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Abstract

A method is presented for biasing spectral estimates to enhance detection of tonal signals
-against a background of broadband noise. In this method, a nonlinear average of an ensemble
. of individual spectral estimates is made where broadband noise energy is biased downwé.rd,
pure tone energy is unbiased, and a mixture of the two is biased by an amount that depends
on the ratio of tonal energy to broadband energy. The method is analyzed to provide

estimates of the extent of tonal signal detection enhancement.

Symbol List

C contrast of adjacent spectral
bands

Cq : apparent contrast of adjacent
spectral bands exhibited by W,

Ey , expectation operator for density

function of noise

E, ' expectation operator for density
function of noise plus tonal

signal

Ey expectation operator for density

function of tonal signal

fo density function of single

spectral estimate of noise

h density function of single
spectral estimate of noise plus

tonal signal

fa density function of single

spectral estimate of tonal signal

Fy cumulative function of single

spectral estimate of noise
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I,

P(D)

P(FA)

cumulative function of single
spectral estimate of noise plus
tonal sign'z-d

density function of biased

spectral estimate of noise

density function of biased

spectral estimate of noise plus

tonal signal

density function of biased

spectral estimate of tonal signal

density function of ensemble
averaged spectral estimate of

noise

density function of ensemble
averaged spectral estimate of

noise plus tonal signal
density function of ensemble

averaged spectral estimate of

tonal signal

degenerate hypergeometric

function

arbitrary function
modified Bessel function

number of spectral estimatesin

an ensemble .

probability of detection
probability of false alarm

power of a power function
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signal-to-noise ratio

apparent signal-to-noise ratio
exhibited by Wy

apparent detection signal-to-

noise ratio from biased spectral

estimate processing gain

‘apparent detection signal-

to—noise ratio from ensemble

average processing gain

‘detection threshold

detectibn threshold of biased

spectral estimate

detection threshold of ensemble

averaged spectral estimate

statistic composed of an inverse
function of the average of

an arBitrary fun.ction of an
ensemble of s.ing]c spectral
estimates |

statistic composed of the gt

root of the average of the power

function, of power g, of an

ensemble of single spectral

estimates

statistic composed of the

" arithmetic mean of an ensemble

of single spectral estimates
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Wo : statistic composed of the
geometric mean of an ensemble

of single spectral estimates

W_, : - statistic composed of the
harmonic mean of an ensemble

of singl‘e‘ spectral estimates

W-oo the limit of Wy as ¢ — —oo,
equivalent to the first order
statistic of an ensemble of single

spectral estimates

z spectral estimate consisting of
the power spectrum, or squared
magnitude of the Fourier

transform, at a single frequency

z; ith gpectral estimate of an
ensemble

z(1) first order statistic

Xm | ensemble of m independent

single spectral estimates in a

frequency band

X(m) . ensemble of m ordered sin-
gle spectral estimates in a fre-

quency band

v Euler’s constant -
T ~ gamma function
6 : Dirac delta function
¢ A dummy variable of integratioﬁ
n ' dummy variable of integration
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13 : root of false alarm equation

on o ~ noise power
o2 S tonal signal power
Introduction

Spectral estimates for helicopter acoustic signatures are generally made by calculating a
set (or ensemble) of presumably independent pchr spectra using a finite Fourier transform
and then linearly averaging those spectra. By averaging, the uncefta.inty of the spectral
estimate is réduced; and a'peak (tone) in the spectfum'is made more distinguishable from
' the rtmdom baékgfound noise. Although the process of averaging individual spectra is linear
: (m terms of squared pressurc), the individual spectra and the average spectrum are biased
in the reglon of a tone Despite thc blas assocxated with a finite Fourier transform estimate
“ofa spectrum, the process of linearly averagmg a set of spectra introduces no further bias.
~ Also, By reducing uncertainty, the average provides a better estimate of spéctra.l levels than
an ir;dividim.l spectrum.

By ahsuming that a random process is essentialty broadband in nature (and avoiding
 the bias associated with a finite Fourier transform by letting the integration time approach

infinity), it is possible to derive the probability density function of a single spectral estimate

1\ _./7
o) = () 21
n
where z is the spectral estimate (in terms of squared pressure) in a frequency band, and
o2 is the portion of broadband (noise) power in that band. It is also possible to derive the
probability density function of a single spectral estimate of a composite process composed

of both sinusoidal (tonal) and broadband (noise) terms
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where o, = P2 /2 is the power of a sinusoidal signal of pressure amplitude P, and Io() is the
zero order modified Bessel function [1]. When the signal-to-noise ratio becomes very large,

the probability density function approaches that of a sinusoidal signal without noise

) =8 (s ?)

where §() is the Dirac delta function.

