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ABSTRACT

The performance seeking control algorithm is designed to continuously optimize the performance of

propulsion systems. The performance seeking control algorithm uses a nominal model of the propulsion

system and estimates, in flight, the engine deviation parameters characterizing the engine deviations with

respect to nominal conditions. In practice, because of measurement biases and/or model uncertainties,

the estimated engine deviation parameters may not reflect the engine's actual off-nominal condition.

This factor has a necessary impact on the overall performance seeking control scheme exacerbated by

the open-loop character of the algorithm. In this report, the effects produced by unknown measurement

biases over the estimation algorithm are evaluated. This evaluation allows for identification of the most

critical measurements for application of the performance seeking control algorithm to an F100 engine.

An equivalence relation between the biases and engine deviation parameters stems from an observability

study; therefore, it is undecided whether the estimated engine deviation parameters represent the actual

engine deviation or whether they simply reflect the measurement biases. A new algorithm, based on

the engine's (steady-state) optimization model, is proposed and tested with flight data. When compared

with previous Kalman filter schemes, based on local engine dynamic models, the new algorithm is easier

to design and tune and it reduces the computational burden of the onboard computer.

NOMENCLATURE

A, B, C, D, L, M

AAHT

AJ

BLD

CEM

CIM

CIVV

CPSM

DEEC

DEHPT

DELPT

DINL

DWFAN

DWHPC

EDP

F

FTIT

f

Gy, Gaux , Hy, Haux
HPX

h

state variable model matrices

area adder high-pressure turbine deviation parameter, in2

nozzle throat area, in2

bleed airflow, lb/sec

compact engine model

compact inlet model

compressor inlet variable guide vane angle, deg

compact propulsion system model

digital electronic engine control

high-pressure turbine efficiency deviation parameter, percent

low-pressure turbine efficiency deviation parameter, percent

inlet drag, lbf

fan airflow component deviation parameter, lb/sec

high-pressure compressor airflow deviation parameter, lb/sec

engine deviation parameter

matrix

fan turbine inlet temperature, °F

function

gain submatrices of the optimization model

power extraction, hp

function



Im

KF

Kx, K_

lira

M

m

N1

N2

n

P,Q,R

Pamb

PB

PSC

PS2

PT

P

RCVV

SOAPP

SSMLO

SSVM

SVM

TMT

TSFC

TT

t

U,u

y(p)
WCFAN

WCHPC

WF

X

Y,Y

Yaux, Yaux

Z, z

%tJ

5

A,A

identity matrix of dimension m

Kalman filter

respectively, x and ?7columns of the steady-state Kalman filter gain

limit

Mach number

dimension of y

fan rotor speed, rpm

compressor rotor speed, rpm

dimension of x

respectively: estimate, process, and measurement covariance matrices

ambient pressure, Ib/in 2

burner pressure, Ib/in 2

performance seeking control

static pressure at engine face, lb/in 2

total pressure, lb/in 2

dimension of r/

rear compressor variable vanes, deg

state of the art propulsion program

steady-state model-based Luenberger observer

steady-state variable model

state variable model

composite turbine metal temperature, °F

thrust-specific fuel consumption

total temperature, °F

time, sec

respectively, input vector and incremental input vector

a neighborhood of the point p

corrected fan airflow, lb/sec

corrected high-pressure compressor airflow, lb/sec

gas generator fuel flow, lb/hr

incremental state vector

respectively, measured and incremental measured output vector

respectively, unmeasured and incremental unmeasured output vectors

respectively, output vector and incremental output vector

respectively, bias vector in the output and input measurements

increment operator

engine deviation parameters vector

state vector

respectively, vector of eigenvalues and eigenvalues diagonal matrix
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(_×,_), P

aux

b

eq

2

2.5

3

4

4.5

6

7

E{}

E

(9

lIT

A

respectively, process and measurement noise of the Kalman filter model

Subscripts

auxiliary

base point

equivalent

Suffix, PWlI28 engine station numbers, figure 1

fan inlet

compressor inlet

compressor discharge

high-pressure turbine inlet

low-pressure turbine inlet

afterburner inlet

nozzle throat

Symbols

expected value operator

the set of real numbers

is a member of

tensor product

time derivative operator

matrix transpose

estimated variable

estimation error

equals by definition

INTRODUCTION

Personnel from the NASA Dryden Flight Research Facility (Edwards, California), the McDonnell

Douglas Corp. (St. Louis, Missouri), and United Technologies Pratt & Whitney (West Palm Beach,

Florida) have developed a control strategy allowing to operate a turbofan engine-based propulsion

system as closely as possible to its optimum steady-state working condition without compromising

reliability and operability. The resulting control strategy is called performance seeking control (PSC)

(refs. 1--4). Three different operating modes are sought corresponding, respectively, to three different

optimization criteria. They are: (1) minimum fuel consumption, (2) minimum temperature of the hot

section of the engine (also called extended engine life mode, given the influence of high temperatures

on the life of the engine), and (3) maximum thrust.



The optimizationis basedon a steady-statemodelof the entire propulsion system (integrating the

inlet, the engine, and the nozzle), called the optimization model. A fixed model of the propulsion

system would not be able to account for the significant changes experienced by the engine during its life

span (engine deterioration) or for the differences from aircraft to aircraft resulting from manufacturing

variability. As such, a mechanism for the adaptation of the engine model is required. For this purpose,

the current engine operating condition is characterized by a set of adjustable parameters, called the

engine deviation parameters (EDPs), which are included in the optimization model. The EDPs are

estimated in flight and their estimates are introduced into the optimization process/model--this fact

gives the PSC system an adaptive character. The estimation is performed with a Kalman filter (KF)

based on a reduced-order linear dynamic model of the engine called the estimation model.

