

STATUS OF VGRID/USM3D AERO ANALYSIS SYSTEM

NEAL T. FRINK NASA LANGLEY RESEARCH CENTER

> PARESH PARIKH VIGYAN

SHAHYAR PIRZADEH VIGYAN

PRECEDING PAGE BLANK NOT FILMED

Outline

- Introductory Remarks
- General Capabilities
 - Grid generation
 - Flow solver
 - Graphic Postprocessing
- Dissemination
- Customer Applications
- Plans
- Closing Remarks

The Structure Behind Our Unstructured Work

- An Application-Oriented Development Program -

Flowchart for Unstructured Codes

Unstructured Grid Generation, VGRID

- A program for generation of unstructured tetrahedral grids around complex configurations using the Advancing Front Method.
 - Base code developed under SBIR with ViGYAN
 - Considerable extentions made in TAB to improve:
 - robustness
 - grid quality
 - reduced grid generation time
 - Viscous grid generation effort well underway
- Additional enhancements made by GEOLAB/CSC
 - Surface projection/correction
 - New graphic interface tool under development
 - Enhanced surface patches
 - Improved surface grid generation

Unstructured Euler Solver, USM3D

- Finite-volume approach with cell-centered, tetrahedral elements
- Upwind-biased, flux-difference splitting (Roe's Scheme)
- Fast higher-order differencing formula
- Three-stage Runge-Kutta time stepping to advance to steady state
- Acceleration techniques:
 - Local time stepping
 - Implicit residual smoothing
- Efficient data structure:
 - CPU time: 17.5 μ -sec/cell/cycle on Cray Y-MP
 - Memory usage: 45 words/cell

Upper Surface Grid OM6 Wing

"Workshop"

	Stretch	Coarse	Fine
No. Cells	= 35008	= 108755	= 231507
No. Nodes	= 6910	= 20412	= 42410

Effect of Grid on Chordwise Surface Pressure Distributions USM3D, $M_{\infty} = 0.84$, $\alpha = 3.06^{\circ}$

SURFACE GRID ON THE CONFIGURATION

13,256 Points 27,044 Faces

Lower Surface

REPRESENTATIVE STORE LOCATIONS

PRESSURE COMPARISON ON THE WING, $M_{\infty} = 0.95$ Location: 1.2 Store Diameter Inboard

SURFACE PRESSURE COMPARISON ON THE STORE $M_{\infty} = 0.95$

Recent Improvements to USM3D

- Implemented 2nd-order nodal averaging technique
 o higher-order boundary conditions
- Improved data structure through face coloring
- Teamed with Dr. Kyle Anderson, CAB/FlMD, to install his implicit time integration algorithm and FVS
- Iterative design capability installed by L. A. Smith, TAB/AAD

TRANSONIC WING DESIGN USING THE DISC DESIGN METHOD AND USM3D M = .77

94

Dissemination of VGRID/USM3D Developmental Codes

- Academia 4 universities
- Government
 - 3 NASA research centers
 - 3 Air Force research laboratories
 - 2 Naval air research/development centers
 - National Institute of Standards and Technology
- Industry 11 companies, including 4 major aircraft companies
- Total of 30 outside requests
- Provided hands-on training to 48 users

Selected Customer Applications

- Subsonic Aircraft
 - Cessna Citation (Cessna/Parikh)
 - MD-11 (Douglas/NASA)
 - B737 (SAB, S. Dodbele)
 - C-17 (HRNAB, J.Alsaadi)
 - T-39 (WPAFB, J. Slavey)
- High-Speed Civil Transport
 - Generic HSR Configuration (SAB K. Kjerstad)
 - Cranked wing LEVF (SAB, K. Kjerstad)
 - HSCT (Boeing, J. Wai)
 - Sonic Boom research (VIB, K. Fouladi)
- High-Performance Military Aircraft
 - Fighter (Boeing, J. Wai)
 - Joined wing (Boeing, J. Wai)
 - MTVI (TAB, F. Ghaffari)
- Other
 - Cavities (TAB Cavity Flow Team)
 - Internal flow (NASA LeRC, O.J. Kwon)

Wing-Pylon Fillet Design Using USG Methodology

MD-11 Configuration, Mach=0.83, $\alpha = 2.35^{\circ}$ 556127 cells, 103277 nodes

.....

....

Ē

Ξ

Generic HSR Configuration Unstructured Grid

Generic HSR Configuration

Mach = 0.2

HSR Planform Study (VGRID/USM3D)

68/48 planform with $\delta_{vf} = 30^{\circ}$, $\delta_{te} = 15^{\circ}$, Mach=0.22, $\alpha = 12^{\circ}$

SONIC BOOM ANALYSIS OF A BODY OF REVOLUTION

d a hidden h

101

Boeing Joined-Wing Configuration Cp Distribution from USM3D

2

-

Mach=.38, α = 4 °

Planned Capabilities (work underway)

- One-day turnaround for inviscid problems
- Viscous grid generation (2D and 3D)
- 3-D viscous flow solver
- Solution adaptive grids
- Dynamic moving grids (ODU contribution)

User Related Plans

- Establishment of VGRID/USM3D local user's group
- Release/training for VGRID Version 2.5 on June 1, 1993
 - New graphic interface with consolidated preprocessing functions
 - More generalized surface patches with T-intersection feature
- VGRID Version 3.0 to be released later in Summer 1993
 - Direct surface triangulation with n-sided patches
 - More consolidation entire flow analysis process
 - Use of more standardized file formats

<u>Note</u>: All codes to be interfaced with common file formats

Closing Remarks

- Assembled an integrated aerodynamic analysis and design capability using state-of-the-art three-dimensional USG technology
- Ongoing application-oriented development program dependent on feedback from wide user base
- Grid generation time for complex geometries now measured in days for experienced users
- Made significant advances in overall technology through teaming

السيفية فمقال