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Note From the Editor

An error on page iii of the last issue of this quarterly report, issue 42-114,
misidentified the maiden name of Dr. Edward C. Posner's widow.

The correct name of Dr. Edward C. Posner's widow is Sylvia Kouzel

Posner.
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Preface

This quarterly publication provides archival reports on developments in programs

managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In

space communications, radio navigation, radio science, and ground-based radio and

radar astronomy, it reports on activities of the Deep Space Network (DSN) in plan-

ning, supporting research and technology, implementation, and operations. Also
included are standards activity at JPL for space data and information systems and

reimbursable DSN work performed for other space agencies through NASA. The pre-

ceding work is all performed for NASA's Office of Space Communications (OSC). The

TDA Office also performs work funded by another NASA program office through and

with the cooperation of OSC. This is the Orbital Debris Radar Program with the

Office of Space Systems Development.

The TDA Office is directly involved in several tasks that directly support the

Office of Space Science (OSS), with OSC funding DSN operational support. In radio
science, The TDA Progress Report describes the spacecraft radio science program

conducted using the DSN. For the High-Resolution Microwave Survey (HRMS), the

report covers implementation and operations for searching the microwave spectrum.

In solar system radar, it reports on the uses of the Goldstone Solar System Radar for

scientific exploration of the planets, their rings and satellites, asteroids, and comets.
In radio astronomy, the areas of support include spectroscopy, very long baseline

interferometry, and astrometry.

Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech
President's Fund that involve the TDA Office are included.

This and each succeeding issue of The TDA Progress Report will present material

in some, but not necessarily all, of the following categories:

OSC Tasks:

DSN Advanced Systems

Tracking and Ground-Based Navigation;

Communications, Spacecraft-Ground; Station Control and System Technology;

Network Data Processing and Productivity
DSN Systems Implementation

Capabilities for Existing Projects; Capabilities for New Projects;

New Initiatives; Network Upgrade and Sustaining
DSN Operations

Network Operations and Operations Support;

Mission Interface and Support; TDA Program Management and Analysis

Ground Communications Implementation and Operations

Data and Information Systems

Flight-Ground Advanced Engineering

Long-Range Program Planning

OSC Cooperative Tasks:
Orbital Debris Radar Program

OSS Tasks:

Radio Science; High-Resolution Microwave Survey;

Goldstone Solar System Radar; Radio Astronomy

Discretionary Funded Tasks
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A Review of GPS-Based Tracking Techniques
for TDRS Orbit Determination

B. J. Haines, S. M. Lichten, R. P. Malla, and S.-C. Wu

Tracking Systems and Applications Section

This article evaluates two fundamentally different approaches to the Tracking

and Data Relay Satellite (TDRS) orbit determination utilizing Global Positioning

System (GPS) technology and GPS-related techniques. In the first, a GPS flight
receiver is deployed on the TDRS. The TDRS ephemerides are determined using

direct ranging to the GPS spacecraft, and no ground network is required. In the

second approach, the TDRSs broadcast a suitable beacon signal, permitting the

simultaneous tracking of GPS and Tracking and Data Relay Satellite System satel-
lites by ground receivers. Both strategies can be designed to meet future operational

requirements for TDRS-II orbit determination.

I. Introduction

The Tracking and Data Relay Satellite System

(TDRSS) is used by NASA to support positioning and

data relay activities for a wide variety of Earth-orbiting

spacecraft [1]. The present operational system is composed

of two geosynchronous Tracking and Data Relay Satellites

(TDRSs), TDRS-E and TDRS-W at 41 and 171 deg west

longitude, respectively: a central ground station located at

White Sands, New Mexico (WS); and remote tracking sites
at Ascension Island, American Samoa, and Alice Springs,

Australia. Accurate real-time positioning of the TDRSs is

fundamental to the proper operation of the system and is

achieved via the relay of coherent signals broadcast by un-
manned transponders at the remote tracking sites. These

remote beacons are collectively referred to as the Bilater-

ation Ranging Transponder System (BRTS). Range and

Doppler observations from BRTS are routinely scheduled

by the central ground processing facility at White Sands,

where they are used in conjunction with models of the

forces perturbing the spacecraft motion to determine the
TDRS positions. Evaluation of the TDRS ephemerides

suggests that orbit consistency is maintained to better

than 70 m using the operational BRTS method [2]. This

level of precision is adequate for current applications; how-

ever, the technique requires valuable TDRS antenna time

that could otherwise be used for servicing user spacecraft.

In recognition of the need for improved tracking for the
next-generation TDRSS (TDRSS-II), a number of alterna-

tive methods have been explored [3-6]. Some of the tech-

niques studied were originally developed for DSN track-

ing of high Earth and elliptical orbiters. The applica-
tion of these techniques to the TDRS orbit-determination

problem is not necessarily straightforward, due to the

geosynchronous TDRS orbit and certain unique charac-

teristics of the TDRS signals. The demand for improved

accuracies provides an important motivation for these ef-

forts. This requirement, however, is balanced by the ap-



pealof asimple,reliable,andautonomoussystem that re-

quires no disruption of TDRSS user services and delivers

the ephemerides in near-real time. One technique which

promises the potential to meet these sometimes conflicting

demands relies on technology from the U.S. Department

of Defense Global Positioning System (GPS). Previous ef-
forts addressing this option have produced encouraging re-

sults. Wu [7] proposed two GPS-related techniques for de-

termining the orbits of high-altitude Earth satellites. He
envisioned a wide variety of possible applications; hence,

the breadth of the study prevented a thorough treatment
of TDRSS. Recent efforts have focused directly on TDRSS,

but software limitations precluded a complete evaluation

[3]. In this article, the authors build on these earlier stud-
ies by revisiting their assumptions and revising them to

insure they reflect the current state of the art. The new

assumptions form the basis of a covariance study that ex-

ploits software and methodology that have evolved over

the past decade as part of a program at the Jet Propul-

sion Laboratory (JPL) to support GPS-based tracking of
Earth orbiters.

Results for two distinct solution strategies, as pre-

scribed by Wu [7], are reported. In the first, a GPS receiver

is deployed on the TDRSs, and the ephemerides are deter-

mined using direct measurements from the GPS to the

TDRSs. In the second, the TDRSs broadcast wide-beam

beacon signals which permit the simultaneous tracking of

GPS and TDRSS satellites from a small ground network.

II. GPS-Based Techniques for Orbit
Determination

For both military and civilian customers, the principal

application of GPS is the precise positioning of ground

sites and of moving vehicles near the Earth's surface [8].

The space segment of this system, which is due for com-
pletion early in 1994, will consist of 21 satellites and 3

active spares orbiting in 6 uniformly spaced orbit planes

inclined at 55 deg with respect to the equator. The satel-
lites, which are at an altitude of about 20,200 km, transmit

unique navigational signals centered on two L-band carrier

frequencies (L1 at 1575.42 MHz and L2 at 1227.60 MHz).
Each carrier is modulated with pseudorandom square-wave

codes: a coarse acquisition (C/A) code on L1, and a pre-

cise (P) code on both L1 and L2. An additional Y-code

may be used to encrypt the P-code (antispoofing or AS).

A GPS receiver generates a replica of these codes and

correlates them with the received signals, from which a

pseudorange to each visible spacecraft can be inferred.

(Pseudorange is simply a range biased by the unknown off-

set between the spacecraft and receiver clocks.) In the sim-

plest (and lowest accuracy) form of GPS positioning, the
receiver uses these pseudorange measurements together

with ephemeris and clock information broadcast by the

respective GPS spacecraft to determine its location. A
minimum of four satellites must be in view of the receiver

in order for the user to solve for the three components of

position and the clock offset. The accuracy with which the

user can determine its position is dependent on a number

of factors; principal among them is the geometric configu-

ration of the satellites in view. The quality of the broad-
cast ephemeris and clock information, which can be inten-

tionally degraded as part of selective availability (SA), is

also an important factor.

The same principles can be applied to the positioning
of low Earth orbiters equipped with GPS receivers. Be-

cause the applications in this area are primarily in the

field of precise geodesy, a more robust approach is gener-

ally required. In particular, multidirectional pseudorange

and carrier phase measurements collected simultaneously

at ground stations and the user spacecraft can be com-

bined over suitable intervals of time--typically a few hours

to several days--in order to determine the ephemerides of

the orbiter [9-11]. The simultaneous measurements from

the ground stations can be combined to nearly eliminate

the effects of clock-error SA degradation, while also miti-

gating the effects of errors in the GPS ephemerides.

What makes this approach especially attractive is that

the robust observation geometry permits orbit solutions

without dynamic model constraints on the spacecraft mo-

tion [12]. (Errors in dynamic models are the principal limi-

tations in traditional approaches to satellite orbit determi-

nation.) Where advantageous, however, dynamic models

can still be exploited to improve accuracy [13]. Plans for a
number of U.S. and international missions include flight-

hardened, high-performance GPS receivers. Two such mis-

sions, the joint U.S.-French TOPEX/POSEIDON satellite

and NASA's Extreme Ultraviolet Explorer, were launched
in mid-1992 and have performed superbly. The accuracy of

the TOPEX/POSEIDON orbits determined at JPL from

GPS tracking is believed to be at the 3-cm-rms level in

altitude and 10 cm rms or better in along- and cross-track
components. 1

While the application of GPS for the positioning of low

Earth orbiters has received considerable attention, this is

I T. P. Yunck, W. I.Bertiger, S.-C. Wu, Y. Bar-Sever, E. J. Chris-

tense.n,B. J. Haines, S. M. Lichten, R. J. Mueller-_hoen, Y. Vigue,

and P. Willis, "First Assessment of GPS-Based Reduced Dynamic

Orbit Determination on TOPEX/POSEIDON," submitted to Geo-

phys. Res. Ltr., August 1993.



not the case for high Earth orbiters, particularly geosyn-
chronous spacecraft such as TDRS. The GPS constellation

illuminates the Earth from an altitude of 20,200 km and,

therefore, is better suited for low Earth orbiters. Since

the TDRSs are located above the GPS constellation, they

must look down to receive GPS signals spilled over the
limb of the Earth from satellites on the other side of

the planet. The configuration, hereinafter referred to as

"down-looking GPS" in keeping with Wu [7], is shown in

Fig. 1.

Although an observer traveling with TDRS would be
able to establish a direct line of sight to many GPS satel-

lites, the number of useful GPS spacecraft is limited to

those that fall within an annular region delineated on the

inside by the Earth's blockage and on the outside by the

beamwidth of the GPS signals. The half-width of the main

beams are 22 and 27 deg, respectively, at L1 and L2 fre-
quencies, while the angle subtended by the Earth at GPS

altitude is 27 deg. Together these constraints imply that,

on average, the signals from only one GPS satellite can be

seen from a geosynchronous altitude at any given time [7].

Of course this entirely precludes the possibility of kine-

matic positioning, and the orbits must be determined dy-
namically. For a spacecraft at geosynchronous altitude,

however, the perturbative accelerations due to the non-

spherical Earth are highly attenuated and the effects of

atmospheric drag are negligible. As a result, the proper
modeling of the forces acting on a spacecraft is much less

problematic than it is for a low Earth orbiter.

Aside from these special limitations, the overall strat-

egy for down-looking GPS is not unlike that for the up-
looking variation used by low Earth orbiters. In particular,

the determination of the orbit can be made using simulta-

neous observations formed with data collected at ground

stations or directly, without the aid of a ground network.
The benefit gained from the use of simultaneous observa-

tions, however, is somewhat limited owing to visibility con-
straints. Simultaneous observations of the same two GPS

spacecraft from geosynchronous orbit and the ground are
possible less than half the time even with the most opti-

mistic scenarios [3,7]. Implicit in both approaches, there-
fore, is a greater vulnerability to clock errors and to the

effects of SA if the flight receiver is not equipped with a

decryption module. Despite these problems, the down-

looking GPS approach is quite attractive for TDRS orbit

determination because of the high level of autonomy and
the greater potential for achieving real-time results.

An alternative strategy requires that the high Earth

orbiter transmit a suitable signal which can be moni-

tored at the same ground stations observing GPS satel-

lites [7,14]. This method has been referred to as "inverted

GPS" because the major factor affecting the orbit accu-

racy is the number of ground stations, rather than GPS

satellites, in common view of the user spacecraft (Fig. 2).

Inverted GPS, also referred to as GPS-like tracking (GLT),

promises the highest accuracies for geosynchronous track-

ing because any number of ground sites may be visible

from the TDRSs [7]. Coincident observations of the GPS
satellites from the ground are desired in order to enable

estimation of clock biases. As is the case for down-looking

GPS, dynamic models of the forces governing the orbital

motion are used to supplement the geometric content of
the measurements.

III. Common Stategy

The assumptions forming the foundation of this study

are governed by guidelines that have been advanced by

NASA for future TDRS-II orbit determination, e.g., [3,4].

These guidelines reflect a balance between the demands for
increased accuracy and system autonomy. For this effort,

the figure of merit for the accuracy is 50 m in total position

(la). It was assumed that this level of accuracy should be

met in nominal operations with 24 hr of tracking, although

we also examined the feasibility of achieving 50 m after

only 2 hr of tracking (for the cases where the trajectory
is to be recovered rapidly after a station-keeping maneu-

ver). For system autonomy, the primary drivers include
minimized impact on TDRSS user services, minimized hu-

man intervention during normal operations, and, for the

inverted technique, a simple ground network. We began

with the premise that the inverted technique, GLT, would

provide the best accuracy, and focused on identifying com-

promises that would ensure greater autonomy. Conversely,

for the down-looking approach, effort was devoted to de-
termining ways to improve the accuracy.

The Orbit Analysis and Simulation Software (OASIS)

package developed at JPL served as the primary evalu-
ation tool. The OASIS system is designed to provide a

flexible, versatile, and efficient covariance analysis tool for

Earth-satellite navigation and GPS-based geodetic stud-

ies [15]. It has been used extensively for spacecraft orbit

error analysis, and its factorized Kalman filter strategies

[16] also form the basis for the GPS Inferred Positioning

System (GIPSY) software used in the reduction of actual
GPS data for recovering geodetic baselines and improving
satellite orbits.

For both strategies, a full 24-satellite GPS constella-
tion was assumed. The TDRSS-II satellites were assumed

to be at the same locations as the present TDRS-W and



TDRS-E.TheactualTDRSS-IIconstellationwillcontain
additionalsatellites,but theyshouldbeclusteredin the
samevicinitiesas the currentspacecraft.The results,

therefore, should not be significantly different for these

additional satellites. The next sections detail specific er-

ror models applied in the two solution strategies, along

with the results. Covariance analysis results portray the

actual expected errors only to the extent that the a priori

models are authentic. In order to address the possibility

of unanticipated errors, a somewhat conservative set of a

priori assumptions was adopted.

IV. Inverted GPS (GPS-Like Tracking)

A. Assumptions

As a starting point, we propose some small ground net-

works suitable for the simultaneous tracking of GPS and

TDRSS spacecraft. An initial stated goal for TDRS-II
orbit determination was to confine all stations to the con-

tinental U.S. [3]. This constraint was subsequently relaxed

[4]; it nonetheless remains essential to identify a minimum

network that will deliver the desired orbit accuracy. For

this effort, we selected various station configurations from

the six-site global GPS network that has been established

to support the TOPEX/POSEIDON mission. Three of

the six sites are colocated with DSN stations at Goldstone,

California; Madrid, Spain; and Canberra, Australia. The

remaining three are at Santiago, Chile; Usuda, Japan; and
Hartebeesthoek, South Africa. An additional receiver at

the TDRSS ground control station at White Sands was

assumed for some of the variations. The visibility of these

sites from TDRS-E and TDRS-W, respectively, is shown

in Fig. 3.

It is instructive to note that these sites are presently

used to support well-established NASA programs. Each is

equipped with a JPL Rogue digital receiver capable of si-

multaneously tracking pseudorange and carrier phase from

eight GPS spacecraft [17]. Although the receivers are de-

signed to operate unattended, staff are always on call at
these sites should any problems develop. For this study,

we assumed that the Rogue receivers at each of the track-

ing sites were retrofitted so that a TDRS beacon signal

could be tracked continuously on one of the eight channels

(Fig. 4). Note that GPS receivers have already been used

in demonstrations to track Pioneer Venus and Magellan at

X- (8000-12,500 MHz) and S-bands (2000-4000 MHz). 2

2 K. Zukor, "Comparison of NCB and TurboRogue Phase Measure-

ments," JPL Interoffice Memorandum 335.1-91-016 (internal doc-
ument), Jet Propulsion Laboratory, Pasadena, California, May 15,
1991.

A critical design parameter for the inverted GPS tech-

nique is the measurement characteristic of the TDRS bea-

con signal. Several options for the design of an advanced

beacon signal have been considered [3,4]. For the present
study, ranging tones broadcast by the TDRSs at Ku-band

(12.5-18 GHz) served as the nominal configuration for the

transmission. A major advantage of exploiting the high-

frequency Ku-band is the relatively small signal delay due

to ionospheric refraction. Equivalent range delays at Ku-

band vary from less than 1 to 20 cm depending on the

level of solar activity. Ionospheric calibration based on the

GPS dual-frequency L-band data collected at the various

tracking sites can then be applied in modeling the delay

to better than 1 cm in range. A similar activity is already

underway at the DSN sites, where the GPS data are used

to calibrate ionospheric delays for deep-space tracking [18].

The proposed Ku-band signal could, in theory, provide

pseudorange measurements with a random noise compo-

nent of 1 cm averaged over 30 min, assuming a 100 MHz

bandwidth. 3 In practice, the implementation of new

Rogue hardware to downconvert the Ku-band signal to

GPS frequencies (L-band) would introduce an additional

error because separate signal paths would be used for the

TDRS and GPS signals. This instrumental error would

manifest itself as a slowly varying delay offset in the TDRS
pseudorange residuals. Preliminary analysis indicates the

effect would be bounded by about 1 nsec (amounting to

30 cm in range delay) and would modulate with a period

of about one-half of a day. Because of the long period, the

error appears as a constant bias over a typical measure-
ment interval, permitting it to be modeled as a stochastic

process in OASIS. Several variations from these nominal

characteristics were explored in order to assess how devi-

ations from these assumptions would impact the TDRS

orbit accuracies. Results and additional details are pre-
sented in the next section.

The noise of the ionosphere-corrected GPS P-code pseu-
dorange and carrier phase measurements was set at 25

and 1 cm, respectively, for 30-min measurement intervals.

As Rogue receivers are presently providing this level of

precision for 6-min measurement intervals (cf., Fig. 5),
these estimates are quite conservative. The higher levels of

data noise, however, are intended to accommodate periods

when the receivers must track using codeless techniques

because AS is turned on. Additional assumptions applied

in OASIS for evaluating the inverted GPS technique are

3 L. E. Young, personal communication, Tracking Systems and Ap-

plications Section, Jet Propulsion Laboratory, Pasadena, Califor-

nia, 1992.



listed in Table 1. We assumed the a priori knowledge of the

GPS ephemerides was very poor and solved for the 24-GPS

and 2-TDRS epoch states together. Additional estimated

parameters included a single solar-radiation pressure coef-

ficient for each TDRS, and GPS solar-radiation pressure

coefficients and carrier phase biases. Clock errors were
estimated as stochastic white noise processes with a refer-

ence frequency standard at Goldstone, an approach which

is analogous to (but more general than) using doubly dif-
ferenced measurements. A random-walk process noise pa-

rameter was used to model the zenith troposphere delay

at each of the stations [19].

The sensitivities of the TDRS orbit to errors in several

important nonestimated parameters were also computed.
These nonestimated, or "consider," parameters can be in-
cluded in covariance studies in order to yield more realistic
error estimates. The additional error contributions from

the consider parameters are added to formal errors from

the filter, which contain only the effects of data noise. The

consider parameters and their associated errors (lcr) are
also shown in Table 1. Note that these errors for consider

parameters represent fixed systematic errors [16]. Most

important among them are the tracking station coordi-
nates and Earth orientation parameters. For individual

components of the DSN station positions, errors of 3 cm
were assumed. Recent analyses suggest that centimeter-

level accuracies are already being achieved for the locations
of GPS antennas at the two DSN sites in the Northern

Hemisphere [20]. Coordinates for non-DSN sites were as-

signed conservative errors of 10 cm. Uncertainties in the

X- and Y-pole positions were set at 25 cm, while the error
in the variation of the Earth's rotation as manifest in UT1-

UTC was set at 6.0 x 10 -4 sec. In a unified GPS/TDRSS

solution strategy at JPL, these Earth orientation param-

eters could be adjusted to reduce these errors by at least
an order of magnitude. By using higher errors, we allow

for a real-time system where accuracy may be degraded.

The lumped effects of errors in the Earth's gravity

model were represented by 25 percent of the difference

between the Goddard Earth Models (GEMs)-10 and -L2

[21,22]. Our own analysis suggests that for many applica-

tions this representation is comparable to the errors in the

GEM-T3 gravity field [23], a state-of-the-art model de-
veloped in support of the TOPEX/POSEIDON mission.

Owing to the extremely high altitude of a geosynchronous
orbiter, the gravity model errors have only a minor ef-
fect on the TDRS orbit determination in comparison with

other sources.

B. Results for Routine Orbit Determination

Consider first a nominal case which is characterized by

the TDRS Ku-band beacon design outlined in the previous

section and a minimal ground network consisting of the
three DSN sites and White Sands. Figure 6 depicts the

mapped orbit error (lo') for TDRS-W as a function of
time past the epoch of the arc. The formal (computed)

error reflecting the effects of data noise is shown along

with the systematic error from nonestimated (consider)

parameters. The maximum rss total error was adopted as
the basis for comparing various strategies in relation to the

TDRSS requirement. For the 24-hr period in question, the

total position error for TDRS-W never exceeds 15 m, well

under the 50-m requirement.

In interpreting Fig. 6, it is instructive to note that the
total error is dominated by the formal (computed) error

contribution, indicating the results may be highly sensi-

tive to the assumptions made for the TDRS beacon sig-

nal. To address this concern, limiting cases were examined.

In the first, the TDRS signal was degraded by increasing

the magnitude of the systematic contribution from 30 to

100 cm. Introducing this increase allows the partial accom-
modation of unmodeled ionospheric refraction errors, in

addition to aggravated instrumental effects. For instance,
if the TDRS beacon broadcast at S-band instead of Ku-

band, the calibration of the ionospheric delay would yield
accuracies of only a few decimeters. For the case of this

degraded beacon, the maximum total error grew to 41 m

(Fig. 7), a value which is still lower than the 50-m require-
ment.

In the second case, the systematic contribution was re-

moved entirely, but the noise was increased by a factor of

25 (from I to 25 cm for 30-min averaging). Inasmuch as the
GPS pseudorange signals were also assigned a data noise

of 25 cm, this approach is analogous to the situation in
which the TDRSs are equipped with actual GPS beacons.

The maximum total rss error was 10 m, an improvement

over the nominal case, showing that the 25-fold increase
in the noise contribution was more than balanced by the

elimination of the slowly varying bias (cf., Fig. 7). Taken

together, these results indicate that the greatest concern
for the TDRS beacon signal lies in the minimization of the

systematic, slowly varying bias introduced by the different

path lengths for the GPS and TDRS signals.

It is also instructive to investigate how the period of

these systematic errors in the TDRS beacon signal affects
the orbit determination. To answer this question, differ-

ent values were assigned to the time constant for the 30-cm

bias, and the formal position error for TDRS-W was com-

puted at epoch. (Recall that the nominal 1/e folding time



constant,r, was one-half of a day.) The results, depicted in
Fig. 8, indicate that the worst accuracies are experienced

when the period of the systematic error is about 5 hr. As

the time constant of the systematic error decreases below

5 hr, the orbit error also decreases until the limiting case
of white noise is reached. This phenomenon is evidently a

consequence of increased decoupling with other parameter

errors, even though a smaller r represents higher process

noise. Likewise, as the period approaches 1 day, the orbit

error decreases as the systematic error appears more like

a single constant bias over the entire 24-hr arc.

We now examine the effects of various tracking net-

work configurations. While it is adequate for observing

TDRS-W at 171 deg west, the minimum network consist-

ing of stations at the three DSN sites and White Sands is

not well-suited for tracking TDRS-E at 41 deg west. The
situation is best illustrated in Fig. 3. TDRS-W is viewed

by two DSN sites (Goldstone and Canberra) plus White
Sands. Although the distance between the two American

stations is rather short, the overall baseline orientation is

adequate for providing the necessary geometric diversity
in the observations. In contrast, TDRS-E is viewed by

only Madrid and White Sands. (The elevation of TDRS-E

above the horizon at Goldstone is about 2 deg, render-

ing any observations collected there unreliable.) The net-
work consists of a single, long baseline which can provide
TDRS-E orbit accuracies no better than 300 m. Even in

a best-case scenario, in which it is assumed that useful

observations can be made from Goldstone, the maximum

orbit error for TDRS-E cannot be brought below the 50-m
level without tuning of Earth orientation parameters. For

tracking TDRS-E, it is, therefore, necessary to consider an

augmented tracking network.

The simplest augmented network is a five-station con-

figuration consisting of the three DSN sites, White Sands,

and the TOPEX/POSEIDON site in Santiago, Chile.
While the tracking geometry for TDRS-W remains identi-

cal to the nominal case, the situation for TDRS-E is dra-

matically improved. The introduction of the Santiago site

implies that TDRS-E is observed by three well-distributed
stations. Indeed, Table 2 reveals that with this five-station
network the TDRS-E orbit can be determined to the sub-

5-m level, a factor of three better than the TDRS-W orbit.

As a final case, consider the six-station TOPEX/
POSEIDON network. This configuration supplies the

mo6t robust and consistent geometry for observing both
spacecraft--TDRS-E is observed by Madrid, Hartebeest-

hock, and Santiago, while TDRS-W is viewed by Can-
berra, Goldstone, and Usuda. It is noteworthy that no

tracking from White Sands is involved, a scenario which is

attractive because (1) among all the sites discussed, White

Sands is the only location not presently part of the op-

erational NASA GPS network, and (2) in many of the
strategies, tracking of both TDRS-W and TDRS-E is re-

quired from White Sands, implying that the single TDRS

channel in the reconfigured GPS receiver would have to be
shared. Figure 9 shows the orbit accuracies for TDl_-W

and TDRS-E throughout a 24-hr simulated arc with track-

ing from the full TOPEX/POSEIDON network. The ac-

curacies achieved are better than 5-m for both spacecraft,
an order of magnitude better than the 50-m requirement.

C. Results for Trajectory Recovery and Prediction

The TDRSS spacecraft are actively maneuvered as part

of routine station-keeping activities. In order to keep dis-
ruption of user services to a minimum, it is desirable to re-

cover the trajectory as quickly as possible after the thrust

maneuvers. This section explores the capability of the in-

verted technique for determining the TDRS positions to
better than 50 m within 2 hr of a thrust event. Two dif-

ferent approaches are adopted: In the first, a complete
recovery of the TDRS epoch state immediately after the

maneuver is performed. No a priori information on the

TDRS trajectory is assumed. In contrast to the nominal

approach outlined in the previous section, however, the

GPS orbits are well determined from routine tracking for

12 hr prior to the maneuver. In the second approach, a
three-component velocity increment at the maneuver time

is used to augment the TDRS state vector; thus, the thrust

maneuver is determined as part of the orbit determination

process.

Figure 10 depicts the TDRS-W orbit accuracy as a

function of time after the thrust event for these two ap-
proaches. Two different tracking configurations are also

considered. For complete orbit state recovery with the

nominal tracking network, the 50-m requirement is nearly

met after 2 hr. Using the full TOPEX/POSEIDON net-

work, sub-40-m accuracy can be achieved after only 2 hr
of tracking. Assuming that the three-component velocity

increments can adequately model the thrust event, and
moreover that the time of the maneuver is known, the 50-

m requirement can easily be met with minimal tracking.

Finally, consider how long the quality of the TDRSs'

trajectories can be maintained after cessation of tracking.

To examine this, the TDRS-W orbit state was predicted
forward for 3 days following the end of the 24-hr definitive

orbit determination interval. The results, shown in Fig. 11,
suggest that the 50-m requirement would continue to be

satisfied, even with a total loss of tracking for 3 days.



V. Down-Looking GPS

A. Assumptions

For the down-looking GPS tracking option, we elected
not to introduce any NASA tracking from the ground.

The enhancement in accuracy that might be achieved with

only a very limited number of differential observations
is outweighed by the benefit of the increased autonomy

associated with no ground sites. The estimation strat-

egy for nondifferential down-looking GPS is quite differ-

ent from that for the inverted option, owing in large part

to the weak observability. Many of the parameters, such

as the solar radiation pressure coefficient and the GPS

orbit states, cannot be recovered reliably with the lim-

ited set of observations. Moreover, tracking in the non-

differential mode implies that the GPS measurements are

sensitive to the effects of the intentional dithering of the

GPS clocks and ephemerides (SA). For the nominal case,
then, it was assumed that the onboard flight receiver would

be a military-class instrument with a decryption module.

Note that the introduction of this type of flight instrument

on TDRSS-II spacecraft should not pose a problem since

considerable military data are already processed through
TDRSS. It is additionally assumed that the receiver would

represent an advanced design capable of 35-cm pseudo-

range measurements with averaging over 15 min.

Table 3 lists the nominal set of a priori assumptions for

the down-looking approach. The TDRSs' epoch positions

and clock errors (bias and linear drift) served as the only
estimated parameters. Solar radiation pressure was con-
sidered at 5 percent, a value which is conservative in com-

parison with the 2 percent value that is representative of

current modeling efforts [24]. GPS satellite epoch states
and clock errors were also considered. For the nominal

case, in which it was assumed that the flight receiver was

equipped with a decryption module, the GPS ephemeris
and clock errors were set at the few-meters level. For the

degraded case, these values were increased by a factor of

four or more to account for the effects of SA [25].

B. Results for Routine Orbit Determination

Figure 12 shows the position error for TDRS-W as a
function of time for nominal 24-hr tracking. Because the

down-looking technique considered herein does not rely

on ground tracking, the overall results are invariant to the

position of the satellite and should not be much different

for TDRS-E. The results suggest that with the decryp-

tion module on the TDRSs, the down-looking technique

yields orbit accuracies at the sub-10-m level. In contrast,

without the module, the position error reaches 80 m, and

the 50-m requirement is not met. Longer data spans are

not expected to provide appreciably higher accuracies; af-

ter 24 hr, the TDRS position errors approach the limiting

values governed by the GPS ephemeris and clock errors.

Because the TDRS orbit errors for the down-looking

approach are dominated by errors in unadjusted param-

eters, it is instructive to examine a simple error budget.

Figure 13 shows the breakdown of the TDRS-W orbit er-

ror for the 24-hr arc. For the nominal case (with decryp-

tion), the limiting error sources are the GPS clocks and
ephemerides. The data noise contribution from the filter

estimation is negligible, owing to the high quality of the

pseudorange measurements. For the case in which the re-
ceiver is not equipped to handle SA degradation, the GPS

errors increase several-fold. In addition, the data noise

contribution from the filter estimation becomes quite sig-
nificant. This increase reflects the dithering of the GPS

clocks, which can introduce apparent range errors as high

as 60 m into the pseudorange observables [25].

C. Results for Trajectory Recovery and Prediction

The figure of merit for evaluating the trajectory recov-

ery capability of down-looking GPS is simply the short-

est interval of tracking that can provide a sub-50-m po-
sition error for TDRS. In this context, rapid recovery of

the trajectory after station keeping can be achieved only

if the flight receiver is equipped with a decryption mod-

ule. Without the module, the TDRS position error after

2 hr of tracking is in excess of 4 km; approaching the 50-m
requirement requires at least 24 hr of tracking. With the

module, the 50-m requirement can be met with tracking

as short as 4 hr (Fig. 14).

The nature of the predicted orbit error for TDRS-W

was not explicitly examined for the down-looking case.

Note that predicted orbit error is a function of (1) the
error in the satellite state at the beginning of the predic-

tive interval (also called the initial condition error) and

(2) the errors in the dynamic models used to integrate
the satellite position. To the extent that the initial condi-

tion errors for the down-looking and inverted approaches

are roughly equivalent in magnitude, the predictive errors
should also be similar. In this context, we conclude that

the 50-m requirement cannot be met during the predictive

interval unless the flight receiver is equipped with a de-

cryption module. Without the module, the errors in the

initial conditions estimated with 24-hr of tracking prior

to the predictive interval would exceed the 50-m thresh-
old. With the module, a sub-15-m initial condition error

is achieved after 24 hr of tracking, and the pattern of the
predicted error would likely be similar to that shown in

Fig. 11.



VI. Conclusions

Two GPS-based strategies for tracking the geosyn-

chronous TDRSs have been explored. Direct tracking of

the TDRSs from the GPS constellation promises the great-

est autonomy since no ground network is required. For

this strategy, the primary impairment is the poor

geometry--the TDRSs must look down to find signals
broadcast from GPS satellites on the other side of the

Earth. The situation is exacerbated by sensitivity of the

TDRS orbit accuracy to SA, because measurements from

the ground cannot be exploited to form differential obser-
vations which are free from these effects. In order to cir-

cumvent this difficulty, the TDRS-IIs can carry military-

qualified GPS flight receivers which are designed to de-

crypt the degraded signals. The results suggest that,

equipped in this manner, a GPS receiver should be able to

provide the TDRS positions autonomously to better than

15 m for routine 24-hr tracking. Implicit in this result

is the assumption that nominal Department of Defense

operations are maintained. Moreover, if this technique

is adopted, the effects of the long GPS-to-TDRS trans-
mission paths and near-Earth grazing need to be further
examined.

An alternative approach relies on simultaneous track-

ing of TDRS and GPS beacon signals from the ground

(GPS-like tracking). If accuracy is the prime concern,
then this inverted technique is the best suited for tracking

geosynchronous orbiters. However, the introduction of a

ground network makes it less autonomous than its down-

looking counterpart. This study relied on a small number

of current NASA GPS tracking sites and assumed that the

receivers operating at those sites would be retrofitted to

track TDRSS-II spacecraft on one of the eight channels

that are normally reserved for GPS. Moreover, it was as-

sumed that the TDRSS-II spacecraft would be configured

to broadcast continuously a suitable wide-beam beacon

signal, preferably at Ku-band to mitigate the effects of

ionospheric refraction. The results suggest that data col-

lected at the ground sites introduce a robust differential

observation geometry that promises to deliver few-meter

accuracies for TDRS with as few as six global stations.
Smaller networks could still meet the 50-m TDRSS ac-

curacy requirement, but each satellite must be observed

by a minimum of three stations that are moderately well
distributed.

The TDRSS-II orbit determination activities could be

incorporated into routine GPS data processing that is cur-

rently done at JPL to support ongoing NASA programs.

The mechanisms for near-real-time operations are already

in place, as the GPS data from these remote sites are trans-

mitted to JPL on a daily basis for automated processing.
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Table 1. Error models for Inverted GPS (GLT).

A-priori assumptions for estimated parameters

Parameter Value

TDRS position (X, Y, Z)

TDRS velocity (X, Y, Z)

TDRS solar radiation pressure

GPS position (X, Y, Z)

GPS velocity (X, Y, Z)

GPS solar radiation preuure

GPS Y-bias

GPS carrier phase biases

GPS/TDRS/station clocks

Zenith troposphere

5km

50 m/sec

S%

100 m

1 m/sec

25%

10 -12 m/sec 2

IOO0 km

1000 psec, white noise

40 cm + 12 cm/day

Consider parameters

Parameter Value

DSN station coordinates

Non-DSN station coordinates

Earth's gravitational constant (GM)

Lumped Earth gravity field

X-, Y-pole motion

UT1-UTC

3 cm

10 cm

2 ppb

25% of GEM-10 - GEM-L2

25 cm

6 × 10 -4 sec
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Table 2. TDRSS orbit error for varlotm Iraddng stratmgies.

Tracking network TDRS-W TDRS-E
maximum error maximum error

3 DSN + White Sands 14

3 DSN + White Sands + Santiago 14

3 DSN + 3 TOPEX/POSEIDON 4

>3OO

4

4

Table 3. Error models for down-kinking GPS.

A-priori assumptiom for estimated parameters

Parameter Value

TDRS po6ition (X, Y, Z) 10 km

TDRS velocity (X, Y, Z) 1 m/sec

TDRS clock hiss 33 .see

TDRS clock drift 3 rutec/sec

Comdde_ parameters

Value
Parameter

With decryption Without decryption

TDI_ solar radiation pressure 5% 5%

GPS position (rss total) 7 m 30 m

GPS clock error 6 nsec 60 nsec

Earth's gravitational

constant (GM) 2 ppb 2 ppb
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Fig. 1. Two-dimensional view of down-looking GPS tracking con-

figuration: geosynchronous TDRS with s GPS receiver sees GPS

signals spilled over the limb of the Earth.

GPS

TDRS (_
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GPS

Fig. 2. Inverted GPS tracking conflguraUon: TDRS and GPS bea-

con signals backed simultaneously from the ground.

(a) GOLDSTON_

BEESTHOEK

(b)

 o'os;o;, .os

Fig. 3. Visibility of the proposed GPS ground network for TDRS

tracking: perspectives of the Earth from geosynchronous orbit

positions of (a) TDRS-E and (b) TDRS-W. The minimum network

considered, consisting of stations at the DSN sites and the White

Sands TDRSS ground control center, Is shown In boldface type.

MODIFIED GPS

GROUND RECEIVER

r--r--n- _
i r--r--7 = %

_, r---r--1 _ %v-r--l=

CONVERTER IS- OR Ku-BAND)

(FOR NON-L-BAND DATA)

Fig. 4. The eight-channel GPS receiver modified for TDRS

tracking on one channel.
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A Global Positioning System (GPS) flight receiver provides a means to precisely
determine orbits for satellites in low-to-moderate altitude orbits. Above a 5000-

km altitude, however, relatively few GPS satellites are visible. New approaches

to orbit determination for satellites at higher altitudes could reduce DSN antenna

time needed to provide navigation and orbit determination support to future mis-

sions. Modification of GPS ground receivers enables a beacon from the orbiter to

be tracked simultaneously with GPS data. The orbit accuracy expected from this

GPS-like tracking (GLT) technique is expected to be in the range of a few meters
or better for altitudes up to 100,000 km with a global ground network. For geosyn-

chronous satellites, however, there are unique challenges due to geometrical limita-

tions and to the lack of strong dynamical signature in tracking data. We exam/he

two approaches for tracking the Tracking and Data Relay Satellite System (TDRSS)

geostationary orbiters. One uses GLT with a global network; the other relies on

a small "connected dement" ground network with a distributed clock for short-

baseline differential carrier phase (SBA¢_). We describe an experiment planned for

late 1993, which will combine aspects of both GLT and SBA¢_, to demonstrate a

new approach for tracking the Tracking and Data Relay Satellites (TDRSs) that

offers a number of operationally convenient and attractive features. The TDRS

demonstration will be in effect a proof-of-concept experiment for a new approach

to tracking spacecraft which could be applied more generally to deep-space as well

as near-Earth regimes.

I. Introduction

The Global Positioning System (GPS) has ushered in

a new era for satellite tracking and precise orbit deter-

mination. The TOPEX/POSEIDON GPS precise orbit-
determination demonstration has shown that sub-10-cm

orbit accuracy is attainable for a low Earth orbiter

equipped with a high-quality GPS flight receiver [1]. The

key to high-accuracy positioning with a GPS flight receiver
is the simultaneous common view of multiple GPS satel-

lites as seen from the orbiting receiver and a network of

ground receivers• As the altitude of the Earth orbiter car-
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rying the GPS flight receiver increases, however, the num-
ber of GPS satellites in view decreases. Above a 5000-kin

altitude, typically less than four GPS satellites are simul-

taneously in view from the Earth orbiter [2]. This situation
can be helped somewhat by designing the flight instrument

so that GPS satellites can be tracked from the opposite

side of the Earth--the "down-looking differential GPS"

approach [2,3]. This introduces some additional compli-
cations, however, such as greater space loss and weaker

GPS signals, higher atmospheric distortion from the near-

grazing Earth geometry, contamination of the signal with

radiation from the Earth, and complications regarding the
placement of the GPS antenna on the satellite.

