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ABSTRACT

This report attempts to correct some misunderstandings that have appeared in the literature

concerning the order of accuracy of the QUICK scheme for steady-state convective

modelling. Other related c0nvection-diffusion schemes are also considered. The original

one-dimensional QUICK scheme written in terms of nodal-point values of the convected

variable (with a 1/8-factor multiplying the "curvature" term) is indeed a third-order repre-

sentation of the finite-volume formulation of the convection operator average across the

control volume, written naturally in flux-difference form. An alternative single-point upwind

difference scheme (SPUDS) using node values (with a 1/6-factor) is a third-order

representation of the finite-difference single-point formulation; this can be written in a

pseudo-flux-difference form. These are both third-order convection schemes; however, the

QUICK finite-volume convection operator is 33% more accurate than the single-point

implementation of SPUDS. Another finite-volume scheme, writing convective fluxes in

terms of cell-average values, requires a 1/6-factor for third-order accuracy. For complete-

ness, one can also write a single-point formulation of the convective derivative in terms of

cell averages, and then express this in pseudo-flux-difference form; for third-order accuracy,

this requires a curvature factor of 5/24. Diffusion operators are also considered in both

single-point and finite-volume formulations. Finite-volume formulations are found to be

significantly more accurate. For example, classical second-order central differencing for the

second derivative is exactly twice as accurate in a finite-volume formulation as it is in single-

point.

*Work funded under Space Act Agreement NCC 3-233.
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INTRODUCTION

Ever since the QUICK scheme I was introduced in 1979, there appears to have been some

controversy regarding the formal order of accuracy of the convection terms. There have

been attempts to clarify the situation 2'3, but a recent journal article 4 indicates that
considerable confusion remains in the CFD literature. This report is a further attempt to

correct some of the misunderstandingsthat have _§en.

First, for definiteness, consider a one-dimensional model problem on a uniform grid

of mesh-size h, numerically simulating a (nondimensional) convection-diffusion equation

a4_ _ 1 024_ + S(x) (1)
ax P_ ax 2

where P6 (= const > 0) is the macroscopic P6clet number. With appropriate boundary

conditions, this represents steady-state one-dimensional convection and diffusion of a scalar,
with a known source term. A finite-difference numerical approximation of this problem

simulates

[ (_)i- 1(02q_/_P"6"ff'_x2'i +Si [ (2)

at each nodal grid-point, i. This wiIl be called the single-point (SP) formulation. By
contrast, a finite-volume formulation is obtained by integrating Equation (1) across a control-

volume cell and dividing by h. This gives, for control-volume i,

_br-_, 1 (¢r'-¢t' ]
(3)

where left and right face-values of the variable and its gradient are indicated, and S is the

control-volume average of the source term. This is the operator-average (OA) formulation.

Conservation of convective-plus-diffusive flux is guaranteed if the modelled face values and

gradients satisfy

q_,(i) = _b(i-1) (4)

and
_. ! • 1_bt'(i ) _b (z-) (5)

Note that Equation (3) is an exact equation and not an approximation of Equation (2). They

are related by (the one-dimensional form of) Gauss' Divergence Theorem.
In order to create numerical algorithms for (approximately) solving Equations (2) or

(3), one needs to estimate either the derivatives in Equation (2) or, alternatively, the face

values and gradients appearing in Equation (3). Additionally, in making these estimates, one

has the choice of using either node-values, _bi, or cell-averages, ¢_. For the operator-

average finite-volume equation, the formulation will automatically be in flux-difference



form; numerical modelsof single-point formulations of derivatives can usually be written as
the difference of terms satisfying conservation, thereby generating a pseudo-flux-difference

construction.

The one-dimensional QUICK scheme is based on estimating face values and gradients

using quadratic upstream interpolation through node-values of ¢ located at the centre of
control-volume cells. For example, at the fight face, a parabola is interpolated through _+1,

_, and 4>i-1, (for P_ > 0) giving the original I "l/8-factor" face value

1
(_b,._ + #_,) - -_ (_b,., - 2_b, + _b,_1) (6)

and, for the gradient,

(¢r,)Q tncK
(_.1 - ¢,) (7)

h

with left-face quantities obtained by lowering all indices by 1. Substitution of the QUICK

formulae into Equation (3) gives, using classical Taylor-series analysis,

[ h3 1 X[ r h2 ]6" - 6' + _ 4,_"_ + O(h') - - 6,' + --- 6_,v)+ O(h') + S, (8)
h 16 P_ h 24

In other words, in this finite-volume formulation, the QUICK convection operator average
terms are third-order accurate, whereas the QUICK diffusion operator average terms are only

second-order accurate. Thus, the overall QUICK scheme for the convection-diffusion

equation gives O(h 2) convergence as the grid is refined. Controversy in the literature

concerning the third-order convection term apparently stems from confusing finite-volume
and finite-difference formulations. In particular, Equation (3) has sometimes been construed 4

as an approximation of Equation (2). It is not. It is a perfectly valid (control-volume)

equation in its own fight.

Operator-average or single-point formulations
In order to clarify the distinction between finite-volume (operator average) and finite-

difference (single point) formulations, consider the Taylor-series formulae

I ,,x 2 1 ,,,x 3 (9)6(x) = 6_+6_'x +_6_ +-_ +...

1 t,t X 2 1 _)_iv)X3 + (10)'#'(X) = 4'_' + 6i"X + 5 q'i + ; "'"

6<")(X) = ,'i_<_) + ¢b_"''> x + -i' d_"÷2>x2 + _' 6_"'3) x3 + "'" (11)

Now compute finite-volume formulae by subtracting the Taylor-expansions written for
x = h/2 and x = -h/2, giving

4/.) _ _") h_ h_ h_ 4,_.._
h 22 3! 24 5! 26 7!

(12)

\
\
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This formula is also valid for negative n (representing integration); in particular, for n = -1,

the control-volume cell-average of the transported scalar itself is given by

1 j.ha h 2 h 4 ._i h 24 1920= _ 4'(x) ax = 6, + -- 4'," + ÷ ... (13)
-h/2

The expression on the left of Equation (12) represents the control-volume operator average
(OA) of the (n+ 1)th derivative, whereas the first term on the right is the single-point (SP)
form. Note that the difference between the two always involves an O(h 2) quantity. This is

an important point that is the key to clarifying the confusion that has arisen in the literature.

