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Jin J. Chou _

Computer Sciences Corporation
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Mountain View, CA 94039

Abstract

During geometry processing, tangent directions at the data points are

frequently readily available from the computation process that generates

the points. It is desirable to utilize this information to improve the

accuracy of curve fitting and to improve data reduction.

This paper presents a curve fitting method which utilizes both posi-

tion and tangent direction data. This method produces G 1 nonrational

B-spline curves. From the examples, the method demonstrates very good
data reduction rates while maintaining high accuracy in both position

and tangent direction.

1 Introduction

Path tracing is a common technique utilized by many numerical processes

in computers, e.g., computing the intersection between surfaces, evaluating

the silhouette curves, and solving partial differential equations. Oversampling

is a method frequently used by tracing algorithms to overcome uncertainty in

tracing step selection and to ease various stability problems. A large amount of

*This work was performed for NASA under Contract NAS 2-12961
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points results from tracing, partially due to oversampling. For the convenience

of subsequent data handling and storage, it is desirable to fit the data by curves

with less data. Hence data reduction is an important aspect of fitting traced

data. In this paper, the word fitting means to pass a curve close to the data

but not necessarily exactly through the data.

Tangent direction at the data points is usually used to determine the marching

direction in path tracing; hence it is the by-product of the tracing algorithms.

Traditional curve fitting algorithms seldom take advantage of this tangent
information to improve the accuracy of curve fitting or to enhance data reduc-
tion.

Robust tracing algorithms need to detect discontinuity in the path curve.

Hence, the resulting points can be grouped into pieces forming continuous

paths. Thus, in this paper we assume the given data set forms a continuous

path.

The problem at hand is different than fitting inaccurate data, that is data with

relatively large error, e.g., digitized data. In such cases, the fitting curve is

sought to best approximate the shape, not the individual points. High order

information such as tangent is meaningless in such case. However, in tracing,

the data, both position and tangent direction, are usually considered to be

"exact," and the fitting curve is required to be as close to the data as possible.

Cubic spline fits or least-squares spline fits have been traditionally used for

fitting B-spline curves [1, 2, 3, 4, 5, 10]. Cubic spline fits always produce

more data than the input. To achieve a given tolerance with the least-squares

methods, a fit-then-test procedure with an increasing number of control points
is necessary. When the number of control points is increased to the number of

input data, least-squares methods converge to interpolation. According to the

author's experience, least-squares methods produce reasonable results when

the required fitting accuracy is low (> 10-2). For slightly higher accuracy

(< 10-2), least-squares methods always result in interpolation, producing no

data reduction. For fitting with B-splines, interpolation produces a curve with

more data than the original if the knots are counted. Various data reduction

schemes [11, 12, 13] have been suggested by other authors. However it is-very

difficult to make any reduction with these methods when the required accuracy
is high.

Kallay [7] presented a method to fit a G 1 polynomial curve to a planar set of

points with tangent directions. Piegl [6] and Chou [8, 9] also devised methods

to fit C 1 rational B-spline curves to the same data for planar and for three-

space cases. However, none of these methods have achieved high data reduction



rates. Besides,therearesystemswhich arebasedon integral B-splines,hence,
cannot utilize the methodsin [8, 9].

In this paper, we describe a method which follows the same divide-and-conquer

strategy used in [6, 8, 9] but produces an integral B-spline fitting curve. A

new tolerance checking method is presented to speed up the tolerance checking

process. The data reduction rate is compared favorably with that of previous
methods.

The method is as follows: first, find the longest run of data that can be fit with

one cubic B6zier curve, starting from the last fit data point. At the beginning,

the longest run starts from the first data point. This process repeats until all

the data are fit. The B6zier curves from the fits are then connected together

to form a G 1 B-spline curve.

To locate the longest run of data that can be fit by one cubic BSzier curve,

an attempt is made to fit the given list of data. If the data can not be fit by

one BSzier curve with the given tolerance, the set of data is reduced, and the

process to fit one cubic BSzier curve is repeated recursively. If the data can

be fit by one BSzier curve, the set of data is enlarged, and the process to fit

one cubic BSzier curve is repeated recursively. The recursion stops when the

the longest run of data that can be fit is found.

