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SUMMARY:

The objectives of the present research are to improve design capabilities for low thrust rocket engines

through understanding of the detailed mixing and combustion processes. A Computational Fluid Dynamic

(CFD) technique is employed to model the flowfields within the combustor, nozzle and near plume field. The

computational modeling of the rocket engine flowfields requires the application of the complete Navier-Stokes

equations, coupled with species diffusion equations. Of particular interest is a small gaseous hydrogen-

oxygen thruster which is considered as a coordinated part of a on-going experimental program at NASA

LeRC. The numerical procedure is performed on both time-marching and time-accurate algorithms, using

an LU approximate factorization in time, flux split upwinding differencing in space. The integrity of fuel

film cooling along the wall, its effectiveness in the mixing with the core flow including unsteady large sacle

effects, the resultant impact on performance and the assessment of the near plume flow expansion to finite

pressure altitude chamber is addressed.

TECHNICAL DISCUSSION:

Propulsion related fiowflelds are characterized by a wide variety of physical phenomena. In the rocket

engine combustion chamber, mixing and combustion processes between the fuel and oxidizer result in regions

of strong heat release and species generation. The present paper addresses a small gaseous H2/O_ engine in

which about 60% of the fuel is used for film cooling. The velocity and molecular weight differences in these two

streams suggest the liklihood that large scale vortices are present in the resulting shear layer. Downstream

of the combustor, the flow accelerates from low subsonic to supersonic speed through a convergent-divergent

nozzle. The Mach number increases rapidly because of the increasing flow speed, while the chemical reaction

processes slow down and the heat release is small. In the supersonic portion of the nozzle, the flow is

essentially frozen. A computational model that is capable of calculating reacting flows at both subsonic and

supersonic speed is of immediate interest.

Although the application of reactive Navier-Stokes equations to rocket engines is appropriate for all

engine sizes, the primary near-term usage is for low thrust, auxiliary propulsion engines [1-7]. Accurate

numerical predictions of global performance and local fiowfields in these small motors require detailed

consideration of the mixing, viscous diffusion, species generation and heat release associated with the

combustion processes. Small engines are characterized by low Reynolds numbers and therefore the wall

boundary layer occupies a significant portion of the combustor. The specific engine we consider in the current

research is a gaseous hydrogen-oxygen engine designed for NASA LeRC to provide auxiliary propulsion and

attitude control for the Space Station freedom [1]. This small engine provides about 110 N (25 lbf) of thrust.
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Previousresearchhasbeendonebothexperimentally[2-4]andnumerically[5-7]for thesetypesof
engines.Comparisons have shown qualitative agreement [5-7] but some important physics must be included

in the computational model in order to provide more accurate engine performance prediction and local

flowfield characteristics. Engine global performance parameters such as thrust and specific impulse have been

consistently underpredicted [5,6] by 4 %, despite the fact that ideal combustion was assumed in the numerical

modeling of the core flow. Further, comparisons with detailed local flowfield point data measurement in the

near plume region have been made by postulating that the plume is expanded into a vacuum, ignoring the

fact that the altitude chamber always runs at finite back pressure [7].

The primary objective of this paper is to apply both steady state and transient numerical modeling

to the chemically reacting flowfield to address the issue to improve engine performance prediction. Current

analyses focus on the effects of unsteady, large-scale mixing in the reacting shear layer along the chamber

wall in order to understand the physics of underpredictions for thrust and specific impulse. Simultaneous

emphasis on the impact of finite altitude chamber pressure on the near plume flowfield is also discussed.

The numerical algorithm is based on extending earlier supersonic reacting flow calculations [8-10] to

subsonic combustion problems [11,12]. The analysis uses a three-dimensional, finite volume Navier Stokes

procedure that includes chemical non-equilibrium effects. The equations can be written in a generalized

coordinate system as :

O(VQ) O(E- O(F- 0(G-Co)
O---f-- + O( + cgrl + O( - V H (1)

where Q = (p, pu, pv, pw, e, pYi) T is the vector of primary dependent variables, and E, F, and G are the

inviscid flux vectors, and E_, F_, and G_ the viscous flux vectors in the _, _7and ( directions, respectively.

The vector H represents the source terms associated with chemical reactions and V is the cell volume.

Numerical computation for steady flow is achieved by an implicit time-marching algorithm using

an LU approximate factorization in time and flux split upwinding differencing in space. The time-accurate

calculation for unsteady flow is conducted by a dual time stepping procedure [13]. The finite rate chemical

reaction model used in the present work for gaseous hydrogen-oxygen combustion [9], involves nine chemical

species and eighteen elementary reactions. Both two-dimensional and three-dimensional formulations are

available.