If a finite-volume (OA) discrete operator is viewed as an finite-difference (SP) term, there

is an O(h 2) discrepancy between the two. This does not affect the leading truncation error
of first-order schemes. Second-order schemes show a change in the numerical value of the

h2-coefficient. But a third (or higher) order OA scheme is only second-order accurate when

viewed as an SP scheme, and ViCe versa. This is apparently why the QUICK scheme has

been so controversial.

THIRD-ORDER-ACCURATE STEADY TRANSPORT

In a recent paper 4, Johnson and MacKinnon attempted to clarify the distinction between
finite-difference and finite-volumeformulations. Unfortunately, their conclusions are exactly

the reverse of the true situation. They claim, in particular, that the QUICK(I/8) scheme is

only a second-order accurate finite-volume convection scheme. For example (using here

"left-right" rather than "east-west"), Johnson-and-MacKinnon's Equation (4) for the

QUICK(l/8) convection scheme is

4'r - 4't 34'i.1 + 34'i - 74';_1 + 4'i-2 h 2 '" 4't"' (14)
h - 8 h - I-6(4'_ - ) + HOT

This is correct as written; but Johnson and MacKinnon seem to imply, quoting Bradley et

al. 5, that this represents an O(h2)-accurate operator. First of all, from Equation (12), with

n = 3, the leading truncation error is

( ) h3 " h5 (15)h2 (d_ '" - 4't'") - h3 4'r'" -- _bt''' = __ 4'_,v) + _ 4'_vt3 + ...
1--6,-r 16 h 16 384

Equation (14) is equivalent to the left side of Equation (8), showing the QUICK(If8)
convection term indeed to be a third-order accurate finite-volume OA formulation of

(4'r - 4't)/h. Secondly, it must be stressed that the discrete operator in Equation (14) is not
intended to be an SP numerical model of 4'/. If it is considered to be, as in Reference 4's

Equation (5), it will appear to be O(h 2) accurate; this is easily seen from Equation (12), with
a--0.

Johnson and MacKinnon claim to demonstrate the " second "-order accuracy of the

QUICK(lIB) convection terms by giving a numerical example of a simple convection-diffu-

sion problem with a known exact solution, using a fourth-order accurate diffusion operator
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_bi" -- -_bi.2+ 16#_m - 304)_+ 16_i_I - cbi-2÷ O(h 4) (16)
12h 2

the strategy being that the grid convergence will be dominated by the lower-order convection
term. As is well known 6, this is indeed a fourth-order finite-difference SP approximation of

the second-derivative at point i, consistent with a quartic polynomial interpolated through

node-points: _b__2, _b__t, _b_, _bm, and 4)i.2. However, this is not what is being modelled in
a finite-volume formulation. Rather, to be consistent, according to Equation (3), one should

model the operator average across the control volume. The appropriate fourth-order finite-

volume formula is

_)r t -- _)t' = --SPi*2 + 28_i+I - 52_bi + 28q_i-I - _bi-2 + O(h 4) (17)
h 24 h 2

More specifically, the fourth-order right-face gradient can be represented by

(_r' (4th) =
h 24 h

_bi+i- _i - _i÷2 - 3_bi+l + 3_bi - _bi-1 (18)

obtained by interpolating a cubic polynomial through node-points: _i-1' _i' _i÷1' and q_÷2"
The O(h 2) convergence reported by Johnson and MacKinnon using QUICK(I/8) for

convection and Equation (16) for diffusion occurs because their diffusion operator is only

O(h 2) accurate in a finite-volume formulation. This can be seen immediately from Equation

(12), written for n = 1"

_r' - _bt' ,, h 2 " h4 (19)
h - 4, + m24 _b_'')+ 1920 _b_v_+ "'"

NUMERICAL EXAMPLE

The numerical example used by Johnson and MacKinnon is (with a slight change in notation)

d4)_ 1 d2_ = 0 (20)

dx P_ dx 2

with boundary conditions on the nodal values

$(0) = O, ¢,(1) = 1 (21)

The exact solution is

e P_x - 1 (22)¢(x) -
e TM - 1

Step sizes of 1/4, 1/8, 1/16, 1/32, and 1/64 are used, and P6 = 4. In the current

formulation, pseudonode values are required beyond each end of the physical domain. For

the purposes of this numerical test, these are taken here to be exact values given by
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_ e -4h - 1 (23)
e 4 - 1

and

e 'v'h) - 1 (24)
_N+I --

e 4 - 1

Exact derivatives and fluxes
In order to investigate the effect of individual modelled terms, it is instructive to

compute exact derivatives and fluxes from the known analytical solution. For example,

errors introduced solely by modelled convection terms can be studied in isolation by using
exact diffusion terms, and vice versa. From Equation (22), the first and second derivatives

are

d_b = P6 eP_X (25)
dx e x'_ - 1

and

d2q b - pc2 eP_ (26)
dx 2 e P_ - 1

By integrating Equation (20) from (x - h/2) to (x + h/2) and dividing by h, the (exact)
control-volume formulation is

(4_,-¢#t)_ I (_b,'-_bt') = 0 (27)

where

I_l(X ) = I_r(X -- h) (28)

and

4_,'(x) = _b'(x - h) (29)

By defining the convective-plus-diffusive flux at any point as

F(x) = _b(x) - _b'(x)/P6
h

(30)

Equation (27) can be written in flux-difference form across any control-volume cell of width
h as

F,(x)- F,(x)=

where the exactconvective-plus-diffusivefluxesare

0 (31)
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1 F(er_er'/2- 1) ee_ee_21Fr(X) = "h L -e _ - i - e r_ ---

(32)

and

1 r (e p$x e-r'n _ 1)
F,(x) = L e -- 1

_ e P'_ e-_ '2] (33)
e TM - lJ

introducing the grid P6clet number, Pa = h P6. Note that conservation is guaranteed, since

Ft(x) = F,(x-h).

Evaluation of discrete operators
With a uniform grid of step-size h and a control volume centered at xi, a numerical

model of the convective flux can be tested by using a hybrid formulation of Equation (30)

_B _ 1 /¢_.do,
r

F; (x,)- L
eV_X, eP,/2 -

e TM - 1

and, assuming the numerical model to be conservative,

(34)

FnVB.. m,_ (35)t _Xi) = F,. (xi-h)

_rr _mod-IIf the modelled face values, ,'hm°d_ and vt , are written in terms of nodal values of

4, = 6(x,) (36)

a solution of the flux-difference equation

m'B m'B (37)F, (x,)-F_ (x,) = 0

then gives the computed ¢i values corresponding to the particular convection model, treating

the diffusive fluxes exactly. The node-point error is then, using Equation (22),

NPE i = _i(computed) - eP_x' - 1 (38)
e TM - 1

A grid-refinement study (with h -1 = 4, 8, 16, 32, and 64) then shows the true convergence
rate of the convective model in isolation. The rate, R, can be obtained from

[NPE,(h) 1

INPE2,(h/2) [
= 2R (39)

and should approach an asymptotic value as h becomes smaller and smaller.

