 65 percent MoS₂ and 35 percent Sb₂O₃.

÷

Undesirable, yet present on most bearing surfaces, as shown by the EDT diagrams, are the contaminant particles carried by the stream of lox flowing through the bearings. Lox is the process fluid of the HPOTP as well as the coolant for the bearings.

V. ANALYTICAL MODELING OF MAJOR WEAR MODES

A. On Wear Modeling in General

Wear and friction are not intrinsic material properties. They are both interrelated and both depend on conditions and environment at contact. More often than not, operating conditions in a microscale define the tribological behavior of a mechanical contact subjected to friction and wear, i.e., made to sustain external or internal load and relative motion simultaneously. Wear relies upon three phases of particle generation⁶ whose relative duration, and importance to modeling, varies from one engineering application to another. These are:

Phase I – particle detachment

Phase II - third body life

Phase III – particle ejection.

Particle detachment mechanisms, and related wear modes which are usually named after these mechanisms, are relatively well known, and mathematical models exist for these few situations in which particle detachment dominates the wear scenario. Modeling wear from first principles, i.e., from the basic laws of physics, is not yet possible for the majority of engineering applications in which all the three phases named above participate to a significant degree. Empirical models are successfully used to predict wear rates in these situations, but their applicability must always be ascertained and experimentally derived constants obtained before these models can render reliable predictions. Wear maps have become quite fashionable recently² since wear modes significantly influence the wear rates.

B. Major Wear Modes Established for the Phase II Turbopump Bearings

The initial stage of this study⁷ revealed that wear of the turbopump bearings involves several modes whose dynamics varies with time of a work cycle. While most of the known modes of rolling contact bearing wear were evident on the ball and ring surfaces, the three modes dominating the wear scenario were found to be ASP, oxidation, and abrasion. Thus, the dominant modes are modeled according to the well-known empirical equations, and allowance is made for wear dynamics by incorporating intermediate dimensional, friction, and other changes into the operational SHABERTH[™]/SINDA[™] model of a representative bearing. Averaged operational variables derived with SHABERTH[™] are then used to model the bearing wear.

C. Adapting Models of Sliding Wear for Ball Bearings Operating in Lox

Wear of rolling element bearings is a marginal issue in general tribology⁸ because ample fluid film lubrication and cleanliness, in the sense of exclusion of contaminants, are the usual prerequisites of most engineering applications, and consequently, rolling contact wear is very low. Rolling contact wear should not be confused with rolling contact fatigue⁹ which continues to receive a lot of attention as a major and unavoidable problem of rolling bearings. There has been no model available for rolling contact wear applicable to the case under consideration, but, fortunately, suitable models for the particular wear modes of sliding wear corresponding to those established for the turbopump bearings have been identified and subsequently adapted, as shown below. 1. <u>ASP Mode—Microfatigue</u>. The ASP mode relies upon propagation of cracks in a direction parallel to the surface of contact and wear debris generated⁷ in contact resembles microscopic flakes (fig. 4). Thus, it is a form of microfatigue wear whose best mathematical model to date has been given by Kragelsky.¹⁰ His original equation is shown below:

 $I = K \, 15^{0.4 t^*} \, aK' p E^{0.5 t^{*}-1} \, (t/a')^{0.5} \, (kf'/s)^{t^*}$

I = linear wear rate in meters per meter of sliding distance

K = contact geometry/fatigue factor, usually = 0.2

K' = correction factor for load variation

k = contact stress/frictional fatigue parameter, usually = 3 for elastic materials

t = molecular component of friction stress (normal load extrapolated to 0)

 t^* = exponent of Wohler's equation, empirical variable

a = asperity overlap coefficient, usually = 0.5 for run-in surfaces

a' = hysteretic loss factor, evaluated = 0.05 for the case

p = average contact pressure

E = Young's modulus of elasticity

f' = molecular component of the coefficient of friction, empirical variable

s = ultimate tensile stress .

This equation has been modified using the original Kragelsky's intermediate forms and nomenclature in order to better suit this study. The modified equation is shown below. It renders similar results in this case, and it is simpler to use.

 $I = K \ 15^{1/2} \ 2^{1/2V} \ \theta^{3/8} \ a^{2+1/2V} \ (t/a')^{3/8} \ p^{-1/4} \ (kf'p'/s)^{t^*} \ ,$

where

V = asperity interaction parameter, empirical variable evaluated = 3.5

p' - real average contact pressure, statistical surface roughness variable

 $\theta = (1-u^2)/E$, composite elastic constant

u =Poisson's ratio .

All remaining symbols are identical to those in the original equation.

A number of variables and constants for the successful application of Kragelsky's model to the ASP mode have been derived from the NIST report by Slifka¹¹ whose experimental setup, extent of study, and a representative worn specimen are shown in figure 6.

Kinematic relations of wear scar growth on the ball in Slifka's experiment (fig. 7) have been studied in order to prorate various variables entering Kragelsky's equations for the ASP mode. Also, a coherent wear scenario has been created in order to make Slifka's wear rates compatible with those of Kragelsky, as shown below.

Wear scenario of NIST experiment to evaluate A. q. and I

- With U = 0.5 m/s and N = 150.6 N, both constant, the final wear scar area A and pressure q depend on sliding distance L. The linear rate of wear I stays nearly independent of q.
- A coherent wear scenario for the entire matrix of empirical variables is produced by assuming the same sliding distance L. Let L = 240 m.
- A, q, and I have been computed using Slifka's figure 5(c) and the kinematic relations of wear scar growth shown earlier.
- The selected data for U and N are the closest values for the variables in the operational range of the HPOTP pump end bearing.

From Slifka's figure 5(c):

Ball Temperature (°C)	-200	0	200	400	600
Volume Wear (mm ³ /m) $(\times 10^{-3})$	0.8	1.2	3.6	10	30
Computed:					
Scar Area (mm ²)	2.396	2.935	5.083	8.472	14.674
Final Pressure (MPa)	62.847	51.314	29.628	17.776	10.263
Linear Wear Rate " <i>I</i> " (multiply by 10 ⁻⁷)	6.67	8.18	14.17	23.61	40.89

Contact pressures p^* (Hertzian), q (final), p (average), and p' (real) evaluated for the ASP mode from Slifka's experimental data using the wear scenario are shown below.

Load (kg(N)	4.56 (44.7)	15.36 (150.6)	36.40 (357)
p^* (kg/mm ²)	280.4	420.8	561.1
q (kg/mm ²)	2.0	3.3	4.4
p (kg/mm ²)	94.5	141.9	189.2
$p'(kg/mm^2)$	136.6	144.6	196.1

$$p^* = 0.616 (P(E/d)^2)^{(1/3)}, q = P/A, p = (2p^*/3+q)/2$$

 $p' = 0.616 (R*/r*\theta^{-2})(4)^{0.43} p^{0.14}$

where

 R^* = combined roughness parameter in μm

r' = combined waviness parameter in μm

P = normal load

E = Young's modulus

d =ball diameter .

The molecular component of friction stress "t" has been derived using the Kragelsky's definition and methodology in application to Slifka's frictional data as shown in figure 8. The average value in the range interest is

$$t = 19.84 \text{ kg/mm}^2$$
 .

The molecular component of the coefficient of friction "f" (T)" for the range most applicable to turbopump bearings under consideration has been derived using the Kragelsky's definition and Slifka's experimental data as shown in appendix A. The average value in the range of interest is

$$f' = 0.12$$

The frictional fatigue component " t^* " in Kragelsky's equation for the ASP mode has been evaluated from the Slifka's data as shown below. The average value in the range of interest is:

 $t^* = 6.71$.

With

$$K^* = K_{15}^{(1/2)2^{(1/(2\nu))}\theta^{(3/8)}a^{(2+1/(2\nu))(t/a')^{(3/8)}}}$$

the modified Kragelsky's equation for the ASP mode is

 $I = K^* p^{(-1/4)} ((kf'/s)p')^t *$.

Solve for

$$t^* = (\ell n l) + (\ell n p)/4 - \ell n K^*) / (\ell n k - \ell n s + \ell n f' + \ell n p') ,$$

 $K^* = 0.0360485$, constant in Slifka's experiment

Τ	-200	0	200	400	600
t*	17.50	10.48	7.11	5.23	4.02

8

Average value for the range 0 to 600 °C:

$$t^* = 6.71$$

This value is within the range quoted by Kragelsky for hard steel. No other data are available.

2. <u>Oxidation Mode</u>. Oxidation wear has been modeled by Quinn,¹² and although this study⁷ did not show explicit "oxidative only" wear debris as such, due to technical limitations of the available microscopy, it nevertheless provided enough secondary evidence to include oxidation as one of the three dominant modes of wear for the HPOTP bearings which operate in the lox environment.

Using Slifka's experimental data and Quinn's model for the range of operational variables of interest (appendix B), the final equations are:

 $w' = 8.1224 \times 10^{-7} \times (A/V) \exp(-64.896/T)$, for T < 350 °C, $w'' = 25.9631 \times 10^{-6} \times (A/V) \exp(-1.613.71/T)$, for T > 350 °C,

where

w (m³m) = volumetric wear per unit sliding distance

 $T(\mathbf{K}) = \text{contact temperature at asperity level}$

V(m/s) = sliding velocity

 $A(m^2)$ = real area of contact.

3. <u>Abrasion Mode</u>. Abrasion has been confirmed in many forms on ball and ring surfaces of the HPOTP bearings.⁷ This mode was first introduced by Holm and Archard.¹³ Using Slifka's data (appendix C) for the range of variables of interest in this study, the wear coefficient is:

$$k = 3.10 \times 10^{-6}$$
.

D. Conversion of Linear Wear Rate "I" and Average Pressure "p"

Empirical wear rate equations are directly applicable to the configurations resembling those for which they were derived, i.e., pin-on-disk in which the wear scar area remains constant and so does the average pressure. In ball bearings, wear surface is spread over the entire ball surface, contact area continuously varies, and so does the contact pressure. Linear wear "I" and average pressure "p" are therefore prorated as shown in figure 9.

E. Evaluating Operational Variables With SHABERTH[™]/SINDA[™]

1. <u>What SHABERTH[™] is All About</u>. SHABERTH[™] is a mainframe computer program for the analysis of steady-state and transient thermal performance of shaft-bearing systems. It was developed in 1976 by SKF, Inc., for the U.S. Air Force/Navy under contract No. F33615-76-C-2061/N62376-76-MP-00005.¹⁴ A PC version¹⁵ of the program (adapted for NASA-MSFC by SRS Technologies of

Huntsville, AL, under contract No. NAS8-37350) was used in this project, with due consideration for correctness and accuracy by referencing the mainframe SHABERTH[™].

PC/SHABERTH[™] proved to be as potent a tool for the analysis of bearing statics and kinetics versus the operational, design, and materials variables as its mainframe predecessor as far as requirements of this project are concerned. However, modeling of ball/separator contact with either version of SHABERTH[™] produced unrealistically high contact forces because of the intrinsic inaccuracies of the "quasi-static" modeling concept utilized in the program. SHABERTH[™] has been coupled with SINDA[™], a software package for fluid and thermal analysis, in order to more precisely model bearing operating temperatures.

2. Input Data and Related Matters. SHABERTH[™] requires a great deal of input data on bearing/shaft/housing design, tolerances, materials, surface finish, friction, lubricant, elastic and thermal properties, loading and operating conditions, etc. Depending on the application, the number of these input data varies from about 70 upwards, and all of them affect SHABERTH[™] operation, accuracy, and eventually output, just as they do operation of bearings, but to a varying degree.

Detailed discussion of the input data is omitted here for brevity. It can be found in reference 14, but all data which were used here are listed in appendix D, explicitly on the front page of each computer printout and again at the end of the printout in a coded "card input" form. Input data are compatible with NASA and its contractor's reports, including reference 15. Printouts have been curtailed to the essential information only because their original version runs into an excessive number of pages, exceeding 50 per case studied. Although many more cases were run in order to gain confidence in the system as well as to get the feel for the relative importance of specific variables, only the three cases representative of the study are shown in appendix D and discussed in detail below.

3. <u>Computational Modes</u>. Solution level 2 has been chosen because friction effects on ball position in the track envelope are important in this case. One degree of freedom mode for the inner ring has been used because it provided the most reliable and consistent results.

4. Input Variables. Most of the input data remained invariable in this study, except for bearing loads, clearance, ball size, raceway curvatures, temperatures, friction coefficient, and contact angle, all of which were varied in accordance with bearing wear history, which was interactively customized until proper convergence. For example, decrease of bearing preload due to wear of balls and raceways has been accounted for.

5. Input Sensitivity and Output Verification. A large number of computer trials had to be run before loads converged to the desired magnitude, as can be seen in tables 3 and 4 and in figure 10. This anomaly is caused by the sensitivity of SHABERTH[™] to the load input when it is operated in a "single bearing" mode which was chosen here for the simplicity of interpretation of results, free of destructive design influences. The case selected as valid has been highlighted in the tables and pointed to in the figure. The selection is based on two criteria in effect simultaneously, i.e., minimum departure from the assigned loads after conversion and minimum frictional energy dissipation in both ball/ring contacts combined. The second criterion is related to the authors' understanding of dynamic simulation of mechanical systems, namely that a numerical solution to this "quasi-static" formulation of bearing dynamic equilibrium in SHABERTH[™] has to be more accurate for a case with lower energy dissipation for a given set of input data.

ł

10.000

6. <u>Results and Their Relevance to Modeling</u>. Computer printouts shown in appendix D contain most of the information on static, kinematic, and kinetic quantities describing operational characteristics of the modeled bearings, but they are not easy to read unless augmented with graphical illustrations and direct comparisons. The following figures and tables are provided in order to make up for this deficiency.

Table 5 gives a direct comparison of the two distant cases regarding wear modeling, namely the one right after the start of work cycle (named "base isothermal") and the other after 100 min of cycling (named "worn thermal"). The effect of wear is visible in all quantities. The quantities listed in the table heading from left to right are the following:

Azimuth in degrees (AZIM) = peripheral coordinate of the ball

Spin/roll ratio \times 1,000 (SPIN/R)

Ball excursion in micrometers (B.EXC.)

Cage force in Newtons (CAGE F.)

Ball angular velocity about x axis in rad/s (WX)

Ball angular velocity about y axis in rad/s (WY)

Cage angular velocity in rad/s (Wcage)

Contact angle at the outer ring in degrees (C.NGL./O)

Contact angle at the inner ring in degrees (C.NGL./I)

Contact force at the outer ring in Newtons (C.F./O)

Contact force at the inner ring in Newtons (C.F./I)

Hertzian contact stress at the outer ring in MPa (HRTZ/O)

Hertzian contact stress at the inner ring in MPa (HRTZ/I).

Figure 11 shows variation of contact angles for inner and outer rings around the bearing. The range of variation exceeds 30° for the inner contact and 25° for the outer. The effect of wear lowers contact angles and the range of variation.

Figure 12 shows variation of ball angular velocity components with reference to the cage around the bearing. It can be seen that a ball slows down rolling and accelerates spinning directly under the load vector on the "unloaded" side (180°). The effect of wear decreases the range of variation.

Figure 13 shows variation of contact load and contact stress in the outer ring/ball contact around the bearing. Both quantities have two relative maximums on the load vector of which the one on the loaded side (0°) is larger. The range of variation is insignificantly lower for the worn bearing.

Figure 14 shows variation of contact load and contact stress in the inner ring/ball contact around the bearing. Both quantities have two relative maximums on the load vector of which the one on the loaded side (0°) is larger. The range of variation is insignificantly lower for the worn bearing. It can be seen that both stress and load are higher in the inner contact in comparison to the outer (fig. 13).

Figure 15 shows variation of cage force, ball excursion, and spin-to-roll ratio around the bearing. The effect of wear is a lowering of all these quantities, especially ball excursion as expected. It is worthy of note that cage force reaches the same order of magnitude as the contact force at the races, which is incorrect and due to obvious shortcomings of the SHABERTH[™] model. When modeled with the ADORE[™] software, cage pocket/ball contact forces are lower by nearly two orders of magnitude.

Figure 16 shows maximum variation of "pV," the pressure and sliding velocity product, along the major axis of the ellipse of contact with the outer ring of a ball located directly under the load vector on the loaded size (azimuth 0). Since contact pressure has a semielliptic distribution with a maximum at the center of contact, it can be envisioned that microsliding in contact is mostly due to the symmetric interfacial rolling slip (Heathcote effect, compare with reference 16). This distribution pattern is typical for the outer ring.

Figure 17 shows maximum variation of "pV," the pressure and sliding velocity product, along the major axis of the ellipse of contact with the inner ring of a ball located directly under the load vector on the "unloaded" side (azimuth 180). Since contact pressure has a semielliptic distribution with a maximum at the center of contact, it can be envisioned that microsliding in contact is mostly due to spin (compare references 17 and 18). This distribution pattern is typical of the inner ring.

Figure 18 shows a "pV" profile along the major axis of contact with the outer ring of a ball located at 150° from the load vector for a "new" and a "worn" bearing. The effect of wear is significant, as can be seen by a direct comparison, at 150° but not elsewhere (compare fig. 19).

Figure 19 shows a "pV" profile along the major axis of contact with the inner ring of a ball located at 150° from the load vector for a "new" and a "worn" bearing. The effect of wear is visible but small as can be seen in comparison to figure 18.

Power dissipation in the outer ring/ball contact along the major axis of contact ellipse due to friction and microsliding is shown for seven consecutive ball positions around the bearing in figures 20 and 26 and again, combined, in figure 27. As mentioned earlier in the context of the "pV," interfacial slip friction is dominant here which creates a peculiar symmetric double-hump distribution. Figure 28 shows a pie chart comparison of power dissipation in contact with the inner ring of a ball traveling around the bearing. It can be seen that balls located along the load vector dissipate most of the frictional energy (because they carry most of the bearing load).

Effect of wear on frictional power dissipation in contact of ball No. 1 with the outer ring is shown in figure 29. It is visible.

Power dissipation in the inner ring/ball contact along the major axis of contact ellipse due to friction and microsliding is shown for seven consecutive ball positions around the bearing in figures 30 to 36 and again, combined, in figure 37. As mentioned earlier in the context of the "pV," spin friction is predominant here which creates a peculiar asymmetric double-hump distribution. Figure 38 shows a pie chart comparison of power dissipation in contact with the inner ring of a ball traveling around the

bearing circumference. It can be seen that balls located along and near the load vector on the "loaded" side dissipate most of the frictional energy.

Effect of wear on frictional power dissipation in contact of ball No. 1 with the inner ring is shown in figure 39. It is visible.

Figure 40 shows combined frictional power dissipation in contact due to interfacial (Heathcote) slip and spin around the bearing for the inner and the outer contacts. It can be seen that most energy is dissipated in the inner contact and directly under the load vector, i.e., at 0° (360°) and 180°.

Combined frictional losses for all balls on one side of the bearing are laid out at their respective locations along the track for the outer ring in figure 41, and for the inner ring in figure 42. Since wear volume is to a certain scale proportional to the frictional power loss for the particular location, the outer envelope of this graph can be shown to represent a wear path profile for the location on the ring, inner or outer, assuming that operating conditions of a bearing remain unchanged over the course of the entire work cycle. Measured wear profiles¹⁹ seem to show the same characteristic features as those shown in figures 41 and 42. The same cannot be said about the wear path profile on a ball because it can roll and spin simultaneously, thereby exposing a new part of its surface with each passage. However, the authors' own experience¹ and literature²⁰ strongly suggest that a wear path does stabilize on the ball surface. Thus, to a different scale, these graphs can be representative of ball wear track profiles as well.

A computed wear track developed along the bearing circumference for both inner and outer rings is shown in figure 43. Together with an appropriately scaled wear profile from figures 41 and 42, it can be used to compute the volume of wear debris removed from the rings if there is no back and forth transfer of wear debris between balls and rings.

F. Averaged Data for the Three Representative Cases

Not all the data presented so far enter analytical expressions for computation of wear, and none can be applied directly. Since balls rotate, spin, and revolve simultaneously while remaining in contact with both rings, average rather than instantaneous values of pressure, sliding distance, and sliding velocity are needed for the final wear analysis. The average values have been computed by integration over the contact areas of a ball with the inner and outer rings, and averaging them for the 12 ball positions around the bearing. These data are shown in table 6.

G. Computing Ball Wear According to the Combined Model

Wear of balls has always been so much greater than wear of rings of the HPOTP flight bearings that the latter has usually been ignored. This model pertains to diametral ball wear due to all the three dominant modes, i.e., ASP, oxidation, and abrasion, simultaneously acting in contact of all balls with both rings of a bearing. Wear of balls due to their contact with pockets of the ball retainer is not considered here because it is insignificant under typical circumstances.

The most essential features of the combined model of ball bearing wear are summarized below:

1. Arithmetic average of all three modes computed independently of each other is assumed representative of ball wear.

2. Empirical constants come from modeling the NIST experimental data with applicable theories of sliding wear for the wear modes experimentally established.⁷

3. Data entering mathematical models of the modes come from SHABERTH[™]/SINDA[™] and/or analytical modeling of bearing operational variables as shown in this study.

4. No field data on actual bearing wear or statistical correction factors are used to predict ball wear.

The predicted diametral ball wear for phase II HPOTP No. 2 bearing in micrometers is shown below versus the flight time, i.e., service time in minutes of operation at the nominal speed of 30,000 inner ring rotations per minute. In the tabulation, all the three modes of wear are shown in vertical columns, next to each other, with the arithmetic average of the three being shown in the last column.

Time (min)	Abrasion	Oxidation	ASP	Average
1	0.5	0.1	0.1	0.2
10	3.8	3.3	6.7	4.6
100	38.0	48.9	70.2	52.4

Since it was not feasible to experimentally determine actual participation of the individual modes in the overall wear picture, the average value of all the three modes has been taken as representative. Also, in deriving empirical coefficients from the NIST data, each mode has been treated as acting alone and therefore representative of the entire wear process in NIST experiments, each time.

Interestingly, each of the mathematical models used to describe the particular modes modeled here, in the literature¹⁰ ¹² ¹⁹ have been shown as the models, although it is obvious² that various modes always contribute in the overall wear processes.

VI. STATISTICAL ANALYSIS OF FIELD DATA AND APPRAISAL OF BALL WEAR MEASUREMENT METHODOLOGY

A. Statistical Analysis of Field Data

A complete wear record for all flight (F) and development (D) bearings of standard phase II HPOTP configuration and design, and covering a period of 1987 to 1993 is shown in table 7. It is based on the Rocketdyne data for the same period. Bearings whose ball wear record was incomplete are not included in table 7, and not considered in the subsequent analysis.

For the purpose of visual comparisons, the wear record of flight bearings, development bearings, and combined (F and D) bearings is displayed in figures 44, 45, and 46, respectively. It can be seen that flight bearings show diametral ball wear ranging from zero (replaced with 0.1 for graphical purposes) to 20 micrometers. Seemingly, wear is independent of service time, but these bearings were not allowed to work more than two or three flight cycles, and wear was low so measurement errors were large. It should be obvious that zero wear corresponding to a flight time of up to 35 min of service is anomalous and inconsistent with the nature of wear processes. It can possibly be explained in terms of measurement

errors and related metrology, as shown later in this report. Development bearings, in contrast to flight bearings, show a wide spread of diametral wear which is quite clearly dependent on the flight time. The combined record of flight and development bearings will be used as background to wear modeling later.

Histograms on diametral wear data of the phase II HPOTP bearings and the standard configuration development bearings are shown in figures 47 and 48, respectively. Table 8 gives numerical values of the quantities displayed in figures 47 and 48. It can be seen that wear histograms are representative of the bearing population shown in table 7 and figures 44 to 46. A trend of wear growth with service time is also quite clearly visible despite the logarithmic scale for the ordinate axis.

Statistical and linear regression analysis of the bearing wear record has been carried out with a commercial package provided with QUATTRO PROTM and checked for the accuracy of its most relevant findings. The results are displayed in tables 9 and 10. The latter is for the "forced 0" mode, meaning that a regression line is required to pass through 0, as expected for the type of physical phenomenon being modeled (i.e., wear is zero at service time being zero). It can be seen that for the most meaningful case of combined flight and development bearings, the "X coefficient" is nearly 0.91 with the "standard error of coefficient" equal to 0.16 (case of "forced 0"). All this can be translated into a nearly straight proportionality of diametral ball wear in micrometers to service time in minutes with an error margin of 16 percent. However, the analytical expressions relating ball wear to service time are nonlinear, as can be seen in the preceding sections.

B. Appraisal of Ball Wear Measurement Methodology

Diametral ball wear is a minute quantity to measure, it is not easy to establish a common reference basis for measurements, balls are difficult to position relative to a common reference basis, and wear patterns vary from ball to ball.⁷ Also, in the case of bearings which were examined after only a few minutes of service time, wear can be visible on a microscopic scale quite well, but it cannot be detected with a standard micrometer because it is not uniform over the ball surface. These and other difficulties of wear measurement and their reflection in the wear record have prompted the authors to take a closer look at some of the available bearing specimens whose wear record was available from the existing data bases.