Given a list of data, the following steps are used to obtain the BSzier fitting

curve:

.

.

The first and last control points of the BSzier curve are the first and last

points of the data, respectively.

The tangents at the first and last points of the B6zier curve are in the

tangent directions of the first and last points of the data, respectively.

3. A cubic BSzier interpolation curve is created for each of the inner data

points (data except the first and last point).

4. A cubic B6zier fitting curve is created by weighting the interpolation

curves.

. Checks are performed to insure the fitting curve is within the given tol-

erance.

In Step 3, the interpolation curve has the same control points and tangent di-

rections as the fitting curve. In addition, the interpolation curve goes through

the inner data point. A planar case happens when all of the first and last
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points, the end tangent directions, the inner data point, and the tangent di-
rection at the inner data point are on a plane. In this case, the tangent
direction of the interpolation curveat the inner data point also agreesto the
given tangent direction at the point.

In the following sections,Steps3, 4 and 5 arediscussedin detail.

2 Interpolation Cubic Computation

In this section we discussed the methods to obtain the interpolation curves.

Most of the equations in this section can also be found in [8, 9].

A cubic B6zier curve can be written as:

C(u) = Po(B_(u) + B_l(U)) + atoB_(u) +/3t,B_(u) + Pz(B_(u) + B_(u))

where

(1)

• B3(u) = (,a.)u'(1 - u) 3-' are the cubic Bernstein polynomials;

• to and tl are the end tangent directions (unit length); and

• P0, P3, P1 = P0 + cd0, P2 = P3 +/3tl are the control points.

The above equation assumes, without loss of generality, that the cubic starts

at u = 0 and ends at u = 1. An illustration of the variables is in Figure 1.

For a given data point P, the interpolation curve goes through this point.

P = Po(B_)(_) + Bla(fi)) + (_toB_(_) +/3taB_(_) + P3(B_(_) + B_(fi)) (2)

There are three variables in Equation (2): a,/3, and ft. Equation (2) actually

represents three equations, for the x, y, and z components, respectively. When

to, tl, and PoP3 span the three-space, it is proved in [8] that there exists at

most one set of solution (a,/3, fi) with fi E [0, 1]. fi can be found by performing

dot products on Equation (2) with t3 = to x tl:

(P - Po)t3 _ Bg(fi) + Bg(_) (3)
(P3- Po)t3
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This is a cubic Equation in ft. Exactly one solution exists in [0,1], if and only
if (P-Po)t3

(P3-Po}t3 E [0, 1]. Once fi is obtained, a and fl, and hence the interpolation

curve, can be found from Equation (2).

When to, tl, and PoP3 are coplanar, Equation (2) has no solution if P is not

in the plane. If P is in the plane, Equation (2) provides only two independent

equations. If the tangent direction at P, denoted as t2 (unit length), is also

in the plane, an additional equation is provided by forcing the interpolation

curve to agree to t2 at P.

5t2 = (P3 - P0)B_(fi) + ato(B_(_) - B_(fi)) + _tl(B[(_) - B_(fi)), (4)

where _ is a multiplier, and B_(fi) = (_)fi'(1-fi) 2-' are the quadratic Bernstein

polynomials.

Equations (2) and (4) provide four equations and have unknowns: (a, fl, _5,fi).

The equations can be combined and simplified to form a cubic equation in

a [9].

- [((P - Po)" t2)(tl, to) + ((P - P0)" _-o)(tl. t2)] -

3[((P - P0)" t2)(to, tl)]72 +

3[((P3 - Po)" tl)(/o" t2)lfi 2 +

[((P3 - Po)" t,)(t2.3o) + ((P3 - P0)" t0)(t2- _)]fi3 = 0,

where

]¢ is the normal of the plane, to = k x to, t1 = ]¢ x tl,t2 = ]c x t2. (6)

Once _ is obtained, a, fl, and _ can be computed. From a and fl the in-

terpolation B_zier curve can be obtained. However, in the planar case, there

may be more than one solution set (a, fl, 5, _) with _ E [0, 1]. Even with the

restrictions that the tangent directions of the B6zier curve should agree to the

given data, i.e., a > 0, fl < 0, and _5> 0, multiple solutions may still occur. In

addition, Equations (2) and (4) do not have solutions in some special cases,

for example, when to, tl, and t2 are parallel.

