
4ti JVASA Symposium on VLSI Design 1992 fN ̂ <* -6 -i 6 $ |f 9.2.1

A Novel Cache Mechanism
J. A. Gunawardena

Faculty of Engineering
University of Peradeniya, SRI LANKA

+94 (08) 88185

Abstract - This cache mechanism is transparent but does not contain associa-
tive circuits. It does not rely on locality of reference of instructions or data.
No redundant instructions or data are encached. Items in the cache are ac-
cessed without address arithmetic. A cache miss is detected by the simplest
test; compare two bits. These features would result in faster access, higher hit
rate, reduced chip area and less power dissipation in comparison with associative
systems of similar size.

1 Introduction

Most computer programs exhibit the property of temporal locality; i.e.,

• Much of the code consists of repetitive loops.

• The same data is accessed several times within a short interval of time.

Often, they also exhibit the property of spatial locality; i.e.,

• Instructions executed in sequence occupy a contiguous area of the main memory.

• Successive instructions access data in a contiguous area of the main memory.

All cache systems rely on temporal locality to meet the basic objective of reducing accesses
to the main memory. Conventional cache systems that rely on temporal locality alone must
employ fully associative access of the cache. But associative hardware is complex and costly.
Hence, most conventional cache systems depend on the property of spatial locality as well.
As a result the hit rate decreases when the program exhibits poor spatial locality.

The system proposed in this paper uses no associative hardware at all. Yet, its perfor-
mance is totally independent of spatial locality of code and data in the main memory. Hence
its performance would be as good as or better than that of a fully associative cache of similar
capacity.

If a cache memory system is to be completely transparent to software it should cater to
the following two attributes of programs:

• A datum may be operated on by several distinct instructions.

• An instruction may receive control from that assigned to the preceding location in the
main memory or from a branch instruction.

The following sections show how a hypothetical computer utilizing the proposed cache
mechanism provides for these attributes while minimizing accesses to the main memory.
For clarity here, the hypothetical computer is assigned a simple architecture. However,
with suitable modifications, the proposed mechanism will complement most other features
of modern computers including those of multi-processor systems.

https://ntrs.nasa.gov/search.jsp?R=19940017257 2020-06-16T19:05:08+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42789208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

9.2.2

2 General Features

This cache system is completely transparent to software. Programs are compiled or assembled
and loaded onto a random access main memory as if there were no cache. In contrast to
conventional systems, there is no restriction on the location in the cache at which an item may
be entered. The Execution Unit (EU) does not perform address arithmetic for instructions
or for scalar data. This work is done by a Cache Management Unit (CMU) and is required
only when a miss occurs. The miss detection test is the simplest possible; compare two bits.

The cache is accessed as a random access memory. When decaching and encaching, it is
operated as a normally full cyclic FIFO buffer. All decached items are returned to the main
memory. Thus, only one copy of each item is maintained. Instructions and scalar data are
placed in the same cache. Arrays may be placed in the same cache provided that each array
is taken in its entirety. Arrays may also be placed in a separate cache. These conditions are
necessary for the proper functioning of the miss detection test.

3 Structure

Fig. 1 shows the functional components of the proposed system. For clarity at this stage we
consider a computer in which all instructions and data are of fixed length p bits, with each
instruction or datum occupying one word of the main memory.

2m-l

EU

CACHE

(p + 2c + 3)bits

2C-1

MAIN MEMORY

CACHE MANAGEMENT UNIT

00
p bits

Fig. 1 Functional components of the cache system.

The cache consists of 2C lines; i.e. a line has a physical address of c bits. We use the term
"physical address" because, at a later stage we need to introduce the term "logical address"
with respect to cache lines.

4th NASA Symposium on VLSI Design 1992 9.2.3

The cache contains both instructions and data. Each cache line contains one item, viz.,
one instruction or one datum. The cache is normally full. Hence the current item in a line
must be decached before a new item can be encached there. A register contained in the CMU
holds the address of the line from which an item will be decached next. This is referred to as
the Decache Address (DA). The cyclic FIFO rule is implemented by incrementing DA after
each encache operation, with wraparound when necessary.

For this simple model it will be shown that each line should contain (p + 2c + 3) bits. Of
these, p bits are required for the encached item. The additional (2c -f 3) bits comprise fields
that hold information required for non-associative operation of the system. The function of
each of these fields will be described as the need arises.

The inventory holds the main memory address of each encached item. Thus a cache
address refers to a line in the cache as well as the corresponding entry in the inventory. If
the main memory contains 2m words then each entry in the inventory takes m bits.

