
N Q 4 - 2 ^ 7 ft 3
4th NASA Symposium on VLSI Design 1992 ll ** ** * _ V - 3.1.1

On The Decomposition Of
Synchronous State Machines

Using Sequence Invariant State Machines
K.Hebbalalu, S.Whitaker and K.Cameron
NASA Space Engineering Research Center

University of Idaho
Moscow, Idaho 83843

Abstract - This paper presents a few techniques for the decomposition of Syn-
chronous State Machines of medium to large sizes into smaller component ma-
chines. The methods are based on the nature of the transitions and sequences of
states in the machine, and on the number and variety of inputs to the machine.
The results of the decomposition, and of using the Sequence Invariant State Ma-
chine (SISM) Design Technique for generating the component machines, include
great ease and quickness in the design and implementation processes. Further-
more, there is increased flexibility in making modifications to the original design,
leading to negligible re-design time.

1 Introduction

Most digital Very Large Scale Integrated (VLSI) circuits currently designed contain con-
trollers which co-ordinate and control activities occuring inside and outside the chip. Usu-
ally, such controllers are comprised, partly or wholly, of synchronous sequential machines.
Often, depending on the nature and complexity of the control action required, these sequen-
tial machines are of medium to large sizes (requiring five or more state variables). While
it is always possible to design these machines as single units using random logic, this im-
plementation presents the designer with a narrow choice of options, since a large number of
state variables results in difficult-to-derive and unwieldy design equations. Also, the layout
process for these single, large machines becomes complicated and even minor changes in the
original flow Table may result in a complete re-design. In addition, large machines tend to
be slower and not very amenable to fault diagonostics or to trouble-shooting.

Hence there is a need to decompose such large machines into smaller, more manageable
component machines, which offer greater flexibility to the designer. This paper presents
a few such decomposition techniques, resulting in faster and better designs. Furthermore,
the Sequence Invariant State Machine (SISM) Design Technique [1] is used to generate the
component machines, which enhances the ease of the design process, by not requiring the
use of complicated design equations and K-Maps. The final and greatest advantage is that
the layout is automated.

2 Notations and Definitions

Definition 1: An active state machine is one in which some outputs are valid and which is
exercising control over the chip in part or whole.

https://ntrs.nasa.gov/search.jsp?R=19940017230 2020-06-16T19:08:53+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42789235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3.1.2

Definition 2: An inactive state machine is one in which no output is valid.

Definition 3: A ready protocol between two state machines signifies that the machine which
originates the ready signal is becoming inactive and is handing over control to the machine
which receives the signal.

Definition 4'- A start-up state is a state in which a machine waits until it receives a ready
signal from another machine, indicating it is to become active and to go into its next valid
state. In the example of Figure 1, states A, X' and X" are start-up states.

Definition 5: An idle state or wait state is one in which a machine raises a ready signal to
another machine to become active, and perhaps waits in this state as long as the machine is
inactive: it., until it receives a ready signal in its turn. In Figure 1, states F, X' and X" are
wait states. A single state can function both as a start-up and as a wait state.

Definition 6: State splitting is the replication of a state from the original machine, into
corresponding states in component machines. These states serve exactly the same function
as the original state with the same outputs. States G' and G" in Figure 1, are split states of
the original state G. State splitting is used to limit the interaction and to avoid unnecessary
transfer of control between machines.

3 Decomposition and SISMs

Most of the state machines encountered during design, have their own individual peculiarities
and constraints, and a formal, all-encompassing procedure for their design or decomposition
is difficult. There would be several possible ways of achieving the results, and depending
on the criteria, more than one optimal solution would be found. These criteria for finding
the 'best' solution usually include speed and area considerations, cost, quickness and ease of
implementation and testing, among others. The designer might choose one or more of these,
in various orders of priority.

Some decomposition techniques are presented in the following sections, bearing in mind
the implementation of the component machines using the SISM Design Technique [1]. There
are several advantages to be gained, using this method:

• The structure and design of all the sub-state-machines are the same, provided, they
all have equal number of state variables.

• The design of the SISMs is simple and easy, not involving the use of K-Maps or design
equations.

• The layout process for these machines is uncomplicated and is automated, leading to
very quick results[2). Also, since the basic structure of the SISM is very regular, the
layout is very dense and the area savings are considerable.

