Users Manual for the NASA Lewis Three-Dimensional Ice Accretion Code (LEWICE 3D)

Colin S. Bidwell and Mark G. Potapczuk
Lewis Research Center
Cleveland, Ohio

December 1993

```
(NASA-TM-105974) USERS MANUAL FOR
N94-21590
THE NASA LEWIS THREE-DIMENSIONAL
ICE ACCRETION CODE (LEWICE 3D)
(NASA) 143 p
(2)

\section*{TABLE OF CONTENTS}
SUMMARY .....  1
SYMBOLS ..... 2
I. INTRODUCTION ..... 4
II. PROGRAM UNITS ..... 7
A. Introduction ..... 7
B. Subroutine READIN ..... 8
1. General Discusion ..... 8
2. Printed Output ..... 8
C. Subroutine FLOW ..... 8
1. General Discussion ..... 8
2. Printed Output ..... 13
3. Peripheral Storage ..... 22
4. Variable Array Dimensioning ..... 23
D. Subroutine SETFLO ..... 24
1. General Discussion ..... 24
1. Printed Output ..... 24
E. Subroutine BETAC ..... 24
1. General Discussion ..... 24
a. Search For Upstream Particle Release Points ..... 25
b. Search For Tangent Trajectories ..... 26
c. Calculation Of Impact Trajectories ..... 27
d. Calculation Of Collection Efficiency ..... 28
2. Printed Output ..... 31
F. Subroutine STREM3D ..... 33
1. General Discussion ..... 33
b. Search For Stagnation Zone ..... 33
b. Calculation Of Upper and Lower Streamlines ..... 34
c. Projection Of Streamlines Onto Surface ..... 34
2. Printed Output ..... 35
G. Subroutine STREM2D ..... 36
1. General Discussion ..... 36
2. Printed Output ..... 37
H. Subroutine BSTREM ..... 37
1. General Discussion ..... 37
2. Printed Output ..... 39
I. Subroutine LEWICE2D ..... 39
1. General Discussion ..... 39
a. Modeling The Ice Growth Process ..... 41
b. Ice Growth Along Streamlines ..... 44
2. Printed Output ..... 47
J. Subroutine BODMOD ..... 47
1. General Discussion ..... 47
2. Printed Output ..... 49
K. Summary Of Subroutines ..... 49
III. INPUT FILES ..... 63 ..... 63
79
79
IV. REFERENCES ..... 81
V. EXAMPLE CASE

\title{
USERS MANUAL FOR THE NASA LEWIS THREE-DIMENSIONAL ICE ACCRETION CODE (LEWICE3D)
}

\author{
Colin S. Bidwell \\ Mark G. Potapzcuk \\ National Aeronautics and Space Administration \\ Lewis Research Center \\ Cleveland, Ohio
}

\section*{SUMMARY}

A description of the methodology, the algorithms, and the input and output data along with an example case, for the NASA Lewis three-dimensional ice accretion code (LEWICE3D) has been produced. The manual has been designed to help the user understand the capabilities, the methodologies and the use of the code.

The LEWICE3D code is a conglomeration of several codes for the purpose of calculating ice shapes on three-dimensional external surfaces. A three-dimensional external flow panel code is incorporated which has the capability of calculating flow about arbitrary three-dimensional lifting and nonlifting bodies with external flow. A 4th order Runge-Kutta integration scheme is used to calculate arbitrary streamlines. An Adams type predictor-corrector trajectory integration scheme has been included to calculate arbitrary trajectories. Schemes for calculating tangent trajectories, collection efficiencies and concentration factors for arbitrary regions of interest for single droplets or droplet distributions have been incorporated. A heat transfer algorithm based on the NASA Lewis two-dimensional ice accretion code (LEWICE) can be used to calculate ice accretions along surface streamlines. A geometry modification scheme is incorporated which calculates the new geometry based on the ice accretions generated at each section of interest.

The three-dimensional ice accretion calculation is based on the two-dimensional LEWICE calculation. Both codes calculate the flow, pressure distribution, and collection efficiency distribution along surface streamlines. For both codes the heat transfer calculation is divided into two regions, one above the stagnation point and one below the stagnation point, and solved for each region assuming a flat plate with pressure distribution. Water is assumed to follow the surface streamlines, hence starting at the stagnation zone any water that is not frozen out at a control volume is assumed to run back into the next control volume. After the amount of frozen water at each control volume has been calculated the geometry is modified by adding the ice at each control volume in the surface normal direction.

\section*{SYMBOLS}
\begin{tabular}{|c|c|}
\hline A, A2 & Parametric slope matrix for a line in space \\
\hline \(\mathrm{A}_{\mathrm{m}}\) & Trajectory flux tube area at surface \\
\hline \(\mathrm{A}_{0}\) & Trajectory flux tube area in free stream \\
\hline \(\mathrm{A}_{\text {sur }}\) & Surface area of a segment on the streamline \\
\hline B, B2 & Parametric intercept matrix for a line in space \\
\hline \(B^{\text {k }}\) & Vortex pair strength for kth lifting strip \\
\hline \(\mathrm{C}_{\mathrm{p}}\) & Specific heat, J/kg \\
\hline DCOR & Coarse step size for tangent trajectory search \\
\hline DFINE & Fine step size for tangent trajectory search \\
\hline \(\mathrm{DS}_{0}\) & Trajectory flux tube width in free stream \\
\hline \(\mathrm{DS}_{\mathrm{m}}\) & Trajectory flux tube width at surface \\
\hline DICE & Ice thickness array along streamline \\
\hline DICES & Ice thickness save array for streamlines \\
\hline \(\mathrm{d}_{\text {ice }}\) & Ice thickness array \\
\hline f & Freezing fraction at a segment \\
\hline \(\mathrm{h}_{\mathrm{c}}\) & Convective heat transfer coefficient \\
\hline i & Enthalpy \\
\hline IFLOW & Flow field calculation flag \\
\hline IRUN & Trajectory calculation control flag \\
\hline ICE & Ice accretion calculation control flag \\
\hline IMOD & Geometry modification control flag \\
\hline ISUP & Upper streamline release point array counter \\
\hline ISLO & Lower streamline release point array counter \\
\hline ISTRF & Streamline calculation control flag \\
\hline IST1, IST2 & Flags denoting two closest sections of interest to a given Nline \\
\hline \(L_{\text {f }}\) & Heat of fusion, J/kg \\
\hline \(L_{V}\) & Heat of vaporization \(\mathrm{J} / \mathrm{kg}\) \\
\hline m & mass flow rate \\
\hline NBR & Number of rows of trajectories to be released at a section of interest \\
\hline NBC & Number of columns of trajectories to be released at a section of interest \\
\hline NPSEC & Flag describing region of interest \\
\hline NPTS1, NPTS2 & Number of points in two the two closest streamlines to a given N -line \\
\hline PIN, PIN1, P1,P2 & Point arrays \\
\hline PLN & Array containing coefficients of equation of a plane \\
\hline \(\mathrm{q}_{\mathrm{c}}\) & Convective heat flux, W/m² \\
\hline T & Temperature, K \\
\hline TL & Parametric distance of an N -line from two closest sections of interest \\
\hline
\end{tabular}

\section*{SYMBOLS CONTINUED}
u

V

V
VCRIT
XNEW,
YNEW,
ZNEW, XSCI, YSCI, ZSCI
XTIP,
YTIP,
XTIP
XSEC,
YSEC, ZSEC XSTOP

XL,YL, ZL
XN,YN,ZN
\(X_{i}\)
\(X_{c i}\)
\(\mathrm{X}_{\mathrm{si}}\)
\(\mathrm{X}_{\mathrm{j}}\)
X
\(\mathrm{X}_{\mathrm{X}}\)
\(\alpha\)
\(\beta\)
\(\rho_{i}\)
\(\Delta s\)
\(\Delta t\)
\(\psi\)
\(v\)
\(\sigma_{i}\)

\section*{Subscripts}

\section*{a}
aw
c
e

Weighting factor in j direction for collection efficiency interpolation
Weighting factor in \(i\) direction for collection efficiency interpolation
Velocity M/S
Stagnation point search velocity criteria
Coordinate arrays describing the on-body streamline.

Arrays describing upstream release points for trajectories passing through points describing the section of interest.
Arrays describing upstream release points for tangent trajectories

Arrays describing the region of interest.

Stream wise stopping point for all trajectory and streamline calculations
Scan line arrays for stagnation point search
Arrays of surface normals for streamline
Surface coordinates of impingement cell
Location of centroid of \(A_{m}\)
Location along surface streamline
Displacement vector from \(x(i, j)\) to \(x(i, j+1)\)
Displacement vector from \(x(i, j)\) to \(x(i+1, j)\)
Displacement vector from \(x(i, j)\) to \(x_{s}\)
Pitch angle of geometry
Collection efficiency
Density of ice at segment i
Length of segment along surface streamline
Time increment for ice accretion
Sideslip angle of geometry
Rotation angle of surface droplet flux tube
Source strength of a panel
\begin{tabular}{ll} 
a & Air \\
aw & Adiabatic wall \\
c & Critical; convection \\
e & Evaporation: condition at the edge of the boundary layer
\end{tabular}

\title{
SYMBOLS CONCLUDED
}
i
(i)
\(\mathrm{r}_{\text {in }}\)
\(r_{\text {out }}\)

\section*{sur}

\author{
Ice \\ Control volume \\ Runback into control volume \\ Runback out of control volume \\ surface condition \\ Static condition \\ Total condition
}

\section*{I. INTRODUCTION}

The LEWICE3D code is a conglomeration of several codes for the purpose of calculating ice shapes on two-dimensional external surfaces. A three-dimensional external flow panel code is incorporated which has the capability of calculating flow about arbitrary three-dimensional lifting and nonlifting bodies with external flow. A 4th order Runge-Kutta integration scheme is used to calculate arbitrary streamlines. An Adams type predictor-corrector trajectory integration scheme has been included to calculate arbitrary trajectories. Schemes for calculating tangent trajectories, collection efficiencies and concentration factors for arbitrary regions of interest for single droplets or droplet distributions have been incorporated. A heat transfer algorithm based on the NASA Lewis two-dimensional ice accretion code (LEWICE) can be used to calculate ice accretions along surface streamlines. A geometry modification scheme is incorporated which calculates the new geometry based on the ice accretions generated at each section of interest.

The three-dimensional ice accretion calculation is based on the two-dimensional LEWICE calculation. Both codes calculate the flow, pressure distribution, and collection efficiency distribution along surface streamlines. For both codes the heat transfer calculation is divided into two regions, one above the stagnation point and one below the stagnation point, and solved for each region assuming a flat plate with pressure distribution. Water is assumed to follow the surface streamlines, hence starting at the stagnation zone any water that is not frozen out at a control volume is assumed to run back into the next control volume. After the amount of frozen water at each control volume has been calculated the geometry is modified by adding the ice at each control volume in the surface normal direction.

The basic methodology of the three-dimensional ice accretion analysis is to divide the three-dimensional ice accretion process into two-dimensional processes along streamlines of interest (fig. 1). The user inputs regions of interest on the three-dimensional body (e.g. leading edge points). A streamline is then calculated along the body's surface from the centroid of this region of interest. Impingement rates and velocities are calculated along this streamline. This information is input to a two-dimensional heat transfer module which calculates ice growth along the streamline. This information is used to generate a new geometry at the streamline location. This process is repeated for each streamline of interest on the three-dimensional body. Upon completing the ice growth calculations the geometry is modified and the flow field is updated. The above steps are repeated for as for each time step.

(a) Clean swept airfoil with three streamlines (top view).

(b) Clean swept airfoil with three iced streamlines (top view).

(c) Iced swept airfoil resulting from three iced streamlines.

Figure 1. - Airfoil with several sections of interest.

The three-dimensional (3D) analysis then, can be broken into 6 basic steps. First, a flow field is generated for the body. Second, impingement efficiency is calculated at the region of interest. Third, a streamline is calculated at the region of interest. Fourth, impingement rates along the streamline of interest are found by interpolation. During the Fifth step ice accretion along the streamline is calculated using the two-dimensional (2D) heat transfer module. The Sixth step
involves generating a new body from the ice accretion information.
A 3D Hess-Smith panel code (ref. 1-5) is used to generate the flow field used in the trajectory and heat transfer calculations. The code can accommodate lifting and non-lifting geometries or combinations thereof such as entire airplanes (fig. 2). If desired, a Prandtl-Glauert correction can be made for compressible cases. The code can also handle leaking panels to emulate inlets for instrument orifices. The code also has a variable dimension feature which allows easy adaption to different computers or problems.


Figure 2. - Panel representation of different types of geometries

The trajectory code is basically that developed by Hillyer Norment (ref. 5) with one additional feature. The code uses the Hess-Smith flow field along with an Adams-type predictor-corrector algorithm developed by Krogh (ref. 6). An added feature is the ability to calculate local collection efficiency from the impacting trajectories. The code is used here to generate an array of
impingement efficiencies for each region of interest.
The surface streamline is calculated using a \(4^{\text {th }}\) order Runge-Kutta integration scheme. The streamline integration is carried forward from the stagnation region for both the upper and lower surfaces at the region of interest.

A linear interpolation scheme is used to determine the collection efficiency along the streamline from the matrix of collection efficiencies generated above in the trajectory step.

The 2D ice accretion calculation is basically that of the LEWICE program generated at Lewis. This code is described in detail in reference 7.

The new geometry is generated from ice accretion information and from the surface normal information and final trajectory angle information. Each new point on the streamline is generated by adding the ice accretion multiplied by either the surface normal vector or by the final trajectory tangent vector to the old streamline point.

\section*{II. PROGRAM UNITS}

\section*{A. Introduction}

There are nine basic program units comprising the 3D ice accretion calculation: READIN, FLOW, SETFLO, BETAC, STREM3D, STREM2D, BSTREM, LEWICE2D,AND BODMOD. A brief description of each of these modules is given along with a flow chart. Figure 3 shows an overview of the LEWICE3D job stream. Section J contains tables giving a brief description of each subroutine used in the above modules.


Figure 3. - LEWICE3D segmentation tree structure.

\section*{B. Subroutine READIN}

\section*{1. General Discusion}

The module READIN reads the job control file (unit INPUT) and initializes important program control variables. All input data (unit INPUT) is in "NAMELIST" format. Three "NAMELISTS" are input from unit INPUT: IMPING, TRAJ and ICEIN. A brief description of the variables in each of the NAMELISTS is given in the INPUT FILE section. IMPING contains control variables for the Hillyer Norment Trajectory codes. These variables are described in the user's manual for the trajectory codes (ref. 5). TRAJ contains the control variables for the overall calculation including how many stations are to be used, number of trajectories to be used, whether to run the flow field code, LEWICE or streamline calculations, etc. ICEIN contains control variables for the 2D LEWICE calculation. These variables are described in the LEWICE manual.

\section*{2. Printed Output}

Subroutine READIN prints job control information to several output files (OUPUT, JOBSUM). This information is self explanatory.

\section*{C. Subroutine FLOW}

\section*{1. General Discussion}

Subroutine FLOW is essentially the HESS-Smith 3D panel code put into subroutine form. Hillyer Norment gives a good description of the Hess-Smith code in his user's manual (ref. 5, pages 10-14), and this description is repeated here for completeness. Figure 4 shows a flow chart of the flow field (subroutine FLOW) and velocity calculations (subroutine FLOVE2 and FLOVEL). Subroutine FLOVE2 is the original velocity calculation alogorithm developed by Hillyer Norment (ref. 5). Subroutine FLOVEL is a vectorized version of FLOVE2 which was developed at LEWIS by Bidwell and Mohler. Subroutine FLOVEL evaluates velocities about \(20 \%\) faster than FLOVE2 on computers that do not support vectorization and about \(80 \%\) faster on machines supporting vectorization. The algorithm cannot be used in cases where the piecewise linear vorticity option has been chosen (i.e. PESWIS = TRUE).

(a) Subroutine FLOW

(b) Subroutine FLOVE2

Figure 4. Flow field and velocity calculation segmentation tree structures.

(c) Subroutine FLOVEL

Figure 4. -Concluded. Flow field and velocity calculation segmentation tree structures.

The methods and codes of Hess (ref. 1) and Hess and Smith (ref. 2,3) are used for calculation of lifting and nonlifting potential flow about arbitrary three-dimensional bodies. Lifting bodies (i.e., airfoils) alone, nonlifting bodies alone, or combinations of lifting bodies with nonlifting bodies (e.g., combinations or airfoils and fuselages) can be treated. Effects of flow into an inlet, for example an instrument aperture, can be accounted for provided the intake flow rate, in terms of fraction of free stream air speed, is specified. The method is restricted to subsonic airspeeds, but for free stream Mach numbers greater than 0.5 , the Prandtl-Glauert method is used to correct approximately for compressibility effects. Since potential flow is computed, neither viscous effects nor turbulence are treated.

The code requires input of a digital description of the body surface, and for purposes of organizing the data as well as for computing flow, the body surface is partitioned into sections which are designated as either lifting or nonlifting. In either case, the surface is represented by contiguous, plane quadrilateral panels, usually called elements (fig.2). For nonlifting sections there are few restrictions on the manner in which the elements can be arranged to represent the surface other than those required for organization. Lifting sections are restricted as follows: each must consist of strips of elements, the strips being oriented parallel to the chordwise direction of the airfoil each strip must have the same number of elements and wake elements must be included after the trailing edge of each strip. Both lifting and nonlifting portions of the body may be described by more than one section.

Each on-body element (which is in the flow) is taken to be a potential flow source. The source is a distributed one, with the distribution being uniform over the surface of the element, and each element, for example the \(\mathrm{j}^{\mathrm{th}}\), is characterized by a unique source density, \(\sigma_{\mathfrak{j}}\). In addition, each strip of elements in a lifting section is characterized by having a unique value of lift vorticity associated with it. This quantity, for example for the \(K^{\text {th }}\) lifting strip, \(B^{(k)}\), represents vortex strength per unit path length around the strip (fig. 5), and it represent the sum of contributions from all panels in the strip. Velocities induced by these vorticities are treated as onset flows. Thus, there is an onset flow from each lifting strip plus the free stream onset flow. It is necessary to compute an independent source density for each of these onset flows for each on-body quadrilateral panel: if there
are \(N\) on-body panels, \(K\) lifting strips, and one free stream flow, \(N(K+1)\) values of \(\sigma\) must be computed. Source densities are determined by solving large systems of linear equations that represent the effects of all onset flows on all panels, plus the mutual interactions of all distributed sources, under boundary conditions for zero flux through the centroid (also called control point) of each onbody panel, or specified fraction of free stream flux through each inlet panel.

\(\xrightarrow{ }\)
CHORDWISE DRECTION

Figure 5. - Organization of \(m\) and \(n\) lines in a lifting section. A lifting strip is delineated by sequential \(n\) lines, and extends over the complete circuit from \(m=1\) at the trailing edge, along the underside to and around the leading edge, back to the trailing edge, and finally back to the furthest aftward extent of the wake.

Determination of vortex strengths requires an additional constraint, the Kutta condition, and this is supplied by user-selection of one of two optional methods which are designated as "flow tangency" and "pressure equality."

Lift vorticity is computed by a novel method developed by Hess (ref. 1). To circumvent
problems that have been found to result from use of vortex filaments in prior work, and to ensure that potential flow results from the vorticity distribution and that individual infinitesimal vortex lines either form closed curves or go to infinity, Hess has developed a method by which vortex sheets on the body and wake surfaces can be expressed in terms of dipole sheets on the same surfaces. Hess summarizes the method as follows:
"A variable-strength dipole sheet is equivalent to the sum of: (1) a variablestrength vortex sheet on the same surface as the dipole sheet whose vorticity has a direction at right angles to the gradient of the dipole strength and a magnitude equal to the magnitude of this gradient, and (2) a concentrated vortex filament around the edge of the sheet whose strength is everywhere equal to the local edge value of dipole strength."

Mathematical details are given in appendix A of reference 1.
For particular body geometry and orientation relative to the free stream, the source densities and vortex strengths are calculated only once, and then these can be used to calculate flow velocity at any space point exterior to the body. The primary functions of the DUGLFT codes are to calculate the \(\sigma_{j}\) and \(B^{(k)}\) and store these quantities, along with other requisite data, for use by subroutine FLOVEL in calculating flow velocities. Subroutine FLOVEL is called as needed by programs TRAJEC, CONFAC, and ARYTRJ to provide flow velocities for trajectory and flow velocity array calculations.