I. Standard QUICK scheme
Equation (6) for the right face value is rewritten here for convenience

1

1(_i+1 + _i) -- "_ (_i+1 - 2q_i + _bi-l)(6r)Qtack = (40)

with the left face value given by
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, (41)x(6i + 6i-1) - "_(6t - 26,_1 + 6_-2)(6t)Q°xc-x = 7

Using exact diffusive fluxes as described above, the results in the QUICK(I/8) column of
Table I show that the node-point error at x = 0.75 converges at a rate of O(h3).

H. The SPUDS formulation
An alternate formulation, recommended by some researchers 4, is based on a single-

point upwind difference scheme modelling the derivative; i.e.,

d6/sPtrDs = 26m + 36, - 66___ + 6,_2 (42)
'_- / i 6 h

This is then written in pseudo-flux-difference form

"_'/i h

(43)

where

(6_')sPL_s -- 1 (4,., + 4,) -- "g(4,., -- 26i + 6i_1)2

(44)

and
_ _ 1 (45)(62) sPut's - _ (6i + 6i-1) - _ (6i - 26,_1 + 6i-2)2

Johnson and MacKinnon call this a "finite-volume" formulation 4. When this convection

model is used in Equation (37), using the exact diffusive flux of Equation (34), the node-

point error asymptotes to a second-order trend, as seen in the SPUDS(l/6) column of Table

I. Clearly, SPUDS represents a second-order finite-volume formulation of the convective
term.

Table I. Grid-refinement study of the model convection-diffusion

equation, using a finite-volume flux-difference OA formulation,
with exact diffusive fluxes calculated from the analytical solution.
Two convection schemes are compared. Values shown are those

of the node-point error at x = 0.75.

h-' QUICK(I/8) SPUDS(I/6)

4

8

16

32

64

-3.93435739 x 10 -2

-9.24652759 x 10 4

-2.75420514 x 10 4

-4.12098809 x 104

-5.30547084 x 10-4

-1.33129698 x 10 -2

+3.72661451 x 10 4

+4.77048555 x 10 4
+1.76208352 x 10 4

+5.08534128 x 10 4

RATE O(h s) O(h2)
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However, SPUDS was not really designed to simulate (4_r - d_t)/h. Instead, it is a

model of the single-point differential formulation given by Equation (20), which is then

written in pseudo-flux-difference form. Testing the scheme with the exact finite-volume

form of the diffusive fluxes is, therefore, inappropriate. A proper test would use the exact

second derivative of Equation (26) in pseudo-flux-difference form. This can be achieved by

writing

d2_b / = (4_,')" - (4_t')" (46)
dx2h h

where (for the particular model problem under consideration) the right pseudo-gradient is

(_')" = (.p, e r'., er/2// P,,12
(47)

e _ - i t_sin-hff_/2,

and the left pseudo-gradient is obtained by replacing xi by (xi - h). When these formulae are

used in the hybrid flux formulation, the node-point error shows a third-order trend, as seen

in the SPUDS(l/6) column of Table II.
As a matter of interest, using the QUICK(l/8) convection scheme in combination with

the single-point exact diffusion operator gives an O(h 2) trend. This is shown in the

QUICK(l/8) column of Table II. This is to be expected from Equation (12), since the finite-

volume QUICK(l/8) scheme is now being used out of context in a single-point formulation,

just as the SPUDS(l/6) scheme is O(h 2) when used in a finite-volume formulation.
Of the two third-order convection schemes -- the QUICK(l/8) finite-volume

formulation in Table I and the SPUDS(l/6) formulation in Table II -- note that, the finite-

volume formulation is asymptotically 33 % more accurate. The reason for this is explained

by a formal discretisation error analysis in the Appendix.

Table 1I. Grid-refinement study of the convection-diffusion

equation, using the SP differential equation expressed in pseudo-
flux-difference form, with exact diffusion terms calculated from the

analytical solution. Two convection schemes are compared.
Values shown are those of the node-point error at x = 0.75.

h-I SPUDS ( 1/6) QUICK( 1/8)

4

8

16

32

64

-4.35438228 × 10 -2

-1.86968335 x 10 -3
-3.97474350 x 10 4

-5.50611000 × 10 -5

-7.06282736 × 10-6

-7.45209055 × 10 -2

-2.38132421 × 10-3

-1.07787069 × 10 -3

-2.71242977 × 10 4

-6.32202472 × 10-5

RATE O (h 3) O (h 2)
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Diffusion models
For evaluating numerical models of diffusion terms, the hybrid finite-volume flux is

written

HYB I[(e P_z' e P'I2 - 1) ( r )_od¢i] (48)

Fi (xj) = Gm_(xi-h). If a single-point formulationwith a corresponding formula for m.B

is used, written in pseudo-flux-difference form, then the appropriate formula (for the current

exponential solution) is

_ 1 _ (49)
Fr'(x,) - h [ Pa(eP'X' er'a - 1) (4>r')m'oao,]

(e"_ --_ _ _n'ffP-_/2 ff-_ J

QUICK diffusion flux
Interpolating a parabola through node values 4>___,4>i, and 4>i+1, on a uniform grid,

leads to

(G,)Qux_ _ 4>_.1- 4>i (50)
h

Because of a geometric property of the parabola, this is indistinguishable from linear

interpolation between node values 4>iand 4>_+1. When used with a finite-volume formulation
of the exact convection terms, Equation (48), this leads to the O(h 2) convergence shown in

the QUICK column of Table III.

Classical central differencing
If the second derivative at point i is approximated by the second central difference

(d24>/'_ct 4>i.l - 24>, + 4>,-i
(51)

-_-"5-1, h2

the corresponding pseudo-flux-difference formulation involves the pseudo-gradient

4>m - 4i (52)(4>/)" =
h

which, of course, is superficially identical to the QUICK formulation of Equation (50). But,

in this case, the appropriate (pseudo) convective flux is given by Equation (49). The grid

convergence behaviour is, therefore, not identical to that of the QUICK diffusive formula-
tion. As seen in the CDS column of Table III, single-point classical second-order central

differencing for diffusion asymptotically generates errors exactly twice as large as the

identical operator used in a finite-volume formulation, using exact convective terms in each
case. The reason for this is seen in the Appendix.
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Table HI. Grid-refinement study of diffusion schemes, using

exact convection terms. Node-point errors are shown at x = 0.75.