Orbit determination for Earth orbiters carrying GPS
flight receivers above a 5000-km altitude has also been

studied for highly elliptical orbits [4]. Decimeter-quality
performance can in principle be achieved provided that

perigee is below 10,000 km. However, for satellites at

much higher altitudes, such as geosynchronous or higher,
the GPS visibility for either the upward-looking TOPEX/

POSEIDON-style flight instrument or a down-looking in-
strument is poor.

New techniques using GPS technology for tracking
satellites in high Earth and elliptical orbits are being stud-

ied in the DSN Advanced Systems Program. One ap-

proach dispenses with the GPS flight receiver, employing
instead a simple beacon aboard the satellite to transmit

a signal which can be tracked along with the GPS sig-

nals by the ground GPS receivers. This GPS-like tracking
(GLT) beacon approach (also sometimes called "inverted

GPS" since the differential positioning of the user space-
craft is made relative to the GPS satellites rather than

to the ground stations) has been studied in a preliminary

way by Wu et al. [3] and Haines et al. [5]. Another ap-
proach would use short-baseline differential carrier phase

(SBAq_), which might be particularly convenient for track-

ing a geosynchronous orbiter [6]. Both GLT and SBA_ are

operationally attractive because they are amenable to au-

tomated processing schemes and could provide spacecraft
tracking and navigation without large DSN antenna time.

As described in [3] and [5], for GLT a small number

of modified GPS ground receivers would be distributed

in a global network for tracking a GPS-like beacon on

the high Earth orbiter. 1 The beacon would, preferably,

transmit a simple set of ranging tones, which would be
detected in GPS ground receivers modified so that they

1 It is assumed that placing an actual GPS transmitter on a NASA

satellite would be impractical for a number of reasons. On the

other hand, a GPS-like (or GPS-compatihle) beacon would not be
difficult.

simultaneously track the user satellite along with GPS
satellites. The result would be a precise differential orbit-

determination capability for the high Earth orbiter. In

contrast, the SBA_ technique utilizes short (approxi-

mately 100-km) baselines around a central site, relying pri-

marily on carrier phase observables (although some rang-

ing information is required for geosynchronous tracking).
As originally proposed by Nandi et al. [6], the SBA_
approach utilizes a single distributed clock for the local

network of ground receivers. The distributed clock could

be provided, for example, by fiber-optic links. Although
the overall accuracy with the SBA_ technique is expected

to be somewhat degraded by the geometrical limitations

imposed by the short baselines (relative to the global
network), there is considerable operational convenience--

particularly for near-real-time operation.

In this article, we focus on the SBA_ and GLT ap-

proaches. Analyses will be presented for Earth orbiters
at altitudes from 40,000-100,000 km, where we show that

orbit accuracy of a few meters could be achieved. We

describe a demonstration experiment with Tracking and

Data Relay Satellite System (TDRSS) geosynchronous or-
biters that will take place late in 1993. In the TDRSS

experiment, the ground network will be restricted by the

limited Tracking and Data Relay Satellite (TDRS) ground
footprint, so we plan to use a blend of SBA¢ and GLT to

demonstrate a proof of concept for this unique application

of GPS technology for tracking satellites at high altitude.
For the TDRS tracking demonstration, the goal is to pro-

vide a near-real-time capability for tracking to an accuracy
of several tens of meters.

II. Review of Differential GPS Tracking
Fundamentals

The GPS constellation is designed so that typically 6

to 10 navigation satellites can be tracked above 5 deg el-

evation from any ground site. When complete, the con-
stellation will include 24 operational satellites. The GPS

satellites transmit carrier signals at 1.228 and 1.575 GHz

(L-band), which are modulated by a pseudorandom noise

code, the P-code (precision code), at 10.23 MHz. Two

frequencies are provided so that ionospheric signal delays

can be calibrated. A second code, the C/A (clear acquisi-
tion) code, is somewhat noisier than the P-code due to its
lower frequency at 1.023 MHz and the lack of dual-band

ionospheric correction (see Fig. 1).

The GPS codes include a navigation message with GPS
clock and orbit information which can be utilized for real-

time point positioning by users equipped with GPS re-

ceivers. GPS pseudorange to four satellites determines
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three position coordinates plus the user clock offset from

GPS time. The term "pseudorange" is used since the range
calculation is based on the difference between the transmit

and receive times and will include any offset between the

transmitter and receiver clocks. With the P-code, user po-

sitions can be determined in a point positioning mode in

near-real time to about 10 m. In normal operation, the De-

partment of Defense turns on selective availability (SA) for
most GPS satellites. SA introduces what can appear to be

a clock dither and alterations to the broadcast ephemeris.

Certain authorized users will be equipped with keys to cor-

rect for these effects, but other users will see transmitter
clock variations of the order of 30-50 m with the broadcast

ephemeris degraded to a similar level of accuracy. Few sci-

entific and nonmilitary GPS users will be equipped with

the keys for SA. Simultaneous GPS tracking from multi-

ple receivers can differentially eliminate GPS and receiver

clock offsets, including the apparent clock dithering from
SA. Because the broadcast ephemeris provides orbit infor-

mation at the level of 5-10 m (which could degrade to 50-

100 m with implementation of another component of SA),

for the highest precision, the user must estimate and im-

prove the GPS orbits and use differential GPS techniques,

as shown in Fig. 2. While Fig. 2 shows how transmit-
ter and receiver clock offsets can be differentially elimi-

nated, there are distinct advantages to explicitly estimat-

ing clocks in a Kalman filter. One advantage is that the
pseudorange measurements provide a natural filter con-

straint to improve the determination of the clock offsets

and phase biases; another is that introduction of data cor-

relations through explicit differencing is avoided.

The primary data type for highest precision in non-

real-time GPS applications is the carrier phase, which can

be tracked with sub-centimeter precision in modern GPS
receivers. The carrier phase, continuously tracked over

hours, provides a precise time history of biased range (also
referred to as "range change") which can be used to obtain

precise orbit solutions (Fig. 2). The GPS carrier phase is

ambiguous by some integer multiple of carrier wavelengths,
but the carrier measures range change to sub-centimeter

precision. Pseudorange data, even though typically 1-2 or-

ders of magnitude noisier than phase data, are still useful,

since they can be used in a Kalman-type filter to constrain

the clocks and carrier phase integer ambiguities, which in

general must be estimated. It is the simultaneous track-

ing from multiple receivers that allows for estimation of

clock offsets to very high precision. After 12 hr of track-

ing, sub-meter GPS orbit accuracy can be achieved [7] and,
more recently, with data arcs of 30 hr, GPS orbits are de-

termined daily at 3PL with a precision of 30-50 cm [8].

Figure 3 shows how GPS orbit quality has been assessed

recently, with slightly overlapping 30-hr arcs.

Antispoofing (AS) may be routinely activated once
the GPS constellation is fully operational. AS encrypts

P-code, which can then be observed only in receivers with

decryption modules; ordinary receivers can receive only

the noisier C/A-L1 pseudorange measurements and L1 car-

rier phase. This would ordinarily severely limit positioning
accuracy with GPS for users without authorization to use

security modules in ground receivers. However, a number

of receivers can produce "codeless" observables, resulting

in high-quality carrier phase data with ionospheric correc-

tion. Some receivers can produce moderately precise code-

less pseudorange as well. The codeless techniques include

cross-correlation and squaring algorithms that enable pre-

cise observables, corrected for the ionosphere without re-

quiring classified information, to be obtained. The results

in Fig. 3 were obtained with receivers which have a code-

less capability; however, since AS was actually off during
those tracking sessions, the results were determined with
P-code observables.

III. Differential GPS Tracking With an

Orbiting Receiver

Figure 4 shows the geometry for differential GPS track-

ing with an orbiting flight receiver. For low Earth orbiters
at altitudes of a few thousand kilometers or less, good

visibility of GPS satellites is provided with an upward-

looking flight instrument. An example is the TOPEX/

POSEIDON satellite, for which sub-10-cm orbit accuracy

has been demonstrated [1]. However, as the altitude in-
creases above 3000 km, GPS visibility falls off dramatically

(Fig. 5). Down-looking GPS, where the flight instrument
looks down past the Earth's limb to track GPS satellites

from the opposite side, provides more GPS measurements

for altitudes between a few thousand and 10,000 km. How-

ever, above 10,000 km, there are typically less than two

GPS satellites in view, making high-precision GPS differ-

ential positioning more difficult.

One possibility for a down-looking differential GPS ap-

plication would be to equip the TDRSS geosynchronous

satellites with GPS flight receivers to provide orbit deter-

mination for TDRSs. This scenario was studied through

a series of covariance analyses [3,5] as part of an as-

sessment for alternative tracking techniques for TDRSs.

Those studies, utilizing a square-root information Kalman-

type filter, showed that a geosynchronous TDRS carrying
a hypothetical GPS receiver could in principle routinely

achieve sub-40-m orbit accuracy less than 4 hr after a

maneuver only if the flight instrument carried decryption

for SA, which would require uploads of classified informa-

tion. Without removal of SA, 4 hr after a maneuver the
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predictedorbit errorsweremuchhigher---severalhundred
meters,reducingto 60m after24hr. Whilesuchperfor-
mancemightbeacceptableto some geosynchronous users,
the goal of the studies was to identify for TDRSS new

technologies which could operationally and conveniently

support a 50-m requirement within a few hours after a

maneuver. Thus, SA correction would be required, and

this was considered to be inconvenient from an operational
point of view.

An alternative approach for satellites above 5000 km

is to use a GPS-like beacon on board for tracking from
a GPS ground network. The advantage of this GLT op-

tion is illustrated by the counts shown in Fig. 5, where

10 ground stations are assumed to be evenly distributed

around the globe. The key to exploiting the precision in-
herent in GPS tracking in this case is to use the same

GPS ground receivers for tracking the user satellite si-

multaneously with multiple GPS satellites. The tracking
performance might be comparable to that expected from

having a hypothetical GPS satellite moved from the usual

20,200-km-aititude orbit up to geosynchronous altitude at
37,000 km, Fig. 6(a). This option is discussed in the fol-

lowing section.

IV. GPS-Like Tracking for TDRS

What performance would one expect from a hypothet-

ical GPS satellite at geosynchronous altitude, such as in

Fig. 6(a)? As a starting point, we can look at present-day

GPS tracking accuracy (Fig. 3), routinely obtained at JPL

with the GPS Inferred Positioning System (GIPSY)-Orbit
Analysis and Simulation Software (OASIS), a prototype

for a future operational system. The GPS tracking data
are processed with a turnaround of 3-10 days, but this

is limited primarily by data transmittal delays from some

of the approximately 30 globally distributed tracking sites.
Since some of the sites routinely transmit data several min-

utes after a session, in principle turnaround time could be

reduced to less than 1 day. The daily precise GPS orbits

are produced from the same square-root filtering software

used in the covariance analyses for hypothetical tracking
scenarios about to be described. In the covariance analy-

ses, assumptions for estimating parameters in the filter

and for data quality were matched as closely as possible
to those presently used for real GPS data analysis. If one
were simply to raise the altitude of one GPS satellite from

20,200 to 37,000 km, we calculate that the orbit accuracy

would degrade from 30-50 cm (presently achieved with real

GPS data) to about 3 m [3,5]. The degradation results pri-
marily from the very limited dynamical information when

tracking a geostationary orbiter (GPS satellites move in
12-hr-period orbits).

Additional analysis was carried out to determine the

minimum number of ground stations needed to track the

geostationary "GPS" satellite. At this point, the analysis

was modified to incorporate a GPS-like beacon (instead

of a true GPS beacon). For a GPS-like beacon, we as-
sumed a series of tones would be broadcast at Ku-band

(12.5-18 GHz) with a 100-MHz bandwidth. These tones

would be spaced so that an equivalent one-way range data
type would be produced with 5-cm data noise over a 1-min

averaging interval. As shown in Fig. 6(b), GPS ground

receivers would be modified so that one out of the eight
channels normally used to track GPS satellites would be

equipped with a separate front end and a small, inexpen-

sive antenna, enabling simultaneous tracking of seven GPS

satellites and the one user satellite (TDRS in this case).
As will be described later, a demonstration version of such

a ground receiver is presently being built at J PL. There are
many advantages of using such a modified GPS receiver.

The simultaneous GPS tracking enables centimeter-level

calibrations to be produced for receiver coordinates, tro-
posphere and ionosphere delays, Earth orientation varia-

tions, and clock synchronization. The disadvantage is that
since the ground receiver utilizes a different front end for

GPS and the user satellite, a bias can be expected. Upon
further investigation, we have found that this bias can be

expected to wander slowly over about a day with a range of
-t-1 nsec (4-30 cm). This additional noise source is, in fact,
a significant error source for the final result. With such

a GPS-like beacon, a minimal network consisting of three
NASA Deep Space Network (DSN) sites plus White Sands,

New Mexico (WS), can support TDRS orbit accuracy of

10-15 m [5]. _ With six ground sites plus White Sands,

the performance improves to 3-5 m (Fig. 7), and either
network can support 50-m orbit determination within 2 hr

after a maneuver (Fig. 8). The assumptions of the analysis

are described in [5]. In all cases, a global network of GPS

ground receivers provides the data strength for estima-

tion of GPS orbits (Table 1). The filtering setup is nearly
identical to that used presently for routine daily GPS or-
bit determination. This ensures that a realistic scenario is

adopted for the error analysis. However, for this analysis,
between four and seven GPS sites equipped with modi-

fied GPS receivers are capable of tracking both TDRS and

GPS satellites (Fig. 8). In addition, the assumed errors for

Earth orientation (UT1 and polar motion) were purposely
made large to reflect knowledge of predicted values in real
time.

The analysis here assumes a global beacon signal from TDRS. As
discussed below, continuously available TDBS phase and range
data are available in a relatively small footprint centered around
the southwestern United States. Hence, this study is applicable
to a future TDRS configuration with a global beacon, not to the
present configuration.
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V. Short-Baseline Differential Phase (SB_)
for TDRS Tracking

The GPS-like beacon studies described above assumed

a global distribution of ground sites for tracking a TDRS
Ku-band beacon. For present-day TDRS satellites, how-

ever, the available carrier and ranging signals are prede-

termined by the current flight hardware, and these sig-
nals are restricted to a relatively small footprint (less than

1000 km) around White Sands, New Mexico. 3 In addition
to Ku-band carrier phase, two-way range and Doppler are

available at White Sands. The two-way range data are

affected by relatively large uncMibrated time-varying er-

rors and are typically assigned data weights of 30 m. An

analysis in [6] took into account the data quality for the

present-day TDRS carrier phase and two-way range within
the limited footprint, and also included realistic error as-

sumptions for effects of troposphere delay variations, iono-

sphere delays, systematic errors from solar radiation pres-

sure mismodeling, and data noise. The ground network
was assumed to consist of three stations within the foot-

print that are separated by between 1 and 100 km with a
distributed clock. The distributed clock provides a com-

mon frequency reference over a fiber-optic link, providing

considerable common error cancellation [9]. This setup is

similar to that of connected element interferometry (CEI)

[9] except that, for this TDRS analysis, we assumed that
the phase biases between stations and the integer cycle

ambiguity for the carrier phase are not resolved.

The station-differenced carrier phase observables from

this tracking network provide a precise measure of plane-

of-sky TDRS position. The two-way range data are neces-
sary to determine the third component which, for a TDRS

tracked from White Sands, includes much of the longitude

component. Figure 9 shows the results of the covariance

analysis for short-baseline differential phase (SBA_) plus
the two-way range at White Sands. Although the short

baseline tracking does not generally do as well as tracking

from a global network, as Fig. 9 shows, SBA¢ could in
principle deliver 20-m orbit accuracy in a near-real-time

operational system, depending on the quality of the two-

way range data. The present-day two-way range is rou-

tinely assigned a weight of 30 m. We are investigating the
sources of error for these data and hope eventually to be

able to improve the calibrations needed to produce higher

3 The bilateral ranging transponder system (BRTS) for TDRS in-
cludes two-way signals with a global network of transponder sites.

These data are presently used for orbit determination. We did not

include those sites in our orbit analysis because our goal was to de-

velop an alternate tracking system in which all the tracking data

can be collected locally and processed in an automated way. For

this reason, we restricted our TDRS data to the current footprint

near White Sands, New Mexico.

quality range data. While the goal is to achieve 1-m rang-

ing, the TDRS tracking goal of 50 m ceuld be met even
with 5-m-quality two-way range. If 1-m ranging were avail-

able, the limiting orbit errors would be from unmodeled

differential troposphere delay variations.

Vh A TDRS Demonstration for SB_ Using
GPS-Like Tracking

In this section, we describe a demonstration experiment

which will take place in late 1993. The demonstration com-

bines the principles of both GLT and SBAff. Three GPS

TurboRogue ground receivers are presently being modified
at JPL to enable simultaneous tracking of TDRS Ku-band

carrier phase in one channel and GPS L-band phase and
pseudorange in the other seven channels. Small (meter-

sized) inexpensive antennas will be used for the TDRS
tracking, while the GPS signals will come through the reg-

ular omni antennas. Since creating a new fiber-optic dis-
tributed clock over 100 km around White Sands would be

impractical for a proof-of-concept demonstration, instead

we plan to use the GPS receivers themselves to provide

clock synchronization for the three ground receivers near
White Sands. Previous experimental work by Dunn et al.

[10] has shown that sub-nanosecond GPS clock synchro-
nization can be provided over intercontinental distances

with high-quality GPS receivers. Because of the close

proximity of the GPS receivers for this experiment, we

expect that the time transfer will be substantially bet-
ter than 1 nsec due to conunon error cancellation. We

plan to space the receivers evenly around White Sands at

several-hundred-kilometer distances. As discussed above,

the quality of the White Sands two-way range is critical to

the final accuracy achieved for the TDRS orbit. With mi-
nor software modifications, the TDRS carrier phase and

two-way range data will be processed simultaneously in
the GIPSY-OASIS II processor presently used for precise

GPS and TOPEX/POSEIDON orbit determination. The
data from the three new TDRS/GPS tracking sites near
White Sands will be combined with GPS data from about

15 other globally distributed sites, which will provide a
precise reference frame and enable sub-meter determina-
tion of the GPS orbits.

The use of GPS ground receivers modified for track-
ing the TDRS carrier phase (plus GPS) within the foot-

print has a number of advantages in addition to the rela-

tively low cost. These advantages include "built-in" high-

accuracy clock synchronization and troposphere, iono-

sphere (from the dual-band GPS signals at 1.2 and 1.6

GHz), and station location calibrations. In our experi-

ment, the GPS receivers will perform the clock synchro-
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nization function in place of the fiber-optic link for a dis-

tributed clock in SBA<I>. Without the restrictions imposed

by using a fiber-optic link, the baselines can be extended
beyond the 100-km spacing, up to, essentially, the limit

of the TDRS footprint (between 500 and 1000 km). The
longer the baseline, the better the derived TDRS orbit due

to the stronger geometry. Our goal for the TDRS/GPS

demonstration is 50-m orbit accuracy, but the final result

may be somewhat worse in the longitude component due
to some uncertainty in the quality of the White Sands two-

way range.

As an operational system, the small GPS/TDRS re-
ceiver network could provide turnaround of an hour or

two if GPS predictions were used from a previous day

for GPS orbits. A more accurate, fully combined solution

with the GPS/TDRS data plus global GPS data would be

available within a day or two. Reliable turnaround would

be needed immediately (2 hr) after a TDRS maneuver to
meet present-day operational requirements. The present-

day prototype GPS analysis software at JPL is largely au-

tomated and could be the basis for such an operational
system.

VII. GPS-Like Tracking for Satellites Above
Geosynchronous Altitudes

Tracking for orbit determination and navigation sup-

port at altitudes above the geosynchronous has been pro-

vided by observatories such as the DSN. Although con-
ventional tracking data types (such as two-way Doppler

and range) which are routinely used at the DSN could in

principle provide 10-20-m orbit accuracy [11], this requires
significant amounts of antenna time from either the DSN

or subnets of smaller (approximately 10-m-sized) anten-
nas. The best performance is expected from data types

which require simultaneous tracking from more than one

ground antenna [11], are more costly, and require care-

ful scheduling of observations. For future orbiting astro-
physical observatories expected to do very-long-baseline

interferometry (VLBI) radio mapping and astrometric ex-
periments, precise velocity knowledge is required to enable

proper modeling of the data. Several of these future mis-

sions require velocity accuracies of 0.5 cm/sec. This level

of accuracy can in some cases be provided by the existing
DSN, but it is unlikely that the DSN can provide it at all

points in the orbit [11]. In general, however, the scheduling

of deep space antennas is the overriding concern because
of the scarcity of available antenna time.

The use of small ground antennas and GPS receivers

for tracking high Earth/elliptical orbiters along with GPS

satellites is attractive both because of the potential for

freeing up significant amounts of expensive large antenna

time at observatories and because of the high accuracy

which is potentially achievable with the use of GPS tech-

nology. A recent analysis examined tracking for POINTS

(Precision Optical Interferometer in Space), an optical
astrometric mission for identification and characteriza-

tion of planetary systems around other stars in the solar

neighborhood. 4 This mission requires velocity determina-

tion to an accuracy of 0.5 mm/sec. 5'6 Clearly, conventional

DSN tracking systems [11] cannot provide this level of ac-

curacy (missing by 1-2 orders of magnitude). However,
JPL's daily GPS orbit formal errors are at the level of

0.1 mm/sec. Even allowing for some accuracy degrada-

tion due to the higher altitude of POINTS (100,000 km)
as compared with the GPS altitude (20,000 km), placing a

GPS-compatibte or GPS-like beacon on POINTS for orbit
determination might be a viable approach.

The analysis assumes a nearly circular orbit at high al-
titude (100,000 km). A Ku-band beacon was assumed to
be on the POINTS spacecraft with effective data noise of

5 cm over 1 re_in. A larger source of measurement noise

results from electronic delays associated with the separate

front end, which would be attached to the GPS ground

receivers to enable reception of the POINTS signals. We

assumed that these delays would be slowly varying, and
estimated them in the filter as first-order Gauss-Markov

process noise with an amplitude of 30 cm and a 12-hr time

constant. Each of the six ground receivers would, there-

fore, be tracking up to seven GPS satellites at once, plus

POINTS. A simulated data set was fit over a 4-day interval

(one POINTS orbital period). The estimation and filtering
strategy was selected to be nearly identical to that used at

JPL for actual GPS data processing, with the exception
that POINTS was included as well. Table 2 shows as-

sumptions of the analysis, which includes systematic error

contributions from POINTS solar-radiation pressure mis-

modeling, Earth orientation, relative station locations, and

gravity. The differences between the assumptions for the
POINTS error analysis and for the TDRS GPS-like bea-

con analysis reflect that TDRS requires a near-real-time

4 B. L. Schumaker, D. B. Eldred, R. Ionasescu, J. W. Melody,

R. N. Miyake, C. M. Satter, D. Sonnabend, J. S. Ulveatad, and

G. Wang, The POINTS Instr_ment ]or TOPS: 1991 Progress Re-

port (internal document), Jet Propulsion Laboratory, Pasadena,
California, November 12, 1991.

5 j. Ulvestad, POINTS Orbit Determination Reqairements (inter-
nal document), Jet Propulsion Laboratory, Pasadena, California,

July 6, 1992.

6 B. J. Haines and S. M. Lichten, "POINTS Orbit Determination

with GPS-Like Beacon," JPL Interoffice Memorandum

335.8-92-036 (internal document), Jet Propulsion Laboratory,
Pasadena, California, December 8, 1992.
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result and that the POINTS trajectory can be recovered

after the fact. In addition, the POINTS analysis was for

a year-2000 time frame, so some improved error assump-

tions were made. Figure 10 shows the expected orbit ve-
locity and position errors for POINTS. Note that ground

tracking of POINTS in this analysis was assumed to be

available only 25 percent of the time (shown in Fig. 10).

This limited tracking scenario accounts for the possibility

that the spacecraft could be turned in such a way that the

beacon would be pointing away from Earth, depending on
where the astronomical sources were located in the sky. 7

Figure 10 shows that the POINTS solution is robust and,
based on our assumptions about the capability to model

forces on the satellite, can be predicted several days in

advance without serious degradation of accuracy.

In summary, a high Earth orbiter (such as POINTS)

can in principle be tracked to position accuracy of a few

meters and velocity accuracy of 0.1 mm/sec if equipped
with a GPS-like beacon at Ku-band and tracked from

at least six modified GPS ground receivers which have

been retrofitted so that the high Earth orbiter and GPS

satellites can be processed simultaneously. For frequen-

cies other than Ku-band, performance may vary slightly

since the ionosphere delay calibration from the GPS L1

and L2 signals will have some error, and this will be more

important at lower frequencies.

VIII. Future Work

Future work on the GPS-based ground tracking tech-

niques discussed in this article will focus on several differ-

ent issues. These include the following:

(1) GPS-like beacon. For future missions, we are study-

ing desired signal structure and preliminary hard-

ware design for a GPS-like beacon with the charac-
teristics discussed above, s The goal is to use com-

mercially available parts and keep power, mass, and
cost to a minimum. The trade-offs between an L-

band beacon and a Ku-band beacon are being stud-

ied as well. The choice of frequency may also depend

on frequency allocations for transmitters, and these

issues are being investigated as well.

7 Since that analysis was completed, however, a new spacecraft de-

sign has been developed which allows for placement of two beacon
transmitter antennas on opposite sides of the spacecraft so that

coverage of the Earth is possible more than 75 percent of the time;
see footnote 8.

s C. Duma and L. Young, "POINTS Navigation Beacon Strawman

Design," JPL Interoffice Memorandum 335.9-003-93 (internal doc-

ument), Jet Propulsion Laboratory, Pasadena, California, Jan-

uary 29, 1993.

(2) Altitude range. The power and antenna patterns (for
both the receiver and transmitter) will ultimately

limit the distance from which the beacon signal could

be detected with small, inexpensive ground anten-
nas. With a properly designed system, missions in

interplanetary space could also use the new proposed

technology with a GPS-like beacon. Since, ordinar-

ily, deep space missions require significant amounts

of tracking time with oversubscribed large DSN an-

tennas, considerable resource conservation and sav-

ings could result.

(3) Geosynchronous analysis. It is planned to have the
TDRS field experiment data collected in late 1993
and analyzed in 1994. The spatial limitations and

noise characteristics of the existing TDRS signals

will probably determine performance for present-day

TDRS tracking. If the experiment is a success, the

new tracking techniques could enhance present or

future TDRS operations, or provide an alternative

method for tracking other geosynchronous satellites.

Because even very short (1-km) baselines could pro-

vide moderately accurate (50-m) orbit operations

(see Fig. 9), secure ground systems could be designed
for military applications as well.

(4) Modified GPS ground receivers. The performance

of the modified GPS ground receivers used to track
TDRSs will be monitored closely in the field experi-

ment. Enhanced designs will be considered, includ-

ing receivers with more channels to serve additional
satellite "customers" simultaneously. One key cal-

ibration is the bias introduced by using a different

front end or antenna to process the high Earth or-
biter data as opposed to the GPS data. This "bias"

is actually expected to slowly vary in time with an

amplitude of approximately 1 nsec (30 cm). If the

temporal behavior can be better stabilized and the

amplitude of the variation can be reduced, signif-
icantly improved performance would result. The

minimum number of stations in the ground network
with modified GPS receivers will also be considered

for different applications.

IX. Summary

This article describes analyses for tracking satellites

at high (geosynchronous or higher) altitudes with two

techniques: GPS-like tracking (GLT) with a simple on-
board beacon, and short-baseline differential carrier phase

(SBA&) with a distributed clock. The proposed tracking
system dispenses with flight GPS receivers on certain high-

altitude satellites for which precise orbit determination is
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desired, and also requires no DSN antenna time for orbit

determination or navigation functions. Instead, a beacon
transmits a series of tones which can be detected in mod-

ified GPS ground receivers. In the ideal case, the satellite

with the beacon can be tracked to an accuracy compara-

ble to that attainable for GPS satellites themselves, even

though the beacon may be at a different frequency than

the GPS L-band. In practice, we expect some degradation
relative to the GPS satellite orbits if the beacon satellite

is at a higher altitude or has restricted ground coverage

for other reasons. At the present time, orbits for GPS

satellites can be determined on a daily basis to about 30-

50-cm accuracy. Detailed analysis has been completed for

geosynchronous orbiters (TDRSs). With a global beacon
at Ku-band and GLT, TDRS orbit determination accuracy

of a few meters would be theoretically possible. However,

we also considered using TDRS carrier phase restricted
to a relatively small footprint in the southwestern United

States and a fairly coarse accuracy two-way range observ-

able. For the current TDRS capability, the study initially

focused on SBA& with a fiber-optic link providing a dis-
tributed clock to three sites in close proximity. This ar-

ticle presents a hybrid tracking scheme which combines

elements of the GLT and SBA_ techniques for a demon-
stration experiment planned for late 1993. For this exper-

iment, three GPS ground receivers are being retrofitted

to enable simultaneous tracking of TDRS and GPS satel-

lites. Anticipated orbit accuracy for TDRS is in the 20-

50-m range, with the caveat that the longitude compo-
nent could he degraded by a factor of about five due to

unknown errors in the presently available TDRS two-way

range. The small tracking network to he tested in the

demonstration experiment would offer a number of opera-

tional advantages for orbit determination of TDRS or any
other geosynchronous satellite. Figure 11 summarizes the

relationship between present-day GPS orbit determination

accuracy and how anticipated performance for tracking

TDRS in the demonstration depends on various data re-
strictions and limitations.

The covariance analysis for a satellite (POINTS) in
a 100,000-kin near-circular orbit shows that few-meter

position (and <0.1 mm/sec velocity) accuracy could be

achieved with a minimal tracking network consisting of
only six ground sites equipped with the modified GPS re-

ceivers. The analysis assumed that due to blockage on the

satellite only 25 percent of the data would be available and

shows that, even with such a limitation, the GLT-based
solution is very robust.

Operationally, the advantages of the GLT and SBA(b

concepts discussed in this article include the low cost of

small antennas and GPS receivers in comparison with
larger antennas and systems typically used for Earth or-

biter ground-based tracking; high accuracy from cancella-

tion (or calibration) of media, Earth platform, and tim-
ing errors with the simultaneous observations of the GPS

and the high Earth orbiters; and operational convenience

available from existing rapid communication links and au-

tomated processing of GPS (and GPS-like) data. Use of
the GPS-based ground tracking system for high Earth or-
biter tracking could result in substantial operational sav-

ings compared to technology presently being used. In
the case of the DSN, very scarce large antenna time

would remain available for interplanetary tracking and
telemetry.
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Table 1, Error models for TDRS GLT error analysis.

A priori for estimated parameters

Parameter Value

TDRS position (X, Y, Z)

TDRS velocity (X, Y, Z)

TDRS solar radiation pressure

GPS position (X, Y, Z)

GPS velocity (X, Y, Z)

GPS solar radiation pressure

GPS Y-bias

GPS carrier phase biases

GPS/TDRS/station clocks

Zenith troposphere 40 cm (a priori) + 12 cm/vf-_ random walk

5km

50 m/sec

5%

lOO m

1 m/sec

25%

10-12 km/sec 2

0.003 sec

0.001 sec white noise

Consider parameters a

Parameter Value

DSN station coordinates

Non-DSN station coordinates

GM Earth

Lumped Earth gravity field

X-, Y-pole motion

UT1-UTC

3 cm

10 cm

2 parts per billion

25% GEM-IO - GEM-L2

25 cm

0.6 msec

• Not estimated, treated as systematic errors.
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Table 2. Estimation strategy lot Joint GPS/POINTS orbit detarmination.

Data noise (30-rain observations)

Parameter Value

GPS carrier phase

GPS P-code pseudorange

POINTS Ku-band beacon case

POINTS pseudorange (tones)

1 cm

30cm

5 cm random noise over 1 rain

+30 cm/12 hr systematic error (estimated)

A priori for estimated parameters

Parameter Value

POINTS position (X, Y, Z)

POINTS velocity (X, Y, Z)

GPS position (X, Y, Z)

GPS velocity (X, Y, Z)

GPS solar radiation pressure

GPS Y-bias

GPS carrier phase biases

GPS/POINTS/station clock errors

Zenith troposphere

5km

50 m/sec

100 m

1 m/sec

25%

10 -1_ m/sec 2

1 sec

1 sec white noise

40 cm a priori

cm/, d/_av random walk+5

Consider parameters*

Parameter Value

POINTS solar radiation pressure

Polar motion (X, Y)

Geocentric location (X, Y, Z)

Earth rotation (UT1-UTC)

Station locations (X, Y, Z)

Earth gravitational constant

Geopotential field (lumped)

2%

5 cm

5 cm

0.1 msec

1 cm

1 part per billion

25% GEM-IO- GEM-L2

8 Not estimated, treated as systematic errors.
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Geophysical applications of the Global Positioning System (GPS) require the ca-
pability to estimate and propagate satellite orbits with high precision. An accurate

model of all the forces acting on a satellite is an essential part of achieving high

orbit accuracy. Methods of analyzing the perturbation due to thermal radiation

and determining its effects on the long-term orbital behavior of GPS satellites are

presented. The thermal imbalance force, a nongravitational orbit perturbation pre-

viously considered negligible, is the focus of this article. The Earth's shadowing of
a satellite in orbit causes periodic changes in the satellite's thermal environment.

Simulations show that neglecting thermal imbalance in the satellite force model

gives orbit errors larger than 10 m over severa/days for eclipsing satellites. This
orbit mismodeling can limit accuracy in orbit determination and in estimation of

baselines used for geophysical applications.

I. Introduction

Mismodeling of satellite force parameters can have a

significant effect on satellite orbits, especially in orbit pre-

diction [1]. Some applications require the capability to

estimate and propagate satellite orbits with high preci-

sion. TOPEX/POSEIDON precision orbit determination,

for example, requires precise modeling of nongravitational

forces to fulfill mission requirements [2]. In addition, some

of the observed drag and orbit decay on the Laser Geo-

dynamics Satellite (LAGEOS) spacecraft have been at-

tributed to unmodeled thermal forces [3,4]. To achieve
a high level of orbit accuracy, an accurate model of all the

forces acting on an Earth-orbiting satellite is necessary.

The focus of this analysis was to assess the effects

on satellite orbits of neglecting thermal reradiation and

of mismodeling nongravitational forces. Radiative heat
transfer between a satellite and its environment is the ba-

sis for the thermal force model. A satellite in Earth orbit

is continuously illuminated by radiation, most of which
comes from the sun. The thermal imbalance force is di-

rectly related to the temperature distribution of the satel-

lite in its changing environment. An uneven temperature

distribution causes surfaces to reradiate energy at different
rates. Some studies have shown that most of the thermal

gradient forces on the TOPEX/POSEIDON satellite orig-
inate within the spacecraft body [2]. Other analyses have
shown that the dominant source for thermal reradiation

forces on a Global Positioning System (GPS)-like satellite

is the solar panels, due to their large exposed area and

low heat capacity [5]. The satellite's heated body rera-

diates energy at a rate proportional to its temperature,

losing the energy in the form of photons. By conservation
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of momentum, a net momentum flux out of the body cre-

ates a reaction force against the radiating surface, and the

net thermal force can be observed as a small perturbation

that affects long-term orbital behavior of the spacecraft

[5]. The partial differential equations and boundary con-

ditions describing the temperature distribution and the

heat transfer between surfaces, along with the application

of the finite element method, are presented in this article.

A brief description of the statistical estimation technique

used for studying the effect of the thermal imbalance force
on satellite orbits is included.

II. Radiation and Heat Conduction
Formulation

Two types of heat transfer that affect a spacecraft's
orbit are radiation and heat conduction. The exchange

of energy between the spacecraft and its surroundings
is described by radiation heat transfer. Conduction is

the transfer of heat by molecular motion within a solid

medium. Figure 1 shows these types of heat transfer.

The rate of radiant energy transfer is given by the Stefan-

Boltzmann Law [6]:

E, = E.T _ (1)

By conservation of momentum, the thermal force or rate

of change of momentum for a radiating surface element,
assuming a Lambertian surface, is expressed as [5]

dfthermal- 2 ¢trT_ dAna (2)
3 c

The unit vector in Eq. (2) is defined as normal to and

directed out of the sun-tracking surface of the solar panel.

The differential force must be integrated over the entire

surface to determine the complete thermal force:

_hcrmal = - 2o'3e/n cT_a dAfia (3)

Clearly, thermal forces cannot be computed unless space-

craft surface temperatures are known. In general, the tem-

perature at any point within a body satisfies the heat equa-

tion [5]

C OT
KV_T= p p--_- (4)

The solution to this second-order partial differential

equation requires that boundary conditions be specified.
The boundary conditions are defined by thermal radiation

and heat conduction. As given by the conservation of en-

ergy principle, the total amount of energy coming into a

surface is equal to the total amount of energy leaving the

surface, assuming there is no internally generated or stored

energy (no sinks and no sources). The boundary condition

for the satellite surface can be obtained by expressing this
condition as

qin = qout (5)

where qin is the amount of incoming radiative energy due

to external sources and internal conduction, and qout is the

amount of radiative energy leaving the boundary due to

reradiation and conduction. Figure 2 shows the conserva-

tion of energy principle for a satellite solar panel surface.

Using this concept, the boundary conditions for each sur-
face were constructed. The incident radiative solar energy

received per unit area per unit time by side a and side b

of the solar panel are represented by ha and hb [5].

0% ¢bcrAT_ - hbA
KA-_ = (6a)

-KA O=-_ = cacrAT_ - h,,A (6b)

The actual amount of incident radiative energy received

by each side of the solar panel is a function of panel orien-
tation and the orbit of the satellite. The subscript a rep-

resents the left boundary in local coordinates (cold side),
and the subscript b represents the right boundary, which,

for a GPS-type satellite, is assumed to be continuously

facing the sun during orbit. The term on the left side of

the equal sign in Eqs. (6a) and (6b) is the heat flux, en-

ergy per unit time per unit area, in the local z-direction,
which is perpendicular to the solar panel face. The values

used for some of the parameters described above are listed
in Table 1 and are consistent with values used for GPS

satellites.

PDE-Protran, a finite element method program, was
used to solve the transient heat conduction and radiation

problem presented here. PDE-Protran was developed by

Granville Sewell and is a general-purpose two-dimensional

partial differential equation solver [7]. This software was

combined with a program which incorporated material

properties, the satellite's orbit orientation, and thermal en-

vironment to determine solar panel surface temperatures.
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Grid points were chosen to divide the solar panel into small
sections or "elements," where the temperature of the so-

lar panel was computed for each grid point in one dimen-

sion, across the thickness of the solar panel. These grid

points coincide with the boundaries between each layer

of the solar panel's "sandwiched" materials (listed in Ta-

ble 2). Accurate and current knowledge of physical pa-

rameters such as surface emissivity, thermal conductivity,

heat capacity, and material density is required. For this

analysis, the material properties are assumed to remain

constant throughout the satellite's orbit, and only the so-
lar radiation environment varies with time as the sateb

lite experiences eclipsing or shadowing from the sun by

the Earth. The material parameters directly influence the
thermal forces which are calculated and have an effect on

the prediction and propagation of the spacecraft trajec-

tory. Also, these material properties may change in time
or degrade, due to the harsh environment of space. 1

III. Orbit Analysis Technique

In this investigation, the equations of motion for an

Earth satellite are assumed to include the two-body grav-

itational effect and the thermal imbalance forces only, and

are given in vector form by

" ]_r fthermal (7)

and thermal imbalance force perturbing the satellite,

fthermal, is computed as

2_rA (e_7_ - eaT2_ ) fiaftherm_l= (8)

The effect of the thermal imbalance force on a satellite

can be observed by comparing the perturbed orbit with
the unperturbed two-body orbit in time. Since there is no

closed-form analytical solution for the perturbed equations

of motion, a numerical integration technique was neces-

sary to solve the ordinary differential equations of motion.

