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A TECHNIQUE TO MEASURE ROTORDYNAMIC COEFFICIENTS
IN HYDROSTATIC BEARINGS

Russell J. Capaldi
NASA Lewis Research Center

ABSTRACT

An experimental technique is described for measuring the rotordynamic coefficients of fluid film

journal bearings. The bearing tester incorporates a double-spool shaft assembly that permits independent control

over the journal spin speed and the frequency of an adjustable-maguitude circular orbit. This configuration

yields data that enables determination of the full linear anisotropic rotordynamic coefficient matrices. The

dynamic force measurements were made simultaneously with two independent systems, one with piezoelectric

load cells and the other with strain gage load cells. Some results are presented for a four-recess, oil-fed

hydrostatic journal bearing.

INTRODUCTION

New-generation rocket engine turbopumps will make greater use of fluid film journal bearings. This

type of bearing has potential for long life and can use the engine's propellants as lubricant. Part of the design

process for a turbopump involves rotordynamic analysis of the rotor-bearing system. As part of the rotor

dynamic analysis, bearing coefficients, in the form of stiffness, damping and inertia, are necessary inputs.

While rotor mechanics is well-characterized and relatively straightforward, determination of accurate bearing

coefficients is not so well-established. Land's review of the concept of fluid film bearing coefficients has a

comprehensive reference list that includes experimental and analytical work (1). Taken as a whole, these

references reveal the general difficulties in measuring bearing coefficients and the lack of uniform agreement

between measured and analytical coefficients. The data base for rocket engine-type fluid film bearings is

extremely small. The turbopump requires a bearing that operates at high speed, with small clearance and with

low viscosity fluid. These parameters make experimental coefficient determination especially challenging.

Butner and Murphy's report, as an example, reveals the added research and operational complexities of

measuring coefficients for such a bearing (2).

As part of NASA's effort to develop fluid film bearings for rocket engine turbopumps, it has an

ongoing program with Case Western Reserve University (CWRU) to develop a reliable and accurate measure-

mint technique for bearing coefficients that can be ultimately applied to high-speed, low-viscosity bearings.

The current experimmtal setup tests a hydrostatic oil journal bearing, but can accommodate other types of fluid

film bearings. Coefficients have been extracted at low static eccentricity ratios and compare well with theory.

In addition, the tester's unique load measuring system gives a high level of confidence in the data.
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EXPERIMENTAL FACILITY

The linear anisotropic bearing model is shown in Figure 1, where K,C and D designate respectively

stiffness, damping and inertia. In addition, the two fundamental methods to extract the coefficients from a

dynamic system (i.e. fluid film bearing) are shown. The coefficient extraction method used at CWRU, and

fully explained in reference 3., is the linear impedance model.

The test facility is located at CWRU and is fitted with independent air, water and oil systems. The

bearing tester, shown in Figure 2, consists of a double-spool shaft assembly supported by rolling element

bearings, and overhung test section. The double-spool shaft assembly is configured so that the orbital

eccentricity of the inner shaft (relative to the outer shaft) can be accurately set from zero to 0.060 inch. This is

achieved by having the outer spindle shaft comprised of two closely fitted cylindrical portions, with their

respective mating surfaces eccentric to their respective centering surfaces. Each spindle shaft is independently

driven by a variable speed drive and can be driven in either forward or backward rotation. The net result is a

controlled circular orbit of the journal, with an orbit frequency independent of the journal spin speed. The

resulting dynamic force signals exerted upon the test bearing are then measured by the load support system.

Figure 3 shows a lobe bearing installed in the tester. In this earlier version of the tester, the load

support system consisted of only four piezoelectric load cells. Figure 4 shows the current load support system.

Each load path consists of a strain-gaged load link in series with a piezoelectric load cell. This arrangement

provides simultaneous measurement of the dynamic forces by two independent systems. The strain-gaged

system also permits measurement of static radial forces. Both systems are calibrated in place. Journal

displacemeats are measured by eddy current proximity probes.

The outer spindle, which produces the orbit frequency, is equipped with a timing disk at its drive end.

The timing disk contains 360 equally space slots that interrupt a light beam, triggering an A-to-D converter as

an external clock to the data acquisition PC. Eight channels of data are taken A-to-D, which include four force

signals and four displacement signals. Thus, 45 digitized data points are taken from each channel per cycle of

orbit. Typically, data is taken for 50 consecutive cycles and time-averaged. Data is taken at sufficiently off-

synchronous frequencies so that extraneous signals not coherent with the orbit frequency are essentially filtered

out (i.e. mechanical and electrical runout and 60 Hz). The eight time-averaged signals are then Fourier

decomtx)sed to extract the fundamental orbit frequency signal components, which provide the inputs to extract

the bearing coefficients.

SAMPLE OF RESULTS

The test bearing details are given in Figure 5. A typical example of comparison between the dynamic

load signals of the two independent systems is shown in Figure 6. The two signals shown are time-averaged

over 50 consecutive cycles, and show very few harmonics. Numerical comparison between the fundamental
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frequency components shows only a 1.8 % difference in amplitude and 0.3 degree difference in phase.

Figure 7 is a typical example of comparison between experimental and analytical stiffness and damping

coefficients. This test condition was run at zero static eccentricity. As expected, the measured bearing

coefficients are close to being isotropic. Direct coefficients are approximately equal in x- and y- directions.

Cross-coupled stiffness in y- direction is equal in magnitude and opposite in sign to that in x-direction. Cross-

coupled damping is close to zero. Predictions agree quite well with measured values. The biggest discrepancy

is in over-prediction of direct stiffness. This is probably due to not including the effects of oil compressibility

in the relatively deep (0.1875 inch) bearing recesses.

CONCLUDING REMARKS

The experimental results obtained so far with the CWRU tester have agreed quite well with analytical

predictions. The self-checking nature of the dual load measurement system provides for greater accuracy in

measuring fluid film forces, which has always been a difficult and uncertain aspect of coefficient determination.

A new test bearing holder is currently being fabricated so that tests can be performed at static

eccentricity ratios up to 0.9, and the ecomtricity can be quickly and accurately adjusted. This will allow for

tests over a wide range of operating conditions and also for quicker setup and testing of a given bearing.

Testing to higher eccentricities will also verify over what range of eccentricities the linear impedance

model can be expected to hold, as fluid film bearing coefficients should theoretically become nonlinear when the

bearing becomes highly eccentric.
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Figure 1. The Linear Anisotropic Bearing Model

Test r_it',ng el¢4nt 7 |*met sp(n_h r_:or
Test 4r.nul_s r_q I _ter $o|_¢1e r_=r

Pte::e_e-.:r+.c 1,c: ¢llls g Sa|._cle .houS!n_

Mt_n-prtls_rt c_lr_nc 11 T-_elt _11e1
:= -L_getss_ • ir_tn[ IZ ¥*_.el_ ;u|le7

C:ncl2_;ll S_I'+:_ O_ ]lo_r 5dlcor_. _qlCQnI_T+ _lSt _C_IrI_S

I,I J:Jl I1,i I:_

;sllmll Lieu: of lo:oP |_llor_ t'll_mlnt Tilt _m+iVltUl

Figure 2. CWRU Bearing Tester
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Figure 3. Arrangement for Bearing Test
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