The PSC system testing at subsonic flight conditions (ref. 2) was recently concluded for the F100

(Pratt & Whitney) engine-based F-15 (McDonnell Douglas) propulsion system. The results show up

to 15-percent increases in thrust, up to 100 °R reductions in the turbine temperature, and between 1-

and 2-percent savings in thrust-specific fuel consumption (TSFC). Preliminary flight evaluations of

the PSC algorithm at supersonic flight conditions have been performed indicating thrust increases of

approximately 10 percent and a TSFC reduction of approximately 9 percent (ref. 5).

The algorithm is expected to work well when the estimated values of the EDPs actually represent

the current off-nominal conditions of the engine. However, it has been shown during flight testing

(ref. 2) that the estimated EDPs may not correspond to known levels of engine deterioration. This fact

is attributed to other sources of model-engine mismatch not accounted for by the EDPs. Poor EDP

estimates translate into an inadequate prediction (provided by the optimization model) of the engine's

behavior, which in turn may degrade the optimization process. Given the importance of the estimation

algorithm in the overall adaptive PSC scheme, additional research is key for evaluating the effects
of model inaccuracies and measurement biases over the optimization process, or for developing new

algorithms which are less model-dependent.

In this paper we show first that, with the present measurement system, unknown biases cannot be

estimated independently of the EDPs and consequently, there may not be compensation for their effects.

A sensitivity approach is proposed to quantify the biases' influence over the predictions of the steady-

state optimization model. The study allows us to decide, for the F100 engine, which measurement

biases have more influence over the estimation process and which estimates are affected the most by

the biases.

We next propose a Luenberger-type estimation algorithm based on the same (steady-state) model

used by the optimization process. Compared to the presently used KF approach, the new algorithm

yields estimates of a similar quality, but has a reduced complexity, requires considerably fewer computer

resources, and is easier to tune. The proposed steady-state model based Luenberger observer (SSMLO)

and the KF are compared using flight data from an F-15 propulsion system.

This work was done while the author held a National Research Council-NASA Dryden Flight

Research Facility Research Associateship.

To John Orme I am indebted for his invaluable assistance in obtaining the data and with the different

computational problems.



BACKGROUND AND PROBLEM FORMULATION

The PSC system was implemented on the NASA F-15 research airplane, which is powered by two

F100 derivative (PWl128) afterburning turbofan engines system (ref. 2). The aircraft was modified

with a full-authority digital electronic engine control (DEEC) system. The DEEC system provides

basic open-loop scheduling and closed-loop feedback control of the propulsion variables (ref. 2). Its

software was modified to accommodate PSC trim commands without altering the basic control functions.

Figure 1 is an F100 engine diagram showing the location of the DEEC instrumentation, the DEEC-

calculated variables, and the parameters calculated by the PSC algorithm. Figure 2 shows the flow

of the information within the PSC algorithm. The PSC algorithm essentially consists of an estimation

algorithm to update the EDPs' estimates and an open-loop optimization control law based on a set of

local models of the propulsion system. The current local model is selected based on flight data. More

details of the overall structure of the PSC system can be found in reference 2.

The engine model relates the input vector U with the output vector Z defined as:

where:

uT A__[WF AJ CIVV RCVV HPX BLD]

zT [yT,vL]

yT /% [N1 N2 PT4* FTIT PT6]

yTux _ [TT6 WCFAN PT2.5 TT2.5 TT3 TT4 WCHPC]

(la)

(lb)

Oc)

(ld)

Y represents the measured components of Z. The unmeasured vector Yau:r, called the auxiliary variables

vector, is calculated within the optimization process of the PSC algorthim.

The engine model is the most variable of the three main components of the propulsion system,

i.e., the inlet, the engine, and the nozzle. Consistently, the propulsion model uncertainties are assumed

to be concentrated in the engine. Five coefficients of the aerothermodynamic equations of the engine

have been selected as quantifiers of the engine's off-nominal behavior (or engine-model mismatch).

The deviations of these coefficients with respect to their nominal values are called the EDPs and are

denoted as (refs. 1--4):

rlT _ [DEHPT DELPT DWHPC DWFAN AAHT] (2)

The components of r/ correspond to deviations, respectively, in: the efficiencies in the low- and

high-pressure turbines (DELPT and DEHPT); the airflow in the fan and high-pressure compressor

(DWFAN and DWHPC), and the effective high-pressure turbine area (AAHT). For the nominal

engine, r/= 0.

*PT4 is considered as a measured variable even though it is calculated as function of the measure of PB.
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We now define:
a a A

u = U - Ub; Y = Y - Yb; z = Z - Z b (3)

where U b, Yb, and Z b are, respectively, the vectors U, Y, and Z evaluated at some predicted engine

trim point called a base point.

The following linear model has been used (ref. 1) to characterize, locally around a base point, the

dynamic relationship between the input U and the measured output Y for a given off-nominal condition

quantified by the time-invariant vector r/.