In calculating each flow velocity, contributions from all quadrilateral elements are summed. There are three sets of algorithms for computing contributions from individual elements: (1) for elements that are close to the calculation point, detailed calculations are used that account for exact element geometries, (2) for elements at intermediate distances multipole expansions are used, and (3) for remote elements the point source approximation is used. Mathematical details are given in references 1,2 and 3 with emphasis on lifting flow in reference 1 and emphasis on nonlifting flow in references 2 and 3. The reader is strongly urged to study these references closely before attempting to use this code. Reference 4 consists of a code users manual for the lifting fiow calculations described in reference 1.

Calculation accuracy is discussed in the Validation section in the Hillyer manual (ref. 5). Of course accuracy also depends on the fineness of resolution of the element description of the body, and naturally some compromise is called for. The smaller the elements the finer the resolution, and the fewer of them for which the most exacting of the three algorithms must be used. On the other hand, the number of elements increases inversely as the square of their linear size. In past studies on airplanes we have used the following paneling criteria For those parts of the airplane traversed by particle trajectories, we try to keep the element edges between 6 " and 8 " in length. Where allowed by simplicity of surface shape, remote elements can be larger. Remote downstream complexities of shape are ignored or treated approximately. For example, if interest is confined to the forward fuselage, then the remainder of the fuselage can be represented as a cylinder of constant cross-section which is extended to approximately five time the length of the of the nose section (as recommended by Hess and Smith, ref. 2), and the wings can be ignored entirely. The following are basic requirements of the method that apply to all calculations
1. A uniform, unit-speed free stream approximately in the direction of the positive \(x\)-axis.
2. Normalization of all velocities to be consistent with the unit free stream speed.
3. Normalization of all distances by a user-specified characteristic dimension of the body.

Surface point coordinates may be recorded in any convenient units and can be appropriately translated and scaled, to meet requirement 3 above, during processing via use of SR's PATPRS and DATPRS. These subroutines also allow rotation of the body about the \(y\) axis to adjust attitude angle. The coordinate system used for the calculations is described on pp. 19-20 (ref. 5).

The unit free stream speed is assumed by program DUGLFT, and the distance normalization, if required, is done during preliminary data processing as indicated above. For trajectory calculations, the user specifies the true free stream speed and the normalization length, and the codes automatically handle any additional normalizing or scaling that is required.

The module FLOW computes a flow field for the geometry input on unit NGEOM (DUGLIFT format) and saves it on unit FLOWF. This module is executed only if IFLOW=1 (NAMELIST TRAJ). If the flow field code is not executed (i.e. IFLOW=0) then the flow field must be provided on unit FLOWF. The Hess-Smith 3D flow field code is used in subroutine form here to generate the flow field. The execution time for the flow field calculation is proportional to the square of the number of panels. A 1200 lifting panel model with one section required 80 seconds of CPU time on the CRAY XMP while that for a 3200 panel model with one section required 630 seconds. Two basic requirements have been found to date for the ice accretion calculations. The first is a numerical one for the panel method used. The requirement is that the aspect ratio of any panel should not be greater than 100 . The source strength calculation will converge for larger aspect ratios but the vortex calculation will not. The requirement grows more stringent with angle of attack and ratios as high as 100 may not be allowed for some geometries. The second requirements is that to produce a smooth beta curve there must be approximately one panel per trajectory released in the z -direction (i.e. if 20 trajectories were to be released between the impingement limits then 20 panels are required between the impingement limits at the surface to ensure a smooth beta curve.

\section*{2. Printed Output}

Subroutine flow produces several output files (units FLSUM, FLOWF). Unit FLSUM is a summary of the flow field computation and contains varying amounts of information depending on the flags set in the flow input file (unit NGEOM). Any error messages from the flow field computation will be found in unit FLSUM. Unit FLOWF contains the flow field information in binary format to be used in the calculation of velocities in the trajectory routines. A description of these files is taken from reference 5 .

The flow field calculation summary output (unit FLSUM) consists of two main parts, plus a summary of input control data, various error condition messages, and optional outputs of data that are used for debugging.
1. The first printout is a summary of input control data, and is self-explanatory.
2. Next, which is the first main part, is a printout (from NOLIFT and LIFT) of element data. Elements are designated as lifting or non-lifting.

A short table follows (from INPUTL) titled TABLE OF INPUT INFORMATION, which summarizes the data in terms of section type, number of elements per section, number of strips, etc.
3. In the course of computing velocities induced by each element on all others, additional summary information is printed (from VIJMX) for each section. For lifting strips, this includes information on ignored elements which does not appear elsewhere.
4. If the piecewise linear option for determination of spanwise variation of vortex strength is used, strip widths, \(W_{k}\), and parameters \(\mathrm{D}_{\mathrm{k}}, \mathrm{E}_{\mathrm{k}}, \mathrm{F}_{\mathbf{k}}\) (ref. 3, sec. 7.11) are printed for each strip for each section, along with a summary of edge conditions (NLINE1 and NLINEN).

5 A short statement is printed (from COLSOL) regarding the dimensions of the matrix that are solved to determine element source strengths, and the number of right-handsides (i.e., number of uniform onset flows plus number of lifting strips) for which the solutions are obtained.
6. The second main printout (from PRINTL) contains the final results of the calculations. A printout for each on-body element is labeled as follows.

X0, Y0, Z0
VX, VY, VZ
VT
VTSQ
CP

DCX, DCY, DCZ
NX, NY, NZ

SIG
VN

Control point coordinates.
Flow velocity components at the control point
Velocity magnitude
Square of velocity magnitude
Pressure coefficient \(=1.0-\) VTSQ
Direction cosines of the velocity components
Components of the unit normal to the plane of the element

Source density
Velocity component in the direction of the unit normal

AREA
Area of the element
Printouts for off-body and Kutta points are similarly labeled.
Also printed are vector components for pressure force and moment for each strip, each section and for the entire body, as well as a table of vortex strength per unit length, \(\mathrm{B}^{(\mathrm{k})}\), for each lifting strip.
7. Error messages (ref. 4).
\(\left.\begin{array}{ll}\text { (a) Message: } & \begin{array}{l}\text { MISMATCH OF ELEMENTS IN A LIFTING } \\
\text { STRIP IS DETECTED. ELEMENTS FORMED } \\
\text { XXX, ELEMENTS INPUT XXX, COMPUTATION }\end{array} \\
& \text { TERMINATED. (SR INPUTL) }\end{array}\right\}\)\begin{tabular}{ll} 
Cause of error: & \begin{tabular}{l} 
Inconsistent input data. The program sums the num- \\
ber of on-body elements plus the wake elements \\
specified on card 8. This sum does not match with the \\
elements formed from the input coordinates.
\end{tabular} \\
Action: & \begin{tabular}{l} 
Check the lifting body information card (card 8) and \\
the quadrilateral corner point coordinates cards \\
(cards 12). The number of points on an n-line should \\
equal the number of elements plus 1.
\end{tabular} \\
& \begin{tabular}{l} 
For example: If in a lifting section each lifting strip \\
consist of 10 on-body elements and 1 wake element, \\
the total number of elements is 11, and there should \\
be 12 points on each n-line input via cards no. 12.
\end{tabular} \\
(b) Message: & \begin{tabular}{l} 
ERROR IN IGNORED ELEMENT COUNT XXX,
\end{tabular} \\
SHOULD BE XXX. (SR LIFT)
\end{tabular}
lifting or nonlifting label are stored on unit 4. The error occurs when a labeling mix-up is detected during input of the data from unit 4 for calculation of velocities. That is, data for a strip labeled lifting are encountered during computation for a nonlifting section. or vice versa.

Action:
Check that the number of lifting strips specified on card no. 8 for each lifting section corresponds with the cards no. 12 input.
(d) The following messages pertain to errors in specification of variable dimensions (SR CKARRY).

ELEMENT CAPACITY, NONX = XXX IS LESS THAN TOTAL ELEMENTS, NON = XXX

STRIP CAPACITY, NSTX = XXX IS LESS THAN TOTAL STRIPS, NSTRP = XXX

LIFTING SECTION CAPACITY, LFSX = XXX IS LESS THAN TOTAL SECTIONS, ISECT = XXX

LIFTING STRIP CAPACITY, NOBX = XXX IS LESS THAN TOTAL LIFTING STRIPS, LSTRP = XXX

N2BX = XXX IS NOT GE TWICE NOBX AS REQUIRED, NOBX \(=\mathbf{X X X}\)

NSLX = XXX IS LESS THATN THE MAX. NO. OF STRIPS IN A LIFTING SECTION, WHICH IS XXX

CAPACITY OF ARRAY WKAREA, NWAX = XXX, USED BY COLSOL TO DETERMINE SOURCE STRENGTHS, IS INSUFFICIENT. IT MUST BE GREATER OR EQUAL TO XXX

NWAX = XXX IS NOT GREATER OR EQUAL TO NO. OF LIFTING STRIPS = XXX CUBED, AS REQURED FOR THE PRESSURE EQUALITY KUTTA OPTION.

Cause of error: Array dimensions are inadequate to accommodate the input data.

Action: Check array dimensions and variable array parameters against the storage demands of the element data input via cards no. 12. Also check input parameter
\begin{tabular}{|c|c|}
\hline & LIFSEC, NSORCE, NWAKE, NSTRIP, and IXFLAG. \\
\hline \multirow[t]{2}{*}{(e) Messages:} & XXX ANGLES OF ATTACK HAVE BEEN SPECIFIED, ONLY ONE IS ALLOWED SINCE COMPRESSION EFFECTS ARE CONSIDERED. \\
\hline & ANLGE OF ATTACK, + - XXX, +- XXX, +- XXXIS INAPPROPRIATE FOR A CASE WITH COMPRESSION CORRECTION. (SR CKARRY) \\
\hline Cause of error: & Only one uniform onset flow (i.e. free stream) is allowed if the compressibility correction is applied (MACH > 0.0 on card no. 2). Moreover, the direction cosines (ALPHAX, ALPHAY, ALPHAZ) of this onset flow must be (1.0, 0.0, 0.0; card no. 4). \\
\hline Action: & Set IATACK = 1 on card 2, and/or specify direction cosines on card 4 as stated above. \\
\hline (f) Message: & THE NUMBER OF KUTTA POINTS SPECIFIED IS INCORRECT AND SHOULD BE XXX (SR CKARRY) \\
\hline Cause of error: & The flow tangency Kutta option has been specified, and the number of Kutta points specified by input (cards no. 9,13 and 14) does not equal the number of lifting strips. \\
\hline Action: & Check parameter KUTTA on card 9, and the number of KUTTA data points on cards 13 and 14, against the number of lifting strips input via cards no. 12 (Do not count extra strips.) \\
\hline (g) Message: & ERROR IN VFORM. THE ELEMENTS FORMED DO NOT CORRESPOND TO THE NO. OF BODY ELEMENTS. (SRS VFMNLF AND VFMLFT) \\
\hline Cause of error: & Element tally recorded by SR INPTL does not match with tally recorded from input of data from unit 4 during velocity calculation. \\
\hline Action: & Check lifting strip specification data on card 8 for consistency with cards no. 12 input data. \\
\hline (h) Message: & AFTER XXX INTERATIONS, DELTA B STILL \\
\hline
\end{tabular}

DID NOT CONVERGE TO THE GIVEN CRITERION/LARGEST DELTA B \(=+\) XXX.XXX/PROGRAM PROCEEDS WITH THE MODS CURRENT VORTEX STRENGTH. (SR PKUTTA)

Cause of error: Non-convergence of vortex strengths, B, calculation via the pressure equality Kutta condition method (ref.4, sec. 7.13.2).

Action: \(\quad\) Check the cards no. 12 input data.
(i) Message:

THIS CODE SHOULD BE APPLIED TO FIRST STRIP
or,
THIS CODE SHOULD BE APPLIED TO LAST STRIP. (SR DKEKFK OR PSONST)

Cause of error: Improper specification of NLINE1 or NLINEN for piecewise linear option. Specifically, either NLINE1 \(=2\) or NLINEN \(=3\) is specified, both of which are forbidden.

Action: \(\quad\) Check card 8 specifications
(j) Message:

Cause of error: \(\quad\) The number of on-body source elements tallied during final printout does not agree with the count tallied during input.

Action: Check input data.
(k) Message:

XXX KUTTA POINTS MISSED, EXECUTION TERMINATED. (SR PRINTL)

Cause of error: \(\quad\) The number of Kutta points tallied during the final print out does not agree with the number specified by parameter KUTTA on card 9.

Action: \(\quad\) Check the number of Kutta points input via cards 13 and 14 against parameter KUTTA.
(1) Message:

XXX OFF-BODY POINTS MISSED, EXECU-

\section*{TION TERMINATED. (SR PRINTL)}

Cause of error: \(\quad\) The number of off-body points tallied during final printout does not agree with the number tallied during input.

Action: Check input data.

\section*{8. Optional Printouts for Use in Debugging}
(a) Geometrical data for each element. (IOUT = TRUE, card 3, SR INPUTL). For each nonlifting element is printed the element sequence number and twenty-nine geometric quantities (ref.4, sec. 9.51) and for each lifting element is printed the element sequence number and forty-five geometric quantities (ref. 3, sec. 7.2).
(b) Source induced velocity matrix, \(\vec{V}_{i j} .(\mathrm{MPR}=1\), card \(2 ;\) SR PNTVIJ)

COLUMN Matrix column number ( j )
CNTRL PT Control point number (i)
VXS, VYS, VZS Velocity components
if LIFSEC \(^{s}\) is greater than 0 (card 2), dipole induced velocity matrices, \(\vec{V}_{i j}^{F}\), \(\vec{V}_{i k}\), also are printed.

STRIP Lifting strip number
CNTRL PT Control point number
VXF, VYF, VZF First velocity components
VXS, VYS, VZS Second velocity components
(c) Onset flow matrices, \(\vec{V}_{i}^{(k)}, \vec{V}_{i}^{(\infty)} \cdot(\mathrm{MPR}=3, \mathrm{SR}\) UNIFLO)

ONSET FLOW NO.
CONTROL POINTS Control point number
X-FLOW, Y-FLOW Onset flow velocity components Z-FLOW
(d) Dot product matrices, \(\mathrm{A}_{\mathrm{ij}}, \mathrm{N}_{\mathrm{i}}{ }^{(\mathrm{k})}, \mathrm{N}_{\mathrm{i}}^{(\infty)}\) (MPR \(>=2\), card 2 SR AIJMX and NIKMX)

COLUMN \(\quad\) Matrix column number (j).
AIJ
Elements of \(\mathrm{A}_{\mathrm{ij}}\)
FLOW NO. Onset flow number (k)

RIJ
Right side of equation (7.12.5)
(e) Source density matrix (MPR > 2, card 2; PGM SIGMAL) SOLUTION OBTAINED AFTER COLSOL FLOW NO. Onset flow number. Element source densities, \(\sigma_{i}^{(k)}, \sigma_{i}^{(\infty)}\), are printed eight to a line.

The following data are stored on unit FLOWF in binary format for use later in the velocity calculations. Actual record structures are more easily determined by examining the SR SETFLO FORTRAN listing.

CASE Body identifier (input card 2)
ISECT Number of sections (lifting plus nonlifting)
LIFSEC Number of lifting sections (input card 2)
ALPHAX(1) Uniform onset flow direction cosines (card 4)
ALPHAY(1)
ALPHAZ(1)

SYM2

BETSQ \(\quad 1-\mathrm{N}_{\mathrm{M}}{ }^{2}\)
(NSTRIP)

NTYPE Section type indicator.
(ISECT)

SYM1 Floating point equivalent of input parameters NSYM1 and NSYM2

NSYM Total number of symmetry planes
NSTRP Total number of strips, including extra lifting strips if input.
BETAM \(\quad \operatorname{SQRT}\left(1-\mathrm{N}_{\mathrm{M}}{ }^{2}\right)\) where \(\mathrm{N}_{\mathrm{M}}\) is free stream Mach number

NLT Number of elements on each strip, including extra strips, and ignored and wake elements are counted. It is negative for the last strip of each section. (card 2)

0 for nonlifting

NLINE Number of strips in a section, not including extra strips (ISECT)

If LIFSEC GT 0:
IGW If true, there are ignored elements.
LASWAK If true, the semi-infinite final wake element option is exercised
PESWIS If true, the piecewise linear method for computing spanwise variation of lift vorticity is used.

NSTRIP See input card 8
(LIFSEC)
NLINE1(LIFSEC)
NLINEN(LIFSEC)
NSORCE(LIFSEC)
IXFLAG(LIFSEC)
IG1(I,J) Only if IGW = TRUE (see input card 10) IGN(I,J)

For each nonlifting element, the twenty-nine geometric quantities written on unit 4 by SR NOLIFT.

For each lifting element, the fifty-seven geometric quantities written on unit 4 by SR LIFT.

Only if the piecewise linear method is used for calculation of spanwise variation of vorticity. For each of K strips in J = LIFSEC lifting sections:
\(\mathrm{K},(\mathrm{D}(\mathrm{I}, \mathrm{J}), \mathrm{E}(\mathrm{I}, \mathrm{J}), \mathrm{F}(\mathrm{I}, \mathrm{J}), \mathrm{I}=1, \mathrm{~K})\)
where \(D, E, F\) are \(D_{k}, E_{k}, F_{k}\) of equation 7.11.5 of reference 3 .
KFLOW Number of lifting strips
KONTRL Number of on-body source elements (not including ignored, wake, and extra strip elements)

COMSIG Combined source densities (ref. 3 eq. 7.13.1) (KONTRL)

\section*{B(KFLOW) Vortex strength per unit length}

\section*{3. Peripheral Storage}

In addition to the flow field summary file (unit FLSUM) and the flow field file (unit FLOWF) several internal files are needed for the flow field calculation. Subroutine FLOW used eleven units for scratch storage. All data stored on these units are in binary format. In the following, use of each unit is considered only in terms of the maximum number of data words (numbers) and record lengths that would be stored on it. The following variables are defined to aid in this:

KONTRL Number of quadrilateral elements, not including those generated by symmetry, ignored, in the wake and in extra strips.

KUTTA
Points defined by input cards no. 13 and 14 at which the Kutta condition is to be applied. (KUTTA > 0 only if the flow tangency option is exercised.)

NOFF Number of off-body points at which velocity is to be calculated as defined by input cards no. 15.

NON

IATACK

NFLOW
KONTRL + KUTTA + NOFF
Number of lifting strips, not counting extra strips, nor those generated by symmetry.

KFLOW + IATACK
Unit 3: NFLOW records each consisting of \(3 \times\) NON numbers
Unit4: There is a record of 29 numbers for each nonlifting quadrilateral element plus

There is a record of 57 numbers for each lifting quadrilateral element (including ignored, wake, and extra strip elements)
plus
A one word record for each section of elements
Unit 8: The larger of
Two records each of length \(3 \times\) NON numbers or

NFLOW records each of length \(6 \times \mathrm{KFLOW}\) numbers or KONTRL records each of length KUTTA numbers

Unit 9: KONTRL records of maximum length KONTRL + 1 numbers
Unit 10: KONTRL records of maximum length KONTRL +1 numbers
Unit 11: \(1 / 2\) KONTRL records each of length \(3 \times\) NON numbers
Unit 12: \(1 / 2\) KONTRL records each of length \(3 \times\) NON numbers
Unit 13: The larger of
\(2 \times\) KONTRL records each of length \(3 \times\) NON numbers or
KONTRL records of maximum length KONTRL + NFLOW +1 numbers
Unit 14: The larger of
KFLOW records each of length \(3 \times\) NON numbers or
KONTRL records of maximum length KONTRL +1 numbers
Unit 15: The larger of
KFLOW records each of length \(3 \times\) NON numbers or
KONTRL records of maximum length KONTRL + NFLOW +1 numbers

\section*{4. Variable Array Dimensioning}

Subroutine FLOW incorporates variable dimensioning so that the program can be resized to fit different sized problems and computers. The calculation and storage of the flow field account for almost all storage required by LEWICE3D and hence are the only areas where variable dimensioning is used. To resize the problem the variables affected by the following dimension sizes must be resized in the main program along with the dimension sizes located in the data statement in the main program. The following description of the variable array sizes has been taken from reference 4. Minimum values for the variable dimension parameters are given where these numbers are not effected by symmetry.

