|
View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

4th NASA Symposium on VLSI Design 1992 N94-21784 1031

A Real Time Correlator Architecture
Using Distributed Arithmetic Principles

A. Benjamin Premkumar and T. Srikanthan
Nanyang Technological University
School of Applied Science
Singapore - 2263

Abstract- A real time correlator design based on the principles of Distributed
Arithmetic (DA) is described. This design is shown to be more efficient in terms
of memory requirement than the direct DA implementation, specially when the
number of coefficients is large. Since, the proposed architecture implements the
sum of product evaluation, it can be easily extended to finite and infinite response
filters. Methods to further reduce the memory requirements are also discussed.
A brief comparison is made between the proposed method and different DA
implementations

1 Introduction

The increasing flexibility and decreasing cost of computing technology have made real time
Digital Signal Processing (DSP) both possible and cost effective. In many areas such as radar
and sonar detection, speech processing etc., real time signal processing is best performed by
special purpose hardware. An operation that is common to many signal processing appli-
cations is the sum of products evaluation. Some of the most commonly used DSP imple-
mentations using the sum of products operation are: Finite Impulse Response filters (FIR),
Infinite Impulse response filters (IIR) and Fast Fourier Transforms (FFT). This type of com-
putation is executed most efficiently by DA principles. The advantage of DA is its efficiency
of mechanization of the sum of products operation. For example, the DFT can be evaluated
using DA, since the expression for the DFT is given by: X(k) = & 0= z(n)e~>"#*, and
contains the sum of products. Generally, the FIR filter can be described by the equation
Ym = LRl axZm—k, Where the infinite sequences {z;}, {v:} are the input and the output
sequences, respectively, and ay is the set of K coeflicients. This expression is very general, for
a trivial modification to the above expression, converts it into a cross correlation operation,
Ym = LKV arzm + k. Here, {z;} is an infinite sequence of samples of data which is cross
correlated with K sample reference function to yield an infinite sequence of cross correlation
samples, {y:;}. Since, both FIR and IIR filters can be described by similar equations, any
architecture implementing one could well be used to implement the other.

In this paper, we propose an architecture which evaluates the sum of products efficiently
using DA principles. In the implementation of the architecture, modifications have been
made to the direct DA implementation resulting in reduced memory and faster throughput
with minimum initial latency. Although, the implementation described is based on real
numbers, the principle can be extended to complex numbers easily.

https://core.ac.uk/display/42789204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

10.3.2

2 The Correlator

Several hardware implementations of the correlator architecture are available in literature
(1, 2, 3]. In all these implementations, emphasis is laid on the multipliers to speed up product
evaluation. However, in the implementation of correlator using the DA principle, emphasis
is laid on the reduction in memory and hardware, since no multiplication is performed in
the evaluation of the product of two numbers. The principle underlying the design of the
proposed correlator is the somewhat different implementation of the DA concept.

It is well known that DA is a computational operation that forms the inner product of
a pair of vectors [4]. DA is considered slow because of its bit serial nature of computation.
However, this seemingly slow bit serial nature of DA is not real if the number of bits in each
element of the vector is nearly equal to the number of elements in the vector. As an example
of DA implementation of the sum of products, consider the expression:

K
Y= arTx (1)
. k=1

where, a; are the coefficients and the z; are the input data. This expression for the sum of
products can be rewritten as:
K N-1
y=) ar Yy b2 (2)
k=1 n=0
where each z; has N bits. Interchanging the order of summation results in:

N-1 K

yn = > {D_ arbin2"} (3)

n=0 k=1

Since by, can take values of either 0 or 1, it is easier to precompute the values for "X | a;byy,
and store them rather than compute them as and when b, arrive. This would mean that
a memory of 2K is needed for storing K | a;b, for different combinations of bs,. Stanley
White, in his paper [4], has proposed a way by which the memory can be reduced by a factor
of 2 by recasting the input data as offset binary code instead of straight binary code.

Modifications to the principles described above, have been made and implemented as
architectures [5, 6, 7]. A correlator based on DA is described in [8] in which the sum of
products expression is converted into three sums. By changing the order of summation of
the three sums and using negabinary representation for the 2’s complement input data, sum
of products is evaluated. In the design to be discussed, the sum of products is evaluated
using look up tables and high speed adders. In this design, the size of the look up tables
used is smaller than that used in the direct DA implementation. The following sections
describe the correlator implementation and also discuss the modifications to the proposed
method which result in further reduction in memory. A comparison is made with the direct
DA design of the correlator using 2 bits at a time (2BAAT) and 4 bits at a time (4BAAT).