/( = Ax + Bu + Lrl (4a)

¢/=0 (4b)

y = Cx + Du + Mr/ (4c)

Equations (4a, b, and c) are called the state variable model (SVM). The incremental state variable

x is defined as:

xTA[N1 -- Nlb, N2 - N2 b, TMT - TMTb] (5)

where, TMT, called the turbine metal temperature, is a composite variable representing the thermal

state of the hot section of the engine. Again, N1 b, N2 b and TMT b represent the corresponding variables

at the base point. Finally, A, B, C, D, L, and M are matrices with the appropriate dimensions.

The continuum set of possible base points covering the operation range of a nominal engine for

a particular reference flight condition is discretized. The discrete base points are indexed with the

variables PT6 and PT4 and computed using a detailed model of the whole propulsion system, called

the state of the art propulsion program (SOAPP) (ref. 6). The matrices A to M in equati?ns (4a, b, and

c) are calculated by numeric linearization, using the SOAPP for a set of 49 base points covering the

power-setting range and indexed with PT4 ranging over the interval 23 to 260 lb/in 2. The matrices

are updated in flight, based on the PT4 index nearest to the current value of PT4 with some hysteresis
to avoid undesired switching. The reference flight condition corresponds to standard day con_fions,

Mach 0.9, and an altitude of 30,000 ft. By using correction factors, calculated as a function of the total

inlet pressure and temperature, the results can be converted to the actual given flight conditions. In this

way, the validity of the model can be extended to the whole flight envelope.

Estimation Process of the PSC Algorithm

The vector r/is presently estimated using a Kalman filter (KF) based on the following modification

of the engine's piecewise dynamic linear model given by equations (4a, b, and c) (refs. 1, 4).

x=Ax + Bu + Mr/ +_x

:Wr/

y=Cx + Du + Mr/ + p

(6a)

(6b)

(6c)



Wrt, Wx, and p are centered white noises with positive definite covariance matrices, respectively: Qrt,

Qx, and R. We shall also need the definition:

With the previous assumptions, r/is estimated, together with x using the asymptotic KF:

(7)

where (see, for instance refs. 7 or 8):

']0 0 (8)
P is the steady-state solution of the Riccati (ref. 8) differential equation associated to the covariance

matrix of the estimates and can be calculated from:

FP + PF T + Q - pHTR-1Hp = 0 (9)

R is estimated from the sample statistics of the output measurements. The submatrix Qx can be

associated with the input noise. The submatrix Qo has no physical meaning in this context. However, as

can be shown from equations (8) and (9) and straightforward calculations, if Qr/is assumed to be zero,

the submatrix KTI of the steady-state gain K in equation (7) is also zero, thus preventing the realization

of the filter*. In practice, the entries of Q0 are used as "tuning parameters" empirically adjusted so as

to give a good compromise between time response and noise rejection. The design gives as a result 49

matrices KC IR8×5 (one for each point indexed by PT4) that are stored together with the matrices A

to M.

Remark Because of the artificial introduction of the matrix Q0, no claim can be made concerning

the optimality of the resulting filter. Furthermore, as can be seen from equations (7), (8), and (9), the

filter's eigenvalues (those of the matrix F - KH) do not have a simple relationship with the tuning

parameters (entries of the matrix Q_). This complicates the tuning of the filter's dynamic response,

which can only be done after extensive simulations.

A new estimation scheme based on the engines steady-state optimization model, is proposed in this

report. Compared with the KF approach, the new estimator is easier to design and tune. Furthermore,

the new scheme considerably reduces the computational burden.

Optimization Model of the PSC Algorithm

The optimization model of the PSC algorithm (see fig. 2) is a simplified steady-state model of the

propulsion system called the compact propulsion system model (CPSM). It combines two submodels:

*This fact can be interpreted as follows: if 7/ is an unknown time invariant random variable, the Kalman filter asymp-
totically estimates its exact value (with zero covariance). Thus, qualitatively speaking, when time goes to infinity, the filter
"need not" incorporate any additional information about this variable from the measurements. Consequently, Krt_-----_0.

7



thecompactinlet model (CIM) and the compactenginemodel (CEM). The subsonicCIM calculates
boththe inlet drag(DINL) andthe inlet pressurePT2 as functions of the Mach number, the corrected

fan airflow (WCFAN), and the ambient pressure (Pamb). At subsonic flight the inlet geometry is

scheduled and is not modified by the PSC algorithm. The CEM comprises the engine and the nozzle.

Part of the CEM is the steady-state variable model (SSVM), which consists of a piecewise linearization

of the steady-state formulation of the aerothermodynamic equations. Each of the SSVM's local models

relates the vector _/(defined in eq. (2)) with small increments of Z, Y, and U (see definitions in eqs. (3))

around a base point in the following way:

[y] [oy]  10,z = Yaux = Gaux u + llau x 77

where: Gy EIR5×6; Gaux EFJx6; Ity E_5x5; Haux CF ,7x5. The relationship between the incremental

input vector u and the incremental measurable vector y can thus be written as:

y = Gyu + Hy_7 (11)

Equation (11) is the steady-state version of the SVM (eqs. (4)) and can be determined from the

latter by equating the time derivatives to zero. Matrices Gy, Gaux, I-ly, and l-lau:c are calculated offline
based on the SOAPP for each of the discrete tabulated base points. Their values are also tabulated and

are used to determine, by interpolation, the current matrices of model (10) each time the base point is

updated. The interpolation is performed using as indices the variables PT4 and PT6. By applying

the certainty equivalence principle (see ref. 11), the last estimation of r/ is introduced into the model

(10), which is used by the optimization process to determine the new trims to be sent to the actuators

(see fig. 2). Notice that r/ is an intermediate entity used only to predict z for a given u inside the

optimization process.