Because the perturbed and unperturbed orbits originate

with the same initial conditions, the displacement between

them at a given time can be observed. A least-squares es-

timation technique is used to determine the state of the

satellite in its orbit at a specified epoch [8]. The initial
conditions of one orbit can be adjusted at a given time

to eliminate the secular divergence between the perturbed

1 T. T. Lain, personal communication, Aerospace Corporation, El

Segundo, California, May 1990.

and unperturbed orbits to observe the periodic behavior.

In this analysis, two types of GPS satellite orbits were

studied. The satellites of the GPS are distributed in six,

evenly spaced orbit planes. When completed, the final con-
stellation will consist of 24 satellites at an orbit altitude of

approximately 20,000 km, with an orbit period of about
12 hr. In this constellation, most satellites are exposed

to full sunlight. As the orbit geometry changes, however,

some GPS satellites will experience eclipsing or shadowing

from the sun by the Earth. Both eclipsing and noneclips-

ing satellites are the focus of this study. Throughout its
orbit, the GPS solar panel maintains a fixed orientation

toward the sun. Nodal motion was not considered, since it

is not significant for the short time interval (1 week) used
in this study. No internally generated energy was mod-

eled in this study, but the absorbed solar radiation that is

converted to electricity was modeled, using the efficiency

of the solar panel at 14.1 percent. Although studies have

shown that for a TOPEX/POSEIDON satellite the ther-

mal radiation forces originating with the spacecraft body

are twice those from the spacecraft solar panels, the major
source for thermal reradiation forces on a GPS-like satel-

lite is the spacecraft's thin, large, solar panels [2,5]. Con-

sequently, in this analysis, the GPS satellite's main body
was not considered. Other studies are currently consid-

ering this problem of modeling thermal reradiation forces
for a complete GPS spacecraft.

IV. Discussion of Results

In order to determine the direction and magnitude of

the thermal force, the surface temperatures were calcu-

lated using the finite element method program, PDE-

Protran [7]. Several simulations were tested. The input

required for the simulation is shown in Table 2. This table

lists the material properties for a Block II GPS satellite so-

lar panel [9,11]. 2-s The initial conditions included a solar

panel orientation perpendicular to the sun and an initial

temperature of 300 K. The time step used in the analysis

was 100 sec (one GPS orbit is approximately 43,200 sec,

and the eclipsing period lasts approximately 3200 sec).

GPS satellites experience an eclipsing season for only

a few weeks every year. Eclipsing has a strong effect on
the solar radiation environment of those satellites. This is

Ibid.

3 W. Pence, personal communication, Rockwell International, Seal

Beach, California, October 1990.

4 j. Albeck, personal conununication, Spectrolab Corporation, Syl-

mar, California, August 1990.

s D. Marvin, personal convmunication, Aerospace Corporation, El

Segundo, California, January 1991.
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evident in the temperature of a GPS satellite solar panel

over one orbit, as shown in Fig. 3. The steady-state tem-

perature for the sun-facing side is approximately 317 K,
and for the shaded side it is 313 K. These values compare

well with the approximate value of 313 K, which has been

measured on the cold, shaded side of the solar panel for a
GPS satellite. 6'7 The face exposed to the sun has not been

directly measured and, therefore, the temperature differ-
ence between the surfaces is not well known, but is believed

to be approximately 5 K [10]. s- 10 During the eclipse pe-

riod, which lasts approximately 1 hr, panel temperature

declines approximately 253 K. After exiting the shadow

region, the solar panels slowly return to their steady-state

temperatures over approximately 3 hr.

Modeling the cover-glass surface accurately has been

difficult during this study since data on the properties
of this surface were not readily available. The thermal

conductivity of this fused silica layer is very low as com-

pared to that of two other dominant layers, the aluminum
core and the solar cell layers. 11 The cover-glass layer, on

the sun-facing side of the solar panel, contributes most of
the temperature imbalance, primarily because of its low

thermal conductivity and greater thickness as compared

to other solar panel layers, especially the aluminum core.

Although it is believed that the solar panel cover-glass

layer is transparent to all incident radiation, the material

properties of this specific layer of the solar panel were not
deleted from this analysis. It was important to simulate

the solar panel as it exists in orbit to observe the long-
term orbital effects of the thermal imbalance force on a

GPS satellite. This simulation is adequate as long as the

correct material properties are used in the analysis.

As an example, two simulations were performed using

identical solar panel parameters (values given in Table 2)

except for different thermal conductivities for the sun-

facing cover-glass layer. These simulations are presented

to show the sensitivity of the temperature calculations to

the thermal conductivity of the cover glass. The value for

the thermal conductivity given in test case 2, shown in

Table 3, was used to demonstrate how unrealistic thermal

forces can be computed when using incorrect values for

the solar panel material properties. Previously, however,
this was believed to be the correct value for the thermal

conductivity of the fused silica cover-glass layer of a GPS

6 Pence, op. cit.

r Albeck, op. cir.

8 Pence, op. cit.

9 Albeck, op. cit.

1o Marvin, op. cit.

11 Ibid.

satellite solar panel [9]. lz The results, shown in Table 3,

describe the steady-state temperatures and thermal ac-

celerations that were computed using the specified values

for the cover-glass thermal conductivity. Again, both test
cases shown in Table 3 are identical except for the value of

thermal conductivity for the solar panel cover-glass layer.

In this article, the reference frame is defined as space-

craft-centered radial and along-track components. The

along-track component is also referred to as the trans-
verse or down-track direction, defined in the direction of

the satellite velocity vector. Figure 4 shows radial and

along-track components of the acceleration due to thermal

reradiation over one orbit for an eclipsing satellite. These

components compare well with those of studies which have

shown unmodeled nongravitational forces to cause errors

of the magnitudes shown in Fig. 4 [10]. Also, these results

were computed using the information presented in Table 2
and described as test case 1 in Table 3.

Figure 5 shows the differences between two orbits, one
computed using two-body effects only and the other--an

eclipsing orbit--computed with two-body effects and the

thermal imbalance force during 1 week. The radial rms is

0.5 m, and the along-track rms is 5.2 m. These results were

computed using a technique similar to the method used to

predict satellite orbits based on a set of initial conditions

and a complete force model of the spacecraft, which could
include the solar radiation pressure and thermal imbalance

force. In the case of the eclipsing satellite after 7 days, the

along-track components differ by approximately 13 m.

Figure 6 also shows the differences between two orbits,
one computed using two-body effects only and the other

computed using two-body effects and the thermal imbal-
ance force for a satellite not in an eclipsing plane. The

radial rms is 0.5 m, and the along-track rms is 1.6 m. It
can be seen from these results that an eclipsing satellite

experiences a larger perturbation in the along-track direc-

tion over the span of 1 week than a satellite not in an

eclipsing orbit plane. For the noneclipsing satellite after 7

days, the along-track difference is approximately 5 m.

Figures 7 and 8 represent the results computed using

a least-squares estimation algorithm in which the simu-

lated observation data contained only the two-body grav-
itational and thermal imbalance reradiation forces. The

force model used in the estimation algorithm contained

the two-body gravitational force model and a solar radi-

ation pressure model to observe the ability of the force
model to account for thermal imbalance forces which have

12 Lain, op. cit.
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been difficult to model but exist in the observations. The

calculated best estimate of the satellite epoch state, in the

least squares sense, includes the satellite position, velocity,

and a solar-radiation pressure scale factor.

Figure 7 shows the orbit fit residuals for a satellite in

an orbit plane that is regularly eclipsing. The radial rms

is 5 cm, and the along-track rms is 80 cm. After 7 days,

the along-track orbit error is almost 2 m. These results

show that the solar-radiation pressure scale factor in the

estimation scheme is capable of absorbing most of the orbit

error due to thermal reradiation, but not all of the orbit

error, especially in the along-track direction.

Figure 8 also shows orbit fit residuals for a GPS satellite

using the same estimation technique, but for a satellite in

a noneclipsing orbit plane. The radial rms is 9 mm, and

the along-track rms is 17 cm. After 7 days, the along-track

orbit error is approximately 40 cm. Clearly, the eclipsing
of the satellites has an influence on the orbit errors when a

thermal reradiation force is not included in the estimation

force model. Larger orbit errors are calculated when the

satellite is in an eclipsing orbit plane. A 1-week prediction

can be made using the satellite state computed for the best

least squares estimate in Fig. 7 and compared to the best

least squares estimate for that predicted week. Studies

have shown that, for eclipsing satellites, the quadratic-like

growth in the along-track direction can give errors as large

as 50 m after a 1-week prediction [12].

V. Concluding Remarks

The current analysis has shown that orbit errors larger

than 10 m occur when mismodeling nongravitational forces

such as the thermal imbalance force presented here. A

finite element method technique has been used to calcu-

late satellite solar panel temperatures which are used to

determine the magnitude and direction of the thermal im-

balance force. Although this force may not be responsi-
ble for all of the force mismodeling, conditions may work

in combination with the thermal imbalance force to pro-

duce accelerations on the order of 1.0 x 109 m/seJ. One

possible contribution currently being studied is the solar

panel misalignment acting together with the thermal im-
balance force, a contribution that may account for much of

the unmodeled perturbations. If submeter-accurate orbits

and centimeter-level accuracy for geophysical applications

are desired, a time-dependent model of the thermal imbal-

ance force should be used, especially when satellites are

eclipsing and the observed errors are larger than those for

satellites in noneclipsing orbits. One study has shown that

estimating additional stochastic solar radiation parame-

ters improves GPS orbit accuracy significantly, especially

for eclipsing satellites [13]. This technique can be used

to absorb the orbit error caused by mismodeling thermal
imbalance forces.

Although modeling the spacecraft solar panels alone

may be considered insufficient, thermal force modeling of

the entire spacecraft is a complicated problem. This has

been done for spacecraft such as TOPEX/POSEIDON,

where precise orbit determination is critical to mission suc-

cess [2]. The study presented here, however, focused only
on modeling the solar panels, where the material composi-

tion is not nearly as complex. Also, the problem of radia-

tion absorbed and conducted through the solar panel and

reradiated out is a simple one-dimensional time-dependent

heat-transfer problem, with no internal heat generation
from scientific instruments or electronics.

Nongravitational perturbations like the thermal imbal-
ance force have been observed for years on satellites like

LAGEOS, and are still not completely understood. Ther-

mal forces are dependent on the environment and specif-

ically on such parameters as the satellite mass, cross-

sectional area, and material composition. Unfortunately,

these parameters can change or degrade with long-term

exposure in space. For this reason, it may be more appro-

priate to estimate stochastic force parameters to represent
the thermal reradiation forces since the nature and rate of

material degradation of the satellite in orbit is unknown

[13]. The results obtained using the finite element model
in this study agree with the work of others who have con-

ducted similar studies using the finite difference technique

to determine spacecraft thermal gradient forces in an effort
to improve the satellite force models.
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Appendix

Glossary

Purpose and/or usage

surface area

speed of light

specific heat

energy emitted by a real body, summed over all wavelengths

thermal imbalance force per unit area

incident solar radiation received by solar panel

thermal conductivity

satellite mass, kg

unit vector normal to surface of solar panel

radiative energy

geocentric satellite position vector

radial distance from Earth's center of mass to satellite

time

temperature

surface absorptivity

emissivity

density

solar constant

Stefan-Boltzmann constant

Earth's gravitational parameter

solar panel sun-tracking front side

solar panel back side, no direct sunlight

incoming to the spacecraft

leaving the body

radiative

thermal imbalance
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Table 1. GPS Ihermai and orbit parameters.

Model parameter Value

InitiM orbit radius, m

Surface emissivity (ta)

Surface emissivity (eb)

Surface absorptivity (_a), percent

Solar partel surface area (A), m 2

Satellite mass (m), kg

Initial panel temperature (t = 0), K

Stefan-Boltzmarm constant (o), W/m 2 K

Speed of light (c), m/sec

Solar constant (@), W/m 2

Total panel thickness (eight layers), m (in.)

26,550,000

0.78

0.83

0.77-14.1 (panel efficiency)

10.832

845

30O

5.6699 x 10 -s

2.998 x l0 s

1368.2

0.01478 (0.582)

Table 2. GPS Block II solar panel properties.

Panel layer Thickness, Density, Specific heat, Conductivity,

composition m kg/m 3 J/kgK W/inK

Cover glass 0.00749 2186.622 753.624 1,417

Adhesive 0.00005 1079.472 1256.04 0.116

Solar cel] 0.00025 2684.84 711.756 147.994

Interconnect cell adhesive 0.00018 1051.793 1256.04 0.116

Kapton cocured 0.000076 1162.508 1130.436 0.1506

Graphite epoxy 0.00019 2186.622 1373.27 0.8706

Aluminum core 0.00635 24.91088 1046.7 250.966

Graphite epoxy 0.00019 2186.622 1373.27 0.8706

Table 3. Cover glass thermal simulation.

Test case 1 Test case 2

K = 1.417 W/inK

Hot side Ta = 317.41 K

Cold side Tb = 313.66 K

Thermal acceleration = 1.88 X 10 -1° m/sec 2

K = 0.04327 W/mK

Hot side Ta = 340.30 K

Cold side Tb = 285.37 K

Thermal acceleration = -8.01 x 10 -9 m/sec 2
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DSS-13 Antenna Control System Model
C. S. Racho and W. K. Gawronski

Ground Antennas and Facilities EngineeringSection

This work is the first step toward increasing the bandwidth of the DSS-13 an-

tenna position loop controller. A wider bandwidth of the controller allows for faster

tracking rates and better pointing performance under windy conditions. To achieve
this goal, the antenna control system model has to be improved, such that it will

accurately reflect the dynamic properties of the antenna. The existing analytical

model, due to its many uncertainties, could not be used in the design of the con-

troller. However, by using experimental data, the analytical model is modified and

improved, and a new model is obtained through system identification techniques.

I. Introduction

The position controller at the DSS-13 beam-waveguide
antenna does not employ model-based control law. In the

interest of implementing model-based control law at the

DSS-13 antenna, an analytical model of this antenna was

developed [1]. The experiment described in this article

was then designed to validate this analytical model and

to identify a new antenna model from the experimental
data (the latter model will be referred to as the experi-

mental model). The data collected by this experiment at

the DSS-13 antenna were collected for each axis separately.

The data were processed and used to modify the analytical

model and to obtain an experimental model through sys-
tem identification techniques. Since the latter approach

requires only a portion of the data, a sample was taken

from the remaining data and used to validate the experi-
mental model.

II. Description of the Experimental Software
and Hardware

The purpose of this experiment is to gather time series

data on the input to the antenna drives and the output

of the antenna position. These data are processed to de-

termine the frequency responses, or transfer functions, of

the DSS-13 antenna. These transfer functions represent

an open-loop system. They are used as a reference to de-

termine the correction of the parameters of the analytical
model, and also to identify the transfer function of the

system using identification software.

A. Experimental Software

The LabView 2 application software generates an ana-
log random (white noise) signal. This signal is input into

the rate loop via the test input lead in the servo interface
chassis, and the encoder output is sampled from the data

converter. The input and the output signals are buffered

until the designated number of samples is taken. The sam-

pled data are then saved in floating point MATLAB 1 load-
able format files.

B. Experimental Hardware

The data acquisition system consists of the LabView 2

software running on a Macintosh IIfx computer. The com-

t Copyright 1985-91, Inc. All rights reserved.
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puter contains an analog board which can output analog

signals through two channels to the antenna rate loop. It

also contains two digital boards which sample the azimuth

and the elevation position encoder output (Fig. 1).

The National Instrument NB-MIO-16 multifunction

analog board for the Macintosh is used to produce the
analog rate signals injected into the antenna rate loop.

The board contains two 12-bit digital-to-analog convert-

ers with voltage outputs. These two analog outputs are

hooked up to the test input leads of either the azimuth
or the elevation rate input, or both. The test inputs are
located in the servo's interface chassis. The servo inter-

face is switched to manual mode so that a rate signal is

accepted from the test input lead instead of the antenna

position controller. The brakes in both axes are released

manually before the experiment begins.

The National Instrument's NB-DIO-32F 32-bit, paral-

lel, digital, input/output interface board for the Macin-

tosh II is used to sample the binary output of the data
converter. The data converter buffers the 24 bits of en-

coder data available in each axis and provides the data in

latched binary form.

A Hewlett Packard frequency counter is used to mea-

sure the sample period for each run of the experiment,

since the sample period depends on the execution speed of
the LabView 2 software, and it cannot be determined in
advance.

C. Data Acquisition

The experimental data were collected separately for

each axis, namely, for elevation rate input to elevation

position output, elevation rate input to azimuth position

output, azimuth rate input to azimuth position output,
and azimuth rate input to elevation position output. The

maximum rate analog input voltage was 1.3 V, and the
minimum was 0.1 V.

For each axis and each of its cross couplings, the ex-

perimental data were taken in separate sequences. Each
sequence contained 8192 data points, and there were any-

where between 10 and 40 sequences per run of the exper-

iment per axis. The available travel in the elevation axis,

in conjunction with the rate input and the sample interval,

restricted the number of sequences that could be taken per
run of the experiment. The azimuth axis, with 450 deg of

travel from one limit to the other, never proved to be a

limiting factor given the same rate input and sample pe-
riod.

The data were gathered on several occasions. On each

occasion, the wind speeds at DSS 13 were low (between 0

and 3.6 m/see). When no input was applied to the eleva-
tion axis, data were taken for the elevation fixed at both

90 and 60 deg. When no input was applied to the azimuth

axis, it was left fixed at 140 deg.

III. Analysis

A model-based control is currently not employed at

the DSS-13 antenna. In order to design a model-based

controller, a suitably accurate antenna model is required.

There were two approaches taken to obtain such a model.

First, the model presented in [1] was adjusted to fit the

data collected in this experiment. In a second approach, a

model was obtained by using a system identification tech-

nique based on the data.

A. Model Description

There are two analytical models for the DSS-13 antenna

[1,2]: a model for the antenna at 90 deg elevation, and the
other for the antenna at 60 deg elevation. These models

are described in the state space form

& = Ax + Bu, y = Cx (1)

In this model, the state vector x is of dimension n, tile

input u is of dimension p, the output y is of dimension q,

and the matrices A, B, and C are of dimensions n x n,

n x p, and q x n, respectively. The full order of the analyt-

ical model in [1] is n = 90, and the reduced order model

is n = 27. For the system whose input is azimuth and

elevation rate and whose output is azimuth and elevation

position, p = 2 and q = 2, and

[ C_, ]B = [B_B,,], C = L c,, (2)

where Baz and Bel represent azimuth and elevation input
rate, and Caz and Ce_ represent azimuth and elevation

encoder position.

The four transfer functions (elevation rate to elevation
encoder position, elevation rate to azimuth encoder posi-

tion, azimuth rate to azimuth encoder position, and az-

imuth rate to elevation encoder position) are used to com-

pare analytical and experimental data. Let T/j (s) be the
transfer function defined by

Tij(s) = Ci(sI - A)-IBj, i,j = az,el (3)
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By judiciously varying a set of A, Bi, and Cj matrices, one
changes the transfer functions such that they better fit the

empirical transfer functions. A "good" fit is required only
over the frequency range where high coherence between in-

put and output is observed, in most cases for frequencies

from 0.01 to 10 Hz. In this case, the good fit means that

the peak frequencies and magnitudes of the model trans-
fer function line up with those of the empirical transfer
function.

B. Frequency Responses of the DSS-13 Antenna

Using frequency domain analysis, the data were used

to modify the analytical model. The input, u(t), and out-

put, y(t), time series data have been detrended and passed

through a Hanning filter to prevent spectral leakage [3].
Then, a fast Fourier transform (FFT) was performed on

the resulting time series data. The magnitude of the trans-

fer function, Tu_(f), and the coherence, 7u_(f), were esti-
mated from the time series data (c.f., [3]) using u(t) and

y(t), filtered and detrended input and output vectors of
8192 samples each.

Puv(f)
T_y(f) - Puu(f) (4)

IP y(/)l 2
(5)

7uy = Puu(f)Py_(f)

where Pun(f) is the power spectral density estimate of

u(t), P_(f) is the power spectral density estimate of y(t),

and Pu_(f) is the cross spectral density estimate of u(t)
and y(t). The phase is estimated from the time series data

by using the following formula:

¢(f)=arctan Im(Tuv)
Re(T._) (6)

where Re(.) and Ira(.) denote real and imaginary parts.

The transfer function estimates were obtained by aver-

aging the magnitude and phase of each sequence. The

magnitude, Tu_(f), and the phase, ¢_(f), are plotted

versus frequency in Figs. 2(a)-(f) (dashed line), where
f = w/2r is frequency in Hz, and w is frequency in rad/sec.

In Figs. 3(c), 4(c), 5(e), and 6(c), the coherence was also

plotted to determine the range of frequencies over which
the data were valid.

C. Modification of the Analytical Model

The analytical model as described in [1] is a combina-
tion of the antenna structural model and models of the
elevation and azimuth drives. It is derived from tile best

available knowledge of the antenna structure and servos.
The antenna structural model is obtained from its finite

element model. Although complex, as the finite element

model usually is, its accuracy is still limited. For exam-

ple, damping ratios or "non-structural" masses, such as

counterweight mass, are usually only roughly estimated.

The available field data allow one, to some extent, to cor-
rect some parameters of the analytical model so that its

properties fit more closely the properties derived from the

experiments. In addition, the drive models have some un-

certainties. The gearbox stiffness is not known precisely,

since it depends on the countertorque value, which is itself

a fuzzy number. Also, the gains of tile drive amplifiers
are not set precisely, or can change. These and other less

known factors impact the model accuracy.

D. System Identification Model

A second model is identified directly from the experi-

mental data using the system identification software Sys-

tem/Observer/Controller Identification Toolbox (SOCIT),

written in the MATLAB language [4]. The "okid" func-
tion of SOCIT identifies a state space model, i.e., the A,

B, and C matrices, given the input_)utput data, sample

period, and the number of observer Markov parameters.
For more detailed information about SOCIT software and

this function, the reader is referred to [4] and [5].

The SOCIT software was used to identify a model for

each axis and cross-axis, so that the A, B, and C state

space matrices were obtained for each subsystem. The or-
der of the system was chosen based on the system's IIankel

singular values plotted as part of the okid function output.
Typically, the order chosen was between 25 and 30. The

resulting state space matrices were transformed into bal-

anced coordinates, so that a matrix A was in diagonally
dominant form. The 2 x 2 diagonal blocks represent the

system modes in decreasing order of importance. The di-

agonal elements of a 2 x 2 block represent the system

damping, and the off-diagonal elements represent natural
frequencies at those modes.

The order of each subsystem was reduced to the small-

est acceptable order, i.e., such that all the modes visible

in the data up to 10 Hz were preserved. The order, n,

of the Taza_, T,_t, T_t_, and T_z_ subsystems was n =

14, 13, 10, and 11, respectively. The identified model had

some discrepancies (with respect to the experimental data)

which apparently could be removed. Namely, the damping
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ratioswereadjustedfor thesystemmodeswhichappear
eitherunderdampedor,morecommonly,overdamped.

Thesefouridentifiedsubsystemsarethenusedto sim-
ulatetimeseriesresponses,giventhe actualinput data,
u_z or u,z, and small bias signals, u_,b or u_zb,

vt... =To_o_,o_ (Ta)

$ (7b)

$y.z,i = T,z.tu,t (7c)

$

(7d)

The use of small bias in the cross-coupling responses was

necessary because the straight gains ] Ta,,_z ] and I Tern I

are much larger than the cross gains [ Ta**z I and I T,t,, I.

For the same reason, the bias can be neglected in the
straight responses (azimuth-to-azimuth and elevation-to-

elevation). The simulated responses, a J sYazaz, Yazel, Yelel,
and yS_saz, were compared to the actual SISO output data,

yazaz, Yazel, Yelel, and Y, laz, and the approximation errors
in azimuth and elevation, e.azaz , eazel, 6elel, and 6daz, were

computed.

× 100% (8a)

[I Yazel yS- °., 11
x 100% (8b)'°"_ --- IIvo., II

IIwz_,- v:,,, II
x 100% (8c)'_'" = IIw,_, I1

IIy.,., - y:t., II
x 100% (8d)_'°z = IIw,o_ II

These formulas estimate the relative discrepancy between

the measured and simulated signals.

IV. Discussion of the Results

A. Results of Analytical Model Adjustments

The magnitude plots of the four transfer functions ob-

tained from the analytical model (solid line) and from the

experimental data (dashed line) are shown in Figs. 7(a)-
(d). The discrepancies between the analytical and experi-

mental transfer functions are immediately obvious. In par-

ticular, there is a mismatch in the first resonance frequency
in the azimuth-to-azimuth and elevation-to-elevation

transfer functions, and there are higher resonance peaks

in the analytical model for almost all resonance frequen-

cies. The mismatch in the first fundamental frequencies
is due to the underestimation of nonstructural masses in

the structural analysis. The high peaks at the resonance
frequencies are caused by an assumption of very low struc-

tural damping (0.5 percent). Modifying the rigid-body

structural masses (an increase of 45 percent in tlle ele-

vation rigid body modal mass and an increase of 70 per-

cent in the azimuth rigid-body modal mass) and increasing

modal damping for the higher frequency modes to 5 per-

cent improves the fit between the analytical model and

experimental transfer function curves. Further improve-

ment is obtained by adjusting the drive parameters. In

the elevation and azimuth drives, the amplifier gain, de-

noted kr in [1], is reduced by 30 percent (from 80 to 56),
and in the azimuth drive, the gear box stiffness is reduced

by 15 percent (from 2 x 107 to 1.7 × 107). The results of

the modifications of the analytical model show a better fit

to the experimental results, as seen in the solid-line plots of

Figs. 2(a)-(d). The worst fit between the experimental and
model transfer function curves occurs in the elevation in-

put to azimuth output. This is due to the very small value

of this function. It is at least 100 times smaller, in mag-

nitude, than the elevation-to-elevation transfer function,
or at least 10 times smaller than the azimuth-to-elevation

transfer function. The complexity of the analytical model
made it difficult to determine what other parameters were

responsible for the remaining differences.

The significant modal frequencies as estimated from the
data are shown in Table 1.

B. Results of System Identification

In Figs. 3, 4, 5, and 6, the identified transfer function

plots are presented with the empirical transfer function

plots. Both plots show low frequency anomalies. The
cross-coupling transfer functions T,_ and T_t are ex-

pected to approach zero value at zero frequency, since no

static coupling between elevation and azimuth or between

azimuth and elevation is observed. However, in Figs. 4(a)

and 5(a), such a tendency is not present. The magnitude
of the transfer function from azimuth to azimuth or from

elevation to elevation should roll off at a 20-dB/dec rate

for low frequencies, since the system contains two integra-
tors (or two poles at zero). This can be observed in the

measured frequency range of these plots. However, for Ire-
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quencies lower than measured (f < 0.01 Hz), the identified
transfer function does not rise.

The departure of the empirical transfer function plots

from the expected zero value in the low frequencies is

caused by the presence of a small bias at the input port
where no signal is applied. For example, when an eleva-

tion rate signal is applied and the azimuth position is sam-

pled, a small azimuth rate input still exists, and it shows

up in the output data at low frequencies. Its presence is

explained with the comparatively high gain for straight

connection (azimuth-to-azimuth or elevation-to-elevation)
when compared with the cross-connection (elevation-to-

azimuth or azimuth-to-elevation). The unmeasured bias

can be explained by the lack of causality between input

and output in cross-coupling for low frequencies, as visible

in the coherence plots of Figs. 4(c) and 5(c), where the
coherence is almost zero. In order to correct this problem,

the data were filtered with a high-pass filter before being

used in the system identification software. As a result, the

cross-coupling transfer function plots are obtained as seen

in Figs. 4(5) and 5(b).

For the straight transfer functions (azimuth-to-azimuth
or elevation-to-elevation), the discrepancies between the

identified model and the empirical transfer function in the

very low frequency range are due to the presence of two
very small eigenvalues of the identified A. By setting them

to zero, the discrepancies were eliminated.

The measurements were used to obtain both the ad-

justed model and the identified model. However, the iden-

tification software requires a relatively small portion of

the data gathered. Hence, the remaining time series data,
Yazaz, Yazet, Yelel, and Yelaz, taken at the DSS-13 antenna

are compared to the simulated time series data, ySazaz ,

' ' and " of the identified model (Figs. 8-11).Yazel, Yelel' Yelaz,

The discrepancy between the two signals, relative to the

scale of the original signal, are computed using Eqs. (8a)-
(8d).

An additional comparison was performed as follows.
Define a positive function ri(k)

_(k) IIyY_ - k, yt II
linch ,i=d, az (9)

where superscripts m and s denote measured and simu-

lated output, respectively. For ki = 1, ri shows the dis-

tance (or an approximation error) between the experimen-
tal and simulated data. One can further improve the fit

between the experimental and simulated results by varying

the parameter ki. This additional fit is possible because
the system was identified from a detrended set of data, but

is compared to a non-detrended one. Let ri(ki) achieve

the minimal value for ki = klo, i.e., let ri(ki) > r(kio).

If kio = 1, the simulated series is the best-fitted one and

no modification is necessary. Thus, the gain adjustment
factor 6i, defined as

5i =1 kio- 1 I ×100%, i = az,el (10)

is the measure of good fit. The gain factor 8i is the per-

centage that the system gain is adjusted to improve the fit

of the simulated time series ya_, and Y,t,l, to the mea-

sured time series Yazaz8 and Yelet8.

The approximation errors and the gain factors are pre-
sented in Tables 2-5. Notice that the errors and factors

are relatively close within each run of the experiment. The

percentages for each run are of the same order and are
small.

V. Conclusions

This article presents the use of experimental data col-

lected at the DSS-13 beam waveguide antenna to adjust

an existing analytical model and to identify a set of single-
input, single-output models. Four models (azimuth-to-
azimuth, azimuth- to-elevation, elevation-to-elevation, and

elevation-to-azimuth) were obtained from the experiment.
The measurement and analytical techniques used to arrive

at both of these models are described. The experiment de-
signed to gather the field data is also described in detail.

The next step is to obtain a viable and reasonably com-
pact model of the DSS-13 antenna control system. The
reduced-order models of the azimuth and elevation axes

can and will be developed separately. Both models will

then be used in the design of a model-based antenna po-
sition loop controller.
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Table 1. Nafuml frequencies, f Hr., of fits four

transfer functions.

1.65 1.62 2.01 1.98

3.24 3.26 3.15 3.21

4.24 4.21 5.22 5.30

- 5.76 - -

Table 2. Approximation errors for the azimuth-to.azimuth

time series.

Data set eazoz, percent 5=z, percent

I 0.31 0.69

2 0.21 1.00

3 0.27 1.01

4 0.27 1.32

Table 3. ApproxlmaUon errors for the elevation-to-elevation

time series.

Data set _elel, percent 5el, percent

1 0.17 1.07

2 0.17 1.22

3 0.23 2.18

4 0.17 2.05

Table 4. Approximation errors for the azimuth-to-elevation

time series.

Data set ¢ozei, percent Uet b, V

1 6.81 0.0014

2 6.75 0.0013

3 6.36 0.0014

4 5.95 0.0014

Tsble 5. Approximation errors for the elevstlon-to-azlmuth

time series.

Data set ¢elgz, percent Uozb, V

1 4.12 0.0014

2 4.57 0.0014

3 4.66 0.0015

4 4.19 0.0014
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Performance of the X-/Ka-/KABLE-Band Dichroic Plate

in the DSS-13 Beam Waveguide Antenna
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The first Ka-band downlink demonstration was recently carried out by the Ka-

Band Link Experiment (KABLE) in association with the Mars Observer space-
craft. In order to support the mission, a dichroic plate was required in the DSS-13

beam waveguide antenna to allow simultaneous X- and Ka-band operation. An

X-/Ka-/KABLE-band dichroic plate was designed to transmit Ka-band downlink

(31.8-32.3 GHz), Ka-band uplink (34.2-34.7 GHz), and KABLE (33.6-33.8 GHz)

frequencies, while reflecting X-band (8.4-8.5 GHz). A computer program was de-
veloped for the analysis of a dichroic plate with rectangular apertures by using the

mode-matching method. The plate was then fabricated and tested. The reflection,

group delay, and noise temperature in the antenna system due to the dichroic plate

were measured. The experimental results show good agreement with theoretical
prediction.

I. Introduction

The DSN has a need for a dichroic plate that will simul-

taneously receive X- and Ka-bands on a beam waveguide
antenna where an ultralow-noise receiver is used at Ka-

band. The plate is required to pass a circularly polarized

wave at (1) the Ka-band downlink (31.8-32.3 GHz) with a

low insertion loss (as low as 0.04 dB), (2) a high-power Ka-

band uplink (34.2-34.7 GHz), and (3) the Mars Observer

spacecraft Ka-Band Link Experiment (KABLE) frequency
(33.6-33.8 GHz), while at the same time reflecting the X-

band downlink (8.4-8.5 GHz). A thin dichroic plate with

apertures or patches is not mechanically suitable for these
requirements; therefore, a thick metallic plate with rect-

angular apertures was designed and fabricated (Fig. 1).
Mechanical constraints also require an oblique angle of in-
cidence, while bandwidth considerations dictate the use of

a skew grid.

II. X-/Ka-/KABLE-Band Dichroic Plate Design

The X-/Ka-/KABLE-band dichroic plate was designed

using the thick, frequency-selective surface program based

on the mode-matching method [1]. The cell size and pat-

tern (D,, Dy, and fl), the aperture size (A,, A_), and the

thickness of the plate (t) are adjusted to meet the require-

ments. The angle of incidence is 0 = 30.0 deg, and ¢ = 0.0
deg (Fig. 2). The aperture wall thickness is limited to a
0.203-mm (0.008-in.) minimum due to mechanical con-

straints. The dichroic plate design was optimized with the

following priority: (1) Ka-band downlink, (2) Ka-band up-
link, and (3) KABLE frequencies.

The optimized design of the X-/Ka-/KABLE-band

dichroic plate employs a rectangular aperture of size 5.080-

mm (0.200-in.) A, by 5.156-mm (0.203-in.) A_, cell size

of 6.198-mm (0.244-in.) D, by 5.359-mm (0.211-in.) Dy
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with a 60-deg skew angle (f2), and plate thickness of 9.271-

mm (0.365-in.) t; see Fig. 3(a). The computed reflection
loss is about 0.007 dB at 32 GHz, 0.078 dB at 34.5 GHz,

and 0.103 dB at 33.7 GHz [2]. The phase difference be-

tween the two linear polarizations is 3.4 to 4.0 deg at the

Ka-band downlink, 1.8 to 3.8 deg at uplink, and -0.2 to

0.5 deg at KABLE. The phase shift can be corrected by

adjusting the polarizer [2]. The overall size of the plate is

765.048 mm by 647.700 mm (30.12 in. by 25.50 in.), with
the elliptical perforated area 561.848 mm by 444.50 mm

(22.12 in. by 17.5 in.)Y See Fig. 3(b).

Iil. Fabrication

The dichroic plate is made of copper for low conductiv-

ity loss. A tolerance study indicated that a +0.0254-mm

(+0.001-in.) tolerance on the dimensions of the apertures
was acceptable in order to meet the RF requirements [2].

The plate was first drilled with an array of circular holes,

then each hole was cut into a rectangular hole with a wire

electrical discharge machine, producing higher accuracy

and sharp rectangular corners. The walls of the rectangu-

lar apertures (waveguides) were then surface-treated with
an extrude hone process. In the extrude hone process, two

vertically opposed cylinders extrude abrasive media back

and forth through the waveguide passages. The surface

finish of the dichroic plate is 250/_ mm (10# in.). The
average size of the finished apertures is 5.0607 mm by

5.1265 mm (0.19924 in. by 0.20183 in.) with 0.127-mm-

radius (0.005-in.-radius) corners according to JPL fabrica-
tion. The discrepancy in one dimension of the aperture

is thus 0.0193 mm (0.00076 in.), and in the other dimen-

sion it is 0.0297 mm (0.00117 in.); these are within the
allowable tolerance. Figure 1 is a photograph of the X-/

Ka-/KABLE-band dichroic plate.

IV. Reflection and Group Delay

In the experimental measurement of the reflection and

group delay, the alignment between the transmit horn,

dichroic plate, and receiving horn is very important. There

are two kinds of experimental setups: the reflection setup

for determining the reflection coefficients, especially the
resonant frequencies, which is shown in Fig. 4(a), and the

transmission setup for measuring the group delay, which

is shown in Fig. 4(b). Both experiments were performed

using an HP 8510C network analyzer. The reflection of

a w. Veruttipong and J. C. Chen, "New Optics Design of the X/Ka
Basement Feed System for the DSS-13 Phase 2," JPL Interoffice
Memorandum 3328-91-0103 (internal document), Jet Propulsion
Laboratory, Pasadena, California, August 14, 1991.

the dichroic plate at 30 deg from the normal direction was

measured at frequencies from 31 to 36 GHz. The mea-
sured and calculated reflection coefficients for transverse

electric (TE) and transverse magnetic (TM) polarizations

are shown in Figs. 5 and 6. There are two resonant fre-

quencies between 31 and 36 GHz for both the TE and
TM polarizations. The resonant frequencies of the dichroic

plate are within 0.04 to 0.36 percent of the predicted val-

ues (Table 1). The combined transmitted power for TE
and TM polarizations is shown in Fig. 7.

The group delay of the dichroic plate was measured

using the transmission experiment setup. The calculated
and the measured group delay versus frequency is shown in

Figs. 8 and 9. The group delay is 0.074 to 0.115 nsec from

31.8 to 34.7 GHz for TE and TM polarizations. The group

delay is about 0.002 nsec higher than predicted (Table 2).

V. Noise Temperature

In the antenna system, the dichroic plate is illuminated

by a horn whose radiation pattern is considered to be a

group of plane waves traveling with different amplitudes

at different angles. These plane waves will not all strike the

dichroic plate at the same angle. Since the dichroic plate

is optimized for a 30-deg incident angle, the reflection is
minimized at that angle. Therefore, the power reflected

by the dichroic plate for horn illumination is larger than

the reflection for pure plane wave incidence at 30 deg.

The conductivity loss (I2R loss) for a rough surface,

in addition to the reflected energy from the horn pattern,

contributes to the overall noise temperature in the beam

waveguide system. The noise temperature, which includes

the reflection for plane wave incidence and the conductiv-
ity loss for a smooth surface, is calculated to be 1.34, 5.83,

and 7.57 K minimum at 32.0 (downlink), 34.5 (uplink),

and 33.7 GHz (KABLE), respectively. Measurements were

made at the KABLE frequency of 33.7 GHz in the DSS-13

beam waveguide antenna using a corrugated horn. The
measured noise temperature at 33.7 GHz was 11 K, which

is 3.43 K higher than the calculation, due to the effects
described above.

VI. Conclusion

The design of an X-/Ka-/KABLE-band dichroic plate
has been presented. The theoretical and experimental re-

sults show good agreement in predicting the performance

of the dichroic plate (Table 3). The X-/Ka-/KABLE-band

dichroic plate is installed in the DSS-13 beam waveguide

antenna at Goldstone, California (Fig. 10), for use in the

KABLE experiment and future Ka-band operation.
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Table 1. The muted and ¢alculalbsd nmonant trequenrJee of the X-/Ka-/KABLE-

band diGhrotc plate. The oalculatlorm are based on 40 wavegulde modes.

Resonant Measurement, Calculation, Error,
Polarization

frequency GHz GHz percent

TE First 32.03125 32.05 0.06

TE Second 34.00625 34.08 0.22

TM First 32.15625 32.17 0.04

TM Second 35.95000 35.82 0.36

TaMe 2. Group delay of the X-/Ka-/KABLE-I)and dl©hrok: plm for TIE and TM polarizations.