• The simulations for the circuits using SISMs are also easy and quick. Any changes to
be incorporated are easily done with negligible re-design time.

4th NASA Symposium on VLSI Design 1992 3.1.3

Machine 1

Machine 2

Machine 3

Figure 1; Example of Decomposed State Machine

3.1.4

Inputs I

Destinatio;

State Cod-

Input

Switch

Matrix

All Next

States

Next
State

Logic

Figure 2: General Block Diagram of SISM

SQ

Si

S2
S3

h

#3!

#51

^02

#62

#03

#13

#23

#33

#43

#53

#63

#73

Table 1: General eight-state three-input flow table

3.1 The operation of SISMs
The driving idea behind the SISM architecture is to build a state machine given only the
dimensions (number of inputs i and number of states s) of the flow Table. The state machine
thus created must be capable of performing the operations of any sequence of states that are
described in the i by s flow Table, to achieve sequence invariance.

An SISM has the basic block structure as shown in Figure 2. The destination state codes
are a representation of the flow Table to be implemented. The input switch matrix selects a
single column of the flow Table and passes the next state information for the entire selected
column to the next state logic decoder. This next state decoder selects one from the column
of states presented to it, as the next state, depending on the present state. The hardware for
the SISM depends only on the dimensions of the flow Table to be implemented. The only
difference between state machines built for flow tabes with different sequences of states, but
with the same dimensions, is in the programming of the destination state codes.

The operation of an SISM can be illustrated with the following example. Let Table 1
represent a general flow Table for a 3 state variable, 3 input state machine, /j, 72 and I3

are the inputs, So—SV are the present states and Nij are the next states. The set of #,-_,• also
comprises of the destination codes. Let the state assignment be Sb =000, 5"i=001, 57=111.

4th NASA Symposium on VLSI Design 1992 3.1.5

The next state logic is a general BTS circuit [3,4] with each path decoding a state. The
input switch matrix passes the destination codes to the next state logic, as shown in Figure 3.
The circuit works as follows: For an active input, /,-, all next state codes in the ith column of
the input matrix are passed to the inputs of the next state logic. The present state variables,
ys, select only one code among them and pass it on to the flip-flops. For example, if the
machine is in state Si and input 72 is asserted, then JVi2 would be passed to the inputs of
the flip-flops. The current input selects the set of potential next states that the circuit can
assume (selects the input column) and the present state variables select the exact next state
(row in the flow Table) that the circuit will assume on the next clock pulse.

4 Decomposition Techniques

This section describes some methods of decomposing large state machines and at the same
time, indicates the feasibility of each method for varying situations, with illustrations.

4.1 Functional and Hierarchical Decomposition

As is most often the case, the designer of a digital controller is provided with a word statement
of the specifications and the sequence of operations that the controller should conform to,
rather than a state diagram or a flow Table. In such cases, a popular method is to decompose
the controller into functional blocks, with each block representing an operation in the main
sequence of events. In other words, a functional block diagram is generated. Each functional
block is progressively decomposed into smaller, more specific operations, culminating in state
machines with sets of states, defining macro operations. The requisite flow Tables, design
equations and outputs are generated for these machines and are then hierarchically combined
to produce the final controller.

4.2 Decomposition using 'bottleneck' states

Many state diagrams reveal on inspection natural 'bottleneck' states which connect groups
of states. In the example shown in Figure 1, state F is such a state. The state machine can
be decomposed around such states, making the groups of states into sub-machines, with the
bottleneck state included in any one of them.

This method of decomposition is convienient and economical in that, it saves the gener-
ation of additional dummy states to help decomposition, or the resortion to state-splitting
for the same purpose. The only criterion to be observed here is that the number of states in
the groups connected by the bottleneck should be roughly the same, so that, when formed
into sub-machines, they all need the same number of state variables. This method has been
used in fragmenting the state machine in Figure 1, where there are 3 groups of states around
state F, with each group having 6 states, needing 3 state variables each.