Effects of Other Sources of Model-Engine Mismatch

Some recent results show that there may be other off-nominal conditions not accounted for by the

components of r/. For instance, reference 4 shows, using flight data, that changes in the Reynolds index
and biases in the measured variables have as a consequence that the estimated EDPs do not reflect

known levels of engine degradation. In addition, model (4) may not represent the current linear tangent

model of the engine; this factor can be caused by

1. The finite discretization of the space of local models.

2. Intermediate simplifications and order reduction of the engine's model before the determination

of the linearized local models.

3. The neglected effects of the EDPs on the matrices A, B, C, D, L, and M of the local dynamic

models (4) or on the steady-state gain matrices of the SSVM (10) as seen in Appendix A.

In order to see how modeling errors affect the estimation process, let us consider the state estimation

problem of the following generic linear system comparable with that of equations (4) (an explicit mention

of the vector r/or the inclusion of the matrices M and L is irrelevant here):

8



x=Ax+Bu

y = Cx + Du (12)

We next assume that the model used by the KF (corresponding to eq. (7)) is based on matrices A',

B ', C _, D', which are different from the matrices of system (12).

-- A'_ + Btu + K(_- y)

= Cr_ + Dlu (13)

The estimation error equation is:

x = (A' + KC')_ + (A'+ KC)x + (/)+ K/9)u (14)

where the differences between the system's matrices and the model's matrices are denoted with a - (e.g.

A, A Ar _ A). For the u and x constant and A, B, C, or I) different from zero, (14) gives a steady-state

estimation error i ¢ 0 (= constant), which is proportional to the model matrices' inaccuracies weighted

by the signals u and x.

Besides stating the importance of the model-engine mismatch in the estimation process we shall

not further investigate its consequences but concentrate only on the biases' effects. When evaluating

these effects one must take into consideration that for the PSC algorithm the primary objective is not

an accurate estimation of r/, but a reliable enough estimation of the (unmeasured) auxiliary variables of

the optimization model (10). In this report we investigate those effects and determine, in the presence

of unknown biases, which are the most critical measures in the PSC system, and, conversely, which are

the most affected estimated auxiliary variables.

OBSERVABILITY CONDITIONS AND EQUIVALENCE BETWEEN BIASES
AND EDPs

Observability of the EDPs

A necessary condition (see, for instance, ref. 8) for the existence of the asymptotic KF (eqs. (7)

to (9)) is the observabiIity of model (6) (consult ref. 9 for a definition of the notion of observability).

Since the observability of model (6) can be tested directly from its matrices, the following question may

be addressed: which is the largest dimension of r/compatible with its identifiability? We prove that the

dimension of r/must be less than or equal to the number of available output measurements. For this,

we use the following result proven in Appendix B.

Proposition 1 If, given the model (4) (or (6)) with n the dimension of x, p the dimension of % and

m the dimension of y, the matrix:

S= A L

9



is such that rank*(S) < n + p, then, model (4) (or (6)) is not observable.

Now, since S has at most rank n -4- m, a necessary condition for model (6) to be observable is that,

according to Proposition 1, n + m >__n + p or, equivalently, m _> p, which implies that one needs at

least as many measured outputs as the dimension of the vector r/. The latter condition is satisfied

by the engine's model (4) or (6) with p = m = 5, implying that no extra estimable components can be

added to the vector 77to quantify an off-nominal engine condition, unless more measurements are made

available.

Equivalence Between Biases and EDPs

Biases may be present either in the input or the output measured variables. With the present

measurement system, the biases' effects cannot be distinguished from those produced by "equivalent"

EDPs. This fact is shown as follows: consider the SVM (4) with an input bias vector u and an output

bias vector 7 (some of the components of u and 7 may be zero).

= Ax + Bu + Bu + Lr/, x(0) = x °

y = Cx +Du + Du+ Mr/+7

/,=0, ,)=0, _=0

(16a)

(16b)

(16c)

System (16) and the following:

= A,_ + Bu, _(0) = _0 = x0 _ A-I(Bv + Lr/)

y = C_ + Du + (D - CA-1B)v + (M - CA-1L)r/+ "_

/,=0, ¢j--0,

(17a)

(17b)

(17c)

produce the same output given the same inputs and are thus indistinguishable from an input--output

standpoint (they are input-output equivalent). In equations (i7a, b, and c) the effects of biases and

EDPs have all been referred to the output. By using the corresponding steady-state gain matrices of

system (4), equation (17b) can also be written as: (see definition of Hy, Gy in eq. (11))

77

y=C_-4-Du+[HyGyI] v (18)

,7

From equation (18) and the equivalence between models (16) and (17), along with Proposition

1, one concludes that the biases cannot be estimated unless more unbiased measures are made

available. Moreover, again from equation (18), one sees that the biases v and 3' cannot be distinguished

from an (apparent) increment in r/given by:

r/eq = Hyl(Gy v + 7) (19)

The invertibility of the matrix Hy is clearly satisfied in practice, otherwise, it can be seen from

equation (18) that the EDPs will not have independent effects on the measured outputs. Equation (19)

explains how (and why) biases in measurements alter, in practice, the estimated EDPs. Moreover, it

tells us that any off-nominal condition can be "simulated" by a particular set of measurement biases.

*The rank of a matrix being the number of its independent columns.