In Column I, the QUICK finite-volume OA scheme is used.

Column II gives results for classical central differencing using an
SP formulation.

h-I QUICK CDS

4

8

16

32

64

+1.59466830 x 10 -2

+4.07354976 x 10 -3

+1.02395148 x 10 -3

+2.56328047 x 10 -4

+6.38006991 x 10 -5

+3.12478024 x 10-2

+8.10497409 x 10 -3

+2.04524126 x 10 -3

+5.12489289 x 10-4

+1.27591015 × 10 -4

RATE O (h 2) O (h 2)

Fourth-order diffusion terms

Consider the diffusion operators given by Equations (16) and (17). Table IV shows

the finite-volume formulation using exact convective fluxes from Equation (48). As

expected, Equation (17) shows an O(h 4) trend, whereas Equation (16) -- being used out of

context -- is only O(h2), according to Equation (12).

Alternatively, Table V shows the single-point formulation using the same diffusion

operators together with Equation (49) for convection. In this case, the convergence is

reversed, as expected, since now Equation (17) is being used out of context.

Note that the fourth-order single-point diffusion operator in Table V generates errors

more than twice as large as those of the fourth-order finite-volume operator in Table IV.

This, again, appears to suggest that a true finite-volume formulation is likely to be more

accurate than the corresponding single-point scheme of the same formal order of accuracy.

Table IV. Grid-refinement study of diffusion schemes, using a

finite-volume flux-difference OA formulation, with exact convective

fluxes calculated from the analytical solution. Two diffusion

schemes are compared. Values shown are those of the node-point
error at x = 0.75.

h-i

4

8

16

32
64

RATE

Equation (17)

-1.74276854 × 10 -3
-1.12027932 x 10 -4

-7.10364599 x 10 -_

-4.47274921 x 10 -7

-2.79314528 x 10 -s

O(h 4)

Equation (16)

-1.70401744 × 10 -2

-4.02705160 × 10 -3

-1.00591394 × 10 -3

-2.53235117 × 10 -4
-6.33685964 x 10 -5

0 (h 2)
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Table V. Grid-refinement study of diffusion schemes, using the

SP differential equation expressed in pseudo-flux-difference form,
with exact convection terms calculated from the analytical solution.

Two diffusion schemes are compared. Values shown are those of

the node-point error at x = 0.75.

h -1 Equation (16) Equation (17)

4

8

16

32

64

-3.81023176 x 10 -3

-2.56261277 × 10-4

-1.65684268 × 10 -5

-1.05202438 × 10 -6

-6.59600528 x 10 -8

+1.24370324 × 10 -2

+3.78389793 x 10 -3

+9.97608855 × 10-4

+2.53650099 x 10-4

+6.35095680 × 10-5

RATE O (h 4) O (h 2)

Convection-diffusion schemes
For reference, Table VI shows a grid-refinement study of two convection-diffusion

schemes:

(i) The standard finite-volume QUICK scheme, using Equation (6) for convection
and Equation (50) for diffusion; and

(ii) The SPUDS scheme, Equation (44), for convection, together with classical
second-order central-differencing, Equation (52), for diffusion.

Both schemes are O(h 2) because of the dominance of the diffusion terms at the fine-grid end

of the spectrum. Note, however, that the SPUDS+CDS scheme asymptotically generates
errors twice as large as those of the standard finite-volume QUICK formulation. This is

clarified in the Appendix.

Table VI. Grid-refinement study of the convection-diffusion

equation, using a finite-volume flux-difference (or pseudo-flux-
difference) formulation of two schemes: (i) The standard QUICK

convection-diffusion scheme. (ii) The SPUDS convection operator

together with CDS for diffusion. Values shown are those of the

node-point error at x -- 0.75.

h -_ STANDARD QUICK SPUDS + CDS

4

8

16

32

64

+9.96622011 × 10-4

+1.25198293 × 10 -3

+5.56979450 × 10-4

+1.74361676 × 10-4

+4.82503616 × 10 -s

+7.58488389

+3.87320949
+1.30280308

+3.73713298

+9.97187451

RATE O(h2) O(h

× 10 -3

x 10 -3
x 10-3

x 10-4

× 10 -5
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CELL AVERAGES AS DEPENDENT VARIABLES

Up until this point in the discussion, modelled derivatives and fluxes have been written in

terms of nodalpoint values of the dependent variable. But many CFD schemes -- especially
finite-volume formulations -- treat the cell averages as t_he dependent variables, writing the

convective and diffusive fluxes directly in terms of the _'s. lit is also theoretically possible

to write single-point formulations in terms of cell-averages, although this does not appear

to have ever been proposed in the CFD literature.] Note thatthe distinction only occurs at

third order and above; for first- and second-order schemes, _bi m _bi.

From the analytical solution to the model problem being studied, the exact formula

for the cell average, defined in Equation (13), can be found as

e _'_'[(sinh Pa/2)/(Pa/2)] - 1 (53)
_i = e TM - 1

The only difference between this and the exact nodal point solution for _bi, Equation (22),

is the appearance of the hyperbolic-sine factor (in square_brackets). For a given Pd, this

factor depends on the grid size; Table VII shows _b_and _b_values for h = 1/8. Note that

the sinh-factor has a Taylor expansion given by

sinhP_/2 = 1 +--P2 + ._Pa4 + ... (54)

P_,/2 24 1920

which should be c.ompared with Equation (13), for example.

Table VII. Comparison of exact node-point values, _bi, with exact

cell average values, q_, for the model convection-diffusion problem
with h = 1/8.