Group delay,

nsec

Frequency,
Ka-band

GH= TE polarization TM polarization

Measured Calculate(:] A Measured Calculated

Dowulink

31.8 0.115 0.114 0.001 0.111 0.111 0.000

32.0 0.108 0.107 0.001 0.105 0.105 0.000

32.3 0.100 0.101 0.001 0.099 0.099 0.000

KABLE

33.6 0.085 0.083 0.002 0.077 0.074 0.003

33.7 0.085 0.083 0.002 0.076 0.073 0.003
33.8 0.085 0.083 0.002 0.075 0.073 0.002

u_,_
34.2 0.085 0.083 0.002 0.075 0.072 0.003

34.5 0.085 0.083 0.002 0.074 0.072 0.002

34.7 0.084 0.082 0.002 0.075 0.072 0.003
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Table 3. Pedocmance of the X-/Ke-/KABLE-band dlchrolc plate Installed at the DSS-13 beam

waveguide antenna.

Frequency
characteristics

Down]ink, KABLE, Uplink,
32 GHz 33.7 GHz 34.5 GHz

CAlculated s Me_ured Calculated a Measured Calculated _ Meuured

Reflection loss,
dB 0.007 0.006 0.103 0.096 0.078 0.089

Conductivity loss, b 0.013 -- 0.010 -- 0.009 --

dB (approximate) (approximate) (approximate)

Ellipticity,
0.294 -- 0.220 -- 0.603 --dB

Group delay, 0.106 0.102 0.078 0.080 0.078 0.080
nsec

Noise temperature,
K 1.34 mJnimuni c TBD d 7.57 minimum. ¢ II 5.83 minimum ¢ N/A

• Calculation is b_Lsed on perfect plane-wave incidence.

b Conductivity loss is calculated for a dominant mode propagating in a rectangular waveg_dde 5.16 mm by

5.08 mm with a length of 9.27 mm. It does not include the effect of surface roughness.
¢ Calculated noise temperature only includes the reflection loss and conductivity loss.
d To be determined.
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Fig. 1. The X-/Ka-/KABLE-band dichroic plate.
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Flg. 2. Geometry ol a dlchrolc plate wlth rectangular aperlures.
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guide antenna at Goldstone, California.
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The rapid advances recently achieved by cryogenically cooled high electron mo-
bility transistor (HEMT) low-noise amplifiers (LNAs) in the 1- to I O-GHz range

are making them extremely competitive with maser amplifiers. In order to address

future spacecraft navigation, telemetry, radar, and radio science needs, the Deep

Space Network is investigating both maser and HEMT amplifiers for its Ka-band

(32-GHz) downlink capability. This article describes the current state of cryogenic

HEMT LNA development at Ka-band for the DSN. Noise performance results at

S-band (2.3 GHz) and X-band (8.5 Gltz) for HEMTs and masers are included for
completeness.

I. Introduction

A key figure of merit in the specification of the com-

munications link to a deep space mission is the ratio of

the gain of the ground-based antenna divided by the sys-

tem noise temperature (G/Ts_s). The low-noise amplifier
addresses the need to keep the system noise temperature

as low as technology permits. Of secondary concern is

the provision of broad bandwidth and high gain. Cryo-

genically cooled amplifiers using masers and high-electron

mobility transistors (tIEMTs) are employed by the DSN
to meet these needs.

Historically, the extraordinarily sensitive receiver sys-
tems operated by the DSN have employed ruby masers as

the low-noise front-end amplifier [1]. The rapid advances
recently achieved by cryogenically cooled IIEMT low-noise

amplifiers (LNAs) in the 1- to 10-GHz range are making

them extremely competitive with maser amplifiers [2,3].

In order to address its future navigation, telemetry, radar,

and radio science needs, the DSN is investigating both

maser [4] and tlEMT anaplifiers for its 32-GIIz downlink
capability.

The telemetry needs at 32 GItz are best met with the

lowest noise devices. For bandwidths of less than 400 MItz,

maser noise temperatures at this frequency are expected

to continue to outperform IIEMT noise temperatures. On
the other hand, the maser's instantaneous bandwidth is

considerably smaller than the IIEMT's. Thus, future re-

quirements for large bandwidths, such as interferometric

techniques for navigation or for radio astrononw, are more

likely to be met with IIEMT LNAs. In addition, the use of
follow-up HEMT amplifiers reduces the gain requirements

for the maser, permitting wider maser bandwidths.

II. Cryogenic Cooling

Cryogenic cooling is applied to a variety of low-noise

microwave receivers, such as field-effect transistor (FET)

and IIEMT amplifiers, mixers, upconverters, parametric
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amplifiers, and masers, to reduce thermal noise. To pro-

vide physical temperatures down to 4.5 K, commercially

available helium closed-cycle refrigerators (CCRs) are usu-
ally employed. For temperatures below 4.5 K, a pumped,

open cycle liquid helium bath, or hybrid CCR with liquid

bath, is used. In the hybrid system, the CCR is used to

cool radiation heat shields in order to conserve liquid he-

lium. To obtain the lowest possible noise temperatures, as
many as are physically possible of the input and output

rf components are cooled below ambient. Currently, the

DSN relies on helium CCRs to provide the needed cryo-

genic temperatures [5].

Maser amplifiers provide the best possible telemetry

support for deep space missions. However, these systems

operate at a physical temperature of 4.5 K, requiring com-
plex and expensive cryogenic systems. HEMT LNAs, on

the other hand, require less cooling power and operate
at a higher physical temperature of 12 K, where more

cooling power is available. At this higher temperature,

a less complex (less expensive) and more reliable refriger-
ation system can be used. The lower cost of HEMT LNAs

will lead to greater frequency coverage and the economic

realization of multiple-element room-temperature and/or

cryogenic array feed systems. For example, in prepara-

tion for Voyager's encounter with Neptune in 1989, JPL

planned to array the DSN Goldstone antenna complex

with the National Radio Astronomy Observatory (NRAO)
Very Large Array (VLA) in Socorro, New Mexico. It cost

eight million dollars to equip the 27 VLA antennas with

8.4-GHz HEMT/CCR receivers. To equip the VLA with
maser/CCR receivers would have cost approximately 25
million dollars.

Cooling below 4.5 K can result in significant perfor-

mance improvements for masers, but not for HEMTs.

Immersing a maser LNA in a bath of superfluid helium
(2.2 K) achieves more than just an improved thermal con-

tact. The gain of a maser in decibels increases in inverse

proportion to the physical temperature, while the noise

temperature decreases in direct proportion to it. For ex-

ample, on cooling an 8.4-GHz maser from 4.5 to 1.6 K, the
gain in decibels increases threefold, while the noise tem-

perature decreases by a factor of three. Figure 1 shows
the noise temperature for physical temperatures from 4.6
to 1.6 K [6].

The noise temperature and gain of a HEMT, on the
other hand, are relatively independent of temperature be-

low 12 K. 1 Noise temperature measurements at 8.4 GHz

1 j. j. Bautista and G. G. Ortiz, "HEMT Noise at 1.6 K," submitted

to the Journal of the Electrochemical Society.

of a three-stage HEMT amplifier in liquid helium from 4.2

to 1.6 K are displayed in Figs. 2 and 3. The results show
that the amplifier noise temperature of 5.45 K remains con-

stant on cooling from 4.2 K to the lambda point (2.2 K),
decreases abruptly to 5.25 K, and remains constant on

further cooling from 2.2 to 1.6 K (the accuracy for these

measurements was =1=0.1K). The gain was observed to re-

main constant throughout the temperature range. Mea-
surements of a two-stage 32-GHz HEMT LNA exhibited

similar behavior under the same physical conditions.

Sub-4-K temperature operation is easier to attain in

an open helium bath system than in a closed-cycle one.

Although sub-4-K physical temperatures are very difficult

to implement in a Cassegraln antenna, the laboratory-like

environment of a beam-waveguide antenna will allow the

implementation of a liquid helium open bath system. In a

tipping environment, large (more than 20 deg from zenith)
changes in orientation cause significant thermal load in-

creases, resulting in noise temperature increases and re-

duced operating times. Although the maser will clearly

benefit from the advent of beam-waveguide antennas, fur-
ther understanding of the noise limitations in HEMT de-

vices will result in the development of devices that continue

to improve, decreasing to liquid helium temperatures.

III. Noise Fundamentals: Parameters and
Models

For purposes of circuit modeling and device characteri-
zation, any noisy linear two-port device can be represented

as a noiseless linear two-port device with the noise sources

at the input and/or output [7,8]. Depending upon the

utility of the representation, the internal (voltage and/or

current) noise sources can be placed at the input or out-

put port of the noiseless network. Figure 3 shows a con-
venient representation that leads to four noise parameters

(Tmln, Ropt, Xop,, and Rn) that can be determined from
the measurement of noise temperature as a function of in-

put match. It consists of a series noise voltage (en) and

shunt noise current (in) source at the input [9]. In this
representation, the two-port device's noise parameters are
given by the equivalent noise resistance

< lenl_ >
P_-

4kToB

the noise conductance

< Iinl_ >
gn- 4kToB
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and the correlation coefficient

< en in >
?.=

x/<e_><i_ >

where To = 290 K, k is Boltzmann's constant, and B is
the noise bandwidth.

The noise temperature (Tn) of the two-port device

driven by a generator impedance Z 0 is given by the ex-

pression

T. = T.u. +
To gn

RgIZg - go. 12

where Zopt is the optimal generator impedance that yields

a minimum noise temperature and Za = R 9 + jXg is the
generator impedance. The relationship between the first

set of noise parameters and those in the above expression

is given by the following equations

Im(C)
X_t -

gn

Ropt = _/Rn/gn -- X_op_

T,m, = 2To[gnRop, + Re(C)]

where

C= r v/--_--_.

In principle, the above noise parameters (Zopt, T,m,,

and Rn) for FET and HEMT devices can be determined by
measuring the noise temperature for four or more different

known source impedances at a given frequency. However,

since there are errors associated with the source impedance

and the noise temperature measurements, additional mea-
surements are usually taken to improve the statistics. The

noise parameters, along with the scattering parameters,
can then be utilized for the optimum design of an ampli-
fier circuit.

The most often used model for device and circuit opti-

mization is the semi-empirical one developed by Fukui [10].

In this model, the noise parameters are simple functions of

the equivalent small-signal circuit elements (transconduc-

tance, gin, gate-to-source capacitance, Cg_, and source and

gate resistances, r8 and rg) at a given frequency. These cir-
cuit elements are in turn analytic functions of the device's

geometrical and material parameters. The semiempirical

approach of Fukui yields the following expressions for the

noise parameters

T... = kl_ToC,8_/(Rg + R.)/g.,
2_r

k2

gm

Ropt = k3(1/4gm + R, + Rs)

where kl, k2, k3, and k4 are fitting factors that are de-

termined experimentally. Although this model is widely

used by device designers and served to guide the develop-

ment of the first cryogenic HEMT devices for the Voyager
2 encounter with Neptune, the model provides very little

insight into the physics of noise in HEMTs and FETs.

Considerable research has been conducted in the area

of noise performance of field-effect transistors over the last

two decades. Currently, however, a noise model which is

useful for both device optimization and circuit design is
not available.

A good noise model must agree with measurements and
accurately predict noise parameters. The more recent an-

alytical models that consider fundamental semiconductor

steady-state transport properties only treat thermal noise

within the channel. These are progressively more complex
treatments of van der Ziel's original work [11,12]. The nu-

merical noise model approach taken by Cappy et al. [13]

takes into account electron dynamics and appears to ex-

plain noise temperature results. However, the dependence
of the measured noise temperature on device parasitics and

input circuit impedance complicates the full evaluation of
numerical models.

A potentially powerful approach for submicron gate-

width cryogenic device development would be a synthesis

of M. Pospieszalski's frequency- and temperature-

dependent circuit model [14] and Joshin's one-dimensional

electron transport noise model [15].

Pospieszalski's model uses simple (small signal) circuit

concepts that yield closed-form expressions for the noise
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parameters. This model introduces frequency-independent

equivalent temperatures for the intrinsic gate resistance

(Tg) and drain conductance (Td). The equivalent noise

model for an intrinsic chip device is shown in Fig. 4. For

low frequencies, that is for w/wt << _/(Tg/T_)(1/rgagaa)
and Rop_ >> rga, the noise parameters are given by the
following expressions

where

gm

1
Xop_ -

wCg,

T,m, = 2W x/ga, Tar_oT 9
¢0 t

and

Train
gn -

2Rop,To

The utility of this model is that it allows the prediction

of the noise parameters for a broad frequency range from a

single frequency noise-parameter measurement at a given
temperature.

In Joshin's microscopic model [15], the intrinsic gate

and drain noise generators are derived from the phys-
ical properties of the GaAs semiconductor at ambient.

By adding a physical temperature dependence to Joshin's
model, it may be possible to predict and calculate the

noise parameters directly from the physical properties of

the semiconductor materials. Most models are not appli-
cable at cryogenic temperatures and have shown limited

agreement with room-temperature measurements. In any
case, it is clear that much experimental and theoretical

work remains before the HEMT device is optimized and

exploited for cryogenic LNA applications.

IV. HEMT Devices

The HEMT is essentially a high-performance GaAs

FET with a more detailed and layered active material

structure. Although the HEMT structure has many sim-
ilarities to a conventional GaAs FET, different physical

mechanisms control or limit the carrier transport proper-

ties in the region between the source and the drain. The
conventional device structure shown in schematic cross-

section in Fig. 5. is grown in layers on a GaAs substrate.

First, to inhibit impurity diffusion into the active region,

a 1-/_m-thick buffer of GaAs is grown on a semi-insulating
GaAs wafer. A spacer layer of A1GaAs from 20 to 60 _ is

grown to reduce dopant donor ion/conduction electron in-
teractions. Next a 300- to 400-._ A1GaAs layer doped

with silicon atoms is grown. Finally, a heavily doped A1-
GaAs layer 450-/_ thick is grown to provide ohmic contacts.

This layered structure produces a conduction band dis-

continuity that forms a triangular one-dimensional quan-
tum well at the AIGaAs heterojunction. Electrons from

the AIGaAs layer are attracted to and collect at the one-
dimensional conduction band minimum in the vertical di-

rection on the GaAs side of the heterojunction, forming
a two-dimensional electron gas in a plane normal to the
vertical direction.

The primary advantage of this heterojunction structure
is that, unlike the heavily doped channel of a conventional

GaAs FET, there are significantly fewer impurities in the

undoped GaAs where the two-dimensional electron gas re-
sides. The result is that electrons experience fewer scat-

tering events and thus travel at higher saturated velocities

than in conventional FETs. The additional spatial separa-
tion provided by the spacer layer of the channel electrons
from their parent ions results in enhanced electron mobil-

ity. At room temperature, HEMT mobility is more than

a factor of two greater than the FET's, while at cryogenic

temperatures its mobility is more than two orders of mag-
nitude greater than the FET's.

Additional device enhancements currently being inves-

tigated are new materials with higher intrinsic mobility

(e.g., InGaAs and InP), shorter gate lengths (<0.10 pm)
to further reduce scattering events, and alternate doping

strategies such as planar doping (i.e., confining the dopants
to an atomic plane) for stronger carrier confinement.

The three-terminal device is completed with the fabri-

cation of a Sehottky-barrier gate which controls the num-

ber of electrons in the two-dimensional electron gas. In

addition to a lower noise figure than for a GaAs FET,
the HEMT also has several other inherent characteris-

tics that make it more attractive for low-noise amplifiers.
The scattering parameters (S-parameters) of a HEMT

in a 50-ohm impedance circuit exhibit lower output re-

turn loss (S_2) and higher gain ($21) than a GaAs FET

of the same dimensions. This results in an inherently
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better output match and larger gain-bandwidth product.
The HEMT also has much lower noise conductance, gn,

and Xopt (where Zopt = Ropt + jXopt is the optimum

source impedance) than the comparable metal semicon-

ductor FET (MESFET), resulting in a lower noise tem-
perature over a broader bandwidth. In addition, its per-

formance improves more rapidly with cooling than that of

the GaAs FET. Figure 6 shows the noise temperature re-

sponse comparison for a FET and HEMT at 8.4 GHz, as

a function of physical temperature.

V. Device Characterization

Since one of the primary functions of the LNA is to

minimize the receiver system noise temperature, the char-
acterization and selection of HEMT devices is critical to

LNA performance. The selection of the 0.25-pm gate

length conventional A1GaAs/GaAs HEMTs for the 32-
GHz LNAs was based on its previously demonstrated re-

liability and exceptionally high-gain and low-noise char-

acteristics [16,17] at 8.4 GHz. The selected device gate
width of 75 pm was determined by the trade-offs associated

with optimum impedance matching, circuit bandwidth, in-
termodulation distortion, power handling capability, and

power dissipation.

The devices were fabricated on selectively doped
AIGaAs/GaAs heterostructures grown by molecular beam

epitaxy (MBE) with a Varian GENII system on a 3-
in.-diameter GaAs substrate. The details of the mate-

rial growth conditions are discussed elsewhere [18]. The

HEMT wafer exhibited a sheet carrier density of
8.1 x 1012/cm 2 with a mobility at 77 K of more than

75,000 cm2/Vsec. All levels were defined by electron beam

lithography, and the T-shape gates were fabricated using

a tri-layer resistance technique [19] to achieve a low series

gate resistance.

For low-noise performance at cryogenic temperatures,
the HEMT device must exhibit good pinch-off characteris-

tics and high transconductance, go,. Good pinch-off char-

acteristics are achieved by strong confinement of the charge

carriers to the channel region, with a sharp interface of
high quality and a large conduction band discontinuity.

An enhanced gm at the operating bias is obtained by ju-

dicious choices for doping concentration and space layer

thickness [20]. An A1 mole fraction of approximately 30

percent is required for a large conduction band discontinu-

ity, while the high gm is achieved with a 40-_ space layer

and a doping concentration of approximately 2 x 10XS/cm 3.

Although these values result in a high-performance room-

temperature device, at physical temperatures below 150 K

the device suffers from IV (current voltage) collapse [21]

and exhibits the persistent photoconductivity effect asso-

ciated with the presence of deep donor traps (so called DX

centers). In order to obtain excellent device performance

at cryogenic temperatures and to eliminate light sensitiv-

ity, previous work [2,20] has demonstrated that the A1

composition must not exceed 23 percent, and the doping
concentration must equal approximately 1.0 x 101S/cm 3.

The data shown in Table 1, comparing two HEMTs

with the same A1 mole fraction (23 percent) but differ-
ent doping concentrations in the n-A1GaAs layer, serve

to illustrate the difference between low temperature and

room-temperature device optimization. Device A has an

n-A1GaAs doping concentration of 1.0 x 101S/cm 3, while

that of B is two times higher. As expected, at ambient,

device B exhibited a higher gm and associated gain than
device A, with approximately the same noise figure for

both devices. However, at a physical temperature of 13 K

and 8.5 GHz, device B exhibited a minimum noise temper-

ature of 13.1 K, while device A yielded a value of 5.3 K.

These results illustrate that cryogenic measurements must
be carried out in order to verify the device's noise perfor-
mance.

Vh LNA Design Approach

A semiempirical method was utilized to obtain mini-

mum noise temperature performance of the 0.25- by 75-pm

devices [22]. A two-stage LNA fixture was used to perform
the noise characterization of the devices at cryogenic tem-

peratures. The two-stage LNA fixture was designed to

achieve the best room temperature low-noise performance

based on the measured room-temperature device param-

eters. Following construction and room-temperature op-
timization, the LNAs are biased for lowest noise perfor-

mance at cryogenic temperatures. This approach was cho-

sen for two important reasons. First, a cryogenic noise-

parameter measurement system was still under develop-
ment for frequencies from 26 to 40 GHz and was not avail-

able for these measurements. Second, since the device pro-

cessing was uniform across the wafer and device gains var-

ied from 5 to 8 dB, two cascaded identical devices were

required to reduce the noise temperature contribution of
the room-temperature noise measurement receiver.

The LNA fixture oxygen-free high-conductivity

(OFHC) copper and dc bias circuits [23] are designed
for operation at cryogenic temperatures. Diode protec-

tion was included in both the gate and drain bias circuits.

Light-emitting diodes (LEDs) were mounted on the cover

of the fixture above each of the HEMTs for the purpose
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ofexaminingtheir lightsensitivityat cryogenictempera-
tures.Theinput andoutput ports utilize a broadband-

WR28 to stepped-ridge-waveguide to microstrip transi-
tion. The dimensions of the transition are detailed in

Fig. 7. Figure 8 shows the insertion loss and return loss of

a stepped-ridge fixture that consists of two stepped-ridge

transitions connected hack-to-back with a half-inch long

microstrip 50-ohm line. The input and output matching

networks were designed based on the device equivalent cir-
cuit values obtained from fitting measured S-parameters
at the low-noise bias condition to the model from 2 to 20

GHz at room temperature. The noise parameters are then

calculated from the small signal circuit elements using the

previously noted Fukui expressions. Input, output, and in-
terstage matching circuits were designed on 10-rail quartz
substrate with TaN thin film resistors and TiWAu met-

allization. A schematic diagram of the two-stage hybrid

HEMT LNA is shown in Fig. 9. The edge-coupled sym-
metric microstrip tic-blocking transmission line also served

as a bandpass filter, improving the out-of-hand stability.

The three- and four-stage LNAs are constructed from the

two-stage by the insertion of additional interstage match-
ing circuits.

VII. LNA and Radiometer Performance

The two- and three-stage LNAs were first measured at

room temperature with the devices biased for lowest noise

at room temperature and then biased for lowest noise per-
formance at cryogenic temperatures. Both LNAs exhibited

an average noise figure of approximately 2 dB from 28 to

36 GHz. From 29 to 34 GHz, the gains measured approx-
imately 17 and 23 dB for the two-stage and three-stage

LNAs, respectively. The addition of an external isolator

only slightly (0.3 dB) degraded the gain and noise figure.

With the devices biased for lowest noise at cryogenic

temperature (12 K), the noise temperature (referenced
at the room-temperature input waveguide flange) of both

LNAs was observed to decrease nearly quadratically as a
function of physical temperature as they cooled from 300

to 12 K. The noise temperature of the two-stage LNA de-

creased from 350 K at ambient to 35 K at 14.5 K, while
that of the three-stage LNA decreased from 400 to 41 K at

12.5 K (see Fig. 10). Figure 11 shows the cryogenic noise

temperature and gain response from 31 to 33 GHz, along
with bias settings for the three-stage LNA. At 32 GHz, the

two-stage LNA noise temperature measured 35 K, with an
associated gain of 16.5 dB, at a physical temperature of

14 K, while the three-stage LNA yielded a value of 41 K

with 26.0-dB associated gain. It is also noted that the

three-stage LNA displayed an almost fiat noise tempera-

ture response across the measurement band with a mini-

mum noise temperature of 39 K at 32 GHz, while the two-

stage LNA displayed a noise temperature response mono-
tonically decreasing from 31 to 33 GHz with a minimum

noise temperature of 31 K at 33 GHz.

It was further observed that neither amplifier showed a

persistent photoconductivity effect. That is, it was found
that these devices can he cooled with or without illumina-

tion and/or dc bias, without any observable effect on the
cryogenic low-noise performance.

Two 32-GHz cryogenic HEMT radiometers were devel-

oped employing four-stage LNAs based on the two- and

three-stage LNA results. Figure 12 shows a picture' of

the four-stage LNA; its cryogenic gain and noise perfor-

mance are plotted in Fig. 13. The first system, pictured
in Fig. 14, is a total power radiometer that exhibited an

input noise temperature referenced to the input room-

temperature flange of 45 K. Its noise temperature and gain
response as functions of frequency are plotted in Fig. 15.
The other system, shown in Fig. 16 without its vacuum

jacket and radiation shield, is a Dicke-switching radiome-

ter which demonstrated an input noise temperature refer-

enced to the horn aperture of 59 K. The noise temperature

response as a function of frequency is plotted in Fig. 17.

VIII. Conclusion

Since the invention of the HEMT device in 1983, noise

temperatures and device yields have steadily improved.
Using devices with 0.25-#m gates produced by electron

beam lithography, key parameters of the device structure,

such as the thicknesses and doping semiconductor layers,

have been systematically optimized for cryogenic opera-

tion. Figure 18 summarizes the evolution of performance

improvement for both maser and HEMT amplifier systems
over the past 25 years. When cooled to 15 K, the best de-

vice noise temperatures at 8.4 GHz were improved steadily
from 8.5 K in 1985 to 5.3 K in 1987.

The results of the cryogenic coolable state-of-the-art 32-

GHz HEMT LNAs and radiometers clearly demonstrate
their potential to meet the future space science needs

of the DSN. Currently, JPL is investigating 0.1-pro gate

lengths and promising alternate structures (planar doped

and single and double heterojunction) and materials (In-
GaAs and InP). Further advances in HEMT technology
[24,25] promise to lead to improved performance at all fre-

quencies and to make possible the development of ampli-
tiers above 100 GHz.

70



References

[1] S. M. Petty and D. L. Trowbridge, Low Noise Amplifiers in the Deep Space
Network--A Radio Communications Instrument for Deep Space Exploration,

JPL Publication 82-104, Jet Propulsion Laboratory, Pasadena, California,

pp. 4-1-4-32, July 1983.

[2] M. W. Pospieszalski, S. Weinreb, P. C. Chao, U. K. Mishra, S. C. Palmateer,
P. M. Smith, and J. C. M. Hwang, "Noise Parameters and Light Sensitivity of

Low-Noise High-Electron-Mobility Transistors," 1EEE Trans. Electron Devices,

vol. ED-33, pp. 218-223, 1986.

[3] S. Weinreb, M. W. Pospieszalski, and R. Norrod, "Cryogenic, HEMT, Low-Noise
Receivers for 1.3 to 43 GHz Range," 1988 1EEE MTT-S Digest, pp. 945-948,

1988.

[4] J. Shell and D. Neff, "A 32-GHz Reflected Wave Maser Amplifier with Wide
Instantaneous Bandwidth," 1988 IEEE MTT-S Digest, pp. 789-792, 1988.

[5] W. H. Higa and E. Wiebe, "One Million Hours at 4.5 Kelvin," Proc. App. of
Closed-Cycle Cryocoolers to Small Superconducting Devices, Boulder, Colorado,

pp. 99-108, October 1978.

[6] D. L. Johnson, S. M. Petty, J. J. Kovatch, and G. W. Glass, "Ultralow Noise
Performance of an 8.4-GHz Maser-Feedhorn System," The Telecommunications

and Data Acquisition Progress Report 42-100, vol. October-December 1989, Jet

Propulsion Laboratory, Pasadena, California, pp. 100-110, February 15, 1990.

[7] IRE Subcommittee 7.9 on Noise, "Noise Representation of Noise in Linear Two
Ports," Proc. IRE, vol. 48, pp. 69-74, January 1960.

[8] H. Rothe and W. Dahlke, "Theory of Noisy Fourpoles," Proc. IRE, vol. 44,
pp. 811-818, June 1956.

[9] P. Penfield, "Wave Representation of Amplifier Noise," IRE Circuit Theory,

vol. CT-9, pp. 84-86, March 1962.

[10] H. Fukui, "Design of Microwave GaAs MESFETs for Broadband, Low-Noise

Amplifiers," IEEE Trans. Microwave Theory Tech., vol. MTT-27, pp. 643-650,
July 1979.

[11] A. van der Ziel, "Thermal Noise in Field-Effect Transistors," Proc. 1RE, vol. 50,

pp. 1808-1812, 1986.

[12] A. van der Ziel, "Gate Noise in Field-Effect Transistors at Moderately High
Frequencies," Proc. IRE, vol. 51, pp. 461-467, 1963.

[13] A. Cappy, A. Vanoverschelde, M. Schortgen, C. Versnaeyen, and G. Salmer,
"Noise Modeling Submicrometer-Gate, Two-Dimensional, Electron-Gas, Field-
Effect Transistors," IEEE Trans. Electron Devices, vol. Ed-32, p. 2787, December

1985.

[14] M. Pospieszalski, "Modeling of Noise Parameters of MESFETs and MODFETs
and Their Frequency and Temperature Dependence," IEEE Trans. Microwave

Theory Tech., vol. 37, no. 9, pp. 1340-1350, September 1989.

[15] K. Joshin, S. Asai, Y. Hirachi, and M. Abe, "Experimental and Theoretical Noise
Analysis of Microwave HEMTs," 1EEE Trans. Electron Devices, vol. 36, no. 10,

pp. 2274-2280, October 1989.

71



[16] K. H. G. Duh, P. C. Chao, P. M. Smith, L. F. Lester, B. R. Lee, J. M. Ballingall,

and M. Y. Kao, "Millimeter-Wave Low-Noise HEMT Amplifiers," 1988 IEEE
MTT-S Digest, pp. 923-926, 1988.

[17] P. M. Smith, P. C. Chao, K. H. G. Dub, L. F. Lester, B. R. Lee, J. M. Ballingall,
and M. Y. Kao, "Advances in HEMT Technology and Applications," 1987 IEEE
MTT-S Digest, pp. 749-752, 1987.

[18] S. C. Palmateer, P. A. Maki, W. Katz, A. R. Calawa, J. C. M. Hwang, and

L. F. Eastman, "The influence of V:III flux ratio on unintentional impurity in-
corporation during molecular beam epitaxial growth," Proc. Gallium Arsenide

and Related Compounds Conference 198_ (Inst. Phys. Conf. Series 74), pp. 217-
222, 1985.

[19] P. C. Chao, P. M. Smith, S. C. Palmeteer, and J. C. M. Hwang, "Electron-
Beam Fabrication of GaAs Low-Noise MESFETs Using a New Tri-Layer Resist

Technique," IEEE Trans. Electron Devices, vol. ED-22, pp. 1042-1046, 1985.

[20] K. H. G. Duh, M. W. Pospieszalski, W. F. Kopp, P. Ho, A. A. Jabra, P. C. Chao,
P. M. Smith, L. F. Lester, J. M. Ballingall, and S. Weinreb, "Ultra-Low-Noise

Cryogenic High-Electron Mobility Transistors," IEEE Trans. Electron Devices,
vol. ED-35, pp. 249-256, 1988.

[21] A. Kastaxsky and R. A. Klein, "On the low temperature degradation of
AIGaAs/GaAs modulation doped field-effect transistors," IEEE Trans. Electron

Devices, vol. ED-33, pp. 414-423, March 1986.

[22] K. H. G. Duh, W. F. Kopp, P. Ho, P.-C. Chao, M.-Y. Ko, P. M. Smith,

J. M. Ballingall, J. J. Bautista, and G. G. Ortiz, "32-GHz Cryogenically Cooled

HEMT Low-Noise Amplifiers," IEEE Trans. Electron Devices, vol. ED-36, no. 8,
pp. 1528-1535, 1989.

[23] S. Weinreb and It. Harris, A 23-GHz Coolable FET Amplifier, NRAO Internal

Report, NRAO, Charlottesville, Virginia.

[24] P. C. Chao, P. M. Smith, K. H. G. Dub, J. M. BaUingall, L. F. Lester, B. It. Lee,

A. A. Jabra, and R. C. Tiberio, "High Performance 0.1 Micron Gate-Length
Planar-Doped HEMTs," 1987 IEDM, paper 17.1, 1987.

[25] P. Ho, P. C Chao, K. H. G. Dub, A. A. Jabra, J. M. Ballingall, and P. M. Smith,

"Extremely High Gain, Low Noise InAIAs/InGaAs HEMTs Grown by Molecular
Beam Epitaxy," 1988 IEDM, 1988.

72



Table 1. Performance comparison of conventlonal AIC,_As/GaAs HEMTs.

Ambient temperature, 300 K Ambient temperature, 13 K

FYequency, GHz -- 8 18 32 8.5

Performance gin, mS/turn NF/GA NF/GA NF/GA T c, K/GA

(NF a, dB/GA b, dB)

Type A (1 × 101S/crn 3) 380 0.4/15.2 0.7/11.5 1.3/7.5 5.3/13.9

Type B (2 x 101S/cm 3) 450 -- 0.7/15 1.2/10.0 13.1/14.5

ONF = noise figure

bGA = associated gain

¢T = noise temperature
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General pointing error and variance estimators for an open-loop conical scan

(conscan) system are derived and analyzed. The conscan algorithm is modeled as a

weighted least-squares estimator whose inputs are samples of receiver carrier power
and its associated measurement uncertainty. When the assumptions of constant

measurement noise and zero pointing error estimation are applied, the variance

equation is then strictly a function of the carrier power-to-uncertainty ratio and

the operator-selectable radius and period input to the algorithm. The performance
equation is applied to a 34-m mirror-based beam-waveguide conscan system inter-

faced with the Block V Receiver Subsystem tracking a Ka-band (32-GHz) downlink.

It is shown that for a carrier-to-noise power ratio >_30 dB-Hz, the conscan period

for Ka-band operation may be chosen well below the current DSN minimum of 32

sec. The analysis presented forms the basis of future conscan work in both research
and development as well as for the upcoming DSN antenna controller upgrade for

the new DSS-24 34-m beam-waveguide antenna.

I. Introduction

An analysis of open-loop conical scan (conscan) point-

ing error and variance estimators is presented. The analy-
sis models conscan as a beam-pointing error sensor whose

input consists of samples of receiver carrier power and un-

certainty. This choice of input is consistent with the up-

coming DSN upgrade of conscan that will involve the in-

terfacing of the Antenna Pointing Controller and the Block
V Receiver Subsystem. With this input, the conscan al-

gorithm is modeled as a weighted least-squares estimator
whose variance can be derived as a function of the un-

certainty on the receiver input and the operator-selectable

inputs to the algorithm. A general variance equation that

is applicable to either conscan axis is derived and then

simplified when assumptions of constant measurement un-

certainty and zero pointing error are applied.

Estimation of the uncertainty on the carrier power sam-
ples from the Block V Receiver Subsystem is briefly re-

viewed, and the results are used to rewrite the conscan

pointing-error-variance equation in terms of the carrier-

to-noise power ratio. The final equation can then be used

to easily quantify the pointing error uncertainty as a func-

tion of conscan radius and period for any given antenna's

half-power beamwidth and receiver carrier-to-noise power
operating condition. The article concludes with an appli-

cation of the performance equation to a beam-waveguide

mirror conscan implementation operating at the Ka-band

(32-GHz) frequency.
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II. Received Carrier Power Model For
Conscan

The conical scan received signal model presented below

is similar to the one described in [1]. The input to the
conscan algorithm in this analysis will be estimates of re-

ceived carrier power Pc with measurement uncertainty apc.
The assumption here is that the digital receiver subsystem

has derived both of these quantities from its estimate of

signal-to-noise ratio PdNo. The main results of this analy-

sis will be general with respect to the conscan algorithm

input and can be modified slightly to accommodate other

received signal level input (e.g., voltages or noise temper-
atures).

The ratio of the received carrier power P(O at time t to
nominal carrier power Pc,ore when the antenna boresight

is pointing at the target is

Penom - exp

where h is the antenna half-power beamwidth, p = 4 In(2),

and c(t) is the angular displacement of the target to the

center of the beam. During conscan, _(t) 2 in [1] is shown
to be

2_ 2,_c, ¢os(wO 2,_,,sin(w0 (2)c(t) 2 : r_ + c,

where r is the conscan radius, w is the conscan frequency,

and ere, and cot are cross-elevation and elevation compo-
nents of the beam pointing error _,, defined as

2 2 2
E, = _et + c_1 (3)

Let LI -- exp ((-#lh2)r 2) be the loss factor when the

target is at the center of the scan pattern and L2 =

exp ((-#/h2)6_) be the loss factor due to the beam-

pointing error being estimated; then inserting Eq. (2) into
Eq. (1) and simplifying yields

Pc(t) =Pc,or, L1L_

/2r#, sin(wt)]) (4)x exp k--_- [_c, cos(wt) + ¢.t

It can be shown that

Po : PcnomLiL2 (5)

and

2rp
k, : -g-- (6)

where Po is the average carrier power received over the

conical scan period and k, is the conscan slope. Now for

small target errors, the approximation exp(z) m 1 + x can

be applied to Eq. (4), and then inserting Eqs. (5) and (6)
gives the following:

k. "_" eet sin(w/))Pc(t) - Po (1 + -_v_t cos(wt) + k, (7)

or rewriting in vector notation,

[c,]Pc(t) = [ 1 cos(wt) sin(wt)] C2
C3

(8)

where C1 = Po, C2 = ((k,/h)Ezel)Po, and Ca =
((k,/h)c_cl) Po. Equation (8) is the measurement equa-

tion used along with Pc and ap c in the conscan pointing
error estimator.

III. General Pointing Error and Variance
Estimators

A. Pointing Error Estimator

The conscan estimation period can be any interval of

time and, in general, does not have to be a complete period

of the sinusoid in Eq. (8); nor does receiver power have to

be measured uniformly over this interval. However, the

present analysis will assume received signal power Pc(t)

is uniformly sampled n times over a conscan period of
T sec with a receiver integration time of trcc sec, where

T = ntre c. Substituting t = itrec and w = 2r/ntrcc

in Eq. (8) yields the conscan carrier power measurement
equation at the sampling instants i as

Pc(i)= [1 cos (-_ i) sin (-_ i) ] C2
C3

(9)

Accumulating n input samples and storing them in matrix
form gives
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Pc(i)

P (2)

1

1

I

cos(-_) sin(_-)

cos(2 ) sin(2 )

cos(2_') sin(2_)

[c1]C2

C3
(10)

or

Y=AC (11)

where the measurement vector Y is n x 1, the measure-

ment distribution matrix A is n x 3, and the parameter
vector C is 3 x 1. It is assumed that the uncertainties

on the carrier power estimates at the sampling times, de-

noted as aRc(i), are also known and available. Assuming
that the uncertainties are random and independent over

the period T, they are accumulated in a weighting matrix
R as follows:

l:t = diag 1)'a_(2)'""a n) (12)

Given Eqs. (10) and (12), a weighted least-squares esti-
mate (_ is used for the estimator of C and is given by (see

[2])

(_ = (AtRA)-IAtRy (13)

where the superscript t is the transpose operator. With

(_ computed and the elements of C defined in the conscan

received signal model, Eq. (8), the cross-elevation and el-
evation pointing error estimators are chosen as

= k,¢i (14)

and

h(_3

get- k,(_x (15)

The general conscan algorithm also derives the direction
of the error gs from the relative magnitudes of (_2 and

(_u, together with an operator input phase term, which

compensates for time delays in the antenna system• This

will not be pursued here, for the present analysis will only
focus on the accuracy of the magnitude of the open-loop

pointing error estimates.

B. Pointing Error Variance Estimator

In [2] it is shown that the covariance matrix of the error
in the estimate (_ is given by

V = (AtRA) -1 (16)

where A is defined in Eq. (10) and R by Eq. (12). From

Eqs. (14) and (15), the uncertainty in the estimates of g_z

and g,_z must be expressed in terms of the errors of the

estimator (_ (i.e., in terms of 3 x 3 error covariance V).
The calculations are carried out in Appendix A, and the

results are presented below:

2 V(1, i) + V(2, 2)O'gx_ _ = £xel

-2 (_----8e._,) V(1,2)]
(17)

and

O'g,, t ---- gel V(1, 1) + V(3,3)

(18)

As can be seen, the axial pointing error variance equa-

tions, Eqs. (17) and (18), for conscan are a function of
many variables: the average received carrier power Po, the

uncertainties on the carrier power samples (embedded in

V), the antenna half-power beamwidth h, the conscan ra-
dius v and slope ks, and the magnitude of the assumed

static pointing error cs being estimated. Recalling that

_2 = 2 2CxeI -t-eel and Po = P_nomL1L2 and noting that the
loss factor L2 appears in both variance equations illus-
trates the axial cross-coupling of the algorithm (i.e., esti-

mating a large pointing error in one axis will increase the
estimation uncertainty in the other). The variance is also

a function of the number of input samples (and hence con-

scan estimation period) that form the measurement distri-
bution matrix A, which in turn influences the covariance

matrix V through Eq. (16). Equations (17) and (18) are,

in fact, general for any number of receiver power samples

measured uniformly or nonuniformly over the scan.
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One important point to note is the dependence of

the estimation performance on the operating frequency,

which is inversely proportional to the antenna half-power
beamwidth h. The radius r can be chosen so that the

conscan slope remains constant with respect to operating

frequency (e.g., in the DEN, r is typically selected to have
a conscan loss of 0.1 dB from the factor L1 which estab-

lishes ko = 0.5 for all frequencies). With k, constant, the
variance can then be seen to be directly proportional to h,

or inversely proportional to frequency, indicating a factor

of four performance increase at Ka-band (32.0 GHz) over
X-band (8.45-Gttz) operation. This gain in performance

is only realized provided the pointing error E, is small, for

it will be shown later that loss from the factor L2 increases

dramatically with respect to E, at Ka-band.