Ball diameter of worn bearings has been measured with a mechanical micrometer accurate to within 0.00001 inch immediately following careful calibration at room temperature. An average of three measurements for each ball taken at three approximately perpendicular axes, related to the wear pattern on the ball, was considered to represent ball diameter, just as it was supposed to have been done at Rocketdyne, whose ball wear record is shown in table 7. All balls have also been weighed using a digital scale of 0.01-mg resolution, an average of five measurements considered as the weight.

Results of these measurements are shown in figures 49 through 52 for representative bearings whose wear record was extremely low (0.0000 inch), medium (0.0003 inch), heavy (0.0004 inch), and very heavy (exceeding 0.0010 inch). For ease of plotting only, ball diameter in micrometers minus 11,000 was multiplied by five to be of magnitude compatible with ball weight in milligrams minus 5,000.

It can be seen that "diameter/weight" correlation is pretty good, except for the case of very heavy wear. A relatively poor correlation in the last case is caused by the uneven wear pattern (a single wide

wear track on the ball) whose effect upon diametral wear measurement is obscured by the wear metrology outlined above although its effect on ball weight is not.

This simple experiment indicates that diametral ball wear record may not be a very accurate measure of ball wear. Also, it seems that weight measurement is less prone to errors caused by uneven wear, effects of thermal distortions, and linear resolution of the available micrometers.

VII. COMPARISON OF RESULTS OF WEAR MODELING TO WEAR STATISTICS

Combined results of wear modeling for the No. 2 bearing of the phase II HPOTP of the space shuttle main engine are shown in figure 53 in the form of bars on the background of actual statistical data for the bearing. It can be seen that there is excellent agreement of the two, considering that usually prediction of wear differs from the actual field data on wear by an order of magnitude or more. It seems that such good agreement was possible to achieve only because of the availability of the NIST data on wear of the 440C under the conditions closely resembling those of the phase II HPOTP.

REFERENCES

- 1. Chase, T.J.: "Wear Modes Active in Angular Contact Ball Bearings Operating in Liquid Oxygen Environment of the Space Shuttle Turbopumps." Lubrication Engineering, vol. 49, No. 4, 1993, pp. 313–322.
- 2. Slifka, A.J., Morgan, T.J., Compos, R., and Chaudhuri, D.K.: "Wear Mechanism Maps of 440C Martensitic Stainless Steel." Wear, vol. 162–164, 1993, pp. 614–618.
- 3. Lancaster, J.K.: "Material Specific Wear Mechanisms: Relevance to Wear Modeling." Wear, vol. 141, 1990, pp. 159–183.
- 4. Keer, L.M., and Worden, R.E.: "A Qualitative Model to Describe the Microchipping Wear Mode in Ceramic Bearings." Tribology Trans., vol. 33, 1990, pp. 411–417.
- 5. Naerheim, Y., Stocker, P.J., and Lumsden, J.B.: "Determination of the SSME High Pressure Oxidizer Turbopump Bearing Temperature." Advanced Earth-to-Orbit Technology, NASA, Huntsville, AL, CP 3012, vol. 1, 1988, pp 88–101.
- 6. Godet, M., Bertier, Y., Lancaster, J., and Vincent, L.: "Wear Modeling: Using Fundamental Understanding or Practical Experience?" Wear, vol. 149, 1991, pp. 325–340.
- 7. Chase, T.J.: "Wear Mechanisms Found in Angular Contact Ball Bearings of the SSME's Lox Turbopumps." NASA TM-103596, Marshall Space Flight Center, AL, July 1992.
- 8. Quinn, T.J.F.: "Role of Wear in Failure of Common Tribosystems." Wear, vol. 100, 1984, pp. 399–436.
- 9. Czyzewski, T.: "Influence of a Tension Stress Field Introduced in the Elastohydrodynamic Contact Zone on the Rolling Contact Fatigue." Wear, vol. 34, 1975, pp. 201–212.
- 10. Kragelsky, I.V., and Alisin, V.V.: "Friction, Wear, and Lubrication (Tribology Handbook)." Mir Publishers (in English), Moscow, 1981.
- 11. Slifka, A.J.: "Coefficient of Sliding Friction of 440C as a Function of Temperature." NIST progress report to Materials and Processes Laboratory of NASA-MSFC, December 18, 1990, Boulder, CO.
- 12. Hong, H., Hochman, R.F., and Quinn, T.J.F.: "A New Approach to the Oxidational Theory of Mild Wear." STLE Transactions, vol. 31, 1988, pp. 71–75.
- 13. Archard, J.F.: "Wear Theory and Mechanisms." Wear Control Handbook, ASME, Eds. M.B. Peterson and W.D. Winer, New York, NY, 1980.
- 14. "Computer Program Operational Manual on SHABERTH[™], a Computer Program for the Analysis of the Steady-State and Transient Thermal Performance of Shaft-Bearing Systems." Technical Report AFAPL-TR-76-90, SKF Industries, Inc., King of Prussia, PA, October 1976.

- 15. "SSME Bearing and Seal Tested Data Compilation, Analysis and Reporting, and Refinement of the Cryogenic Bearing Analysis Mathematical Model." Report SRS/STD-PR92-5891, SRS Technologies, Huntsville, AL, August 1992.
- 16. Leveille, A.R., Zupkus, C.J., and Ludwig, H.R.: "Prediction of Ball-Spin and Interfacial Slip Friction From Room to 2,500 °F." ASLE Transactions, vol. 9, 1966, pp. 361–371.
- 17. Jones, A.B.: "Ball Motion and Sliding Friction in Ball Bearings." ASME Trans., Journal of Basic Engineering, vol. 81, 1959, pp. 1–12.
- 18. Halling, J.: "The Microslip Between a Ball and Its Track in Ball-Thrust Bearings." ASME Trans., Journal of Basic Engineering, vol. 88, 1966, pp. 213–220.
- 19. Bunting, B.G.: "Wear in Dry-Lubricated, Silicon Nitride, Angular-Contact Ball Bearings." Lubrication Engineering, vol. 46, 1990, pp. 745–751.
- 20. Kawamura, H., and Touma, K.: "Motion of Unbalanced Balls in High-Speed Angular Contact Ball Bearings." Journal of Tribology, vol. 112, 1990, pp. 241–247.

Table 1.	Operating	conditions.*
----------	-----------	--------------

Radial load	2.56 to 7.13 (kN)
Axial load	6.46 to 10.24 (kN)
Angular velocity, inner ring (IR)	3,141.6 (rad/s)
Angular acceleration (IR) (average, start to FPL)	785.4 (rad/s ²)
Environmental (coolant)	lox
2.1 kg/s axial mass flow rate, pressure, and temperature	2 MPa and -162 °C
Lubricant: transfer film from ball separator seats	solid PTFE
dry film lube coating on race tracks	$Mo-S_2/Sb_2O_3$
Hertz contact stress (IR)	2.5 to 3.5 (GPa)
Surface temperture: ball and inner race track	up to 600 °C
outer ring on O.D., approximately	–150 °C

*Compiled by the author from NASA and contractors' files.

Table 2. AISI 440C stainless steel.

	Fe	Cr	С	Мо	Mn	Si	Ni	Cu	Р
Composition* (in percent weight)	80.25	16.95	1.04	0.50	0.36	0.49	0.28	1.04	0.02
Properties† (hardened	and temp	ered)							
Tensile streng	th				1.965 G	Pa (285 l	ksi)		
0.2-percent yie	eld strengt	h			1.896 G	iPa (275 l	ksi)		
Percent elonga	ation (in 50	0 mm)			2				
Percent reduct	ion of area	a			10				
Hardness (Roo	kwell C)				57 (to 6	51)			

*Supplier information. †T. Baumeister (editor): "Marks' Standard Handbook for Mechanical Engineers," (eighth edition).

SHABERTH TM Convergence to Target Loads " M " FX = 8,230 (N), $FR = 4,760$ (N), OP.CL. = 148 (µm), C.NGL. = 25.19									
Run No.	Input Fx	Input Fy	Output Fx	Output Fr	Fr.loss/OR	Fr.loss/IR			
1	8,230	4,760	8,253	4,824	2,025	5,281			
2	8,230	4,759.9	8,131	5,083	4,966	6,395			
3	8,230	4,759.99	8,307	4,737	2,280	5,371			
4	8,230	4,760.1	7,846	5,052	1,989	5,279			
5	8,230	4,760.11	8.094	4,879	2,663	5,040			
6	8,229.99	4,760	7,983	4,938	3,072	6,292			
7	8,229.9	4,760	8,033	4,978	2,462	5,477			
8	8,230.1	4,760	8,362	4,733	1,777	5,187			
9	8,230.11	4,760	8,289	4,864	4,213	6,428			
10	8,229.99	4,759.99	8,252	4,803	2,016	5,119			
11	8,230	4,699	8,099	4,841	3,266	5,679			
12	8,230	4,700	8,026	4,301	64,170	46,650			
13	8,230	4,701	8,210	4,758	2,200	5,558			
14	8,230	4,700.9	7,990	4,850	2,159	5,151			
15	8,231	4,699	8,387	4,648	2,843	5,689			
16	8,231	4,700	8,534	4,600	3,685	7,190			
17	8,231	4,701	8,248	4,747	1,955	5,137			
18	8,231	4,702	7,058	5,050	32,490	20,790			
19	8,232	4,699	8,068	4,790	4,655	5,377			
20	8,232	4,700	8,256	4,730	2,007	5,124			
21	8,232	4,701	8,239	4,734	2,164	5,098			
22	8,232	4,702	8,208	4,824	1,975	5,166			
23	8,232	4,700.9	8,513	4,650	1,899	5,384			
24	8,230.8	4,699	7,999	4,767	3,648	7,112			
25	8,230.8	4,700	8,141	4,808	2,119	5,090			
26	8,230.8	4,701	8,238	4,755	1,820	5,135			
27	8,230.8	4,702	8,182	4,850	2,244	5,508			
UNITS	(N)	(N)	(N)	(N)	(W)	(W)			

Table 3. SHABERTHTM convergence to target loads "M," an example.

IN	PUT			OUTPUT	
Fx-8,23 0	Fy-Const.*	delFx(%)	delFr(%)	Pwr.loss/OR (kW)	Pwr.loss/IR (kW)
0	0	0.28	1.34	2.025	5.281
0	-0.1	-1.2	6.79	4.966	6.395
0	-0.01	0.94	-0.48	2.28	5.371
0	0.1	-4.67	6.13	1.989	5.279
0	0.11	-1.65	2.54	2.663	5.04
-0.01	0	-3	3.74	3.072	6.292
-0.1	0	-2.39	4.58	2.462	5.477
0.1	0	1.6	-0.57	1.777	5.187
0.11	0	0.72	2.18	4.213	6.428
-0.01	-0.01	0.27	0.9	2.016	5.119
0	-1	-1.59	1.7	3.266	5.679
0	0	-2.48	-9.64	64.17	46.65
0	1	-0.24	-0.04	2.2	5.558
0	0.9	2.92	1.89	2.159	5.151
1	-1	1.91	-2.35	2.843	5.689
1	0	3.69	-3.36	3.685	7.19
1	1	0.22	-0.27	1.955	5.137
1	2	-10	6.09	32.49	20.79
2	-1	-1.97	0.63	4.655	5.377
2	0	0.33	-0.63	2.007	5.124
2	1	0.11	-0.5	2.164	5.098
2	2	0.27	1.34	1.975	5.166
2	0.9	3.44	-2.31	1.899	5.384
0.8	-1	-2.81	0.15	3.648	7.112
0.8	0	-1.08	1.04	2.119	5.09
0.8	1	0.1	-0.11	1.82	5.135
0.8	2	0.58	1.89	2.24	5.508

Table 4. SHABERTHTM convergence to target loads "M," listing of data for quantities displayed in figure 9.

Table 5. Comparison of the "base isothermal" and "worn thermal" cases.

.W.,	
CASE "	
IAL, (
HERN	
ISOTI	
ASE 1	
B	

AZIM.	SPIN/R	B.EXC.	CAGE F.	XM	Υ¥	Wcage	C.NGL/O	C.NGL/I	C.F./O	C.F.M	HRTZ/O	HRTZ/I
0	138.3	-31.9	19	8,632	2,600	1,320	19.9	21.8	3.294	3.002	2.610	3,513
ଛ	160.1	-807	479	8,600	2,785	1,321	21.2	24.1	2,481	2,197	275.0	3155
8	268.1	-1,402	832	8.675	3.044	1.349	22.7	31.2	1,150	840	1 838	2,702
8	454.5	-1.485.8	881	9.012	3,325	1,404	24.4	416	686	400	1 547	1 202
120	506.6	-1,080.8	641	8.615	4.397	1.429	31.7	49.9	877	02.5	1 670	2 030
150	445	-502.1	298	7,800	5,588	1,432	40.6	54.4	1.367	1111	1 047	2 573
180	418.3	48.5	ର୍ଷ	7,397	5,884	1.424	45	55.5	1.661	1 478	2077	CAC.42
210	449.7	570.9	338	7.754	5,453	1.427	41.2	542	1317	1 070	1 003	0107 C
240	514.8	1.110.4	629	8.594	4.353	1.426.5	31.2	501	008	505	1,600	2 0 0 2
270	467.4	1,503,6	602	9.008	3 203	1 403 4	222	107	901			1 000
2.02	760.4	1 294 5	100	0 505		1 246	15		007		1,000	1,095
3	1 .707	L.100.1	170	0,000	Son'c	1,40	1.22	31.2	1,139	847	1,832	2,305
330	161.1	749.1	4	8,587	2,773	1,319.5	21.1	24.1	2,483	2.196	2.376	3,166
360	138.3	-31.9	19	8,632	2,600	1,320	19.9	21.8	3,294	3,002	2,610	3.513
	× 1,000	(um)	T	(r/s)	(r/s)	(I/S)	(deg)	(deg)	Z	Z	(MPa)	(MPa)

3
\SE
S
THERMAL,
Z
ĮÕ.
× .

	۲Z.	86	5	200	84		22	15	2	2	8		2	36	(6
	HRI	3.4		5	10	1	2	27	21		ă	24	3.15	3,486	(ed M)
	HRTZ/0	2.566	2,367	1 880	1645	1.685	1.912	2.059	1.910	1.708	1.632	1.900	2,368	2,566	(MDa)
	C.F./I	2.959	2.252	1.011	545	654	1.140	1.398	1,100	629	558	1,008	2,254	2,952	z
	C.F./0	3.241	2.542	1.293	854	917	1,341	1.674	1.336	956	833	1,314	2,546	3,241	Z
	C.NGL/I	20.7	22.8	29.1	38.8	46.3	50.7	52	50.5	46.4	38.8	29.2	22.8	20.7	(dep)
	C.NGL/O	18.8	8	22.4	23.5	30.8	38.7	42.2	39.1	30.5	23.6	22.2	19.9	18.8	(dep)
	Wcage	1,316	1,318	1,334	1.410	1,390	1,418	1,423	1,402	1,411	1,378	1,344	1,324	1,316	(r/s)
	WΥ	2,449	2,622	2,925	3,196	4,252	5,338	5,473	5,132	4,110	3,204	2,954	2,690	2,449	(r/s)
	ΜX	8,679	8,641	8,630	9,022	8,459	7,828	7,686	7,832	8,580	8,789	8,694	8,629	8,679	(r/s)
	CAGE F.	0.2	407.2	750.6	755.3	551.9	316.6	40.1	338.1	590.7	752.7	667.4	384.1	0.2	E
ADE M	B.EXC.	0.2	686.6	-1,266	-1,273	-930.5	-534	67.6	570	<u> 9</u> 96	1,269	1,125	647.6	0.2	(mm)
VUNN I NERWIAL, LASE M	SPIN/R	133.2	153.4	238.4	409.6	439.1	393.8	8	410.5	459.8	402.5	238.8	147.7	133.2	× 1.000
MUNUM ID	AZIM.	0	ଚ୍ଚ	8	8	120	150	180	210	2 4 0	270	300	330	360	

Table 6. Data modeled with SHABERTH[™]/SINDA[™].

Time (min)	1	10	100
Sliding velocity (o/i) (m/s)	0.335/1.159	0.361/1.083	0.414/1.152
Sliding distance (o/i) (m)	20.1/69.54	216.6/649.8	2,484/6,913
Contact area (o/i) (mm ²)	1.099/0.680	1.101/0.68	0.968/0.575
Hertz pressure (<i>o/i</i>) (MPa)	1,959/2,502	1,966/2,554	1,725/2,136

The following data were used to compute the linear wear "*I*." o/i = outer/inner contact

Note: The values shown have been averaged for the 12 balls around the bearing.

HPOTP Pha	se II Bearing Wear (R	ocketdyne Record	1987–1993)	
Unit	Configuration	Time (min)	No. 1 Wear (µm)	No. 2 Wear (µm)
6001R1	F	4.2	0	0
2029	F	4.85	5.1	6.4
2029?	F	4.9	5.1	7.6
6009R1	F	4.95	2.5	2.5
2421	F	5	2.5	2.5
6502R1	F	5.05	5.1	10.2
2221R1	F	5.05	2.5	2.5
2325R2	F	7	12.7	10.2
2028	F	7.3	0	0
4306	F	7.5	2.5	5.1
2123R2	F	8.7	2.5	2.5
4402R3	F	8.8	2.5	2.5
2205	F	8.8	0	0
2224R1	F	8.8	5.1	5.1
4402R1	F	8.8	7.6	10.2
2322	F	8.9	5.1	7.6
4011R1	F	9.1	7.6	7.6
6702	F	9.1	15.2	15.2
6602R1	F	9.1	2.5	5.1
4206	F	9.1	0	0
4007R1	F	9.1	7.6	7.6
2125R1	F	9.1	0	0
6202R1	F	9.1	Ŏ	Ŏ
4202R1	F	10.9	2.5	5.1
4005	F	12	0	0
4406R3	F	13.5	2.5	0
6102R1	F	13.6	5.1	2.5
2122R1	F	13.6	5	2.5
2422R2	F	13.8	5.1	7.6
2026R1	F	15.8	0	5.1
2324R5	F	14.9	2.5	5.1
2522R2	F	15.8	2.5 7.6	7.6
2223R1	F	15.8	5.1	7.6
2223R1 2222R1	F	17.4	0	0
4105R1	F	17.4	0	2.5
4406R1	F	17.4	2.5	2.5 7.6
6302R1	F	17.8	2.5	5.1
4302R1	F	17.8	2.5 0	5.1
4302R1 2321R2	F F	17.8	10.2	5.1
2321R2 2324R2	г F	20.4		5.1
2324R2 2424R5	г F	20.4 20.4	0 2.5	
2424R3 2124R2	F F	20.4 21.5	2.5 5.1	2.5
	F		2.5	5.1
4106R1	F F	21.8		2.5
2025R1		21.8	7.6	7.6
2121R1	F	21.9	5.1	5.1
4305R1	F	22.3	5.1	5.1
4008R3	F	23.6	2.5	2.5
9109R1	F	25.7	10.2	5.1
2425R2	F	26.3	5.1	7.6
2305R3	F	27.3	5.1	5.1
2225R3	F	27.8	7.6	5.1
4107R3	F	27.8	0	10.2

Table 7. Wear record for flight (F) and development (D) bearings of the standard phase II HPOTP configuration for the 1987–1993 period.

i shime

the substitution of the

24

HPOTP Phas	e II Bearing Wear (Ro	ocketdyne Record	1987–1993)	
Unit	Configuration	Time (min)	No. 1 Wear (µm)	No. 2 Wear (µm)
4205R3	F	28.6	5.1	10.2
6003R3	F	28.7	7.6	7.6
2323R4	F	28.8	5.1	7.6
2126R4	F	29.2	7.6	5.1
4009R3	F	30.4	5.1	7.6
4502R3	F	30.9	2.5	5.1
2027R3	F	30.9	2.5	5.1
4010R4	F	31.2	5.1	10.2
2226R4	F	32.3	2.5	7.6
6402R3	F	34.1	7.6	5.1
2024	F	34.6	2.5	5.1
6002R1	F F	34.6	0	5.1
2023	F	36.1	2.5	10.2
2023 2521R2	F	45.3	5.1	17.8
2521RZ 2129	F F	45.5 66.4	10.2	10.2
2129 9209R3	F F	71.2	5.1	17.8
9209R3 4204R3	D T	1.7	5.1	2.5
	D D	5	2.5	2.5
0507	D D	9.7	0	0
9505	D D	16.8	33	ŏ
0607R2		31.6	2.5	27.9
2315	D		0	2.5
0810	D	34	2.5	2.5
4104R1	D	34.7		55.9
2215R2	BK1	39.7	7.6 0	12.7
0307R2	D	41.2		86.4
2315R1	D	49.4	5.1	12.7
4201R1	D	52.8	2.5	
9808R2	D	56.4	12.7	12.7
4301R2	D	65.3	0	20.3
0607	D	67.8	66	185.4
0810R1	D	69.4	5.1	53.3
2510	D	69.8	315	78.7
2510R1	D	70.4	5.1	106.7
9311R6	D	78.1	7.6	17.8
4101	D	79.8	132.1	457.2
2317R1	D	84.1	0	40.6
2215R1	BK1	86.4	5.1	76.2
4004R1	D	89.3	17.8	53.3
9505R2	D	96	0	10.2
0307R4	D	97.2	185.4	762
4204R1	D	107.5	0	25.4
0510	D	113.8	7.6	40.6
2118R4	D	116.3	10.2	10.2
9908R2	D	118.4	10.2	221
4204R2	D	132.5	7.6	48.3
4304R3	D	133	15.2	88.9
9311R2	D	151.4	12.7	71.1
0407R5	D	161	12.7	10.2

;

Table 7. Wear record for flight (F) and development (D) bearings if the standard phase II HPOTP configuration for the 1987–1993 period (continued).

Table 8. Wear histograms data of ball wear for the phase II HPOTP (F) and development (D) bearings for the 1987–1993 period.

	Freque		Frequency				Avera	Average Wear		
			(ana kar -					igo w ca		-
MARK	MARK INTERV	D	F	F&D	No. 1 D	No. 2 D	No. 1 F	No. 2 F	No. 1 F&D No. 2 F&D	No. 2 F&D
5	<10 min	3	23	26	2.5	1.7	4	4.8	3.83	4.44
20	10/30	1	33	34	33	0	4.1	5.1	4.95	4.95
40	30/50	9	10	16	ю	32.2	3.03	6.11	3.02	15.89
60	50/70	9		7	6.99	60.5	10.2	10.2	58.8	53.31
80	06/02	6	1	7	28	125.3	5.1	17.8	24.73	109.94
100	90/110	3	0	3	61.8	265.9	0	0	61.8	265.9
120	110/130	33	0	æ	9.3	90.6	0	0	9.3	90.6
140	>130	4	0	4	12.1	54.6	0	0	12.1	54.6

Updated record on ball wear of the phase II HPOTP 45-mm bearings (1987-1993)

Bearing No. 1 Flight		Bearing No. 2 Flight		
Regression Output:		Regression Output:		
Constant	3.256811211	Constant	2.741475141	
Std. Err. of Y Est.	3.264953839	Std. Err. of Y Est.	3.362692183	
R Squared	0.030114481	R Squared	0.259865045	
No. of Observations	68	No. of Observations	68	
Degrees of Freedom	66	Degrees of Freedom	66	
X Coefficient(s)	0.043414	X Coefficient(s)	0.150359	
Std. Err. of Coef.	0.030327	Std. Err. of Coef.	0.031235	
Bearing No.	1 Development	Bearing No. 2 Development		
Regression Output:		Regression Output:		
Constant	20.76916456	Constant	24.91610536	
Std. Err. of Y Est.	66.56687996	Std. Err. of Y Est.	151.8615966	
R Squared	0.003695111	R Squared	0.043808517	
No. of Observations	32	No. of Observations	32	
Degrees of Freedom	30	Degrees of Freedom	30	
X Coefficient(s)	0.0951066	X Coefficient(s)	0.761866	
Std. Err. of Coef.	0.2848534	Std. Err. of Coef.	0.649847	
Bearing No. 1 Flig	ght and Development	Bearing No. 2 Flight and Development		
Regression Output:		Regression Output:		
Constant	2.170343408	Constant	-7.60069182	
Std. Err. of Y Est.	37.47813839	Std. Err. of Y Est.	85.34034054	
R Squared	0.059451386	R Squared	0.15872466	
No. of Observations	100	No. of Observations	100	
Degrees of Freedom	98	Degrees of Freedom	98	
X Coefficient(s)	0.2582488	X Coefficient(s)	1.016182	
Std. Err. of Coef.	0.1037612	Std. Err. of Coef.	0.236272	

Table 9. Linear regression analysis of the 1987–1993 ball wear data with QUATTRO PRO[™], 99 DOF.