Xi

0
0.125

0.25

0.375
0.5

0.625

0.75
0.875

1

0.0

0.012103427

0.032058603

0.064959128
0.119202922

0.208635820

0.356085740

0.599189560

1.0

w

0.000194956

0.012424854

0.032588548

0.065832859

0.120643461

0.211010867

0.360001531

0.605645608

1.010644223
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Sub-cell interpolation_
Given a set of _b (cell-average) values, one would like to interpolate a sub-cell _b(x)

satisfying Equation (13).

variable, _bi, defined by

_i = _i-1 + h ¢i (55)

where it is understood that _i values occur at the right face of the corresponding cell i. An

interpolation, if(x), collocated at ffi values can then be differentiated to give ¢(x):

_b(x) = d_b(x.._._._) (56)
dx

This can be done quite easily by introducing a discrete integral

automatically satisfying Equation(13) -- no matter what type of interpolation is used for

$(x), provided the collocation conditions

_(x_+h/2) = _k, for all i (57)

are satisfied, where x_ is located at the centre of cell i.

For example, piece-wise polynomial interpolation can be used for interpolating 6(x)
over each cell i. In this case, discontinuities in slope occur in if(x) at cell faces; these

correspond to discontinuities in value in $(x) across cell faces.

Third-order finite-volume convection terms
Just as with the QUICK(I/8) finite-volume convection scheme using nodal point

values, the corresponding third-order cell-average formula is based on local (piece-wise)

quadratic interpolation of 4fix). This requires piece-wise cubic interpolation of 6(x). For
cell i, a symmetrically located cubic is interpolated by collocation through ffi-2, _-_, _ki, and

_bi+l, giving

2

+ (_kt.1-3ffi+6 3_;-I - ffi-2) (_) 3 (58)

valid over the range: -h < _ _ 0, where _ = x - (xi+h/2). From its definition, Equation

(56), the sub-cell interpolation across cell i is then given by the quadratic

(59)
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For steady flow (with P6 > 0), the right face value of cell i is given by

- t(_,. t - 2_,_ + _,-1) (60)'('/',.1 + -¢,(i) = =

This "1/6" formula in terms of cell averages is consistent with the "1/8" formula using

n_odal point values. This can be seen by using Equation (59) to evaluate _ in terms of the

(_'S:

1(_, m - 2_ + _i-1) (61)6, = $(_=-h/2) = g,-_

and noting that 1/6 = 1/8 + 1/24.

Grid-refinement using cell-averages

If Equation (60) for $,(i) and the corresponding formula for $t given by the

conservation condition, St(i) = _b,(i-1), are used together with exact diffusive fluxes, using

Equations (34) and (3_5), solution of the resulting difference equation will, of course,

generate approximate $_ values (as opposed to _b_values). These should be compared with

the corresponding exact $_ values by introducing the cell-average error

CAE_ = _(computed) - _i(exact) (62)

using Equation (53) for _(exact). Table VIII shows CAE values at x = 0.75 for convective

modelling errors using Equation (60), together with exact diffusive fluxes. As expected from

the quadratic construction of face values, this is a third-order accurate scheme. One can,

of course, retrieve node values by using Equation (61). The corresponding NPE at x = 0.75

is also shown in the table.

Table VIII. Grid refinement study of the finite-volume convection

scheme corresponding to Equation (60), based on cell-average

values and using exact diffusive fluxes. The cell-average error is

shown together with the corresponding node-point error using

Equation (61).

h -1 CAE (@ x = 0.75) NPE (@ x = 0.75)

4

8

16

32

64

-4.53809633 x 10 -2

-1.88922017 x 10 -3

-3.98510249 x 10 4

-5.50969540 x 10 -5

-7.06397697 x 10 -6

-5.18134013 x 10 -2

-1.90618632 x 10 -2

-4.48060981 x 10 -4

-6.76253568 x 10 -5

-1.01264031 x 10 -5

RATE O (h 3) O (h 3)
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Single-point formulation using cell-averages
For completeness, the single-point formulation using cell-averages should be con-

sidered. To achieve third-order accuracy, this requires an upwind-weighted cubic sub-cell

reconstruction of 4>(x) corresponding to a quartic piece-wise polynomial interpolation of

_b(x), collocated at _b__3,_b__2,_bi-l, _bi, and _b_+t (for P6 > 0). This gives

d4>l-,,_., = 7_,., + 15_,- 27_,_ 1 + 5_,_ 2 (63)
"_/i 24 h

This can be expressed in pseudo-flux-difference form by identifying

with 4>2(i) = 4>; (i-1), as usual.
CAE and NPE at x - 0.75.

(64)

Table IX shows the corresponding grid convergence of

Table IX. Grid refinement study of the SP convection scheme

corresponding to Equation (64), based on cell average values and

using exact diffusion terms. The cell-average error is shown

together with the corresponding node-point error using Equation

(61).

h -t CAE (@ x = 0.75) NPE (@ x = 0.75)

4

8

16

32

64

RATE

-4.86965236 x 10 -2

-2.86590535 x 10 -3

-5.11359278 x 10 -4

-6.86685845 x 10 -5

-8.81228514 x 10 4

O(h3)

-5.52922960 x 10 -2

-2.90394004 x 10 -3

-5.62692325 x 10-4

-8.11969093 x 10 -5

-1.18744119 x 10 -5

O(h3)
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CONCLUSION

In constructing convection-diffusion schemes, there are four general categories. First, one
can choose to model first and second derivatives at a single point; this is the SP formulation.

Alternatively, one can choose to model the face values and gradients in a finite-volume
formulation; this is the operator-average, or OA, formulation. Each of these formulations

can use either nodal po]nt values or cell-average values of the dependent variable. Control-

volume formulations are automatically in conservative flux-difference form. The two SP

formulations can also usually be written in a pseudo-flux-difference form; in this case,

conservation is satisfied even through the modelled "fluxes" do not represent the true

physical fluxes. When working with third (or higher) order convection methods, it is

important to model all terms in the equation in the same manner (i.e., either all SP or all

OA); a mixed formulation is condemned to (at best) second order accuracy, no matter how
accurate the individual terms.

For a model problem with a known analytical solution, the order of accuracy of the
convection terms in isolation can be studied in a grid refinement test, using exact diffusion

terms (and vice versa). Tests of this type showed that, for methods using nodal point values:
• QUICK(I/8) is O(h 3) accurate in an OA formulation but only O(h 2)

accurate in an SP formulation.

• SPUDS(I/6) is O(h 3) accurate in an SP formulation but only O(h 2)
accurate in an OA formulation.

For methods using cell-average values as dependent variables:

• The "1/6" formula gives O(h 3) convergence in an OA formulation.
• An SP formulation requires a "5/24" factor for O(h 3) accuracy.