10



Estimation Errors Induced by the Biases

As shown previously, the effects of biases in the measurements cannot be distinguished from

increments on the EDPs. Any estimation algorithm will then be unable to discern whether the apparent

EDPs are the consequence of a real departure of the engine from its nominal behavior or whether they

are simply caused by biases in the measurements. With the present measurement system the estimates

are thus affected by an error that is impossible to determine unless the biases are known a priori. We

now proceed to calculate the errors induced by the measurement biases.

We call rleq(V ) and rleq(7) the apparent increments of 71 (giving rise to a corresponding EDP

estimation error) induced, respectively, by biases in the inputs and biases in the measured outputs. Now

using equation (19), one has:

rleq(V) = ttylCyu (20)

rleq(7 ) = Hyl7 (21)

Since the estimation of r/is affected by tie q, the resulting estimate of Yaux, obtained from model

(10), is given by:

Yauz = Gaux u + Haux(n + ?Teq(v) + neq(7) + (]) (22)

where _ is the estimation error of 7) given by the KF. On the other hand, the actual (but unknown)

value of Yaux is a function of the unknown bias v and is given by:

Yauz=Gauz(U + u) +Haux_ (23)

From equations (22) and (23), the estimation errors in the auxiliary variables induced, respectively, by

the input biases and the output biases, are given by:

For the input bias case:

For the output bias case:

Yaux(V) = [Gaux -- HauxHylGy] v

Yauz('7) = -HauxHyl 7

(24)

(25)

Equations (24) and (25) will be used in the Results section to evaluate the biases' effects for a

particular engine.

11



ESTIMATION OF THE EDPs WITH A LUENBERGER OBSERVER

BASED ON THE SSVM

The linear approximation of the engine model given by equations (4) can only reproduce, with

reasonable accuracy, quasi-stationary phenomena (i.e., small values of u's, x's, and y's as defined in

eqs. (3) and eq. (5)). This circumstance has been taken into account in practice by the simple rule of

deactivating the estimation process during engine transients (this rule is consistent with the objectives

of the PSC algorithm, which only attempts to optimize the engine in steady state). Consequently, the

data fed into the estimation process are acquired mostly during steady state. This opens up the question

whether a dynamic model, different from the (steady-state) optimization model, is justified in practice

for the PSC algorithm's estimation process. As an alternative, we next consider an r/-estimator based

on the engine's SSVM.

Starting from equation (11), we rewrite the measurable input/output relationship of the SSVM as

follows:

_/= 0 (26a)

y = Gyu + Hyr/ (26b)

Following the same ideas as those used to prove Proposition 1 in Appendix A, it can be shown that,

since Hy is nonsingular, the model equations (26) is observable. Consequently, a Luenberger observer

(ref. 9) can be used to estimate the vector r/.

The steady-state model-based Luenberger observer (SSMLO) equations are:

_/= -K(_,- y) (27a)

_' -----Gyu + Hyr_

If one defines: _ =A_ _ 77, from equations (26a, b) and equations (27a, b) one has:

(27b)

= -K(_'- y) = -KI-ly_ (27c)

Now, since Hy is nonsingular, one can always find K E 1_.5 ×5 such that KHy has any desired eigenvalues.

In particular, K is chosen to give:

KHy = A =

)_1 0 ... 0

0 A2 ... 0

: " "'. 0

0 0 0 As

K = AHy 1 (28)

with )_1, /_2, • •., "_5, used as tuning parameters, any set of five negative real constants. The selection

of the Ai's is the result of a compromise between speed and noise rejection. As opposed to the KF,

the tuning parameters are directly the (inverse of the) time constants of each of the estimated variables,

which can thus be independently adjusted.
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With equation(28), K can be calculatedonline with the currentHy that (together with Gy in

eq. (27b)) is available at any time for the optimization model. An independent model for the estimation

process is, thus, no longer needed. Moreover, the approximation consisting of using an estimation model

different from the optimization model is eliminated. To summarize, the advantages of this method with

respect to the estimator given by equations (6) to (9), concern the implementation, design, and tuning

and are:

1. Contrary to the KF approach, the SSMLO does not require the storage and in-flight selection

of the matrices A, B, C, D, L, M, and K. The model used for estimation is the same as the model used

for optimization.

2. The dimension and complexity of the estimator's equations have been reduced.

3. All the eigenvalues of the estimator can be directly assigned resulting in a more straightforward

designing and tuning than with the KF. By this means, for instance, the convergence speed can easily

be made independent of the power setting.

It must be noticed though that the proposed SSMLO estimator does not avoid the biases' effects.

Actually those effects are a consequence of an intrinsic structural property of the system such as its

observability (or unobservability in this case) and, hence, independent of the kind of r/-estimator used.

If the measurements u and y are assumed to be corrupted by additive, stationary, and centered

noises, respectively: a2 and p, with corresponding covariance matrices: Q = E{wo2T},R = E{ppT},

the covariance of the estimation error:

P(t) _ E{_(t)_(t) T}

can be calculated using a standard result in the theory of stochastic linear systems (see for instance

ref. 8, p. 70). For the case of the SSMLO estimator, equations (27), it can be shown that:

P(t) =-hP(t)- P(t)A + AHy I (R +GyQGy T) (Hyl) TA

Since A is, by assumption, a stable matrix, an a priori evaluation of the asymptotic covariance

matrix P can be obtained by equating to zero the right-hand side of the last expression. For instance, if

the estimator design is such that: A -- AI, one easily shows that:

P(cx_)
A lim P(t)
m

t ----_oo __ _AHyl( R + GyQGT)(Hyl)T

RESULTS

Quantitative Study of the Biases' Effects

Here we use the results of the Observability Conditions and Equivalence Between Biases and

EDPs section to measure the influence of the biases on the estimation errors of the auxiliary variables.