The different functional forms of the noise probability density and the signal-plus-
' noise probability density suggest that it may be possible to enhance the difference in thei1_'
sta.ti.stiqal behavior to provide a better apbarent signal-to-noise ratio ;),t the expense of
- generating biased spectral estimates. Specifically, an estimation method that tends to
emphasize smaller values of an ensemble of i;ldividual spectra, rather thaﬁ equally weighting
all spectra in a spectral average, should bias a pure noise spectrum more than one composed
of both tonal signal and noise. Ideally, the estimate should be‘complete‘ly unbiased for a

sinusoidal signal with no noise.

A Nonlinear Estimate Method

A direct method to form a biased spectral estimate is to evaluate the inverse function of

an avcri;ged function of the individual spectra L

W=g! (%i G(:c,-))
i=1

where z; is the ih member of an ensemble of m independcnt;spectral estimates in a particular

“ frequency band



xh‘ = {zl)w%' ..,:Bm}

" A power function

G(z) =z7

where g < 1, forms a relatively siihplé statistic

Wo = We(xm) = ;;Z ]

i=1

with a very useful characteristic, namely, that Wy, < Wy, if g1 < g2 and the z; are not

all equal. For ¢ = 1, W is the arithmetic (unbiased) >mean, as ¢ — 0, Wy approachés

‘the geometric mean, and for ¢ = —1, W_ is the harmonic mean. Each frequency band

in an ensemble of spectra is processeﬂ indépcndently‘ of the others so that the collection of

frequency bands so averaged forms an ensemble averaged spectral estimate.

Analysis of the Method

Unbihsed Estirhate

The expected value of a linear ensemble .ave‘ragen (unbiased) spectral estima‘t'e for broad-

~_band noise alone is

BalWi) = Blel = [ efola)ie = o}

For signal plus 5noise, the expected value is



Ej[Wy] = Ey[z] = /0 zfi(z)dz = o + o2

-and for signal alone, the expected value is -

Ey[Wy] = Eglz] = /0 ” zfa(z)dz = of

Indeed, for signal alone, the joint probability density function of m independent spectra is

givéh by

fa(xm) = ﬁ 6 (-'Bi - 03)
v i=1

so that the expected value for signal alone of any estimate Wy is given by

EolWel = [ Wq(xm) fo (xom) dxm = 02
0 )

which indicates that ‘W is, as desired, an unbiased estimator for any value of ¢ when a signal

is present without noise.

Geometric Mean

To determine the effect of the biased estimator, Wy, on the signal-to-noise ratio when
g # 1, the expected values of the estimator for noise and signal—;;lus—noise must be compared
with the expected values of an unbiased estimator, W;. The simplest analytical case is q=0.

Because W) is the geometric mean, it can be expressed as

Wo(xm) = '{:/:1:1.1:2 .. Tm

so that the expected value for noise only is



Eo[Wol] = {Eo ['{'/;J}m = a’,zl [P(l + '"—1)] .
-and the expected value for signal plus noise is

Ey[Wo) = {Ex [W}m
e A

where the signal-to-noise ratio is R = 02/02, and the degenerate hypergeometric function

T

niesr=1+ ()5 () (G5 -

which must be evaluated numerically.

The signal-to-noise ratio of an unbiased estimate can be eﬁcpressed as

_E 2
R = E(W] _ 1= ﬂ;_
A o}
so the apparent signa.l—to—nbise ratio of a biased estimate should be

. E [Wq]
Ry = Eo[W:] -

l .

For ¢ = 0, the apparent signal-to-noise ratio is then

N which depends only on the unbiased signal-to-noise ratio, R, and the number of independent

spectra, m, included in the estimate.



Harmonic Mean

A more involved analysis is required for the case of ¢ = —1. For noise alone, the joint

probability density function of m independent spectra is given by

fo(xm) = 0';2'"8_(2:_—1 zi)/o3

The expected value for noise alone of an estimate W_j is given by

EO[W—I] = /Owwfl(xm)fO(xm)dxm

Substituting the appropriate _expresﬁons in the equation above gives

Eo[W—lll =
-1

oo [ T m ' e
moﬁ/ (Z zi_1> e~ (221 %) dzidzy...dz;m
0 \iz1 ' | ,

Only for the simpleétﬁ'hon—trivia.l case,.m = 2, can a closed form solution be derived

BulWor] =202 ()

No attempt was made to analyze signal-plus-noise.

First Order Statistic

If an ensemble of independent spectral estimates in a specified frequency band is given by

)fm = {:1:1,:1:2,. . ,:cm}

then, when these spectral estimates are an!anged in ascending order, the (dependent) ordered
~ samples are given by
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W@={%mﬂw~wﬂm}

- where

B S22 S S Hm)

and z(;) is referred to as the ith order statisfic. It can be shown that

W—oo = qhmoo Wq = :B(l) | |
which means that the smallest possible value of the biased estimate is the first order statistic
‘or the smallest of the ﬁpectral levels in a frequency band.