In general, finite-volume formulations are considerably more accurate than the

corresponding SP formulation of the same formal order. In particular, the QUICK(I/8)
convection-diffusion scheme in a finite-volume formulation is asymptotically twice as

accurate as using SPUDS(I/6) for convection with CDS for diffusion in an single-point

formulation, although both schemes are formally only second-order accurate because of the

dominance of the diffusion terms in the fine-grid limit.
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APPENDIX

RELATIONSHIP BETWEEN TRUNCATION ERROR AND
DISCRETISATION ERROR

In the following analysis, it is assumed that the problem is linear, steady, and one-
dimensional, involving a uniform spatial grid of mesh-size h. Generalisation of these

conditions are relatively straight-forward. The analysis establishes the (often taken for

granted) fact that discretisation error in the solution is of the same order of accuracy as

truncation error in the operator, in a single-point formulation. The same is true of finite-
volume formulations.

Single-Point Formulation
Consider a linear operator involving derivatives of various orders at a single point.

(exact) differential operator is represented by L. Assume that U(x) is the exact,
solution of the exact differential equation

L(U) = S(x)

This

O(1),

(A.I)

where S(x) is a known source term. Now consider a discrete operator representing a

numerical approximation to the single-point differential operator; this is represented by D.

Assume that u_ is the exact nodal-point solution of the approximate numerical difference

equation, defined at nodal points i; i.e.,

D(u,) = S, (A.2)

where S i = S(xi) is known exactly (an approximate S_ will, of course, introduce "source-
term" errors).

To define the truncation error of the numerical operator, assume that v(x) is a test

function with all derivatives. Then the truncation error can be defined as the difference

between the approximate and exact operators, operating on v at the nodal point i:

TEsp(V [, = D(v) l, - L(v) l, ]
(A.3)

By making Taylor series expansions of the terms in D(v) l,, the truncation error will be

found to depend on h, as follows

TEsp(V)[ , = P(v)[,hP + HOT = O(h p) (A.4)

where P(v) involves derivatives of v, and p is an integer. Note that using U as the test

function in Equation (A.3) gives

_ (A.5)D(U)[, = .L(U)[, + - S, + TEse(U)[,

using Equation (A. 1), evaluated at i. This equation is valid only at points where U and all
its derivatives are continuous. Singular points require special treatment, and are excluded

from the following analysis.
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Define the nodal-point discretisation error as the difference between the exact nodal-

point solution of the approximate numerical equation and the exact solution of the exact

differential equation, evaluated at i:

(A.6)

This is the same as the node-point error, defined previously. [Note that the present analysis

uses a consistent definition of "error" as

"error" = "approximate"-"exact" (A.7)

Some authors sometimes use the reverse (negative) of this, which strictly should be called

"correction" rather than "error".]

Consider the discrete operator applied to the discretisation error (using the assumed

linearity property)

D(e,) = D(u,) - D(U i) (A.8)

or, from Equations (A.2)-(A.5), ei satisfies the discrete equation

D(e,) = -TEsp(U)I , = -P(U)I, h" + HOT (A.9)

Note that S_ from Equations (A.2) and (A.5) has cancelled; otherwise, additional "source-
term" errors must be retained. Now rewrite the left-hand side as

D(e,) = L(e)l, + [D(e,) - L(e)l,] = L(e)l, + TEsp(e)l, (A.10)

where e(x) is a continuous function, with e i = e(x_). This means that e(x) satisfies the

differential equation

L(e) I,. = - TEsp(U) I_. - TEsp(e) I,. (A.II)

where i_, is the nodal value of a fixed point, x = const, as h is varied.

leading order,

e = O(hq

Assume that, to

(A.12)

where q _> 1. Then Equation (A. 11) becomes

= h p + HOT + O(h _÷q)
L(e)[, -P(U)I, (A.13)

= O(hO

And, since L is a linear homogeneous operat0r, independent of h, this means that the leading

single-point discretisation error is

$pe_. = O(h p)
(A.14)
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i.e., that q = p. The discretisation error of a discrete operator in a single-point formulation

is thus of the same order as the single-point truncation error.

Finite-Volume Formulation
Assume that the exact differential operator given by Equation (A. 1) is averaged over a finite-
volume cell, i. The corresponding (exact) finite-volume equation is then

L(tr) = S(x) (A.15)

where, in general, the operator average is

or, in one dimension,
x.h12

L- -- -hi i L dx
x -hi2

(A. 17)

A_gain, U(x) is considered to be the exact solution of the exact finite-volume equation, where

S(x) is the known cell-average source term.
Let the corresponding approximate numerical finite-volume difference equation be

represented by

D(ui) "-- Si (A.18)

where u_ is the exact nodal-value solution of this approximate equation, and S_ is the known
exact ceil-average source term at cell i. Note that finite-volume (or, for that matter, single-

point) formulations can be written in terms of cell-average values, ui, rather than nodal

values, ui. In general, this will involve a different discrete operator. The present analysis

will focus on nodal values, but entirely similar conclusions can be reached using ceil-average

values.

Once again, the truncation error of the discrete finite-volume operator is defined as

the difference between approximate and exact operators, operating on a test-function, v, at
cell i:

TEFv(V)I, = D(v)I, L(v)l,

Taylor series analysis leads to

TEFv(V)I, = R(v)I,h" + HOT (A.20)

analogous to Equation (4). Using U instead of v gives

D(U) I, = Z,(V) l, + TEFv(U) I, = S, + TEFv(U) I, (A.21)

for each cell, i.

The nodal-point discretisation error is again defined by Equation (A.6).

satisfies the following discrete equation

This now
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D(e,) = -TErv(U)I , = -R(U)I, h r + I-IOT (A.22)

Using Equation (A. 10) results in a differential equation for e:

[/,(e)li. = -TEFv(U)[i. - TEsr(e)l,.[ (A.23)

Note that the left-hand side has been written in terms of L rather than I., since I. depends

on h. Assume that, to leading order,

e = O(h') (A.24)

Then Equation (A.23) becomes

L(e)l,. = -R(U)I,. h _ + HOT + O(h rn')

= O(hD (A.25)

as assumed, since p _ 2, according to Equation (12). The discretisation error of a discrete

operator in a finite-volume formulation is thus of the same order as the finite-volume

truncation error:

[e ,v_ = O(hr)] (A.26)

Note, however, that for a given discrete operator, treated alternatively as a single-

point or a finite-volume operator, the corresponding respective truncation (and, hence,

discretisation) errors will be different. In fact, according to Equation (12), they will differ

by O(h2).