The CMU encaches each item when it is first required by the EU. Hence, the EU needs
to communicate with the cache only, unless a miss occurs. In this event it signals the CMU
which in turn accesses the cache, inventory and main memory to take corrective action.

4 The Contents of the Cache

An instruction must be in the cache before its execution may commence. Similarly, a datum
must be in the cache before it may be operated on.

Consider the execution of a register/memory instruction in which the register is implied
in the opcode. Assume that the instruction has been just encached at CACI, the Cache
Address of the Current Instruction, and that the datum and the next instruction are in the
main memory.

The EU is unaware that the datum is not in the cache and tries to access it using the
content of a field from the extra (2c + 3) bits at CACI. The exact line accessed is irrelevant
at this point; it is sufficient to note that, because the datum is not in the cache, the miss
detection test must return a miss.

The current instruction which is in the line at CACI consists of the opcode and the
operand as obtained from the main memory (Fig. 2). The operand is the Main memory
Address of the Datum (MAD). The CMU gets MAD from the line at CACI, accesses the
main memory, obtains the datum and encaches it in the line at DA. Note that MAD and
DA are not related.

The CMU enters DA in a field set apart for it from among the extra (2c + 3) bits in the
line at CACI. This field is referred to as the Cache Address of the Datum (CAD). The EU
hereafter uses CAD to access the datum in the cache.

For this particular example, since the current instruction and the datum were encached
in immediate succession, we have

CAD = CACI+1 (1)

This relation will not hold true in general because the datum may have been encached earlier
for it to be operated on by a preceding instruction. Hence, the pointer CAD in a field in the
line at CACI is a necessary requirement.

9.2.4

CAD

CACI

CACHE

DATUM

opcode operand = MADJ CAD 1

INVENTORY

MAIN MEMORY

— MAD

Fig. 2 Current instruction and its datum encached in succession.

4th NASA Symposium on VLSI Design 1992 9.2.5

In the case of a datum which has been encached earlier, the CMU must first locate the
line containing the datum in order to update the CAD field at CACI. The procedure to
locate this line will be explained in a later section.

After the datum is operated on, the EU tries to pass control to the instruction at the
next sequential location in the main memory. But, since this instruction is not in the cache
the EU scores a miss. The CMU then takes corrective action as described below.

At the time that the current instruction was encached the inventory would have been
updated. Thus the inventory entry at CACI contains MACI, the Main memory Address of
the Current Instruction (Fig. 3). Let the Main memory Address of the Next Instruction be
denoted by MANI. Then,

MANI = MACI+1 (2)

The CMU accesses the inventory at CACI and obtains MACI. It then increments MACI
and accesses the main memory at MANI to obtain the next instruction which it encaches at
CANI, the Cache address of the Next Instruction. It then enters CANI in a field in the line
at CACI.

From the FIFO rule, for this particular example

CANI = CAD + 1 = CACI + 2 (3)

Again, this relation does not hold true in general because what is referred to here as the
"next instruction" may have been executed earlier, after which a branch may have transferred
control to the current instruction. In that case the next instruction would have been in the
cache before execution of the current instruction commenced. Hence the pointer CANI in
the line at CACI is a necessary requirement.

The two pointers CAD and CANI account for 2c bits at CACI. The remaining 3 bits are
employed for the miss detection test which will be described later.

If the instruction at CACI receives control at a subsequent time and if its datum and the
next instruction have not been decached in the meantime, the pointers CAD and CANI will
remain valid. The instruction at CACI will then be executed with no access to the main
memory or to the CMU. The only additional work for the EU is the miss detection test.

Now, consider the execution of a branch instruction. Let the branch condition be implied
in the opcode. Here, the operand MAD points to the "datum" which is in fact the branch
destination in the main memory. If the branch is not taken the EU does not need the
"datum" and hence does not access the cache at CAD. As before, CANI passes control to
the next instruction. When the branch is taken for the first time, the EU scores a miss when
accessing the "datum" in cache. At this point the CMU locates the "datum" and updates
the CAD field of the line at CACI. The EU then branches to CAD. Thus, a loop containing
one or more branch instructions will, after the first pass, be executed with no reference to
the CMU, the inventory or the main memory. The only condition is that the code and data
of the loop do not require more lines than the total number in the cache.

If the EU exits the loop more items may need to be encached. By the FIFO rule some
items will be decached. If the EU enters the loop again it may attempt to access an item
which has been decached. On attempting access using the now erroneous content of a CAD
field or a CANI field it scores a miss. The CMU then encaches the item or finds where it is
in the cache and updates CAD or CANI.