3.1.6

#01 #02 #01 02 03

/i-f-
#11 #13

/3-+
#21 #22 #23

#31 #32 #33

#41 #42 #43

#51 #52 #53

#61 #62 #63

2/3

3/3

3/3

3/3

3/3

1/3

3/3

1/3

3/2

3/2

3/1

#71 #72 #73

Figure 3: General 8 state 3 input next state equation circuit

4th NASA Symposium on VLSI Design 1992 3.1.7

A
B
C
D
E
F

/i
D
C
E
F
A
A

/2

B
F
A
C
D
B

/3

-
D
-
E
B
-

/4

-

E
-
B
D
-

/5

-

-

-

-

-

A

/6

-

-

-

-

-

B

Table 2: Example flow table showing types of inputs

4.3 Decomposition using groups of inputs and states

The inputs to a state machine can be classified under three general categories: 1) those
inputs under which all the states make transitions to other states in the machine; 2) those
under which states of a group transition amongst themselves, and 3) inputs under which a
single state transitions to other states. In Table 2, I\ and /2 belong to the first category, /a
and 74 to the second and /s and 7$ to the third.

Fragmentation of a large machine can be done, depending on the nature of inputs pre-
sented to it. An examination of the flow Table reveals which of the three classes of inputs
discussed above are predominant, and decomposition can be done accordingly. The cen-
tral idea here is to seek for disjoint groups of inputs, under which groups of states transition
amongst themselves, and in addition, there should be little or no overlap between the groups;
it., isolated groups of inputs with corresponding isolated groups of states should be identified.
These can be formed into sub-machines.

It is clear that, if a large machine comprises of inputs which are used by all the states
in the machine to make transitions, or if there is an even mix of the three types of inputs
discussed above, as in Table 2, then breaking up of that machine is not viable, or at the
most, minimal. This is because decomposing that machine would necessitate a duplication
of either the inputs or the states or both in all the component machines leading to larger chip
area and reduced speed. On the other hand, if a machine has inputs exclusively of the third
class (under which single states transition to other states), then a maximal decomposition
of the machine is possible. In other words, the machine can be fragmented into one bit state
machines, each containing a state of the original machine, with corresponding inputs under
which the state transitions to other states (in this case, to other one bit machines). This
method is also called as one hot coding[5] and is quite popular in applications where the size
of the machine is not very large, since it requires the use of one flip-flop for every state of the
machine, and thus the area occupied is more. The main advantage here is ease and quickness
in design, with little or no design equations, and can be used for standard cell designs. Also,
in one bit machines, since there is only one state variable, the series and feedback delays are
minimal and the speed of operation is enhanced.

3.1.8

5 Implementation using SISMs

In order to implement the sub-machines using SISMs, a few general guidelines have to
be followed, during the decomposition: All the machines should have an equal number of
state variables and a common maximum of the number of inputs, to take advantage of the
repetitive and automated design and layout processes for SISMs. If any machine has fewer
states or inputs than those of other machines, dummy states and inputs can be introduced in
that particular machine, to preserve regularity. Every component machine must have a start-
up/wait state, to facilitate the ready protocol and the handover of control between machines.
Also, such states should have no valid outputs that are used in the normal activities of the
controller t'e., the machine should be inactive, while it is in the start-up or wait state. If a
machine does not have such states naturally, an additional state performing their functions
should be introduced. An added constraint is that a machine can have only one wait state,
though it can have more than one start-up state. Usually the start-up states of all machines
are coded 000 or 111 to help reset the machines with a common reset signal, provided to the
flip-flops.

Finally, it is a good practice to keep all states from the original machine, that transition
among themselves, in a single sub-machine, rather than distribute them over a few machines.
This saves unnecessary interaction and handing over of control between them, resulting in
hardware savings and speed enhancement. If this is not feasible under certain circumstances
(for example, when there is a single transition from a state in one group, to a state in
another, both being separated by many states), then, state splitting can be used to limit the
interaction.

An example to illustrate the techniques described so far, is shown in Figure 1. The original
machine with 14 states and 6 outputs has been broken up around the natural bottleneck
state F, into 3 sub-machines MI, MI and M$. All the machines have 6 states each and can
be coded with 3 state variables. States A and F are the natural start-up and idle states for
machine M\. State X' is the combined start-up and idle state for A/2, while X" serves the
same purpose for MS. States X' and X" have been deliberately added to facilitate the ready
protocol. State G of the original machine, common to group HIJK and to group LMNO, has
been split into states G' and G", to eliminate any interaction between MI and MS. It can
also be observed that there are no common inputs among all the three machines and that
there is a maximum of 3 inputs to any state.