Finally, it should be clear that, for any two different discrete operators or different

(SP or FV) formulations representing a physical quantity (e.g., convection), the ratio of the

discretisation errors will be in the same proportion as the ratio of the respective truncation

errors, as h --, 0. This will be demonstrated in the following section.

EXAMPLES

The model convection-diffusion problem introduced earlier forms a good example for

studying the relationship between truncation error and discretisation error. For convenience,

the governing equations are repeated here; written in terms of the exact solution, U(x).

SINGLE-POINT FORMULATION:

dU 1 d2U
- = 0 (A.27)
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FINITE-VOLUME FORMULATION:

1 _v,) (A.28)

BOUNDARY CONDITIONS:

U(0) - 0, U(1) = 1 (A.29)

EXACT SOLUTION:

U(x) - el'*_ _ 1 (A.30)
e TM - 1

DERIVATIVES:

dU Pd e v*" d2U Pd e w_'

dx e P* - 1 ' dx 2 eV, - 1 '

FUNDAMENTAL FV-SP RELATIONSHIP:

(A.3I)

6_) - 6_ h2 h4 h6 ,h¢.._
h 223! 245! 267!

(A.32)

Convection Operators

The single-point upwind difference scheme for convection recommended in Reference 4 can
be written

[ SPUDS] = 2_'.1 + 3¢, - 6¢i_ I + _,-2 (A.33)
6h

In terms of a test-function, v, this has a Taylor expansion about grid-point i as follows

SPUDS = _, + 1-"_ - 3--0 + 7-2 25---2 "'"

This is the appropriate form for a single-point formulation.

n = 0, gives the corresponding finite-volume formulation

SPUDS .vr vt _ i h 2 + _ h 3 _ _ h 4 + _ h 5
= h 24 12 384 72

(A.34)

Using Equation (A.32), for

(A.35)h 6 + ....

15360
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The QUICK convection operator can be obtained from Equations (40) and (41) as

] d_QtnC-_ - a'qmc'l( 3_bi. 1 + 34_i - 74_i_1 + _bi-2QUICK(C) ] = _ 8_t

(A.36)

The Taylor expansion about grid-point i is

[ / '" v_i" h 3 l lv_(" v_v'_ h 5[ ] dv + v_ h2 + _ -_ +
QUICK(C) = _,1 2-"T" 16 480 96

_ 59v_Vi...._'_ h 6 + ... (A.37)

20160

This would be the form used in a single-point formulation. However, QUICK is specifically

designed for a finite-volume formulation; using Equation (A.32), for n = 0, leads to

/ -- / vfiv) h 3 3v[V' h' vi(_i' h 5- 3vf'ii' h + (A.38)
+ '_ - 1_ + _ 102---4 "'"

Numerical Values

To get some idea of the relative size of tru.ncation error terms, the known exact solution of

the model problem is used, with h = 1/64. This would normally be considered a "very

fine" grid; and asymptotic trends have been established, as seen in the previous tables. The

truncation error for the single-point formulation of the SPUDS operator is derived from

Equation (A.34) using U in place of v"

• /.f (vii)

TEsp[SPUDS ] _ U_('_)h 3 _ _U_(')h 4 ÷ _U_("_ h 5 _ "' h 6 ÷ ... (A.39)
12 30 72 252

For the particular model problem being considered, this gives, at x = 0.75,

TEsp[SPUDS ] : { P64 h 3- P65 h' pe6 h 5 - P67 h'){ e°75x") (A.40)12 3-"0- + 72- 25"--ff _e N - 1

For P6 = 4 and h = 1/64, the numerical values of the individual terms are, respectively

TEsp[SPUDS ] = (8.13802 - 0.20345 ÷ 0.00530 - 0.00010) 3.74743 x 10 -6 (A.41)

or

TEsp[SPUDS ] 2.97538 x 10 -5 (A.42)

Note that the second, O(h4), term in the truncation error is not insignificant.

If SPUDS is now considered (albeit inappropriately) as a finite-volume formulation,

Equation (A.35) gives the corresponding truncation error as
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U/" h2 + _U[i') h3 _ 13U/") h4 + _U["i> h5
TEFv[SPUDS ] = - 24 12 384 72

15360
h 6 ÷

with numerical values

TEFv[SPUDS ] = (- 65.10417 + 8.13802 - 0.20663 ÷ 0.00530 - 0.00002)

x 3.74743 x 10 -6

(A.43)

(A.44)

or

TEFv[SPUDS ] = - 2.14231 x 10 -4 (A.45)

From Equation (A.37), the QUICK convection scheme used (inappropriately) in a

single-point formulation would have a truncation error

,,, Ui(v_ h5TEsp[QUICK(C)] - Ui h 2 + U_ ") ha - llU/v) h 4 +
24 1"-'-_ 48-'----ff- 96

20160
h 6 + ... (A.46)

giving numerical values

TEsp[QUICK(C)] = (65.10417 + 6.10352 - 0.13987 + 0.00397 - 0.00007)

x 3.74743 x 10 -_ (A.47)

or

TEsp[QUICK(C)] = 2.66336 x 10 -4

By contrast, the (appropriate) finite-volume formulation of QUICK leads to

u:iv) 3n:V) h 4 u:vi) h' 3u:vi° h 6

TErv[QUICK(C)] = 1----_ h3 _ _128 + _96 - _1024 + "'"

with numerical values

TEFv[QUICK(C)] = (6.10352 - 0.14305 ÷ 0.00397 - 0.00007)

x 3.74745 x 10 4

(A.48)

(A.49)

(A.50)

or

TEpv[QUICK(C)] = 2.23511 x 10 -5
(A.51)
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Recall from Tables I and II, node-point errors for h = 1/64:

NPEFv[QUICK(C)]

NPEFv[SPUDS]

NPEsp[SPUDS]

NPEsp[QUICK(C)I

= - 5.30547084 x 10 -s (A.52)

+ 5.08534128 x 10 -5 (A.53)

- 7.06282736 x 10 -6 (A.54)

= - 6.32202472 x 10 -5 (A.55)

Note, in particular, the ratio of the single-point SPUDS error to the finite-volume QUICK(C)

error (i.e., the two third-order methods):

NPEsp[SPUDS] = 1.33... (A.56)

NPEFv[QUICK(C)]

This is virtually the same as the ratio of the respective leading truncation error terms. From

Equations (A.39) and (A.49),

LTEsp[SPUD S ] = _4 (A. 57)

LTEFv[QUICK(C)] 3

This relationship will be found to be (approximately) true for other ratios, as well.