3 Fitting Curve Determination

When multiple solutions occur in computing the interpolation curve, the so-

lution that has the closest matching end tangents with those from the neigh-

boring data point is chosen as the interpolation curve. On the other hand, a
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valid interpolation curvemay not exist. In sucha case,the data point does
not participate in determining the fitting curve (Step 4).

The fitting curve is obtained by weighting the interpolation curves. Since all

the interpolation curves have the same start and end points and the same start

and end tangent directions, locating the two inner control points (P1 and P2)

is enough to fix the fitting curve. This is equivalent to determining the a and

of the fitting curve, denoted as _ and _. We express _ as a weighted sum

of as from the interpolation curves, denoted as ai.

_'_i wi_i

- (7)

Three possible methods to compute _ are listed below. _ can be computed by
similar methods.

1: wi=l.

2: wj = 1, when _j = max or min_i; wi = 0, for the rest of i.

3: wi = Ba(_i), where _i is the parameter of the interpolation curve at the

ith data point.

Method 1 gives even weights to all the interpolation curves. Roughly speak-

ing, Method 2 takes the average of the maximum and minimum interpolation

curves. The third method gives heavier weight to the interpolation curve whose

data point is closer to Po. This results in a fitting curve that deviates less from

the data point when the point is closer to P0. Since P1 has greater influence

than P2 on the part of the curve closer to P0, Method 3 reduces the error of

the fitting curve. Therefore, Method 3 is used in this paper. The formula

wi = B_(fi,)is used to compute _.

4 Tolerance Handling

Since we are interested in achieving high accuracy, we would like to check the

distance between the data point and the fitting curve. However, it is quite

expensive to compute the closest distance from a point to a curve. In order

to reduce this cost, we first perform two pre-tests: one gives a quick rejection

of the fitting curve, the other raises a quick acceptance of the fit. If the fit

falls through both of the tests, the more costly closest distance computation

is performed.

6



When we compute the interpolation curves for a list of data, we keep the
maximum and minimum valuesof the wiai (and wi_i) for the curves obtained

so far. When the difference between the maximum and minimum is greater

than a constant value, we declare the fit to be unsuccessful. This condition

may be reached before all the data points are processed, and usually it happens

during the first several recursive runs of fitting. Hence, this test serves as a

quick rejection to data sets that variate too much to be fit by a cubic, and

it significantly accelerates the process in locating the longest run of data.

A good value for the constant that determines the rejection is two order of

magnitude of the given tolerance for a tolerance of 10 -4. This formula is purely

experiential. Note that this method may declare a fit to be unsuccessful, even

though the fitting curve is within the given tolerance.

For the quick acceptance test, we observe that

IC-PI <_ [C(_)-P[--IZ_(_B3(_)+AflB_(_)I--< [Ao4B3(_)+IA_IB3(_), (8)

where Aa = a-6 and Aft = fl- _. Both B_3(fi) and B_3(fi) are available from

the process computing the interpolation curve. Therefore, for each point, this

estimation of the upper bound for the error can be obtained by performing

two multiplications, two subtractions and one addition.

Finally, computing the closest distance between the fitting curve and a data

point is necessary only if the data point fails the quick acceptance test. When

this happens, we use the Newton-Raphson method to locate the closest point

on the curve to the data point. The parameter fi of the interpolation curve

at the data point serves as a very good initial guessing point for the Newton-

Raphson method.

5 Examples

In this section, we show the results from applying the above fitting method

to four data sets. The first data set (Half-Circle) is created by sampling 101

points on a half circle. The second data set (Torus-Plane) with 361 points

is created by tracing the intersection curve of a torus and a plane. Both of

these data sets are planar. But only the first data set is in the x-y plane. The

third data set (Planar-Spiral) contains a planar section and a spiral three-space

section with a total of 51 data points. The remaining data set (Mixed-Spiral)

has 101 data points with mixed planar and three-space sections. Figures from

the sample fits are shown in Figures 2 to 5. The first three figures can be

compared with those from the rational curve fits in [9]. The last figure can be

compared with that in [8].