9.2.6

CANI

CAD

CACI

CACHE

next instruction

datum

current instruction | CAD | CANI

INVENTORY

MACI

MAIN MEMORY

INCREMENT
MAD

•MANI

MACI

Fig. 3 Current instruction, its datum and the next instruction encached in succession.

4th NASA Symposium on VLSI Design 1992 9.2.7

In summary, after encaching an instruction the CMU augments it with two cache ad-
dresses. The EU runs the program with no address arithmetic.

5 The Contents of the Main Memory

CACI

CACHE

opcode operand = MADJ CAD 1

datum

INVENTORY

MAIN MEMORY

MAD CAD

Fig. 4 Datum encached by a preceding instruction.

In trying to access a datum in the cache the EU scores a miss whenever the pointer CAD is
invalid. CAD can be invalid under two conditions:

• The datum is in the main memory.

• The datum has been encached by a preceding instruction.

In the former case, the CMU encaches the datum and updates CAD by inserting DA as
explained in the previous section. In the latter case the CMU must find where the item is
before it can update CAD. In order to provide for this, whenever a datum is encached DA
is written in the word in the main memory from which the datum is taken. Thus only one
copy of the datum exists at any instant; after a datum is encached the word that originally
carried it will contain a pointer to it. MAD becomes an indirect pointer to the datum and
CAD becomes a direct pointer. This procedure guarantees that the CMU can link a datum

9.2.8

to any number of instructions. Thus, for the case where a miss occurs while the datum
is in the cache, the CMU obtains MAD from the operand field of the instruction itself and
accesses the main memory at MAD to get the cache address of the datum (Fig. 4). A similar
procedure is carried out whenever the EU scores a miss in trying to access an instruction.

The main memory now contains a mix of items and cache pointers. The CMU must
distinguish between these two types. An obvious way to provide for this would be to increase
the length of a main memory word to (1 +p) bits, with the extra bit carrying a boolean field
INMAIN. An alternative technique which maintains the length of a main memory word at
p is described in a later section.

6 The Encache Procedure

Whenever a miss occurs the EU supplies CACI to the CMU. It also indicates whether the
fault was in CAD or in CANI. The CMU then accesses the main memory at MAD or MANI
as appropriate. If the required item is in the cache it updates the faulty field at CACI. If
the item is in the main memory the CMU encaches it before updating the field.

The steps of the decache/encache procedure and the reason for carrying out each step
are listed below.

1. Get the inventory entry at DA. This entry is the main memory address of the word
from which the current item in the line at DA was taken.

2. Return the current item in the line at DA to the main memory word at the address
given by the inventory entry. Only one copy of an item is maintained.

3. Invalidate the content of the CAD and CANI fields at DA. If the new item to be
encached is an instruction it must be forced to score misses when first attempting to
access the datum and the next instruction.

4. Place the new item in the line at DA. The EU will access this directly hereafter.

5. Copy DA into the main memory word. The CMU will use this as a pointer to the item
if it becomes necessary to link it to other instructions.

6. Enter the main memory address of the encached word, in the inventory at DA. This
entry is required for proper decaching of this line. Decaching will become necessary
once DA has been incremented through one wraparound. This entry is also necessary
to find MANI and explicitly link an instruction to its successor in the cache.

7. Insert DA in the appropriate field, i.e., CAD or CANI, in the line at CACI. This ensures
a hit if the current instruction is executed again.

8. Increment DA with wraparound if necessary. This implements the cyclic FIFO rule.

4th NASA Symposium on VLSI Design 1992 9.2.9

(n+2)2c

DA

(n + 1)2C

D A - 2 C

n2c

00

valid

decached

Fig. 5 Logical addresses of cyclic FIFO
buffer represented as a quasi-finite stack.

9.2.10

7 The Miss Detection Test

For decache/encache operations, the CMU treats the cache as a FIFO buffer with physical
addresses ranging from 0 to (2C — 1). Logically, this FIFO buffer may be treated as a quasi-
infinite stack in which only the top 2° locations contain valid items (Fig. 5). In this logical
representation, to encache an item the CMU pushes it on to the stack. Since only the top
2C items are valid a decache operation is not required.

The logical address of a line in the stack lies in the range 00 to (DA - 1) and is given by

logical address = physical address + n2° (4)

where n is the count of the number of wraparounds since power-up, n is held in a field of
MSBs in DA. This field may be referred to as the wraparound part of the logical address.

Whenever an item is encached the wraparound field of DA is stored in a field set apart
for this purpose at each location in the cache. The logical address of a cache location is
determined by appending the physical address to the content of the wraparound field at the
accessed location, treating the former as LSBs.