LFSX Number of lifting sections
NL2X NSLX + 2

NOBX Total number of lifting strips, not counting extra strips
NONX Number of on-body elements in the flow (not counting ignored, wake, and extra strip elements) plus Kutta points defined by input (flow tangency option only) plus off body points (cards 15)

NSEX Total number of sections (lifting plus nonlifting)
NSLX Maximum number of lifting strips in any lifting section (including extra strips if input)

NSTX Total number of strips (i.e., \(n\)-lines; lifting plus nonlifting plus extra strips)
NWAX Similar to \(2 x\) (number of on-body quadrilateral elements in the flow (see NONX) plus the number of onset flows)
and
Cube of the number of lifting strips (not counting extra strips: i.e. NOBX**3) if the pressure equality Kutta condition options is selected.

N2BX \(2 \times\) NOBX

\section*{D. Subroutine SETFLO}

\section*{1. General Discussion}

The module SETFLO reads the flow field generated by the Hess-Smith code (unit FLOWF). This subroutine is always executed and hence a flow field is required on unit (FLOWF).

\section*{1. Printed Output}

SETLFLO output is limited to summary information about the flow field being read. This information is self explanatory and is written to units OUTPUT and JOBSUM.

\section*{E. Subroutine BETAC}

\section*{1. General Discussion}

The module BETAC drives the trajectory work used in calculating the local collection efficiency at each station of interest. This subroutine is optional (IRUN=2-10, NAMELIST TRAJ) and controls all the trajectory work (fig. 6). This subroutine calculates tangent and impact trajectories at the station of interest. The impact trajectory information is then used in the collection efficiency
calculation. If module BSTREM or LEWICE2D are to be executed then the collection efficiency information is required and BETAC must be executed.


Figure 6. - BETAC segmentation tree structure.

\section*{a. Search For Upstream Particle Release Points}

BETAC's first step toward the calculation of collection efficiency is to determine the upstream release points for trajectories that pass through the area of interest (fig. 7). There will be one release point calculated for each point specified at the section of interest (i.e. if NPSEC=2 then 2 upstream release points will be calculated; if NPSEC=4, then 4 upstream points will be calculated). These upstream release points (XSCI, YSCI, ZSCI) correspond to trajectories that will pass through the points defining the section of interest (XSEC, YSEC, ZSEC). The program CONFAC
developed by Norment (ref. 5) and put into subroutine form here is used to determine each of the upstream points.


Figure 7. - Illustration of tangent trajectory search arrays.

Program CONFAC is described in detail in reference 5 and will be covered only briefly here. CONFAC is an iterative procedure which finds a trajectory that passes within RW*TOL of the specified target point (XSEC, YSEC, ZSEC). Subroutine MAP controls the iteration and uses subroutine TRAJEC for the calculation of individual trajectories. If convergence has not been reached in 50 iterations then CONFAC will continue with the next upstream point. If one or more failures occur during the search for each of the upstream points then the program will terminate.

\section*{b. Search For Tangent Trajectories}

The second step toward calculating the collection efficiency at a section of interest is to determine the tangent trajectories. These are limiting trajectories that impact. Trajectories released between corresponding upper and lower tangent trajectories will impact the body. Those released outside the tangent trajectories will miss the body. There will be one tangent trajectory for every point of interest on the body (i.e. if NPSEC=2 then there will be 2 tangent trajectories, an upper and a lower. If NPSEC \(=4\), then there will be 4 tangent trajectories, two upper and two lower). The tangent trajectories are found by searching for the proper release points along the lines formed by the upstream release points XSCI, YSXI, ZSCI. For NPSEC=2 there will be one line. For NPSEC \(=4\) there will be 2 lines. Each line is searched in both directions to determine the upper and lower tangent trajectories. The tangent trajectory search is handled by the subroutine IMPLIM.

Subroutine IMPLIM determines tangent trajectories at the section of interest. Subroutine IMPLIM is based on the 2D tangent trajectory search routine used in LEWICE (ref. 7). Subroutine IMPLIM requires the input of specified lines (in this case the lines are formed by alternating values of XSCI YSCI, ZSCI), an initial start point on the specified line (in this case altemating points XSCI, YSCI, ZSCI), and the search tolerance DFINE. The algorithm initiates trajectories along the specified line midway between the most current "hit" trajectory and the most current "miss" trajectory. If the trajectory impacts the body it becomes the current "hit" trajectory. If it misses the body it becomes the current "miss" trajectory. The algorithm terminates the search when the distance between the initial start points of the current "hit" and "miss" trajectories is less then DFINE. This current impacting trajectory is then the tangent trajectory and is denoted by its upstream release points XTIP, YTIP, ZTIP. If the subroutine fails to find an impacting trajectory after three steps then it will continue on with the next tangent search. If one or more failures occur during the tangent trajectory search at the section of interest then the program will terminate.

\section*{c. Calculation Of Impact Trajectories}

The third step is to determine the matrix of release points for the trajectories to be used in the collection efficiency calculation. If NPSEC \(=2\), then a string of NBR equi-spaced release points will be generated between the upper and lower tangent trajectory release points (XTIP, YTIP, ZTIP). If NPSEC=4, then a matrix of NBR \(\times\) NBC trajectories release points will be determined. The rectangle formed by the four upstream tangent trajectory release points (XTIP, YTIP, ZTIP) is divided into NBC equi-spaced columns and NBR equi-spaced rows (fig. 8).

where:
NBR(ISC) is the number of rows of trajectories \(t 0\) be released in impingement array for the ISC \({ }^{\text {th }}\) section, NBC(ISC) is the number of columns of trajectories to be released in impingement array for the ISC \({ }^{\text {h }}\) section.

Figure 8. - Illustration of starting point and impaction point arrays.

The forth step involves calculating the trajectories for each of the release points generated in the above step. Subroutine ARYTRJ (ref. 5) is used to calculate the individual trajectories. The impact points corresponding to the release points are stored in arrays XBETA, YBETA, ZBETA for use in the calculation of collection efficiency.

\section*{d. Calculation Of Collection Efficiency}

The fourth and final step involves the calculation of collection efficiency at the section of interest. Subroutine BETAC calculates the local collection efficiency in two different ways depending on the variable NPSEC. The first method (NPSEC = 4) uses a full 3D calculation for which a matrix of impact trajectories (NBC \(x\) NBR) is required. This method is to be used for areas where fully 3D flow is expected. The second method (NPSEC = 2) uses a 2D method in which a single string of NBR impact trajectories is required. This 2D method saves considerable computational time and is justifiable for cases where small spanwise variations in the flow field are expected throughout the section of interest.

The full 3D collection efficiency calculations are straightforward and are analogous to those of the 2D problem. 3D collection efficiency is defined as the ratio of the particle flux at the surface to the particle flux in the free stream. Or if we follow a group of particle trajectories to the surface, then the 3D collection efficiency is the ratio of the surface area to free stream area mapped out by the particles.
\[
\begin{equation*}
\beta\left(x_{c}\right)=A_{o} / A_{m} \tag{Eq. 1}
\end{equation*}
\]

If the flux tube consists of four adjacent trajectories in the release matrix (fig.9) then the collection efficiency at the surface can be written where corrections for angle-of-attack and yaw have been made.
\[
\begin{equation*}
\beta(i, j)=\left(\cos \Psi \cdot \cos \alpha \cdot A_{o}(i, j)\right) /\left(A_{m}(i, j)\right) \tag{Eq. 2}
\end{equation*}
\]
where the collection efficiency is said to be located at the center of the impact region mapped out by the four impacting particles. The angles \(\Psi\) and \(\alpha\) refer to the sideslip and pitch angle of the geometry relative to the free stream flow vector (fig. 9).The areas \(\bar{A}(i, j)\) and \(A_{m}(i, j)\) are calculated using subroutine AREAP which calculates the area of an arbitrary polygon by dividing it into triangles and summing the areas of the individual triangles.

(b) Top view.

Figure 9. - Pitch and sideslip corrections for 3D collection efficiency calculation.

Calculation of collection efficiency using the "pseudo 2D" methods is similar to the 2D methods with several corrections. Corrections for angle-of-attack, yaw angle, sweep angle of surface and deformation of the flux tube are necessary (fig. 10). The resulting collection efficiency equation is then
\[
\begin{equation*}
\beta(i)=\left(\cos \psi \cdot \cos \alpha \cdot \cos \nu \cdot D S_{o}(i)\right) /\left(D S_{m}(i)\right) \tag{Eq. 3}
\end{equation*}
\]
where the collection efficiency is said to occur at the center of the impacting points of the two trajectories. The distances \(\mathrm{DS}_{0}(\mathrm{i})\) and \(\mathrm{DS}_{\mathrm{m}}\) (i) represent the distance between the upstream release point and the impact points respectively for two adjacent trajectories (fig. 10).As for the 3D case the angles \(\alpha\) and \(\Psi\) represent the pitch and sideslip angles, respectively. Angle \(v\) represents the rotation angle of the droplet trajectory pair relative to the sweep of the leading edge of the airfoil.


Figure 10. - Corrections for pitch, sideslip, and rotation for "quasi 2D" collection efficiency calculation.

\section*{2. Printed Output}

BETAC output is written to several files and includes summary information about the trajectory calculation, trajectory coordinates, and several error messages.

Trajectory summary information includes various information about the CONFAC, TANTRA, and ARYTRJ runs and is written to units JOBSUM and OUTPUT. The information written to the files is self explanatory.

Trajectory coordinates along with other pertinent trajectory parameters are written in binary format to unit TEMP25. The information is output according the output time step TPRINT and is in the following format (SR's CONFAC, TANTRA, and ARYTRJ)
IREC,(T(I),P1(I),P3(I),P5(I),P2(I),P4(I),P6(I),VX,VY,VZ,H,R,AC) I=1,IREC)
where:
\begin{tabular}{ll} 
IREC & Total number of cards output \\
T(I) & Integration time at the Ith output step \\
P1(I),P3(I),P5(I) & X,Y, Z components of the particle velocity respectively \\
P2(I),P4(I),P6(I) & X,Y,Z components of the particle acceleration respectively \\
VX,VY,VZ & X,Y,Z components of the flow field velocity respectively \\
H & Integration step size at the Ith output step \\
R & Reynolds number at the Ith output step \\
AC & Acceleration modulus at the Ith output step
\end{tabular}

Several error messages are written to units OUTPUT, JOBSUM. These messages along with an explanation and a possible solution are as follows.
(a) Message:

Cause of error: \(\quad\) Failure to find a trajectory that passes within a given tolerance (TOL) for one of the target points at the section of interest (XSEC, YSEC, ZSEC).

Action: Increase error tolerance (TOL), move section of interests points farther from body (i.e. XSEC, YSEC,
ZSEC) or increase the trajectory count limit for the terests points farther from body (i.e. XSEC, YSEC,
ZSEC) or increase the trajectory count limit for the CONFAC search (ILIM in data statement in SR MAP)
(b) Message:

Cause of error:

Action:

\section*{OUTPUT TRAJECTORIES FROM SUBROUTINE CONFAC DOES NOT MATCH THE NUMBER REQURIED. (SR BETAC)}

OUTPUT TRAJECTORIES FROM SUBROUTINE TANTRA DOES NOT MATCH THE NUMBER REQURIED. (SR BETAC)

Failure to find a tangent trajectory for one of the impingement limits at the section of interest (XTIP, YTIP, ZTIP).

Increase the tangent trajectory search step sizes (DCOR,DFINE) or increase the trajectory count limit for the TANTRA search (KTLIM in data statement in SR TANTRA)

\section*{F. Subroutine STREM3D}

\section*{1. General Discussion}

The module STREM3D determines the streamline at the station of interest. The module uses a RUNGE-KUTTA integration scheme to calculate the 3D streamlines. Figure 11 shows a schematic of the job stream for STREM3D. STREM3D also generates pressure coefficient and velocity information at each of the streamlines points. This module is optional (IRUN=1,5,7,9: and ISTRF \(=0\); NAMELIST TRAJ). If module BSTREM or LEWICE2D are to be executed then streamline information is required and either STREM3D or STREM2D must be executed.


Figure 11. - STREM3D segmentation tree structure.

Four steps are involved in determining the 3D streamline: determination of the local stagnation point, integration of the upper surface streamline, integration of the lower surface streamline, and projection of the upper and lower surface streamlines onto the body.

\section*{b. Search For Stagnation Zone}

A marching procedure is used to determine the stagnation zone. This algorithm steps towards the body with a step size of H. At each point a vertical scan of velocities is made. A dot product is made from consecutive velocities along the scan line. When the dot product reaches a
minimum along the scan line, the value is stored and compared to a criterion, VCRIT (currently VCRIT \(=.5\) ). If the value is less than the criterion, then the stagnation point has been found and the current scan line points ( \(X L, Y L, Z L\) ) and the points where the dot product reached a minimum value are stored (ISUP, ISLO). The points ISUP and ISLO are the points in the scan line arrays ( \(\mathrm{XL}, \mathrm{YL}, \mathrm{ZL}\) ) where the upper and lower streamlines' integration will initiate, respectively. If the criterion is not met at the current scan line then the procedure steps towards the body and repeats the above process. If the algorithm marches to the leading edge without meeting the criterion, VCRIT, then a warning message is printed and the stagnation points (ISUP, ISLO) are set to the values where the minimum dot product occurs for the current scan line. The above procedure essentially searches for the point near the leading edge where the velocity vector divergence (measured by the dot product of consecutive velocities along the scan line) is the greatest. This point should be the stagnation zone and streamlines initiated above this point (ISUP) should follow the upper surface, while streamlines initiated below this point should follow the lower surface.

\section*{b. Calculation Of Upper and Lower Streamlines}

Once the stagnation point has been found, the upper and lower surface streamlines can be determined. Off-body streamlines are used because velocity gradients on the panel edges make the integration of on-body streamlines difficult. The streamlines are integrated using a Runge-Kutta 4th order integration scheme with variable step size from points located on the scan line stored in the previous step (i.e. XL, YL, ZL). The upper streamline is integrated from the point ISUP in the scan line array. If problems occur at any time during the integration (i.e the streamline penetrates the body or the step size is too small) the streamline calculation will be restarted from the next point in the scan line array (i.e. ISUP \(=\) ISUP +1 ). The above process is repeated until a streamline is integrated to \(\mathrm{X}=\mathrm{XSTOP}\) with no problems. If failure to integrate a "good" streamline occurs for ISUP = NPTS (where NPTS is the number of points in the scan line array) then the program will terminate. After the upper surface streamline has been found, the lower streamline search begins. The lower streamline integration is initiated from the point ISLO in the scan line arrays. As for the upper streamline, the lower streamline is integrated until either a \(\mathrm{X}=\mathrm{XSTOP}\) is reached or until a problem arises. If a problem occurs then the streamline is restarted from the next point on the scan line (i.e. ISLO = ISLO -1). If ISLO drops below 1 during a restart then the procedure will terminate.

\section*{c. Projection Of Streamlines Onto Surface}

The last step is to project the streamlines onto the body. That is, the off-body integrated streamlines are projected onto the body in a surface normal direction to produce a streamline which has points lying on the panel edges. Projecting the streamline onto the body is done to allow easier geometry modifications in later calculations

To project the streamline onto the body we must first find the portion of the body where the streamline is located. This is done by searching for the panel which is closest to the centroid of the current section of interest (XC, YC, ZC). The lifting strip that contains the panel is then used for the on-body projection.

Once the local lifting strip has been found, we can construct the on-body points. There will
be NSTREM points in the on-body streamline which correspond to one more than the number of panels in the lifting strip. Each point on the on-body streamline will lie upon a panel edge connecting n -lines in the strip. Hence if there are NPTS panels there will be NPTS +1 points in the N -lines and hence NPTS +1 points in the on-body streamline.

To determine the on-body points corresponding to each panel edge in the strip, we first must calculate several parameters for each edge line in the strip: the surface normal of the panel edge ( \(\mathrm{XN}, \mathrm{YN}, \mathrm{ZN}\) ), a line containing the panel edge ( \(\mathrm{A}, \mathrm{B}\) ), and a plane with the normal of the panel edge which contains the panel edge (PLN). For the first and last edge line, the surface normal is the surface normal for the first and last panel respectively. For internal edges, the surface normal is taken as the average of the two surface normals from the panels that form the edge. The line containing the panel edge is formed from the corresponding points on the panel edge. The edge normal plane is determined from the panel edge surface normal and from a panel corner point on the panel edge line.

We can now contsruct the on-body points. Each point on the upper and lower integrated streamlines is projected onto the panel edge plane (PLN) using subroutine TRNSF (these points are stored in arrays XNEW, YNEW, ZNEW). The algorithm then searches for the two closest points in XNEW, YNEW, ZNEW to the line formed by the panel edge (A, B). A line is then formed from the two points (A2, B2) and the intersection between the two lines (A,B and A2, B2) is found. This point of intersection (PIN) is then the on-body point from the current edge line. This procedure is repeated for each of the panel edge lines in the lifting strip.

\section*{2. Printed Output}

Output from STREM3D is written to several output files (JOBSUM, OUTPUT) and includes summary information about the streamline integration and several error messages. The summary information includes coordinates, surface distances (measured from stagnation zone where positive surface distance denotes lower surface and negative surface distance denotes upper surface), pressure coefficients, and surface normals for each point on the streamline. The following error messages which can occur are explained with possible solutions.

Message: \(\quad\) STOP IN SUBROUTINE STREAM, ISUP = XXX or STOP IN SUBROUTINE STREAM, ISLO = XXX

Cause of error: \(\quad\) Failure to find an upper streamline or lower streamline along the line of points ( \(\mathrm{XL}, \mathrm{YL}, \mathrm{ZL}\) ). During the search iteration the release point for the streamline (ISLO or ISUP) has reached the upper or lower bound of the arrays XL, YL, ZL (i.e ISUP = 25 or ISLO \(=1\) ).

Action: Increase the distance between the body and the section of interest (XSEC, YSEC, ZSEC)

\section*{G. Subroutine STREM2D}

\section*{1. General Discussion}

The module STREM2D determines a 'pseudo' streamline at the station of interest. Figure 12 shows a schematic of job stream for STREM2D. The 'pseudo' streamline is determined as the intersection between the surface geometry and a plane input by the user (PLNST(I), \(\mathrm{I}=1,4\); NAMELIST TRAJ). This essentially generates a 2D cut along the surface. This 2D streamline can be used for generating data (e.g. pressure coefficient, collection efficiency, heat transfer coefficient) for swept and unswept comparisons or for evaluating the traditional quasi-3D icing calculation (i.e. calculating swept 3D cases by using 2D calculations along planes normal to the leading edge). This module is optional (IRUN=1,5,7,9: and ISTRF=1: NAMELIST TRAJ). If module BSTREM or LEWICE2D are to be executed then streamline information is required and either STREM3D or STREM2D must be executed.


Figure 12. - STREM2D segmentation tree structure.

The first step in determining the 2D streamline is to find the lifting strip associated with the section of interest. As for the 3D streamline case, this strip is the one associated with the closest panel to the section of interest.

The next step is to determine where the specified plane intersects the local lifting strip. The points making up the 2D streamline are essentially the points where the panel edge lines ( m -lines in the strip) intersect the plane. There will be one point on the 2D streamline for every m-line in the strip. This number of points in the 2D streamline then corresponds to the number of points in the N -lines for the strip or to the number of panels plus one.

Each point on the 2D streamline is constructed from an m-line and the specified plane. The panel edge lines (A, B) are constructed from the 2 comer points of the panel forming the edge line ( \(\mathrm{P} 1, \mathrm{P} 2\) ). The intersection of the edge line and the plane is calculated in subroutine PINT. This point then is the 2D streamline point. This procedure is repeated for every point in the N-line.

\section*{2. Printed Output}

STREM2D output consists of coordinates, surface distances (measured from stagnation zone where positive surface distance denotes lower surface and negative surface distance denotes upper surface), pressure coefficients, and surface normals along the streamline and is written to units JOBSUM and OUTPUT.

\section*{H. Subroutine BSTREM}

\section*{1. General Discussion}

The module BSTREM interpolates the surface collection efficiencies generated by module BETAC onto the streamline generated in STREM2D or STREM3D. Figure 13 provides a schematic of the BSTREM algorithm. This module is optional (IRUN=5,7,9: NAMELIST TRAJ). If LEWICE2D is to be executed, then collection efficiencies along the streamlines are required and BSTREM must be executed.


Figure 13. - BSTREM segmentation tree structure.

Subroutine BSTREM calculates the collection efficiency along the streamline from the surface impingement data in two different ways depending on the value of NPSEC. If NPSEC \(=4\) then an interpolation for the streamline points is made from the surface collection efficiency information. If NPSEC= 2 , then an extrapolation of the surface collection efficiency is made onto the streamline points.