Bearing	No. 1 Flight	Bearing No. 2 Flight		
Regression Output:		Regression Output:		
Constant	0	Constant		0
Std. Err. of Y Est.	3.72171779	Std. Err. of Y Est.		3.675989
R Squared	-0.27933455	R Squared		0.102125
No. of Observations	68	No. of Observations		68
Degrees of Freedom	67	Degrees of Freedom		67
X Coefficient(s)	0.1589123	X Coefficient(s)	0.247582	
Std. Err. of Coef.	0.0192856	Std. Err. of Coef.	0.019049	
Bearing No.	1 Development	Bearing No. 2 Development		
Regression Output:		Regression Output:		
Constant	0	Constant		0
Std. Err. of Y Est.	66.29116117	Std. Err. of Y Est.		149.9033
R Squared	-0.02100425	R Squared		0.037253
No. of Observations	32	No. of Observations		32
Degrees of Freedom	31	Degrees of Freedom		31
X Coefficient(s)	0.3093513	X Coefficient(s)	1.018996	
Std. Err. of Coef.	0.1386086	Std. Err. of Coef.	0.313434	
Bearing No. 1 Flig	ght and Development	Bearing No. 2 Flight and Development		
Regressi	ion Output:	Regression Output:		
Constant	0	Constant		0
Std. Err. of Y Est.	37.31965551	Std. Err. of Y Est.		85.07662
R Squared	0.05787268	R Squared		0.155443
No. of Observations	100	No. of Observations		100
Degrees of Freedom	99	Degrees of Freedom		99
X Coefficient(s)	0.2882873	X Coefficient(s)	0.910985	
Std. Err. of Coef.	0.0723631	Std. Err. of Coef.	0.164964	

I

Table 10. Linear regression analysis of the 1987–1993 ball wear data with QUATTRO PRO[™], 98 DOF (forced zero).

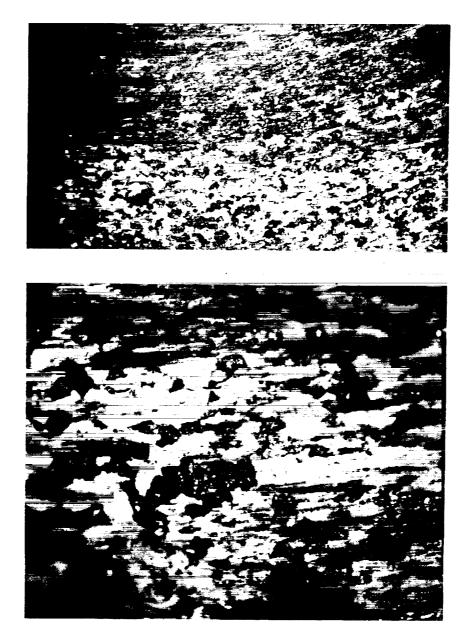


Figure 1. ASP (microfatigue) mode of wear. Ball surface of a heavily worn bearing No. 352. Note many surface cracks and wear debris. Optical microscopy (magnification: × 200 top, × 1,000 bottom).

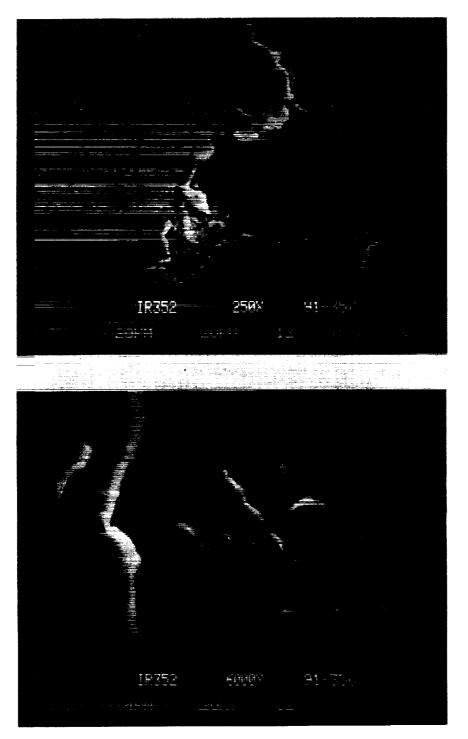


Figure 2. ASP (microfatigue) mode of wear. Wear track of a heavily worn inner ring or bearing No. 352. Scanning electron microscopy.

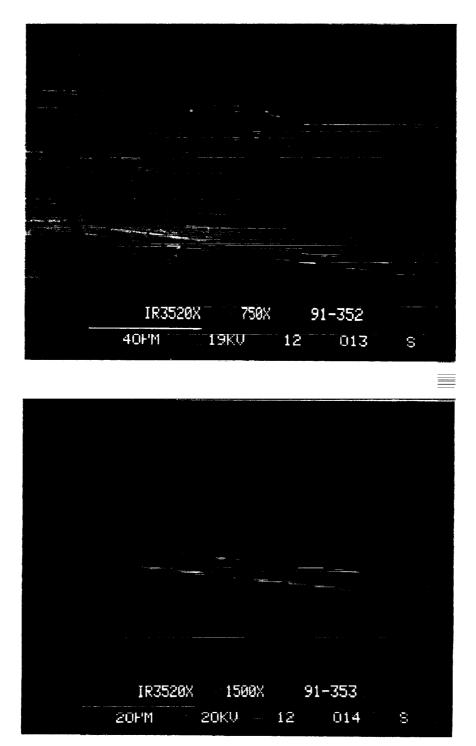


Figure 3. Abrasion mode of wear. Wear track of a heavily worn inner ring of bearing No. 352. Scanning electron microscopy.

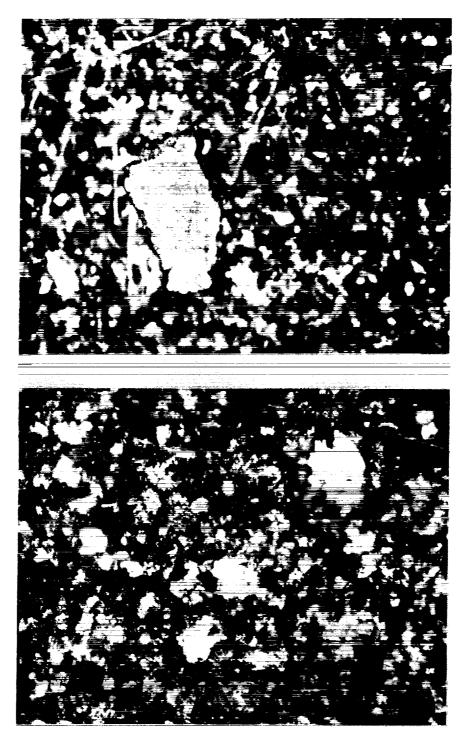
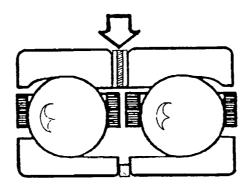
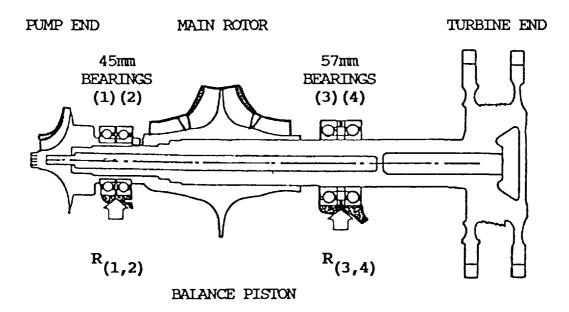
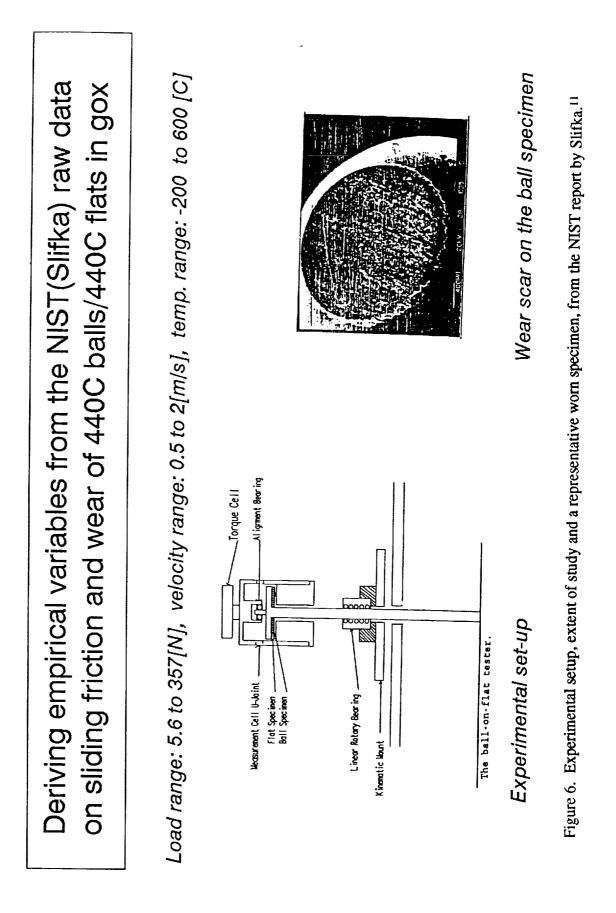
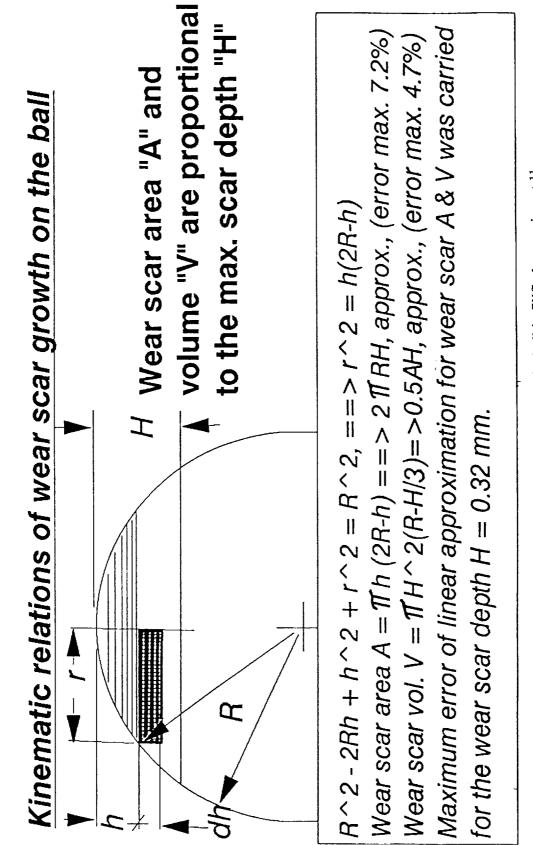
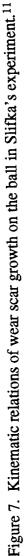
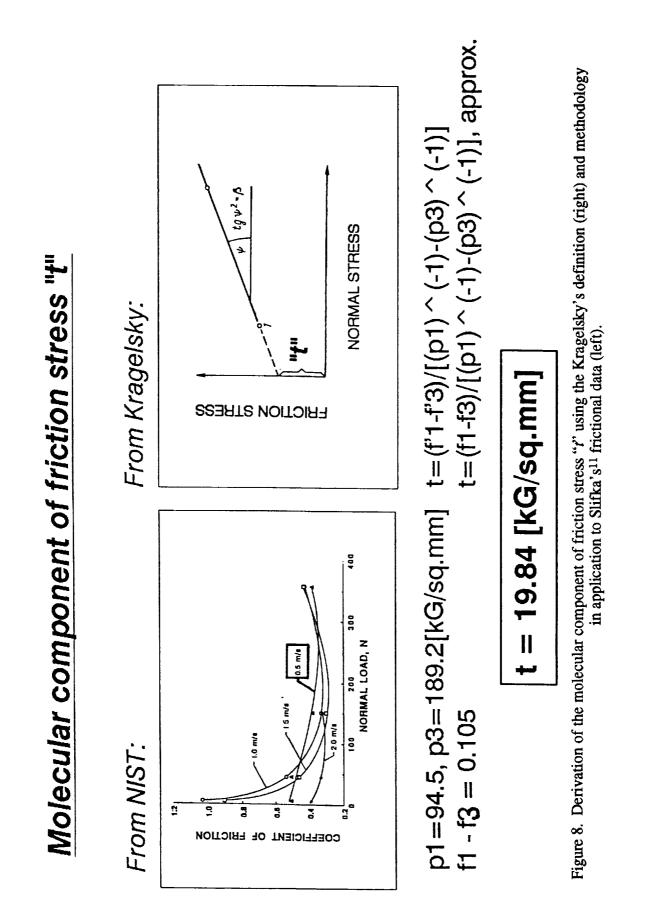
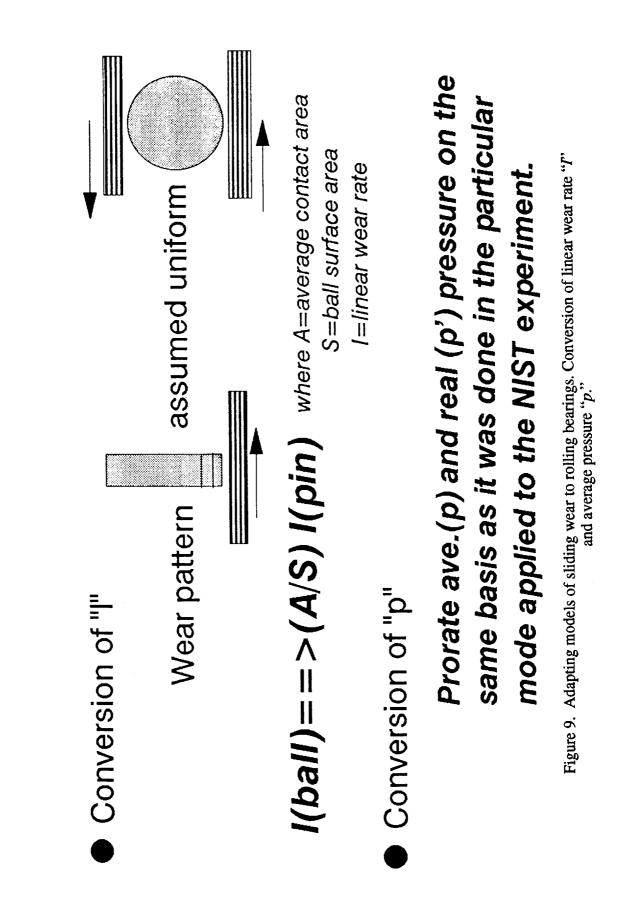
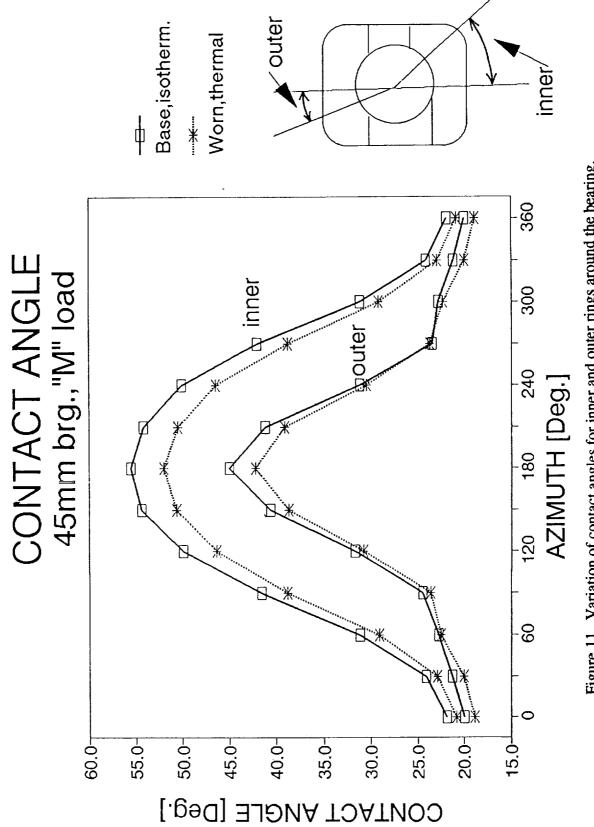



Figure 4. Wear debris collected from the NASA-MSFC's "Bearing, Seal, and Materials Tester (BSMT)." Note numerous thin flakes and broken pieces of glass fibers. Optical microscopy (× 100).

BEAM SPRING


Figure 5. HPOTP shaft support configuration and bearing preload arrangement. The "balance piston" design is supposed to balance major axial loads on the shaft.



Outp.delFx[%] Outp.delFr[%] Fr.ht./OR[kW] Inp.del.Fy[N] Inp.del.Fx[N] Fr.ht./IR[kW] Fx=8230N, Fr=4760N, CLop=148um, NGLc=25.19 ф M Ж 9 10111213141516171819202122324252627 CASE CHOSEN Ŵ Ж M F 睇 ** Μ Ж ¥ 张 М OFF SCALE OFF SCALE X X X X M ω ~ 9 ŝ 4 **m** - 2 -0 -8 6 4 Ś Ņ φ 6 4 ф ę

Figure 10. SHABERTHTM convergence for case "M," an example.

FORCE DIFF.[N or %], LOSS[kW]

BALL ANGULAR VELOCITY W.R.T. CAGE 45mm brg.,163um dia.clear."M" load

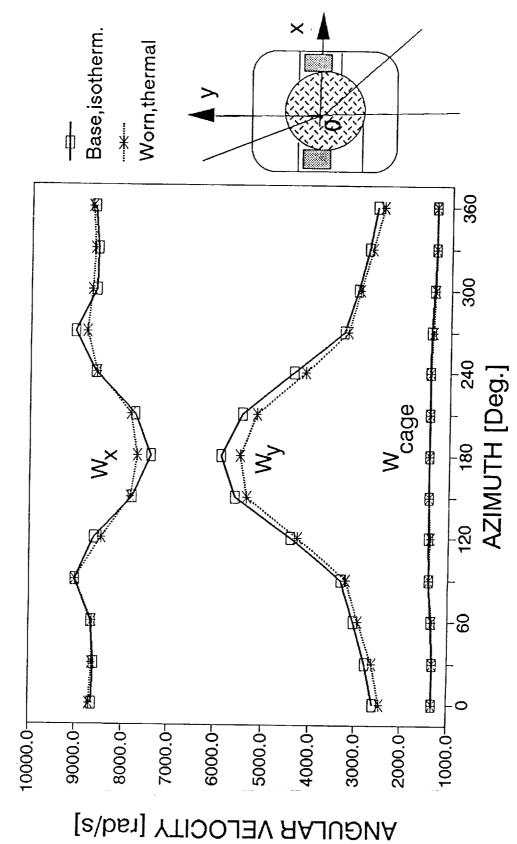


Figure 12. Variation of ball angular velocity components with reference to the cage around the bearing.

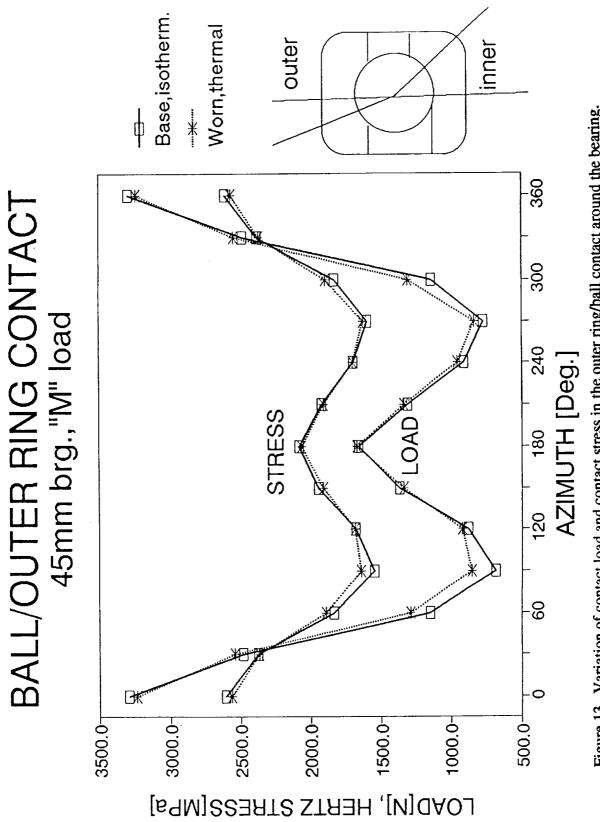


Figure 13. Variation of contact load and contact stress in the outer ring/ball contact around the bearing.

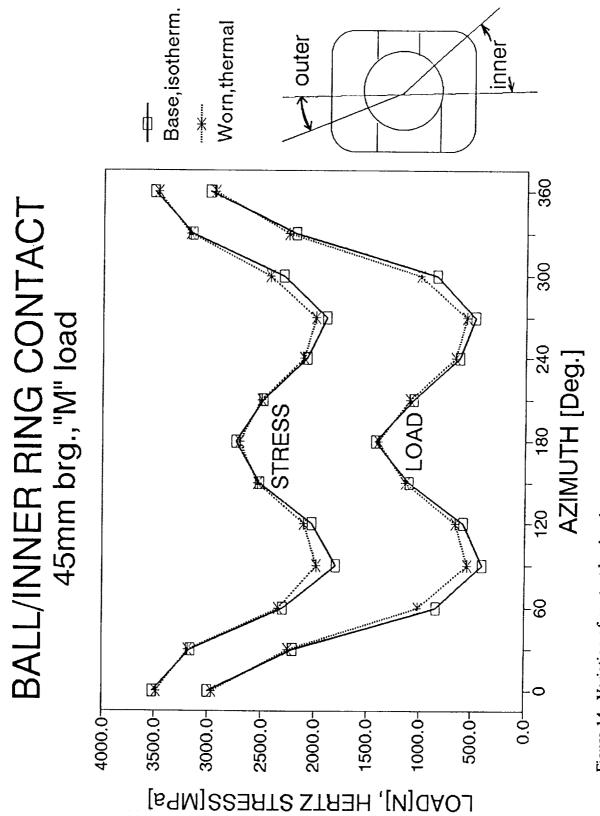


Figure 14. Variation of contact load and contact stress in the inner ring/ball contact around the bearing.

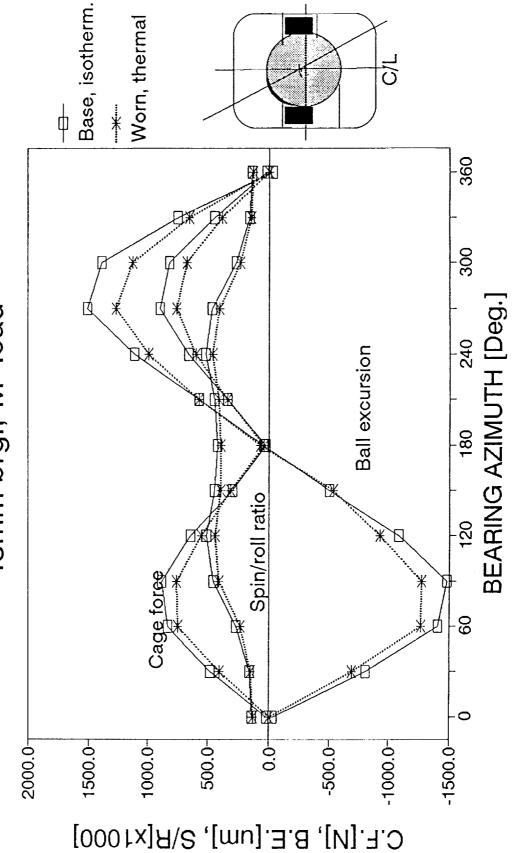


Figure 15. Variation of cage force, ball excursion, and spin-to-roll ratio around the bearing.

MAXIMUM"pV" IN CONTACT BALL/OUTER RING 45mm brg.,157.5um dia.clear.,"M" load

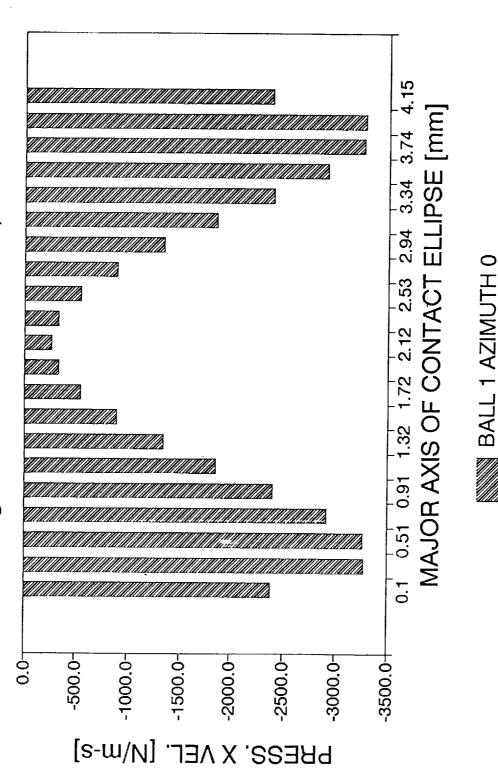
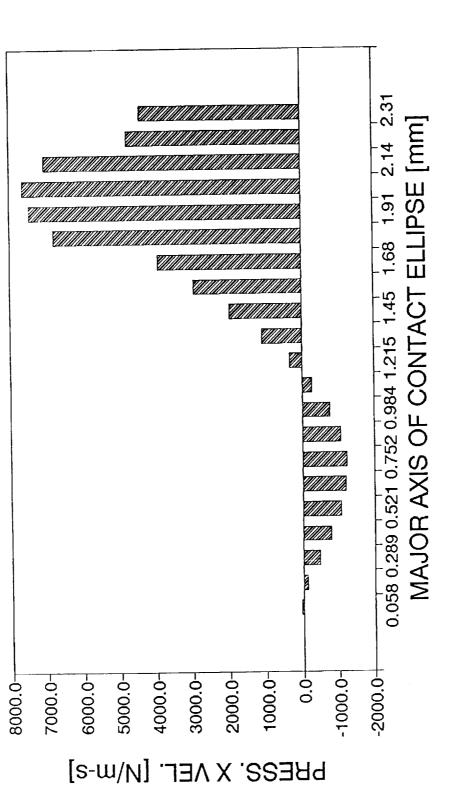
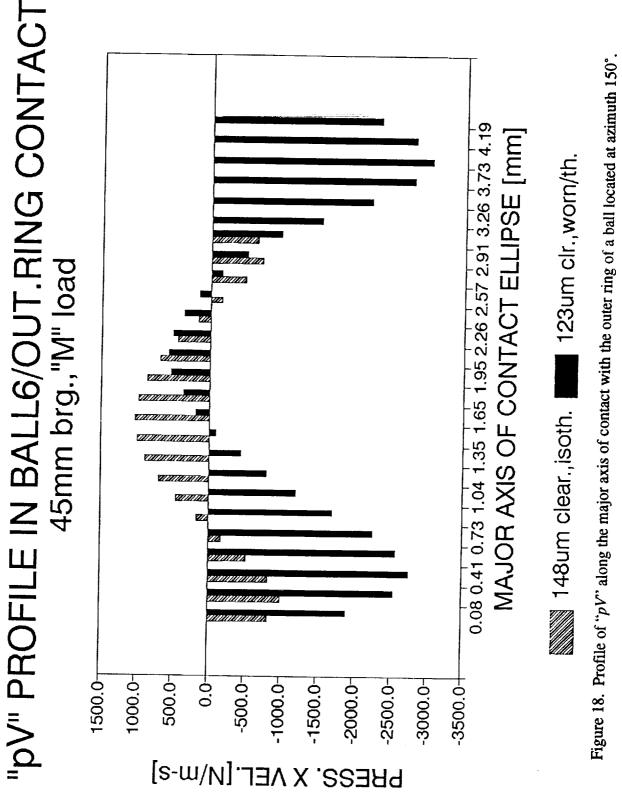




Figure 16. Maximum "PV," the pressure \times sliding velocity product, along the major axis of the outer ellipse of contact.