Recall that whenever an item is encached, its cache address CAD or CANI as the case
may be, is stored in a field at CACI. If CAD and CANI consist of logical addresses a miss
may be detected by comparing the wraparound part of CAD or CANI with the content of
the wraparound field at the accessed location. Equality indicates a hit.

As the program runs, more and more items get encached and n increases steadily. It
appears that the miss detection test would be effective only if the wraparound field is large
enough to accommodate all wraparound from power-up to shutdown. The upper bound to
the length of the wraparound field may be determined as follows.

At the instant that CAD is updated to a value say CADi, the datum and the current
instruction are both present in the valid portion of the stack. Hence,

0 <| CADi - CACI |< 2C (5)

Let the contents of the physical location represented by CADi be replaced zero or more
times. Let the resulting logical address of that location be CADj. If the same instruction
receives control again then CACI and CADj must fall within the valid portion of the stack.
Hence,

0 <| CADj - CACI |< 2c (6)

Also CADj > CADi Therefore, from equations (4) and (5),

0 < CADj - CADi < 21+c (7)

Lemma If K, Z/, M are non-negative integers such that K — L < 2M

then, K = L iff [K = L] modulo 2M

Thus, CADi = CADj iff [CADi = CADj] modulo 2l+c

Hence, the maximumlength required for logical addresses is (1+c) bits. The wraparound
field need not be more than 1 bit long.

4th NASA Symposium on VLSI Design 1992 9.2.11

Now, since CADi and CADj both refer to the same physical cache location

[CADi = CADj] modulo T. (8)

Therefore the miss detection test reduces to comparing two bits; the MSB of CAD or CANI
and the wraparound bit stored at the accessed line.

In summary, DA is maintained as a register of (1 + c) bits. The current MSB or
wraparound bit is recorded at each location when an item is encached. When the datum is
encached the (1 + c) bits of DA are entered in the CAD field. The EU accesses the datum
using the c LSBs of CAD and compares the MSB of CAD to the wraparound bit stored
at the accessed location. Equality indicates a hit. The procedure in the case of the next
instruction is similar.

8 Miscellaneous

8.1 Word Length of Main Memory
As explained earlier, whenever an item is encached its cache address is placed in the main
memory word. As a result the main memory contains a mix of items and pointers. In order
to distinguish between these two types an additional bit may be incorporated in every word
of the main memory. The following procedure eliminates the need for an additional bit.

MA

INVENTORY

CA

MAIN MEMORY

•CA MA

Fig. 6 Pointers at an encached word of the main memory and in the inventory.

Whenever the CMU accesses the main memory, say at MA, it interprets the c LSBs of
the content of the accessed word as a cache address, say CA (Fig. 6). It then obtains the
inventory entry at CA and compares it with MA. Equality indicates that MA contains a
cache pointer. Inequality shows that MA contains a program item.

9.2.12

8.2 Decaching the Current Instruction

It is possible that the EU scores a miss when CACI is equal to DA. This would result in
the current instruction being decached. This possibility should be taken into account in
organizing the data transfers within the CMU.

9 Conclusions

A novel method of implementing a cache memory is proposed. Its primary features are the
absence of associative hardware and complete independence from spatial locality of code
or data. The absence of associative hardware makes large caches possible at relatively low
cost. Conventional single-ad dress instructions get automatically augmented to a two-ad dress
format. This enables the program to be executed from the cache without address arithmetic.
A cache miss is detected by the simplest possible test; compare two bits. The correctness of
the test has been proved with mathematical rigor.

10 Acknowledgements

The work described in this paper was done by the author during a sabbatical year in 1974/75,
at the Department of Computer Science, University of Reading, U.K. The author expresses
his gratitude to the Royal Society and the Nuffield Foundation for the grant that enabled
him to spend a year in the U.K. and to Dr. J.D. Roberts who helped and encouraged
him throughout the course of this work. The author wishes to acknowledge the generous
assistance by way of suggestions and comments given by Dr. T. Srikanthan and Dr. A.B.
Premkumar during the writing of the present draft. Thanks are also due to Mr. H.G.
Wijewansa, Mr. T. Kirubarajan and Miss. S.S. Madahapola who assisted the author in
preparing the final version of this paper.

11 References

[1] J.A. Gunawardena, "Improvements in or Relating to Computer Store Mechanisms,"
United Kingdom Patent No. 1531261 of 1976. Filed by the National Research Develop-
ment Corporation, London.
[2] J.A. Gunawardena, "Improvements in or Relating to Computer Store Mechanisms,"
United States Patent No. 4212058 of 1980. Filed by the National Research Development
Corporation, London.