The first step in making the 3D interpolation (NPSEC = 4) is to determine the location of the streamline points relative to the matrix of surface collection efficiency points. For each point in the surface streamline, a search is made to determine in which collection efficiency cell the point lies (fig. 14). If the point does not lie in any of the cells, then the collection efficiency for that point is set to zero. This means care must be taken in setting the width of our section of interest. The spanwise width of the section of interest must cover the spanwise range of the streamline in its entirety within the impingement local impingement limits.


Figure 14. - Collection efficiency interpolation onto surface.

The interpolation procedure used when NPSEC \(=4\) is basically that described by Kim (ref. 8) in his 3D trajectory code paper. Given a point on the surface which lies amid the matrix of surface collection efficiencies, we have the following interpolation scheme for the collection efficiency at that poin.:
\[
\begin{gather*}
\beta\left(x_{s}\right)=\beta\left(x_{c}(i+1, j+1)\right) \cdot u \cdot v+\beta\left(x_{c}(i, j+1)\right) \cdot u \cdot(1-v)+  \tag{Eq. 4}\\
\beta(x(i, j)) \cdot(1-u) \cdot(1-v)+\beta(x(i+1, j)) \cdot(1-u) \cdot v
\end{gather*}
\]
where:
\[
\begin{align*}
& u=\vec{X}_{s} \bullet \vec{X}_{j}  \tag{Eq. 5}\\
& v=\vec{X}_{s} \bullet \vec{X}_{j}
\end{align*}
\]

The method employed when NPSEC \(=2\) is an extrapolation technique based on the assumption that there is no spanwise variation in collection efficiency. Alternatively, the method assumes that surface lines running parallel to the leading edge are lines of constant collection efficiency. For each point on the streamline, a test is made to determine which two iso-lines of collection efficiency the point lies between. If the point is outside of the impingement limits, then the two iso-lines will be zero and the collection efficiency will be set to zero. To determine which iso-lines the streamline point lies between, we first form a line parallel to the surface which goes through the streamline point. This line (A, B) is formed from the slope of the local panel edge (ATRAN) and from the point on the streamline ( P 1 ). We then loop through the collection efficiency surface points searching for the two closest points to this line ( \(\mathrm{P} 3, \mathrm{P} 4\) ), and form a line between these two points (A2,B2). The minimum distance between the lines and the points where this minimum occurs for each of the lines is then calculated (PIN1, PIN2). If the point (PIN1) lies outside of the endpoints of the line segment (A2, B2), then the point lies outside of the impingement limits and its impingement efficiency is zero. If the point lies within the line segment, then a linear interpolation of collection efficiency from the collection efficiencies at the segment endpoints is made. This collection efficiency is then the collection efficiency for the streamline point.

\section*{2. Printed Output}

BSTREM output consists of streamline coordinates, surface distances (measured from stagnation zone where positive surface distance denotes lower surface and negative surface distance denotes upper surface), pressure coefficients, surface normals, trajectory tangents and collection efficiency information along the streamline and is written to units JOBSUM and OUTPUT.

\section*{I. Subroutine LEWICE2D}

\section*{1. General Discussion}

The module LEWICE2D calculates the ice shape at the section of interest using the collection efficiency and pressure coefficient information generated above. The methodology of the ice accretion is basically that of the 2D LEWICE calculation expanded to three dimensions. Figure 15 shows a breakdown of the job stream for LEWICE2D.The ice may be grown either in the surface normal direction or in the trajectory tangent direction (see subroutine NEWPTS). If LEWICE2D is to be executed, then collection efficiency and pressure coefficient information is needed along the streamline and hence BETAC, STREM2D or STREM3D, and BSTREM must be executed.


Figure 15. - LEWICE2D segmentation tree structure.

The ice accretion process consists of the deposition of super-cooled water droplets on an aerodynamic surface and the associated mass and energy exchange processes which result in the growth of ice on that surface. That process was first modeled by Tribus (ref. 9) and later developed into the model currently used in LEWICE, by Messinger (ref. 10). The Messinger model is also used in this code and is applied along streamlines, as calculated by the potential flow portion of the code. This chapter describes the Messinger model, the application of that model along streamlines, and the input and output files used by these subroutines.

\section*{a. Modeling The Ice Growth Process}

The Messinger model of ice growth is based on the premise that all water impinging on the surface of interest exchanges energy with the surface and surrounding environment, resulting in freezing of some fraction of the incoming water and the remaining water running back along the surface. This model of ice growth on a surface exposed to an icing cloud is depicted in figure 16 , showing the relevant mass and energy exchange processes.


Unfrozen water from upstream
Figure 16. - Ice growth on a surface

The ice growth is modeled by dividing the surface into control volumes, along streamlines determined from the potential flow analysis, and performing a mass and energy balance on each control volume. The control volume extends from the ice-water interface out to beyond the boundary layer. Evaluation of the control volumes is started at the stagnation point and marches along the upper and lower surfaces to the trailing edge. The mass and energy balances at each station are considered quasi-steady processes. The ice growth is thus modeled as a series of steadystate processes with the duration of each step and the number of steps determined by the user.

The mass balance, depicted in figure 17, is described by the following equation
\[
\begin{equation*}
\dot{m}_{c}+\dot{m}_{r_{i n}}-\dot{m}_{e}-\dot{m}_{r_{o u t}}=\dot{m}_{i} \tag{Eq. 6}
\end{equation*}
\]
where \(\dot{m}_{c}\) is mass flow rate of incoming water, \(\dot{m}_{r_{i n}}\) is the mass flow rate of runback water from the previous control volume, \(\dot{m}_{e}\) is the mass flow rate of evaporated water, \(\dot{m}_{r_{\text {out }}}\) is the mass flow rate of water running back to the next control volume, and \(\dot{m}_{i}\) is the mass flow rate of water leaving the control volume due to freeze-out.


Figure 17. - Mass balance control volume

In this mass balance, the incoming water, incoming runback water, and evaporated water flow rate are previously calculated quantities. The amount of water changing phase to ice is determined from the energy balance and any remaining water is considered to move into the next control volume. The value of \(\dot{m}_{r_{\text {in }}}\) is set to zero at the stagnation point, as this is the start of the marching process for both the upper and lower surfaces.

The energy balance is handled in a similar manner and is depicted in figure 18.


Figure 18. - Energy balance control volume

The equation describing the control volume energy balance is
\[
\begin{equation*}
=\left(\dot{m}_{e} i_{v, s u r}+\dot{m}_{c} \dot{m}_{w, T}+\dot{m}_{r_{\text {out }}} i_{w, s u r}+\dot{m}_{i} i_{i, s u r}+q_{c} \Delta s+q_{k} \Delta s\right) \tag{Eq. 7}
\end{equation*}
\]
where \(i_{w, T}\) is the stagnation enthalpy of the incoming water droplets, \(i_{w, s u r(i-1)}\) is the enthalpy of the water flowing into the control volume from upstream, \(i_{v, \text { sur }}\) is the enthalpy of the vapor leaving the control volume due to evaporation, \(i_{w, ~ s u r}\) is the enthalpy of the water running back to the next control volume, \(i_{i, \text { sur }}\) is the enthalpy of the ice leaving the control volume, \(q_{c}\) is the heat transfer due to convection, and \(q_{k}\) is the heat transfer due to conduction.

The incoming energy due to water droplet impingement and runback are calculated from known information. The energy leaving the control volume due to evaporation and convection can be calculated independently. The heat transfer due to conduction is not considered in this analysis, as the ice layer is considered to act as an insulating surface. This leaves the energy loss due to freeze-out and the energy leaving the control volume due to runback as unknowns. In particular, the mass flow rates for these two terms are unknown, as was the case for the mass balance. This leaves two equations and two unknowns and the system can be solved. The details of the evaluation of each of the terms in the energy equation can be found in appendix \(A\) of the LEWICE Users Manual (ref. 7). A useful concept for evaluation of the nature of the ice accretion being calculated is the freezing fraction. This is the fraction of the total water coming into the control volume that changes phase to ice. The equation defining freezing fraction is
\[
\begin{equation*}
f=\frac{\dot{m}_{i}}{\dot{m}_{c}+\dot{m}_{r_{i n}}} \tag{Eq. 8}
\end{equation*}
\]

This term can also be used to simplify the evaluation of the energy balance.
The convection heat transfer term plays an important role in the LEWICE3D energy balance. It is through this term that the aerodynamics and the roughness levels can influence the development of the ice accretion. Currently, the convection heat transfer is determined from an evaluation of the boundary layer growth on the surface, using an integral boundary layer method. The pressure distribution determined by the potential flow code is used as input to the boundary layer calculation. The boundary layer calculation determines the displacement thickness and the momentum thickness. The Reynold's analogy is used to determine the heat transfer coefficient. Roughness is accounted for by a correlation developed by Ruff. (ref. 7) The complete description of the integral boundary layer calculation is found in appendix B of the LEWICE Users Manual (ref. 7).

Expanding the terms in the energy equation as described in the LEWICE manual and combining Eqs. 7 and 8 yields the following form of the energy equation
\[
\begin{gather*}
\dot{m}_{c}\left[c_{p_{w, s}}\left(T_{s}-273.15\right)+\frac{V_{\infty}^{2}}{2}\right] \\
+\dot{m}_{r_{i n}}\left[c_{p_{w, s u r(i-1)}}\left(T_{s u r(i-1)}-273.15\right)\right]+q_{k} \Delta s \\
=m_{e}\left[c_{p_{w, s u r}}\left(T_{s u r}-273.15\right)+L_{v}\right] \\
+\left[(1-f)\left(\dot{m}_{c}+\dot{m}_{r_{i n}}\right)-\dot{m}_{e}\right] c_{p_{w, s u r}}\left(T_{s u r}-273.15\right)  \tag{Eq. 9}\\
+f\left(\dot{m}_{c}-\dot{m}_{r_{i n}}\left[c_{p_{i, s u r}}\left(T_{s u r}-273.15\right)-L_{f}\right]\right. \\
+h_{c}\left[T_{s u r}-T_{e}-\frac{r_{c} V_{e}^{2}}{2 c_{p_{a}}}\right] \Delta s
\end{gather*}
\]

\section*{b. Ice Growth Along Streamlines}

The application of this ice growth model in two dimensions is straightforward in the sense that the flow direction of runback water is unambiguous. In three dimensions, the flow direction of water out of a control volume is not so easily determined. The most rigorous approach would be to solve the air-water flow interaction problem, including the possibility of flow over large roughness elements. In this case, considerable computational effort would be required beyond the already significant effort of calculating the flow field, droplet trajectories, and ice growth. As such, some degree of approximation is appropriate in order to develop a tool which can be useful and not require more computational effort than necessary.

One alternative is to calculate the boundary layer development over the entire three dimensional surface. This approach requires significant computational expenditure. The approach taken for this code is to apply a two dimensional strip analysis along streamlines calculated by the three-dimensional panel code. There are differences in streamline direction between those determined from a boundary layer analysis and those from the panel code. The differences in ice shape development caused by use of the panel code results are most likely smaller than the accuracy level of the ice growth prediction method, given the geometric resolution limits established by the surface grid.

Thus, the integral boundary layer calculation is started at the stagnation line, as determined from the panel code results. Then the streamline is divided up into control volumes by using the intersection of the streamline with the fore and aft panel edges as the boundaries of the control volume and a unit length in the spanwise direction as the other dimension of the control volume. Then the \(\beta\) value at the midpoint of the streamline segment is used as the \(\beta\) for the control volume. This use of the streamline \(\beta\) value brings in the spanwise influence on the particle trajectory, whereas a simple cut perpendicular to the leading edge would result in a somewhat different \(\beta\) distribution for the ice growth calculation. A representative streamline used for an ice growth calculation on a swept wing model is shown in figure 19.


Figure 19. - Streamline on swept wing surface.
The control volumes thus correspond to a series of trapezoidal elements stacked side-byside from the leading edge to the trailing edge on both the upper and lower surfaces. Figure 20 illustrates a series of control volumes for an arbitrary surface, including the streamline path through the center of each volume.

The \(\beta\) value for the element is taken as the \(\beta\) value at the midpoint of the streamline segment. The surface area of the bottom face of the control volume is that of a trapezoid (i.e. equal to the panel length times the panel width) and thus is equivalent to the corresponding panel area. This value is then used to determine the height of the ice accretion, using \(\dot{m}_{i}\) and the density of ice to determine the ice volume, resulting in the following equation for the height of ice deposited.
\[
\begin{equation*}
d_{i c e}=\frac{\dot{m}_{i} \Delta t}{\rho_{i} A_{s u r}} \tag{Eq. 10}
\end{equation*}
\]

The thickness is then considered to be uniform over the entire panel for determination of the new geometry. The new coordinates for the panel are obtained from the relation,
\[
\begin{equation*}
x_{i}=x_{i}+d_{i c e} \hat{x}_{i} \tag{Eq. 11}
\end{equation*}
\]
where \(\mathrm{x}_{\mathrm{i}}\) is the coordinate of the center of the panel in the i -direction and \(\mathrm{X}_{\mathrm{i}}\) is the i -component of the unit normal vector for the panel.


Figure 20. - Control volumes for mass and energy balance.

As the ice thickness increases, there is the possibility that the ice segments will intersect and thus this must be accounted for in the determination of the new geometry. Since this is a strip analysis, the ice thickness does not vary along the span at a given chordwise location. Therefore, the possibility of ice growth intersection is limited to the normal and chordwise directions. In that case, the line segments corresponding to the top of every other panel are examined for intersection. If the intersection is determined to occur, then a new panel is formed with its center halfway between the two old panels. This requires determination of the coordinates of the new panel and renumbering of the panels. This information is then used in subsequent potential flow calculations.

\section*{2. Printed Output}

Output from LEWICE2D consists of iced streamline coordinates, surface distances, surface normals, trajectory tangents, edge velocities, collection efficiencies ice thickness, heat transfer coefficient, and static pressure and is written to units OUTPUT, JOBSUM.

\section*{J. Subroutine BODMOD}

\section*{1. General Discussion}

The module BODMOD generates the new geometry file (NGEOM) for the iced geometry using the ice accretion at each station of interest (generated in LEWICE2D) and the old geometry file (OGEOM). Figure 21 shows a schematic of the job stream for BODMOD.The module reads the old geometry file N -line by N -line and if no ice accretion is requested for the section (IMO\(D(\) ISEC \()=0\) ) it is written to the new geometry file (NGEOM). If an ice accretion has been calculated for the section (IMOD(ISEC)=ICEC), then the entire section is modified to reflect the ice shape calculated for the two closest streamlines and is written into the new geometry file. In essence, the old geometry file (OGEOM) is transferred to the new geometry file (NGEOM) and it is overlaid only at sections where ice shapes have been calculated.


Figure 21. - BODMOD segmentation tree structure.

Subroutine BODMOD controls the modification of each N -line and is comprised of two steps. First it takes the ice thickness distribution from each of the iced streamlines and extrapolates or interpolates that distribution upon each N -line and second, it calculates the new N -line using the ice thickness distribution and either the surface normals or trajectory tangents. The algorithm uses a cubic interpolation of ice thickness as a function of surface distance in the flow direction and a linear interpolation of ice thickness as a function of spanwise position in the spanwise direction. Once the ice thickness distribution has been determined for each point on the N -line, the new N line is generated by adding the interpolated ice thickness at each point to the old N -line in either the surface normal or the trajectory tangent direction as described in the LEWICE2D section.

The first step in generating the new N -line is to determine the closest iced streamlines to the N -line. If only one iced streamline was calculated then the N -line receives the ice thickness distribution calculated for that streamline (DICES(I,1) vs. SST(I,1), \(\mathrm{I}=1\) to NPTS). If multiple iced streamlines were calculated, then the two closest streamlines to the N -line will be found. This is
done by finding the two closest sections of interest to the N -line and using the iced streamlines associated with these sections. The two closest streamlines are denoted by IST1, IST2 and the ice thickness distribution and surface distance associated with each of the streamlines are stored in the arrays (DICE(I,IST1), SST(I,IST1), I = 1 to NPTS 1, DICES(I,IST2), SST(I,IST2), I=1, NPTS2), where NPTS1, NPTS2 are the number of points in each of the iced streamlines, respectively. In addition to the above parameters the parametric distance of the N -line along the line connecting the two closest sections of interest is calculated (TL). This distance is used in the linear spanwise interpolation or extrapolation done later.

The second step is to normalize all of the streamline surface distance arrays to the surface distance arrays for the current N -line. This is done to avoid problems in the cubic spline interpolation which follows.

The third step involves interpolating the ice thickness distribution from each of the iced streamlines onto the N -line surface distance distribution. The interpolation is done using a cubic spline fit of the ice thickness vs. surface distance array.

The fourth step is to determine the ice distribution at the current N -line from the associated iced streamlines. If only one streamline is calculated then the N -Line will receive the ice thickness distribution from that streamline. If more than one streamline is calculated then a spanwise linear interpolation will be made from the two closest ice streamlines (ISTR1, ISTR2). This linear interpolation can be written
\[
\begin{equation*}
\operatorname{DICE}(I)=(\operatorname{DICES}(I S T 2, I)-\operatorname{DICES}(I S T 1, I)) \cdot T L+\operatorname{DICES}(I S T 1, I) \tag{Eq. 12}
\end{equation*}
\]
where TL is the parameteric distance of the N -line along the line connecting the two closest sections of interest (ISTR1, ISTR2), and DICE is the ice thickness distribution for the current N-line.

The fifth and final step is to generate the new N -line. This is done by adding the ice to the old geometry in either the surface normal or trajectory tangent direction. This is the same procedure used to generate the iced streamlines, and is discussed in the LEWICE2D section.

\section*{2. Printed Output}

Output for BODMOD is written to unit NGEOM and contains the new iced geometry in DUGLIFT format. For an explanation of the information in the NGEOM file see table I.

\section*{K. Summary Of Subroutines}

The following tables describe the subroutines used to do the flow, trajectory, streamline, impingement efficiency, impingement efficiency interpolation, ice accretion, and geometry modification.