4th NASA Symposium on VLSI Design 1992 10.3.3

3 Design of the Correlator

The proposed correlator is based on the design explained in reference {9]. In the evaluation
of the expression y = K-l aiz,,_k, it is seen that y at any instant contains the sum of
products of all the input samples until that instant with all coefficients. Hence, it would
be efficient to multiply all coefficients with each sample as it is input to the correlator and
store them temporarily. When a new sample arrives at the input, it is also multiplied with
all coefficients and then added to the delayed sums generated until the previous sample.
However, in the proposed design, no multiplication of the input sample with the coefficients
takes place. Look up tables in which the products of the coefficients and input data (for
different combinations of the bits in the input data) are stored are used. A block diagram

of the architecture is shown in Fig. 1.

The correlator is capable of accepting data serially and producing correlated output with
a latency of one clock period. As can be seen from the figure, the number of tables required
is equal to the number of coefficients used in the correlation. The input data sequence is
fed serially into all coefficient tables. The bit pattern of each input data is used to access
the memory location in which the product of the coefficient with that particular bit pattern
is stored. The accessed data enters the summer where it is added with the delayed data
corresponding to the previous input. Delay units in the circuit enable the previous sum to
be added to the product of the current input and the coefficients. The output is available at
the last adder unit with a delay corresponding to one clock cycle.

Storing the products of the coefficients with the input data requires a memory of size
M = n x 2% where, M is the total memory required, n is the number of coefficients and b
is the number of bits in the input data. However, it is possible to partition the input data
into two fields of £ bits each and store data with suitable weights assigned to the partitioned
bits. This way, it is possible to reduce the total memory required. For any input, the
products corresponding to the two partitioned groups of data bits are accessed and then
added. This extra addition is not an overhead, since the existing adders can be clocked at
twice the input data rate. Consider, for example, the following case: Supposing the number
of coeflicients is 8 and the input data width is 8 bits, direct implementation of the look
up tables will require a total memory, M = 8 x 256. However, partitioning the input data
into two groups of 4 bits each results in a total memory requirement of M = 2 x 8 x 15,
a considerable saving of memory. The memory can be further reduced by a factor of 2
by partitioning input data into smaller groups of 2 bits each. However, an additional set
of adders will be required whenever data is accessed from the table. Fig.2 illustrates the
architecture using this principle. With single partitioning, the total memory requirement
is given by the expression: 2n(2% — 1) for b even. For b odd, the memory requirement is
given by the expression M = n(22§l + 2% ~ 2). The adders in the architecture can be
speeded up using carry save techniques. In the correlation operation, the result, y, at the
n'* sample instant is not expected at the output until n samples arrive at the correlator
input. Hence, the summing operation can be performed in the carry save domain, where
the propagation and the addition of the carry is deferred until the very last adder where the

10.3.4

|| Parameter | 1BAAT | 2BAAT | 4BAAT [Proposed |

No. of Bits (input) |8 |16 |8 |16 |8 [16 |8 16
No. of Coeffts (K) |4 (12 |4 |12 |4 |12 |4 12
No. of Add. lines 3 |11 |7 (23 |15 |47 (7 13
1
m

Output Data/Clock | 0.5 | 0.75 1512 13 |1 1

Memory Required |{m |m 2| m?

4

m?> | mt|imtim | me

Table 1: Comparison between the DA and Proposed Method

output is available. This eliminates the delay due to carry propagation in the intermediate
adders, thus speeding up the overall sum of product operation.