Because the first order statistic, z(;), provides a lower bound for the suggested biased

estimator, an analysis of the apparent sngnal—to—noxse ratio for thls estxmator will provide

an indication of the maximum signal-to-noise ratio enhancement. The probablhty density

function of the first order statistic of m independent sampfes is given by

m-—

(‘”(1)) m[l - F(z= “’(1))] f(z ==z(1))

where F(z) is the cumulative distribution function

Fe) = [ roue

" ofa singlé spectral estimate [2]. For noise alone this gives.

Fo(z) = 1— e—z/dz'

- which, in turn, gives
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which has an expected value of

Baley) = [ ndolaldn = o /m

For signal-plus-noise, the cumulative distribution function is

A= [ A
 which, in turn, gives

hilzqy) = m[l - /:m f1l(€)dC] m.—1.f1(='= =z(1))

which can be integrated numerically to determine the expected value

Bifsqyl =m [ a1 - [ nouc] m—lfl('l)dﬁ

The apparent signal-to-noise ratio of the biased vestima_t"c.e provided by the first order

~ statistic can then be expressed as

_ BiW_oo] _ 1; B[zl
EgW-o] =~ Eglz(y)]

_ 223 [ [1 - [ aor] " i1

which gives the best signal-to-noise ratio enhancement achievable by these methods. When

R-o

the unbiased signal-to-noise ratio is very large, the apparent signal-to-noise ratio is bounded
by

12



R—oo —_—— 1= —1= R -1
SEBWowl = Bl

" On a logarithmic scale, the best signal-to-noise ratio improvement that can be expected is

given by

ASNR=10 10810 (R_oo/R) =~ 10]ogm(m)dB

Not surprisingly, the method of biased spectral estimates for enhancing signal-to-noise ratio

“works best when the unbiased signal-to-noise ratio is very high.

Signal-to—Noise Ratio and Contrast

A useful concept for examining the effect of signai~to—noise ratio enhancement is contrast.

" If two adjacent frequency bands contain the same level of broadband noise while only one

contains a tonal signal, then the signal-to-noise ratio in classical analysis is given by

- 2
po Bil=l o
EO[:’] On

The contrast can be expressed as the ratio of the two spectral levels (or the difference between

the two spectral levels on a dB scale)

- Eyl=] a2
= = l = 1 R
C=fm 'tz ™"

~ For the case of a biased estimafe, the same basic definitions hold true. The signal-to-noise

ratio is given by

_ Ey[z(y) _ )
Eglz(p
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while the contrast is given by the ratio of the two spectral levels

| )
! - - Eolz(n)

=14+ R-co
For exnmple, when the unbxased signal-to-noise ratio is 0 dB, R = 1, then the unbiased
~ contrast is a.bout 3dB, C =2.

The utility of biased spectral e}stimates can be shown by comparing the apparent signal-
_to—noise ratio of a. biased esiima.tL with that of a classical one, Rq /R, or by comparing the
apparent contrast of a biased estixﬁate with that of a classical one, Cq/C. The only two
. . parameters analy’zed were ¢ = 0 and ¢ = —oo. Figure 1 shows the signal-to-noise ratio
enhancement in dB that can be expected from using the harmonic mean, Wy, instead of
the arithmetic mean, W, for several different s1gna.l—to—noxse ratios. It is clear that the

. - greater the sxgnal—to—noxse ratio, the greater the enhancement. However, regardless of the

signal-to-noise ratio, the limit to the extent of enhancement is given by

ﬁ ‘ -m
hm EP— = [I‘(l + l)]
R—oo R m

“It is also clear that the greater the number of spectra included in the techmque the greater

‘the enhancement. However, regardless of the number of spectra, the limit to the extent of

- enhancement is given by |

lim %’- = ¢ =~ 2.51dB

B
- where 7 is the Euler constant. Flgure 2 shows the corresponding contrast enhancement.
Figure 3 shows the signal-to-noise ratio enhancement in dB that can be expected from
using the first order statistic, z()) = We-oo, instead of the arithmetic mean, Wi, for
several different signal-to-noise ratios. The greater the signal-to—noise ratio, the greater
" the enhancement, but the limit to the extent of enhancement regardless of the signal-to-

noise ratio

14



Figure 4 shows the corresponding contrast enhancement.