1

(21)

where e, is the beam-pointing error and _ is the axial-

pointing error. By simple inspection, the last factor can

be accurately approximated by

+ ~v_ (22)

IV. Analysis of the Conscan Pointing Error
Variance Equation

A. Constant Measurement Error Assumption

Now, assuming the uncertainties o'po(i ) on the carrier
power samples are constant and equal to arc over the scan

period, then the covariance matrix V defined by Eq. (16)
reduces to

if2 t -1V = pc(A A) (19)

This is a valid assumption under ideal, closed-loop conscan

tracking conditions (benign wind, no spacecraft-induced

variations on the downlink signal, etc.) and if the beam-

pointing error _, is small (_, _ r). Further simplification

of V in Appendix A shows that when the carrier power in-

put is sampled uniformly over the scan period, the pointing

error variance Eqs. (17) and (18) each reduce to

Ilia/ )2 h 2 +2 (20)

where c represents the actual pointing error in either the
elevation or cross-elevation axis.

B. Effects of the Pointing Error Magnitude

1. Performance Degradation Due to Increasing

Pointing Errors. Inserting L2 = exp ((-#/h2)¢_) into
Eq. (20) and taking the square root gives the axial pointing
error standard deviation as

when e < h and the conscan slope is chosen as k, = 0.5

for the DSN application. For reference, the half-power

beamwidths (assuming a Gaussian beam) for a 34-m an-
tenna operating at the X- and Ka-band frequencies are

approximately 65 and 17 mdeg, respectively. Thus, as

the magnitude of the beam-pointing error c, = (_et
,.2 _1/2 increases, both estimates g_et and g_l are de-+ "ell

graded equally by the inverse of the pointing-error loss

factor exp ((-p/h2)e2,). This effect is obviously more dra-

matic at Ka-band due to the narrow beamwidth. Figure 1

illustrates the percentage of increase of the axial pointing

error standard deviation f against the magnitude of e, for a

34-m antenna operating at the X- and Ka-band frequen-

cies. In addition to dropping received carrier power by

3 dB at Ka-band, a beam-pointing error of 8.5 mdeg (one-

half of the full half-power beamwidth h) is seen in Fig. 1
to double the Ka-band consean estimation uncertainty.

Without considering actual receiver signal-to-noise operat-

ing conditions, this Ka-band performance degradation will

primarily affect conscan during acquisition, when blind

pointing errors may be large. For the closed-loop system,

this degradation will effectively increase the beam-pointing
error response time.

2. Zero Pointing Error Assumption. As noted

before, the magnitude of beam-pointing error cs is typi-

cally very small during closed-loop conscan tracking. This

fact can be used to further simplify Eq. (21) in order to

quantify the performance of the conscan pointing error es-
timator as a function of the carrier power-to-uncertainty

ratio and the selectable input variables. Assuming e, is

essentially zero, then Eq. (21) reduces to

= (h) (2)_ ( 1 ) (Pen°m) -1 (23)
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where it is recalled that P_no,_ is the nominal carrier power

received when the antenna is pointing directly at the target

and the uncertainty _v, is assumed to be known.

V. Carrier Power Uncertainty for the Block V
Receiver Subsystem

Estimation of the uncertainties _rpc(i ) on the carrier

power samples Pc(i) in the Block V Receiver Subsystem

is briefly summarized in Appendix B. In general, calcula-

tion and analysis of this statistic for spacecraft tracking
in a DSN antenna environment is a complicated matter.

For this reason, it will not be rigorously pursued here; for

a more thorough analysis, the details of the Block V re-
ceiver calculation can be found in [3,4], Aung, et al., 1 and
Scheid. 2 Of more interest in the present analysis is the

approximation of the expression for _Pc given in the refer-

ences, so that Eq. (23) can be written in terms of the nomi-
nal receiver carrier-to-noise power ratio CNR = Pcnom/No

instead of Penom/aPo. The quantity CNR is measured

when the antenna is pointed directly at the spacecraft.

The simplification is carried out in Appendix B with the

following result

ap_(2PenomNo) ½ (24)

which is a valid approximation for a 1-sec receiver esti-

mation period when the loop tracking error is very small

and P¢nom/N,, < 40 dB-Hz. Now, inserting this expres-
sion into the conscan pointing-error estimation Eq. (23)

and simplifying yields

Equation (25) is a very useful equation as it allows quick

evaluation of the pointing error estimation accuracy as a

function of the selectable ¢onscan algorithm input (radius
r and number of input samples n) for any given operating

CNR and antenna half-power beamwidth h.

1M. Aung and S. Stephens, "Statistics of the Pc�No Estimator in
the Block V Receiver," JPL Interoffice Memorandum 3338-92-089
(internal document), Jet Propulsion Laboratory, Pasadena, Call-
fornia, April 29, 1992.

2 R. E. Scheid, "Statistical Analysis of Antenna Carrier Power,"
JPL Interoffice Memorandum 343-92-1291 (internal document), Jet
Propulsion Laboratory, Pasadena, California, October 9, 1992.

VI. Application to a 34-m Antenna Beam-
Waveguide Mirror Conscan System at
Ka-Band

All of the conscan equations thus far have been general,

but they will now be applied to a 34-m beam-waveguide

mirror-based conscan system operating at Ka-band. For

this scenario, h = 17 mdeg and the radius r = 1.55 mdeg

for a scan loss of 0.1 dB (L1 = 0.977) and k, = 0.5. These

values are inserted into Eq. (25), and the axial pointing

error standard deviation qi is then plotted in Fig. 2 as a

function of conscan period for various CNR. Also plotted

is the line corresponding to the magnitude of the chosen

radius r. In Fig. 2, it is assumed that the receiver integra-

tion time per carrier power sample is 1 sec and the conscan

period is then just equal to n. This performance plot ins-

plies that for CNR >_ 30 dB-Hz, the conscan estimation
period for Ks-band operation may be chosen well below
the current DSN minimum of 32 sec and still maintain

estimation accuracy of less than 1.55 mdeg.

Advantages of scanning s beam-waveguide mirror in-
stead of the entire antenna dish structure include the ease

of obtaining precision pointing of a drastically smaller and

stiffer mirror gimbai assembly and also the higher band-

widths achievable by the small-scale axis servos. A con-

ceptual sketch of such a system is presented in Fig. 3,
in which it is proposed that either the first or last beam

waveguide mirror be actuated in such a conscan scheme.

Because high-rate, accurate mirror tracking is available,
it was assumed in the previous Ka-band performance plot

that the move times between measurement points over tile

scan are negligible. In fact, with an efficient interface be-

tween the conscan computer and the receiver subsystem,
it is conceivable that the mirror-based conscan system can

actually achieve pointing correction update rates as ambi-
tious as those shown in Fig. 2.

VII. Summary and Future Work

General pointing error and variance estimators for con-
scan have been derived in order to characterize the es-

timated performance in terms of the operator-selectable

input to the algorithm and carrier-to-noise ratio. After as-

suming constant measurement noise on the carrier power
inputs in the variance equation, it was shown that the

magnitude of the beam-pointing error being estimated de-

grades performance in each axis of the estimator. The

effect is especially dramatic when conscaning at the Ka-

band frequency due to the the narrow antenna half-power

beamwidths. For the closed-loop conscan tracking appli-

cation, the zero pointing error assumption was applied in

order to express the pointing error estimation accuracy as
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a function of the selectablealgorithm input (radiusand

number of input samples) for any given operating car-

rierpower to the uncertaintyratioand antenna half-power

beamwidth. The performance equation was then applied

to a 34-m beam-waveguide, mirror-based conscan system

interfacedwith the Block V Receiver Subsystem tracking

a Ka-band downlink. Simulation of conscan pointing er-

ror uncertaintyagainstconscan estimationperiod showed

that for a carrier-to-noisepower >_30 dB-Hz, the period

forKa-band operation may be chosen wellbelow the cur-

rentDSN minimum of32 sec and stillmaintain estimation

accuracy of lessthan 1.55mdeg.

The analysis presented forms the basis of future con-

scan work in both research and development as well as

for the upcoming DSN antenna controller upgrade for the

new DSS-24, 34-m beam-waveguide antenna. The con-

scan model and performance equations derived will be

used in designing advanced tracking algorithms and gen-
erating predictions for experimentation on the new beam-

wavegui_e mirror conscan system currently being imple-
mented at the DSS-13 antenna. These equations will also

be utilized in the DSN consean upgrade, which will use an

automatic algorithm parameter selection as a function of

signal-to-noise input ratio. Lastly, an augmented analy-

sis that integrates the effects of spacecraft spin (as in [5])
and dynamic wind loading on the antenna structure needs

to be pursued in order to more precisely simulate open-
and closed-loop conscan performance at the Ka-band fre-

quency.
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Appendix A

Simplification of the Conscan Pointing Error Estimation Variance

Assuming that the uncertainties apo(i) on the ith carrier power sample are random and independent, then the
covariance matrix of the error in the weighted least squares estimator (_ of Eq. (13) is given by

where the measurement distribution matrix A is

A

V = (AtRA) -1 (A-l)

and the weighting matrix R is

1 cos(_-) s" 2,m(-;-)

1 cos(2_) sin(2_)

1 co_(2,) sin(2.)

1 1R = diag a_,:(1) ' a_,o (2) '"

Given the above expressions, Eq. (A-l) can be expanded as follows

V

E 1
P=(O

E _ cos(_i)
aPc(i)

E ___i.., sin('_ i)
P.(O

_ 1--rL-- cos(_i)
0 *, 1_. /

E --4--xcos_(_i)
aP=(i)

E _ c°s(3h'_ i)sin(_-i)
aPc(Q

__t sin(2___i) -1
Op©(o n

E._ c= _i sin _i_ . (..) (..)
Pc(,)

E __l-_... sin2(_ "i)
Pc(i)

(A-2)

(A-3)

(A-4)

where the summations run over i = 1,2,...,n, and n is the total number of samples taken over the scan. If the

measurement uncertainties are assumed to be constant over this period and equal to ap=, then Eq. (A-4) simplifies to

n Z_ cos(_ "_i) E sin(_-i)

E cos(-_ i) E c°s2(_ "_i) E cos(_-i) sin(-_ i)

_ sin(_-i) _ cos(-_i) sin(-_i) )'-] sin2(_i)

-1

(A-5)

Now ifthe samples Pc(i)are measured uniformly over the scan period as indicatedabove and n > 3, then Eq. (A-5)

simplifiesto

(A-6)
°°

V=_ 2Pc 0_0

oo_
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The conscan pointing-error estimation variances are derived from the following pointing-error estimator equations

hC_

¢_et = k,C] (A-7)

hd3
e,t = k,_x (A-8)

To find the variances of these estimates (each of which is a function of two random variables from C), the following
formula is applied:

VAR(g)=(O_)2VAR(_q) + (c9__ 2 cgg ag
\OC1] kOl"JJ / VAR((?,j) + 20(_x 0Cj

VAR(C,I, Cj) (A-O)

for j = 2, 3 and where the partial derivatives are evaluated at the statistical averages of the estimators Ci, i = 1, 2, 3.
It can easily be proved that the statistical average of (_ is just the vector C, whose elements are defined by the

conscan received signal model given in Eq. (8). Thus, the partial derivatives above are to be evaluated at C1 = Po,

C2 = ((k,/h)¢_,t)Po, and C3 = ((ko/h)¢=,a)Po. Applying the formula in Eq. (A-9) to Eqs. (A-7) and (A-8) yields

c, )_"*.,_= T, v(1,1) + v(2,2) - 2_v(1,2) (A-10)

and

,., - 2c_V( , (A-11)

Next, inserting the given expressions for the elements of C and using V defined by Eq. (A-6) for the constant measurement
error case, the above variance equations can be rewritten as

"'" _ _'" --_- + "e'o} (A-12)

and

(r7 = (h)'{/ k, _'(r 2 2(r_,_ (A-13)

Finally, after some rearranging, Eqs. (A-12) and (A-13) can be rewritten as

\PoJ (_--" 0 +2 (A-14)

where ¢ represents the actual pointing error in either the elevation or cross-elevation axis.



Appendix B

Received Carrier Power Uncertainty for the Block V Receiver

Inputs to the conical scan algorithm are estimates of

received carrier power Pc and its uncertainty crpo. A brief

summary of the Block V receiver variance estimator is

given below; however, a more detailed derivation may be

obtained from [3] and footnotes 1 and 2. The receiver

calculates ap e from its estimates of signal-to-noise ratio

(Pc�No) and variance O'(pjN,,),2 and system noise power

No and variance tr_v° . The system noise power over a 1-Hz
bandwidth is No = *:T,,_,, where T, vs is the system noise

temperature with standard deviation aT,,,, (defined in [4])
and _ is Boltzmann Constant. The estimated noise power

variance is then given by a_v° = _2a_ . Multiplication
. ,y# ....

negates the noise power from the received carrmr signal

power as follows:

Pc= -_o No (B-l)

Now, assuming that the above equation is the product
of two independent random variables, the carrier power
variance can then be shown to be

Pc No \ j_ + a(_,)No + agotr(._o )
(B-2)

as a function of T,y,, noise diode temperature, noise band-

width, and estimation interval.

For this article, it is best to express the uncertainty on

the carrier power in terms of the receiver carrier power Pc

and the system noise power No. In [3], in-phase arm (I-

arm) and in-phase/quadrature-phase arm (IQ-arm) Pc/No

algorithms are presented. Of the two, a slightly modified
version of the I-arm estimator will be implemented in the

Block V receiver (see footnote 1). The equation for the
variance of this estimator given in footnote 1 can be ap-

proximated by

(P-_) (B-3)

assuming a 1-sec receiver estimation period when the loop

tracking error ¢ is small enough so that cos(C) _ 1. Nu-
merical simulation of Eq. (B-2) shows that for PdNo < 40

db-Hz the contribution of the noise power variance aNo

in the calculation of ap e is minimal and can be neglected.

From Eq. (B-3), the carrier power uncertainty can then be
reduced to

ap, _, o'(._.)No (B-4)

where the overbar denotes average values. Equation

(B-2) gives the uncertainty of the received carrier power
Pc in terms of the uncertainties of the estimates of (Pc/No)

and (No). As described in [3] and footnote 1, the statis-

tics of (Pc/No) are a function of receiver parameters (i.e.,
Pc/No, tracking loop error, tracking loop bandwidth, esti-

mation interval, etc.) while the statistics of No are given

or inserting tr(p¢/N, ) from Eq. (B-3) and simplifying yields

_po ._ (2PcNo) ½ (B-5)

which is the desired approximation.
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Spur-Reduced Digital Sinusoid Synthesis
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This article presents and analyzes a technique for reducing the spurious signal

content in digital sinusoid synthesis. Spurious-harmonic (spur) reduction is accom-

plished through dithering both amplitude and phase values prior to word-length
reduction. The analytical approach developed for analog quantization is used to

produce new bounds on spur performance in these dithered systems. Amplitude

dithering allows output word-length reduction without introducing additional spurs.

Effects of periodic dither similar to those produced by a pseudonoise (PN) generator

are ana/yzed. This phase-dithering method provides a spur reduction of 6(M ÷ l ) dB

per phase bit when the dither consists of M uniform variates. While the spur reduc-
tion is at the expense of an increase in system noise, the noise power can be made

white, making the power spectral density small. This technique permits the use of
a smaller number of phase bits addressing sinusoid lookup tables, resulting in an

exponential decrease in system complexity. Amplitude dithering allows the use of

less complicated multipliers and narrower data paths in purely digital applications,
as well as the use of coarse-resolution, highly linear digitM-to-analog converters

(DACs) to obtain spur performance limited by the DAC linearity rather than its
resolution.

I. Introduction

It is well known that adding a dither signal to a desired

signal prior to quantization can render the quantizer error
independent of the desired signal [1,2,3]. Classic examples

of this deal with the quantization of analog signals. Ad-

vances in digital signal processing speed and large-scale in-
tegration have led to the development of all-digital receiver

systems, direct digital frequency synthesizers, and direct

digital arbitrary waveform synthesizers. Since finite-word-

length effects are a major factor in system complexity, in

all these applications, these effects may ultimately deter-

mine whether it is ei_cient to digitally implement a system

with a particular set of specifications. Earlier work [4] has

presented a technique for reducing the complexity of dig-

ital oscillators through phase dithering, with the claim of

increased frequency resolution. Recent research [5] has

suggested mitigation of finite-word-length effects in the

synthesis of oversampled sinusoids through noise shaping.
This article shows how the analysis techniques used for

quantization of analog signals can be applied to overcome

finite-word-length effects in digital systems. The analysis
in this article shows how appropriate dither signals can

be used to reduce word lengths in digital sinusoid syn-

thesis without suffering the normal penalties in spurious

signal performance. Furthermore, the dithering technique
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presented in this article is not limited to the synthesis of
oversampled signals.

Conventional methods of digital sinusoid generation [6],

e.g., those in Fig. 1, result in spurious harmonics (spurs)
that are caused by finite-word-length representations of
both amplitude and phase samples [7]. Because both the

phase and amplitude samples are periodic sequences, their

finite-word-length representations contain periodic error

sequences, which cause spurs. The spur signal levels are
approximately 6 dB per bit of representation below the

desired sinusoidal signal.

The technique presented in this article reduces the rep-

resentation word length without increasing spur magni-

tudes, by first adding a low-level random noise, or dither,

signal to the amplitude and/or the phase samples, which
are originally expressed in a longer word length. The re-

sulting sum, a dithered phase or amplitude value, is trun-

cated or rounded to the smaller, desired word length. Of
course, either the amplitude or the phase or both can be

dithered. In phase dithering, the spurious response is de-

termined by the type of dithering signal employed. In
amplitude dithering, the spurious response is determined

by the original, longer word length. While the amplitude-

related spurious response is generally related to the phase-

related spurious response, we will make the predither am-

plitude word length long enough to satisfy spur power
specifications. Then the exact relationship is unimportant,
and since the phase dither signal is independent of the am-

plitude dither signal, the amplitude and phase dithering
processes can be treated independently.

The next section describes the quantizer model. Am-

plitude and phase quantization effects are reviewed in Sec-

tions III and IV, and simple new bounds on spurious per-
formance are presented. In contrast to bounds in the ex-

isting literature, the new bounds are straightforward and

require little information about the signal to be quantized.
The derivations of the new bounds provide motivation for

the new analysis of dithered quantizer performance that

occurs later in this article. An analysis of dithering with a

periodic noise source is presented in Section VI. The peri-

odic noise source is considered because of its similarity to

implementations involving linear feedback shift registers
(LFSRs) or pseudonoise (PN) generators. A new analysis
of phase dithering effects is presented in Sections VII and

VIII, followed by simulation results and a design example.

Ih Quantizer Model

When a discrete-time input signal, x[n], is passed

through a uniform midtread quantizer [8], the output sig-

hal, y[n], can always be expressed as y[n] = x[n] + e[n],
where e[n] is the quantization error, a deterministic func-

tion of x[n]. The input to the quantizer is mapped to 1 of

2b levels, where b is the number of bits that digitally repre-

sent the input sample. Output levels are separated by one

quantizer step size, A = 2 -b. Throughout this article, A A

will be used as the step size for amplitude quantization re-

sults; Ap will be used for phase quantization results; and
A will be used if the result applies to both amplitude and

phase quantization. Similar subscripting will be used on
the quantization error.

The input/output relation of a midtread quantizer ap-

pears in Fig. 2. If the input does not saturate the quan-

tizer, then the quantizer error is [8]:

oo

k._. -- O0

k$o

If the input signal is bounded so that Ix[n][ _< Aq where
AQ = 1/2 - A, then the quantizer does not saturate and

[e[n][ < A/2. Throughout this article, quantizers are al-
ways operating in nonsaturation mode.

III. Amplitude Quantization Effects

Let a discrete-time sinusoid with amplitude A _ Aq
and frequency w0 be the input to a midtread quantizer.
If the sinusoid is generated in a synchronous discrete-time

system, w0 can be expressed as 21r times the ratio of two

integers. The input sequence is then periodic with a finite

period. Since the error sequence, cain/, is a determinis-

tic function of the input sequence, it is periodic with a

finite period as well. Therefore, the spectrum of the er-

ror sequence will consist of discrete frequency components

(spurs) that contaminate the spectrum of x[n].

The following argument leads to an upper bound on

the size of the largest frequency component in the spec-

trum of cA[n/. Assuming the quantizer is not saturated by

the input signal z[n], the maximum possible quantization
error is AA/2, where A A is the amplitude quantization

step size. The total power in cain/ is then bounded by
A_/4. By Parseval's relation, the sum of the spur pow-

ers in the spectrum of cA[n/ equals the power in cA[n/.
In order to maximize the power in a given spur, the total

number of spurs must be minimized. Since CAin/ is real,
the maximum power in a spur occurs when there are two

frequency components, at +w,vu, and -w,v,,r, with equal
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power. 1 With two frequency components, the power in a

single spur is < A_/8.

Since z[n] is real, its spectrum consists of a positive and
a negative frequency component, each having power A2/4.

Using the above bound on spur power, the spurious-to-

signal ratio (SpSR) is < A_/(2A2). If A = AQ _ 1/2

provided b is not small, then in decibels with respect to

the carrier (dBc), SpSR < 3 - 6b dBc, where AA = 2 -b,

and b is the word length in bits. In summary, this upper
bound on power in a spur caused by amplitude quantiza-

tion exhibits -6 dBc per bit behavior.

IV. Phase Quantization Effects

Let a phase waveform, ¢[n], be the input to the
mid-tread quantizer. The phase waveform, ¢[n] =

(fn + ¢/2_r), is a sampled sawtooth with amplitude rang-
ing from 0 to 1. The fractional operator, (x), is de-

fined so that (x / = x mod 1, e.g., (1.3 / = 0.3. Since

¢[n] is generated by a synchronous, finite-word-length,
discrete-time system, it has a finite period. The signal out-

put from the quantizer can be expressed as ¢[n] + ep[n],

where ep[n] represents the error introduced by quantiza-

tion. Since ¢[n] is periodic, ep[n] is periodic with a period
less than or equal to the period of ¢[n]. After multiplica-

tion by 2r and passage through the ideal function genera-

tor, the output signal is y[n] = A cos (2_r¢[n] + 27feB[n]).

If the quantizer has many levels, i.e., >16, ep[n] <(<_1

and the small angle approximation y[n] _ A cos (2_r¢[n])

- 27rAep[n] sin (2_r¢[n]) may be used.

Since ep[n] and ¢[n] are periodic, the total error

2rAep[n] sin (2_r¢[n]) is periodic. The total error power
is bounded by r2A=A_, because ep[n] is bounded by Ap/2

and the magnitude of a sinusoid is bounded by unity. Re-

calling the arguments in the previous section on amplitude

quantization effects, the maximum spur power of the real

error signal is bounded by placing the total error power
into two spectral components. Therefore, the maximum

spur power is _r2A2A_p/2, where Ap = 2 -b and b bits

are used to represent phase samples. By the above ap-

proximation for y[n] and the bound on the spur power,
the spurious-to-signal ratio bound is SpSR < 21r2A2p =

13- 6b dBc, independent of the signal amplitude, A.

This simple proof demonstrates the -6 dBc per phase bit
behavior. More complicated arguments [7] improve the

bound by about 9 dB.

1DC offsets and half sampling rate spurs are excluded because they
can be corrected by appropriate calibration and filtering.

V. Amplitude Dithering

In this section, rounding the sum of an already quan-

tized sinusoid and an appropriate dither signal is shown

to cause spurious magnitudes that depend on the original

(longer) word length, not on the output (shorter) word
length. This phenomenon occurs at the expense of in-

creased system noise from the addition of the dithering

signal. An important finite-word-length dithering system

is subsequently shown to be equivalent to the continuous-

amplitude uniformly dithered system.

Consider the conceptual block diagram for a waveform

generator shown in Fig. 3. The b-bit quantizer can be

split into two parts, as in Fig. 4: a high-resolution B-

bit quantizer (B > b) followed by truncation or rounding
to b bits. Thus, the generation process consists of two

separate steps: production of a high-resolution waveform

and reduction of the word length. The number of bits

used to represent the high-resolution samples should be

sufficient to guarantee the desired spectral purity. Then

the word length should be reduced without creating excess

signal-dependent quantization error.

The input in Fig. 5 is a B-bit representation of a sinu-

soid, x[n] = A sin (27r¢[n]) + eAo[n], where eAo[n] is the
quantization error. The dither signal, zu[n], is white noise

uniformly distributed in [--AA/2, AA/2), where AA =

2-_. The sum z,[n] + x[n] is rounded to retain only the b

most significant bits. The rounding can be modeled as a

uniform quantizer with step size AA. The amplitude A is
chosen to avoid saturating this quantizer when the dither

signal is added, i.e., A + AA/2 < Aq.

The output from the quantizer can be expressed as

y[n] = mini + z,,[n] + cA[n]. The characteristic function

of the dither signal, z=[n], is

Fz(a) = E {exp (jaz[n])}

2sin sinc (°<AA
_AA = \ 2_ ) (2)

which has zeros at nonzero integer multiples of 2_r/AA.

Thus, as shown in [1], cain] will be a white, wide-

sense stationary process, uniformly distributed over

[--AA/2 ,AA/2), and it will not contribute spurious har-
monics to the output spectrum of y[n]. Any spurious

components in y[n] are therefore due to eAo[n], which are

present in the B-bit input, x[n].

It remains to comment on the noise power not iso-

lated in discrete spurious frequency components. If the
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sequences cain] and z,,[n] are uncorrelated, adding the

variances of the quantization error, A_/12, and the dither

process, A_/12, yields a white noise power of A_/6. This
approximation is twice the variance of a quantization sys-

tem with no dithering signal. Note that eA0[n] also con-

tributes a white noise term, and that, in general, cain]
and z_ [n] are not uncorrelated. However, these two effects

are dominated by the A_/6 behavior of the white noise

power. In summary, y[n], which is quantized to b bits, ex-

hibits spurious performance as if it were quantized to B

bits (B > b), at the expense of doubling the white noise

power.

Because the input z[n] is expressed as a B-bit value,

an important system equivalent to continuous-amplitude,

uniformly dithered word-length reduction can be

constructed. Replace the uniformly distributed dither

signal, z_[n], by a finite word-length representation of
it, z[n], which is said to be discreetly and evenly dis-

tributed over the (B- b)-bit quantized values in the region

[--AA/2, AA/2). Heuristically, z[n] randomizes the por-

tion of the finite word-length input, x[n], that is about to
be thrown away by the rounded truncation. This process

is equivalent to continuous uniform dithering, since if x[n]

is padded out to an infinite number of bits by placing zeros

beyond the least significant bit, then only the B - b most

significant bits of z_[n] will have an effect on the resulting

sum, z[n]+Zu[n]. All of the bits below the most significant
B - b are added to zero and cannot beget a carry. The

output, y[n], is identical in both systems. Therefore zu[n],

continuously, uniformly distributed over [--AA/2, AA/2),

can be replaced by the discretely valued z[n] and yield the

same spurious response for y[n].

It appears that the finite word-length dither signal,
z[n], could be generated by an LFSR, or PN generator.

This will be strictly true if and only if the PN generator

has an infinite period, since, at this time, the dither sig-
nal is required to be white. However, it is not surprising

that ideal behavior is approached as the period of the PN

generator gets longer. With a sufficiently long period, the

case where spur magnitudes are limited by the original

word length can be achieved. The following section gives

a simple model for a system implementation using a peri-

odic random sequence that can be approximated by a PN
generator.

Vl. Effect of Periodic Dither

This section analyzes the use of a periodic dither sig-

nal with a long period, L, for both amplitude and phase

dithering. Since the dither signal is periodic, the discrete

frequency components in its spectrum will contaminate the

desired signal. It is shown that the period can be chosen to

satisfy worst-case spurious specifications. In this section,

the case where the dither signal is generated using one

uniform variate (M = 1) is given. When the dither signal

is the sum of M independent uniform variates (M > 1),
as in Section VIII, the analysis is the same because the

resulting signal is an independent identically distributed

(i.i.d.) sequence of random variables.

Instead of using the white dither process, zu[n], de-
scribed in the previous section, consider a substitute,

zL[n], which is periodic with period L. Any two samples,

zL[n] and zz[n + m], where m _ 0 mod L, are indepen-

dent. Samples of zz[n] are uniformly distributed between

[-A/2, A/2), and the quantization step size is A.

When zz[n] is used as the dither signal, let the quan-

tizer error be called eL[n]. The autocorrelation of zL[n]
when the lag, m, is an integer multiple of L is equal to

R, LzL[0 ] = A2/12. In the PN generator approximation to

this noise source, L = 2 t - 1, where I is the length of the

shift register in bits. At other lag values, the samples of

zL[n] are independent, and since they have zero mean, the

autocorrelation is zero. Therefore,

R, Lz_.[m ] = _/5[m rood L] = _ _ exp
I=0

and zL[n] contains L discrete frequency components, each
with power A2/(12L).

In the autocorrelation expression for eL[n], the ex-

pectation is taken over the random variables zz[n] and

zz[- + m]:

ReLeL[n'n+m]= E
k=-oo I=-oo

_#o t#o

X E {exp (_-_(kzL[n]--lzL[n+m]))}

where:

A(-1) k exp (J27[n])ak[n] - j2rk

(z)
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The desired signal to which the dither signal zL[n] is added

is sin]. Using the notation from earlier sections, in-phase

quantization s[n] = ¢[n], and in amplitude quantization

s[n] = x[n]. When the lag is not a nonzero integer multiple
of L,

E( exp (---_-(kzL[n]--lzn[n+ =

N, the autocorrelation function equals A2/12, indepen-

dent of n. The smallest nonzero lag that satisfies these

two conditions is the least common multiple of L and

N, denoted by qL where q is an integer. Therefore,

the period of the time-averaged autocorrelation function,

ReL[m] = Avg,_(ReLeL[n,n+ rn]), is at least L and at

most qL. Let the period equal cL, where c is an integer,

1 < c < q. The function /_L [m] can be expressed as a
sum of cL weighted complex exponentials:

eL-1 ( j27rml _
/_eL[m]= _ Pt exp \ cL ]

1=0

, m--...,-1,0,1,2,...

where

Pz= _'_ _ /_eL[m] exp \ cL )
m-_0

This last fact is true because the characteristic function

of ZL [n] has zeros at all nonzero integer multiples of 2r/A,
Eq. (2). But since the sums over k and i never assume the

value 0, the autocorrelation function is 0 when the lag is

not 0 mod L. When the lag is 0 mod L,

E {exp (_-_ (kzL[n]--lzL[nq-rn]))} =

E {exp (j2r(k _./)zL[n])I = _[k-- /]

This results in

R,_ eLIn, n + m] =

2,_ _ _ cos -- (4hi -- ,In + m]) (4)

Setting rn = 0 in Eq. (4) and evaluating the re-

sulting summation [9, p. 7] yields the power in eL[n]:

R_z_n[n,n] = A2/12. From Eq. (4), eL[n] is a cyclo-

stationary process because s[n] has a finite period, N.

Using the results of Ljung [10], spectral information is

obtained when Eq. (4) is averaged over time. Note that

when the lag, m, is not only an integer multiple of L,

the period of the dither, but also an integer multiple of

rl_0

The last equality is true since the autocorrelation func-

tion in Eq. (3) and its time-average, /_,L [m], are zero for

lags not equal to integer multiples of L. The weights,
Pt, are the power magnitudes of the spurs. Since /_eL [m]

_< A2/12, the spur power can be bounded: Pt <_ A2/(12cn)

< A2/(12L). Equality is achieved when the period of the

time-averaged autocorrelation function is exactly L, the
period of the dither.

As L _ oo, the spacing between spurs goes to zero

in the spectra of both eL[n] and zL[n]. The power in an

individual spur goes to zero, but the density (power per

unit of frequency) tends to a constant. Thus, ideal white
noise behavior is approached. While zL[n] and eL[n] are

correlated in general, the worst-case spur power scenario

coherently adds the power spectra from both processes.

For this reason, L should be chosen to satisfy A2/(6L)
< Pmax, where Pmax is the maximum acceptable spur

power. When constructing a dither signal as the sum of

M _> 1 independent, uniform variates, the noise autocor-

relation becomes RzLzt. [m] = (MA_/12)6[m mod L]. The
analysis follows closely that for M = 1, and L should be

chosen to satisfy (M + 1)A2/(12L) < Pmax.

As in the previous section, since the desired signal has

finite word length, it is equivalent to rounding or truncat-

ing the dither signal to an appropriate word length. Such

a truncated periodic noise source is an approximation to
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an implementation using a PN generator that produces a

periodic sequence of discreetly and evenly distributed ran-
dom numbers.

+ m]} = cos (2 f. + ¢)

× cos + m) + ¢)

VII. Phase Dithering

In this section, phase dithering is analyzed using a con-

tinuous, zero-mean, wide-sense stationary sequence. As

described in Section V on amplitude dithering, an evenly

distributed discrete random sequence is equivalent to con-

tinuous uniform dithering when the initial phase word is

quantized to a finite number of bits.

Let the digital sinusoid to be generated be

x[.]=cos(2.(¢[.]+([.])) (5)

so that the desired phase is ¢[n], as defined in Section IV.

The total quantization noise is e[n] = ep[n] + z[n], the sum
of the dither signal and the quantizer error. Using small

angle approximations,

• [.] = cos + -

x sin (2.fn+@)+O([max (([n])] 2)

The total quantization noise will be examined by consider-

ing the first two terms above, and then the second-order,

O ([max (e[n])]2), effect.

A. First Order Analysis

Since the quantization error after dithering is indepen-

dent of the input signal [2], e[n] is uncorrelated with the

desired sinusoids. Without loss of generality, and for ease

of notation, let us shift the uniformly distributed dither

random variate range to [0,Ap). The total phase quan-

tization noise _[n] will be e[n] = -p[n]Ap with probabil-

ity (1 -pin]), and e[n] = (1- p[n])Ap with probability

p[n]. The value pin] is the distance from the initial high-

precision phase value, ¢[n], to the nearest greater quan-
tized value normalized by the phase quantization step size

Ap. The value of the probability sequence p[n] varies pe-

riodically, since p[n] = @[n] mod Ap, and ¢[n] is periodic;
however, at all sample times n, the first moment of the

total phase quantization noise, E{e[n]}, is zero.

Information about the spurs and noise in the power

spectrum of x[n] is obtained from the autocorrelation func-

tion. The autocorrelation of x[n] is

+ 47r _sin (2rfn + ¢)

x sin (2rf(n + m) + ¢)

x S{([n]([n + m]} + O(A )

Spectral information is obtained by averaging over time

[10], resulting in

1 [1 + 4a'2/_.tm]] cos (27rfrn)

where/_.[m] = Avg,(E{e[n]e[n+m]}), the time-averaged

autocorrelation of the total quantization noise.

The power spectrum of z[n], the Fourier transform of

the autocorrelation, is the power spectrum of the desired

sinusoid of frequency f plus the total quantization noise

amplitude modulated on the desired sinusoid. Note that

since /_,[m] = O(A_,), and Ap << 1, the modulation
index is small.

The amplitude modulation (AM) signal produced by
phase dithering is clear of spurious harmonics down to the

level due to periodicities in the dither sequence. The next

section will examine spur performance in more detail, but

first it is important to consider the noise power spectral

density resulting from the phase dithering process.

Recall that for any fixed time n, the probability dis-

tribution of e[n], a function of p[n], is determined by the

input signal, but the outcome of e[n] is determined entirely

by the outcome of the dither signal z[n]. When z[n] and

z[n + m] are independent random variables for nonzero lag

m, e[n] and _[n -I- m] are also independent for m ¢ 0, and

hence e[n] is spectrally white. In this case, the autocorre-
lation becomes

1

/_x_[m] = _ cos (21r fro) + 2_r26[m] Var (e)

where Vat (e) is the time-averaged variance of the total

quantization noise, and 6[m] is the Kronecker delta func-

tion (6[0] = 1, 6[m] = 0, m ¢ 0). The resulting signal-to-

noise ratio (SNR) is approximately 1/(4r 2 Var (e)).
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When the dither signal is constructed from one uniform

[-Ap/2, Ap/2) random variate, the error _[n] is bounded
between --Ap to Ap with Ap = 2 -b, and b is the number

of bits in the phase representation after the word length is
reduced. The number of bits, b, must be large enough to

satisfy the earlier small angle assumption, typically, b _> 4.

The time-averaged variance of ¢[n] is less than or equal to

2-2b/4, and the SNR is 22b/_r 2 = 6.02b - 9.94 dB.

Since the sinusoid generated is a real signal, the sig-

nal power in the SNR will be divided between positive

and negative frequency components. If the sinusoid is the
result of a discrete-time random process with sampling fre-

quency f,, then the resulting noise power spectral density

(NPSD) will be given by:

NPSD_- _ + 10 log10

_<6.93-10 logl0(_)-6-02bdBc/Hz (6)

Table 1 gives noise power spectral densities as a function

of the number of bits per cycle, b, at a 160-MHz sampling

rate, calculated according to the above formula.

B. Second Order Analysis: Residual Spurs

For a worst-case analysis of second order effects, expand

the initial cosine from Eq. (5) by the sum of angles formula:

= cos cos (2.fn + ¢)

- sin (2re[n]) sin (27rfn + dp)

Information about the spurs in the power spectrum of x[n]

is obtained from the autocorrelation function at nonzero

lags. When the dither sequence, z[n], is a sequence of i.i.d.
variates, the autocorrelation function for x[n], with lag m

not equal to zero, is

Rc_[n, n + m] = E{x[n]x[n + m]}

= E{x[n]}E{x[n + m]}

The expected value of x[n] is a deterministic function of

time. From the above expression, it follows that spectral

information about the random process x[n], with the ex-

ception of noise floor information, is contained in E{x[n]},

which we call the "expected waveform." Since e[n] is zero

mean at all sample times, the expected waveform reduces

to

E{x[n]} = (1 - 2r2E{e2[n]}) cos (27rfn + dl,) + O(A_,)

It remains to consider the second moment of the total

phase quantization noise, E{e2[n]}, which we evaluate by

using the probability sequence pin] from the previous sec-

tion as E{e_[n]} = A_,(p[n]-pZ[n]). Since p[n] is bounded
between 0 and 1, the function u[n] = p[n]- p2[n] is

bounded between 0 and 1/4, with its maximum value of

1/4 at p[n] = 1/2.

Since u[n] is bounded between 0 and 1/4, it must have

some nonzero dc (average) component. Any remaining
components can be periodic in the worst case. Since all

nonlinear operations have been performed, conservation

of power (energy) arguments can be used to determine
the total non-dc error power. The total power in the dc

component of u[n] is equal to the square of the average
value of u[n]. Similarly, the total power in u[n] is equal to

the average value of u2[n]. Thus, the power remaining for

time-varying components of u[n] is

Avg(u2[n])- (Avg(u[n])) 2 = Avg [(win]- Avg(u[n])) 2]

This value is maximized by maximizing the dispersion of

the samples about the mean. When the sample values are

bounded, this maximization is achieved by placing half of

the samples at each bound, so that the mean is equidistant
from each bound. Since 0 < u[n] < 1/4, the maximum

power present in harmonic components is 1/64.

Recall that at this worst case, half of the values of

E{e2[n]} are zero and half are A_/4. Since e2[n] is non-

negative, E{e2[n]} = 0 implies that e[n] = 0. Note that

the difference between e[n] and e[n + 1] is the phase in-
crement modulo the quantization step size. If, for any n

and n + 1, e[n] = e[n + 1] = 0, the phase increment can be

exactly expressed in the new quantization step. By induc-

tion, e[n] will be zero for all n if any two adjacent values

S{e2[n]} and S{e2[n+ 1]} are both zero. The only possible

sequence E{e2[n]} achieving the worst case is, therefore,

0, 1/4, 0, 1/4, 0, 1/4 .... This sequence has a single sinu-
soidal component at the Nyquist frequency, which is half

the sampling rate.