\section*{TABLE I. - FLOW FIELD CALCULATION SUBROUTINES}
\begin{tabular}{|c|c|c|}
\hline Subroutine & Called by & Description \\
\hline AlJMX & SIGMAL & Computes the matrix, Aij, of dot products of source induced velocities with normal vectors on the on-body elements. \\
\hline BVORTX & CONTRL & Calls PKUTTA or FKUTTA to calculate vortex strength per unit path length around the \(\mathrm{k}^{\text {th }}\) lifting strip, \(\mathrm{B}^{(\mathrm{k})}\), for all lifting strips. \\
\hline CKARRY & CONTRL & Cross checks storage array capacities. \\
\hline COLSOL & SIGMAL & Solves linear equation matrices for element source densities. \\
\hline CONTRL & DUGLFT & Controls flow of the modified Hess code which processes body surface data for use by the flow and trajectory codes. \\
\hline DATPRS & INPUTL & Translates, scales, and rotates about the y-axis surface description data immediately after input. \\
\hline DKEKFK & PISWIS & Calculates \(D_{k}, E_{k}\) and \(F_{k}\) for use in calculating piecewise linear spanwise variation of \(B^{(k)}\). \\
\hline FAR3 & FLOVEL & Vectorized subroutine which calculates the induced velocity from a lifting panel in the far field. \\
\hline FARNL & FLOVEL & Vectorized subroutine which calculates the induced velocity from a non-lifting panel in the far field.. \\
\hline FKUTTA & BVORTX & Computes vortex strength, \(\mathrm{B}^{(\mathrm{k})}\), for each lifting strip by the flow tangency method. \\
\hline FLOVE2 & \begin{tabular}{l}
TRAJEC \\
CONFAC \\
ARYTRJ \\
FLOPNT
\end{tabular} & Returns flow velocity for a given point in space. \\
\hline FLOVEL & \begin{tabular}{l}
TRAJEC \\
CONFAC \\
ARYTRJ \\
FLOPNT
\end{tabular} & Returns flow velocity for a given point in space (vectorized version). \\
\hline HEADER & CONTRL INPUTL & Writes a printout header. \\
\hline
\end{tabular}

TABLE I. - Continued.
\begin{tabular}{|c|c|c|}
\hline Subroutine & Called by & Description \\
\hline & NOLIFT & \\
\hline & LIFT & \\
\hline & VIJMX & \\
\hline & PNTVIJ & \\
\hline & DKEKFK & \\
\hline & UNIFLO & \\
\hline & SIGMAL & \\
\hline & AIJMX & \\
\hline & NIKMX & \\
\hline & VELOCY & \\
\hline & PRINTL & \\
\hline INPUTL & CONTRL & Inputs surface quadrilateral corner coordinates and controls computation of the geometric properties of lifting quadrilateral elements. Also prints the first major DUGLFT output. \\
\hline LIFT & INPUTL & Computes geometric properties of lifting quadrilateral elements. \\
\hline MIS 1 & \begin{tabular}{l}
PKUTTA \\
FKUTTA
\end{tabular} & Linear equation solver. Used in calculation of vortex strengths, \(B^{(k)}\), of lifting strips. \\
\hline NEAR & VFMLFT & Computes source and vortex induced velocities from an element in a lifting strip using the near-field equations. \\
\hline NEAR5 & FLOVEL & Vectorized subroutine which calculates the induced velocity from a lifting panel in the near field. \\
\hline NEARF & VFLIFT & Computes source and vortex induced velocities from an element in a lifting strip using the near-field equations. \\
\hline NEARNL & FLOVEL & Vectorized subroutine which calculates the induced velocity from a non-lifting panel in the near field. \\
\hline NIKMX & SIGMAL & Computes the right hand sides of the \(\mathrm{A}_{\mathrm{ij}}\) matrix, \(\mathrm{N}_{\mathrm{i}}{ }^{(\mathrm{k})}\) and \(\mathrm{N}_{\mathrm{i}}{ }^{(\infty)}\), which are the dot products of the onset flows with the unit normal vectors to the on-body elements. \\
\hline NOLIFT & INPUTL & Calculates geometric quantities for quadrilateral elements in a nonlifting section. \\
\hline
\end{tabular}

\section*{TABLE I. - Continued.}
\begin{tabular}{|c|c|c|}
\hline Subroutine & Called by & Description \\
\hline PATPRS & PINPUT & Translates, scales, and rotates about the \(y\)-axis surface description data immediately after input. \\
\hline PEADER & PINPUT & Writes a printout header. \\
\hline PISWIS & VMATRX & Calculates \(\overrightarrow{\mathrm{V}}_{\mathrm{ik}}{ }^{(0)}\) and \(\overrightarrow{\mathrm{V}}_{\mathrm{ik}}{ }^{(1)}\) according to equation (11.2) of reference2, and calls DKEDKFK and PSONST to calculate vortex induced onset flows. Used only for piecewise linear spanwise variation of vortex strength. \\
\hline PKUTTA & BVORTX & Computes vortex strength, \(\mathrm{B}^{(\mathbf{k})}\), for each lifting strip by the pressure equality method. \\
\hline PNTVIJ & VMATRX & If so requested (for debugging purposes only), prints all source induced velocities, \(\overrightarrow{\mathrm{V}}_{\mathrm{ij}}\), and all vortex induced velocities, \(\overrightarrow{\mathrm{V}}_{\mathrm{ij}}(\mathrm{F})\) and \(\overrightarrow{\mathrm{V}}_{\mathrm{ij}}(\mathrm{S})\). \\
\hline PRINTL & VELOCY & Prints the final output of the DUGLFT computations. \\
\hline PSONST & PISWIS & Computes vortex induced onset flows when the piecewise-linear method of spanwise variation of vortex strength is used. \\
\hline READ1 & SIGMAL COLSOL PKUTTA FKUTTA SUMSIG VELOCY & Reads in one singly subscripted array from a peripheral storage unit. \\
\hline READ3 & \begin{tabular}{l}
PNTVIJ \\
STEPFN \\
PISWIS \\
PSONST \\
UNIFLO \\
AIJMX \\
NIKMX
\end{tabular} & Reads three subscripted arrays from a peripheral storage unit. \\
\hline SETFLO & \begin{tabular}{l}
FLOPNT \\
ARYTRJ \\
CONFAC \\
TANTRA
\end{tabular} & Reads DUGLFT output data stored on unit18 that is required by SR FLOVEL for velocity calculations. If flow velocities are calculated by other than the Hess method, this code must be replaced with a dummy call. \\
\hline
\end{tabular}

\section*{TABLE I. - Continued.}
\begin{tabular}{|c|c|c|}
\hline Subroutine & Called by & Description \\
\hline SIGMAL & CONTRL & Controls calculation of the element source densities, \(\sigma_{j}^{(k)}\) and \(\sigma_{j}^{(\infty)}\). \\
\hline STEPFN & VMATRX & Computes vortex induced onset flows when the step function method of spanwise variation of vortex strength is used. \\
\hline STOR18 & CKARRY & Store control and quadrilateral geometrical property data on storage unit 18 for use by the flow and trajectory codes. \\
\hline SUMSIG & CONTRL & Computes the combined element source strengths, \(\sigma_{(\mathrm{j})}\). \\
\hline UNIFLO & VMATRX & Stores uniform onset flow velocities for use in calculating element source densities. \\
\hline VELOCY & CONTRL & Computes the final velocity at the centroid of each element. and controls the final printout of the DUGLFT calculation. \\
\hline VFLIF3 & FLOVEL & Vectorized subroutine which calculates the induced velocity from a wake panel. \\
\hline VFLIFT & FLOVE2 & Controls computation of velocities induced at a point in space by elements of unit source density and unit vortex strength in a lifting section. \\
\hline VFMLFT & VIJMX & Controls computation of velocities induced at all control points by elements of unit source density and unit vortex strength in a lifting section. \\
\hline VFMNLF & VIJMX & Computes velocities induced at all control points by elements of unit source density in a nonlifting section. \\
\hline VFNLFT & FLOVE2 & Computes velocities induced at a point in space by elements of unit source density in a nonlifting section. \\
\hline VIJMX & VMATRX & Controls computation of source induced velocities, \(\vec{V}_{i j}\), and vortex induced velocities, \(\vec{V}_{i j}{ }^{(F)}\) and \(\vec{V}_{i j}(\mathbf{S})\), at the centroids of all elements. \\
\hline VMATRX & CONTRL & Subexecutive code for computation of induced and onset flow. \\
\hline
\end{tabular}

\section*{TABLE II. - STREAMLINE CALCULATION SUBROUTINES}
\begin{tabular}{|c|c|c|}
\hline Subroutine & Called by & Description \\
\hline CLINE & STAGF & Produces a set of equi-spaced points between the two endpoints of a line segment. \\
\hline CROSP & STAGF & Determines the cross product of two vectors. \\
\hline DISLN & INSTRM & Computes the minimum distance between two lines and the points on each of the lines where this minimum occurs. \\
\hline DSTPLN & \begin{tabular}{l}
INSTRM \\
AREAP
\end{tabular} & Calculates the minimum distance between a point and a line and the point along the line where this minimum occurs. \\
\hline FLOVEL & \begin{tabular}{l}
INSTRM \\
STAGF \\
STINT \\
STREM2D \\
STREM3D \\
STRMLN
\end{tabular} & Vectorized velocity subroutine. Returns a velocity at a given point. Description of dependent subroutines given in Tablel. \\
\hline FLOVE2 & \begin{tabular}{l}
INSTRM \\
STAGF \\
STINT \\
STREM2D \\
STREM3D \\
STRMLN
\end{tabular} & Returns a velocity at a given point. Description of dependent subroutines given in Table I. \\
\hline INSTRM & STREM3D & Projects off-body integrated streamline points to on-body streamline points. \\
\hline PANMIN & \begin{tabular}{l}
STREM2D \\
STREM3D
\end{tabular} & Determines the closest panel to a given point. \\
\hline PLIN & \begin{tabular}{l}
INSTRM \\
STREM2D \\
AREAP
\end{tabular} & Given three points, determines the parametric equation of a line parallel to two of the points and which passes through a third point. \\
\hline STAGF & STREM3D & Determines the off body stagnation point at a section of interest. \\
\hline STINT & STRMLN & 4th order Runge-Kutta integration scheme for calculating streamlines. \\
\hline
\end{tabular}

TABLE II. - Concluded.
\begin{tabular}{llll} 
Subroutine & Called by & \multicolumn{1}{c}{ Description } \\
& MAIN & \begin{tabular}{l} 
Calculates a 2D streamline based on the intersection of a given \\
plane and the geometry.
\end{tabular} \\
STREM3D & MAIN & \begin{tabular}{l} 
Controls the calculation of the 3D integrated on-body stream- \\
lines.
\end{tabular} \\
STRMLN & STREM3D & Integrates a 3d streamline from a given point.
\end{tabular}

\title{
TABLE III. - COLLECTION EFFICIENCY CALCULATION SUBROUTINES
}
\begin{tabular}{|c|c|c|}
\hline Subroutine & Called by & Description \\
\hline ACORR & BETAC & Determines surface area correction due to sweep of surface for the "quasi" 2D impingement efficiency calculation. \\
\hline ARYTRJ & BETAC & Calculates trajectories for a given set of release points. \\
\hline AREAP & BETAC & Calculates the area of an N -sided polygon. \\
\hline BETAC & LEWICE3D & Controls the calculation of surface impingement efficiency at a section of interest. \\
\hline CDRR & \begin{tabular}{l}
PRFUN \\
PARTCL
\end{tabular} & Given Reynolds number, returns Davies number for a sphere. Used for water drops for which Reynolds number is less than equal to 81.23 . \\
\hline CLINE & BETAC & Produces a set of equi-spaced points along a line between two given points. \\
\hline CONFAC & BETAC & Determines the release point for a trajectory which passes within a specified tolerance of a target point at the section of interest. \\
\hline DVDQ & TRAJEC & Integrates particle equations of motion for each time step. \\
\hline FALWAT & PARTCL & Returns still-air, terminal settling speed for a water drop. Uses equation of Beard. \\
\hline IMPACT & TRAJEC & Used in runs under control of CONFAC to adjust trajectory initial \(y, z\) coordinates to avoid impact on the body on the next trajectory after impaction has occurred. This is a problem-specific subroutine that must be programmed by the user. \\
\hline IMPLIM & BETAC & Determines tangent trajectories at the section of interest. \\
\hline MAP & CONFAC & Controls the iterative calculation of trajectories to a specified target point. \\
\hline MATINV & MAP & Linear equation solver. \\
\hline PARTCL & BETAC & Reads particle specification data and returns still-air, terminal particle settling speed and other particle data as required for the particular type of particle. This is a particle type-specific code. \\
\hline
\end{tabular}

TABLE III. - Continued.
\begin{tabular}{lll} 
Subroutine & Called by & \multicolumn{1}{c}{ Description } \\
POLYGO & CONFAC & \begin{tabular}{l} 
The version provided here is for water drops. \\
Calculates area of plane polygon of N vertices. Provides cross- \\
sectional areas of particle flux tubes which are used to compute \\
concentration factors, concentration ratios and collection effi- \\
ciencies.
\end{tabular} \\
PRFUN & TRAJEC & \begin{tabular}{l} 
Given the particle Reynolds number, returns the factor which \\
when multiplied by \(\vec{V}_{\mathrm{p}}-\vec{V}_{\mathrm{a}}\) yields the first term on the right side \\
of eq. (1). This is a particle type-specific function. The version \\
provided here is for water drops.
\end{tabular} \\
STRPNT & \begin{tabular}{l} 
Specifies a curve in three-dimensional space on which lie the ini- \\
tial points of all trajectories used in computing a tangent trajec- \\
tory to the body. Also specifies coarse and fine step sizes to be \\
used in traversing the curve in search of the tangent trajectory, \\
and it steps along the curve to define new initial trajectory points \\
under control of TANTRA. The version supplied here uses
\end{tabular} \\
straight line curves.
\end{tabular}

\section*{TABLE III. - Concluded.}
\begin{tabular}{lll} 
Subroutine & Called by & Description \\
PLIN & \begin{tabular}{l} 
Given three points determines the parametric equation of a line \\
parallel to two of the points and which passes through the third \\
point.
\end{tabular}
\end{tabular}

\section*{TABLE IV. - ICE ACCRETION CALCULATION SUBROUTINES}
\begin{tabular}{|c|c|c|}
\hline Subroutine & Called by & Description \\
\hline BDYLR & ICECAL & Determines heat transfer coefficients and transition points for streamline. \\
\hline COMPF & EBAL & Solves the energy equation for the freezing fraction. \\
\hline COMPS & LEWICE2D SEGSEC & Calculates surface distance for streamline. \\
\hline COMPT & EBAL & Solves the energy equation for the ice surface temperature given a value of freezing fraction. \\
\hline CONST & LEWICE2D & Sets constants in /ICECOM/ for ice accretion calculation. \\
\hline CPW & \begin{tabular}{l}
COMPF \\
COMPT
\end{tabular} & Calculates specific heat of water for a given temperature. \\
\hline DSTPLN & \begin{tabular}{l}
BDYLR \\
COMPS \\
ICECAL \\
NWFOIL \\
NWPTS
\end{tabular} & Determines the minimum distance between a point and a line and where this point on the line occurs. \\
\hline EBAL & ICECAL & Controls the mass and energy balance for each of the segments on the streamline. \\
\hline ICECAL & LEWICE2D & Controlling routine for ice distribution thickness and new airfoil point calculations at each step. \\
\hline INTRST & SEGSEC & Determines if two line segments in a line intersect and if so, at which point this intersection occurs. \\
\hline LEWICE2D & LEWICE3D & Controls the ice accretion calculation for a streamline. \\
\hline NWFOIL & ICECAL & Computes the new \(x, y, z\) coordinates for the iced airfoil in the surface normal or trajectory tangent direction. \\
\hline NWPTS & LEWICE2D & Tests the iced streamline point distribution for refinement. If segments have become too large during a time step, they are subdivided into two segments of equal size. \\
\hline
\end{tabular}

TABLE IV - Concluded.
\begin{tabular}{|c|c|c|}
\hline Subroutine & Called by & Description \\
\hline PLIN & INTRST & Given three points determines the parametric equation for a line parallel to two of the points and which passes through a third point. \\
\hline PLNFRM & SEGSEC & Produces a plane given three points. \\
\hline PLNNRM & NWFOIL & Calculates cross product of two vectors. \\
\hline PVI & COMPT & Calculates the vapor pressure over ice for a given temperature. \\
\hline PVW & COMPF COMPT & Calculates vapor pressure over water for a given temperature. \\
\hline RHOICE & ICECAL & Calculates local ice density using Macklin correlation (ref. 7). \\
\hline SEGSEC & ICECAL & Removes segments that intersect due to ice growth. \\
\hline TRANSF & NWFOIL SEGSEC & Projects a set of points onto a given plane along a specified direction. \\
\hline VEDGE & LEWICE2D & Determines edge velocity, static temperature, and pressure along a streamline. \\
\hline
\end{tabular}

TABLE V. - GEOMETRY MODIFICATION CALCULATION SUBROUTINES
\begin{tabular}{|c|c|c|}
\hline Subroutine & Called by & Description \\
\hline BODMOD & LEWICE3D & Controls the geometry modification at each ice step. \\
\hline CSPLINE & NLNMOD & Cubic spline interpolation routine. \\
\hline DSTPLN & ISCFND & Determines the minimum distance between a point and a line and where this point occurs on the line. \\
\hline GEOMOD & BODMOD & Controls the modification of each N -line on a lifting section and its subsequent loading into the new geometry file. \\
\hline ISCFND & NLNMOD & Finds the two closest iced streamlines to a given streamline and its relative position between them. \\
\hline NLNDAT & NLNMOD & Determines the surface normals for each point on a given N -line. \\
\hline NLNMOD & GEOMOD & Controls the calculation of the ice thickness distribution and geometry modification for each N -line. \\
\hline NORM & NLNMOD & Normalizes an array of surface distances to a given surface distance. \\
\hline NWFOI2 & NLNMOD & Calculates the new points on the N -line given the old N -line points, ice thickness distribution and either the surface normals or the trajectory tangents. \\
\hline PANMIN & BODMOD & Determines the number of the panel closest to a given point. \\
\hline PLIN & ISCFND NLNDAT & Given three points, determines the parametric equation of a line which is parallel to two of the points and which passes through the third. \\
\hline PLNFRM & GEOMOD NLNMOD & Forms a plane given three points on the plane. \\
\hline SURFD & NLNMOD & Determines the surface distance distribution from a set of points. \\
\hline SWITC1 & NLNMOD & Transfers points from a two-dimensional array into a one-dimensional array. \\
\hline SWITC2 & NLNMOD & Transfers points from a three-dimensional array into a onedimensional array. \\
\hline
\end{tabular}

TABLE V. - Concluded.
\begin{tabular}{llll}
\hline Subroutine & & Called by & \\
& & \\
TRANSF & \begin{tabular}{l} 
GEOMOD \\
NLNMOD
\end{tabular} & \begin{tabular}{l} 
Projects a set of points onto a given plane along a specified direc- \\
tion.
\end{tabular} \\
TRIB & CSPLINE & Solves for coefficients in a cubic spline curve fit. \\
WEIGT & NLNMOD & \begin{tabular}{l} 
Determines the ice distribution at an N-line from weighted val- \\
ues of the two closest iced streamlines.
\end{tabular}
\end{tabular}

\section*{III. INPUT FILES}

Two basic input files are required to run the code and a third is optional if the restart capability of the code is used (IRES=1). A geometry file (unit OGEOM) is required for the flow field generation. The job control file (unit INPUT) is required and contains flags and inputs for the trajectory, and ice accretion calculations. The third file, which is optional, is a restart file (unit RESTRT) which allows the user to continue from the point where the last run was terminated. This file is useful for long runs where it might be more advantageous to split the job into smaller runs. A brief description of the flow field input file is contained in Hillyer Norment's trajectory code manual (ref. 5) while a more detailed description is available in the Duglift users manual (ref. 4).

The run parameter file (unit INPUT) contains basically three namelists which control the trajectory and ice accretion calculations. A description of each of the variables and namelists is given in table VI.

The DUGLIFT flow field input file (unit NGEOM) contains geometry information in DUGLIFT format. Table VII, which was taken from reference 5, gives a brief description of the input format of the variables.

In addition to the flow field and job control input files there is an optional restart file. This file allows a job to be restarted from its previous termination point. To restart a job the restart flag must be set (IRES=1) and the previous restart file must be provided on unit REST. This file contains collection efficiency and ice accretion information at each time step and section of interest. The restart file is read in subroutine REST. For information about the type and format of the data see subroutine REST.

\title{
TABLE VI. - LEWICE3D STANDARD INPUT FILE DESCRIPTION.
}

\section*{NAMELIST Yariables and Format Description}

IMPING IRUN, IFLOW, ICE, ISTRF, ICEC, IRES, NPSEC, NBR, NBC, XSEC, YSEC, ZSEC, XSCI, YSCI, ZSCI, XTIP, YTIP, ZTIP, DSHIFT, SHFTF, PLNST (NAMELIST FORMAT)

IRUN Flag controlling trajectory and streamline calculations.
=1 Only streamline calculation will be carried out. Must input XSEC, YSEC,ZSEC. (Subroutines STREM2D or STREM3D will be called depending on flag ISTRF).
\(=2\) CONFAC run will be carried out to determine trajectories that pass XSEC, YSEC,ZSEC, (subroutine CONFAC).
=3 Tangent trajectories will be determined. Must input XSCI, YSCI,ZSCI. (subroutine TANTRA).
\(=4\) An array of particles will be released and collection efficiencies will be calculated. Must input XTIP, YTIP, ZTIP. (subroutine ARYTRJ).
\(=5\) All of the above will be calculated. Must input XSEC, YSEC,ZSEC.
\(=6\) CONFAC run will be carried out, followed by a tangent trajectory, and a collection efficiency run.
\(=7\) Streamline calculation will be carried out followed by a tangent trajectory, and a collection efficiency run. Must input XSEC,YSEC, ZSEC.
\(=8\) Tangent trajectory calculation will be followed by a collection efficiency run. Must input XSCI, YSCI, ZSCI.Collection efficiency run will be carried out and will be followed by tangent trajectory run. Must input XSEC, YSEC, ZSEC.

IFLOW Flow field control flag.
\(=0\) Flow solver will not be run. Must provide geometry on OGEOM.
\(=1\) Flow solver will be run. Must provide geometry on unit OGEOM.
ICE Ice accretion calculation control variable.

TABLE VI. - Continued.

\section*{NAMELIST Yariables and Format Description}
\(=0 \quad\) Lewice2D ice accretion calculation will not be run.
\(=1\) Lewice2D ice accretion calculation will be run. Must provide accretion calculation variables. (NAMELIST ICEIN)

ISTRF Streamline calculation control variable.
\(=0\) A 3D streamline will be integrated along the surface at the section of interest. Must input XSEC, YSEC, ZSEC.