RESULTS:

Detailed flowfield analyses of the combustion chamber, nozzle and near plume region for Aerojet

auxiliary thruster [1-4] are presented. For the purpose of experimental measurements, the thruster has both

a full nozzle (expansion ratio about 30 to 1) and a shortened nozzle (expansion ration about 1.5 to 1). The

engine throat diameter is 1.27 cm (0.5 in). Hydrogen fuel is used for both regenerative and wall film cooling

(specified as percent fuel-film cooling, or % FFC). The fuel which is not used for wail cooling mixes with

the oxidizer and is then ignited by a spark plug. The present computational domain starts downstream of

the spark plug insert, assuming complete combustion for the core flow. The designed baseline operating

conditions for the Aerojet auxiliary thruster are given by an overall oxidizer to fuel ratio of 7.71, 60.9 FFC

while hydrogen film is injected at about 670 K into the combustion chamber. The total propellant mass flow

rate of the baseline operating condition is 0.03435 kg/s, with oxidizer and fuel mass flow rates 0.0304 kg/s

and 0.00395 kg/s, respectively. The measured chamber pressure is 524 KPa.
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MachnumbercontoursfortheAerojetcutoffnozzlearegivenin Figure1. Thisnozzleiscutoffat
anarearatioofabout1.5to 1to providea sufficientnumberdensityof themajorchemicalspeciesforthe
measurementbymeansofa Ramanscatteringtechnique.Theupperportionofthefiguredemonstratesthe
plumeprofilefor thealtitudechamberat 1KPapressurewhilethe lowerportionshowsplumeexpansion
intoavacuumto comparewithpreviousresearch[7].Duringtheexperiment,a build-upfinitetestchamber
pressurerangingfrom1to5KPaisdetected,finitealtitudechamberpressurepushestheshearlayerinwards,
but thecomputationalresultsin thesupersoniccoreregionfor expansionto vacuumandfinitebackpressure
calculationsareidentical.Theexperimentaltraverselinefor datatakingdoeshoweverextendacrossthe
plumeboundaryforthefinitebackpressure,soincludingbackpressureeffectisnecessary.Thecutoffnozzle
plumeunder1KPabackpressureisstill underexpanded.

Resultsof thecombustor-nozzle-plumecalculationof theAerojetfull nozzlethrusteraregivenin
Figure2. TheupperpartshowsthepredictedMachnumbercontourswhilelowerpartshowsthepressure
contours,bothplotsarefor exapnsionto 1KPaaltitudechamberpressure.EachMachnumbercontour
linerepresentsa 0.5increment.Pressurecontoursareplottedonalogarithmicscale,with thepressureon
eachcontourlinebeingessentially10%lowerthanthepreviousone.Insidethecombustorthepressureis
nearlyconstant,but decreasesrapidlyastheflowacceleratesthroughthenozzle.An obliqueshockwave
canbeobservedfrombothpressureandMachnumbercontours,whichisa resultof theflowexperiencing
continuouscompressionthroughthebell-shapednozzle.Theexhaustedplumeisnearlyperfectlyexpanded
andashearlayeris formedat theplumeboundaryunder1KPatestchamberpressure.

Representativesolutionsoftheunsteady,reactivemixingshearlayerinsidethecombustoraregiven
in Figure3andFigure4. Figure3showsthespatialvariationofOHradicalconcentrationandtemperature
contoursin thecombustor.Time-accurate,unsteadycalculationsindicatethat unsteadyflowexistsin the
mixinglayerbetweentheheavierhotcoregasandlighterhydrogencoolingfilm. Becauseof thepresenceof
the injectorbaseregionwhichdividesthecoregasandhydrogencoolingfilm, large-scalevorticesareshed
fromthebaseregionandcausesunsteadymixingin thereactingshear layer. Vortex roll-up is, however,

minimized by the proximity of the combustor wall. The core flow enters the combustor at 2950 K while

the hydrogen film flows along the wall at 670 K. The core gas temperature remains almost constant in the

combustor. A large temperature gradient is also observed in the reacting shear layer. The temperature first

increases to a peak of 3450 K because of the presence of a diffusion flame between the core gas and the

cooling layer, then decreases to the coolant film temperature. The OH radical concentration is here used

as an indicator of the location of the diffusion flame. It has very high concentration in the flame zone and

diminishes quickly outside the flame zone. In Figure 3, the OH concentration is about 6 % in the preburned

hot core gas, then rises to 16 % in the shear layer which confirms the location of the diffusion flame and

finally decreases to zero in the wall cooling layer.

Figure 4 shows the temporal fluctuations of the OH concentration at several points lying across the

mixing layer. Symbols in Figure 3 denote where the OH radical concentration samples are taken in the

unsteady mixing layer. At the lower edge of the shear layer (symbol a), the OH concentration is constant.

In the shear layer, the OH radical concentrations are plotted at three traverse stations (symbols b,c,d). It is

observed that OH starts to fluctuate on different levels with respect to time at all three locations. Near the

wall, in the hydrogen coolant film (symbol e), OH concentration remains nearly zero at all times.

Efforts centering on the time-averaged mixing and its impact on improving engine performance are

currently underway. The predicted unsteadiness of the coolant layer and the three-dimensional nature of the

25



mixinglayeronenhancedmixing,combustionprocesses,andwallcoolingwill alsobeassessed.Additional
comparisonswithcounterpartexperimentswill bemade.
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