Signal Detection and the Threshold Effect

A simple analysis of the first order statistic method shows fhat there is a signal-to-noise

ratio enhancement based on the mean value of the, distribution of the sfatistic. However,
signal detection depends on exceeding a thfeshold which is determined from an acceptable
probability of false alarm, P(FA). Because the detection threg_hold depends both on the
“mean and the variance of the statistié, calculating a signal;to-noise.ratio eﬁhancement for
detection analysis that depends only on the mean can be misleading. For a single spectral

estimate, the noise density function is given by

fole) = (57) <20

n

from which the threshold, T, can be determined by solyihg'

P(FA) = ./Too Jo(z)dz

so that

T - ~oZIn[P(FA)]

The probability of detection when a sinusoidal signal is present can then be written

P(D) = /T ” fi(z)dz

where the density function of signal plus noise is

g 15 .



fl(::) = (—15) e;—[z-}-a'f]/o',z, Ip (20-’;/;)

of o

- The noise density function for the first order statistic, Z(1)s from an ensemble of m spectra

is given by

}O(z(l)) = (%) e—mib(l)/arzl

The threshold, T, can be determined by solving

P(FA) = /T Fo(=(1))dz(1)

N

which gives

T = —c2In[P(FA)|/m

The probability of detection when a sinusoidal signal is present can then be written

P(D) = /T Filey)degy

where the density function of signal plus noise is

. ‘ z(y m-1
A =m[1- [ a0]" Ae= o)

For the statistic Wy, which is a linear average of an ensemble of m spectra, the noise density

function is given by

m—1 7‘
Jo(W1) = =2 (mWI) el

ail(m)\ of

16



‘Similarly, the threshold, T, can be determined by solving

PEA)= [ R,

so that

T = ¢o2/m
where £ is found by solving>

m-1 £k
PEA=EY

 The probability of detection when a sinusoidal signal is present can then be written

-MPEMWM

where the density function of signal plus noise is

h(W) = -
m=-—1 ’

_"L(WI)T ~m{Wy+adl/od | (_2’"6_:\/W._1_)

2\ 52 € m-1 2

On \ 0% on

The simplest way to examine the effect on detection of using z(y) or W_oo, rather than

‘W, is to assume that the estimates are approximately unbiased for a sinusoidal signd plus

_ noise, as when the signal-to-noise ratio is very high, and examine the ratio of the respective

" thresholds

T/T = —In[P(FA))/¢

" where ¢ is as above. Figure 5 shows the ratio of the classical threshold to the first order

 statistic threshold, in dB, for various probabilities of false alarm. Because these curves are

-17



only appropnate for high sign-to-noise. ratxos and detection is desired for marginal signal-
'to-no:sc ratios, this approach can be mxsleadmg

A less extreme simplification is to assume that the W_o estimate is biased when a
sinusoidal signal is present and that detection occuré when the expected value of signal plus

! :
noise is equal to the threshold. For Wj, detection would then occur when

from which the classical signal-to-noise ratio can be derived

i R=¢/m -1

~ where ¢ is, again, as above. For W_oo, detection would occur when

P m /0°°z[1— /0 ’ f1(€)dC]m_1f1(==)d=’ ,

and the amount the biased technique would enhance detection is then given by the ratio

of the two signal-to-noise ratios. Determination of the signal-to-noise ratio, R, requires

~ finding the root of the equation

)
1

0= n [P(FA)] i
+m/ [1"/ (RC)dC] g(R,n)fin

where

o(R,7) = e~ (THR) 1 (2\/1'?—71)

The signal-to-noise ratio enhancement is then R/R. Figure 6 shows curves of the signal-
to-noise enhancement for detection purposes. Because the first order statistic shows greater

18



variability than the classical average despite the fact that is has a much lower mean, the
enhancement shown is not as great as indicated by simple signal—tp—noise_rati6 or contrast
methods. |

~ Although a probability of detection was not specified, using the expected value of the
: density function to define detection is not entirely unfounded. For a symmetric density
function, the expected value would yield a probability of detection of 50%. The classical,
W1, density function is asymmetric but can be shown to approach é. symmetric Gaussian
form when either the signal-to-noise ratio is high or when the number of slpectra. in the
. average is great., There _shbuld, however, be minor differences between the detection signal-
to-noise ratio enhancement curves shown here and those curves which might be derived for

a fixed detection 'probability.

Conclusions

A method was presented for calculating biased spectral estimates that enhance tonal
signals against a backgfound of broadband noise. The method was shown to differentially
bias_diﬂ'ereht mixtures of broadband noise and pure tones as a function of the ratio of tonal
energy to broadband energy. The method was analyzed and shown to provide the best
enhancements for large ratios of tonal energy to broadband energy. The method provides
séme enhancement for any tone, but is unable to significantly improve detection of tones

that are very much lower than broadband noise levels.
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