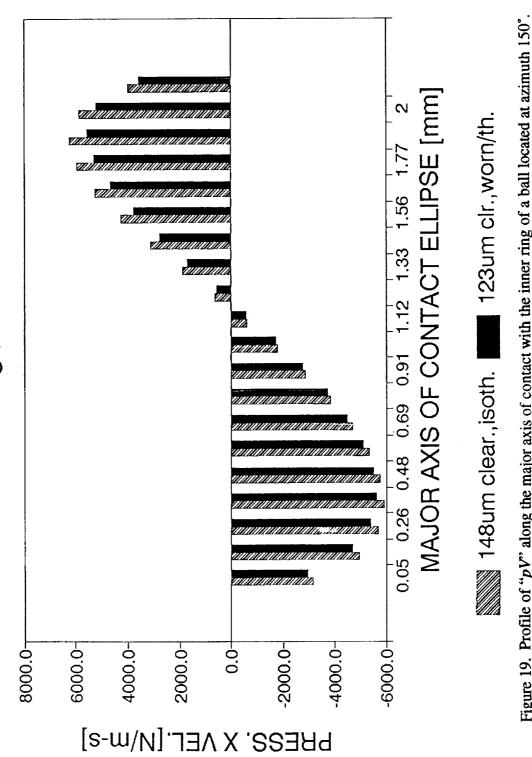


Figure 19. Profile of "*pV*" along the major axis of contact with the inner ring of a ball located at azimuth 150°.

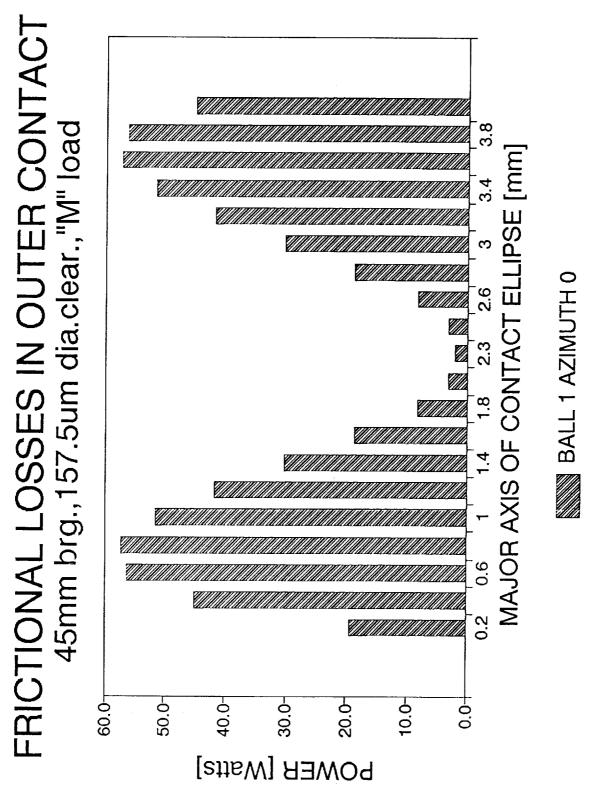
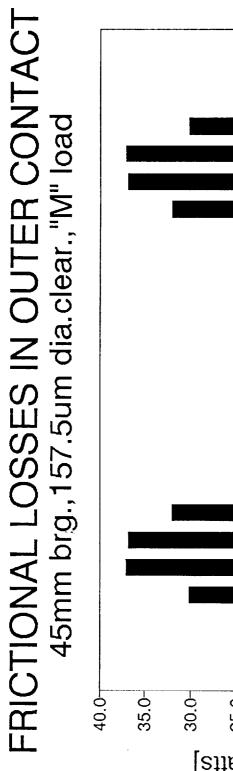
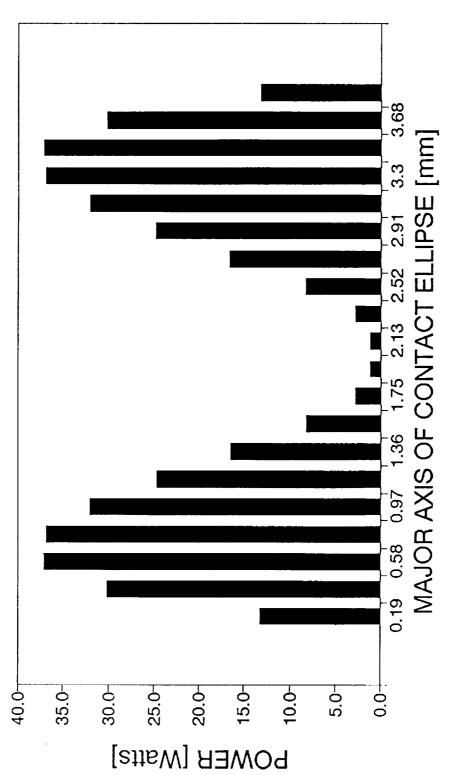




Figure 20. Frictional power loss in contact of ball No. 1 with the outer ring along the major axis of the ellipse of contact.

BALL 2 AZIMUTH 30

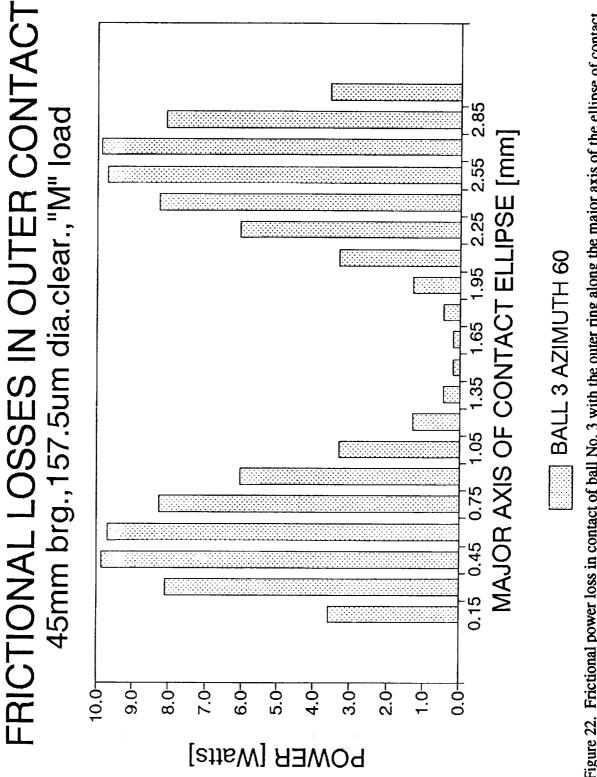
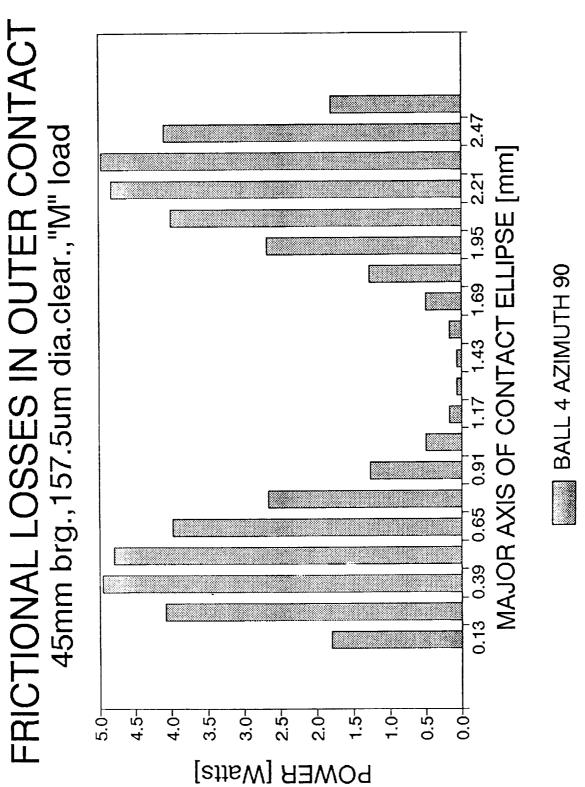
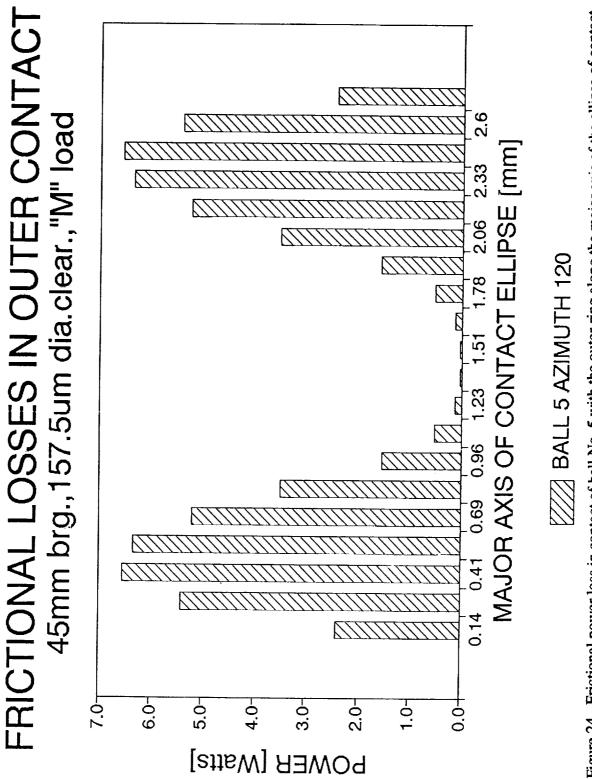
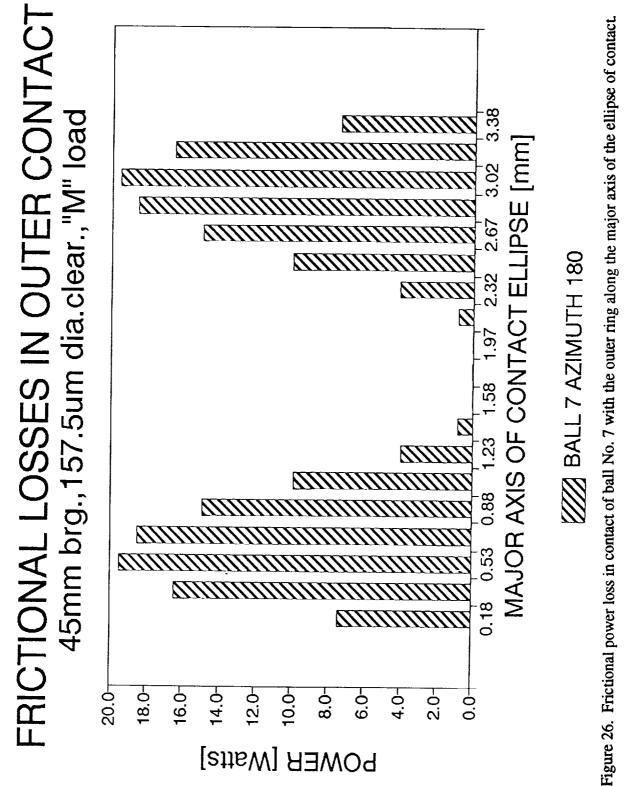
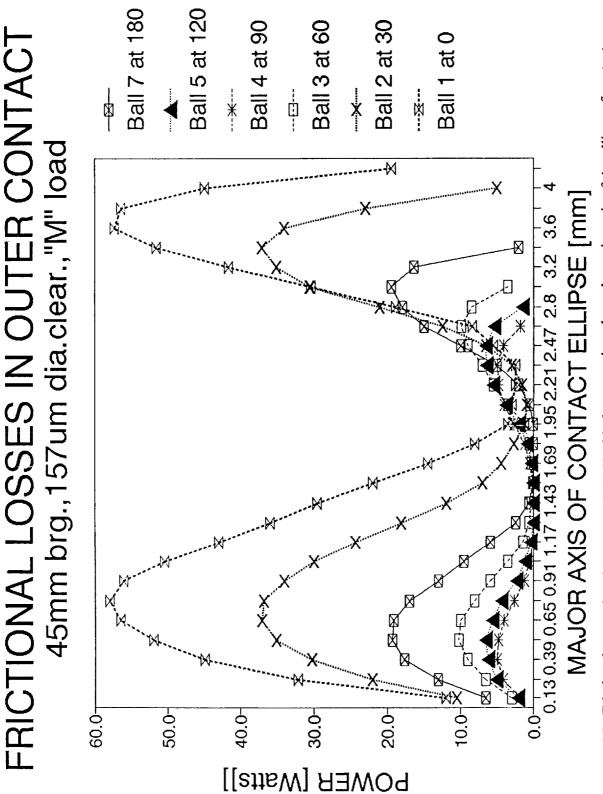
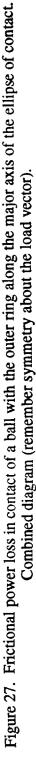



Figure 22. Frictional power loss in contact of ball No. 3 with the outer ring along the major axis of the ellipse of contact.




Figure 24. Frictional power loss in contact of ball No. 5 with the outer ring along the major axis of the ellipse of contact.

FRICT. LOSS IN CONTACT BALL/OUTER RING 45mm brg.,157.5um dia.clear.,"M" load

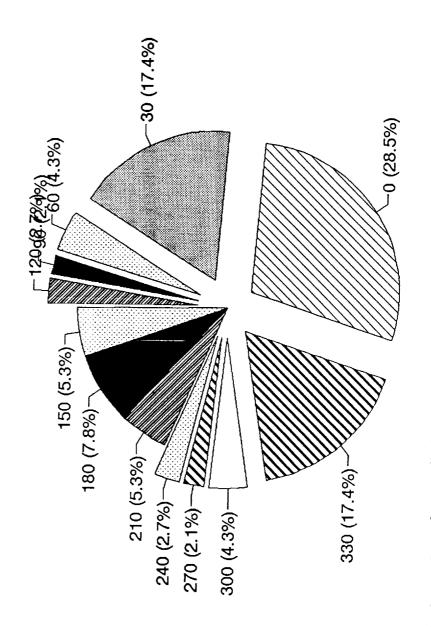
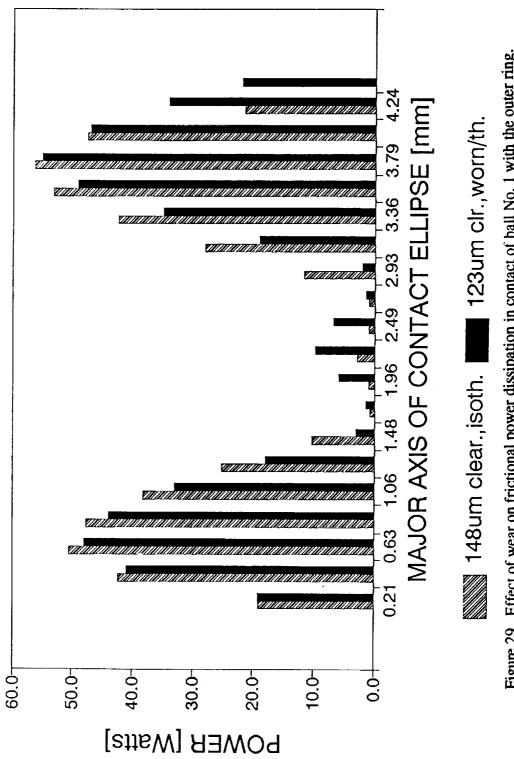
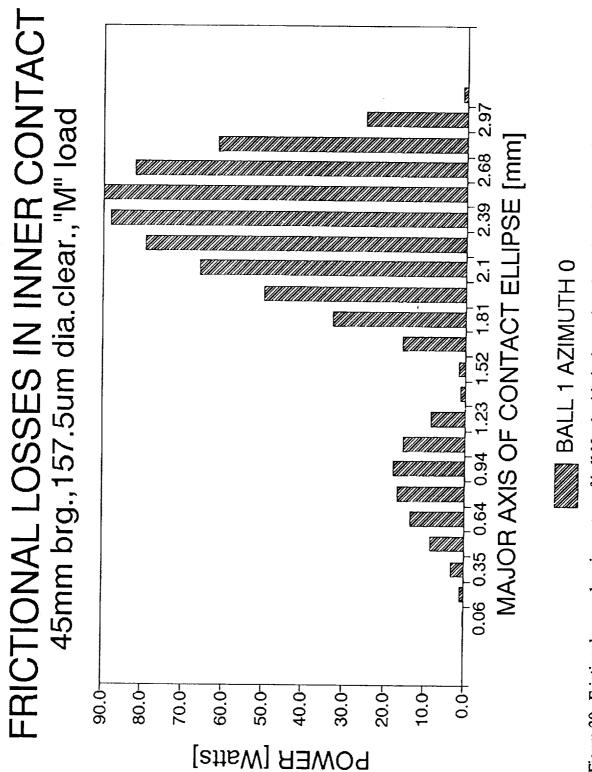
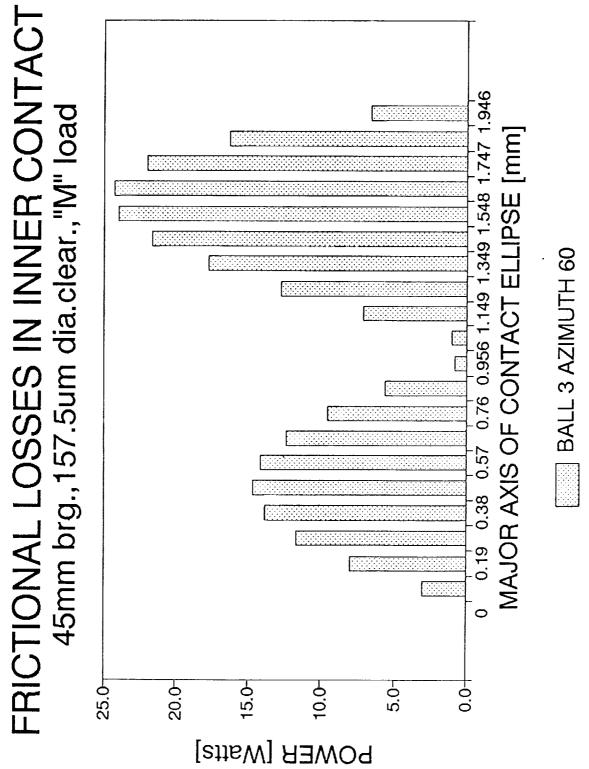
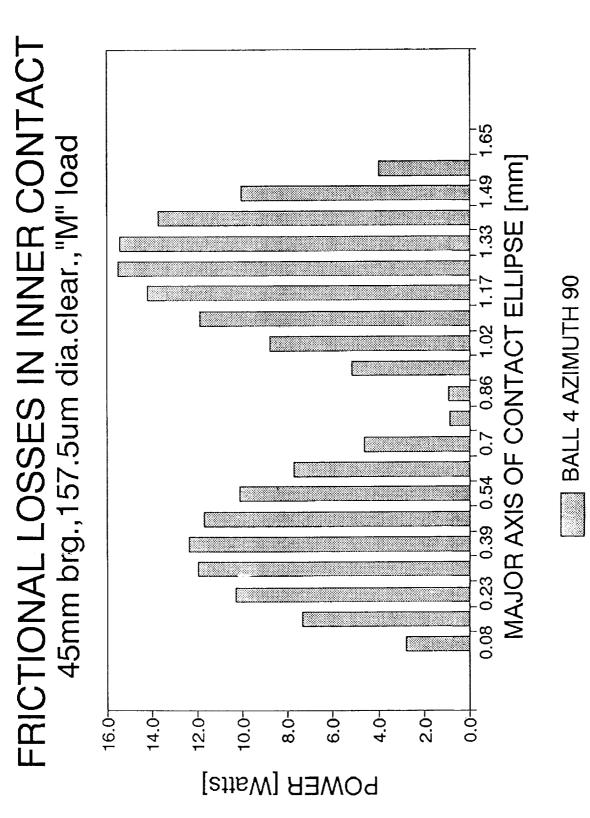
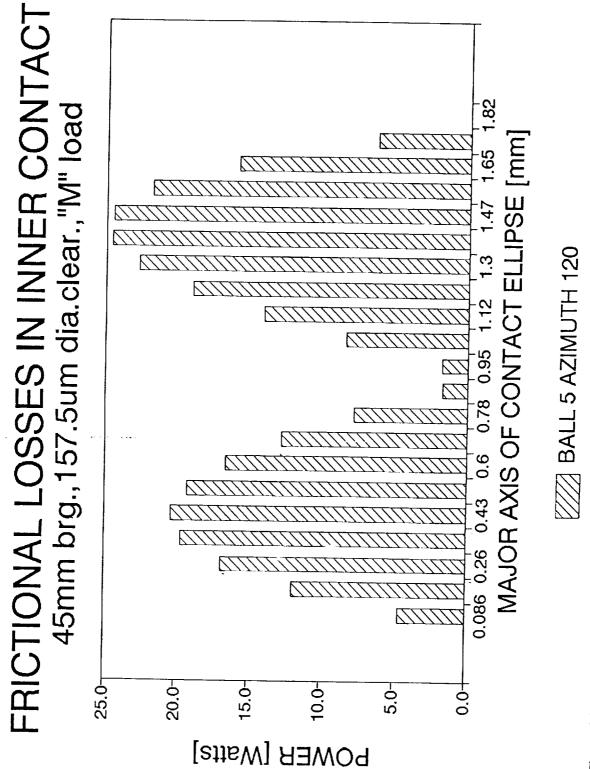


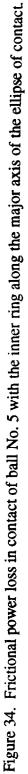
Figure 28. Comparison of power dissipation in contact with the outer ring of a ball traveling around the bearing.

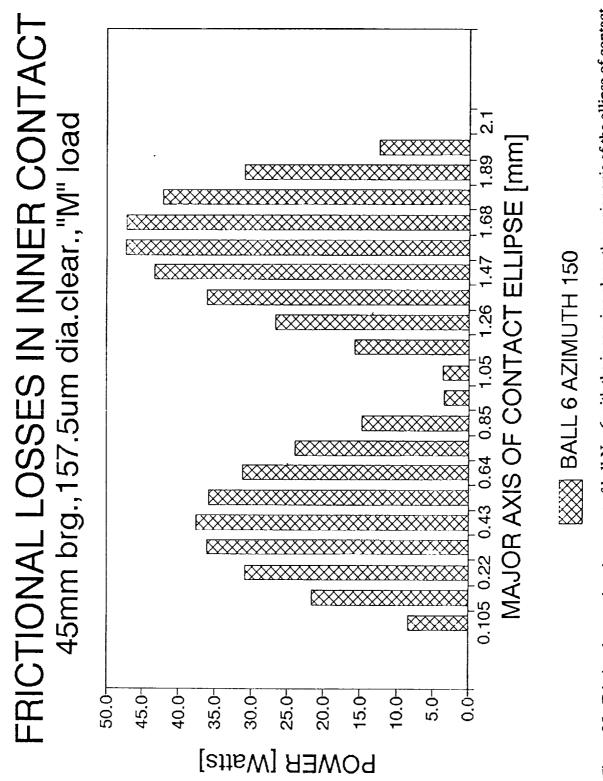



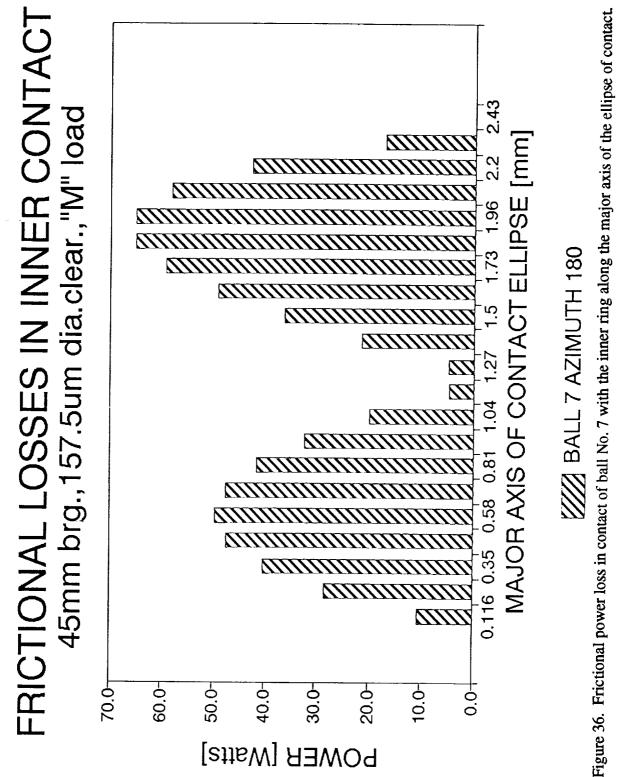

Figure 29. Effect of wear on frictional power dissipation in contact of ball No. 1 with the outer ring.