This allows us to determine (1) which measurement biases are more influential and, thus, where to
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concentratethe efforts to improve the instrumentation,and conversely,(2) which of the estimated
propulsionvariablesareaffectedthe mostby thepresenceof thebiases.

All thevariables,including the EDPs, arenormalizedto allow the comparisonof magnitudesof
different physicalnatureundera singlescale.For the EDPsthenormalizingfactorsarechosenasthe
maximum expectedenginedeviationswith respectto a nominalengine. For the rest of the variables,
the normalizing factorswere selectedaccordingto what experienceshowsas a "reasonable"typical
rangeexcursionfor eachvariableduringPSCflight testing.The chosennormalizingvaluesarestatedin
AppendixC. The normalizedvariablesgive usthepossibility to discernbetweenthe qualitativenotions
of "big" and "small" perturbations.For instance,a "big" perturbationor a "big" bias is one that is
"somewhat"comparablewith a "typical" excursionin the correspondingvariable.

The study is carriedout over the whole rangeof PT4 of the reference flight conditions without

afterburner. Given the close relationship between PT4 and the engine's power, the results illustrate the

influence of the power setting on the accuracy of the estimation.

Effects of the input biases We now use equation (24) to study the effects of the input biases

over the estimation errors of the auxiliary variables for each local model indexed by PT4. All the

magnitudes are expressed in percentages of the normalizing factors (given in Appendix B). The effects

are plotted in figures 3 to 6 (one figure for each input) as a function of PT4.

A comparison between the figures shows that the influence of the biases in WF is orders of mag-

nitude bigger than that of the rest of the inputs (notice in particular the important effects on WCHPC-').

From the enlargement of figure 3(a) given in figure 3(b), one sees that TT6 and WCFAN are also

considerably affected. Figures 3 through 6 show that the biases in CIVV and RCVV don't have a

significant incidence on the estimates. The effects of biases in AJ are mainly perceived in the estimation

of WCFAN. Notice that, unlike the effects of the bias in WF, the influence of a bias in AJ increases

with the power level.

In terms of the possible biases affecting the inputs, we thus conclude that: (1) WF is largely the

most critical input variable and its effects are particularly strong for low power settings; (2) the biases

in CIVV and RCVV do not have any significant influence on the estimated variables; (3) biases in

AJ have a significant influence on the estimation of WCFAN; (4) only the estimates of WCHPC,

WCFAN, and TT6 are considered to be affected by the input biases.

Effects of the output biases Similarly as before, but now using equation (25), figures 7 to 11

show plots of the normalized estimation errors of the auxiliary variables induced by a 1-percent bias on

the output measurements (one figure for each output). The effects of the output biases are comparable

to those caused by the input biases (except for WF). A 1-percent bias in FTIT, PT6, and N1

produces estimation errors greater than 2 percent in the middle- and high-power ranges. A bias in N2

has influence only at higher power settings and concerns, mainly, TT3 and TT4. The biggest errors

are produced by biases in FTIT and affect WCHPC (4 to 6 percent errors).

In terms of possible biases affecting the output, we thus conclude that: (1) biases in FTIT, PT6,

N1, and N2 (in that order) have a noticeable effect on the estimations; though, given the generally

good quality of the measurements of N1 and N2 one may be concerned only by FTIT and PT6; (2)
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aswith the input biases,the estimationsmost affectedare WCHPC and WCFAN (see figs. 7, 10,

and 11). To a lesser extent, TT6, TT4, and TT3 are also affected.

Evaluation of the SSMLO Approach

We now review the estimation approach proposed in the Estimation of the EDPs with a Luenberger

Observer and the SSVM section. For this review, a comparison with the KF approach is performed

using real flight data. As shown before, the SSMLO approach is not supposed to alter the influence of

the biases, thus no conclusion concerns this aspect.

Flight conditions The data were collected during a cruise steady-state flight test condition at

30,000-ft altitude, Mach 0.91, and 60 ° power lever angle, with the PSC algorithm in the minimum

fuel mode. All the variables are normalized using the normalization factors given in Appendix B, and

referred to the local base point:

[N1 N2 PT4 FTIT PT6]b = [8661 rpm, 11,844 rpm, 160 lb/in 2, 1854 °F, 19.29 lb/in2];

[WF AJ CIVV RCVV HPX BLD]b = [4150 lb/hr, 435.23 in 2, -2.59 °, 2.27 °, 0 hp, 0 lb/in 2]

Figures 12(a) and 12(b) are plots of the normalized deviations with respect to the base point of the

measured inputs and outputs, respectively, sampled at 8 Hz.

Results With equation (28) we have the choice of arbitrarily selecting the observer's dynamics.

An observer's settling time of 20 sec was considered adequate for the application. Accordingly, the

following set of eigenvalues was selected:

A1 = -0.3; A2 = -0.2; )_3 = -0.3; )_4 = -0.3; A5 = -0.3 (29)

An originally A 2 ---- -0.3 value was modified a posteriori in order to improve the noise rejection

capability of the estimator.