\(=1 \quad\) A 2 D cut will be generated along the surface. The 2D slice will be the intersection between the surface and the plane input by the user (PLNST(ICEC,4)) where the plane is:

PLNST(ICEC,1)*X + PLNST(ICEC,2)*Y + PLNST(ICEC,3)*Z + PLNST(ICEC,4) \(=0\)

The user must input PLNST, and XSEC, YSEC, and ZSEC.

ICEC The number of sections for which the above trajectory or ice accretion calculations will be made.

IRES Restart flag.
\(=0\) No restart will be made and job will run from the beginning.
\(=1\) Job will continue from last point of execution. Must link restart file (unit 26)

NPSEC Variable controlling the type of region at the section of interest.
\(=2 \quad\) The region at the section of interest is a line and hence only two points are needed to describe it (i.e. XSEC(ICEC,1), YSEC(ICEC,1), ZSEC(ICEC,1) and XSEC(ICEC,2),

TABLE VI. - Continued.
NAMELIST Variables and Format Description
YSEC(ICEC,2), ZSEC(ICEC,2) fully describe the region at the surface). This type of calculation is justified for regions where no spanwise variation in the flow field or collection efficiency is expected. A single row of trajectories will be released along the section line and a 2D beta calculation will be used for determining collection efficiency. Flow field data are linearly extrapolated onto the streamline assuming no spanwise variation.
\(=4\) The region at the section of interest is a rectangle and hence four points are needed to describe the region of interest (i.e. XSEC(ICEC,1), YSEC(ICEC,1), ZSEC(ICEC,1) and XSEC(ICEC,2), YSEC(ICEC,2), ZSEC(ICEC,2), XSEC(ICEC,3), YSEC(ICEC,3), ZSEC(ICEC,3) and XSEC(ICEC,4), YSEC(ICEC,4), ZSEC(ICEC,4) describe the four corners of the rectangle at the section of interest. This type of calculation is for regions where the flow is expected to be fully 3D. A matrix of trajectories will be released into the rectangle of interest to generate a distribution of collection efficiencies on the surface. A 3D collection efficiency is made. The collection efficiency and flow field data are interpolated onto the streamline using linear interpolation.

NBR The number of rows of trajectories to be released at each section of interest NBR(ICEC). Typical value is 20 .

NBC The number of columns of trajectories to be released at each section of interest NBC(ICEC). For the 2D Approximation (i.e. NPSEC(ICEC)=1) NBC will be set to one and only a line of NBR(ICEC) trajectories will be released at the section of interest.

XSEC,

\section*{TABLE VI. - Continued.}

\author{
NAMELIST Yariables and Format Description
}

YSEC,
ZSEC Arrays describing the region of interest. Depending on NPSEC(I), \(\mathrm{I}=1\), ICEC either a line is desired (NPSEC=2) and two points along this line must be entered, or a rectangle is desired (NPSEC=4) and the four comer points of the rectangle of interest must be entered. The points must be off-body points. These arrays are needed to run the streamline and CONFAC calculations.

XSCI, YSCI,

Arrays either generated by subroutine CONFAC or input by the user that define upstream release points for trajectories that pass through the points XSEC, YSEC, ZSEC at the region of interest. These arrays are needed to run the tangent trajectory routine.

XTIP,
YTIP,
ZTIP Arrays either generated by subroutine TANTRA or input by the user that define upstream release points for tangent trajectories for the upper and lower surface along the line defined by \(\mathrm{XSCI}, \mathrm{YSCI}, \mathrm{ZSCI}\) at the region of interest. These arrays define the region to release impacting trajectories. These arrays are needed to run the ARYTRJ trajectory subroutine which generates collection efficiency data.

DSHIFT Normal distance off-body where the streamline integration is started. Because of velocity gradient problems at panel edges, integration of a streamline at the surface is difficult. For this reason the streamline integration is made at a distance off the body equal to DSHIFT.
Typical values are 0.002 .

TABLE VI. - Continued.

\author{
NAMELIST Yariables and Format Description
}

SHFTF Variable which controls the amount the surface is shifted to overcome difficulties in integrating the trajectories due to high velocity gradients near panel edges. The surface is shifted in the flow direction an amount equal to SHFTF*DHSIFT. The default value for SHFTF is 0.0 . Typical values may range from 0.0 to 1.0 .

PLNST Array defining plane which is to cut surface to generate 2D streamline at each section of interest. Plane is defined as

PLNST(ICEC,1)*X + PLNST(ICEC,2)*Y + PLNST(ICEC,3)*Z - PLNST(ICEC,4) \(=0\)

Array PLNST must be entered if ISTRF=1.
IPLOT Logical variable controlling output of trajectory information.
TRAJ IPLOT, VINF, CHORD, RHO, VIS, HI, HMINI, IDIS,TPRINT, XSTART, XFINAL EPSE, NW, RW, TOL, XE, YE, XI, YI, DMDS PLWC, FNR, DFINE, (NAMELIST FORMAT)
=TRUE Trajectories are written to unit TEMP24.
\(=\) FALSE No trajectory data is output.
VINF Airspeed (M/S).
CHORD Characteristic dimension of body (M).
RHO Air density (Kg/M3).
VIS \(\quad\) Air viscosity (Kg/(M-S).
HI Initial time step for numerical integrator. Typical value is 0.1 .

HMINI Minimum time step for numerical integrator. Typical value is 0.00001 .

TABLE VI. - Continued.

NAMELIST Yariables and Format Description
IDIS The number of the particle sizes in the particle distribution. If IDIS is greater than one, a particle distribution is assumed and \(\operatorname{DMDS}(\mathrm{I}), \operatorname{PLWC}(\mathrm{I}), \mathrm{I}=1\), IDIS must be input. If IDIS \(=1\) than PWLC( 1 )=1.TPRINT Output time interval for trajectory plotting arrays. Typical value is 0.1 .

XSTART Initial X release plane for trajectory calculations (non-dimensional).

XFINAL Termination \(X\) plane for trajectory integration (non-dimensional).

EPSI Array used to control local error in trajectory integration in each of the coordinated directions. Typical values are 0.000001 .

NW Number of trajectories used to define the flux tube periphery. This parameter should only be greater than one if off body concentration factors are desired. If NW \(=1\), then single trajectories are computed.

RW Radius of particle flux tube in target plane. Only used if NW is greater than one.

TOL Tolerance for reaching a point on tangent plane. Controls how closely trajectories pass through points XSEC, YSEC, ZSEC in the CONFAC calculation.

XE, YE Target point coordinates of the last three guesses. Used in subroutine CONFAC in search for target point trajectories (see subroutine CONFAC).

XI, YI Initial point coordinates of the last three guesses. Used in subroutine CONFAC in search for target point trajectories (see sub-

TABLE VI. - Concluded.

\section*{NAMELIST Yariables and Format Description}
routine CONFAC).

DMDS Distribution of droplet or ice aggregate diameters to be run: \(\operatorname{DDS}(\mathrm{I}), \mathrm{I}=1, \mathrm{DIS}\).

PLWC Distribution of percent liquid water content for the distribution of particles. If IDIS \(=1\) then PLWC \(=1\).

FNR Froude number. If gravitational forces in the z -direction are to be considered then FNR \(=\) 1. The default value for FNR is 0 or no gravitational forces.

DFINE Step size used in search for tangent trajectory.
LWC Liquid water content of cloud (g/m).
ICEIN LWC, TAMB, PAMB, TAMB Ambient temperature (K). RH, XKINIT, SEGTOL, QCOND,TSTOP,

PAMB Ambient pressure ( Pa ). DTIME, DTFLW (NAMELIST FOR- RH MAT)

XKINIT Roughness factor (m).
SEGTOL Maximum growth length of a surface segment before it is divided into two surface elements.
QCOND
TSTOP Length of icing encounter (sec).
DTIME Time stepping for ice growth (sec). Should be fraction of DTFLW.

DTFLW Time stepping for flow field calculation (sec). Should be fraction of TSTOP.

\section*{TABLE VII. - DUGLIFT INPUT FILE DESCRIPTION}


TABLE VII. - Continued.

\section*{Card No. Variables and Format Description}

LEAK Number of inlet quadrilateral elements.
(col. 25-28) These must be the first elements in the dig-
ital description set (cards no. 12).
\(\begin{array}{ll}\text { FRAC } & \text { Fraction of unit free stream flow that passes } \\ \text { (col.31-40) } & \text { through each of the LEAK inlet elements. If }\end{array}\)
(col.31-40) through each of the LEAK inlet elements. If LEAK \(=0\), leave this field blank.

MACH Mach number of the free stream flow. (Note (col.41-50) that this is a floating point number.) If \(\mathrm{N}_{\mathrm{M}}\) \(<0.5\), leave this field blank.

3 IPROS, LOFF,

MOMENT, LIST, IOUT (5LI)
source densities, \(\sigma_{i}{ }^{(k)}\) and \(\sigma_{i}{ }^{(\infty)}\)
3 Print the onset flow matrices, \(\mathrm{V}_{\mathrm{i}}{ }^{(\mathrm{k})}\) and \(V_{i}^{(\infty)}\) LEAK 0 , leave this geld blank.

Logical control flags:
IPROS If true, the card 12,13 , and 15 coordinates (col. 1) are to be translated, scaled, and rotated about the \(y\) axis before processing, and card no. 5 is to be input. If false, no translation, scaling or rotation is done, and card no. 5 is not input.

LOFF if true, velocities at off-body points are to (col. 2) be calculated. The off-body points are specified by the user via input of the no. 15 cards. If false, off-body velocities are not calculated and there is no input of the no. 15 cards.

MOMENT If true, the moment origin is specified by (col.3) input of card no. 6. If false, card 6 is not input and moments are computed about point ( \(0,0,0\) ).

LIST If false, specifies complete execution. If
(col. 4) true execution is terminated after the first main part of the printed output.

TABLE VII. - Continued.

\section*{Card No. Variables and Format Description}

IOUT If true, the 29 geometric quantities for each
(col. 5) nonlifting element and 45 geometric quantities for each lifting element are printed. The normal value for this parameter is false.
(ALPHAX(I), ALPHAY(I), ALPHAZ(I), I=1, IATACK) (3E10.0)

Direction cosines of uniform onset (i.e., free stream) flow vectors. IATACK is the number of uniform onset flows specified in card no. 2. One set of direction cosines per card. If the compression correction is applied (MACH. 0.0), only one uniform onset flow vector can be specified. If more than one vector is specified, only the first is passed along via unit 18 for use by SR SETFLO and FLOVEL. The direction cosines are with reference to the airplane coordinate system (after rotation by angle ANGLE (card 5)). These vectors are equivalent to unit free stream velocities. Ordinarily, free stream unit velocity components are ( \(1.0,0.0,0.0\) ).

5 ANGLE, XSCALE, YSCALE, ZSCALE,

Input only if IPROS = TRUE on card 3. Same as card no. XTRANS, YTRANS, ZTRANS, (7F10.0)

ORIGNX, ORIGNY, ORIGNZ (3E10.0)

Coordinates of the moment origin. This card is input only if MOMENT = TRUE on card 3.
LKUTT, LASWAK, PESWIS, IGW (5L1)

Input only if LIFSEC \(>0\) on card 2. Logical control flags for lifting section data

LKUTT If true, the flow tangency method for (col. 1) application of the Kutta condition is selected. This means that one point in or near the wake of each lifting strip (not counting extra strips) must be specified via input of card no. 9. If false, the pressure equality method is selected, and cards no.9, 13 , and 14 are not input.

TABLE VII. - Continued.

\section*{Card No. Yariables and Format Description}

LASWAK If true, the trailing edge of the last wake (col. 2) element is automatically extended by the code to \(x=\infty\). This is the semi-infinite last wake element option.

PESWIS If true, the piecewise linear method for (col. 3) calculating spanwise variation of lift vorticity is selected, and lifting strip widths must be input via cards no. 11. If false, the step function option is selected, and cards no. 11 are not input.

IGW If true, there are ignored lifting elements (col. 4) which must be defined via input of the no. 10 cards. If false, there are not ignored elements, and cards no. 10 are not input.
(NSORCE(J), NWAKE(J), NSTRIP(J), NLINE1(J), NLINEN(J), IXFLAG(J), J=1, LIF-

NSORCE Number of on-body elements (including SEC), (6I4)
(col. 1-4) ignored) in each lifting strip of the Jth lifting section.

NWAKE Number of wake elements in each lifting (col. 5-8) strip of the Jth lifting section, including a semi-infinite final element if this option is selected.

NSTRIP Number of lifting strips in the Jth lifting (col. 9-12) section.Include extra strips only if they are defined via input of cards no. 12.

NLINE1 If the piecewise linear option is selected, (col. 13-16) (PESWIS = TRUE on card 7), NLINE1(J) specifies the edge condition of the first strip on the Jth lifting section. If the step function option is specified, ignore this field.

NLINEN Same as NLINE1(J) but for the last strip of (col. 17-20) the Jth lifting section.

TABLE VII. - Continued.

\section*{Card No. Variables and Format Description}

IXFLAG \(\operatorname{IXFLAG}(J)=0\) means that no extra strips (col. 21-24) are defined via input (i.e. via cards no. 12).
\(\operatorname{IXFLAG}(\mathrm{J})=1\) means the first strip is an extra strip. If the piecewise linear option is selected, this also requires \(\operatorname{NLINEN}(J)=4\) or 5 .

IXFLAG \((J)=3\) means the last strip is an extra strip. If the piecewise linear option is selected, (PESWIS = TRUE on card 7), this also requires \(\operatorname{NLINEN}(J)=4\) or 5 .
\(\operatorname{IXFLAG}(\mathrm{J})=2\) means that both the first and last strips are extra strips. If the piecewise linear option is specified, this requires that both \(\operatorname{NLINE}(\mathrm{J})\) and \(\operatorname{NLINEN}(\mathrm{J})=4\) or 5 .

LIFSEC is specified on card 2. A separate card is required for each lifting section, and the cards are input in the same order as input of the quadrilateral data via cards no. 12.

NSTRIP(J)), J=1, LIFSEC), (12I4)

Input only if LIFSEC \(>0\) on card 2 and if LKUTT \(=\) true on card 7. Number of points which the flow tangency method for application of the KUTTA conditions is to be applied. It is required that KUTTA equal the total number of lifting strips, not counting extra strips. KUTTA is used to read the point coordinates, and the unit vectors normal to the wake or airfoil surface at these points, via cards no. 13 and 14.

Input only if LIFSEC \(>0\) on card 2 and if IGW = TRUE on card \(7 . \mathrm{I}=\) lifting strip index: \(\mathrm{J}=\) lifting section index. If on the Ith strip of the Jth lifting section there is a substrip of ignored elements, the substrip is defined by specifying its beginning and ending element indices via

IG1(I,J) = index of the first ignored element on the lifting strip.

TABLE VII. - Continued.

\section*{Card No_ Variables and Format Description}
\(\operatorname{IGN}(\mathrm{I}, \mathrm{J}) \quad=\) index of the last ignored element on the liftuing strip.

If there are no ignored elements on a strip, leave both fields blank: but IG1 and IGN must be specified for every lifting strip if IGW = TRUE on card 7. Six strips per card. Each lifting section begins a new card.

LIFSEC is specified on card 2, and NSTRIP(J) on card 8.

11 (WIDXTR(I,J), (WIDTH(I, J), \(\mathrm{I}=2\), NSTRIP(J)-K), WIDXTR(2,J), J=1, LIFSEC), (7E10.0)
\(K=0\) if \(\operatorname{IXFLAG}(J)=0\)
\(\mathrm{K}=1\) if \(\operatorname{IXFLAG}(\mathrm{J})=1\) or 3
\(\mathrm{K}=2 \operatorname{IF} \operatorname{IXFLAG}(\mathrm{~J})=2\)
\(12 \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{STAT}, \mathrm{LAB}\), XX,YY, ZZ, STATT, LABL, (3E10.0,212/ 3E10.0,212)

Input only if LIFSEC \(>0\) and if PESWIS \(=\) TRUE on card 7. These quantities are the widths of each lifting strip for use in calculating the spanwise variation of vorticity via the piecewise linear method.

WIDXTR \((1, \mathrm{~J})\) specifies the width of the first extra strip of the Jth lifting section. If NLINE1(J) NE 4, leave this field blank.

WIDTH(I,J) specifies the width of the Ith lifting strip of the Jth lifting section.

WIDXTR \((2, \mathrm{~J})\) specifies the width of the last extra strip of the Jth lifting section. If NLINEN(J) NE 4, leave this field blank.

LIFSEC is specified on card 2, and NSTRIP(J), NLINE1(J), NLINEN(J) and IXFLAG(J) are specified on card 8.

On-body wake quadrilateral element corner point coordinates are specified by these cards for both lifting and nonlifting sections, one point per card. The body and wake surface panels are constructed from these data. (Note: there must be an even number of no. 12 cards. Add a blank card to the end of the card 12 deck if necessary).
\(\mathrm{X}, \mathrm{Y}, \mathrm{Z} \quad\) Quadrilateral corner point coordinates.

TABLE VII. - Continued.

\section*{Card No. Variables and Format Description}

XX, YY, ZZ
(col. 1-30)
STAT Status parameter: Allowed values are 0, STATT 1,2,3:
(col. 32)

LAB
LABL
(col. 32)
\(0 \quad\) This point is on the same N -line as the last point.

1 This point starts a new N -line.

2 This point starts a new section.
3 This is the last point in the card 12 input.

Specifies a lifting or nonlifting section
0 Nonlifting.
1 Lifting.
This field is relevant only when STAT or STATT \(=2\), that is, only on the first card of a new section.
(XC(I), YC(I), ZC(I), \(\mathrm{I}=1\), KUTTA ) (3E10.0) Input only if LKUTT = TRUE on card 7. KUTTA is specified via the card 9 input. Coordinates of points (one point per card) at which the Kutta condition is to be applied via use of the flow tangency method. If IPROS = TRUE (card 3 ), the coordinates according to the card 5 input data. rotation of coordinates by angle ANGLE (card 5).

TABLE VII. - Concluded.
\begin{tabular}{|c|c|c|c|}
\hline Card No. & Variables and Format & Description & \\
\hline \multirow[t]{3}{*}{15} & \multirow[t]{3}{*}{XOF, YOF, ZOF, STAT, XOFF, YOFF, ZOFF, STATT, (3E10.0, I2/ 3E10.0,12)} & XOF, YOF, ZOF XOFF, YOFF,ZOFF (col. 1-30) & Coordinates of off-body points at which flow velocities are to be calculated, one point per card. \\
\hline & & \begin{tabular}{l}
STAT \\
STATT \\
(col. 32)
\end{tabular} & Status parameter. A value of 3 signifies the end of the off-body points. Otherwise, leave this field blank. \\
\hline & & If IPROS=TRUE (ca lates, scales, and rota the card 5 input data. & 3), the code automatically transes these coordinates according to \\
\hline
\end{tabular}

\section*{IV. REFERENCES}
1. Hess, J.L. "Calculation of Potential Flow About Arbitrary Three-Dimensional Lifting Bodies," Report MDC J5679-01, Douglas Aircraft Co., Inc., Long Beach, CA.,Oct. 1972.
2. Hess, J.L. and Smith, A.M.O. "Calculation of Non-Lifting Potential Flow About Arbitrary Three -Dimensional Bodies," Report E.S. 40622, Douglas Aircraft Co., Inc., Long Beach, CA., Mar. 15, 1962.
3. Hess, J.L. and Smith, A.M.O. "Calculation of Non-Lifting Potential Flow About Arbitrary Bodies," Progress in Aeronautical Sciences, Volume 8, D. Kuchemann, ed., Pergammon Press, New York, 1967, pp. 1-138.
4. Mack, D.P. "Calculation of Potential Flow About Arbitrary Three-Dimensional Lifting Bodies. Users Manual," Report MDS J5679-20, Douglas Aircraft Co., Inc., Long Beach, CA., Oct. 1972.
5. Norment, H.G. "Calculation of Water Drop Trajectories To and About Three-Dimensional Lifting and Non-lifting Bodies In Potential Airflow," NASA CR-3935, 1985.
6. Krogh, F.T. "Variable Order Integrators for Numerical solutions of Ordinary Differential Equations," Report NPO-11643, 1971.
7. Ruff, G.A., Berkowitz, B.M." Users manual for the NASA Lewis Ice Accretion Prediction code (LEWICE)," NASA CR-185129, 1990.