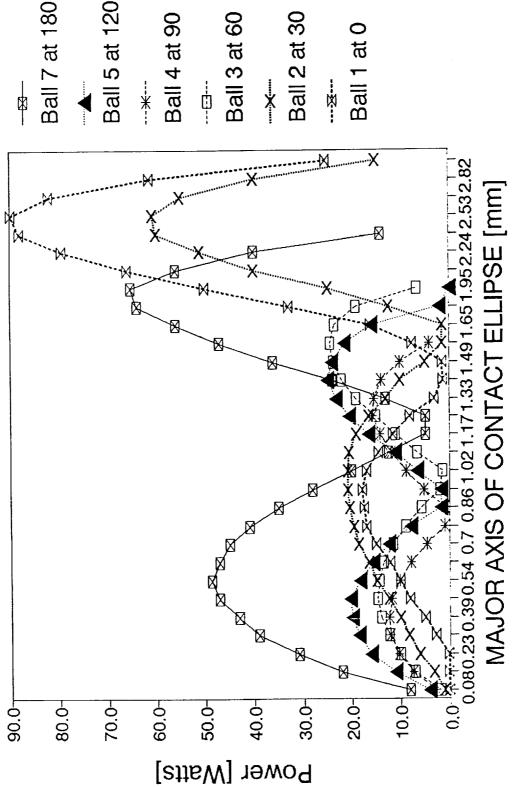


Figure 37. Frictional power loss in contact of a ball with the inner ring along the major axis of the ellipse of contact. Combined diagram (remember symmetry about the load vector).

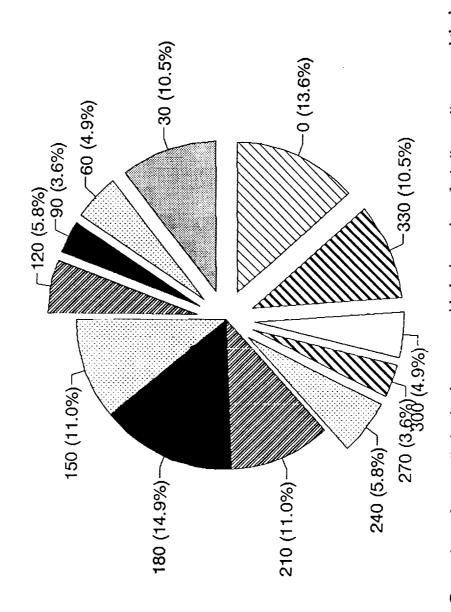


Figure 38. Comparison of power dissipation in contact with the inner ring of a ball traveling around the bearing.

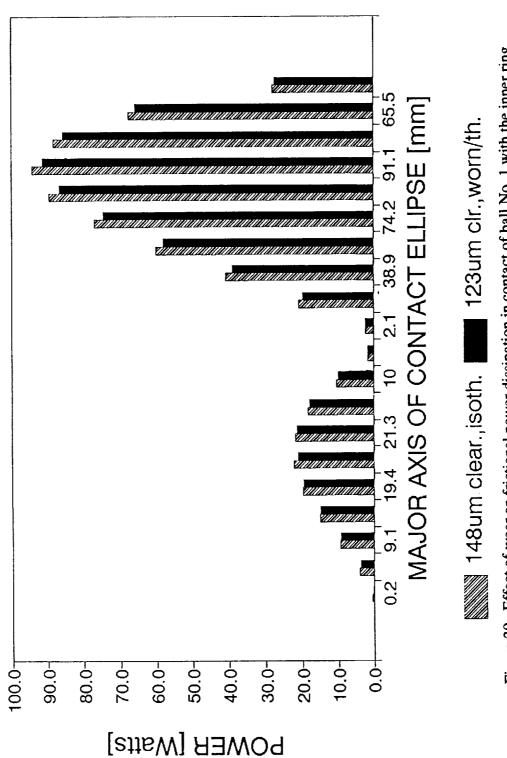


Figure 39. Effect of wear on frictional power dissipation in contact of ball No. 1 with the inner ring.

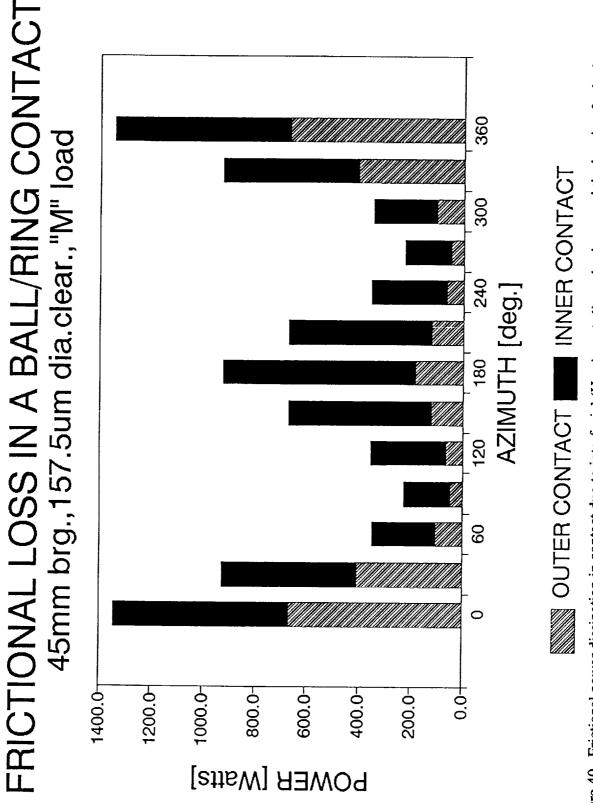
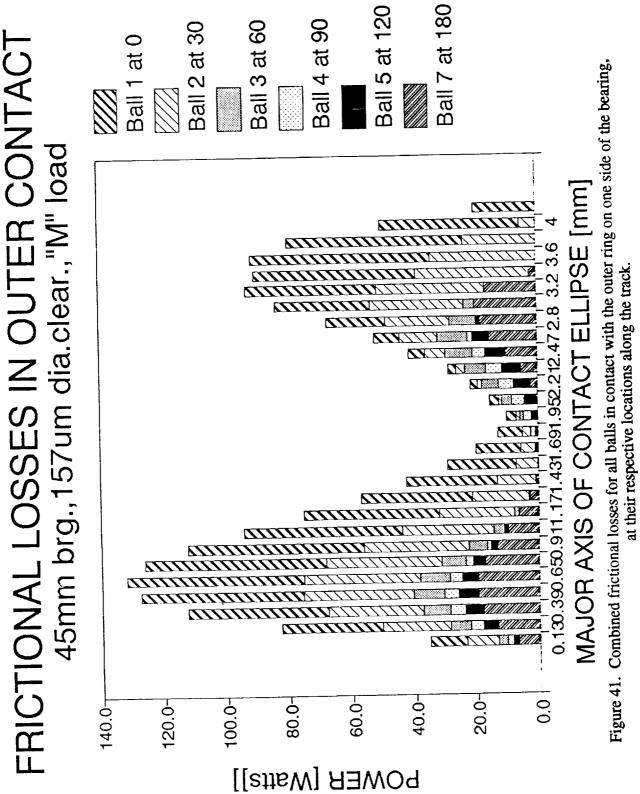
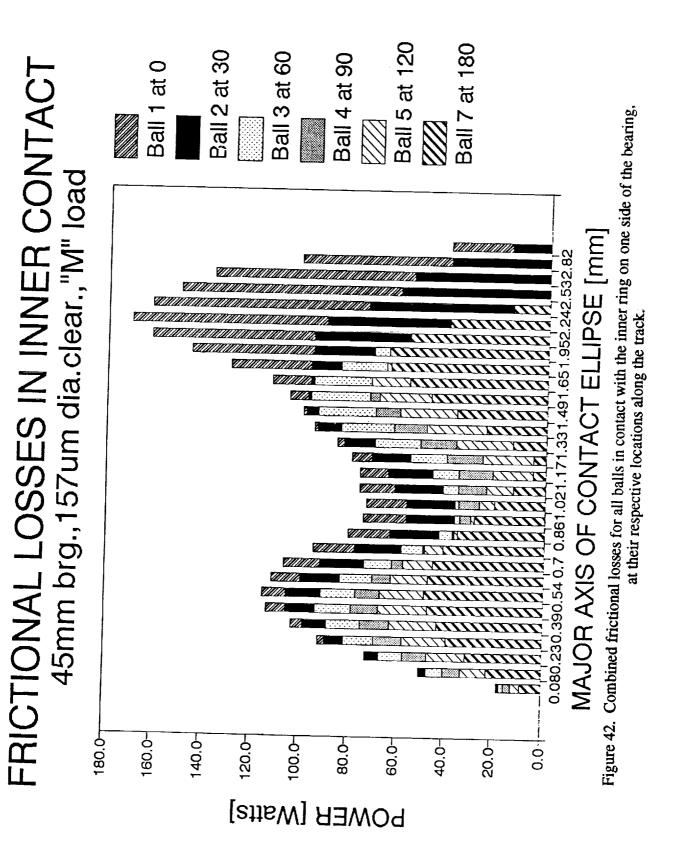




Figure 40. Frictional power dissipation in contact due to interfacial (Heathcote) slip and spin around the bearing for both contacts.

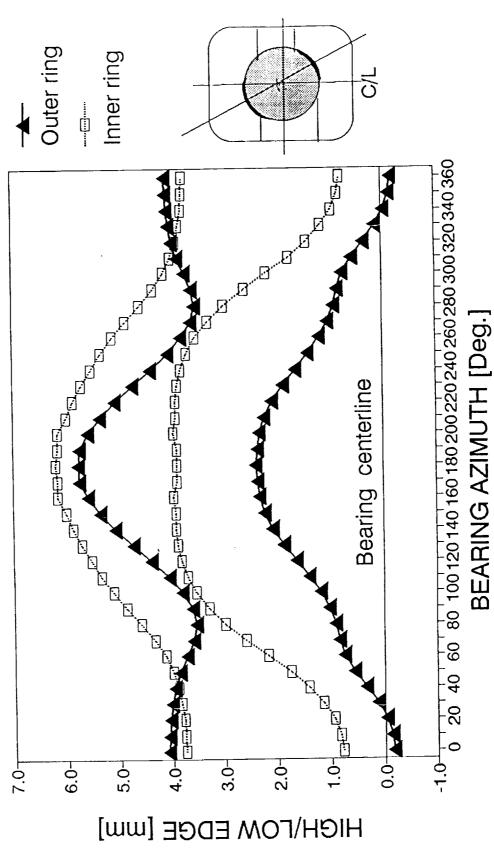
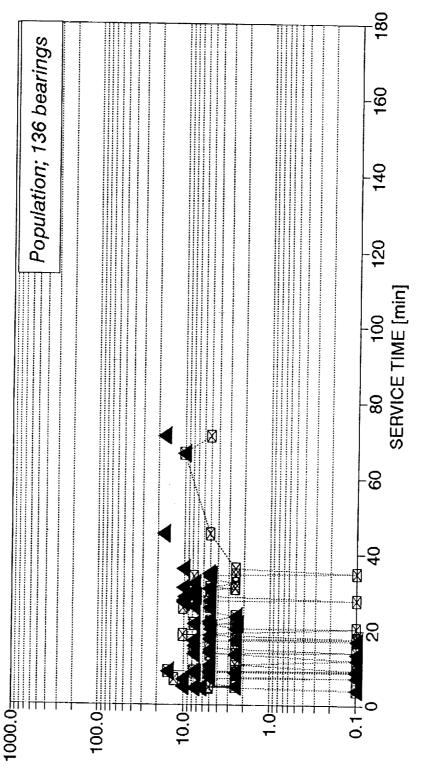
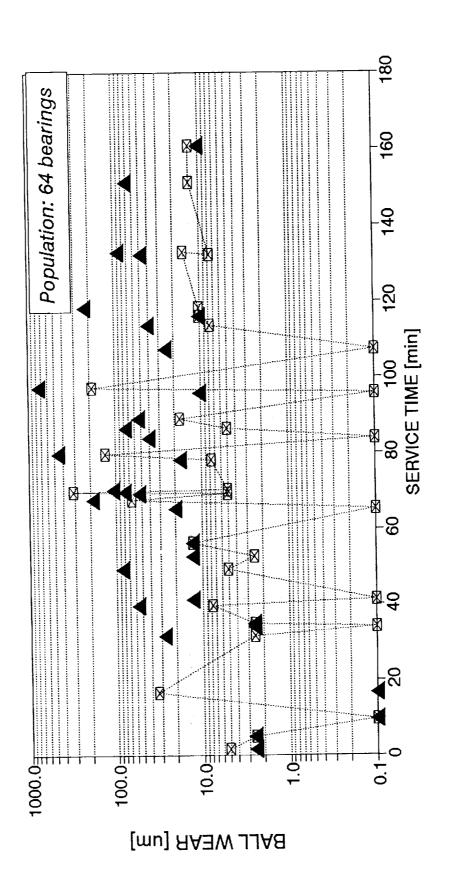



Figure 43. Computed wear track developed along the bearing circumference for both rings. Note the location of bearing center line.

BALL WEAR HPOTP 45mm FLIGHT BRGS. (R/dyne data 87/93)

BALL WEAR [um]

Figure 44. Ball wear record of standard phase II HPOTP flight bearings (F) for the 1987-1993 period, based on Rocketdyne data. Brg.#2


◀

---⊠--- Brg.#1

.....

BALL WEAR HPOTP 45mm F&D BRGS. (R/dyne data 87/93)

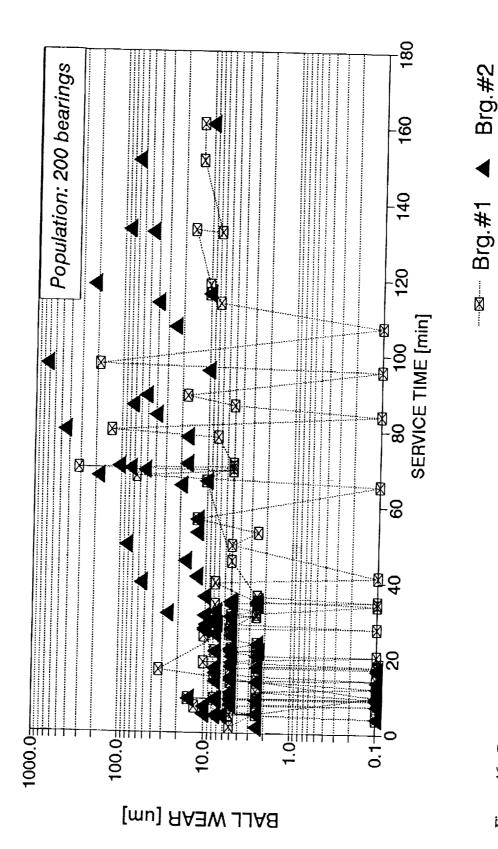


Figure 46. Combined ball wear record of standard phase II HPOTP flight bearings and standard configuration development bearings (F and D) for the 1987-1993 period, based on Rocketdyne data.

sector in the second

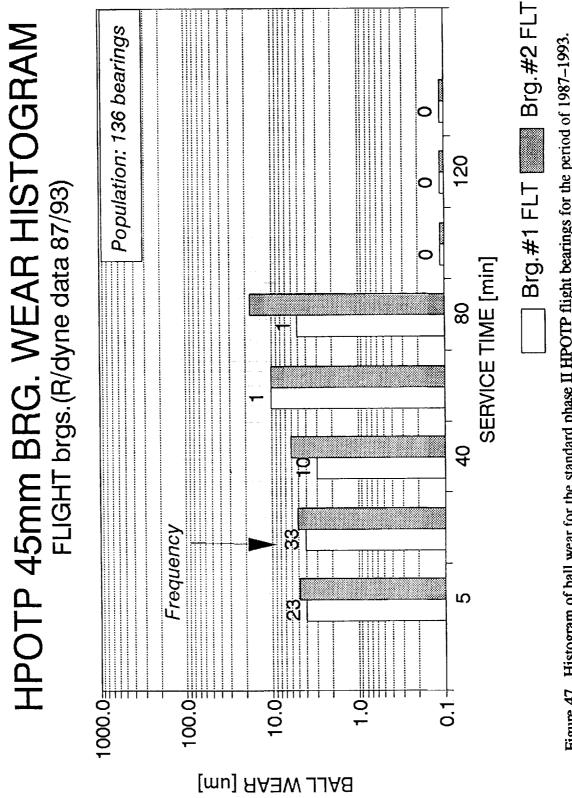


Figure 47. Histogram of ball wear for the standard phase II HPOTP flight bearings for the period of 1987-1993.

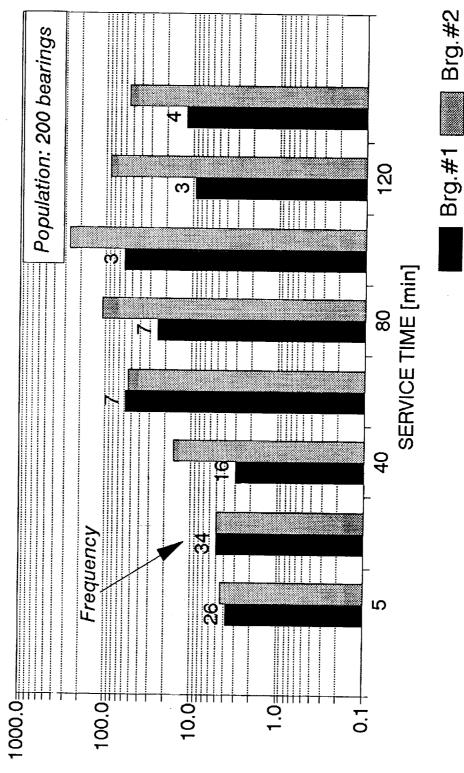
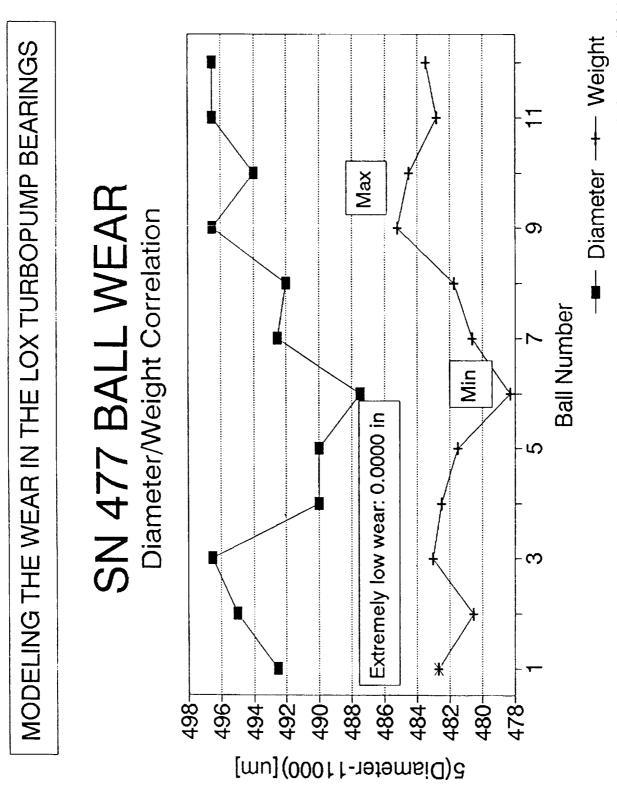
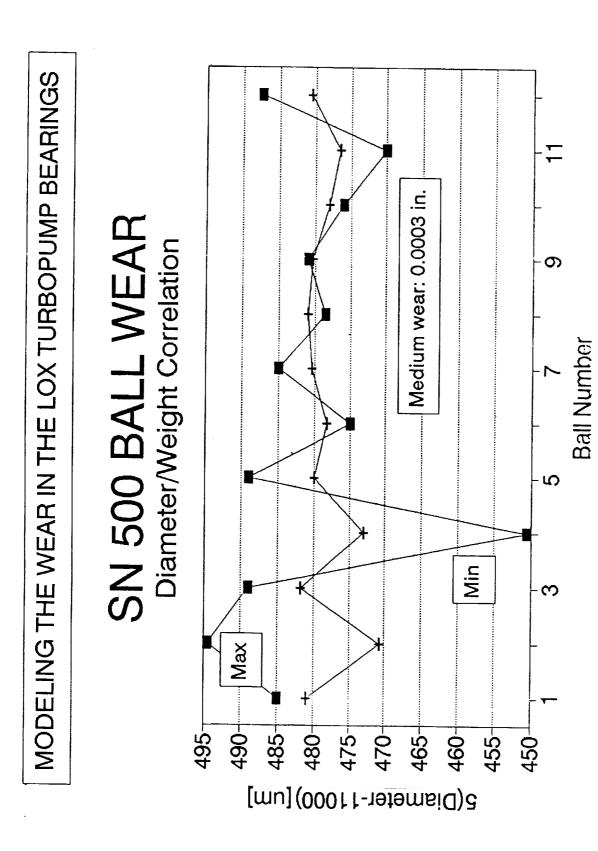




Figure 48. Histogram of ball wear for the combined (F and D) bearings for the period of 1987–1993.

[mu] AAAW JAAB

MODELING THE WEAR IN THE LOX TURBOPUMP BEARINGS

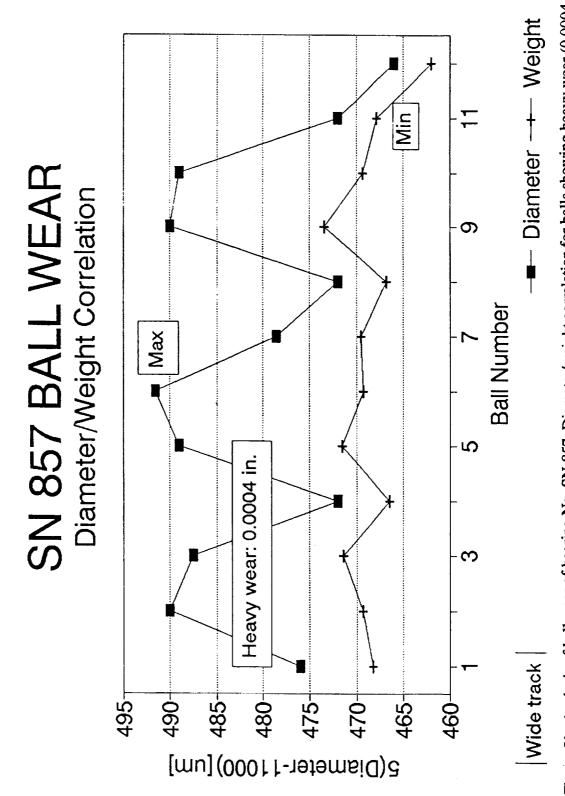


Figure 51. Analysis of ball wear of bearing No. SN-857. Diameter/weight correlation for balls showing heavy wear (0.0004 in).

Figure 52. Analysis of ball wear of bearing No. SN-352. Diameter/weight correlation for balls showing extremely high wear (>0.001 in).

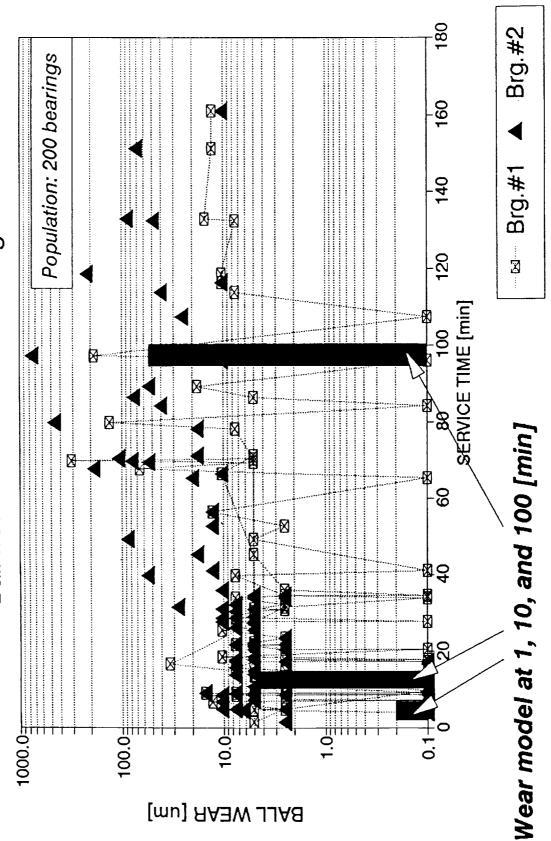
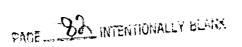
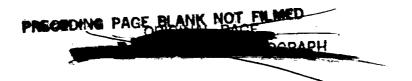




Figure 53. Wear modeling results on the background of field data for 1987-1993.