Diffusion Operators

The second-order central-difference operator for diffusion is

CDS2] = _bi*t - 25i + $i-1 (A.58)
h 2

This can be viewed as a single-point operator

v_ i*) v_ v_ v_ viH'[ ] h2+ ha+ h6 + ... (A.59)
iv j [dx2/i 12 360 20160

or a finite-volume operator, using Equation (12), with n = 1,

• _ (viii)

[ ] = ( '- ) v[") 13v/<Vi) h' v/ h6 (A.60)
CDS2 vr vt' + _ h 2 + _ + _ + .-.

h 24 5760 21504

Note that the latter form (with the smaller truncation error) corresponds to the QUICK finite-

volume formulation of diffusion, QUICK(D).

For P6 = 4 and h = 1/64, the respective numerical values are

TEsp[CDS2 ] = (5.20833 x 10 -3 ÷ 6.78168 x 10 -7 + 4.73053 x 10 -11)
x 3.74743 × 10 -a (A.61)
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and

TEFv[QUICK(D)] = (2.60417× 10-3 + 5.51012× 10-7 + 4.43487× 10-n)
x 3.74743× 10-1 (A.62)

In either case, the leading term is dominant. Note that

LTEsp[CDS2] - 2
LTEFv[QUICK(D)]

This is reflected in the node-point error of Table IH, where

NPEFv[QUICK(D)] = + 6.38006991× 10-5

(A.63)

(A.64)

and
NPEsp[CDS2] = + 1.27591015x 10-4 (A.65)

This meansthat the finite-volume (QUICK) formulation of diffusion is twice asaccurateas
the single-point CDS2 formulation, althoughboth are formally second-orderaccurate.

The fourth-order single-point diffusion operatorgiven by Equation (16) hasa single-
point truncation error

V_ U(,'_)
(A.66)- _ h 4 - _ h 6 + ...

TEsp[Eq(16)] = 90 1008

When used (inappropriately) as a finite-volume operator, this gives

TEFv[Eq(16)] _- _ _U[iV)h 2 _ 13U_V'_ h 4 _ 107u['iii) h 6 + ... (A.67)
24 1152 107520

which, of course, is only second-order accurate, according to Equation (12).

By contrast, the fourth-order finite-volume operator given by Equation (17) has a

finite-volume truncation error

TEFv[Eq(17)] = - _3U_i)h 4 - 193U_'i_'_ h' + ... (A.68)
640 322560

And if this were used (inappropriately) in a single-point formulation, the truncation error

would be

U_") _UfV_ h 4 _ 19U_("_)h 6 + ... (A.69)
TEsp[Eq(17)] - h 2 _

24 240 1080

again, second-order, according to Equation (12). Note that

LTEsp[Eq(16)] = 2.37 ...

LTEFv[Eq(17)]

(A.70)
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From TablesIV and V, for h = 1164,

NPEsp[Eq(16)] _

NPEvv[Eq(17)]

- 6.59600528 x 10 -8

- 2.79314528 × 10 -s
= 2.36 ... (A.71)

Again, one sees that the finite-volume fourth-order formulation is significantly more accurate

than the single-point fourth-order formulation.

Convection-Diffusion Operators

The standard QUICK scheme for both convection and diffusion can be written

(A.72)

Viewed as a finite-volume formulation, this gives

[QUICK]-" (Vr _- vt,) - -_ h

_ P-"61,-_41Iv[l'/h2+ '"_'!/vIi*'/h3-[_8
[13vi""ll

P6
h 4

q- [V:vO / h 5 - [. 3V/(vii) 1" ],,:viii).,L1o24+ (A.73)

Whereas a single-point analysis would give

+ ("2_'vi'" - P61 v/_'"l_2_)h2+ (_)h 3 - 1[llv/v)480 + P----61(_)] h4

+ [v['° I hS _ [59v/vi') __1" v_viii) '"
,-_/ [2__0_i_ + p6 (2T160)] h' + ... (A.74)

Although the truncation error terms look different, it is not hard to show that, in fact, in

terms of U, they are identical. For example, since U satisfies the exact equation

dU = 1 d2U (A.75)
-_ p--_ _--T

then

U"' -- _1 U(_V) (A.76)
P6
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and the leading single-point truncation error term becomes

t u(iv) 1 U?v)/h2
(_4 1 U/i"th2 = (.1 - P' ± _4/h2

P6
(A.77)

and, similarly for the other terms.

The SPUDS-plus-CDS2 convection-diffusion scheme can be written

[ SPUDS+CDS2 ] = (2_b,.1 + 3_b,-6_h6¢,_l + _b,_2) - ff61 (4_,.1 - 2_b,+h2 _b,_t )
(A.78)

As a single-point formulation, this gives

(dv) 1 [d2v I[sPUDS+CDS2]= _, - __,

÷ /_,""/]
1 _0/J h4

P6

./_"_/h, - [v'," ±( _F_'/1 . ...
_7"2--/ [_ + P6_201_0/1 h6 (A.79)

whereas, for a finite-volume formulation,

- 1 [Vr t -- Vl I

-- [Vi''' _ [V?v_/] h 2 . (v/('v) / h 3
["_- + P6 _ 24 IJ _T2/

[13vff ) 1 [13vff_/] h4- _ 384 + P"'6 _lJ

61vff ii) .1_1" vff iii' ""+ (v/(v')/h5, , -[ 1530 + Pe(2"_-0"4)] h6 + "'" (A.80)

Once again, in terms of U, the two truncation errors are identical.

Note that, because of the dominance of the second-order diffusion terms, as h --, 0,

LTE[SPUDS+CDS2] = 2

LTE[QUICK]

(A.81)

This is borne out in Table VI, where it is seen that, for h = 1/64,

NPE[SPUDS+CDS2] = 9.97187451x 10 -5 = 2.07

NPE[QUICK] 4.82503616 x 10 -5

(A.82)
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Finally, it should be noted that in high-convection problems, where the grid P6clet number

P_ = h P¢ (A.83)

is large, the appropriate way to write the leading truncation error terms is as follows:

LrE_vtQ_JICK1- V,'_(1- 2 i h_ (A.84)
16 , /

and

LTEsp[SPUDS+CDS2 ] - ui(i" (1 - 1 )h 3
(A.85)

12

This means that, for most flows of interest, using practical grids (so that Pa is very large),

these convection-diffusion schemes are effectively third-order accurate (even though only

formally second-order accurate as h --'- 0).
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