8. Kim, J.J. "Particle Trajectory Computation on a 3-Dimensional Engine Inlet," NASA CR175023, 1986
9. Tribus, M.V. et al."Analysis of Heat Transfer Over a Small Cylinder in Icing Conditions on Mount Washington," ASME Trans., vol. 70, 1949, pp. 871-876.

10 Messinger, B.L.'Equilibrium Temperature of an Unheated Icing Surface as a Function of Airspeed," J. Aeronaut. Sci., vol. 20, no. 1, 1953, pp. 29-42.

\section*{V. EXAMPLE CASE}

For the test case, a swept NACA 0012 airfoil with a 30 degree sweep, an aspect ratio of 1.4, and a .4399 meter chord was used (fig. 22). Calculations at 0 degrees angle of attack were made for this configuration at two different airspeeds, 150 MPH and 165 MPH . This choice allowed for direct comparison to experimental impingement data for the 165 MPH case and to ice accretion data for the 150 MPH case. Because the cases were very similar, only the ice accretion related run files have been included. The experimental impingement calculations are summarized in figure 23. The various steps in producing an ice shape for a 3D geometry are illustrated.

The ice accretion calculations were carried out in a single run on the Cray XMP at LEWIS. The calculation conditions were airspeed, 150 MPH ; angle-of-attack, 0 degrees; drop size, 20 microns; LWC, \(.75 \mathrm{~g} / \mathrm{m}^{3}\); icing time, 2 minutes. Three sections of interest were chosen to resolve the spanwise ice shape. Because of the relative shortness of the icing encounter a single step ice accretion calculation was chosen. These sections of interest were located at the 10,50 and \(90 \%\) span locations. The panel model contained one lifting section containing 14 lifting strips of constant width and 91 chordwise segments. This model yielded 1218 lifting elements. Figures 24 and 25 show the job control input file (unit INPUT) and the flow field input file respectively (unit OGEOM). Figure 26 contains the job summary file (unit JOBSUM). The entire calculation required approximately 1340 seconds on the Cray XMP.

The first step is to generate a flow field. If the same flow field will be used for several trajectory runs then it is suggested that the flow field be generated on the first run (IFLOW=1) and saved (unit FLOWF) for any runs thereafter (IFLOW=0). It is also a good idea when calculating flow for a panel model for the first time to do a flow field calculation only (IRUN=0, IFLOW=1) and inspect the quality of the panel solution. A summary of the flow field calculation is contained on unit (FLSUM). Criteria such as smoothness of the pressure and vortex distributions are used to measure the quality of the flow field solution. Because of the relatively small execution time required for the flow field generation ( 90 seconds on the Cray XMP) and the ensured quality of the panel model, the flow field was generated in a single run along with the trajectory and ice accretion calculation (IRUN=5, IFLOW=1) and was stored (unit FLOWF). The job control input file (unit INPUT), the DUGLIFT geometry file (unit OGEOM), and the job summary file (unit JOBSUM) are shown in figures 24,25 , and 26 respectively. Figure 27 shows the pressure distribution at the \(0 \%\) spanwise location

The second through fourth steps involve various steps in finding the ice accretion at each station of interest. These steps are repeated for each station of interest.

The second step involves calculation of the streamline at the current section of interest. This requires finding the local stagnation zone, integrating upper and lower off-body streamlines from this stagnation zone and finding the on-body projection of the off-body streamline. This calculation required about 10 seconds for each section of interest. The coordinates for the off-body and on body streamlines along with other information are contained in the job summary output (unit JOBSUM). Figure 28 illustrates the off-body and on-body streamlines at the \(0 \%\) span location.

The collection efficiency at the station of interest is determined in the third step. This
involves determining the upstream release points of the droplets that would pass through the points at the leading edge demarcating the section of interest, determining the tangent trajectories associated with these upstream release points, calculating the impact trajectories between these tangent trajectories, and calculating the collection efficiency resulting from these impact trajectories. The job summary output file shown in figure 26 summarizes the pertinent information from these runs. Approximately 448 seconds on the Cray XMP were required to complete the trajectory calculations for each section. Figure 29 depicts the impact trajectories generated in the collection efficiency calculation.

During the fourth step the surface collection efficiencies generated in step three are used to find the collection efficiencies along the streamline generated in step two. Depending upon the value of NPSEC chosen, the determination of the collection efficiency values along the streamline are calculated from either an extrapolation (NPSEC=2) or an interpolation (NPSEC=4). In the current example very little spanwise variation was expected hence a "quasi-2D" collection efficiency calculation was made (NPSEC=2). The interpolation or extrapolation proceeds quickly and only required .1 seconds on the Cray XMP.The results from this calculation are summarized in the job summary output file (unit JOBSUM) in figure 26. Steps two through four are repeated for each of the sections of interest.

Ice accretion along the streamline is calculated in step five for each of the streamlines. This involves calculating the ice thickness as a function of surface distance along the streamline at the current section of interest. The ice thickness distribution is calculated using a 3D version of the LEWICE heat transfer subroutine (ref. 7). The ice accretion at the local section is then calculated by adding the ice thickness calculated at a point to the point in either the surface normal or trajectory tangent direction. This results in a new off-body "iced-streamline" shown in figure 30. In addition to the calculation of the "iced-streamline" the ice thickness distribution for each streamline is stored for the geomerry modification calculation in step six. The ice accretion calculation, which proceeds fairly quickly ( 2 seconds), is summarized in the job summary output file (unit JOBSUM) in figure 26. Step 5 is repeated for each of the sections of interest.

The sixth and final step involves calculating the new goemetry from the ice thickness distribution at each section of interest. This involves a cubic chordwise interpolation and a linear spanwise interpolation. The geometry modification calculations took approximately 1 second on the Cray XMP. Figure 31 shows the resulting iced wing resulting from the calculations. Figure 32 shows a comparsion between the calculation and experiment for this case. In general the aggreement is good with the calculation predicting the shape, amount and postion of the ice.


Figure 22. - Swept NACA 0012 panel model used in example case.


Figure 23. - Collection efficiency as a function of surface distance and spanwise location for the example case.

N012
SWEPT NACA0012 AIRFOIL ( 30 DEGREE SWEEP) EXAMPLE
\&TRAJ DFINE \(=.0001\),DMDS(1)=20.,
VINF=67.0,CHORD \(=.4399\),
\(\mathrm{RHO}=1.29, \mathrm{RW}=.1, \mathrm{TOL}=.02, \mathrm{FNR}=0.0\),
HMINI \(=.0001, \mathrm{HI}=.01\), XSTART \(=-20 .\), XFINAL \(=1.5\), TPRINT \(=.1\), EPSI \((1)=2 . E-07\), EPSI(2)=2.E-07,EPSI(3)=2.E-07 \&END
\&IMPING IRUN \(=5\), ICE \(=1\), \(\operatorname{CCEC}=3\), \(\operatorname{IFLOW}=1\), ISTRF \(=0, \mathrm{NBC}(1)=1\), NBR \((1)=20\), \(\operatorname{NBC}(2)=1, \mathrm{NBR}(2)=20, \mathrm{NBC}(3)=1, \mathrm{NBR}(3)=20, \mathrm{NPSEC}(1)=2, \mathrm{NPSEC}(2)=2\), NPSEC( 3 ) \(=2\), SHFTF \(=0\), DSHIFT \(=.002\), IRES \(=0\),
\(\operatorname{XSEC}(1,1)=0 ., \operatorname{XSEC}(1,2)=0 ., \operatorname{XSEC}(1,3)=0 ., \operatorname{XSEC}(1,4)=0\).,
\(\operatorname{YSEC}(1,1)=0 ., \operatorname{YSEC}(1,2)=0 ., \operatorname{YSEC}(1,3)=0.01, \operatorname{YSEC}(1,4)=0.01\),
\(\operatorname{ZSEC}(1,1)=0.07, \operatorname{ZSEC}(1,2)=-0.05, \operatorname{ZSEC}(1,3)=0.07, \operatorname{ZSEC}(1,4)=-0.05\),
\(\operatorname{XSEC}(2,1)=0.318, \operatorname{XSEC}(2,2)=0.318, \operatorname{XSEC}(2,3)=0 ., \operatorname{XSEC}(2,4)=0\).,
\(\operatorname{YSEC}(2,1)=0.55, \operatorname{YSEC}(2,2)=0.55, \operatorname{YSEC}(2,3)=0.01, \operatorname{YSEC}(2,4)=0.01\),
\(\operatorname{ZSEC}(2,1)=0.05, \operatorname{ZSEC}(2,2)=-0.06, \operatorname{ZSEC}(2,3)=0.07, \operatorname{ZSEC}(2,4)=-0.05\), \(\operatorname{XSEC}(2,1)=-.318, \operatorname{XSEC}(2,2)=-.318, \operatorname{XSEC}(2,3)=0 ., \operatorname{XSEC}(2,4)=0\). , YSEC \((2,1)=-.55, Y S E C(2,2)=-.55, \operatorname{YSEC}(2,3)=0.01, Y S E C(2,4)=0.01\), \(\operatorname{ZSEC}(2,1)=0.05, \operatorname{ZSEC}(2,2)=-0.06, \operatorname{ZSEC}(2,3)=0.07, \operatorname{ZSEC}(2,4)=-0.05\), \(\operatorname{PLNST}(1,1)=0.0, \operatorname{PLNST}(1,2)=1, \operatorname{PLNST}(1,3)=0 . \operatorname{PLNST}(1,4)=0 .\), \(\operatorname{PLNST}(2,1)=0.0, \operatorname{PLNST}(2,2)=1, \operatorname{PLNST}(2,3)=0, \operatorname{PLNST}(2,4)=-.55\), \(\operatorname{PLNST}(3,1)=0.0, \operatorname{PLNST}(3,2)=1, \operatorname{PLNST}(3,3)=0 ., \operatorname{PLNST}(3,4)=.55 \& E N D\) \&ICEIN LWC \(=.75\), TAMB=267.,PAMB \(=89876 ., \mathrm{RH}=100\).,
XKINIT \(=.0045\), SEGTOL \(=1.5\), TSTOP \(=120\).,DTIME \(=120 .\), DTFLOW \(=120 . \& E N D\)

Figure 24. - Job control input file for example case unit (INPUT).
 NNGNMO



 1111111111111111111111111


 -






000000000000000000000000000000000000090円000000000000000






























 ¢им








 К














\(000000-000000000000000000000000000000000000000000000=00\)






응등응ㅇㅇㅇ응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ으응응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ으응











 ○́

 М心末
















-











 \(0000000=0000000===00000000=0=00000=000000=000000000000\)





\(00=\approx 000=00000000000000000000000000000000000000000=0000=\)






























 जNGHO 0000000 \(0=900000000\)






 MのNONNGM= NM-





\begin{abstract}





隹










\end{abstract}



 бо



















边


 11111111

\begin{abstract}









 ＝

今天
 11111,11111111111111
\end{abstract}


 ぢロ








 ラームm Ho
 \(00000000000000000000000000000000000000000000=0000000\)















































 -e00
\(000000000=000000000000000000000000000000000000000000000\)




 1111111111111









 OOOOOOQOOGOQOGOQOOOOOOOOOOOOOOOOOOOOOO

\begin{abstract}















\end{abstract}















\begin{tabular}{c} 
Eps(1) \\
\(\substack{\text { Epss }(2), ~ \\
\text { Eps } \\
\text { en }}\) \\
\hline
\end{tabular}
 2.0000E-


*** SUBROUTINE READIN COMPLETE \(\quad * * *\)
SUBROUTINE STREM3D OUTPUT FOR SLICE: 1



 0000000000000000000000000000000000000000000000000000000
 MकONAM NOG










으읭ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

















 -000000000000000000000000000000000000000000000000000000




 \(1: 11111111\)






\footnotetext{

}

응응응응응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

 응응응응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ응


\begin{abstract}


 －

\end{abstract}















 ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ




会



जル
隹












 1111
 ，






 UGNONOONOOMGONNHNNGN\&NNNGMin


 영ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ



응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㄹ
 000000000000000000000000000




 -



NabmNonmocounmmMNamocosunnt

吉与












\section*{영ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
 으읭ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
}







 \(1,111,1,111\)



 ㅇOOOOOOOOOOOOOOOOOOOOO
 \(\underset{c}{c}\)
\(\frac{c}{2}\)
\(z\)

 OOOOOOOOOOOOOOOOOOOOOG
 ONOONOOGGOMOHENNNGONGA
 ○00000000000000000000












OVInO6ONNOONMUNNODONMNM



응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ




\begin{abstract}





\end{abstract}




 1111111111111



 -000000 000000000000000000000000000000000000000000000000 1111111111111111111














 \(\dot{000000000000000000000000000000000000000000000000000000}\)



 ©OOOOOOQOOOOOQOOOOOO







 -
 11

MGIGNक


NMNMNGはOMヵN以NN
 －்óoiocoó




\[
\text { CPU TIME }=100.791
\]
TRAJECTORY DATA ARE WRITTEN DN UNIT 10 FOR PLOTTING
\(\begin{array}{ll}\text { WATER DROP DIAMETER }= & 2.00000 E+01 M I C R O M E T E R S \\ \text { PARTICLE SETTLING SPEED }= & 1.93333 E-04 \mathrm{M} / \mathrm{SEC}\end{array}\)
＊＊＊SUBROUTINE CONFAC BEGINS \(* * *\)

\[
\text { *** SUBROUTINE CONFAC RUNS COMPLETE, CPU TIME }=
\]
\[
\begin{array}{rccccc}
* * * * * * * & \text { OUTPUT } & \text { FROM SUBROUTINE } & \text { CONFAC FOR ICEC }= & 1 \\
\text { XSCI } & \text { YSCI } & \text { ZSCI } & \text { XSCF } & \text { YSCF } & \text { ZSCF }
\end{array}
\]
\[
140.459 \text { SECONDS } * * *
\]
\[
\begin{array}{ll}
0.00002 & 0.07013 \\
0.00003 & -0.05034
\end{array}
\]

\begin{tabular}{|c|c|}
\hline \[
\sum_{\underset{\sim}{N}}^{N}
\] & ローが心ロMOMN へinoomnem NNN゚ーMON 잉ㅇㅇㅇㅇㅇ \\
\hline  &  \\
\hline  & \begin{tabular}{l}
RWNONNONN \\
－－M MowiN \\
 \\
00000000
\end{tabular} \\
\hline \[
\begin{aligned}
& \stackrel{4}{4} \\
& \underset{\sim}{n}
\end{aligned}
\] &  \\
\hline \[
\begin{aligned}
& \stackrel{u}{ \pm} \\
& \underset{\sim}{2}
\end{aligned}
\] &  섄ずすmimm 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇ 00000000 \\
\hline \[
\begin{aligned}
& \text { u } \\
& \text { ( }
\end{aligned}
\] & \begin{tabular}{l}
 Ninmivininm \\
 00000000
\end{tabular} \\
\hline \[
\stackrel{\mathrm{Z}}{\stackrel{\sim}{N}}
\] & \begin{tabular}{l}
MNN゙だらN゚ロ \\

\(\qquad\)
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { - } \\
& \stackrel{\rightharpoonup}{\otimes}
\end{aligned}
\] & がのーN゙゚⿷匚osogogigio －10゙0070300 0000000 \\
\hline \[
\begin{aligned}
& \stackrel{\rightharpoonup}{\mathbf{m}} \\
& \underset{\sim}{x}
\end{aligned}
\] & 응ㅇㅁㅇㅇㅇㅇㅇㅇㅇ 응ㅇㅇㅇㅇㅇ 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇ NNNNNNOO NNNNNNNN \\
\hline
\end{tabular}



 iooioooooooo

 \(000000000^{\circ}\) 1! ' 1 1 ' ' !


 oopoipopiliop

LIONOMOGNNMMO MNNMMIOGNONO




 -00000000000
aŋNTONの日NGin

 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ NODONONOONONONNNNN NNNNNNNNNNNN

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{CPU TIME \(=548.166\)} \\
\hline & SUBROUTINE & BSTREM OU & & FOR SLI & & 1 & & & & \\
\hline POINT & XSTRM & YSTRM & & ZSTRM & & SSTRM & XNSTRM & YNSTRM & ZNSTRM & CPSTRM \\
\hline 1 & 0.99804 & -0.00339 & & 0.00000 & & 1.02369 & 0.12256 & -0.07076 & -0.98993 & 0.26720 \\
\hline 2 & 0.99581 & -0.00363 & & -0.00026 & & 1.02143 & 0.12215 & -0.07053 & -0.99000 & 0.25184 \\
\hline 3 & 0.98921 & -0.00420 & & -0.00103 & & 1.01476 & 0.12117 & -0.06996 & -0.99016 & 0.19938 \\
\hline 4 & 0.97842 & -0.00490 & & -0.00230 & & 1.00388 & 0.11990 & -0.06922 & -0.99037 & 0.15515 \\
\hline
\end{tabular}
BNORMZ

-0.23590
-0.21625
-0.19631
-0.17471
-0.15052
-0.12325
-0.09353
-0.06274
-0.03140
0.00000
0.03140
0.06273
0.09353
0.12327
0.15054
0.17471
0.19637
0.21631
0.23581





 NONNNNMONDNMMOONMMO NㅡㅇUMMMMMMMMMMM KYOM 0000000000000000000
 क甘 心










 00000000000090000000000000000000000000



 111111,111111111












 0000000000000000000000000000000000000000000000000000000000000000000 111111111111111












 － －000000000000000000000000000 OOOOOO，11，1111111









 クル

 11
－ \(\operatorname{-in} \boldsymbol{\sim}\) NON





 0000000000000000000000000000





OUのOONGHNMMNOMUONOOMLINMMNOMNM





GMGNNNOMOOMON \(\sum^{2}\) Nowonmáemono NOMMNGNNNNORN かんorincmanoNoo 0－00000000000
CPSTRM



－NominNNGNOmosm
इ oNGNGOMANGNNO
इ NoNiNNo日GNonGNM






nnNovmrnnoovio






 으응으믕ㅇㅇㅇㅇㅇ ooooooooooooo
 YSTRM
 \(\underset{\times}{2}\)
 POINT



 -0000000000000000000000000000000000000000000000000000000

\begin{abstract}





\end{abstract}
















 1111111111

11111



















 ?