APPENDIX A

Molecular component of the coefficient of friction "f'(T)".

consideration has been derived using the Kragelsky's definition and The molecular component of the coefficient of friction "f'(T)" for the range most applicable to turbopump bearings under Slifka's experimental data as shown below.

From NIST:

AVERAGE AMBIENT TEMPERATURE CLOSE TO THE BALL SURFACE (°C) 600 σ Normal Load, 44.6 N Silding Velocity, 1.5 m/s 400 O f(T) 0 0 Normal Load, 150.6 N Silding Velocity, 0.5 m/s 200 0 0 0 0 /80 0 0.3 0.0 0.5 0.4 **OF FRICTION** COEFFICIENT 1**14** - 22

F

From Kragelsky:

f=f'e ^ [-b(T'-T*)] + f"e ^ [-a(T'-T*)]

f'=molecular component, decreases with temperature f''=mechanical component, increases with temperature T'=reference temperature, T*=contact temperature a=alpha/(2v), v=asperity interaction coefficient b=alpha-gamma, differential temperature coefficient a, b = frictional temperature factors

Let x=f'@T*=T', y=f''@T*=T', and T=T'-T*

 $f = xe^{\frown}(-bT) + ye^{\frown}(-aT)$

· · · ·

Molecular comp. of the coefficient of friction f'(T), cont'd $ \begin{array}{c} \text{Trel -200 600} \\ \text{Trel -200 049 041 037} \\ \text{trel -200 (deg.C]} \\ \text{tree -1-b(600-600)] + ye^{-1} - (a(600-600)) = x + y = 0.37 \\ \text{tree -200 400} \\ tree -200 4$	f(200) = = = = = = = = = = = = = = = = = =	f(-200)-f(0)=x[e ^ (-4Tb)-e ^ (-3Tb)] +y[e ^ (-4 Ta)-e ^ (-3Ta)]=xe ^ (-31b)[e ^ (-1b)-1] 0
--	--	---

.

.

Molecular comp. of the coefficient of friction f'(T), cont'd Likewise, the change of y can be ignored from 400[C] to 600[C]. f(400)-f(600) = x[e ^ (-Tb)-1] + y[e ^ (-Tb)-1] = x[e ^ (-Tb)-1] Now, divide the last two eqns. side-by-side and solve for bT=ln{[f(400)-f(600)]/[f(-200)-f(0)]}/3=-0.1865 And so on Iterations have shown that the system does not have a unique solution. In fact, there are infinitely many approximate solutions.	Combine the first and the last eqn. of the original set and solve for $x = [f(-200)-f(600)]/[e^{-}(-4bT)-1]$, approx. bT 0.40 0.35 0.30 0.25 0.20 0.15 x = 0.051 0.066 0.086 0.116 0.163 0.243 - f'(600) $xe^{-}(-4bT) 0.253 0.266 0.286 0.316 0.363 0.443 - f'(-200)$ f 0.571 0.571 0.570 0.570 0.570 0.570 - f(600)
--	--

•

.

		0 [deg.C]	
f'(T) = 0.0655 e ^ [-0.00175 (T-600)], T[deg.C	T -200 0 200 400 600 f' 0.2656 0.1872 0.1319 0.0929 0.0655	f' = 0.12 Average value for the range 0 to 600	This value coincides with empirical data Kragelsky quoted for sliding of diamond on hard steel. No other data is available.
	f'(T) = 0.0655 e ^ [-0.00175 (T-600)], T[deg.C]	$f'(T) = 0.0655 e^{-1} [-0.00175 (T-600)], T[deg.C] T -200 0 200 400 600 f' 0.2656 0.1872 0.1319 0.0929 0.0655 $	$f'(T) = 0.0655 e \land [-0.00175 (T-600)], T[deg.C] T -200 0 000 400 600 T -200 0 1319 0.0929 0.0655 T -205 0.1872 0.1319 0.0929 0.0655 T -201 Average value for the range 0 to 600 deg.C] $

.

;

FADE 99 DETERMINIATION NUMBER

٦

.

APPENDIX B

PRECEDING PAGE BLANK NOT FILMED

÷

ईतिहासकी स्टब्स स्टिप्ट का प्रा

The Quinn's equations	$w' = c(A'/V) e^{-(-b/T')}$ $w'' = c(A''/V) e^{-(-b/T'')}$	'') 'T'')	V=0.5	V=0.5m/s (const.)
Solve for constants $b=l$ $c=l$.	b= ln[A'V''w''/(A''V'w')] T'T''/(T''-T') c=[A'/(w'V')] ^ [T'/(T''-T')]/[A''/(w''V''] ^ [T''/(T''-T')]		////////	··)/··۲] ~ [۲··/(۲·-۲)] /··۲] /··/
Using data from Slifka's Fig.5(c)	5(c) T[deg.K]	73	473	the constants are
	w[cu.m/m] /multiply x 10^ (-13)/	ω	36	b=64.896 c=8.1224x10 ^ (-7)
	A [sq.m] /multiply x 10 ^ (-6)/	1.20	2.54	
The modified Quinn's eqn.				
w'=8.1224	x10 ^ (-7)x(A/V)xe	·9-) ~	4.896	w'=8.1224x10 ^ (-7)x(A/V)xe ^ (-64.896/T), T<350 [deg.C]

0-2

Ţ

PAGE ______ INTENTIONALLY BLANK

-

-

APPENDIX C

-

ī

Abrasion mode - Holm/ArchThe original eqn. $U/L=I=kp/y$ can be soWhere $U[m]=linear wear, L[m]=sliding distanchwhereU[m]=linear wear, L[m]=sliding distanchwhereU[m]=linear wear, L[m]=sliding distanchv[MPa]=yield stressv[MPa]=yield stressUsing Slifka's data on wear (converted to I) and ap[MPa]=yield stressUsing Slifka's data on wear (converted to I) and ap[MPa]=yield stressv[MPa]=yield stressUsing Slifka's data on wear (converted to I) and ap[MPa]=yield stressp[MPa]=yield stressv[mear coefficient was obtainedv[mear coefficient was obtainedwultiply \times 10^{-}(-6)/v[1,153] 2.013] 3.3k = 3.10 \times 10^{-}(-6)Average value$	lard model	olved for k=ly/p	ce, I=U/L I=load pressure	ive. pressure as follows	-200 0 200 400 600 142.72 142.13 141.03 140.42 140.04		0 600	368 5.866	Average value for 0 <t<600 [deg.c]<="" th=""></t<600>
	Abrasion mode - Holm/Archard model	riginal eqn. $U/L = I = kp/y$ can be solved for		Slifka's data on wear (converted to I) and ave. pressure as follows		owing wear coefficient was obtained	-200 0	^k l - J /multiply x 10 ^ (-6)/ 0.936 1.153 2.013 3.368 5.866	(9-)

÷

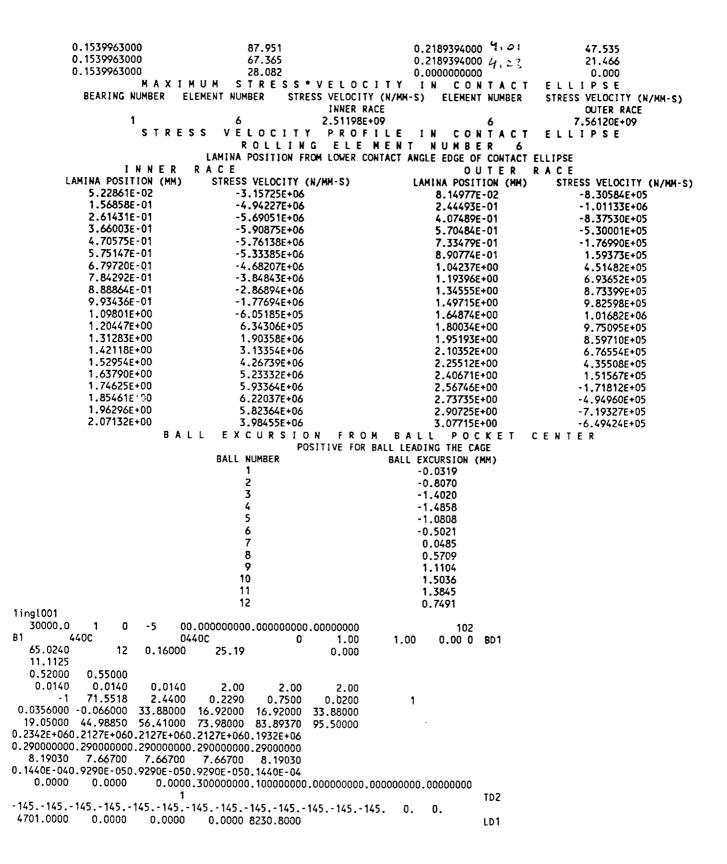
APPENDIX D

,

SHABERTH computer printouts.

PC/SHABERTH BASED MECHANICAL MODEL

File Ref. # singl "M" - op.clear. 148um


UNLESS OTHERWISE STATED, LINEAR DIMENSIONS ARE SPECIFIED IN MILLIMETERS, TEMPERATURES IN DEGREES CENTIGRADE, FORCES IN NEWTONS, WEIGHTS IN KILOGRAMS, PRESSURES AND ELASTIC MODULI IN NEWTONS PER SQUARE MILLIMETER, ANGLES AND SLOPES IN DEGREES, SURFACE ROUGHNESS IN MICRONS, SPEEDS IN REVOLUTIONS PER MINUTE, DENSITY IN GRAMS PER CUBIC CENTIMETER, KINEMATIC VISCOSITY IN CENTISTOKES AND THERMAL CONDUCTIVITY IN WATTS PER METER-DEGREE CENTIGRADE.

	LEVEL = 2							
THE MAXI BEARING	MUM NUMBER OF	FIT ITERATION	IS ALLOWED IS				RED IS 0.00010	
	NUMBER OF ROLLING	AZIMUTH ANGLE	PITCH DIAMETER		ETRAL RANCE	CONTACT	INNER RING	OUTER RING
	ELEMENTS	ORIENTATION	DIAMEIER	LLEA	CANCE	ANGLE	SPEED	SPEED
1	12	0.000	65.024	0.1	50	25,190	30000.	0.
CAGE DATA						231170		0.
BEARING	CAGE TYPE		CAGE POCKET	RAIL	LAND	RAIL-LAND	RAIL-LAND	WEIGHT
NUMBER			CLEARANCE	WI		DIAMETER	CLEARANCE	
1 OUT	ER RING LAND	RIDING	0.750000	2.4	400	71.5518	0.229	0.020000
	NNER RING TYP	E LIFE FA	CTOP		R RING TY	PE LIFE F	ACTOR	
1 4400	C	1.000		4400	.K KING FI	1.000	ACTOR	
ROLLING E	LEMENT	DATA						
BEARING NUMBER (1)) TYPE -	BALL BEARING						
BALL DIAME	TER OUTE	K RACEWAY CURV				E		
11.1125 SURFACE D/		0.520		0.55	0			
BEARING	, , , ,	CLA ROUGHN	FSS			RMS ASPER		
NUMBER	OUTER	INNER		LM.	OUTER			M
1	0.01	0.01	0.01		2.00			
LUBRICATI	ONAND	FRICTIO	NDATA					
BEARING 1 IS	OPERATING DR	WITH FRICTIO	N COEFFICIENT	S OF, RACE/	R.E. 0.30	O CAGE/R.E. AN	D CAGE/RING 0.10	0
FIT DATA A BEARING COLD F	ND MALE FITS (MM TI(OPERTIE					
NUMBER SHAP			SHAFT	INNER RINC	E WIDTHS	RING HOUSIN	r	
1 0.03			33.8800			9200 33.8	-	
		EFFECT	IVE DIAMETERS			,200 55.0		
		ARING IN	NER RING OU	TER RING	BEARING	HOUSING		
-	I.D. E 19.050 4	BORE AV	E. O.D. AV	E. 1.D.	0.D.	0.D. 95.500 OUTER RING 212700.0 0.2900 7.667		
BEARING NUMBER (1)		4.988 5 SHAFT	6.410 7	5.980	83.894	95.500		
MODULUS OF ELASTIC		54200.0	212700 0	KULL. 212	ELEM. 700 0	212700 0	HOUSIN 193200	
POISSONS RATIO	0.29	200	INNER RING 212700.0 0.2900 7.667	0.290	0	0.2900	0.2900	.0
WEIGHT DENSITY	8.			7.6	67	7.667	8.190	
COEFF. OF THERMAL		001440	0.0000929	0.000	00929	0.00000929	0.000014	40
GIVEN TEMPERATURES		011 EU0 4						
1 -145 00	-145 00 -145	UIL FLNG.1	FLNG.2 FLNG	.3 FLNG.4	CAGE	SHAFT I.RI	G ROLL.EL. O.R	ING HSG.
LOADING IN THE X -	Ý PLANE	-145.00	-145.00 -145	.00 -145.00	-145.00	-145.00 -145	.00 -145.00 -14	5.00 -145.00
	CONCENTRATED	FORCE, FY		CONCEN	TRATED MO	MENT ABOUT Z		
*	4701.0	NEWTONS						0.0 NEWTON-MM.
LOADING IN THE X -								
*	CONCENTRATED			CONCEN	TRATED MO	MENT ABOUT Y		
THRUST LOAD FX =	0.0 8230 8 NEUT	NEWTONS						0.0 NEWTON-MM.
**** ERROR MESSAGE	FROM THE EQU	ATION SOLVING	ROUTINE AT 1		000 27 tr	***		
**** ERROR MESSAGE	FROM THE FOLL	ATTON SOLVING	ROUTINE, AT	TERATION L	00° 23 °°	***		
BEARING S	YSTEM O	UTPUT						
LINE	AR (MM) AND A	NGULAR (RADIAN			REACTION	FORCES (N) AND	MOMENTS (MM-N)	
BRG. DX 1 0.137	DY	DZ (GY GZ	FX	FY	FZ	MY MZ	
	0.139 E LIFE (HOURS	3.391E-08-6.98	32E-10 5.137E-	03 8.238E+	03 4.703E	03 6982	.859E+03 1.071E+	+03
BRG. O. RAC	E I. RACE) H/S BEARING O.				MATERIAL FA		
1 44.9	4.96	4.60 0.00	0.000	1.00	1.00	CE O. RACE 1.00	1.00	

ĩ

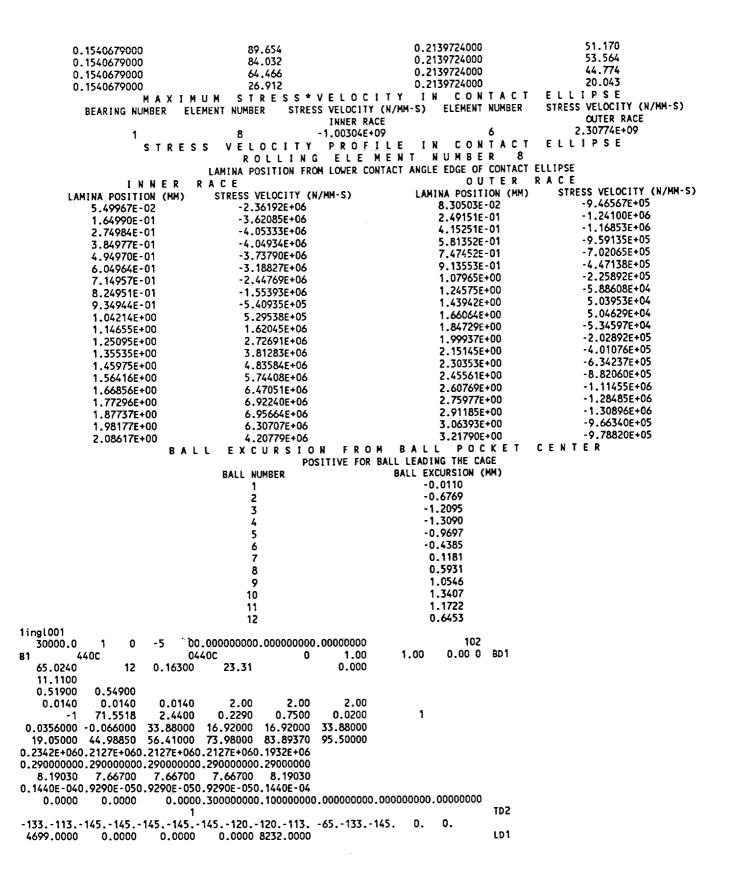
TEMPERATURES RELEVANT TO BEARING PER BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.	2 FING 3 FING 4	CAGE SHAE	FT I.RING ROLL.EL.	O.RING HSG.
1 -145.00 -145.00 -145.00 -145.00 -145.00 -145.	.00 -145.00 -145.0	0 -145.00 -145	5.00 -145.00 -145.00	-145.00 -145.00
FRICTIONAL HEAT GENERATION RATE (WATTS	S) AND FRICTION TOR	RAUE (N-MM)		
BRG. O. RACE O. FLNGS. I. RACE I. FLNGS 1 1.820E+03 0.000 5.135E+03 0.000	S. R.E.DRAG R.ECA 0.000 3.306E	GE CAGE-LAND E+04 0.298 4	4.002E+04 1.274E+04	
1 1.820E+03 0.000 5.135E+03 0.000 EHD FILM THICKNESS, FILM REDUCTION FACTORS A	AND HEAT CONDUCTIV	TY DATA FOR THE	E OUTER AND INNER RACE	WAYS RESPECTIVELY
BRG. FILM (MICRONS) STARVATION FACTOR	THERMAL FACTOR	MENISCUS DI:	SI. (MM) CONDUCITATIO	(w/DEG.C/
1 0.000 0.000 0.000 0.000	0.000 0.000 BEARING CLEARANG		0.000 19.3 1 EED GIVING ZERO FIT PR	3.0
FIT PRESSURES (N/MM2) BRG. SHAFT-COLD, OPER. HSGCOLD, OPER.	ORIGINAL CHANGE		HAFT-INNER RING (RPM)	2350RE
1 31.7 0.000 0.000 0.000	0.160 -1.178	E-02 0.148	0.000	
	HAS ONE DEGREE OF	FREEDOM)		
CAGE RAIL - RING LAND DATA TCRQUE HEAT RATE SEP.FORCE ECCENTR	CAGE SPEED DA		LATED SPEED CALC/E	PIC CAGE/SHAFT
BRG. (MM-N) (WATTS) (NEWTONS) RAT	IO (RAD/SEC)	(RPM) (RAD/	SEC) (RPM) RAI	IO RATIO
1 -0.215 0.298 6.049E-02 0.100		325E+04 1.383	E+03 1.321E+04 0.997 ECTOR ANGLES (DEGREES)	0.440 SPIN TO ROLL RATIO
AZIMUTH ANGULAR SPEEDS (R/ ANGLE (DEG.) WX WY	ADIANS/SECOND) WZ TOTAL		I-1(WY/WX) TAN-1(WZ	
	0.238 9015.230		163.24 -180.0	0 0.0049 0.1383
30.00 -8599.638 2785.471 -	1.258 9039.503		162.05 -179.9	
	4.043 9193.432		160.66 -179.9 159.75 -179.9	
	1.455 9605.670 3.596 9672.488		152.96 -179.1	8 0.0037 0.5066
	2.029 9594.981	1431.754	144.38 -179.9	
180.00 -7397.420 5883.887 -	0.004 9452.088		141.50 -180.0	
	0.213 9479.385 0.007 9633.626		144.88 -180.1 153.14 -180.1	
	4,998 9610.020		159.96 -179.9	0005 0.4674
	0.304 9106.057	1343.553	160.71 - 180.1	
	1.030 9023.304		162.10 -179.	29 0.0045 0.1611 FACT ANGLES (DEG.)
AZIMUTH NORMAL FORCES (NEWTONS) ANGLE (DEG.) CAGE OUTER IN	NER OUTER			JTER INNER
	1.808 2610.005		0000 0.0000 1	2.8521 21.8420
30.00 478.649 2481.005 219	6.738 2374.799			1.1804 24.0594
	1837.745			2.7458 31.2244 4.3782 41.6307
)5.861 1546.929 79.027 1679.002			1.6705 49.9271
	11.401 1947.023	2522.876 0.0	0000 0.0000 4	0.5721 54.4238
180.00 -28.775 1660.915 142	28.258 2077.463			4.9425 55.5436 1.2271 54.1544
	70.337 1922.927 25.285 1698.566			1.1639 50.1308
	72.945 1606.454			3.3299 42.0575
300.00 -821.111 1138.951 84	47.390 1831.974			2.7457 31.2234
	96.037 2375.540			1.1483 24.0729
FRICTIONAL HEAT G ROLLI	ENERATION ING ELEMEN			E
INNER RACE		οι	UTER RACE	
# LAMINA CONTACT AREA SEMI-MAJOR SEMI-M			ONTACT AREA SEMI-MA	
(MM**2) AXIS(MM) AXIS 20 1.282 1.480 0.2756	(MM)		(MM**2) AXIS (M 1.893 2.119	0.2843
WIDTH OF LAMINUM HEAT GEN. PER I	LAM.	WIDTH OF LAMIN		
(MM) (WATTS)		(MM)		TTS)
0.1420076000 0.353		0.212054100		
0.1420076000 3.861 0.1420076000 9.374		0.212054100		360
0.1420076000 15.047		0.212054100	io 47.	
0.1420076000 19.629		0.212054100	-	162 175
0.1420076000 22.134 0.1420076000 21.831		0.212054100	·	151
0.1420076000 18.179		0.212054100	0 0.	785
0.1420076000 10.311		0.263626200	_	850
0.1420076000 1.453		0.263626200	-	804 858
0.1539963000 2.278 0.1539963000 20.747		0.263626200	· · ·	887
0.1539963000 40.703		0.218939400	0 11.	678
0.1539963000 59.985		0.218939400		976 415
0.1539963000 76.960 0.1539963000 89.250		0.218939400 0.218939400		059
0.1539963000 94.007		0.218939400		272