4 Comparison with Cohventional DA Approach

In the direct DA implementation, with input data at the rate of 1 bit at a time (1BAAT)
computation of the sum of products is slow. If b be the number of bits in the input data,
b clock cycles are needed to form the sum of products. However, equivalent of K separate
products are being formed during b clock cycles. Thus, it is seen, that if K is greater than
b, then the DA processor is faster than the conventional multiplier in the evaluation of the
sum of products. However, the number of inputs to the memory may restrict the number
of coefficients. The computation can be speeded up at the expense of linearly increased or
exponentially increased memory [4]. In the case of linearly increased memory, the input
word is partitioned into L subwords. The memory requirement is determined by the number
of bits in each subword. The data is input as subwords and this increases the speed by a
factor of L. However, high speed and large capacity accumulators are needed. Because of
the bit serial nature of the input data, shift operations become mandatory. By inputing
data, p bits at a time, the memory increases exponentially and is given by the expression
M = }{2K*}. Since the memory increases exponentially with the number of coefficients,
this approach to DA implementation becomes impracticable in applications where K is
large. Also, in this approach, the number of input lines to the memory is directly related
to the number of coeflicients. Thus, VLSI implementation of this method to applications
where K is large, becomes exceedingly difficult. In the correlator described, the memory
requirement is governed by the number of bits in the input data. Since, in most of the
signal processing applications, either 16 or 8 bit data resolutions are sufficient, the memory
requirements are not large. As stated earlier, by either increasing the number of adders
or speeding up the adders, one might be able to reduce the memory considerably. Table 1
compares the direct DA implementation with p bits at a time with the proposed correlator
with respect to the speed and memory requirements. In the table, m, m; and mj3 are defined
as follows: m = 0.5 x 2K, m; = 2K(2* — 1) and m; = 2K(2% — 1). The expression for m
assumes that the input data is recast into offset binary code. This table, however, does not
take into account the additional time required in shifting the data for alignment in the case
of 1BAAT, 2BAAT and 4BAAT approaches. This additional time may significantly reduce

4th NASA Symposium on VLSI Design 1992 10.3.5

throughput rates.

5 Conclusion

DA is a very efficient means of evaluating the sum of products. However, direct implementa-

tion of DA principles involves use of large memory. The memory requirements are even larger
if the speed of the computation is to be increased or whenever the number of coeflicients

required is large. In this paper, a new correlator has been proposed in which the input data

is partitioned into fields consisting of smaller number of bits. This way the total memory

needed is reduced. The only additional requirement is that the existing adders be clocked at

twice the data rate or high speed adders be used. In the design, carry save adders have been

proposed, since in the evaluation of the sum of products, the output is not expected until all

the samples arrive at the correlator. This design lends itself very well for VLSI fabrication

of the correlation operation.

References

[1] J. Canaris and S. Whitaker, “A High Speed CMQOS Correlator”, 2nd NASA SERC
Symposium on VLSI Design, Univ. of Idaho, Moscow, Idaho, Nov. 1990.

[2] A. Peled and B. Liu, “A New Hardware Realization of Digital Filters”, IEEE Trans. on
Acoustics, Speech and Signal Processing, vol. ASSP - 22, Dec. 1974, pp. 456-462.

[3] S. Zobar, “New Hardware Realizations of Nonrecursive Digital Filters”, IEEE Trans.
on Computers, vol. C-22, Apr. 1973, pp. 328-338.

[4] S. A. White, “Applications of Distributed Arithmetic to Digital Signal Processing: A
Tutorial Review”, IEEE ASSP Magazine, vol. 6, no. 3, July 1989, pp. 4-19.

[5] S. G. Smith and P. B. Denyer, “Efficient Bit Serial Complex Multiplication and Sum of
Product Computation Using Distributed Arithmetic”, Proc., International Conference
on Acoustics, Speech and Signal Processing, Tokyo, Apr. 1986, pp. 2203-2206.

[6] C. F. N. Cowan and J. Mavor, “New Digital Adaptive Filter Implementation Using
Distributed Arithmetic Techniques”, IEE Proc, vol. 128, Pt. F, no. 4, Aug. 1981, pp.
225-230. ‘

[7] C. S. Burrus, “Digital Filter Realization in Distributed Arithmetic”, Proc. European
Conf. on Circuit Theory and Design, Genoa, Italy, Sept. 1976.

[8] S. Zohar, “A VLSI Implementation of a Correlator/Digital Filter Based on Distributed
Arithmetic”, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37,
no. 1, Jan. 1989, pp. 156-160.

[9] A. B. Premkumar, J. Purviance and M. Shamanna, “A Two Dimensional VLSI Corre-
lator”, Northcon Conference, Seattle, Wasington, Oct. 1990.