In figures 13(a) and 13(b), the EDPs estimated using the KF are compared with those obtained

with the SSMLO using the same data. The initial EDPs' estimated values are assumed zeros for both

estimators. As expected, both estimators converge to the same asymptotic values. The settling times

of the SSMLO's estimates are in plain correspondence with the specified Ai's (four to five times the

corresponding time constants: 1/)_i). For the KF, the settling times range from 6 to 8 sec for DEHPT

or AAHT, to approximately 35 sec for DELPT. Note that there is a high-frequency residual noise

with the KF. This is a consequence of its larger bandwidth associated with its fast modes (see also item

(4) in the listing within the Estimation of the EDPs With a Luenberger Observer and the SSVM section).

The auxiliary variables are estimated with both algorithms. In each case, the value of r/is substituted

in equation (10) by the corresponding estimate. The results for the KF and those for the SSMLO are

compared in figure 14. Notice how the choice of eigenvalues (eq. (29)) reduces the long time constant

associated with the KF's estimation of DELPT. As seen in figure 14, this translates into faster estimates

of WCFAN and WCHPC.
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CONCLUDING REMARKS

The engine deviation parameter estimates do not necessarily quantify the engine's off-nominal

behavior. For instance, it is impossible to distinguish the effects produced on the estimates by an off-

nominal engine condition from those caused by measurement biases. Actually, the off-nominal behavior

can be equivalently characterized by additive terms (biases) on the measured input and output data.

For performance seeking control application, a given engine off-nominal characterization needs to be

evaluated through the effects that model inaccuracies (e.g., the biases) may have on the predictions

provided by the optimization model. The accuracy with which the latter predicts the output variables

is the ultimate measure of the effectiveness of the estimation process. Here, the errors induced by the

biases on the calculated auxiliary variables are used as a measure of the effectiveness of the estimation

process and the measurement system. It is thus determined that the most critical measurements are

gas generator fuel flow (WF), nozzle throat area (A J), fan turbine inlet temperature (FTIT), and

afterburner inlet total pressure (PT6). Unknown biases on those measurements may have a strong effect

on the optimization through a wrong forecast of the engine's variables. Among the latter measurements,
the most affected are corrected high-pressure compressor airflow (WCHPC), corrected fan airflow

(WCFAN), and afterburner inlet total temperature (TT6).

With the Kalman filter approach, two independent sets of local linear models need to be stored in

memory. With the new proposed technique the estimation and optimization processes share the same

piecewise linear model. Thus, no extra online model switching is required, less computer memory
is needed, and the identity between the local optimization model and the local estimation model is

guaranteed at all moments. Furthermore, the filter's dynamics can be made independent of the power

setting. The tests with flight data show that the neglected engine's dynamics do not have any noticeable

effects on the estimates, and that similar or better noise rejection and convergence speed can be obtained

with the new scheme.

The open-loop nature of the performance seeking control scheme makes it very sensitive to model-

engine mismatches and in particular to measurement biases. We show that an apparent estimated engine

deviation may only be the effect of unknown biases. Under these conditions trying to improve the

peformance of an engine in apparent "good shape" (that in fact isn't) could lead toward the violations

of the safety limits. Conversely if the engine is better than it seems through the estimation process, a

too conservative control will not take advantage of the engine's actual capabilities. Consequently it is

conceivable in this case that the performance seeking control system will issue commands leading to a

worse performance than the one obtained with the nominal model in the nonadaptive case. This conclu-

sion strongly demonstrates the need for developing new adaptive performance optimization techniques

less sensitive to an a priori engine model and based on the feedback of the actual performance measure.
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APPENDIX A

PIECEWISE LINEARIZATION: THE GENERAL PRINCIPLE

We first describe the general principle of the multimodel linear approximation of a general dynamic

nonlinear system. Let:

= f(x, u) (A-la)

y = h(x, u) (A-lb)

with f and h differentiable with respect to their respective arguments be the mathematical model of a

(nonlinear) system where: x E Rn is the state vector, y E 1Rm is the measurable output vector, and

u E RP is the input vector. The equilibria of system (A-l) are given by the equations:

f(x °, u °) = 0 (A-2a)

yO = h(x o, u o) (A-2b)

Since the independent variable u° ranges within a continuum of values, the solutions (x °, yO, u o) of

(A-2) will also be a continuum subset of Rn x F, TM x IRP, we call this set E C 1_ x R TM x IRp. Now,

given a point p = (x °, yO, u o) E E, let us define:

6x: = x - x°; 6u: = u - u°; 6y: = y - yO (A-3)

Given that f(x °, u °) = 0, the linear part of:

6x = fx(x°, u°)6x + fu(x°, u°)_u

+ o(ll ,_xII2, II_u II2)

6y = hx(x °, u°)6x + hu(x °, u°)6u

+ o(11,_x II2, II,_u II2)

(A-4a)

(A-4b)

(i.e.; the linearization of (A-I) around p) represents a "good" approximation of (A-I) within a "suf-

ficiently small ball V(p)" around the point p = (x °, yO, uO). Let us define L C IRn x p.m × F,P

as:

L= U V(p) (A-5)
pEE

L is the region within which (A-I) can be approximated by the collection of linear models represented

by (A-4). Within this "linearity region," however, only quasi-stationary phenomena can take place. In

fact, the higher order terms in (A-4) can only be neglected for x and u sufficiently near the equilibrium

condition given by (A-2a).