In the worst case, the model to consider is u[n] = 1/8

- (1/8) cos (rn) since cos ((2rf + _r)n + _) = cos ((2rf

- r)n + (I)). The expected waveform is
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x cos(2 -fn + <t,)+

= 1 - 7r_ cos (2rrfn + #_) + 7r_

x cos + + +

clearly showing the desired signal and spur components.

Thus, dropping the O(A_) term, a --18 dB per bit power

behavior, the worst-case spur level relative to the desired

signal after truncating to b bits is SpSR

_'4A_/16 _r4A_,
SpSR ,_ _ _ = 7.84 - 12.04b dBc

(1 - x2A_,/4) 2 16

This worst case is achieved for a large class of frequen-
cies. Let the phase of the desired signal _ = 0, and let

the desired frequency be R cycles in 2b+l samples, where

R is an odd integer. The sequence e2[n] will be determin-
istic: 0, A_,/4, 0, A_,/4..., exactly the worst case analyzed

above. The frequency of the spur is the reflection of the

desired signal across 1/4 the sampling rate, and, as a re-
sult, it can be as close as 1/2 b of the sampling rate from
the desired sinusoid.

In summary, if b bits of phase are output to a lookup
table, and B bits of phase (B > b) are used prior to trunca-

tion, then the addition of an appropriate dithering signal
using (B - b) bits will allow the word length reduction
without introducing spurs governed by the usual -6b dBc

behavior. If a single random variate is added as a dither

signal (first-order dithering), the spur suppression is ac-

celerated to 12 dB per bit of phase representation. Since
the table size is affected only linearly by the number of

bits in a table entry, rather than exponentially, as it is by
the number of phase bits, the amplitude word length is of

secondary importance to the phase word length, especially

in all-digital systems. For example, -90 dBc spur perfor-
mance would nominally require b = 16 bits of phase and a

65,536-entry table. With first-order dithering, this level of

performance requires only b > 8.1 bits of phase per cycle

in the lookup table addressing. Worst-case spur perfor-

mance of -100.5 dBc is achieved with 9 bits, a 512-entry

table at most, and, at a 160-MHz sampling rate, Table

1 shows that with these realistic system parameters, the

noise power spectral density is at a low -126 dBc/Hz.

VIII. Accelerated Spur Suppression

Further analysis [11] based on an extension of results

by Gray [12] indicates that the phase spur suppression rate

can be increased in steps of 6 dBc per bit by adding mul-

tiple uniform random deviates to the phase value prior to
truncation. The addition of M uniform random deviates

produces a dither signal with Mth-order zeros in its char-

acteristic function, thus making the Mth moment of the

quantization error independent of the input sequence [12].

An example of this technique providing 18 dBc per
phase bit spur performance is shown in Fig. 6. This tech-

nique involves adding two (B - b)-bit uniform deviates to

produce a (B- b+ 1)-bit dither signal, which achieves the
accelerated spur reduction due to second-order zeros in the

dither characteristic function. Simulation results for when

two uniform variates are added to the phase are presented
in the next section. A straightforward extension of this

technique to a polynomial series allows spur-reduced syn-
thesis of periodic digital signals with arbitrary waveforms.

IX. Simulation Results

Simulations were performed to validate the results of

this analysis. These results were obtained using 8192-point

unwindowed fast Fourier transforms (FFT's), and the syn-
thesized frequencies were chosen to represent worst-case

amplitude and phase spur performance. Figure 7 shows

the power spectrum of a sine wave of one-eighth the sam-
pling frequency truncated to 8 bits of amplitude without

dithering. Figure 8 shows the same spectrum with a 16-bit

sinusoid amplitude dithered with 1 uniform variate prior
to truncation to 8 bits. Note that the spurs have been

eliminated to the levels consistent with those imposed by
the initial 16-bit quantization.

Figure 9 shows the spectrum of a 5-bit phase-truncated
sinusoid with high-precision amplitude values. A worst-

case example of first-order phase dithering is shown in

Fig. 10. The measured noise power spectral density in

Fig. 10 is -62.3 dBc per FFT bin, giving a noise density

of -23.2- 10 log (fa/2) dBc, in agreement with the upper
bound derived in Eq. (6). The spur level is -52.3 dBc in

the first-order dithering shown in Fig. 10.

Figure 11 shows the same example using second-order
(M = 2) dithering using the sum of two uniform deviates.

While the spectrum in Fig. 10 shows the residual spurs at

-12 dBc per bit due to second-order effects, Fig. 11 shows

no visible spurs, indicating better than -63 dBc spuri-

ous performance. Additional simulations involving mega-
point FFTs and not represented by figures confirm the

98



-18 dBc per bit performance of the second-order phase-

dithered system.

Finally, Fig. 12 shows a worst-case result for first-order
phase dithering together with first-order amplitude dither-

ing. The amplitude samples are truncated to 8 bits, as are

the phase samples. Note that the spurs are not visible in

the spectrum; however, close analysis has demonstrated

that they are present at the -88 dBc level expected due
to second-order effects.

X. A System Design Example

The block diagram of a direct digital frequency synthe-

sizer based on the techniques presented here is shown in

Fig. 13. The following system would perform at a sam-

pling rate of 160 MHz, producing 8-bit digital sinusoids

spur-free to -90 dBc with better than -120 dBc/Hz noise

power spectral density. The system parameters are

(1) Phase bits are in unsigned fractional cycle represen-
tation with phase accumulator word length deter-

mined by frequency resolution and > 16 bits prior
to the addition of one uniform phase dither variate,
with > 9 bits after dither addition and truncation.

(2) Amplitude lookup table with

(a) > 27 = 128 entries (using quadrant symmetries)

of >16 bits each, normalized so that the sinusoid
amplitude equals 512 16-bit quantization steps
less than the full-scale value.

(b) Linear feedback shift register PN generator with

>16 lags producing one 8-bit amplitude dither
variate.

(c) One LFSR PN generator with > 18 lags for gen-

eration of the 7-bit phase dither variate.

XI. Conclusion

A digital dithering approach to spur reduction in the
generation of digital sinusoids has been presented. A class

of periodic dithering signals has been analyzed because of
its similarity to LFSR PN generators.

The advantage gained in amplitude dithering provides

for spur performance at the original longer word length in
an ideal system when the digital dithering signal is white

noise distributed evenly, not uniformly, over one quanti-

zation interval. The reduced word length allows the use

of less complicated multipliers and narrower data paths in

purely digital applications. If the waveform is ultimately

converted to an analog value, the reduced word length al-
lows the use of fast, coarse-resolution, highly linear digital-

to-analog converters (DAC's) to obtain sinusoids or other

periodic waveforms whose spectral purity is limited by
the DAC linearity, not its resolution. These results sug-

gest that coarsely quantized, highly linear techniques for
digital-to-analog conversion, such as delta-sigma modula-

tion, would be useful in direct digital frequency synthesis

of analog waveforms.

The advantage gained in the proposed method of phase

dithering provides for an acceleration beyond the normal

6 dB per bit spur reduction to a 6(M + 1) dB per bit spur
reduction when the dithering signal consists of M uniform

variates. Often the most convenient way to generate a

periodic waveform is by table lookup with a phase index.

Since the size of a lookup table is exponentially related to
the number of phase bits, this can provide a dramatic re-

duction in the complexity of numerically controlled oscilla-

tors, frequency synthesizers, and other periodic waveform

generators.

The advantages of dithering come at the expense of an

increased noise content in the resulting waveform. How-

ever, the noise energy is spread throughout the sampling

bandwidth. In high bandwidth applications, dithering im-
poses modest system degradation. It has been shown that

high performance synthesizers with dramatically reduced

complexity can be designed using the dithering method,

without resulting in high noise power spectral density
levels.

99



Acknowledgment

Michael J. Flanagan was supported in part by a National Science Foundation
Fellowship.

References

[1] A. B. Sripad and D. L. Snyder, "A Necessary and Sufficient Condition for Quanti-

zation Errors to be Uniform and White," IEEE Transactions on Acoustics Speech
and Signal Processing, vol. ASSP-25, pp. 442-448, October 1977.

[2] L. Schuchman, "Dither Signals and Their Effects on Quantization Noise," IEEE

Transactions on Communication Technology, vol. COM-12, pp. 162-165, Decem-
ber 1964.

[3] N. S. Jayant and L. R. Rabiner, "The Application of Dither to the Quantization

of Speech Signals," Bell System Technical Journal, vol. 51, pp. 1293-1304, 1972.

[4] S. C. Jasper, "Frequency Resolution in a Digital Oscillator," U.S. Patent Number
4,652,832, Washington, DC, March 24, 1987.

[5] P. O'Leary and F. Maloberti, "A Direct-Digital Synthesizer with Improved

Spectral Performance," IEEE Transactions on Communications, vol. COM-39,
pp. 1046-1048, July 1991.

[6] J. Tierney, C. Rader, and B. Gold, "A Digital Frequency Synthesizer," IEEE

Transactions on Audio and Electroacoustics, vol. AU-19, no. 1, pp. 48-57, March
1971.

[7] T. Nicholas and H. Samueli, "An Analysis of the Output Spectrum of Direct Dig-

ital Frequency Synthesizers in the Presence of Phase Accumulator Truncation,"

Proceedings of the 41st Annual Frequency Control Symposium, pp. 495-502, 1987.

[8] L. E. Brennan and I. S. Reed, "Quantization Noise in Digital Moving Target

Indication Systems," IEEE Transactions on Aerospace and Electronic Systems,
vol. AES-2, pp. 655-658, November 1966.

[9] I. S. Gradsteyn and I. M. Rizhk, Table of Integrals, Series, and Products, cor-
rected and enlarged edition, New York: Academic Press, 1980.

p

[10] L. Ljung, System Identification: Theory for the User, Englewood Cliffs, New
Jersey: Prentice-Hall, 1987.

[11] M. J. Flanagan and G. A. Zirnmerman, "Spur-Reduced Digital Sinusoid Genera-

tion Using Higher-Order Phase Dithering," Conference Record: Papers Presented

at the 27th Annual Asilomar Conference on Signals, Systems and Computers (in
press), Pacific Grove, California: IEEE Computer Society Press, November 1993.

[12] R. M. Gray and T. G. Stockham, Jr., "Dithered Quantizers," presented at 1991

IEEE International Symposium on Information Theory, Budapest, Hungary,
June 1991.

loo



Table 1. Noise power spectral denslUes

for 160-MHz sampling rate.

Noise power spectral density,
b, bits/cycle dBc/Hz

5 -102.20

6 --108.22

7 --114.24

8 -120.26

9 -126.28

10 -132.30

11 -138.32

12 -144.35
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Box Codes of Lengths 48 and 72
G. Solomon I and Y. Jin2

A self-dual code of length 48, dimension 24, with Hamming distance essentially

equal to 12 is constructed here. There are only six codewords of weight 8. All the
other codewords have weights that are multiples of 4 and have a minimum weight

equal to 12. This code may be encoded systematically and arises from a strict

binary representation of the (8,4;5) Reed-Solomon (RS) Code over GF(64). The

code may be considered as six interrelated (8,7;2) codes. The Mattson-Solomon

representation of the cyclic decomposition of these codes and their parity sums are
used to detect an odd number of errors in any of the six codes. These may then be

used in a correction algorithm for hard or soft decision decoding.

A (72,36;15) box code was constructed from a (63,35;8) cyclic code. The theo-

retical justification is presented herein.

A second (72,36;I5) code is constructed from an inner (63,27;16) Bose-
Chandhuri-Hocquenghem (BCH) code and expanded to length 72 using box code

algorithms for extension. This code was simulated and verified to have a minimum
distance of 15 with even weight words congruent to 0 modulo 4. The decoding for
hard and soft decbion is still more complex than the first code constructed above.

Finally, an (8,4;5) RS Code over GF(512) in the binary representation of the

(7_,36;15) box code gives rise to a (72,36;16") code with nine words of weight 8,
and all the rest have weights >_ 16.

I. Codes of Length 48

The self-dual (48,24;12) Quadratic Residue Code had
a history of difficulty and complexity in decoding for five

errors algebraically as well as decoding for soft decision.

I Independent consultant to the Communications Systems Research
Section.

2 Student at the California Institute of Technology, Pasadena,
California.

This led us to apply the techniques of box codes as suc-

cessfully developed for Golay Codes to rate 1/2 codes of

length 48. See [1,2]. Subcodes of dimension 23 and Ham-

ruing distance 12 were easily found. In addition, the box

structure gave parity information to detect odd errors in
rows that simplify decoding procedures.

The attempt to avoid the six codewords of weight 8

in the natural box code construction yielded two self-dual

105



(48,24;12) codes [1]. Upon closer examination of computer

simulation, these codes were found to contain 42 words of

weight 8.

In [1], the two codes constructed were designed to be

self-dual. The (48,23;12) systematic subcodes of each were

easily found. The 24th dimension in each was more elab-

orately constructed with the proviso that odd parities of
the rows were induced to be used as tools in an era.sure-

error correcting decoding procedure. A search of the code-

word weights' structure indicated the presence of 42 words

of weights 8 and 40 in both these codes. The remaining

nonzero words were of minimum weight 12. There exists
a straight systematic construction of the Reed-Solomon

(RS) (8,4;5) Code over GF(64) for the 24th dimension

given below, still using the particular binary representa-

tion in [1], which yields only six codewords of weights 8

and 40. This gives a box code with even parity on the
rows. So for a low signal-to-noise ratio, this code and the

previously constructed codes of dimension 48, rate 1/2, are
effectively of minimum distance 12. The decoding proce-

dure for soft decision mentioned in [1] is still applicable and

preferred over any current soft decoding of the (48,24;12)
Quadratic Residue Code.

In [2], a code of length 72 and distance 15 was con-

structed specifically to have simplified soft decoding. The
(72,35;16) subcode was constructed with even parity on

the nine rows in a nonsystematic manner as a subcode

of the Reed-Solomon (8,4;5) Code over 6F(512). The

36th dimension was constructed to give odd parity on the

rows and yield a code of minimum distance 15. The full

code was designed to have a systematic encoding. This

code, however, upon investigation, was found to have a

very small number of words of length 11.

To meet this emergency, a new (72,36;15) box code is
constructed here with rows of even or odd parity, and so

it possesses, perhaps, a simple hard decision 7-8 error cor-

recting procedure. This code has been simulated and ver-

ified to have a minimum distance of 15 and even weight

words congruent to 0 modulo 4.

II. (8,4;5) RS Code Over GF (64)

Represent the Reed-Solomon (8,4;5) Code over GF(64)

in binary using the particular normal basis in [1]. One
can generate a rate 1/2 self-dual code of length 48 and

dimension 24 with weights that are multiples of 4.

This binary representation of the RS (8,4;5) Code over
GF(64) yields six (8,7;2) codewords whose decomposition

via Mattson-Solomon into two cyclic code components and

a constant component looks like (6,4;3) and (6,2;5) RS
Codes over GF(8) and a (6,6;1) binary code, respectively.

In particular, let 7 be a root of the polynomial f(z) =
z 6 + z 5 + z 4 + z + 1, where 7 is a primitive generator of

the 63 roots of unity. Represent the elements of GF(64)

in the normal representation using the roots of f(z). The

roots are 7J; j E J; J = {1,2,4,8, 16,32}.

NOTE: For this particular choice of f(z), we have

Tr71=l; jEJ; J={1,2,4,8,16,32}

Tr(7i7 k)=0; i#k; i, kEJ

Let fl be a root of the polynomial g(x) = x3 + x 2 + 1. /3

is an element of GF(8), a subfield of GF(64), and/_ = 79.

A. Encoding

Now use the recursion or check polynomial h(z) =
3

rL=o(X + 13i) to generate an extended (8,4;5) RS Code
over GF(64). This means that the initial shift register

contains four elements in GF(64) expressed as coefficients

in the normal representation above. The cyclic portion of

the code is of length 7, and the overall parity symbol is

the eighth dimension. Represent the binary code as com-

ponents Tr(P(x)TJ); j = 1,2,4,8, 16,32.

The general Mattson-Solomon (M-S) polynomial of a

codeword a, similar to the Golay codeword over GF(8), is
P,(z) = Co + Clx + C2z 2 + C3z 3 where C_ E GF(64) for

0<i<3andxE GF(8).

Encode the codeword in its cyclic portion. The ex-

tended codeword a expressed in terms of the M-S polyno-
mial is

a = (P.(_');0 < i < 6, P.(0))

Writing the codewords in binary using the normal basis

7 j, j E J above, there are six binary codewords of length 8:

Tr(P(x)7J); j = 1,2,4,8,16,32

where Tra denotes the value in GF(2) given by the Trace

of an element a E GF(64):

Ira = a+a 2+a 4+a s+a 16+a 32
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Consider one of the six binary words in its Mattson-

Solomon setting,

a_(P.(_)_) = aX(Co + c_ + c2_ _ + c._")_)

= Wr(C0-rj) + Wr'[(Clx + C2x2 + C3z3)7 _

+ ((c,_ + c_ _ + c_)Y) 8]

Tr'a= a+a 2q-a4; a EGF(8)

Set Co = 0 temporarily, as this does not affect the

arguments to follow.

Tr(P(x)7 j) = Tr'[(C17 / + (C,1J) s + (C27J) 4

+ (c2_)"")_ + ((c._) _ + (c._)16)_ _]

Lemma: The coefficient of x is a (6,4:3) code over

GF(8). The coefficient of z 3 is a (6,2;5) code over GF(8).
The code is indexed by the values of 7J;j E J =

{1,2,4,8,16,32}.

Proof: The set 7J;j E Y = {1,2,4,8, 16,32} is a linear

independent set and thus can take zero values only one less
than the number of terms in the coefficient of z, z 6. The

term Tr(C07 j) in the code's expression when TrC0 = 0,

the constant terms, forms a (6,5;2) binary code.

Theorem: The RS Code determined by codewords

with M-S polynomials Pa(x);TrC0 = 0 forms a (48,23;12)

binary code with weight multiples of 4.

Proof." The multiple of 4 property of the weights fol-

lows, using the Solomon-McEliece F2 Formula.

Tr(P(x)7 j) = Tr'[(C17 j + (Cl'/J) 8 -_- C2,'[J) 4

+ (c._)"")_ + ((c.d) _ + (c.y)l_)_ _]

where Tr is defined in GF(64) and Tr' is defined in GF(8).

Now

g-_8[_2~ 10jr2(TrP(x)3 z) = Tr'(C1C_'r aj + ,_xva. + C_C_6"r1_

.q_ ['_8 g-_l 6_24j /",32 g-*2 _34j /'_4 g"_2_ 6j
"Jl"J3 / "_ "J2 v31 "Jc ,,J2,,J3I

+ r_32r_x6~4sj + C4C18~_oj_
"J2 'J3 / 2 3 / ]

= Tr(CIC_'r 3_+ ,_lVal

/'74/"?16_20j
"_- v2 "J3 / 1

and therefore _j_.t rXTrP(x)'r j) = 0.

Recall that the normal basis was chosen so that TrTi =

1;j E JTr(717 _) = 0; i _ k; and i,k E J.

It has been demonstrated that the binary weight of any

codeword in the RS Code above is a multiple of 4. Since

the symbol distance of the code is greater than 5, we have

narrowed the weights down to 8, 12, 16, 20,.-., 40.

III. Structure of the Code

Using the same arguments given in [1], the minimum

weight of the code for TrC0 = 0 is equal to 12. However,
note that for each Co = 7i; i = 1,2,4,8,16,32 and Ci =

0; and i = 1,2,3, one obtains a codeword of weight 8.

We proved that these six are the only words of weight 8.

A counting argument on the weights would do the same.

Since all words have weight multiples of 4, the code is self-
dual.

IV. (72,36;15) Code

In [2], an alternate (72,36;15) box code was constructed
from the (63,35;8) cyclic code, generated by the check poly-

nomial f(z) = rIfi(z);i = 1,3,5,7,9, 13,21 where fi(z)
is a polynomial irreducible over GF(2) with /3i as a root

where/3 is a primitive 63rd root of unity. We now present

the theoretical justification.

Place the codewords in the usual 9 x 7 box code matrices

corresponding to their values 7i + 9j (rood 63) for 0 < i

_< 8, 0 < j _< 6. Let z = a:y where a:7 = 1, y9 = 1, z =/39j,

and y =/37i. Indexing the rows by y, the M-S polynomial

for each row y is
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p,(,)= Tr(C,,+ C.,"+ C_,_+ CTg+ C,.,'")

+ Cgz 9 + C18z 18+ C36z36+ C_,z _1+ C42z 42

= c.ly_+ c_,y_+ T_(C,y_)

+ _'[(c_+ c,y + c_¢)_+ (c_y'+ c_M

+ c'_%3+ c_¢ + c,3¢+c,_,?),_]

Proof." Weight pattern 6 6 6 6 6 6 6 6 6 gives the sum
F2 to be 1. This is impossible.

Let

P(y)= c_+ c,y+c_¢

Q(y)= _¢ + c2__+ c'_%_+c_¢ + c13¢+c_ _

then

where Tr is defined in GF(64) and Tr' is defined in GF(8).

Thus the coefficient of x is a (9,3;7) code over GF(8),
and the coefficient of x6 is a (9,6;4) code over GF(8).

Construct an eighth column on the nine rows by the

usual parity rule. The eighth column will have the same F2

value as the original (63,35;8) code. Then we immediately
have the following lemma:

Lemmaa 1: The extended box code is a (72,35;16) code.

Proof: Consider the Solomon-McEliece Formula. The

sum F2 over the nine rows and eight columns gives 0, show-

ing that the weight of every codeword is a multiple of 4.
The properties of the coefficients of x and x6 for the sub-

code or dimension 27 imply the minimum weight of the
entire code to be 16.

Now adjoin a vector of all ones to the original 9 x 7

matrix setting. This will make the rows have odd parity

and will complement the column sums. It is easy to show

that all odd-weight codewords have weights of the form

4m- 1. We will prove that the minimum code distance is
15.

The degree of the Mattson-Solomon polynomial for the

entire 63 length code is 56; the next highest degree is 52.
From this and the properties of the coefficients of x and

x 6, one can easily see that the weight of the inner cyclic

codeword is less than or equal to 54. If the inner weight

is 54, the nine-row weight patterns 6 6 6 6 6 6 6 6 6,

7 6 6 6 6 6 6 6 5, and 7 7 6 6 6 6 6 6 4 could generate

codewords of weights less than 15. If the inner weight is

52, the weight pattern 6 6 6 6 6 6 6 6 4 could generate
codewords of weights less than 15.

Lemma 2: For the original cyclic (63,35;8) code, none
of the weight patterns above are possible.

_..yP(y)Q(y) = 0

deg(P6(y) + Q(y)) = 7

If the weight pattern is 7 6 6 6 6 6 6 6 5, then

EyP(y)Q(y) = 1 + a :f- 0 for some (_ # 1; a • GF(8).

If the weight patterns are 6 6 6 6 6 6 6 6 4 or

7 7 6 6 6 6 6 6 4, the polynomial p6(y) + Q(y) has

eight zeros. Then p6(y) = Q(y). But P(y)Q(y) = 0 and
p6(y) = Q(y) cannot give weight 4 for any row indexed
by y.

Theorem: The box code is a (72,36;15) code, where

the even-weight subcode is a (72,35;16) code with all code-
words having weights of the form 4m, and the odd-weight

subcode is a (72,35;15) code with all codewords having
weights of the form 4m - 1. QED

V. (72,36;15) Alternate Code

One can construct the Bose-Chaudhari-Hocquenghem

(BCIt) (63,27;16) code generated by the check polynomial

f(x) = I-[ fi(x), i = 1, 3, 5, 9, ll. The cyclic decomposition

in the box code setting yields a (9,5;5) code over GF(8) for

the coefficient of x and a (9,4;6) code over GF(8) for the
coefficient of x 6. This does extend to a (72,36;15) code,
too. In fact, this code has been simulated and verified to

have a minimum distance of 15 with even weight words
congruent to 0 modulo 4. If we try all possibilites for the

check polynomial g(x) = 1-I fi(z); i= 7, 21, which totals

to 256 codewords, we are left with an inner BCH code

that can algebraically correct 7 errors. This leaves soft

decoding still very complex and unworkable.

Note that because of the Mattson-Solomon decompo-

sition here, one may correct five errors easily by hard de-

cision, but six or more take more trials. Similarly, a soft
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decision would require 84 = 212 trials. This requires more
trials for both hard and soft decisions than the alternate

code mentioned above in [2]. Note the advantage that the

(9,3;7) code over GF(8), the coefficient of x 6, has over the

(9,4;6) code over GF(8), the coefficient of z.

Vh (8,4;5) RS Code Over GF(512)

The (8,4;5) RS Code over GF(512) in the binary repre-

sentation of [2] gives rise to a systematic (72,36;16") code
with nine words of weight 8, and all the rest have weights
> 16. The normal basis consists of 7i;i = 2J;0 _< j _< 8

withTarootoff(x) = x 9 + x s + x 6 + x5+x 4+x+l.

The proof that there are no words of weight 12 is a sim-

ple counting argument. We prove there are no words of

weight 60 in the code of dimension 35 given by Co = 0.

Represent the elements of GF(512) in the normal repre-
sentation using the roots of f(x). The roots are 7 j ; j E J;

and J = {1,2,4,8, 16,32,64,128,256}.

For this particular choice of f(z), we have

Tr7 j = 1; jEJ; J= {1,2,4,8,16,32,64,128,256}

Tr(7_7 k)=0; i#k; i, kEJ

Represent the binary code as components Tr(P(x)Ti);

i = 1,2,4,8,16,32,64,128,256, giving nine words of

length 8.

Let _ be a root of the polynomial 9( x) = z 3 + x 2 + 1.

is an element of GF(8), a subfield of GF(512) and fl = 773.

A. Encoding

Now use the recursion or check polynomial h(x) =
3 i

1-Ii=0(z+fl ) to generate an extended (8,4;5) RS code over

GF(512). This means that the initial shift register contains
four elements in GF(512) expressed as coefficients in the

normal representation above. The cyclic portion of the

code is of length 7, the overall parity symbol; the eighth
dimension is the usual sum over the seven symbols.

In the (72.36;16") binary representation of the RS

(8,4;5) Code over GF(512), any codeword with the co-
effiecients of x and x 6 nonzero has a minimum weight of

16. When these are zero, then clearly there are only nine

words of weight 8, which come from the encoding of the
symbol 7 j; j E J; J = {1,2,4,8,16,32,64,128,256}. A

similar proof would argue that there are only six words

of weight 8 in the binary representation of the (48,24;12")

RS Code over GF(64).

To prove there are no words of weight 12, a counting

argument notes that there are no words of weight 60 in the
even-weight codes, where TrC0 = 0. Words of weight 60

must possess a weight distribution over the nine words in

any permutation of 8 8 8 6 6 6 6 6 6. This implies that three

rows are zero and six rows are nonzero with weights 6 or

F2 = 1, to say the least. However, in [2], we note that this

cannot be. The cyclic coefficients are (9,3;7) and (9,6;4)

codes over GF(8), so there are at least seven rows with
F_ = 1. QED
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The Galileo low-gain antenna mission has a severely rate-constrained channel

over which we wish to send large amounts of information. Because of this link

pressure, compression techniques for image and other data are being selected. The

compression technique that will be used for images is the integer cosine transform
(ICT). This article investigates the compression performance of Galileo's ICT al-

gorithm as applied to GaJileo images taken during the early portion of the mission

and to images that simulate those expected from the encounter at Jupiter.

I. Introduction

The Galileo low-gain antenna (LGA) mission will rely

heavily on source coding, i.e., data compression, to maxi-

mize the return over the severely rate-constrained chan-
nel. A major portion of Galileo's information return

from Jupiter will be images from the solid-state imaging
(SSI) camera. Image frames contain either 800 x 800 or

400 x 400 8-bit pixels, and would require 5.12 Mbits or

1.28 Mbits, respectively, to transmit uncompressed. Im-

age compression gains of 10 dB and higher are obtainable
through known coding techniques such as the discrete co-

sine transform (DCT), which introduces hardly noticeable

losses in data fidelity. However, Galileo cannot directly

utilize off-the-shelf compression algorithms due to its lim-

ited onboard computing capability. Instead, Galileo will
use a computationally tractable algorithm called the in-

teger cosine transform (ICT). The ICT operates and per-

forms comparably to the DCT. This article investigates

the compression performance of Galileo's ICT algorithm,

as applied to actual Galileo images and to simulated im-
ages constructed to mimic the conditions that the Galileo

camera is expected to encounter at Jupiter.

The amount of compression achieved by the ICT is ad-
justable by selecting the degree to which the transform

coefficients are quantized. Coarser quantization generally
produces higher compression and larger errors in the re-

constructed image. Thus, the study of ICT compression

performance is in fact an analysis of the possible trade-

offs between compression of a source image and the result-

ing distortions in the reconstructed image. It is impor-

tant to understand the extent to which the compression

is predictable by using anticipated image characteristics,
and how compression versus distortion varies with the se-

lectable quantization step size. The overall statistical vari-

ability of the compression performance is an important
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factor that influences link usage planning. This article is

a preliminary attempt to examine these issues.

The ICT is described in [1] and [2], and the specific

application of the ICT to the Galileo LGA mission is dis-

cussed in [3]. For a given quantization step size, quanti-

zation matrix or template, Huffman table, and, of course,

image, the ICT produces a compressed image. The com-

pression ratio indicates the ratio of the compressed image

size to the original image size. Distortion indicates the dif-
ference between the reconstructed image and the original

one. Neither the compression ratio nor the distortion is

input for the ICT. This article describes the behavior of

the compression ratio and distortion as a function of the

quantization step size, q, and any prior information about

the image.

An additional level of control may be achievable by

selecting one of a few specially constructed quantization

templates and using a corresponding Huffman table. For

this article, the algorithm uses only a template for uniform

quantization and a Huffman table that has been trained

for the template on space images [3]. The tailoring and use

of different quantization matrices is the subject of ongoing

work, and will not be discussed here.

II. The Images in the Data Set

The ICT has been tested on various images. Ideally, the

test images would be ones of Jupiter taken by Galileo's SSI
camera. Instead, the available images are ones taken by

Galileo of Venus, the Earth, the Moon, and black sky, and

ones taken by Voyager of Jupiter and a few of Jupiter's

satellites. There are four image sets provided for this

study by JPL's Multimission Image Processing Labora-

tory (MIPL).

(1) The Earth 1 images are Galileo images from volumes

2 through 6 of the Earth 1 CD ROMs. They con-
sist of 970 raw_cal, 1798 Earth, 81 Venus, and 773

Moon images for a total of 3622 images. A randomly

selected one-third of the Earth 1 images has been
used for this article to identify trends and perfor-

mance predictors. The other two-thirds of the data
has been reserved for future determination of the ef-

fectiveness of the predictors and the consistency of
the trends.

(2) The 13 selected Galileo SSI images consist of 12 re-
cent Galileo images and 1 of the Earth 1 images se-

lected by MIPL to illustrate a typical range of image

types. These images are designated by names begin-

ning with rq534.

(3) The 19 simulated Galileo images were obtained from

Voyager images of the Jovian system by removing

Voyager camera characteristics and introducing the
Galileo SSI camera signature. These images are des-

ignated by names r.1, r.2, ... ,r.19.

(4) The 16 radiation-noise-added simulated Galileo im-

ages are 7 of the simulated images and 9 of the se-

lected images with 1 of 4 available noise frames (A,

B, C, and D) added by MIPL to simulate the radia-
tion effects at Jupiter. These images are designated

by names beginning with rq538.

Some examples of the selected Galileo images are shown

in Fig. 1. The smaller data sets are useful for illustrating
different behaviors but do not provide sufficient data for

analysis. The Earth 1 images provide a larger number of

images for drawing statistical inferences.

Images were compressed using different values of q, and
reconstructed. Quantization step sizes 2 through 18, 20,

and 24 were tested on all images. The compression ratio,

root mean squared error (rmse), error variance, and error

mean were noted along with image statistics such as the

mean, minimum and maximum pixel values, the sample

zeroth-order entropy, and the sample difference entropy.

From this information and some a priori information about

the image, patterns in the compression and distortion per-
formance have been sought.

III. Performance as a Function of

Quantization

This section shows the relationships between compres-

sion ratio and image distortion for the ICT as the quanti-

zation step size is varied.

A. Compression Behavior

The compression ratio achieved by the ICT depends on

the image. This section shows the gross behavior with only
the small representative image sets. Scatter plots illustrate

the compression behavior as a function of the quantization

step size, the spread of compression ratios for different

images, the limiting compression for very large q, and the
effect of the simulated radiation noise on the compression.

For the Huffman codes used in this work, there is a

limit of 102.4 on the compression ratio achievable by the

8 x 8 ICT. This is because an all-zero quantized block

in the transform domain can he coded in 5 bits, and an
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uncompressed block is 8 x 64 bits. In order for a quantized

block to be all zero, either the original block had to be

nearly black or the quantization step size had to be very

large. In either case, the reconstructed block would be

entirely black. Among the images tested, the nearly black

ones approached this limit with the quantization step sizes
tested.

Figure 2 has three scatter plots showing the compres-

sion ratio versus quantization step size for the images in

each of the three small data sets. The plots in Fig. 2

show that the compression trend is typically monotonic,

increasing with q, but that it starts to level off for higher

q. In most instances, as q increases, the spread on the log

scale of the compression ratio decreases; this is consistent
with the upper limit on compression ratio. The unlabeled

scatter plots also show that without taking into account

information about the specific image, it is difficult to pre-
dict the compression.

To illustrate the effects on compression of adding the

simulated radiation noise to images, Fig. 3 has one plot for
each of the four noise frames used. The plots show how

the noise changed the compression ratio for the individual

images. Solid symbols are used for images in the sets of

selected Galileo SSI images or simulated Galileo images,

and hollow symbols with the same shape are used for the

corresponding images with radiation noise added. These

plots seem to indicate that the noise frames dominate the

compression performance; this is more apparent for frames
A and B and less so for D.

B. Distortion

The rmse is a measure of the pixel-by-pixel difference

between the original image and the reconstructed image.

It is not the best measure of the distortion of an image,

but it is easily quantifiable and commonly used as a guide-
line. A better measure of the distortion is how it affects

the conclusions and analysis of the images sent back from

Jupiter, but this is hard to quantify. The SSI team, con-

sisting of scientists who will be using Galileo's images, has

been meeting with both JPL and the Ames Research Cen-

ter to try to determine what types of distortion are of more
concern than others. The appropriate distortion measure

for this analysis is not the subject of this article, and for

now the rmse will serve as a rough guideline.

For a given image, the rmse typically increases as the

quantization step size increases. The three scatter plots

in Fig. 4 show rinse versus quantization step size for the

three smaller image sets. Although there is a monotonic

trend, there are examples of images for which the rmse

is unexpectedly high for a particular q or q's. These high

rmse situations may be avoided most of the time by careful
selection of the quantization step size.

C. Selection of Quantization Step Size

For a particular image, there may be a quantization

step size that is inferior, meaning that for that image
there is another quantization step size that gives both bet-

ter compression and better rinse. An inferior q causes

a non-monotonic spike on the compression versus distor-

tion curve. The plot in Fig. 5 shows the distortion ver-
sus compression ratio for the selected Galileo SSI im-

ages in Fig. 1, namely rq534.1itn, rq534.ausvn, rq534.1un,

rq534.pct, rq534.ear9n, and rq534.gas. The solid lines

show the curves traced out by the rinse and compres-

sion ratios at all of the tested q's; the dashed lines show

how the curves would be smoother and more predictable

if the inferior q's could be predicted and avoided. Images

that are predominately black sky, such as the image of
Gaspra, rq534.gas, exhibit the most dramatic rinse fluctu-

ations with q.

In order to get a reasonable profile for quantization step

sizes that are likely to be inferior, the larger image set is

necessary. The number of images for which a particular q

was inferior was tallied over the randomly selected third of

the Earth 1 images. Figure 6 is a histogram showing the
frequency that different q's were inferior for the raw_cal or

black sky images, and for the non-raw_cal images that are

of the Earth, Moon, and Venus. The histogram shows that
some q's are inferior more often than others, but sometimes

only for certain subsets of the images. For instance, q = 6

is inferior for a quarter of the raw_cal images, but not
often for the interesting ones. For q = 13, we see the

opposite trend. Further study is important and should

include a measure of how bad a q is for a particular image

(as opposed to simply counting how often q occurs). Also,
if the images will be classified into types that give improved

prediction of the compression, then the study of which q's
are inferior should be redone for each subset.

IV. Performance as a Function of Image
Characteristics

Using the randomly selected one-third of the Earth 1

images, correlations were done between the camera set-

tings and the compression ratio, the compressed image

size, and the rmse in order to direct the study towards

likely parameters for predictions, or at least away from
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parameters that appear to be uncorrelated. The camera

settings were not continuously valued, and so were not
ideal for a correlation analysis. A portion of the correla-

tion matrix of interest is shown in Fig. 7.

The filter width has a small amount of correlation with

the performance. The middle wavelength of the camera fil-
ters seemed independent of the compression and the rmse.

By dividing the selected data set into subsets defined by
the different camera settings, statistics for each subset

could be found. Scatter plots of compression versus rmse
show the trends for different subsets. However, an analysis

of variance test with a level of significance of _ = 0.05 in-

dicated that the subsets probably come from distributions

with the same mean.

The black sky images may need to be treated separately

because compression performance effects that are second

order for more interesting images are apparently first order

for these images. For instance, the raw_cal images that are

mostly black sky tend to cluster according to the gain state

on the camera (not shown in this article). The effect is less

noticeable for images with less black sky.

V. Overall Statistical Variability

With so many images in the Earth 1 image set, the

compression and rmse distortion behavior can be displayed

in histograms where the range of values is divided into
bins and in cumulative distribution type plots. Figures 8

and 9 show the histograms and cumulative distributions

of both compression ratio and rmse for the selected third

of the images using q = 8. On the cumulative plots there
are three curves: one is for the Earth, Moon, and Venus

images; one is for the raw_cal images; and one is for all of

the images. There are separate histograms corresponding
to each curve on the cumulative plots. Histograms of this

sort for different quantization step sizes can assist Galileo

mission planners in deciding how many pictures to attempt

to send back, and at what risk this can be done.

Vl. Conclusions

This preliminary study has generally validated the as-

sumptions regarding high image compression gains that
the Galileo LGA mission is counting on. But it has also

flagged several areas of concern that require further study.

The scatter plots of Figs. 2-4 and the histograms of

Fig. 8 show that compression ratios of 10:1 to 40:1 are
not unreasonable to expect at moderately small values of

rmse. On the other hand, there is a statistical variability

of the achievable compression ratio on the order of 5 to

10 dB from image to image, and slightly less variability

in the rmse. The variability of compressibility can greatly

complicate the job of planning how many images can be
sent back and how large buffers have to be in the onboard

computer.

The study of correlations between the known camera

settings and the resulting compression performance sug-

gested no significant correlation that could be used to ap-

preciably improve the predictability of performance.

There needs to be more analysis of what can be cal-

culated or predicted about each image to aid downlink

planning and, perhaps, compression control. For instance,
better predictors might be obtained from anticipatable or

measurable image characteristics, such as the percentage

of black sky expected to fill the image frame. Alternatively,

an onboard calculation could be used to adjust the quanti-

zation step size over small portions of the image in order to

target a particular compression ratio. An example of such
a calculation of local image statistics is an estimate of the

entropy using the buffered portion of the image awaiting

compression. Such ideas are under examination.