Tolerance

From

Input

Current

Method

Method

in [9]

Inter-

polation

Half-

Circle

10 -3 110-6

(101)

303

(10) (22)

34 70

(10) (58)

44 236

(1521

459

Worus-

Plane

10-2 I 10-4

(3611

1805

(34) (61)

140 248

(43) (112 /

219 564

(602)

2411

Planar-

Spiral

2.10-a 110-3[10 -5

(511

255

(13) (34) (40)

56 140 164

(16) (37) (61)

84 189 309

(85)

344

Mixed-

Spiral

lO-S I 10-5

(101)

505

(64) (85)

260 344

(82) (100)

414 504

(1691

678

Table 1: Comparison of Data Storage in Number of Floating Point Data.

The amount of floating point data in the input data and the fitting curves is

listed in Table 1. Every input data point is counted as five floating point data:

three for its position and two for its tangent direction, except when the data

is in the x-y plane, in which case every input data point is counted as three

floating point data. For the fitting curves, we count three floating point data

for each control point, except when the curve is in the x-y plane, in which

case we count two data for each control point. Each knot in the fitting curves

is also counted as one floating point data. Table 1 also compares the current

method with the rational fitting method in [9]. In the table, the number in

the parentheses is the number of control points in the fitting curve.

As mentioned earlier, for most of the tolerances given in Table 1, least-squares

methods result in interpolation. Hence, the number of floating point data from

interpolation is also listed in Table 1 for comparison.

Table 2 lists the order of magnitude of the maximum deviation of the tangent

direction of the fitting curves. The deviation is measured at the data points.

Table 2 also contains the acceptance ratio, the inverse of the ratio of the

number of closest point computation versus the number of points accepted

without the closest point computation. The larger this ratio, the more closest

point computations have been saved by the quick acceptance tests.



Tolerance

Tangent

Deviation

Acceptance

Ratio

6

Half-

Circle

10-3 10-6

10-3 10-6

.14 .01

Torus-

Plane

10-2 10-4

10-2 10-3

.66 .03

Planar-

SpirM

2.10 -1 10 -3

10-1 lO-a

1.27 1.67

lO-S

10 -6

.45

Table 2: Tangent Deviation and Acceptance Ratio.

Discussion and Conclusion

Mixed-

Spiral

10-3 lO-S

10-3 10-6

.95 2.42

From Table 1 we can see that the current method provides much better data

reduction than the previous methods. The difference in the reduction ratio be-

comes wider when the tolerance is smaller. However, the current method only

provides G 1 continuous curves. Although the fitting curve can be made C 1 by

adjusting knot intervals, the resulting curve may have very bad parametriza-

tion. With the rational fitting method in [8, 9], the curve can be made C 1 by

adjusting weights of the curve while maintaining a reasonable parametric flow.

Even though interpolation methods produce curves with the most data, they

produce C _ continuous curves, which may be important in some applications.

Table 2 shows that the tangent direction of the fitting curves has roughly the

same error as the position of the curves, even though we do not explicitly test

the tangent direction against the given tolerance. From all the test cases, we

see the effectiveness of the quick acceptance test is mixed. It seems to be less

effective when the data is planar.

Although the method presented here demonstrates great improvement in data

reduction compared with existing methods, it still produces curves that require

large amount of storage, especially when the required accuracy is very high.

For example, in the Mixed-Spiral case, when tolerance = 10 -5, 85 control

points are in the fitting curve for the 101 data points. Also, the storage for

the knots becomes large, 89 knots in this case.
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Figure 1: The given data points and tangent directions for an interpolation

cubic.
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Figure 2: A nonrational fit of the data set Half-Circle with 10-3 tolerance.
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Figure 3: A nonrational fit of the data set Torus-Planewith 10-2 tolerance.
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Figure4: A nonrational fit of the data set Planar-Spiralwith 2.10-1 tolerance.
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Figure 5: A nonrational fit of the data set Mixed-Spiral with 10-s tolerance.
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