In the normal sequence of events, at power-up, a common reset signal is applied, which
leaves all the machines in their start-up states, namely, A, X' and X". Machine M\ is
activated first and proceeds through its sequence of states. On reaching state F, it waits
there, and depending on the occurance of 1$ or /i2, either state G' or G" will be entered,
and the corresponding machine activated. The return of control to M\ is achieved when M2

sinks back to state X' or when MS returns to state X", at which time, M\ moves from state
F to either of states A or B, depending on where the ready signal originated. (The ready
signal is just the transition between states; for example, state J going to state X', on receipt
of /n, will be a ready signal for machine M\ to go from state F to state A.)

The generation of the hardware for the machines begins with the construction of the flow
Tables for the individual machines. As an example, the Table for machine MI is shown in

4th NASA Symposium on VLSI Design 1992 3.1.9

2/13

h ~f hN~\~ RST-(-
0 0

2 -hkH- -f-
0

1 0

/s -|- /s-/V-f -\-
1 0

I.+I&+ -i
1

n 1 A

2/13

2/13

4AO

2/13

2/13

1/13

2/12

2/12

1/12

2/11

2/ii

CLK

1
Yn

FF

|
RST

Figure 4: Next state equation circuit for YU of Table 3

Table 3. Next the circuits for the machines are generated using the SISM procedure. This
is illustrated in Figure 4, for one of the next state variables, Yii, of the flow Table shown
in Table 3. In Figure 4, the complementary signals of all inputs (IiN I5N) have been
used to prevent the input to the flip-flop from going into a high- impedance state, when the
inputs are not active. For example, if the machine is in state B and /2 has not occured for a
clock cycle, and if the complementary signal, I^N were not present as an additional input,
then, the flip-flop would be presented with a high impedance at its input, thereby making its
output unpredicTable on the next clock edge. However, if it can be assured externally that
the input always occurs within the clock cycle, the complementary signal can be dispensed
with. The output forming logic is generated as usual, using the present state codes of the
states for their corresponding outputs.

6 Conclusions

The paper discussed the need for the decomposition of large state machines and a few tech-
niques for achieving the same. The use of SISMs for implementing the component machines
and the general requirements for doing so, were examined in detail. The methodology pro-

3.1.10

yn 2/12 yi3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

A
B
c
D
E
F

h
B
-
-
-
-
-

hN
A
-
-
-
-
-

h
-
C
-
.
.
-

I2N
-
B
-
-
.
-

h
-
-
D
-
-
-

I3N

-

-

C
-
-

-

h
-
-
E
-
-
-

I4N
-
-
C
-
.
-

/5
-

-

-

F
F
F

hN
-
-
-
A
-
-

Im
-
-
-
-
.
A

IHI
-
-
-
-
-
F

RST
A
A
A
A
A
A

IHI= I8N.I

IHI= IHI + hs-O

Table 3: Flow Table for the component machine MI

vided in the paper gives a simple and easy way of implementing the decomposition of large
state machines. The process is also flexible, quick and automated, leading to reduced time
and cost of design.

References

[1] S. Whitaker, Manjunath Shamanna and G. Maki, "Sequence-Invariant State Machines,"
IEEE Journal of Solid State Circuits, Vol. 26, August 1991, pp. 1145- 1161.

[2] D.Buehler, S. Whitaker, and J.Canaris, "Automated Synthesis of Sequence Invari-
ant State Machines," 2nd NASA SERC Symposium on VLSI Design, Moscow, Idaho,
November 1990, pp. 4.4.1- 4.3.9.

[3] D.Radhakrishnan, S. Whitaker, and G.Maki, "Formal Design Procedures for Pass Tran-
sistor Switching Circuits," IEEE Journal of Solid State Circuits, April 1985, pp. 531-
536.

[4] S. Whitaker, and G. Maki, "Pass Transistor Asynchronous Sequential Circuits," IEEE
Journal of Solid State Circuits, Vol. SC-24, February 1989, pp. 71-78.

[5] Lee.A.Hollaar, "Direct Implementation of Asynchronous Control Units," IEEE Trans-
actions on Computers, vol. C-31, N0.12, December 1982, pp. 1133-1141.

This research was supported in part by NASA under Space Engineering Research Center
Grant NAGW-1406.