Further improvement in the reconstructed images can

be achieved by developing more sophisticated reconstruc-

tion techniques to exploit continuities across block bound-

aries and other spatial correlations in the image. There

is ongoing work to develop special purpose quantization

matrices for improved image quality at good compression
ratios.
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(a) (d)

(b) (e)

Co) (f)

Flg. I. Selected Galileo Images: (a) rq534.ausvn, (b) rq534.ear9n, (c) rq534.gasn, (d) rq534.1unvn,
(e) rq534.11tn, and (f) rq534.pctn.
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Link Monitor and Control Operator Assistant: A Prototype
Demonstrating Semiautomated Monitor and Control

L. F. Lee and L. P. Cooper
AdvancedInformationSystemsSection

This article describes the approach, results, and lessons learned from an applied

research project demonstrating how artificial intelligence (AI) technology can be
used to improve Deep Space Network operations. Configuring antenna and asso-

ciated equipment necessary to support a communications link is a time-consuming

process. The time spent configuring the equipment is essentially overhead and re-
suits in reduced time for actual mission support operations. The NASA Omce

of Space Communications (Code O) and the NASA Office of Advanced Concepts
and Technology (Code C) jointly funded an applied research project to investigate
technologies which can be used to reduce configuration time. This resulted in the

development and application of AI-based automated operations technology in a pro-

totype system, the Link Monitor and Control Operator Assistant (LMC OA). The
LMC OA was tested over the course of 3 months in a parallel experimental mode on

very long baseline interferometry (VLBI) operations at the Goldstone Deep Space
Communications Center. The tests demonstrated a 44 percent reduction in precal-

ibration time for a VLBI pass on the 70-m antenna. Currently, this technology is

being developed further under Research and Technology Operating Plan (RTOP)-
72 to demonstrate the applicability of the technology to operations in the entire
Deep Space Network.

I. Introduction

The Jet Propulsion Laboratory (J PL) manages a world-

wide network of antennas, the Deep Space Network (DSN),

that provides a communications link with spacecraft.

DSN operations personnel are responsible for creating and
maintaining this communications link. Their tasks involve

configuring the required subsystems and performing test

and calibration procedures. The task of creating a commu-

nications link is known as precalibration and is a manual,

time-consuming process that requires both operator input

of more than a hundred control directives and monitor-

ing of more than a thousand event messages and several
dozen displays to determine the execution status of the

system. The existing Link Monitor and Control (LMC)

system requires the operator to perform a large number of
textual keyboard entries and to monitor and interpret a
large number of messages in order to determine the state

of the system and to selectively identify relevant infor-

mation from dozens of predefined, data-intensive displays.
Tile tasks required by the LMC create an environment in

which it is difficult to operate efficiently.
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The goal of the Link Monitor and Control Operator

Assistant (LMC OA) task is to demonstrate automated

operations techniques that will improve operations effi-

ciency and reduce precalibration time. The LMC OA is a
knowledge-based prototype system that incorporates arti-

ficial intelligence (AI) technology to provide semi-
automated 1 monitor-and-control functions to support op-

erations of the DSN 70-m antenna at the Goldstone Deep

Space Communications Complex (DSCC). The AI technol-

ogy improves operations by using a flexible and powerful

procedural representation, by reducing the amount of op-
erator keyboard entries, and by providing explicit closed-

loop communications and control through an expert-

system module.

The precalibration process used for VLBI on the 70-m
antenna was selected as the test domain for the prototype.
The LMC OA was field tested at the Goldstone DSCC and

performed a semiautomated precalibration for VLBI using

actual operational equipment. The test demonstrated that
precalibration time can be reduced by 40 percent with the

LMC OA prototype.

The LMC OA has three major components: the Tempo-

ral Dependency Network (TDN), the Execution Manager

(EM), and the Situation Manager (SM). These three com-

ponents work together to provide a closed-loop, system-
level control system for precalibration. The TDN is a di-

rected network that represents parallel procedural paths,

precedence relations, preconditions, and postconditions.

The TDN is the primary knowledge base for the system.

The EM is responsible for traversing the TDN and send-

ing control directives to the subsystems while maintaining

the precedence, parallel, and sequential constraints speci-
fied in the TDN. The SM works in step with the EM and

provides the situational awareness necessary to close the
control loop, to detect anomalies, and to support recovery
from anomalies. The SM maintains an internal model of

the expected and actual states of the subsystems in order
to determine if each control directive is executed success-

fully and to provide feedback to the user.

This article describes the LMC OA prototype and test

results. Section II describes the problems with the existing

LMC system. The following sections will explain the LMC

OA approach used to address the identified problems. The

two major concepts that drive the LMC OA design will

1 The LMC OA provides semiautomated precalibration because op-

erator interaction is required. Precafibration currently requires

several manual operations which could not be done through ex-

isting DSCC monitor and control interfaces. Furthermore, certain
support and subsystem data were inaccessible to the LMC OA,

thus requiring input from the operator.

be presented, followed by a description of the TDN and

the primary knowledge representation in the LMC OA.

A detailed discussion of the three major modules and an

operational scenario will be presented. In conclusion, the

results of operational field testing and the lessons learncd

from this applied research project will be discussed.

II. Problem OvervJew

Currently, for standard operations, an operator is al-

located 45 min 2 to perform a precalibration. In the case

of more complex operations, like VLBI, an operator may
be allocated much more time. Precalibration is a time-

consuming process because of limitations in the existing

operational monitor-and-control system. Precalibration is
a command-line, keyboard-entry system that requires op-

erators to manually send hundreds of directives to subsys-
tems and monitor more than a thousand incoming mes-

sages on a text-based scrolling log. The system lacks ex-

plicit, informative responses about the state of a directive
and does not provide guaranteed communications between

the monitor-and-control system and subsystems being con-

trolled. For each directive sent by the operator, the sub-

system usually returns a directive response; this is simply

an acknowledgment from the subsystem informing the op-
erator whether the directive was received or rejected. A

directive response does not indicate the success or failure

of the directive's execution. The subsystem may also send

out event notice messages, which relay information about
the state of some device in a subsystem. These messages,

however, are not explicitly tied to any directive sent. Op-

erators, therefore, must rely on their experience to deter-

mine which directive was most likely to have caused the

subsystem to send the event notice message. Monitor data,

which are sent periodically by the subsystems, also provide
information about device states, tIowever, monitor data

are never displayed automatically or tied to any directive.

Instead, a subset of monitor data is formatted into prede-

fined displays that the operators can call up. The opera-
tors then must decide which piece of the data they need

and which display contains that piece of information. Of-

tentimes, a display contains many pieces of information of

which operators only need one or two.

The inability of the monitor-and-control system to keep

up with input from the subsystems causes messages to be
dropped at monitor and control. To compound the prob-

lem, the subsystems cannot detect when a message has

The standard time allocated for precalibration and postcalibration

for each user or project activity is listed in Appendix A of the
DSN Scheduling Code Dictionary, JPL document 842-204: 10-009,

Rev. B (internal document), Jet Propulsion Laboratory, Pasadena,
California, June 20, 1989.

125



been dropped and, thus, cannot resend information. This
situation causes false alarms that can inundate the user

with messages and often hide real alarm situations. Fi-

nally, the system is prone to input errors. A simple pre-
calibration pass requires more than a hundred directives.

It also requires the operator to manually identify and type
each directive and its parameters. A subsystem, therefore,

can take several minutes to recover from a simple typo-
graphic error.

Operators use a variety of support data--schedules,

predict files, sequence of events, and pass briefings--to
determine the type of pass, the spacecraft being tracked,

and the method used to configure the communications and

processing equipment. Information contained in the sup-

port data files is also used to determine the correct pa-
rameters for the control directives. Because these files are

not available electronically for easy viewing and usage, the
operator must refer to the hard copy version of these files

and manually enter numerical parameters for control di-
rectives, when the numbers oftentimes are accurate to 10

decimal places. An entry error in any one of the digits
could cause a major problem in the system.

The most difficult part of precalibration is the deter-
mination by the operator of what directives need to be

sent and how the directives should be ordered. Currently,
end-to-end representation of operations procedures does
not exist. The documentation that is available addresses

a specific subsystem or spacecraft or provides a general

overview of an activity. As a result, operators must rely
on their own experience to assemble an end-to-end oper-

ational sequence. Thus, the operational sequences vary
from operator to operator, leading to inconsistencies in

operations and making recovery from anomalies difficult.

The following are the specific operability problems iden-

tified with the existing LMC system.

(1) Extensive manual entry is required of the operator.

(2) The lack of integrated monitoring tools for the op-

erator makes it difficult or nearly impossible to per-

form parallel operations. The operator must men-
tally interpret displays and text messages to deter-
mine correct execution of a directive.

(3) False alarms due to dropped messages occur fre-

quently, and because dropped messages are not de-
tected, they are retransmitted by the subsystem,

giving the operator an incomplete picture of the sys-
tem state.

(4) The lack of on-line access to usable support data in-

creases the need to integrate information from multi-

ple sources. Entry of complex numerical parameters

increases the chances of typographical errors.

(5) There is no end-to-end representation of the opera-
tions procedures.

III. Closed-Loop Control and Situational
Awareness

Two major design concepts found in the LMC OA

system are closed-loop control and situational awareness.

In the LMC OA context, closed-loop control means that

all control actions (i.e., directives) have explicit feedback

regarding the success or failure of the requested action.

Under the existing monitor-and-control system, no single

message can report the status of a directive. Rather, the

operator must sift through many different data messages

returned by the subsystems and many different displays

to determine the status of the directive. Moreover, this

present process of filtering and identifying pertinent data

is time consuming. The LMC OA, however, integrates all
available information sources and provides the operator

with clear, consistent, explicit feedback for every control
action.

Situational awareness, another feature of the LMC OA,
allows the operator visibility into the state of the system

and the state of procedure execution. In the current LMC,

a large set of displays provides the operator with visibility

into the state of the system. However, the information is

difficult for the operator to interpret. Information impor-
tant to the operator is not easily accessible because there
are too many displays and none of them are user-definable.

The LMC OA team did not redesign the displays because

the resources to tackle such a significantly large problem

were not available. Rather, the LMC OA prompts the user
with the name of the display and the value to look for. In

this manner, the LMC OA makes it slightly easier for the

operator to determine the state of the system by explicitly
providing the display name and monitor item to look at.

The second criterion for situational awareness is visibil-

ity into the state of procedure execution, which means that

the operator knows the progress and status of procedure
execution. Currently, since there does not exist end-to-

end procedural documentation, the operator depends on
experience to determine the procedure. To determine the

state of procedure execution, the operator must interpret

a large number of messages from the subsystem. However,
through an extensive knowledge engineering effort, an end-

to-end integrated procedure for VLBI was created and rep-
resented in a TDN. The TDN is a clear and intuitive way

of representing the procedure to the user. Furthermore,
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through the color-coded, graphical display of the TDN, the
operator can immediately determine the execution status

of the procedure.

IV. Temporal Dependency Network

One of the problems with the existing LMC is the lack

of end-to-end procedural documentation. To perform a

VLBI precalibration, the operator must refer to several

operation manuals which describe individual subsystems

or portions of the procedure. The operator must then
manually create an integrated procedure. In some cases,

operators create and use, as a reference, personal "cheat
sheets" that describe what needs to be done. The lack of

a single source of documentation that describes the VLBI

precalibration procedure results in inconsistent operations.
Actual operations rely heavily on an individual operator's

experience and expertise. To automate operations, an in-

tegrated procedure for VLBI precalibration was created.

The approach to knowledge engineering involved first

learning about the system through existing documenta-

tion and noting inconsistencies and missing information.

The next step involved discussing the procedure with op-

erators, engineers, technicians, and scientists to get their

viewpoints and to clear up inconsistencies as much as pos-
sible. This led to the development of an initial TDN. The

TDN became the much-needed common language between

the knowledge engineers and the knowledge sources. This

LMC OA knowledge engineering effort is the only known

attempt, within the DSN, to produce a single, coherent,
and consistent baseline operational sequence for precali-

bration that merges the viewpoints of all users.

The TDN, shown in Fig. 1, illustrates an end-to-end

operational sequence for VLBI. Sequential, parallel, and
optional operation sequences are identified in the TDN.
Each block in the TDN contains directives that are sent

to the subsystems sequentially. Blocks have precedence
constraints where the directives cannot be sent until all

of its predecessor blocks' directives have successfully com-

pleted execution. Each block has associated precondition
and postcondition constraints. These constraints define

the state the system must be in before starting each block

of directives and after successful execution of those direc-

tives, respectively. Each block may also have temporal
constraints that limit the start and completion of the di-

rectives to a specific time or time interval.

V. LMC OA Design

The goal of the LMC OA is to provide both closed-

loop control and closed-loop communications for the oper-

ator. There are two major modules in the LMC OA: the

TDN Execution Manager (EM) and the Situation Man-

ager (SM). Other modules that will be discussed include
the Block Execution module, Router, Monitor Data Han-

dler, and DSN Data Simulator. An overview of the design

is presented in Fig. 2.

A. TDN Execution Manager and Block Execution

Modules

The TDN EM traverses the TDN identifying blocks

that are ready to execute. Blocks whose precedence con-

straints are satisfied are started. When a block is started,

the user is asked to parameterize any unparameterized di-

rectives. The preconditions are then evaluated by the SM.

A block's directives are sent only after the SM verifies that

the preconditions are satisfied. Once a directive is sent, a

directive response must be received before the next direc-
tive in the block can be sent to a subsystem. After the

last directive is sent and its corresponding response is re-

ceived, the block's postconditions are checked by the SM.

If the postconditions are satisfied, the block of directives

is considered completed.

B. Situation Manager

The SM provides situational awareness within the LMC
OA. It is also an AI-based module that verifies correct ex-

ecution of blocks of directives by checking postcondition
constraints. Problems can be detected and simple recov-

ery assistance provided. To keep track of the state of the

system, the SM keeps an internal model of all hardware

and software devices that can be monitored in the system.

Each device represented in the model has attributes that
reflect the state of the device. Each attribute has a pair

of values: an expected value and an actual value. The ex-

pected value of an attribute, in the form of a postcondition,

is set when a directive is sent to the subsystem. The ac-

tual value of an attribute is set when the subsystem sends

messages noting state changes in the subsystem. Every
directive sent to a subsystem is expected to cause certain

known changes on the states of the devices in the subsys-

tem. Each time a directive is sent, the expected values of
the attributes in the device model are updated.

In addition, several data types are used to set the actual

values of the device attributes: event notice messages, di-

rective responses, monitor data, and operator input. Event

notice messages describe explicitly the actual states of de-
vices. Directive responses provide information on whether

the directive has been received by the subsystem. In some

cases, these responses also provide progress and comple-
tion data. Monitor data are blocks of status information

that are sent periodically by the subsystems. Monitor data
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usually provide more information than event notice mes-

sages. In certain situations, operator input is requested.
Although the operator is provided a set of predefined moni-

tor displays, the information in these displays is not always

available from the monitor data blocks. These displays are

generated as bit-map displays at the subsystem level and
are unavailable to the LMC OA because of format and

DSN operational restrictions. Therefore, for certain di-

rectives, the operator must obtain information from the

displays and enter it into the LMC OA. This information
is used to set the actual value of an attribute in the SM in-

ternal device model. All four electronic data types provide

information about the actual state of a device, but they
do not give explicit information about whether a directive

was executed successfully. However, by using information
about the expected and actual states of devices, the success

of a directive can be inferred. With the SM maintaining

its device models, information about the state of the sys-
tem and the state of the procedure is always available to

the operator.

C. Router, Monitor Data Handler, and DSN Subsystem

Simulator

In addition to the TDN EM, block execution, and SM

modules, there are several other supporting modules. The
Router handles all communications between the LMC OA

and the DSN subsystems and serves as a translator be-

tween the DSN 890-132 protocol and the LMC OA inter-

nal data representations. It receives and decodes input
from the DSN subsystems and directs the input to either
the TDN EM, the SM, or both. It also formats the di-

rectives into communication packages that are sent to the
subsystems. The Monitor Data Handler receives Monitor

Data blocks from the subsystems and stores them in the

Monitor Data database. Since access to the operational

environment is limited, a DSN Subsystem Simulator was

implemented to simulate the directive responses and event

notice messages from the subsystems for testing.

D. User Interaction and Status Displays

One of the LMC OA goals is to provide consistent in-

teraction and meaningful displays to keep the user aware

of what is transpiring in the system. The primary method

of interaction is through menu or button selections using
a mouse. The operator may be asked occasionally to enter

a value or response. The primary interaction window is a

block-level display of the TDN and provides a high-level,

end-to-end sequence of operations. A color bar in each

block shows the status and progress of each block: a gray

bar means the block is inactive, a green bar means the
directives are executing, a red bar means an anomaly has

occurred, and a blue bar means the directives have been

completed successfully. The portion of the color bar that is
green is proportional to the number of executed directives
in the block.

The operator can call up a lower-level display for each
block that lists the preconditions and postconditions for
each block and shows the state of the block and the

state of each directive in the block (inactive, executing,

paused, anomaly, etc.). At the TDN level, there are con-
trols to pause, resume, and stop execution. Block-level

and directive-level controls allow the user to pause, re-
sume, and skip execution. Icons are used to show the user

whether a block is paused or skipped.

The SM anomaly messages that require a user response
are displayed in a separate window. A synopsis is dis-

played in a scrolling portion at the top of the window. By

selecting a synopsis, the operator can display a descrip-
tion of the anomaly in the bottom portion of the window.

The operator can then enter the requested input or select
a default option.

The scrolling event log lists all the input to and output
from the LMC OA system. A command line window al-

lows operator control outside of the TDN. Another display
shows the end-of-pass report as it is being filled in by the

LMC OA. With the existing LMC system, the operator
must write down the time at which certain directives were

executed and their results. At the end of the pass, the
operator must also write a set of paper reports. The LMC

OA system, however, internally logs the time, parameters,

and responses for each directive and automatically gener-
ates reports.

Vh Operational Scenario

A typical operations scenario using the LMC OA fol-

lows: The operator starts the LMC OA system and selects

a specific precalibration task, like VLBI. The correspond-
ing TDN and knowledge bases are loaded, and the TDN is

graphically displayed. The operator then enters the spe-
cific parameters for the next pass based on the support

data. Directives that require real-time data input, like
weather information, contain place holders for parameters.

The operator can also tailor the TDN, skipping any un-

necessary blocks, entering special directives, or establish-

ing break points, as needed. The process of preparing the

TDN for a specific pass can be done at any time preceding

the designated pass start time. At the start of the pass,

the operator selects the start option by a single click of
the mouse to start execution of the TDN. The TDN can

be paused or halted at any time during the process. The

128



operator watches the execution of the TDN by following
the color coding in the graphical user interface.

At any time, the operator may bring up low-level dis-

plays to see the execution state of the individual control
directives. The low-level display is updated automatically

when each directive is sent and when completion is ver-
ified. The SM and TDN EM work in tandem to ensure

that the control directives are correlated with the monitor

data and event messages. This correlated information is

then summarized and presented to the operator. If the SM

detects a problem, it reports the problem along with re-

covery suggestions to the user. The user selects a recovery

option which will cause the TDN execution to continue or
halt the execution of the TDN. A command window is pro-

vided so the operator can enter any control directives into

the system. Another window displays a scrolling log of all

incoming directives, directive responses, and event notice

messages. Additional windows provide a pass summary
report and link status. During execution of the TDN, the

operators are able to view the detailed subsystem displays

on the LMC console. (These displays were not reimple-

mented in the LMC OA due to resource constraints.)

VII. Results

The LMC OA prototype was tested at the Goldstone

DSCC's 70-m antenna while performing a VLBI precali-
bration procedure. The LMC OA was successfully tested

over a 3-month period at the Goldstone DSCC. The tests

were made in conjunction with maintenance and, despite

interruptions, the LMC OA performed a VLBI precalibra-

tion in 27 min, compared with the standard time of 45 min.
This is a 44 percent reduction in precalibration time. In

addition, the LMC OA reduced the number of operator-
entered directives from more than a 100 to 0 directives and

14 parameters.

The LMC OA prototype was implemented using

Objective-C, Interface Builder, and the C Language Inte-

grated Production System on a NeXT workstation running

the MACH operating system. In addition, a 386 personal

computer (PC) running translation software served as the
gateway between the DSN network running proprietary

protocols and the NeXT workstation running TCP/IP.

The PC was equipped with an IEEE 988 card which could

communicate with an Ungermann Bass Interface (UBI)

Network Interface Unit (NIU) running DSN proprietary

protocols. The PC was also equipped with an Ethernet

card running TCP/IP and the PC-NFS package, which

provided socket communications to the NeXT workstation.

The translation software running on the PC gateway was

developed by a previous project and modified by tile LMC

OA team as a gateway between the NeXT workstation and
the DSN network.

VIII. Lessons Learned

Many elements contributed to the success of the LMC

OA system, yet there were difficulties to overcome. This
section examines both successes and difficulties.

(1) The LMC OA prototype successfully applied AI tech-
nology to provide semiautomated precalibration. The

LMC OA prototype focused on two major concepts:

closed-loop control and situational awareness. The

LMC OA prototype demonstrates that with the

right technology precalibration can be performed in

significantly less time.

(2) The TDN is a powerful and flexible procedural rep-
resentation. The TDN is powerful enough to repre-

sent end-to-end operations, constraints, and parallel

paths. The TDN can also be used to handle con-

tingencies and anomalies. It is flexible enough to
be easily changed and can be adapted for other do-

mains. The representation is simple enough so that

it is easy to encode internally and easy to explain to
the users.

(3) The TDN, in addition to being a procedural repre-
sentation, is a valuable knowledge engineering tool.

The TDN provides knowledge engineers and opera-
tors with a common focal point to work from. Its in-

tuitive nature makes the format easy to understand

and easy to use by both the operators and the knowl-

edge engineers.

(4) Station operators and JPL training and engineer-
ing personnel have valuable knowledge and experi-
ence that should be used. The successes described

are due to the excellent support provided by the per-

sonnel at the Goldstone DSCC, CTA-21, and other

JPL personnel in training, operations, and engineer-

ing. Because of their experience, they have a wealth

of information, but it is not yet documented. This

information is critical to developing the TDN.

(5) Knowledge engineering must be performed at the
very beginning of the project. The knowledge en-

gineering process is an important part of building a

knowledge-based system. The bulk of the LMC OA

development effort was spent in knowledge engineer-

ing.

(6) Documentation must be kept current, operability
standards must be enforced, and documents must be
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integrated. A directive dictionary and device mod-
els should be provided by the subsystems. In the

knowledge engineering process, knowledge engineers

often found out-of-date documentation and opera-

tional modifications documented in operators' per-

sonal notes. This leads to error-prone and incon-
sistent operations. Furthermore, standards specify-

ing format and content must be followed in order
to ensure that each document contains information

as expected and at the same level of usefulness and

quality. Documents must be integrated and cross-
referenced. There are hundreds of documents, and

not having some form of cross-reference to easily
identify the documents' contents makes operations

and knowledge engineering difficult. Providing a di-
rective dictionary and device models for each sub-

system can identify many of the side effects that are
currently being ignored.

(7) The TDN should be used as end-to-end procedural

documentation. In the process of creating the TDN,

the LMC OA knowledge engineers found many docu-

mentation manuals but none that contained descrip-
tions of integrated, end-to-end procedures. End-to-

end procedural information is necessary for efficient

operations. The TDN is an effective tool for repre-

senting this type of information.

(8) On-line documentation and capabilities to search the

documentation should be provided. This will assist
with fast and efficient searches.

(9) Complete access to monitor-and-control data must be

provided. This is essential for implementing closed-
loop control, which in turn enables automation. The

current environment does not provide electronic ac-

cess to all data. Naming and usage of data items

are inconsistent. There is also inconsistency in the
meaning of directive responses. A centralized, auto-

mated monitor-and-control system must have elec-
tronic access and the ability to manipulate monitor-

and-support data, reliable and guaranteed commu-
nications, and remote monitor and control of sub-

systems.

(10) A data management strategy to store and easily re-

trieve data should be developed. Information that

needs to be stored includes monitor-and-event data,

knowledge bases, support data, directive libraries,
and TDN libraries.

(11) An environment where both systems and knowledge

verification testing can be performed needs to be

built. There are three types of testing for a

knowledge-based system: compatibility, system, and
knowledge verification. CTA-21 was used for net-

work compatibility testing. However, CTA-21 no

longer has a full suite of test equipment, and this

makes it impossible to perform system or knowledge

verification tests. Systems testing and testing of the

LMC OA functions were conducted at JPL, using

a subsystem simulator, and at DSS 14. Knowledge
verification could only be done at DSS 14 because

equipment was unavailable at CTA-21.

(12) Visibility into the system and training tools that al-

lows the operator to maintain operational skills must

be provided. There is no such thing as a fully auto-

mated system. When unforeseen events happen, op-

erators must know what the system is doing so they

can take over operations when the automated sys-
tem is out of its league. Operators must have flex-

ible control and the ability to completely override

the system. Embedded training will provide opera-

tors with the mechanism for maintaining and further

developing their analysis and problem-solving skills
in an operational environment.

(13) Smarter subsystems should be built. Subsystems
should be able to perform their own self-test and

anomaly detection, isolation, and recovery whenever
possible.

IX. Related Efforts

The technology demonstrated in the LMC OA can be
extended to other operations in the DSN. Current efforts

include extending the LMC OA to control multiple activ-
ities as well as using the system as the cornerstone of an

operations automation thrust at DSS 13, the 34-m exper-
imental antenna.

An architectural study of the DSN specifies that in the
future one operator must be able to monitor and control

multiple activities. At issue is the question of how much in-

formation an operator can process and how to organize the
enormous amount of data so that the operator can at all

times manage multiple tasks. The prototyping effort will

involve the development of intelligent user interfaces and

advanced data management systems. The current effort,
sponsored by NASA Code O under Research and Technol-

ogy Operating Plan (RTOP)-73 and NASA Code C under

the AI-RTOP, is researching and identifying what technol-
ogy is required to provide a multilink monitor-and-control

capability for the operators. In 1994, the identified tech-

nology will be incorporated into the LMC OA to provide a

semiautomated, multilink monitor-and-control capability.

The LMC OA is the starting point for an effort to

demonstrate a systems approach to automation in the
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DSN. The focus of the newly created RTOP-72, DSN Sta-

tion Operability, is to research and identify technologies

that will support automated and remote operations for

the DSN. The technology will be demonstrated in the de-

velopment of an automated monitor-and-control system

with remote capabilities at DSS 13. The DSS-13 baseline

monitor-and-control system, delivered for operational use

in 1993, uses standard protocols such as Open Systems

Interconnection (OSI), Manufacturing Messaging Specifi-

cation (MMS), and commercially available packages such
as RTWorks from the Talarian Corporation. The data
communications and access infrastructure provided by the

DSS-13 Monitor and Control system provides a strong

baseline for testing automation concepts. In 1994, RTOP-

72 will develop a systems approach to incorporate link-

and subsystem-level automation. In addition, RTOP-72

will: (1) implement and deliver the LMC OA for DSS-

13 operations; (2) develop an automated station moni-

toring prototype based on the Multimission Automation
for Real-time Verification of Spacecraft Engineering Link

(MARVEL) system; (3) develop a plan for integrated data

management services, including the identification of data
required for automation and improved operability; and (4)

develop a prototype of a link health and performance mon-

itoring system.

X. Conclusion

Knowledge-based systems will play a major and en-

abling role in improving operability and capabilities of fu-

ture ground systems at the DSN. The LMC OA prototype
demonstrates the feasibility and benefits of AI-based au-

tomation in DSN operations. The benefits of an opera-
tional, semiautomated monitor-and-control system are (1)

reduction in precalibration time; (2) reduction in keyboard

entry, which reduces occurrences of typographic errors; (3)

capability of parallel operations; and (4) increased opera-

tor efficiency via closed-loop control. The LMC OA system

demonstrates several operational improvements. It pro-
vides the operator with mechanisms for closed-loop con-

trol and situational awareness. It provides an end-to-end

procedural representation for precalibration using a TDN.

And it reduces the number of keyboard entries required

by the operator. Furthermore, current efforts are showing
that this technology is applicable to the DSN as a whole.
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Beam-Waveguide Antenna Servo Design Issues
for Tracking Low Earth-Orbiting Satellites

W. K. Gawronski and J. A. Mellstrom

GroundAntennasand FacilitiesEngineeringSoctJon

Upcoming NASA missions will require tracking of low-orbit satellites. As a

consequence, NASA antennas will be required to track satellites at higher rates
than for the current deep space missions. This article investigates servo design

issues for the 34-m beam-waveguide antennas that track low-orbit satellites. This

includes upgrading the servo with a feedforward loop, using a monopulse controller

design, and reducing tracking errors through either proper choice of elevation pinion

location, application of a notch filter, or adjustment of the elevation drive amplifier

gain. Finally, improvement of the signal-to-noise ratio through averaging of the

oversampled monopulse signal is described.

I. Introduction

Future NASA missions will include low-orbiting satel-

lites with significantly higher antenna tracking rates, as

compared with the deep space missions. Thus, the

JPL/NASA antenna servos should be upgraded to be able
to follow commands at higher rates. A feedforward up-

grade, discussed in [1], is the simple and reliable choice.

For tracking, a monopulse controller is an alternative to

the existing conscan tracking, since the former is much
faster than the latter. The design and performance of a

monopulse controller is discussed. It is shown that its per-
formance can be improved through proper choice of the

location of the elevation pinion, the implementation of a

notch filter, or the adjustment of the amplifier gain. Fi-
nally, the improvement of the signal-to-noise ratio (SNR)

of the monopulse signal is presented. By averaging the

redundant monopulse samples, the SNR improvement is

from 7 to 17 dB.

II. Feedforward Controller Design

Tracking accuracy of fast moving objects can be im-

proved if a proportional-and-integral (PI) control system

is augmented with a feedforward loop [1], shown in Fig. 1.

In this diagram, G v, G_, G I, and G_o denote transfer func-
tions of the antenna's rate loop, PI controller, feedforward

gain, and wind disturbance, respectively; r is a command;

y is output (elevation and azimuth angles); e is tracking
errc;t in azimuth and elevation; u is plant input; and w

is wind disturbance. Almost perfect tracking (e _ 0) in
the absence of disturbances is obtained for the feedforward

gain G! such that GI = fivI2, c.f., [1].

The closed-loop transfer function (elevation encoder
to elevation command) for a system with and without

the feedforward gain is compared in Fig. 2. The figure

shows that for frequencies up to 1 Hz, the system with

the feedforward gain has superior tracking properties as
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compared with the system without feedforward gain. This

is confirmed by tracking simulations with a trajectory, as

in Fig. 3. The DSS-13 antenna, with proportional gain
kp = 0.5 and integral gain ki = 1.8 in azimuth and eleva-

tion, was investigated. For the servo with the feedforward

loop, the error of 1.4 mdeg in elevation and 0.2 mdeg in

cross-elevation was observed, which exceeds the require-

ments. However, for this controller, the high-frequency

components of the command are strongly amplified, as

can be observed from the transfer function plots in Fig. 2,
where the resonance peaks of the system with feedforward

gain are much higher than the ones of the system without

feedforward gain. As a result, any sharp change in the
command may cause excessive vibrations of the antenna.

and introduce the following notations:

Ce , r-" , e._- ,
re ee

It follows from Fig. 4 that

y =G¢c + G,r

(2)

(3)

Despite the increased sensitivity to the command in-
puts, the disturbance rejection of the antenna with a feed-
forward loop remains the same as that for the antenna

without a feedforward loop. Thus, the pointing errors due
to wind gust disturbances are comparable to the results
obtained for the DSS-13 antenna with the PI servo.

where Ge = (I + GH)-IGH and Gr = (I + GH)-'G are
of dimension 2 x 2

[ cr_-[ ]Ge,. Ge,, ' G,,. Gee, (4)

III. Monopulse Controller Design

In monopulse tracking, a deviation of an antenna from a

target is detected by four slightly displaced feedhorns, each

receiving the signal from a slightly different angle. The
received beams are added and subtracted to form a sum

and a difference beam. The difference beam is zero when

the target is on the antenna boresight, and the nonzero

difference beam produces an error signal, which is used by

the monopulse control system. A detailed description of

the monopulse technique is given in [2-5].

The monopulse tracking control system is shown in

Fig. 4. It consists of the plant, the monopulse feedhorns,

and the monopulse controllers in azimuth (Ha) and eleva-
tion (He). The plant in this case is the antenna with the

closed encoder position loop. The monopulse feedhorns

detect the tracking errors in azimuth (ca) and elevation
(e_). The encoder command is denoted r, in azimuth and

re in elevation. The feedhorns detect the tracking errors

ea and e_ directly, and the output signals Ya and y_, as
well as the commands ca and c_, are not available. Note

that Ya and Ye signals are not the encoder output, but the
antenna positions related to the focal location of the RF
beam.

Denote the two-input, two-output plant transfer func-
tion G

c.c. (])

The components of G have the following properties

16'.al-_la.,I -_ 1 forf<fo (5a)

IGa. I<<I, la.l<l forf>>fo (5b)

I Ga. I < 1, l a.. I < 1 forall / (5c)

as illustrated in Fig. 5. The above properties yield the

following monopulse loop properties

y -_ c for II GH II > 1 (6a)

y-_,- for IlaHIl<<l (6b)

y _- 0.5(c + r) for GH _- I (6c)

In the first case of large open-loop gain, the closed-loop
monopulse system follows the monopulse command. In

the second case of small open-loop gain, the closed-loop
system follows the encoder command. In the last case

of unit monopulse gain, the system follows the average
of the monopulse and the encoder commands. In order

to prove this, note that, for II GH I1 ::_ 1, one obtains

IIa, II< 1 and IIGc II-_ I, hence y __ c; for IIGH II< 1,
one obtains IIae II <( 1 and Gr -_ G, thus V _ r; for

GH _- I, one obtains G,. _ 0.5G, thus, from Eq. (3),
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y = 0.hGHc + 0.hGr; and, since G _ I (see Eq. (5)), one

obtains y = 0.5(c + r).

The transfer function H of the monopulse controller

is determined as follows. The monopulse bandwidth fm

is smaller than the encoder bandwidth fo; therefore, the

monopulse tracker will compensate for a slowly varying er-

ror signal e. If the condition presented in Eq. (6a) is satis-

fied for f < fro, the monopulse tracking system will follow
the command e. And since G - I for f < fro, IIH [I >> 1

is required to satisfy the condition presented in Eq. (6a).

In addition, a rapid roll-off rate for f > fm would be an

advantage. However, the roll-off rate is limited through
the Bode conditions, as specified in [6, p. 25]. Namely, the

roll-off rate in the region of the gain crossover frequency

must not exceed 40 dB/decade, and for a reasonable sta-

bility margin it must actually be smaller than this. Due
to this restriction, the following transfer function of the

monopulse tracker is chosen

H = 2_f_ 15 (7)
s

This transfer function satisfies Eq. (6a) for f < fm

and has a roll-off rate of 20 dB/decade for f >fm (see

Fig. 5). The parameter fm of H is determined by analyzing
the root locus of the monopulse closed-loop system with

respect to fro. The plot of real parts of closed-loop poles

is shown in Fig. 6. It shows that for fm> 0.067 Hz,

the monopulse system is unstable. In order to maintain a

reasonable stability margin, fm= 0.04 Hz is chosen.

The plant transfer function G is obtained for the
DSS-13 antenna with the encoder loop closed and the feed-

forward loop implemented. The magnitudes of the plant

transfer function are shown in Fig. 7. From the figure,
one can see that the condition of Eqs. (5a) and (55) are

satisfied, but the condition of Eq. (5c) is violated for some

frequencies from the interval f = [2, 10] Hz. This violation

will cause some performance deterioration.

The azimuth and elevation components of the command

signal r are shown in Fig. 3. The command c is slightly
deviated from r by 6, i.e., c = r + 6, where II 6 II << II r II.

The plot of 6 is shown in Fig. 8. Magnitudes of the trans-

fer functions are shown in Fig. 9 from input r to output y,

and in Fig. 10 from input c to output y. For the case of

6 = 0, the same input c and r are obtained and denoted

u, i.e., c = r = u. In this case, one obtains from Eq. (3)

y= Gou, where Go = Gc+Gr. The plots of the magni-

tudes of Go are shown in Fig. 11. They indicate that the

system follows low-frequency command c, high-frequency

command r, and low- and high-frequency command u.

Implementation of the monopulse controller requires
its discretization in time. The monopulse signal is sup-

plied with the rate fd Hz or with the sampling time

T = 1/fa sec. In the case of the DSS-13 antenna, the

sampling rate is 10 Hz. A block diagram of the discrete-

time monopulse tracker is shown in Fig. 12. The main
difference between the continuous-time and the discrete-

time trackers lies in a delay of the tracking error.

The monopulse closed-loop systems with sampling rates
of 10 and 50 Hz have been simulated. The 50-Hz sampled

system has been simulated for evaluation of accuracy of

the slower, sampled 10-Hz system. The simulations show
similar results for 10- and 50-Itz sampling and are shown

in Fig. 8 for the 10-Hz sampled system, where the solid

line denotes the tracking error, e, and the dashed line the

deviation, 6. The plots show that the pointing accuracy
increased more than twofold in both cases. A sampling

rate of 10 Hz is satisfactory to maintain the accuracy of the

control system, and the 0.1-sec delay does not deteriorate

the system performance.

IV. Improving Tracking Performance

As mentioned before, the implementation of the feed-

forward loop causes a significant excitation of flexible mo-

tion of the antenna, specifically in the elevation loop. The
mode of deformation for the highest peak in the elevation-

to-elevation transfer function is shown in Fig. 13. It is a

bending mode of the antenna structure, strongly excited

not only by the elevation command but also by the az-
imuth command. It impacts the stability and performance

of an antenna. This mode is extremely difficult to control

with elevation and/or azimuth torques, but any one of

the following measures can be taken to reduce the impact

of this mode on tracking performance: proper location of

the elevation pinion, application of a notch filter, or ad-

justment of the amplifier gain in elevation drive. These
measures are described below.

A. Choosing the Elevation Pinion Location

The antenna dynamics for the three positions of the el-

evation pinion, _ = 0, 60, and 90 deg, as shown in Fig. 14,

have been simulated. The step responses are presented

in Fig. 15, showing increased damping of transient mo-

tion for the higher location of the pinion. In consequence,

the monopulse gains can be increased for the higher pin-

ion, causing smaller tracking errors, as shown in Table 1.
The decrease is almost proportional to cos a, which can

be explained by the fact that the bending mode is excited

mainly by the horizontal component Fh of the elevation

pinion force Ft, proportional to the cosa, c.f., Fig. 14.

137



B. Implementing a Notch Filter

The critical elevation-to-elevation peak can be de-

creased by applying a notch filter. This narrowband fil-

ter removes a component of the specified frequency from

the signal. The notch filter transfer function is as follows:

s2 + _}

where w I rad/sec is the filter frequency and 6 is a damp-

ing coefficient which defines the bandwidth of the filter.

The elevation input signal to the antenna excites the an-

tenna vibration mode of frequency fI = 2.12 Hz; thus,
w I = 2_rf I = 13.32 rad/sec and 6 = 0.2 have been chosen.

In implementation, the matching of the filter frequency

and the antenna resonance frequency is not a difficult task,

since this particular resonance peak is strong and domi-

nant, thus easily detected.

The notch filter is implemented as in Fig. 16. Let

(AI, BI, CI, Dr) and (Ar, Br, Cr, Dr) be the filter and the

antenna rate loop state-space representations, respectively.

Their transfer functions are shown in Fig. 17, where the
2.12-Hz peak of the rate loop and 2.12-Hz dip of the notch

are visible. The state-space representation of the connec-

tion is (Ao, Bo, Co, Do), where

m°:[Z,0]B_C I A_ ' B¢D I '

to 10 percent of the nominal frequency, i.e., for filter fre-

quency fI = .fin -4- O.lfI . (and fin is a nominal fre-
quency). They show negligible deterioration of perfor-
mance.