Ţ

******** NODELING WEAR IN THE HPOTP 45mm BEARINGS ********

T. J. Chase

PC/SHABERTH BASED MECHANICAL MODEL


File Ref. # singl MM-op.clear.123um,ball wear 2.5um, thermal

UNLESS OTHERWISE STATED, LINEAR DIMENSIONS ARE SPECIFIED IN MILLIMETERS, TEMPERATURES IN DEGREES CENTIGRADE, FORCES IN NEWTONS, WEIGHTS IN KILOGRAMS, PRESSURES AND ELASTIC MODULI IN NEWTONS PER SQUARE MILLIMETER, ANGLES AND SLOPES IN DEGREES, SURFACE ROUGHNESS IN MICRONS, SPEEDS IN REVOLUTIONS PER MINUTE, DENSITY IN GRAMS PER CUBIC CENTIMETER, KINEMATIC VISCOSITY IN CENTISTOKES AND THERMAL CONDUCTIVITY IN WATTS PER METER-DEGREE CENTIGRADE. SOLUTION LEVEL = 2THE MAXIMUM NUMBER OF FIT ITERATIONS ALLOWED IS 5 AND THE RELATIVE ACCURACY REQUIRED IS 0.00010 CONTACT INNER RING OUTER RING NUMBER OF AZIMUTH PITCH DIAMETRAL REARING SPEED SPEED CLEARANCE ANGL F NUMBER ROLLING ANGLE DIAMETER ELEMENTS ORIENTATION 23.310 30000. 0. 65.024 0.163 1 12 0.000 CAGE DATA WEIGHT CAGE TYPE RAIL-LAND RAIL-LAND RAIL-LAND CAGE POCKET BEARING CLEARANCE NUMBER CLEARANCE WIDTH DIAMETER 0.750000 2.4400 71.5518 0.229 0.020000 OUTER RING LAND RIDING 1 STEEL DATA INNER RING TYPE OUTER RING TYPE LIFE FACTOR BRG.NO. LIFE FACTOR 1.000 440C 440C 1.000 1 ROLLING ELEMENT DATA TYPE - BALL BEARING BEARING NUMBER (1) BALL DIAMETER OUTER RACEWAY CURVATURE INNER RACEWAY CURVATURE 11.1100 0.519 0.549 SURFACE DATA RMS ASPERITY SLOPE REARING CLA ROUGHNESS ROLL. ELM. OUTER INNER NUMBER OUTER INNER ROLL. ELM. 2.000 2.000 2.000 1 0.01 0.01 0.01 LUBRICATION AND FRICTION DATA BEARING 1 IS OPERATING DRY WITH FRICTION COEFFICIENTS OF, RACE/R.E. 0.300 CAGE/R.E. AND CAGE/RING 0.100 FIT DATA AND MATERIAL PROPERTIES BEARING COLD FITS (MM TIGHT) EFFECTIVE WIDTHS INNER RING OUTER RING HOUSING NUMBER SHAFT HOUSING SHAFT 33.8800 16.9200 16.9200 33.8800 0.0356 1 -0.0660 EFFECTIVE DIAMETERS BEARING BEARING HOUSING INNER RING OUTER RING BEARING SHAFT AVE. O.D. 0.D. O.D. NUMBER I.D. BORE AVE. I.D. 44.988 19.050 56.410 73.980 83.894 95.500 1 HOUSING OUTER RING BEARING NUMBER (1) SHAFT INNER RING ROLL. ELEM. 212700.0 193200.0 MODULUS OF ELASTICITY 234200.0 212700.0 212700.0 0.2900 0.2900 POISSONS RATIO 0.2900 0.2900 0.2900 7.667 8.190 WEIGHT DENSITY ~~8.190 7.667 7.667 0.0000929 0.00000929 0.00000929 0.00001440 COEFF. OF THERMAL EXP. 0.00001440 GIVEN TEMPERATURES (C) I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. -113.00 -145.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 BRG O.RACE 1 -133.00 LOADING IN THE X - Y PLANE CONCENTRATED MOMENT ABOUT Z CONCENTRATED FORCE, FY 4699.0 NEWTONS 0.0 NEWTON-MM. LOADING IN THE X - Z PLANE CONCENTRATED FORCE, FZ CONCENTRATED MOMENT ABOUT Y 0.0 NEWTON-MM. 0.0 NEWTONS THRUST LOAD FX = 8232.0 NEWTONS 6 **** **** ERROR MESSAGE FROM THE EQUATION SOLVING ROUTINE, AT ITERATION LOOP **** ERROR MESSAGE FROM THE EQUATION SOLVING ROUTINE, AT ITERATION LOOP 5 **** $F_{22} = 4755$ BEARING SYSTEM OUTPUT LINEAR (MM) AND ANGULAR (RADIANS) DEFLECTIONS REACTION FORCES (N) AND MOMENTS (MM-N) MZ BRG. DX DY DZ GY GZ FX FY FΖ MY 4.837E-08-1.227E-09 4.790E-03 8.225E+03 4.689E+03 787. 37.0 0.135 0.121 -713. 1 FATIGUE LIFE (HOURS) H/SIGMA LUBE-LIFE FACTOR MATERIAL FACTOR I. RACE BEARING I. RACE O. RACE I. RACE. BRG. O. RACE O. RACE O. RACE I. RACE 1.00 1.00 0.000 0.000 1.00 1.00 1 47.1 4.86 4.53 TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE)

BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.	.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG.
	.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00
EDICTIONAL HEAT CENERATION DATE (147.00 - 149.00 - 149.	
FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRI	CITON TOROUE (N-MM)
BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRA	
1 2.032E+03 0.000 5.040E+03 0.000 0.000	2.920E+04 0.295 3.628E+04 1.155E+04
EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT C	CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY
	AL FACTOR MENISCUS DIST. (MM) CONDUCTIVITY (W/DEG.C)
1 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 20.0 13.6
	CHANGE OPERATING SHAFT-INNER RING (RPM)
1 31.7 0.000 0.000 3.98 0.163	-3.955E-02 0.123 1.891E+04
CAGE DATA	
(CAGE HAS ONE DEGREE OF FREEDOM)	
	SPEED DATA
	/SEC) (RPM) (RAD/SEC) (RPM) RATIO RATIO -
1 -0.215 0.295 6.049E-02 0.100 1.37	'4E+03 1.312E+04 1.373E+03 1.311E+04 0.999 0.437
ROLLING ELEMENT OUTPUT FOR BEARING	NUMBER 1
AZIMUTH ANGULAR SPEEDS (RADIANS/SEC	
	TOTAL ORBITAL TAN-1(WY/WX) TAN-1(WZ/WX) OUTER INNER
· · · · · · · · · · · · · · · · · · ·	
	12.004 1317.374 164.13 -180.00 0.0046 0.1316
	26.761 1320.550 162.87 -180.00 0.0013 0.1493
	89.751 1338.856 160.95 -179.98 0.0002 0.2344
90.00 -8887.136 3250.179 -2.787 94	62.814 1390.403 159.91 -179.98 0.0063 0.3986
	23.441 1409.614 153.84 -180.00 0.0040 0.4482
	76.327 1413.709 143.94 -179.99 0.0075 0.3903
	10.775 1408.188 146.68 -180.00 0.0044 0.4099
	06.826 1411.549 153.97 -180.00 0.0035 0.4520
270.00 -8784,269 3231.990 -0.032 93	59.975 1379.887 159.80 -180.00 0.0038 0.3976
	88.303 1338.246 161.14 -180.00 0.0043 0.2372
	08.357 1322.079 163.04 -180.00 0.0043 0.1520
······	STRESS (N/MM**2) LOAD RATIO QASP/QTOT CONTACT ANGLES (DEG.)
	UTER INNER OUTER INNER OUTER INNER
	67.747 3484.260 0.0000 0.0000 18.7921 20.7086
30.00 401.454 2541.786 2250.867 23	66.587 3182.340 0.0000 0.0000 20.0717 22.7649
	93.881 2438.165 0.0000 0.0000 22.2564 29.1200
	30.059 1972.357 0.0000 0.0000 23.8015 38.7212
	95.543 2110.378 0.0000 0.0000 30.6984 46.3625
	71.690 2521.057 0.0000 0.0000 39.5627 50.3474
	50.879 2722.624 0.0000 0.0000 42.2563 51.9830
210.00 -351.744 1357.507 1104.602 19	20.099 2510.143 0.0000 0.0000 38.9443 50.6015
240.00 -625.493 947.718 666.098 17	03.344 2120.684 0.0000 0.0000 30.5323 46.4286
	29.528 1973.073 0.0000 0.0000 23.8009 38.7213
	93.374 2438.142 0.0000 0.0000 22.2701 29.1145
	66.777 3182.393 0.0000 0.0000 20.0521 22.7729
FRICTIONAL HEAT GENERA	
ROLLING EL	EMENT NUMBER 1
INNER RACE	OUTER RACE
# LAMINA CONTACT AREA SEMI-MAJOR SEMI-MINOR	# LAMINA CONTACT AREA SEMI-MAJOR SEMI-MINOR
(MM**2) AXIS (MM) AXIS (MM)	(MM**2) AXIS (MM) AXIS (MM)
20 1.272 1.484 0.2728	
	20 1.897 2.154 0.2803
WIDTH OF LAMINUM HEAT GEN. PER LAM.	WIDTH OF LAMINUM HEAT GEN. PER LAM.
(MM) (WATTS)	(MM) (WATTS)
0.0350268400 0.001	0.2074940000 17.949
0.1547233000 0.259	0.2074940000 40.192
0.1547233000 4.022	0.2074940000 48.206
	0.2074940000 46.176
0.1547233000 16.389	0.2074940000 37.651
0.1547233000 20.570	0.2074940000 25.518
0.1547233000 21.725	0.2074940000 11.389
0.1547233000 18.978	0.2074940000 0.947
0.1547233000 11.265	0.2339875000 0.882
	0.2339875000 4.151
0.1540679000 2.043	0.2339875000 4.169
0.1540679000 19.279	0.2339875000 0.893
0.1540679000 38.325	0.2139724000 1.067
0.1540679000 56.756	0.2139724000 12.849
0.1540679000 73.055	
	0.2139724000 28.182
0.1540679000 84.937	0.2139724000 41.616

Ę

******* MODELING WEAR IN THE HPOTP 45mm BEARINGS ********

T. J. Chase

ī

PC/SHABERTH BASED MECHANICAL MODEL

File Ref. # singl"M'", heavily worn, thermal

UNLESS OTHERWISE STATED, LINEAR DIMENSIONS ARE SPECIFIED IN MILLIMETERS, TEMPERATURES IN DEGREES CENTIGRADE, FORCES IN NEWTONS, WEIGHTS IN KILOGRAMS, PRESSURES AND ELASTIC MODULI IN NEWTONS PER SQUARE MILLIMETER, ANGLES AND SLOPES IN DEGREES, SURFACE ROUGHNESS IN MICRONS, SPEEDS IN REVOLUTIONS PER MINUTE, DENSITY IN GRAMS PER CUBIC CENTIMETER, KINEMATIC VISCOSITY IN CENTISTOKES AND THERMAL CONDUCTIVITY IN WATTS PER METER-DEGREE CENTIGRADE. SOLUTION LEVEL = 2 THE MAXIMUM NUMBER OF FIT ITERATIONS ALLOWED IS 5 AND THE RELATIVE ACCURACY REQUIRED IS 0.00010 NUMBER ROLLING ANGLE DIAMETER CLEARANCE ANGLE SPEED SPEED ELEMENTS ORIENTATION 12 0.000 65.024 0.160 25.300 30000. 0. CAGE DATA BEARING CAGE TYPE CAGE POCKET RAIL-LAND RAIL-LAND RAIL-LAND VEIGHT NUMBER CLEARANCE WIDTH DIAMETER CLEARANCE OUTER RING LAND RIDING 0.750000 2.4400 71.5518 0.229 0.020000 STEEL DATA BRG.NO. INNER RING TYPE LIFE FACTOR OUTER RING TYPE LIFE FACTOR 440C 1.000 440C 1.000 ROLLING ELEMENT DATA TYPE - BALL BEARING BEARING NUMBER (1) BALL DIAMETER OUTER RACEWAY CURVATURE INNER RACEWAY CURVATURE 11.1085 0.515 0.540 SURFACE DATA REARING CLA ROUGHNESS RMS ASPERITY SLOPE NUMBER OUTER INNER ROLL. ELM. OUTER INNER ROLL. ELM. 0.01 0.01 0.01 2.000 2.000 2.000 LUBRICATION AND FRICTION DATA BEARING 1 IS OPERATING DRY WITH FRICTION COEFFICIENTS OF, RACE/R.E. 0.300 CAGE/R.E. AND CAGE/RING 0.100 FIT DATA AND MATERIAL PROPERTIES COLD FITS (MM TIGHT) **EFFECTIVE WIDTHS** SHAFT HOUSING INNER RING OUTER RING SHAFT HOUSING 0.0356 -0.0660 33.8800 16,9200 16.9200 33.8800 EFFECTIVE DIAMETERS SHAFT BEARING INNER RING OUTER RING BEARING HOUSING I.D. BORE AVE. O.D. AVE. I.D. 0.D. 0.D. 19.050 44.988 56.410 73.980 83.894 95.500 BEARING NUMBER (1) ROLL, ELEM. SHAFT INNER RING OUTER RING HOUSING MODULUS OF ELASTICITY 234200.0 212700.0 212700.0 212700.0 193200.0 POISSONS RATIO 0.2900 0.2900 0.2900 0.2900 0.2900 WEIGHT DENSITY 8.190 7.667 7 667 7.667 8.190 COEFF. OF THERMAL EXP. 0.00001440 0.00000929 0.00000929 0.00000929 0.00001440 GIVEN TEMPERATURES (C) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 LOADING IN THE X - Y PLANE CONCENTRATED FORCE, FY CONCENTRATED MOMENT ABOUT Z 4735.0 NEWTONS 0.0 NEWTON-MM. LOADING IN THE X - Z PLANE CONCENTRATED FORCE, FZ CONCENTRATED MOMENT ABOUT Y 0.0 NEWTONS 0.0 NEWTON-MM. 5850.0 NEWTONS THRUST LOAD FX = **** ERROR MESSAGE FROM THE EQUATION SOLVING ROUTINE, AT ITERATION LOOP 3 **** THIS IS THE BEST WE CAN DO. IT MAY BE USEABLE. REL. ACCURACY 0.000100, ITERATION LIMIT 200 NUMBER OF UNKNOWNS 6 ABSOLUTE ACCURACIES 4.37342500E-07 4.37342500E-07 0.31415930 0.31415930 3.14159300E-02 3.14159300E-02 DAMPING FACTORS 1-5, OTHER STEP FACTORS 6-10 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 5.0000000E-04 1.0000000E-03 1.0000000E-06 0.10000000 1.0000000E-05

MAXIMUM STEP FACTORS

1

1

1

BEARING

NUMBER

BEARING

NUMBER

1

1

	0.1000000							
C		X-ES FROM SIMQ						
	0.13354410E-03 -	0.31987950E-04	0.80727210E+	-03 -0.17860	5640E+04	0.15089600E+00	0.18040670E+03	
	NUMBER OF DERIVATI		REACH X -1	-1	-1			
	-1 X-VALUES	•						
	0.20698840E-02	0.70372770E-02	-0.87402610E+	04 0.2141	3380E+04 -	0.25704960E+00	0.13153970E+04	
	CODDECDOUDING FOR	(1) 1150						
	-0.51844310E+00 ERROR MESSAGE FROM	0.12201910E+00	0.27360580E4	103 -U.2054	ATTON LOOP	0.212031902+01	-0.1/0015/02/01	
****	THIS IS THE BEST V	MINE EQUATION S	AY BE USEABLE	E. AL ILEN	ATTON LOOP	•		
	REL. ACCURACY 0.00	DO100, ITERATION	LIMIT 200 NU	JMBER OF UN	KNOWNS 73	5		
	ABSOLUTE ACCURACI	ES				A 74/45070	3,14159300E	.02
	4.37342500E		500E-07	0.31415930 4.37342500		0.31415930 0.31415930	0.31415930	02
	3.14159300E 3.14159300E		500E-07	4.37342500		4.37342500E-07	0.31415930	
	0.31415930	3.14159	300E-02	3.14159300	E-02	4.37342500E-07	4.37342500E	
	0.31415930	0.31415	930	3.14159300		3.14159300E-02	4.37342500E 3.14159300E	
	4.37342500E			0.31415930		3.14159300E-02 0.31415930	3.14159300E	-02
	4.37342500E 3.14159300E		500E-07 500E-07	4.37342500		0.31415930	0.31415930	
	3.14159300E		300E-02	4.37342500		4.37342500E-07	0.31415930	
	0.31415930		300E - 02	3.14159300		4.37342500E-07	4.37342500E 4.37342500E	
	0.31415930	0.31415		3.14159300		3.14159300E-02 3.14159300E-02	3.14159300E	
	4.37342500E		930 500E-07	0.31415930		0.31415930	3.14159300E	
	4.37342500E 3.14159300E		500E-07	4.37342500		0.31415930	0.31415930	
	3.14159300E	-02 3.14159	300E-02	3.85433100	E-06			
	DAMPING FACTORS 1					1.0000000	1.0000000	
	1.0000000 5.00000000E	1.0000	1000 1000E - 03	1.0000000		0.10000000	1.00000000E	- 05
	MAXIMUM STEP FACT		00002-05	1.00000000		i		
	0.10000000	0.10000	0000	0.1000000)	1.0000000	1.0000000	
	0.1000000	0.1000		0.1000000		0.10000000	1.0000000	
	1.0000000	0.1000		0.1000000		0.10000000	0.10000000	
	1.0000000 0.10000000	1.000		1.0000000		0.10000000	0.1000000	
	0.10000000	0.1000		1.0000000		1.0000000	0.1000000	
	0.1000000	0.1000		0.1000000		1.0000000	1.0000000	
	0.1000000	0.1000		0.1000000		0.10000000 0.10000000	0.10000000	
	1.0000000	0.1000		0.10000000		0.10000000	0.10000000	
	0,10000000	1.000		1.000000		0.1000000	0.1000000	
	0.1000000	0.1000		1.000000		1.0000000	0.10000000	
	0.1000000	0.1000		0.1000000		1.0000000	1.0000000	
	0.10000000	0.1000		0.1000000		0.1000000	•••	
	CORRECTIONS OF THE	X-ES FROM SIMQ						
	-0 744745905-04	n 03031020E-07	-0 272320208	+03 -0.137	33530E+04	0.56528850E-01	-0.79875860E+01	
	-0.10869850E-02	0.37811370E-03	-0.15512/808	2+04 0.891 2+04 -0 145	100000F+04	-0.80215570E+02	0.16033200E+03 -0.10081070E+04	
	-0.80525970E-03	0.58929240E-03	-0 200075200	=+05 -0.125	19760E+04	0.12/08/106-04	0.933020106403	
	0.16434570E-03	-0.41102280E-03	0.58080430	E+04 0.505	29380E+04	-0.71589620E+0	-0.13955130E+04	
		-0.83580420E-02		E+04 0.935	60580E+04	0.43923380E+0	0.92764920E+03	
	0.45051720E-03	-0.59222970E-03	0.26060890	E+U4 -U.335 E+04 -0 376	15760E+04	0.21868620E-0	-0.66080940E+03 -0.81257240E+02	
	0 53/61/506+03	-0 47624230F-03	0 35305400	F+04 -0.461	42740E+03	-0.45603790E+0	2 -0.883025606+05	
	-0 538510405-05	0 130587105-04	-0 20480650	F+04 -0.189	49890E+04	-0.15138840E+0	2 0.10552830E+03	
	0.97506710E-03	-0.46485430E-03	0.38711450	E+04 -0.134	47140E+04	-0.26822040E+0	2 -U.76681150E+05	
		-0.68739600E-04	0.49399040	E+03 -0.141	92550E+04	0.515/03508+0	0.77544430E+02	
	-0.10345540E-01 NUMBER OF DERIVA	TIVES EXPECTED E	OR FACH Y					
	NUMBER OF DERIVA	-1 -1	-1	-1	- 1	-1 -		-1
	-1	-1 -1	-1	-1	-1	-1 -		-1 -1
	-1	-1 -1	-1	-1	-1 -1	-1 - -1 -		-1
	- 1 - 1	-1 -1 -1 -1	-1 -1	-1 -1	-1	-1 -	•	- 1
	-1	-1 -1	-1	-1	-1	-1 -		- 1
	-1	-1 -1	-1	- 1	-1	-1 -	1 -1	-1

v.cvcx425UE-U2 U.7U383260E-02 -0.87220680E+04 0.21558360E+04 -0.87544100E-01 0.13151350E+04
0.2/064/201E-02 0.70383260E-02 -0.87220680E+04 0.21558360E+04 -0.87544100E-01 0.13151350E+04
0.22052130E-02 0.68257590E-02 -0.87228570E+04 0.23615250E+04 -0.11725190E+01 0.13161260E+04
0.21114250E-02 0.65373960E-02 -0.89030510E+04 D.24239490E+04 -0.15848230E+00 0.13520000E+04
0.19576660E-02 0.65217200E-02 -0.96484240E+04 0.24493530E+04 -0 18157410E-02 0 14497770E+04
0.3012605GE-02 0.61474760E-02 -0.94006230E+04 0.38470850E+04 -0.14781220E+01 0.14894790E+04
0.43265050E-02 0.54135680E-02 -0.81719790E+04 0.54108330E+04 -0.53092510E+01 0.14624740E+04
0.48944170E-02 0.49892270E-02 -0.75431590E+04 0.59782930E+04 -0.22128720E-01 0.14481530E+04
0.43529490E-02 0.53860460E-02 -0.81337660E+04 0.53616890E+04 -0.22061830E-01 0.14621030E+04 0.30205070E-02 0.61408390E-02 -0.92556840E+04 0.38400770E+04 -0.40336340E+00 0.14800580E+04
0.19533220E-02 0.65248400E-02 -0.95894280E+04 0.24214150E+04 -0.57804080E-01 0.14499390E+04
0.19533220E-02 0.65248400E-02 -0.95894280E+04 0.24214150E+04 -0.57804080E-01 0.14499390E+04
0.21220090E-02 0.65321820E-02 -0.88271430E+04 0.24173570E+04 -0.14739850E+00 0.13441630E+04
0.22003980E-02 0.68277160E-02 -0.86918570E+04 0.23519320E+04 -0.34284480E+00 0.13175980E+04
0.60444180E-04
CORRESPONDING EQ-VALUES
-0.20197850E-01 0.84233690E-02 0.27142670E+03 0.99532680E+00 0.15376160E+01 -0.17445220E+01