\title{

 \\ 
}









 1,1111111111111111111111110
 NG以NHG00




 Mज 000000000000000000000000000000000000000000000000000品 11111111111111

NOルजのजNME

 о

 MNOMNONVHNNGOOWNがNOMの


















\begin{tabular}{|c|c|}
\hline \[
\underset{\sim}{\underset{\sim}{\infty}} \underset{\substack{\Sigma \\ \hline}}{ }
\] & \begin{tabular}{l}
0000000000000000000000000000000000000000000000000000 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ \\
 \\
人000000000000000000000000000000000000000000000000000 \\

\end{tabular} \\
\hline \[
\begin{aligned}
& \frac{\Sigma}{c} \\
& \frac{\sim}{\sim} \\
& >
\end{aligned}
\] & \begin{tabular}{l}
 \\
 \\
 \\
 \\

\end{tabular} \\
\hline \[
\begin{aligned}
& \sum_{\alpha}^{2} \\
& \frac{N}{5} \\
& \vdots
\end{aligned}
\] & \begin{tabular}{l}
 \\
 \\
 \\
 \\

\end{tabular} \\
\hline \[
\begin{aligned}
& \sum_{\substack{2 \\
N}}^{\substack{N \\
N}}
\end{aligned}
\] & \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\

\end{tabular} \\
\hline \[
\begin{aligned}
& \frac{\Sigma}{c} \\
& \frac{1}{N} \\
& \frac{2}{z}
\end{aligned}
\] & \begin{tabular}{l}
 \\
 \\
 \\
 -0000 oppoppopopoppopipg0000000000000000000000000000000000
\end{tabular} \\
\hline  & \begin{tabular}{l}
 \\
 \\
 \\
 00000000000000000000000000000000000000000000000000000
\end{tabular} \\
\hline
\end{tabular}













 - \(\sum_{2}^{2}\)









 -0000000000000000000000









 ○ル


 ○OOOOOOOC:





















*** SUBROUTINE CONFAC RUNS COMPLETE, CPU TIME \(=594.427\) SECONDS \(* * *\)
*** SUBROUTINE IMPLIM RUNS COMPLETE, CPU TIME \(=784.205\) SECONDS \(* x *\)

\(\begin{array}{rr} \\ & \\ 0.55757 & 0.03026 \\ 55760 & -0.03002\end{array}\)

N
Z(NBRC, NBCC)


 (NBRC) COLUMN (NBCC)


2

\section*{＊＊＊SUBROUTINE ARYTRJ BEGINS \({ }^{*}\) 米}

2
 obrararánoco －0000000000

 ©0000000000
\begin{tabular}{|c|}
\hline \multirow[t]{6}{*}{MOUN世OONO勺LGGMMMMM} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \[
\pi
\] \\
\hline MM以MM心M以MMM \\
\hline
\end{tabular} －0000000000




 \(\Sigma\) ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ日,
 -000000000000000000000000000000000






































 11



 1111111





 m心 000000000000000000000000000000000000000000000000000000









 1111111




















응ㅇㅇㅇㅇㅇㅇㅇ응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇNNNMNNWM BSTRM

 000000000000000000000000000000000000000000 \(1111,1,111111111111111\)



 0000000000000000000000000000000000000000000




XSTRM YSTRM



 スGMNNGOQ





\(\underset{\substack{2 \\ 0}}{2}\)





\begin{abstract}
MINT
 -


\end{abstract}














 1111111111111111111111

\footnotetext{

 - GNow







}


 0000000000000000000000000000000000000000000000000000000
 กIn




\author{

}







 जGG








응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ





 ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ














人0000000000000000000000000000000000000000000000000000 000








 MMMMNMMMMMMMNNNNNNNNNNNONNNAFANHAOOOOOOOOHNNNNMMMNVMINO



\section*{응응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 으응응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ ©00000ष0000000}
 HoovornNmamNNNON



 ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 응응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 응응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅁㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 000000000000000

 HLOOMMOCNOGNNNG



ONOUNOLMANOMMNM OMNONGNOCOMNMNNM
 ©0000000000000

 LncomoMLNownNMN












 ㅇopoogo0000000000000000000000000000

VNSTRM


 OO000000000000000000000000000..n.? 00000000000000000000000000000000 111111111111111!

XNSTRM
















\(00^{\circ 0} 00^{\circ 000000000000000000000000000000000000000000}\)



 Aヵoóa



 ONNWNRN .





 00000000

 NOGす

 000000000000000000000000000000111111111111111111111




 ©OOOOOOOOOOOOOOOOQOOOOOOOOOO









 00000000000000000000000000000000000000000000000000 1111111









 NNNMMMMMMMMMMMNNNNNNNNRMO


\footnotetext{

}

CPU TIME \(=966.413\)
trajectory data are written on unit 10 for plotting

*** SUBROUTINE CONFAC RUNS COMPLETE, CPU TIME \(=1003.258\) SECONDS \(* *\)
******* DUTPUT FROM SUBROUTINE CONFAC FOR ICEC= 3
XSCI YSCI ZSCI XSCF YSCF ZSCF
\(\begin{array}{llllll}-20.00000 & -0.54883 & 0.04462 & -0.31800 & -0.54989 & 0.05006 \\ -20.00000 & -0.54851 & -0.05417 & -0.31800 & -0.54992 & -0.06007\end{array}\)
*** SUBROUTINE IMPLIM BEGINS ****
*** SUBROUTINE IMPLIM RUNS COMPLETE, CPU TIME \(=1178.084\) SECONDS \(* * *\)

\footnotetext{
******* OUTPUT FROM SUBROUTINE IMPLIM FOR ICEC= 3

> ROW (NBRC) COLUMN (NBCC) X(NBRC,NBCC) Y(NBRC,NBCC) Z(NBRC,NBCC)
}

 1






 i，oiooiooiooiooiioiio

苗
＊＊＊＊＊＊＊output from subroutine arytrd for icec＝


 oiopioiopioioioioioio⿷．


Mmin


 Wisumun 1イㄱำ

 XBLI

3
SUBROUTINE BETAC OUTPUT FOR SLICE:
E NGUGovannwonmond


\begin{tabular}{|c|}
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
 \\
 \\
 MनONGNavmombonvennm NNHMmmeosoodommmmNN
\end{tabular}} \\
\hline \\
\hline
\end{tabular} 111111111100

 ONUNNMGMMNMNOMNNNNO
 000000000000000000

-0.27811
-0.29368
-0.30081
-0.30561
-0.30916
-0.31183
-0.31377
-0.31503
-0.31576
-0.31601
-0.31576
-0.31504
-0.31377
-0.31183
-0.30916
-0.30563
-0.30088
-0.29380
-0.27834







 *













 1111111






 जす
 00000000000000000000000000






 MJ G





No

응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ －0000 0000000000




 00000nononommenano H－4WHAOOOOOOOOOOO

NNOMONOQOUnminnoo

 oondoonmodmaNNMmo 0000000000000000
 ng

tGamNevNOGNomNOOO mmmomonvo manduge

 1111111111111

NNGONNGAONLINOOO OOnNHGONHMOnHJEOO



MmळのNNOGEONMGMNON MMNOLNAKMLGのONONGO

 11111111111121710

Noncotvuoumomvoooo






 0000000000000000
 GOONMNNDOQKMN甘NMN



 \begin{tabular}{l}
2 \\
2 \\
\hline 8
\end{tabular}




 MMUVINNNN 0000000000000000000000000
00000000000000000000000


 0000000000000000000000000
 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ으응

－00000000000000000000000







 ONNNDEHLNRNNNGOMNNDNONNDNO
 －000000000000000000000000




 0000000000000000000000000

ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅂ응용ㅇㅇㅇㅇㅇ
 \(00^{\circ 00000000000000000000}\)

ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅁㅁㅁㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ ㅇㅇㅇㅇㅇㅇㅇㅇㅁㅇㅁㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 00000000000000000000000


ㅇㅇㅇㅇㅇㅇㅇㅕㅇㄻ


 －00000000000000000000000000000000000000000000000000000 11110ioipó11



 \(00^{\circ 000000000000000000000000000000000000000000000000000 ~}\) 1111111111



 0000000000000000000000000000000000000000000000000000000 11111111111111111111111
 NGUルज

 －0000000000000000000000000000000000000000000000000000 11111111111，111111111



 ． 0000000000000000000000000000000000000000000111111111111



 00ロールNNNNNMMNN．N．．N．





000000000000000000000000000000000000000000000000000000







 －000000000000000000000000000000000000000000000000000







 にNK
 000000000000000000000000000000000000000000000000000000 1,1111111













 ©












 －000000000000000000000000000000000000000000000000000000








 00000000000000000000000000000000000000000000000000000000 111111



家 －0000000000






11111111111111111





\(00^{\circ 0} 00^{\circ 00} 000000000000000000000000000000000000000000000\) 1111111

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline POINT & XSTSV & YSTSV & ZSTSV & BETA & DICE & XNSTRM & YNSTRM & ZNSTRM & XNTRJ & YNTRJ & ZNTRJ \\
\hline 1 & 1.312290 & 0.540905 & 0.000000 & 0.000000 & 0.000000 & 0.122563 & -0.070762 & -0.989935 & 0.000000 & 0.000000 & 0.000000 \\
\hline 2 & 1.310106 & 0.540758 & -0.000260 & 0.000000 & 0.000000 & 0.122154 & . 0.0 .070526 & -0.990002 & 0.000000 & 0.000000 & 0.000000 \\
\hline 3 & 1.303630 & 0.540402 & -0.001031 & 0.000000 & 0.000000 & 0.121168 & -0.069957 & -0.990164 & 0.000000 & 0.000000 & 0.000000 \\
\hline 4 & 1.293022 & 0.540007 & -0.002295 & 0.000000 & 0.000000 & 0.119904 & -0.069228 & -0.990369 & 0.000000 & 0.000000 & 0.000000 \\
\hline 5 & 1.278453 & 0.539697 & -0.004027 & 0.000000 & 0.000000 & 0.117922 & -0.068082 & -0.990686 & 0.000000 & 0.000000 & 0.000000 \\
\hline 6 & 1.260120 & 0.539552 & -0.006175 & 0.000000 & 0.000000 & 0.115192 & -0.066506 & -0.991114 & 0.000000 & 0.000000 & 0.000000 \\
\hline 7 & 1.238061 & 0.539382 & -0.008695 & 0.000000 & 0.000000 & 0.112261 & -0.064813 & -0.991563 & 0.000000 & 0.000000 & 0.000000 \\
\hline 8 & 1.212660 & 0.539431 & -0.011535 & 0.000000 & 0.000000 & 0.109045 & -0.062957 & -0.992041 & 0.000000 & 0.000000 & 0.000000 \\
\hline 9 & 1.184138 & 0.539688 & -0.014636 & 0.000000 & 0.000000 & 0.105439 & -0.060875 & -0.992561 & 0.000000 & 0.000000 & 0.000000 \\
\hline 10 & 1.152751 & 0.540108 & -0.017935 & 0.000000 & 0.000000 & 0.101703 & -0.058718 & -0.993080 & 0.000000 & 0.000000 & 0.000000 \\
\hline 11 & 1.118811 & 0.540715 & -0.021382 & 0.000000 & 0.000000 & 0.097737 & -0.056429 & -0.993611 & 0.000000 & 0.000000 & 0.000000 \\
\hline 12 & 1.082648 & 0.541540 & -0.024907 & 0.000000 & 0.000000 & 0.093401 & -0.053925 & -0.994167 & 0.000000 & 0.000000 & 0.000000 \\
\hline 13 & 1.044569 & 0.542494 & -0.028449 & 0.0000000 & 0.000000 & 0.089015 & -0.051392 & -0.994704 & 0.000000 & 0.000000 & 0.000000 \\
\hline 14 & 1.004868 & 0.543498 & -0.031965 & 0.000000 & 0.000000 & 0.084184 & -0.048603 & -0.995264 & 0.000000 & 0.000000 & 0.000000 \\
\hline 15 & 0.963985 & 0.544669 & -0.035368 & 0.000000 & 0.000000 & 0.078955 & -0.045585 & -0.995835 & 0.000000 & 0.000000 & 0.000000 \\
\hline 16 & 0.922241 & 0.545927 & -0.038625 & 0.000000 & 0.000000 & 0.073220 & -0.042274 & -0.996419 & 0.000000 & 0.000000 & 0.000000 \\
\hline 17 & 0.879982 & 0.547211 & -0.041647 & 0.000000 & 0.000000 & 0.066732 & -0.038528 & -0.997027 & 0.000000 & 0.000000 & 0.000000 \\
\hline 18 & 0.837605 & 0.548583 & -0.044392 & 0.000000 & 0.000000 & 0.059559 & -0.034386 & -0.997632 & 0.000000 & 0.000000 & 0.000000 \\
\hline 19 & 0.795424 & 0.549968 & -0.046791 & 0.000000 & 0.000000 & 0.051396 & -0.029674 & -0.998237 & 0.000000 & 0.000000 & 0.000000 \\
\hline 20 & 0.753782 & 0.551332 & -0.048792 & 0.000000 & 0.000000 & 0.042073 & -0.024291 & -0.998819 & 0.000000 & 0.000000 & 0.000000 \\
\hline 21 & 0.713006 & 0.552674 & -0.050333 & 0.000000 & 0.000000 & 0.031616 & -0.018254 & -0.999333 & 0.000000 & 0.000000 & 0.000000 \\
\hline 22 & 0.673399 & 0.553977 & -0.051390 & 0.000000 & 0.000000 & 0.019877 & -0.011476 & -0.999737 & 0.000000 & 0.000000 & 0.000000 \\
\hline 23 & 0.635236 & 0.555237 & -0.051918 & 0.000000 & 0.000000 & 0.006559 & -0.003787 & -0.999971 & 0.000000 & 0.000000 & 0.000000 \\
\hline 24 & 0.598793 & 0.556426 & -0.051901 & 0.000000 & 0.000000 & -0.008362 & 0.004828 & -0.999953 & 0.000000 & 0.000000 & 0.000000 \\
\hline 25 & 0.564281 & 0.557549 & -0.051329 & 0.000000 & 0.000000 & -0.025056 & 0.024466 & -0.999581 & 0.000000 & 0.000000 & 0.000000 \\
\hline 26 & 0.531902 & 0.558590 & -0.050212 & 0.000000 & 0.000000 & -0.043587 & 0.025165 & -0.998733 & 0.000000 & 0.000000 & 0.000000 \\
\hline 27 & 0.501816 & 0.559550 & -0.048575 & 0.000000 & 0.000000 & -0.064045 & 0.036977 & -0.997262 & 0.000000 & 0.000000 & 0.000000 \\
\hline 28 & 0.474159 & 0.560421 & -0.046462 & 0.000000 & 0.000000 & -0.086941 & 0.050196 & -0.994948 & 0.000000 & 0.000000 & 0.000000 \\
\hline 29 & 0.449008 & 0.561198 & -0.043908 & 0.000000 & 0.000000 & -0.112625 & 0.065024 & -0.991508 & 0.000000 & 0.000000 & 0.000000 \\
\hline 30 & 0.426425 & 0.561868 & -0.040980 & 0.000000 & 0.000000 & -0.141537 & 0.081717 & -0.986554 & 0.000000 & 0.000000 & 0.000000 \\
\hline 31 & 0.406388 & 0.562411 & -0.037733 & 0.000000 & 0.000000 & -0.174468 & 0.100729 & -0.979497 & 0.000000 & 0.000000 & 0.000000 \\
\hline 32 & 0.388879 & 0.562794 & -0.034243 & 0.000000 & 0.000000 & -0.212526 & 0.122702 & -0.969421 & 0.000000 & 0.000000 & 0.000000 \\
\hline 33 & 0.373816 & 0.562997 & -0.030571 & 0.037003 & 0.000000 & -0.226686 & 0.130877 & -0.965135 & 0.000000 & 0.000000 & 0.000000 \\
\hline 34 & 0.360812 & 0.563140 & -0.027589 & 0.112424 & 0.001681 & -0.220104 & 0.127077 & -0.967164 & -0.968568 & -0.096238 & 0.229377 \\
\hline 35 & 0.349709 & 0.563179 & -0.025060 & 0.190848 & 0.002853 & -0.253272 & 0.146227 & -0.956280 & -0.969560 & -0.115371 & 0.215937 \\
\hline 36 & 0.340445 & 0.562993 & -0.022282 & 0.277877 & 0.004154 & -0.313282 & 0.180874 & -0.932276 & -0.970930 & -0.133162 & 0.198879 \\
\hline 37 & 0.332628 & 0.562563 & -0.019485 & 0.369133 & 0.005518 & -0.378553 & 0.218558 & -0.899405 & -0.973155 & -0.150541 & 0.174065 \\
\hline 38 & 0.325990 & 0.561813 & -0.016540 & 0.457271 & 0.006835 & -0.464988 & 0.268461 & -0.843632 & -0.975598 & -0.165781 & 0.143961 \\
\hline
\end{tabular}



 \(00^{\circ 00} 00000000000000000000000000000000000000000000000\) 111111111111



 0000000000000000000000000000000000000000000000000000信111111111111


 000000000000000000000000000000000000000000000000000 ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ


 に
 \(1111111:\)








 ．．．．．．．．．． 000000000000000900000000000000











のレのNMM－2


 000000000000000000000000000000000000000000 ㅇㅇㅇㅇㅇㅇㅇㅇ



 0000000000000000000000000000000000000000000000000000000
















岳







-









\(\sum_{n}\)





















 －心o



 000000000000000000000000000000000000000000000














GNOOGGNGNNNル
品的以







\footnotetext{

}

\section*{
}






 000000000000000000000000000000000000000000090000090

\title{
용ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇNNNMMGONNMANMGNMG



} NTR
 Mobonmo

 －00000000000000000000000000000000000000000000000000 1111111111111111111111111111111111111111111
各

 ilipilipilipipiopiopiopooi










 000000000000000000000000000000000000000000000000000


 000000000000000000000000000000000000000000000000000 11111111111111111111111111111111111111111111





 ©
思






 0000000000000000000000000000000000000000 1111111
 NNゆHNHNOOOOㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

 00000000000000000000000000000000000000000 111111

 MNy N

 1111111



 0000000000000000000000000000000000000000月mm



 \(00^{\circ 0000000000000000000000000000000000000000}\) 1111111111111111111111



 00000000000000000000000000000000000000 11111111111111111


 ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 00000000000000000000000000000000000000000








 0000000000000000000000000000000000000000000









 MNN．N．NNNT．．．N00000000000000000000000 \(00^{\circ 0000000000000000000000000000000000000000 ~}\)


000


응onn

 000000ONOMMぁXSTSV

































 0000000000000000000000000009000000000000000000000000000

















\footnotetext{

}

\begin{tabular}{|c|}
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
 \\
 \\
 \\
 \\

\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}










용용응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅁㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 00000000000000000000000000000000

응ㅇㅇㅇㅇㅁㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ



\begin{abstract}



\(\because \because\).













 11111111
\end{abstract}



Figure 27. - Pressure distribution at \(\mathbf{5 0 \%}\) span location for example case at \(\mathbf{0}\) and \(\mathbf{8}\) degrees angle-of-attack.


Figure 28. - Illustration of off-body and on-body streamlines.


Figure 29. - Illustration of impact trajectories for the example case.


Figure 30. - Illustration of iced streamline for the example case.


Figure 31. - Iced wing panel model for the example case.

\section*{}

Figure 32. - Comparison of predicted and measured ice shape at the \(0 \%\) span location for the example case.
```