Now, if given u ° there are unique x°(u °) and y°(Au °) satisfying (A-2), the quasi-stationary solu-

tions of (A-I) can be approximated by the solutions of the following equations:

6_ = A(u°)6x + B(u°)6u (A-6a)

6y = C(u°)6x + D(u°)6u (A-6b)

17



Where
5u: = u - u°; 5x: = x - x°(u°); 5y: = y - y°(u°)

and

A(u °) = fx(X °, u°); B(u °) = fu(X °, u °)

C(u °) = hx(x °, u°); D(u °) = hu(x °, u °)

(A-7a)

(A-7b)

The local linear model (its origin and dynamic equations) is thus completely determined by the

value of u °. After discretizing the admissible set of values of u °, (A-6) may be used to create a table

relating the discrete values of u° with the corresponding linear models. To determine a valid local

model, an algorithm must still be provided to decide when the present local model is no longer valid,

and to choose a new model from the tables (possibly by interpolation).

Parameterizing the Model-System Mismatch

In practice, the mathematical model (A-I) may not represent the real system with sufficient accuracy.

Among the reasons for this situation are: one counts not only the typical approximations and modeling

inaccuracies, but als0 changes in the system itself resulting from aging, deterioration, off-nominal

operation, etc. Under these conditions, a distinction should be made between the model (A-I) and the

"true" system's equations that we denote by:

x = f(x, u)

y=hS(x, u)

In general, f _- fs and h _ h s thus for (x °, u°) a given steady-state solution of(A-l) fS(x°, u °) _ 0,

and one has:

_,= 6_,= f'(x, u) : r(x °, u°) + ¢x(X°, u°)_x+ ¢u(X°, u°)_u
+"higher order terms" (A-8a)

5y = y _ yO = hS(x o, u o) _ h(x o, u o) + hS(x o, u°)Sx + hS(x °, u°)6u

+"higher order terms" (A-8b)

Notice that the model-system mismatch introduces additive constant terms in the dynamic as well

as in the output equations (biases) and modifies the local linear dynamics (compare eqs. (A-8) with

eqs. (A-4) and (A-5)). A strong assumption consists in saying that the mismatch can be characterized

by a vector r I E Rq with components called deviation parameters. Under this supposition, the "real

system" is represented (similarly as in eq. (A-I)) by:

x= fS(x, u)= f(x, u, rl)

y= hS(x, u)= h(x, u, 7"/)

(A-9a)

(A-9b)

while the "nominal system" corresponds to the value of 7/= 0. As before, the base points are determined

by the nominal system's equations and satisfy f(x °, u °, 0) = 0. Thus, with equations (A-8) and (A-9),

and assuming small deviations, one can write the following expansion:
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6/,= (fx(x°, .o, 0)+ fx,(X°, u°, o)®n)6x + (fu(x°, u°, o)+ fun(X°, u°, 0)®_)6u

+ frl(x °, u °, 0)r/+ "higher order terms" (A-10a)

5y = (hx(x °, u°, 0)+ hxn(X °, u °, 0)® r/)Sx + (hu(x °, u °, 0)+ hu0(X °, u °, 0)® r/)Su

+ hn(x °, u °, 0)_1 + "higher order terms" (A-10b)

where the symbol @ is a short notation for the actual linear combination of matrices that should be

performed in the above formulae (notice that hzn and hun are three-dimensional matrices). Equa-

tions (A-10a and b) are similar to (A-8) and show, up to a first-order approximation, the incidence of 7/

on the local linear model. Both the local dynamics and the corresponding steady-state operation point

are affected by the deviations with respect to the nominal system. Only in the case when the product

® can be neglected, expression (A-10) simplifies into:

5x = A(u°)6x + B(u°)6u + L(u°)r/+ "higher order terms"

6y = C(u°)Sx + D(u°)Su + M(u°)r/+ "higher order terms"

(A-11a)

(A-11b)

Where now,

A(u°): = fx(X°, u°, 0);

B(u°): = fu(X°, u°, 0);

I/u°): = fn(X°, u°, 0);

C(u°): = hx(x°, u°, 0);

D(.°): = hu(x°, u°,0);

M(u°): = hn(x°, u°, 0); (A-12)
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APPENDIX B

PROOF OF PROPOSITION 1

Using standard results of the observability theory of linear systems, it can be readily shown that

the model equations (4)/(6) are completely observable, if and only if the matrix:

O

C M

CA CL

CA 2 CAL

T .

CAn+p-1 CAn+p-2L

has rank n + p. But, since as it can be easily shown:

O

lm 0

0 C

0 CA [cM 1A L '

rank(O) = n + p only if S in equation (12) is such that: rank(S) > n + p.
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APPENDIX C

NORMALIZING FACTORS

Input variables

normalizing factors

Output variables

normalizing factors

Auxiliary output variables

normalizing factors

EDP ranges

WF, lb/hr A J, in z

2000.0 20.0

N1, rpm N2, rpm
1000.0 1000.0

FTIT, °F PT6, lb/in 2

200.0 5.0

TT6, °F WCFAN, lb/sec

200.0 20.0

TT3, OF TT4, OF

100.0 200.0

CIVV, deg RCVV, deg

5.0 5.0

PT4, Ib/in 2

50.0

PT2.5, lb/in z TT2.5, °F

5.0

WCHPC, lb/sec

2.0

50.0

D E H PT, percent
1.0

DWFAN, lb/sec

255.0

DELPT, percent DWHPC, Ib/sec

1.0 60.0

AAHT, in 2

60.0
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Fig. 13 Normalized estimated EDPs.
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Fig. 14 Normalized estimated auxiliary variables.
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