U.4U42/150E-01 U.30698590E+00 U.31871790E+03 -0.29010790E+00 0 14092850E+01 -0 108/3440E+01
0.50650880E-01 0.11782910E+01 0.31188300E+03 0.22525730E+01 0.81138800E+00 -0 213/0170E+01
-0.3843/380E-01 0.64270390E+00 0.22843800E+03 0.24625490E+01 0 14681620E+01 -0 3366/88/0E+01
0.15204280E+01 -0.10732630E+01 0.15453420E+03 0.13009180E+01 0.34247870E+01 -0.44087670E+01
0.84490890E-01 0.37332610E+00 0.10805630E+03 0.98220150E+00 0.40530420E+01 -0.52017740E+01
0.31792340E-01 0.47985160E-01 -0.76601870E+01 0.35446380E+00 0.39347360E+01 -0.47140970E+01
0.11423330E+00 0.54334360E+00 -0.14858720E+03 0.84224640E+00 0.22184730E+01 -0.34397290E+01
0.56525240E-02 0.88203050E-01 -0.25426050E+03 0.12470050E+01 0.11174560E+01 -0.21158510E+01
-0.20059100E-01 0.50307030E+00 -0.21115330E+03 0.10011600E+01 0.99465260E+00 -0.19724600E+01
-0.23875220E+00 0.78179520E-01 0.40281460E+02 -0.28558710E+01 0.22368070E+01 -0.19150120E+01 0.93154830E+02
BEARING SYSTEM OUTPUT
LINEAR (MH) AND ANGULAR (RADIANS) DEFLECTIONS REACTION FORCES (N) AND MOMENTS (MM-N)
BRG. DX DY DZ GY GZ FX FY FZ MY MZ
1 9.530E-02 0.130 4.345E-08-7.662E-11 4.820E-03 5.855E+03 4.716E+03 739224. 490.
FATIGUE LIFE (HOURS) H/SIGMA LUBE-LIFE FACTOR MATERIAL FACTOR
BRG. O. RACE I. RACE BEARING O. RACE I. RACE O. RACE I. RACE O. RACE I. RACE
1 85.1 9.01 8.39 0.000 0.000 1.00 1.00 1.00 1.00
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE)
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CACE SHAFT I DING DOLL FL O DING HSC
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CACE SHAFT I DING DOLL FL O DING HSC
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TOROUF (N-MM)
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TOROUF (N-MM)
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.567F+04 0.303 5 150E+04 1.639E+04
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.567F+04 0.303 5 150E+04 1.639E+04
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR 'MENISCUS DIST. (MM) CONDUCTIVITY (W/DEG.C)
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR 'MENISCUS DIST. (MM) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000 17.7 11.1
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 .860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR `MENISCUS DIST. (MM) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.7 11.1 BEARING CLEARANCES (MM) SPEED GIVING ZERO FIT PRESSURE
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 .860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR ' MENISCUS DIST. (MM) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.7 11.1 BEARING CLEARANCES (MM) SPEED GIVING ZERO FIT PRESSURE BRG. SHAFT-COLD, OPER. HSGCOLD, OPER. ORIGINAL CHANGE OPERATING SHAFT-INNER RING (RPM)
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 .860e+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR ' MENISCUS DIST. (MM) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 17.7 11.1 BEARING CLEARANCES (MM) SPEED GIVING ZERO FIT PRESSURE BRG. SHAFT-COLD, OPER. HSGCOLD, OPER. ORIGINAL CHANGE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 0.000 3.59 0.160 -4.222E-02 0.118 1.250E+04
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR 'MENISCUS DIST. (MM) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 17.7 11.1 FIT PRESSURES (N/MM2) BEARING CLEARANCES (MM) SPEED GIVING ZERO FIT PRESSURE BRG. SHAFT-COLD, OPER. HSGCOLD, OPER. ORIGINAL CHANGE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 0.000 3.59 0.160 -4.222E-02 0.118 1.250E+04
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR ' MENISCUS DIST. (MM) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.7.7 11.1 BEARING CLEARANCES (MM) SPEED GIVING ZERO FIT PRESSURE BRG. SHAFT-COLD, OPER. HSGCOLD, OPER. ORIGINAL CHANGE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 0.000 3.59 0.160 -4.222E-02 0.118 1.250E+04 (CAGE HAS ONE DEGREE OF FREEDOM)
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR 'MENISCUS DIST. (MM) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.7 11.1 FIT PRESSURES (N/MM2) BEARING CLEARANCES (MM) SPEED GIVING ZERO FIT PRESSURE BRG. SHAFT-COLD, OPER. HSGCOLD, OPER. ORIGINAL CHANGE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 3.59 0.160 -4.222E-02 0.118 1.250E+04 (CAGE HAS ONE DEGREE OF FREEDOM) CAGE RAIL - RING LAND DATA CAGE SPEED DATA
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DECRES CENTIGRADE) BRG 0.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. 0.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. 0. RACE 0. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR 'MENISCUS DIST. (HH) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.7 11.1 FIT PRESSURES (N/MM2) BEARING CLEARANCES (MM) SPEED GIVING ZERO FIT PRESSURE BRG. SHAFT-COLD, OPER. HSGCOLD, OPER. ORIGINAL CHANGE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 0.000 3.59 0.160 -4.222E-02 0.118 1.250E+04 (CAGE HAS ONE DEGREE OF FREEDOM) CAGE RAIL - RING LAND DATA CAGE SPEED DATA TORQUE HEAT RATE SEP.FORCE ECCENTRICITY EPICYCLIC SPEED CALCULATED SPEED CALC/EPIC CAGE/SHAFT
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR 'MENISCUS DIST. (HM) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.7 11.1 FIT PRESSURES (N/MM2) BEARING CLEARANCES (MM) SPEED GIVING ZERO FIT PRESSURE BRG. SHAFT-COLD, OPER. HSGCOLD, OPER. ORIGINAL CHANCE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 0.000 3.59 0.160 -4.222E-02 0.118 1.250E+04 (CAGE HAS ONE DEGREE OF FREEDOM) CAGE RAIL - RING LAND DATA CAGE SPEED DATA TORQUE HEAT RATE SEP.FORCE ECCENTRICITY EPICYCLIC SPEED CALCULATED SPEED CALC/EPIC CAGE/SHAFT BRG. (MM-N) (WATTS) (NEWTONS) RATIO (RAD/SEC) (RPM) (RAD/SEC) (RPM) RATIO RATIO
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DECRES CENTIGRADE)BRGO.RACEI.RACE BULK OIL FLNG.1FLNG.2FLNG.3FLNG.4CAGESHAFTI.RING ROLL.EL.O.RINGHSG.1-133.00-113.00-145.00-145.00-145.00-145.00-120.00-120.00-113.00-65.00-133.00-145.00FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM)BRG.O. RACEO. FLNGS. I. RACEI. FLNGS. R.E.DRAG R.ECAGECAGE-LANDTOTALTORQUE11.860E+030.0003.970E+030.0000.0004.567E+040.3035.150E+041.639E+04EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELYBRG.FILM (MICRONS)STARVATION FACTORTHERMAL FACTORMENISCUS DIST. (MM) CONDUCTIVITY (W/DEG.C)10.0000.0000.0000.0000.0001.100FIT PRESSURES (N/MM2)BEARING CLEARANCES (MM)SPEED GIVING ZERO FIT PRESSUREBRG. SHAFT-COLD, OPER.HSGCOLD, OPER.ORIGINAL CHANGEOPERATING SHAFT-INNER RING (RPM)131.70.0000.0003.590.160-4.222E-020.1181.250E+04CAGE RAIL - RING LAND DATACAGE SPEED DATATORQUE HEAT RATESEP.FORCE ECCENTRICITYCAGE (MAL)CAGE SPEED DATACAGE/SPEEDCALC/EPIC CAGE/SHAFT
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.30 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 .860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR 'MENISCUS DIST. (MM) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.7 11.1 FIT PRESSURES (N/MM2) BEARING CLEARANCES (MM) SPEED GIVING ZERO FIT PRESSURE BRG. SHAFT-COLD, OPER. HSGCOLD, OPERORIGINAL CHANGE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 0.000 3.59 0.160 -4.222E-02 0.118 1.250E+04 CAGE RAIL - RING LAND DATA CAGE SPEED DATA TORQUE HEAT RATE SEP.FORCE ECCENTRICITY EPICYCLIC SPEED CALCULATED SPEED CALC/EPIC CAGE/SHAFT BRG. (MM-N) (WATTS) (NEWTONS) RATIO (RAD/SEC) (RPM) (RAD/SEC) (RPM) RATIO RATIO 1 -0.215 0.303 6.049E-02 0.100 1.410E+03 1.347E+04 1.407E+03 1.344E+04 0.998 0.448
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG 0.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. 0.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. 0. RACE 0. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR 'HENISCUS DIST. (HH) COMDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.7 11.1 FIT PRESSURES (N/MM2) BEARING CLEARANCES (MM) SPEED GIVING ZERO FIT PRESSURE BRG. SNAFT-COLD, OPER. HSGCOLD, OPER. ORIGINAL CHANGE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 0.000 3.59 0.160 -4.222E-02 0.118 1.250E+04 (CAGE HAS ONE DEGREE OF FREEDOM) CAGE RAIL - RING LAND DATA CAGE SPEED DATA TORQUE HEAT RATE SEP.FORCE ECCENTRICITY EPICYCLIC SPEED CALCULATED SPEED CALC/EPIC CAGE/SHAFT BRG. (MM-N) (WATTS) (NEWTONS) RATIO (RAD/SEC) (RPM) (RAD/SEC) (RPM) RATIO RATIO 1 -0.215 0.303 6.049E-02 0.100 1.410E+03 1.347E+04 1.407E+03 1.344E+04 0.998 0.448 R OLLING ELEMENT OUT PUT FOR BEARING NUMBER 1
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DECRES CENTIGRADE) BRG 0.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. O. RACE 0. FLNGS. I. RACE I. FLNGS. R.E.DAGE CAGE-LAND TOTAL TORQUE 1 0.800 0.00 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE CUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR ' MENISCUS DIST. (MM) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 17.7 11.1 FIT PRESSURES (N/MM2) BEARING CLEARANCES (MM) SPEED GIVING ZERO FIT PRESSURE BRG. SNAFT-COLD, OPER. HSGCOLD, OPER. ORIGINAL CHANGE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 3.59 0.160 -4.222E-02 0.118 1.250E+04 (CAGE HAS ONE DEGREE OF FREEDOM) CAGE RAIL - RING LAND DATA CAGE SPEED DATA TORQUE HEAT RATE SEP.FORCE ECCENTRICITY EPICYCLIC SPEED CALCULATED SPEED CALC/EPIC CAGE/SHAFT BRG. (MM-N) (WATTS) (NEWTONS) RATIO (RAD/SEC) (RPM) (RAD/SEC) (RPM) RATIO RATIO 1 -0.215 0.303 6.049E-02 0.100 1.410E+03 1.347E+04 1.407E+03 1.344E+04 0.998 0.448 R O L L I N G E L E M E N T O U T P U T FOR BEARING NUMBER 1 AZIMUTH ANGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIO
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG 0.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. 0.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. 0. RACE 0. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR 'MENISCUS DIST. (MM) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 1.000 17.7 11.1 FIT PRESSURES (M/MM2) BEARING CLEARANCES (MM) SPEED GIVING ZERO FIT PRESSURE BRG. SHAFT-COLD, OPER. HSGCOLD, OPER. ORIGINAL CHANGE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 3.59 0.160 -4.222E-02 0.118 1.250E+04 (CAGE HAS ONE DEGREE OF FREEDOM) CAGE RAIL - RING LAND DATA CAGE SPEED DATA TORQUE HEAT RATE SEP.FORCE ECCENTRICITY EPICYCLIC SPEED CALCULATED SPEED CALC/EPIC CAGE/SHAFT BRG. (MM-N) (WATTS) (NEWTONS) RATIO (RAD/SEC) (RPM) RATIO RATIO 1 -0.215 0.303 6.049E+02 0.100 1.410E+03 1.347E+04 1.407E+03 1.344E+04 0.998 0.448 R O L L I N G E L E M E N T O U T P U T FOR BEARING NUMBER 1 AZIMUTH ANGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIO ANGLE (DEG.) YX WY WZ TOTAL ORBITAL TAN-1(WY/WX) TAN-1(WZ/WX) OUTER INNER
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG 0.RACE I.RACE BULK OIL FLNG,1 FLNG,2 FLNG,3 FLNG,4 CAGE SHAFT I.RING ROLL.EL. 0.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. 0. RACE 0. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 .860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR 'MENISCUS DIST. (MH) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.7 11.1 FIT PRESSURES (N/MM2) BEARING CLEARANCES (MM) SPEED GIVING ZERO FIT PRESSURE BRG. SHAFT-COLD, OPER. HSGCOLD, OPER. ORIGINAL CHANGE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 0.000 0.000 0.160 -4.222E-02 0.118 1.250E+04 CAGE RAIL - RING LAND DATA CAGE SPEED DATA TORQUE MEAT RATE SEP.FORCE ECCENTRICITY EPICYCLIC SPEED CALCULATED SPEED CALC/EPIC CAGE/SHAFT BRG. (MM-N) (WATTS) (NEWTONS) RATIO (RAD/SEC) (RPM) (RAD/SEC) (RPM) RATIO RATIO 1 -0.215 0.303 6.049E+02 0.100 1.410E+03 1.347E+04 1.407E+03 1.344E+04 0.998 0.448 R O L L I N G E L E M E N T O U T P U T FOR BEARING NUMBER 1 AZIMUTH ANGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIC 0.00 -8722.068 2155.836 -0.088 8984.548 1315.135 166.12 -180.00 0.0023 0.0150
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG 0.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING NEG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG 0. RACE 0. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTOR THERMAL FACTOR THERMAL FACTOR THENTISCUS DIST. (MH) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.77 1.1 FILM (HICRONS) STARVATION FACTOR THERMAL FACTOR MHSISCUS DIST. (MH) CONDUCTIVITY (W/DEG.C) 1 1 0.000 0.000 0.000 0.000 0.000 1.77 1.1 FIT PRESSURES (N/MM2) BEARING CLEARANCES (MH) SPEED G
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG 0.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING NEG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG.0 RACE 0.FLNGS.I.RACE I.FLNGS.R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 END FILM THICKNESS, FILM REDUCTION FACTOR AND FRICTION THE CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THEMAL FACTOR 'MENISCUS DIST. (MM) COMDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.77 11.1 FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR 'MENISCUS DIST. (MM) COMDUCTIVITY (W/DEG.C) 1 0.000 1.250E+04 BRG. SHAFT-COLD, OPER HORL-COLD, OPER <t< td=""></t<>
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) 1.00 1.00 1.00 BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -130.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. 0.800 3.970E+03 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FLN MCICRONS STARYATION FACTOR THERMAL FACTOR 'N HENTISCUS DIST. (MH) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 17.7 11.1 FIT PRESSURES (N/M2) BEARING CLEARNOES (MH) SPEED GIVING ZERO FIT PRESSURE BRG. SAFT-COLD, OPER. HSG. COLD, OPER. ORIGE SHAFT-COLD, OPER. HSG. (CAL) FIN G CALC/EPIC CAGE/SHAFT INGO
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG 0.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SNAFT I.RING ROLL.EL. 0.RING HSG. 1 -133.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. 0.RACE 0.FLNGS. I. RACE I.FLNGS.R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 4.567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM MICRONS STARVATION FACTOR THENISCUS DIST. (MH) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 17.7 11.1 BRG. FILM MICRONS STARVATION FACTOR MENISCUS DIST. (MH) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 17.7 11.1 1 TIT PRESSURES </td
TEMPERATURE'S RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) 1.00 1.00 BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. 0. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 1.8300+03 0.000 3.970E+03 0.000 0.000 4.5567E+04 0.303 5.150E+04 1.639E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT COMDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM MICKNESS, FILM REDUCTION FACTOR THERMAL FACTOR HENISCUS DIST. (MH) COMDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 1.600 1.639E+04 BRG. FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT COMDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BREARING CLEARANCES (MM) SPEED GUTRE SERD GITNER SERVERTING SHAFT-INNER RING (RPM) 1.0.000 0.000 1.000 <td< td=""></td<>
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) 1.00 1.00 1.00 BRG 0.RACE I.RACE BULK OIL FLNG.1 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. 0.RING ROLL.EL.EL.EL.EL.EL.EL.EL.EL.EL.EL.EL.EL.E
TEMPERATURËS RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -120.00 -113.00 -50.00 -133.30 -145.00 FRICTIONAL HEAT GENERATION RATE (WAITS) AND FRICTION TORQUE (N-MM) BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG RECAGE CAGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.557E+04 0.333 5.150E+04 1.639E+04 1 0.000 0.000 0.000 0.000 0.000 17.7 11.1 BRG. FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEMAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR ' MENISCUS DIST. (MM) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 17.7 11.1 BRG. SHAFT-COLD, OPER. HSGCOLD, OPER. ORIGINAL CHANGE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 0.000 3.59 0.160 -4.222E-02 0.118 1.250E+04 CAGE RAIL - RING LAND DATA CAGE SPEED DATA TORQUE HEAT RATE SEP.FORCE ECCENTRICITY EPICYCLIC SPEED CALCULATED SPEED CALC/EPIC CAGE/SHAFT RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO RATIO ANGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIO ANGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIO ANGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIO ANGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIO ANGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIO ANGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIO ANGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIO ANGLE (DEG.) W W W T TOTAL ORBITAL TAN-1(W7/MX) TAN-1(W2/MX) OUTER INNER ACIMUTH ANGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIO 30.00 -8722.068 2155.836 -0.088 8946.458 11315.135 166.12 -180.00 0.0013 0.5986 120.00 -8743.159 5978.237 -0.022 9954.667 1449.773 165.76 -180.00
TEMPERATURES RELEVANT TO BEARING PERFORMANCE (DECRES CENTIGRADE) BRG 0.RACE I.RACE BULK OIL FING.1 FING.2 FING.3 FING.4 CAGE SHAFT I.RING ROLL.EL. 0.RING HSG. 1 -133.00 -113.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -113.00 -65.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. 0. RACE 0.FINGS. I.RACE I.FLNGS. R.E.DRAG R.ECAGE CAGE-LAND TOTAL TORQUE 1 .B60E-030.000 3.970E+03 0.000 0.000 4.5567E+04 0.303 5.150E+04 1.6395E+04 EHD FILM THICKNESS, FILM REDUCTION FACTORS AND HEAT COMDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR 'MENISCUS DIST. (MH) COMDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.7 11.1 FIT PRESSURES (N/MM2) BEARING CLEARANCES (MH) SPEED GIVING ZERO FIT PRESSURE BRG. SHAFT-COLD, OPER. HSGCOLD, OPERORIGINAL CHANGE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 0.000 3.59 0.16AL CHANGE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 0.000 1.59 0.16AL CHANGE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 0.000 0.000 1.59 0.16AL CHANGE (RPM) SPEED GALC/EPIC CAGE/SHAFT TORQUE HEAT RATE SEP.FORCE ECCENTRICITY EPICYCLIC SPEED CALCULATED SPEED CALC/EPIC CAGE/SHAFT BRG. (MM-H) (WATTS) (NEWTONS) RATIO (RAD/SEC) (RPM) RATIO RATIO AIGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIO AIGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIO AIGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIO AIGULE (DEG.) WX WY TOTAL ORBITAL TAN-1(W//WX) TAN-1(WZ/WX) OUTER INNER 0.00 -8722.087 2361.525 -1.173 9036.647 143.1347E+04 1.407E+03 1.344E+04 0.998 0.448 R 0 LL I N G E L E M E N T O U T P U T FOR BEARING NUMBER 1 AZIMUTH ANGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIC ANGLE (DEG.) WX WY TOTAL ORBITAL TAN-1(W//WX) TAN-1(WZ/WX) OUTER INNER 0.00 -8722.085 215.835 -0.028 8984.548 1315.135 166.12 -180.000 0.0023 0.1150 30.00 -8722.085 215.835 -0.
TEMPERATURE'S RELEVANT TO BEARING PERFORMANCE (DEGREES CENTIGRADE) BRG O.RACE I.RACE BULK OIL FLNG.1 FLNG.2 FLNG.3 FLNG.4 CAGE SHAFT I.RING ROLL.EL. O.RING HSG. 1 -133.00 -145.00 -145.00 -145.00 -145.00 -120.00 -120.00 -120.00 -133.00 -133.00 -145.00 FRICTIONAL HEAT GENERATION RATE (WATTS) AND FRICTION TORQUE (N-MM) BRG. O. RACE O. FLNGS. I. RACE I. FLNGS. R.E.DRAG R.ECAGE C.AGE-LAND TOTAL TORQUE 1 1.860E+03 0.000 3.970E+03 0.000 0.000 4.557E+04 0.333 5.150E+04 1.639E+04 1 1.860E+03 0.000 0.000 0.000 0.000 1.557E+04 0.333 5.150E+04 1.639E+04 1 0.000 0.000 0.000 0.000 0.000 1.7.7 11.1 BRG. FILM YHICKNESS, FILM REDUCTION FACTORS AND HEAT CONDUCTIVITY DATA FOR THE OUTER AND INNER RACEWAYS RESPECTIVELY BRG. FILM (MICRONS) STARVATION FACTOR THERMAL FACTOR 'MENISCUS DIST. (MM) CONDUCTIVITY (W/DEG.C) 1 0.000 0.000 0.000 0.000 0.000 0.000 1.7.7 11.1 BRG. SHAFT-COLD, OPER. HSGCOLD, OPER. ORIGINAL CHANGE OPERATING SHAFT-INNER RING (RPM) 1 31.7 0.000 0.000 3.59 0.160 -4.222E+02 0.118 1.250E+04 CAGE RAIL - RING LAND DATA CAGE SPEED DATA TORQUE HEAT RATE SEP.FORCE ECCENTRICITY EPICYCLIC SPEED CALCULATED SPEED CALC/EPIC CAGE/SHAFT BRG. (HM-H) (WATS) (MEUTONS) RATIO RATIO 1 -0.215 0.303 6.049E+02 0.100 1.4:10E+03 1.3:47E+04 1.4:07E+03 1.3:44E+04 0.998 0.4:48 R OLLLING ELEMENT 0UT PUT FOR BEARING NUMBER 1 AZIMUTH ANGULAR SPEEDS (RADIANS/SECOND) SPEED VECTOR ANGLES (DEGREES) SPIN TO ROLL RATIO ANGLE (DEG.) W WY 0.00 -8722.058 2155.836 -0.088 8984.548 1315.135 166.12 -180.00 0.0023 0.1150 30:00 -8722.058 2155.836 -0.088 8984.548 1315.135 166.12 -180.00 0.0033 0.1512 30:00 -8722.058 2155.836 -0.088 8984.548 1315.135 166.12 -180.00 0.0033 0.1512 30:00 -8722.058 2155.836 -0.088 8984.548 1315.135 166.12 -180.00 0.0033 0.1512 30:00 -8722.058 2155.836 -0.088 8984.548 1315.135 166.12 -180.00 0.0033 0.15986 10:00 -8722.058 2155.836 -0.022 9954.467 1449.773 165.76 -180.00 0.0013 0.5986 10:00 -8137.776 5410.833 -5.309 9800.938 1462.474 146.49 -179.99 0.0038 0.1412 ANGLE (DEG.) W V Y 0.00 -8133.766 53364.70

ŧ

		136,101 1344,103 104.00	-180.00 0.0016 0.3021
330.00 -8691.857	07/7 M	NA 114 1217 508 164 86	-180.00 0.0030 0.1417
AZIMUTH NORMAL	FORCES (NEWTONS) H	STRESS (N/NN**2) LOAD RATIO GASP	JOTOT CONTACT ANGLES (DEG.)
ANGLE (DEG.) CAGE	OUTER INNER (JUTER INNER OUTER I	NNER OUTER INNER
0.00 0.911	3132,797 2837,124 24		0000 16.3620 18.1103
30.00 658.799	2202.682 1911.996 2		0000 17.9042 20.6585
60.00 1180.900		537.723 1834.700 0.0000 0.	0000 17.8992 29.6649
90.00 1223.592		378.852 1445.820 0.0000 0.	0000 16.7085 43.0913
120.00 776.689		477.099 1697.421 0.0000 0.	0000 26.1074 52.8317
150.00 284.229		<u>580.334 2137.301 0.0000 0.</u>	0000 38.6317 57.6266
180.00 -59.991		809.554 2368.015 0.0000 0.	0000 44.4504 58.7892
210.00 -402.882		669,197 2116,661 0,0000 0.	0000 38.9448 57.5068
		470,689 1689,583 0.0000 0.	0000 26.1913 52.7992
240.00 -860.217 270.00 -1273.919		383.661 1448.586 0.0000 0.	0000 16.6660 43.1085
		533.500 1832.458 0.0000 0.	0000 17.9966 29.6270
770 00 -451 486	2204 747 1911 459 2	163.822 2885.674 0.0000 0.	0000 17.8628 20.6749
	I UEAT GENERA	TION IN CONTACT E	LLIPSE
FRICTIONA		IFMENI NUMDER I	
INNER R		OUTER R	RACE
	-MAJOR SEMI-MINOR	# LAMINA CONTACT AREA	SEMI-MAJOR SEMI-MINOR
		(MM**2)	AXIS (MM) AXIS (MM)
	•	21 1.932	2.330 0.2639
20 1.293 1.582	HEAT GEN. PER LAM.		HEAT GEN. PER LAM.
WIDTH OF LAMINUM		(MM)	(WATTS)
(MM)	(WATTS) 2.385	0.2249388000	21.922
0.1786409000		0.2249388000	49.798
0.1786409000	0.669	0.2249388000	61.029
0.1624784000	0.567 4.659	0.2249388000	60.482
0.1624784000	4.059 9.941	0.2249388000	52.282
0.1624784000		0.2249388000	39.855
0.1624784000	12.763	0.2249388000	25.911
0.1624784000	12.104	0.2249388000	11.927
0.1624784000	7.017	0.2249388000	2.073
0.1624784000	1.121	0.2249388000	0.065
0.1516899000	1.212	0.1340418000	0.001
0.1516899000	13.171	0.2275760000	0.068
0.1516899000	28.536	0.2275760000	2.202
0.1516899000	43.884	0.2275760000	12.651
0.1516899000	58.524	0.2275760000	27.093
0.1516899000	70.954	0.2275760000	41.617
0.1516899000	79.300	0.2275760000	54.598
0.1516899000	81.371	0.2275760000	63.189
0.1516899000	74.655		63.793
0.1516899000	56.319	0.2275760000	52.081
0.1516899000	23.194	0.2275760000	22,940
0.000000000	0.000	0.2275760000	
махій	UM STRESS*VE	LOCITY IN CONTACT	STRESS VELOCITY (N/MM-S)
BEARING NUMBER EL	EMENT NUMBER STRESS VE	LOCITY (N/MM-S) ELEMENT NUMBER	OUTER RACE
	IN	NER RACE	-1.18030E+10
1	6 1.1	2404E+10 B	ELLIPSE
STRES	S VELOCITY P		
	ROLLING E		FILIDSE
		WER CONTACT ANGLE EDGE OF CONTACT	RACE
	RACE		STRESS VELOCITY (N/MM-S)
LAMINA POSITION (MM)	STRESS VELOCITY (N/MM-		-9.15315E+05
5.21883E-02	-3.06789E+06	8.19662E-02	-1.21799E+06
1.56565E-01	-4.72015E+06	2.45899E-01	-1.17004E+06
2.60941E-01	-5.32757E+06	4.09831E-01	-9.88043E+05
3.65318E-01	-5.40168E+06	5.73763E-01	-7.55334E+05
4.69694E-01	-5.11248E+06	7.37696E-01	-5.18442E+05
5.74071E-01	-4.55019E+06	9.01628E-01	-3.06827E+05
6.78447E-01	-3.77482E+06	1.06556E+00	-1.39983E+05
7.82824E-01	-2.83257E+06	1.22949E+00	-3.06322E+04
8.87200E-01	-1.76297E+06	1.39343E+00	1.46770E+04
9.91577E-01	-6.02750E+05	1.58298E+00	-3.15232E+04
1,09427E+00	5.91865E+05	1.77426E+00	-1.45044E+05
1.19528E+00	1.78289E+06	1,94163E+00	-1,450442+05 -3,19083E+05
1.29630E+00			
1.39731E+00	2.95171E+06	2.10901E+00	
1.37/3/2/04	4.05503E+06	2.27639E+00	-5.40509E+05
1.49832E+00	4.05503E+06 5.04086E+06	2.27639E+00 2.44377E+00	-5.40509E+05 -7.88970E+05
	4.05503E+06	2.27639E+00	-5.40509E+05

,

1.70034E+00 1.80136E+00 1.90237E+00 2.00338E+00 2.06903E+00 B A	BALL NUMBER 1 2 3 4 5 6 7 8 9 10 11	BALL LEADING THE CAGE BALL EXCURSION (MM) -0.0015 -1.1108 -1.9911 -2.0631 -1.3096 -0.4792 0.1011 0.6793 1.4504 2.1479 2.0236	-1.22542E+06 -1.27695E+06 -9.60485E+05 -9.53132E+05 -9.23879E+05 C E N T E R
B1 440C 0 65.0240 12 0.16000 11.1085 0.54000 0.0140 0.0140 0.0140 -1 71.5518 2.4400 0.0356000 -0.066000 33.88000 19.05000 44.98850 56.41000 0.2342E+060.2127E+060.2127E+06 0.290000000.290000000.29000000 8.19030 7.66700 7.66700 0.1440E-040.9290E-050.9290E-05	2.00 2.00 2.00 0.2290 0.7500 0.0200 16.92000 16.92000 33.88000 73.98000 83.89370 95.50000 0.2127E+060.1932E+06 0.290000000.29000000 7.66700 8.19030 0.9290E-050.1440E-04	1.0988 102 1.00 0.00 0 BD1 1	
1	0.300000000.10000000.000000000.0 -1451201201136513314 0.0000 5850.0000	703	

.....

:

٤

APPROVAL

DETAILED STUDY OF OXIDATION/WEAR MECHANISM IN LOX TURBOPUMP BEARINGS

By T.J. Chase and J.P. McCarty

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

J.P. MCCARTY

Director, Propulsion Laboratory

☆ U.S. GOVERNMENT PRINTING OFFOCE 1993-533-108/00002

. Ę