C. Adjusting Amplifier Gain

The impact of the critical elevation-to-elevation peak

on monopulse controller stability and performance can be

reduced by adjusting the open-loop gain. For example,

the gain can be adjusted by varying the elevation drive

amplifier gain. The elevation drive structure, presented in

detail in [7], is shown in Fig. 21. It consists of amplifiers,

motors, and gear boxes. The peak level of the elevation-to-

elevation mode can be lowered by lowering the gain kr of

the elevation drive to kro = 13kr ; 3 = 0.33 has been chosen

through simulated tests. In doing so, the rate-loop trans-

fer function has been lowered for higher frequencies, as in

Fig. 22. The feedback gain, which contains an integrator,

retains the tracking properties for low frequencies of the

closed-loop transfer function, while the higher frequency

part of the transfer function is not compensated, lowering

the critical peak (Fig. 23). This simple approach allows

one to increase gain of the monopulse loop, producing an
improvement in tracking performance similar to that with

the notch filter in Fig. 20. The explanation is as follows:

Let G be the transfer function of the rate loop model from

elevation to elevation, and K the transfer function of the

PI controller. The closed-loop transfer function Go is

KG

Go - 1 -4-KG (10)

Co = [DrCICr ] , Do = D_DI (9)

and its transfer function is given by the dashed-line plot

of Fig. 17. Note that the peak at 2.12 Hz has disappeared.

The closed-loop properties of the antenna with and with-

out a notch filter are compared in Fig. 18, where, again,
the peak at 2.12 Hz has disappeared. The reduction of the

peak allows one to increase significantly the gain of the

monopulse loop without losing stability. Figure 19 shows
the root locus of the antenna with and without the notch

filter, showing that the antenna without the notch filter

is stable for the gains fm< 0.06, while the antenna with

the notch filter is stable for fm < 0.5. This gain yields

about a tenfold reduction in the elevation pointing error,

as follows from a comparison of Figs. 20 and 8(a).

Additional simulations have been performed to test the

robustness of the system to filter frequency variations up

Since K consists of an integrator, therefore [ K I -" _x_ for

w ---* 0, and IKI --. 0 for --, o0. It yields [Go [ -.--, 1

for w _ 0, and [Go I _ 0 for _o _ c_; thus tracking

for low frequencies is preserved, and the peaks in higher

frequencies are suppressed. This can be seen in Fig. 23,
where the low-frequency part of the closed-loop transfer

function is the same, equal to 1 for/3 = 1 and fl = 0.33, but

for higher frequencies, the transfer function for/3 = 0.33

is lower than for/3 = 1.

V. Improving SNR

Typically, a monopulse signal is contaminated with

measurement noise of significant intensity. Noise intensity
is measured with the SNR

P,
SNR = 10log10 _ dB (11)
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where P_ and Pn are signal and noise powers, respectively.

The noise impacts the pointing accuracy of the control

system. Here a simple method that improves SNR is dis-
cussed.

excess information is used to reduce the signal-to-noise

ratio by averaging the signal within a cluster. The average

value, u,_ (iAT), of the monopulse signal within the cluster

of N samples is obtained

The monopulse signal u(iAt) (see Fig. 24) consists of a

true measurement uo(iAt) and a noise n(iAt)

u(iAt) = uo(iAt) + n(iAt) (12)

where Uo(iAt) = Vo(iAt) - v(iAt). It is assumed initially

that the noise n(iAt) is a white noise with zero mean,

E(n(iAt)) = 0, where E(.) is the expectation operator.
The assumption is the worst-case scenario. White noise

consists of components of all frequencies of equal intensity

so, up to the Nyquist frequency fc, as in Fig. 25(a). Typ-

ically, the measurement noise is rather a high-frequency

noise; thus its impact on system performance is less severe
than that of the white noise.

The monopulse signal u(iAt), shown in Fig. 26 for sam-

pling time At = 0.02 see, is transmitted to the antenna
controller in clusters every N samples (typically N = 5);

thus the new sampling period is

AT=NAt (13)

and a cluster U(iAT) = {ul(iAT),u2(iAT), ...,

uN(iAT)}, consists of N measurements uk(iAT)

uk(iAT) = u(iAT + kAt), k = 1, ..., N (14)

The mean value, mk= E(uk (iAt)), and the variance, ak =

E(Auk(iAT)) 2, of each component are the same in the
cluster

mk =mu, a_=a_v, k= 1, ..., N (15)

This assumption has the following meaning: the value of

Uo(iAt) is considered constant within the period AT if the
reaction of the antenna to uo(to + iAt) is the same as to

uo(to+NAt) for i= 1, ..-,N. This property has been

confirmed by the earlier simulations reported in [1].

Although the monopulse signal is sent to the controller

in clusters, only the last component, uN(iAT) = u(iAT

+ NAt), is used to drive the monopulse controller. This

N

1 Zuk(iAT) (16)Uav(iAT) = -_
k=l

It is shown in the Appendix that in the case of white noise

the mean value (ma_) of the averaged process, u,,(iAT),

and the mean value (roW) of the nonaveraged process,

ug(iAT), are the same, while the variance of the averaged

process (a_2o) is smaller than the variance of the nonaver-

aged process (a_) by the factor N

Cr2
2_ N (17)

may = mN, hay --

Define r,, the ratio of variances of nonaveraged and aver-

aged signals, as

a_v (lSa)
r, = a_----_

and its logarithmic counterpart, an SNR increase, ASNR,

as

ASNR = SNR,u - SNR = 10log10 r, dB (18b)

Then, for white noise, from the definition in Eq. (11), one

obtains r, = N and ASNR = 10 logx0 N dB.

Consider high-frequency noise with a constant spec-

trum within the interval [fo, fc] (see Fig. 25(5)) such

that 0 < fo < fc, fo is a cutoff frequency (the lowest

frequency component of the noise), and fc is the Nyquist

frequency, fc = 0.5/At. Results of noise reduction for the

high-frequency noise, obtained through simulations, are

shown in Fig. 27. From this plot of the ratio, r,, versus

cutoff frequency, fo, it is evident that the high-frequency
noise is more suppressed through averaging than is the

white noise (rs increases from 5 in the case of white noise
to 50 in the case of high-frequency noise for cutoff fre-

quencies of 8 Hz and higher, and SNR increase, ASNR,

is from 7 to 17 dB, respectively). These results have also

been confirmed by simulations of monopulse tracking with

SNR = 20 dB, where the elevation pointing error for the
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case of the nonaveraged signal is shown in Fig. 28(a),

and the same error for the averaged signal is shown in

Fig. 28(b), with the noise power ratio r, = 4.7 (the SNR

increase is ASNR = 6.7 dB), which is close to the pre-

dicted r, -- 5 (ASNR = 7 dB).

Vl. Conclusions

It has been shown that the feedforward upgrade of the

existing DSN antenna servos improves tracking at higher

rates, and that monopulse tracking is an appropriate re-

placement of the conscan technique for the considered

rates. A sampling rate of 10 Hz is satisfactory to main-

tain the accuracy of the monopulse control system, and the

0.1-sec delay does not deteriorate the system performance.

Either repositioning of the elevation pinion, implementa-

tion of a notch filter, or adjustment of amplifier gain serves

as a tool for improving tracking accuracy. The monopulse

SNR is improved by averaging the high-frequency sampled
signal.
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Table 1. Polntlng errors.

Pinion Elevation Cross-elevation Total

position, errors, errors, errors,

deg mdeg mdeg mdeg

0 1.43 0.14 1.44

60 0.76 0.08 0.77

90 0.35 0,07 0.36
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Fig.1.ThePIcontrollerwlththefeed-forwardloop.
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Rg. 14. Elevation pinion locations under Investigation.
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Appendix

Proof of Eq. (17)

The first part of Eq. (17) follows from the definition of the averaged process, Eq. (16), and the equality of mean
values in the cluster, Eq. (15). Namely,

N N
1 1

ma_ = _ E E(uk(iAT)) = _ E m_ =
k=l k=l

In order to prove the second part of Eq. (17), denote

mN (A-l)

and

Auk(iAT) = uk(iAT) -uo(NAt) = n_(iAt)

nk(iAT) = n(iAT + kAt), k = 1, ..., N

1 N

Au,_ (iAT) = _ E Auk(iAT)
k=l

Thus, the variance of the averaged process is

(A-4)

N

O'av

k,l=l

Since the white noise is not correlated, that is

E( Auk( iA T) Aut( iA T) ) (A-5)

Therefore

E(nk(iAT)nt(iAT)) = 0 for k _ ! (A-6)

E(Auk(iAT)Aut(iAT)) = 0 for k # I

Introducing Eq. (A-7) and Eq. (15) to Eq. (A-5),

(A-7)

1 N =1 N
°'at'_= "_ E E(Auk(iAT)) _ N 2 E a_ ---- a2---_--N

N
k=l k=l

proves the second part of Eq. (17).

(A-8)

152



TDA Progress Report 42-115 November 15, 1993

i.).

N94- 2 ,2 9

Optical Subnet Concepts for the Deep Space Network
K. Shaik and D. Wonica

Communications Systems Research Section

M. Wilhelm

Telecommunications Systems Section

This article describes potential enhancements to the Deep Space Network, based

on a subnet of receiving stations that will utilize optical communications technology

in the post-2010 era. Two optical subnet concepts are presented that provide full

line-of-sight coverage of the ecliptic, 24 hours a day, with high weather availability.

The technical characteristics of the optical station and the user terminal are pre-

sented, as well as the effects of cloud cover, transmittance through the atmosphere,

and background noise during daytime or nighttime operation on the communica-

tions link. In addition, this article identifies candidate geographic sites for the two

network concepts and includes a link design for a hypothetical Pluto mission in

2015.

I. Introduction

Communications systems are inherently capable of op-

erating at higher antenna gain and modulation band-

width as carrier frequency increases. Optical frequen-

cies (approximately 1014 Hz) are several orders of mag-

nitude higher than the operating carrier frequencies of the

conventional RF communication systems (approximately

10 l° Hz) in use today.

The promise of the large antenna gain and modulation

bandwidth that become available at optical frequencies is

the basic reason for the interest in the development of op-

tical communication systems.

Optical systems also promise smaller size and mass and

lower power consumption as compared to RF systems with

similar performance characteristics. For planetary space

missions, the advantage of reduced size, mass, and power

requirements will allow more room for science instrumen-

tation aboard a spacecraft.

The optical subnet concepts for the DSN reported in

this article were developed, and their telemetry perfor-

mance was estimated, for the Ground Based Advanced

Technology Study (GBATS). The GBATS work was per-

formed in conjunction with Deep Space Relay Satellite

System (DSRSS) study contracts, 1'2 and its purpose was

to initiate exploration of Earth-based alternatives to the

l JPL Contract 958733 with TRW, Jet Propulsion Laboratory, Pasa-
dena, California, March 28, 1990.

2 JPL Contract 958734 with STEL, Jet Propulsion Laboratory,
Pasadena, California, March 28, 1990.
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DSRSS that would allow significantly higher telemetry
rates for future NASA deep-space missions.

The GBATS study of optical subnets draws on previ-

ous design studies of the Deep Space Optical Reception
Antenna (DSORA) [1] and on a weather model [2,3] of

ground-based laser communications. The GBATS study
also makes use of work accomplished by TRW, one of the

contractors working on the DSRSS study, for the user-

terminal design concept. 3 The emphasis of the work was

on telemetry support. It is anticipated that future work

on the optical subnets will include uplink command, nav-
igation, and optical science.

This article describes initial concept designs for an opti-

cal subnet to augment the DSN. In Section II, a description
of the ground optical terminal, which forms the basis of

the optical subnet, and a description of the user-spacecraft
terminal are provided. An overview of the optical subnet

concepts is provided in Section III. The propagation and

weather models are developed in Section IV to provide a

basis for the calculation of network availability and cov-
erage. No specific planetary missions are considered for

the optical subnets discussed here, though a hypothetical

Pluto mission in 2015 is used as an illustration (see Sec-
tion IV). Accordingly, the future considerations of mission

sets, operational issues, enhancement of a ground station's

capabilities, etc., may profoundly affect the performance,
configuration, and operation of an optical subnet.

II. Ground and Spacecraft Optical Terminals

A. Ground Optical Terminal

Each optical station operates in the direct detection

mode at optical wavelengths between 500 and 2000 am.

All calculations in this study were made using 532 nm
as the operating wavelength. The telescope consists of a

10-m, non-diffraction-limited, segmented primary mirror

and a secondary mirror, in a Cassegrain configuration, as
shown in Fig. 1. The telescope is mounted on azimuth-

elevation gimbals and is housed in an environmental enclo-

sure (dome). The receiver subsystem includes the beam-

reducer optics, steering mirror, tracking detector, and the

communications detector. Facilities for data processing,
ground communications, logistics, and security, as well as
office space and other uses, are identified in this section
for completeness, but are not examined in detail in this
article.

3 TRW briefing, "Deep Space Relay Satellite System Study," Quar-

terly Progress Review, presented to JPL on February 25, 1993.

The optical terminal as described in this section pro-
vides the basic building block of the optical subnets. The

performance of the optical subnets, calculated in the fol-

lowing sections of the article, was based on the capabilities

of a single ground station. The following assumptions and

guidelines were used to arrive at a definition of the ground
optical terminal:

(1) A 10-m-diameter primary mirror.

(2) Telemetry reception under both daytime and night-
time conditions.

(3) Telemetry reception within 10 deg of the Sun.

(4) Operating wavelength of 532 am.

(5) Tracking and slew rates compatible with deep-space
probes.

(6) Acquisition of a user signal within 20 minutes at an

elevation angle of about 15 deg under all operating
conditions.

(7) A 2-mrad field of view (FOV) for the Cassegrain
receiver telescope with a coarse pointing accuracy of
0.2 mrad.

(8) A 0.1-mrad FOV for the communications detector

(this matches the blur diameter of the telescope).

(9) A fine pointing mechanism with an accuracy of
0.01 mrad.

(10) Station operation at high altitudes to reduce the im-

pact of the atmosphere (up to 4.2 km).

(11) Uplink transmitter, command, emergency com-

mand, and navigation requirements were not con-
sidered at this time.

B. Block Diagram of the Optical Ground Station

Figure 2 describes the flow of information and control

signals for the receive system of the optical station. The

telescope with a 10-m fast primary collects optical energy
and delivers it to the Cassegrain focus. The wide-FOV

sensor provides calibration, removes systematic telescope-
mount error, and helps in the acquisition of the user space-
craft within the telescope coarse FOV. From here the in-

coming beam is further reduced, is controlled, and is de-
livered to the communications detector. The communi-

cations detector demodulates the optical signal, and the

resultant data stream is fed to the signal processor for

bit/frame synchronization, decoding, error checking, etc.
From the signal processor, the data are sent to the Ground

Communications Facility (GCF) for transmission to the

Network Operations Control Center (NOCC) in real time.
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Raw or processed data are also stored in the archival sub-

system for playback in case of GCF outage. The exec-
utive controller manages station activities automatically

or manually through the command console, communicates
with the outside world through the ground communica-

tions facility, and receives inputs from and sends com-

mands to slave computers which include the pointing con-

troller, the tracking controller, the figure controller, the

signal processor, and the facility controller.

C. Ground Terminal Architecture

The system breakdown for the optical station is shown

in Fig. 3. Note that subsystems other than the optical
terminal are mentioned here for completeness and are not

discussed any further. Additionally, the subsystems re-

lated to an optical uplink transmitter are not considered
at this time.

1. Optical Terminal. An optical terminal consists of

the following subsystems:

a. Telescope and Optics. The telescope subsystem pro-

vides an aperture to collect necessary photons for direct
detection of incoming signals. The telescope employs a

10-m segmented primary mirror. There are 60 hexago-

nal segments, arranged in four rings, with each segment
about 1.1 m in size (see Fig. 1). Other elements of the

receiver telescope include a secondary-mirror assembly, a

truss support structure, appropriate baffles to avoid the
Sun, and other optics as needed. Each of the mirror as-
semblies includes mounts and the necessary actuators and

baffles.

Table 1 provides a representative prescription for a

Ritchey-Chretien Cassegrain telescope. The focal ratio for

the 10-m segmented and hyperbolic primary is 0.5. The

secondary mirror is 4.5 m from the primary mirror and is
1 m in size. The Cassegrain focus, where the optical com-
munication instrument will be placed, is 3.25 m behind the

primary. The image size at the Cassegrain focus for the

usable diametric FOV (2 mrad) is about 16 cm.

b. Receiver Subsystem. The receiver subsystem consists

of the optical communications instrument (OCI), which in-
cludes the receive beam-control optics (the beam-reducer

optics, steering mirror, spectral filter, etc.), the tracking

detector, and the communication detector. Fine point-

ing and tracking of the spacecraft are achieved by the
OCI. Once coarse pointing is established by the acquisi-

tion, pointing, and tracking (APT) assembly, the OCI uses
the communication signal as a beacon to aid in the fine ac-

quisition, pointing, and tracking process. The communi-

cation detector begins telemetry reception and transfers it

to the signal-processing subsystem once tracking has been
established.

Figure 4 shows a conceptual drawing of the OCI with
its optics, spatial and spectral filters, steering mirror, and
detectors. The received beam at the Cassegrain focus is

corrected by a field corrector, spatially filtered by the field

lens, and reduced and collimated by the reducer optics.
The beam is spectrally filtered and steered by a two-axis

steering mirror for fine pointing. A tracking detector is
used to acquire, track, and center the received beam on
the communications detector. The diametric FOV of the

communications detector is restricted to 0.1 mrad.

c. Acquisition, Pointing, and Tracking. The APT as-

sembly uses computer controlled azimuth-elevation gim-
bals. The telescope is mounted on the gimbals, and this

mounting provides coarse pointing to and tracking of the

user spacecraft. Initial coarse pointing coordinates, which

will be used to bring the spacecraft within the telescope

FOV, will be provided by the DSN. The network configu-
rations studied here allow roughly 20 minutes to acquire

the spacecraft and establish tracking.

Table 2 provides estimates of the pointing and tracking

requirements. The coarse pointing requirement (0.2 mrad)
is chosen to be an order of magnitude less than the

useful Cassegrain FOV. The fine pointing requirement

(0.01 mrad) is an order of magnitude less than the com-
munication detector's FOV. The tracking rate is consistent

with sidereal tracking requirements for deep space space-
craft. If the ability to track highly elliptical orbits (HEO's)

is considered necessary, the tracking and slew rates must

be revised upward as needed.

d. Environmental Housing. The environmental housing

will consist of a protective dome over the telescope struc-

ture. Figure 5(a) shows a conceptual diagram for the dome
when the dome is closed. It is similar to the dome built

for the Air Force Starfire Optical Range's 3.5-m facility

in New Mexico. The dome protects the telescope from

catastrophic failure due to severe weather and protects

optical coatings on the primary and the secondary from

premature degradation. Figure 5(b) shows the telescope

fully exposed under normal operating conditions when the
dome is folded down to the pier.

D. Configuration of the User-Spacecraft Terminal

The user spacecraft terminal configuration used in this

article is based on a TRW concept for a future optical
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terminal. 4 A block diagram for the user terminal is shown

in Fig. 6. The telemetry data are encoded via a pulse

position modulation (PPM) scheme, and provided to the

modulator drive electronics. A modulated diode-pumped

neodymium-doped: yttrium aluminum garnet (Nd:YAG)
laser beam travels through a frequency doubler, a beam

expander, a two-axis point-ahead mirror, a two-axis fine-

steering mirror, and then exits from the telescope. The
transmitter employs a 0.75-m telescope with no obscura-

tion. The transmit wavelength is 532 nm. A small fraction

of the transmit laser energy is directed toward acquisition

and tracking electro-optics that use a beam splitter and a
corner cube to determine the point ahead.

Table 3 shows a list of important transmitter parame-

ters and the values used to estimate telemetry capability.
See Appendix A for further details on communications link
calculations.

III. Subnet Overview

A. Operations Concept

Like the current DSN, link geometry drives the major
characteristics of the optical subnet. DSN user spacecraft

with interplanetary trajectories will require multiple sta-
tions located about the equatorial region to provide con-

tinuous telemetry support to any point near the ecliptic

plane. As the Earth rotates, continuous telemetry cover-
age is provided to any given user spacecraft via a hand-
off strategy between the stations. As each station comes

within the line of sight (LOS) of a user and good link ge-
ometry is established, telemetry reception begins. As the
Earth continues to rotate and the user passes into the LOS

of the next optical station, a hand-off occurs. Initial acqui-

sition and tracking of a user spacecraft begin with the re-
ception of the user ephemeris data provided by the NOCC.

The user ephemeris provides coarse pointing information
for acquiring the user transmit signal within the FOV of

the telescope. Once coarse pointing is established by iden-

tifying the received beam on the acquisition and tracking
detector, the receiver subsystem uses a fast steering mir-

ror for fine pointing and centering of the signal beam on

the communications detector. User spacecraft tracking is
maintained throughout the pass by the combined action

of the coarse pointing mechanism of the telescope and the

fine steering mirror. The acquisition sequence followed by
telemetry reception is repeated with down-line stations for

the duration of the user spacecraft's need.

4 Ibid.

User spacecraft pointing is established by detection of

an uplink beacon, detection of the crescent Earth, or de-
tection of the Sun with the point ahead off-set to the Earth

(user spacecraft pointing is not part of GBATS). Coarse

pointing is provided by the spacecraft attitude-control sys-
tem from data provided by an onboard star tracker. Once

the target (Earth) is acquired within the FOV of the user-

spacecraft telescope, a fast steering mirror fine points and

centers the target on a charge-coupled device (CCD) array.

Data transmission begins once user pointing is established.

Based upon a 30-AU Pluto mission, and a 0.75-m user

aperture, the footprint of the beam transmitted by the

user terminal is smaller than the Earth's diameter; there-

fore, it is necessary to point the beam to the designated

receiving station accurately. This can be accomplished
without difficulty since the pointing bias and jitter errors,

as shown in the earlier section on the user-terminal design,
are much smaller than the signal beam diameter. A station

is designated to receive telemetry when (1) it is within the
LOS of the user terminal and (2) it has cloud-free weather.

The need to predict weather availability for some subnet
configurations is addressed in appropriate sections below.

(Weather availability is a measure of station outage due to

weather effects such as clouds, rain, and dense fog.)

The baseline for this study provides for one receive

aperture per geographic location. This places some re-

strictions on simultaneous support of multiple missions.

For example, user spacecraft with simultaneous-coverage
requirements must be located nominally 180 deg apart.

B. Subnet Configurations

The presence of opaque clouds generally limits the avail-

ability of a single ground station for optical communica-

tions to less than 70 percent. This problem can be handled

by employing spatial diversity.

There are two fundamentally different methods to pro-

vide the necessary spatial diversity to improve network
weather availability for optical communications. The two

concepts use different strategies in the location of optical

stations to provide station diversity. These two approaches

are referred to as the clustered optical subnet (COS) con-

cept and the linearly dispersed optical subnet (LDOS) con-
cept. In this article, two specific configurations, based on

the COS and the LDOS concepts, were developed in de-
tail. They were a COS network with nine stations and

an LDOS network with six stations. Both configurations

were developed based upon site-specific weather statistics,

site surveys (accomplished by literature searches), cover-
age analysis, and projected telemetry performance. While
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they use the same 10-m optical station and the same basic

operations concept, each subnet offers unique advantages
and disadvantages. Each subnet is designed to provide

high weather availability. A detailed characterization of
the two concepts and the reasons for selecting the number

of stations in each case are provided in Section IV.

It is assumed that each station will require less than

20 minutes to acquire, track, and lock onto the incoming

optical beam for both the LDOS and the COS concepts.

Figure 7(a) depicts network geometry for an LDOS

showing three ground stations, and Fig. 7(b) depicts geom-

etry for a COS network showing two of the clusters, each
with three stations. Telemetry received by the available

station for each subnet concept is demodulated and sent to

the station data processing subsystem for one of three pur-

poses: processing and formatting, storage in the archival

subsystem, or for transmission in raw form to JPL's NOCC
for distribution to end users. The stations are connected

to the existing DSN infrastructure via the GCF.

IV. Performance Analysis

To develop optical network configurations that meet

certain performance goals, several analyses were performed
to identify a preferred approach. These efforts included

the development of a propagation model, a weather model,

an ideal-coverage model for the COS and the LDOS con-

cepts, and availability assessments for various network con-

figurations. For illustrative purposes, two network con-
figurations, one from among the COS concepts and one

from among the LDOS concepts, were selected for detailed
study. For these two configurations, an LDOS with six
stations and a COS with three clusters of three stations

(COS 3 × 3), a coverage analysis was made for ideal con-
ditions, as was a telemetry performance projection for a

Pluto mission in the year 2015.

A. Propagation Model

Earth's atmosphere has a dominating impact on the

propagation model for ground-based optical communica-
tions. Propagation loss and sky background radiance are

two significant factors. Propagation loss, that is, loss due

to transmission through the atmosphere, can be predicted

using semiempirical models under various operating con-

ditions. The problem of opaque cloud cover is studied in
Section IV.B, where a weather model is produced.

The U.S. Standard Atmosphere 1976 model was used

in this study to evaluate the effects of station altitude, me-

teorological range (i.e., visibility), and zenith angle. Sec-

tion IV.A.1 shows that the impact of using atmospheric

models other than the U.S. Standard Atmosphere 1976 is

very small.

It is also important to study the impact of sky back-

ground noise on optical communications, especially the

impact during daytime operations. This is addressed in
Section IV.A.5. The results are used to develop average

telemetry rates for daytime operations in Section IV.F.

1. Atmospheric Transmittance Model. LOW-

TRAN7, a transmittance model developed by the Air

Force Geophysics Laboratory (AFGL) for visible and in-

frared wavelengths, was used to calculate propagation ef-

fects on wavelengths of interest, including 532 nm. The

results of using the U.S. Standard Atmosphere 1976, mid-
latitude winter, and mid-latitude summer atmospheric

models on the transmittance, which was supplied by LOW-

TRANT, are shown in Fig. 8(a). The curves shown for all

the models assume the presence of high cirrus clouds, a

2.3-km altitude for the ground station, a 17-kin meteoro-

logical range (visibility), and a zenith path through the

atmosphere. Since the atmospheric transmittance mod-
els do not differ significantly from each other, the U.S.

Standard Atmosphere 1976 model was used to calculate

nominal spectral transmittance under all operating condi-
tions.

2. Spectral Transmittance Versus Altitude. Fig-

ure 8(b) shows the transmittance for selected altitudes as
predicted by LOWTRAN7. In the ideal-coverage model,

the station altitude (2.3 kin) of the Table Mountain Facil-

ity (TMF) was used as the baseline for the optical stations.
Altitudes for the actual locations were used once specific

LDOS and COS configurations were developed.

3. Spectral Transmittance Versus Meteorologi-
cal Range. Varying meteorological range (visibility) will

have an impact on the transmittance of the optical beam.

Figure 8(c) shows the spectral transmittance for selected

visibilities for wavelengths between 0.4 and 2.0 pm. A me-

teorological range of 17 km (defined as clear) was used as
the basis for all calculations in this article.

4. Spectral Transmittance Versus Zenith An-

gle. The most dominant factor influencing the transmit-
tance of the optical beam through the atmosphere is the

operational zenith angle during telemetry reception. Fig-

ure 8(d) is a LOWTRAN7 plot of spectral transmittance
for selected zenith angles for wavelengths between 0.4 and

2.0 _m. At a 70-deg zenith angle, the air mass through

which the signal must propagate is about three times larger

than the air mass at zenith. This is equivalent to about 17
dB of loss. In this article, the telemetry reception of the
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optical station down to a zenith angle of 70 deg is included

in the coverage analysis and link calculations.

5. Optical Background. Optical communications

system performance in terms of data rate varies signif-
icantly between night and day. For a ground-based re-

ceiver, the sky radiance is a major source of optical noise,

especially for daytime operation. This information was

factored in when data volume over a 24-hour period was
calculated for the GBATS work.

a. Nighttime. The sky brightness at night is about 50

nW/(m2.nm.sr). This brightness is equivalent to a star of

visual magnitude of 21.25 per square arcsec [4].

b. Daytime. Figure 9 shows sky radiance as a function

of solar elongation. Sky radiance decreases by an order of

magnitude for solar elongation (Sun-Earth-spacecraft an-

gle) of 180 deg from a high of about 0.6 W/(m2.nm.sr)
when one is looking about 10 deg from the Sun. The

graph is derived from LOWTRAN7 calculations for nor-

mal weather (17-km visibility) for a TMF-like receiver site.
An average daytime data rate was calculated using six rep-

resentative daytime sky radiances, specifically at 10-, 40-,

70-, 100-, 130-, and 160-deg solar elongation.

B. Weather Model and Availability Analysis

Besides geometry, the largest driver in terms of network

performance is weather availability. With optical com-

munications, the effects of weather on station availability
are significantly more severe than they are at microwave

frequencies. Unlike microwave frequencies, practically no

communications can take place when the propagation path
for an optical link is blocked by clouds. In this article, a

weather model developed by Shaik [2] was used to model

weather effects on link availability for optical stations in
spatially independent weather cells. A total network avail-

ability of 90 percent was chosen as the performance goal.

1. Weather Model. For potential optical station
sites, rough estimates of pertinent weather statistics can

be obtained from existing sources, which include weather

satellites. Figure 10 shows a contour diagram for the prob-
ability of a clear sky over the United States obtained from

two years of GOES satellite data [5]. As can be seen, the
probability of cloud-free skies over Southern California is

about 66 percent. This means that 34 percent of the time,

this area has partial to full cloud cover. To provide high

weather availability (approximately 90 percent) requires
that nmltiple stations be within the line of sight of the
user spacecraft but located in different uncorrelated cells.

Based upon empirical information obtained from the
AFGL, the cloud-system correlation coefficient between

sites was expressed as s

p = exp [--Ax2/2ct =] (1)

where Ax is the distance between sites and _ = 50 km.

This empirical result is then used to obtain the extent

of cloud-system correlation for any two sites. An inter-

site distance of at least 3-4 c_, (or about 150-200 km) for
p _< 0.01 is found adequate to ensure spatially independent
weather cells.

Given ground stations in spatially independent weather

cells, a parametric weather model [2] can be used to com-
pute link availability statistics. The model may be used

to predict the joint probability (the percentage of time)
that the extinction loss due to the atmosphere is less than

some threshold for at least one of the ground stations.
We define wn(L) as the cumulative distribution function

(CDF)--that is, as the fraction of time when the propa-

gation loss due to the atmosphere is less than or equal to

L dB for at least one of the n sites with a line of sight to
the user spacecraft. The weather availability can then be
expressed as the CDF

wn(L) = 1- {qexp[-O.23b(L- L0)]}'; (L > L0) (2)

where L0 is the acceptable loss through the atmosphere

in dB and defines the operational telemetry line for the

optical subnet. The minimum loss through the atmo-
sphere is given by rla sec(¢') in dB, where ff is the zenith

angle and 17a represents a site-altitude-dependent empiri-
cally derived propagation loss through the atmosphere un-

der normal clear conditions. Since rla sec(ff) estimates the

minimum possible loss through the atmosphere, L0 > r/a
sec((). Parameter b is a site-dependent parameter and is

derived empirically to model the CDF curve [2]. In this

study, b = 0.11 and is derived from the assumption that
wl(L = 30) = 0.8 at zenith. 6 Tile equation assumes that

the probability of cloudy skies, q, is the same for all sites,

but it can easily be extended to site dependent q.

Equation (2) provides a simple model to compute the

weather availability of an optical subnet. For example,
under normal weather conditions for the Table Mountain

5 K. Shaik, "Spatial Correlation of Cloud Systems," JPL Interof-

fice Memorandum 331-88.6-564 (internal document), Jet Propul-
sion Laboratory, Pasadena, California, October 7, 1988.

o The probability of opaque clouds occurring in the Southwestern

United States is less than 20 percent [2].
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Facility, the minimum propagation loss at ( = 60 deg is

-4.7 dB. Choosing this as the acceptable propagation loss,

L0 = -4.7 dB, and with q = 0.34 at TMF, the availability

of a single site for L = L0 is found to be ¢o1(L0) = 0.66.
If there are three such independent and identical sites in

a subnet within the LOS of the user spacecraft, then from

Eq. (2), the subnet availability is found to be wa(L0) =

0.96.

2. Weather Availability. As previously mentioned,

weather availability is a measure of station outage due to
weather effects such as clouds, rain, and dense fog. Indi-

vidual sites for an optical subnet were chosen for their good

cloud-free statistics, and are located far enough apart, as

determined by Eq. (1), to ensure independent weather
from station to station. The availability of a single station

is expected to be at least 66 percent. The availability of a

given network configuration is discussed in Section IV.D.

C. Coverage Analysis

LOS coverage (or, more simply, coverage) is defined as

the percent of time during a 24-hour period when an un-
obstructed path, excluding weather conditions, exists be-
tween one or more stations on Earth and the user space-

craft. The performance goal for all networks is to provide

100 percent coverage.

A ground-based network consists of Earth stations

strategically placed around the globe to provide full cov-

erage, 24 hours a day. Ideally, only two stations located

near the equator and placed exactly 180 deg apart would

be required to provide full coverage. However, the num-
ber of stations quickly increases due to the constraint of

the minimum operational elevation angle of 15 or 30 deg,
the fact that the stations cannot always be placed at the

equator, and the need to have more than one station in the
spacecraft LOS to provide high weather availability. Spe-

cific network configurations and the coverage they provide

are presented in the following paragraphs.

D. Network Analysis

The most promising network concepts which provide

high weather availability and full coverage of the ecliptic
were introduced in Section III.B earlier. In this section,

subnet concepts are described in greater detail under ide-

alized conditions to provide a rationale for the selection

of promising configurations. The selected configurations,
an LDOS with six stations and a COS configuration with

nine stations, were then studied under realistic conditions

with reference to a Pluto mission in 2015. The coverage

curves and the telemetry rates are derived using actual site

parameters, including longitude, latitude, altitude, and
cloud-cover statistics, obtained from satellite data or in

situ observations, and compared to the results obtained
under ideal conditions.

1. LDOS Analysis. In this study, LDOS configu-

rations were designed with six to eight ground stations

spaced roughly equidistant from each other and placed

around the globe near the equatorial region. An LDOS
with five stations was not considered since the availabil-

ity of this configuration is considerably below 90 percent

(the percent required by the GBATS guidelines), and be-

cause the optical subnet would need to operate at very low

elevation angles for a large fraction of the time.

Since the characteristic cloud systems calculated ac-

cording to Eq. (1) are of the order of a few hundred
kilometers in size, which is much smaller than the inter-

station distance, the adjacent stations will lie in different

climatic regions and thus have uncorrelated cloud-cover
statistics. Once specific sites were chosen, single as well

as joint cloud-cover statistics for two or more consecutive
sites were evaluated and used to predict link availability.

The probability of link outage for the LDOS configu-

ration is low because (a) several stations are within the
LOS of the user spacecraft, and (b) the stations lie in
different climatic zones and hence their weather patterns

are uncorrelated. Since the receiving sites are far apart,

data with high spatial resolution on cloud-cover statistics

are not needed. Existing data with a resolution of about
100 kin are sufficient. However, further site surveys are

needed to provide weather data with high temporal resolu-
tion. The weather data with high temporal resolution are

needed to compute and predict short-term outage statistics

accurately. Weather data with hourly or better temporal

resolution will probably be needed to finalize site selection.

The distance between the receiving stations in the

LDOS concept is very large; therefore, the full benefit of

using optical wavelengths can be realized only when the

user spacecraft points accurately to the designated receiv-

ing station in the subnet. Since the spacecraft can be 4-5
light hours from the Earth for some planetary missions,
the weather availability of the subnet has to be predicted

several hours in advance to designate the receiving station,

and the location of the designated station must be uplinked

to the user spacecraft terminal for pointing purposes.

a. LDOS With Six Ground Stations. The LDOS

which consists of six optical stations located approximately

60 deg apart in longitude about the equatorial region is
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shown in Fig. 11. Each optical station is located in a dif-

ferent climatic region (approximately 7000 km apart), and

thus they have statistically uncorrelated cloud cover.

Figure 12 shows ideal coverage curves for six stations

60 deg apart in longitude. To calculate propagation loss,
the model assumes that all station sites have normal visi-

bility (17 km) and are as high as the Table Mountain Fa-
cility (2.3 kin). It is also assumed that each site has cloud-

free days at least 66 percent of the time (i.e., q = 0.34).

For this configuration, only two stations will have LOS

coverage of the spacecraft at all times when the telemetry

line (acceptable zenith angle loss through the atmosphere)

is consistent with a 60-deg zenith angle. The availability

for this optical subnet is calculated to be w2(L0) = 0.88.
The availability of the subnet can be increased to about 92

percent if a telemetry line consistent with a 75-deg zenith
angle can be used.

Consider the situation when station 3 is receiving from

a spacecraft on an equatorial path. The natural point to
hand-off telemetry to station 4 is when zenith angle _3 =

_4 - 30 deg (the subscript refers to the station number).

Note that while _3 is increasing, _4 is decreasing. As cal-
culated from the weather model described above, about

12 percent of the time, station 4 will be unavailable due

to weather. In this case, station 3 continues to receive up
to the point when _3 = 60 deg, at which point station 5

is activated at _s = 60 deg. For this configuration, the

telemetry line is placed at _ = 60 deg. The necessary

trade-offs to optimize the position of the telemetry line
have not been made. This leaves about one hour for ac-

quisition and overlap between stations, as the stations are

required to operate down to (: = 75 deg in zenith.

Table 4(a) provides a list of possible geographical sites
for this LDOS configuration as an example. Appendix B
describes the guidelines and the procedures used to select

geographical sites in Table 4(a) and the following site ta-
bles. Weather statistics for all locations, except for the

Hawaii and Chile sites, were obtained using satellite data

[6] and are shown in Table 4(a). The data used for Hawaii
and Cerro Pachan in Chile were based upon in situ obser-

vations [7]. Table B-1 in Appendix B lists possible addi-
tional sites.

Using specific sites given in Table 4(a) and assuming a

hypothetical mission to Pluto in 2015 for illustrative pur-
poses, a set of coverage curves was derived for a realistic

LDOS with six stations. Figure 13 shows the coverage

curves when data on actual geographical sites are used for
the Pluto mission. The site-specific information used to

obtain these curves includes altitude, longitude, and lat-

itude, as well as Pluto's trajectory across the sky. Note

that Pluto does not pass through the zenith for any of the

sites. As can be seen in the figure, coverage will last from

2.5 to 4 hours, depending on the specific latitude of the

optical station. For example, at the site in Siding Spring

Mt., Australia, a telemetry pass will last approximately 4
hours.

A close examination of Fig. 13 shows that the telemetry

line has been placed a little lower compared to Fig. 12. The
acceptable atmospheric loss for the realistic Pluto mission

is about -6.2 dB, instead of -4.7 dB for the ideal case,
and corresponds to a 70-deg zenith angle rather than the

60-deg angle used in the ideal case. The introduction of
actual geographical parameters has reduced the network

availability for an LDOS with 6 stations from 88 percent

for the ideal case to 81 percent. Also note that the acqui-
sition time is about 20 minutes for the Pluto mission case

instead of 1 hour for the ideal case.

b. LDOS With Seven Ground Stations. The inter-

station distance in this case will be roughly 51 deg in

longitude (approximately 6000 km). Here, 35 percent of
the time, three stations will be 30 or more deg above the

horizon. The rest of the time, only two stations will be

available. Availability for this configuration, when two or

three stations are above 30 deg in elevation, is calculated

to be w213(Lo) = 0.65w2(L0) + 0.35w3(L0) = 0.91. The

telemetry line for this configuration is at a 60-deg zenith

angle. Table 4(b) provides a list of possible geographical
sites. Table B-1 in Appendix B lists possible additional
sites.

c. LDOS With Eight Ground Stations. The inter-

station distance for this configuration will be roughly

45 deg in longitude (approximately 5000 km). This con-
figuration will ensure that three stations are 30 or more

deg above the horizon about 66 percent of the time in a

24-hour period. An LDOS with 8 stations will provide

94 percent availability. The telemetry line is at a 60-deg
zenith angle as before, providing considerably long over-

lap between stations. Table 4(c) shows a list of possible
geographical sites for this configuration.

2. Analysis for the Clustered Optical Subnet.
For geopolitical or operational reasons, the stations of an

optical subnet may be required to be located within three

or four locations around the globe that were chosen for
their optimally cloud-free skies. In this concept, a cluster
of three stations no more than a few hundred kilometers

apart is envisioned for each of the selected regions. This
distance is necessary to ensure that each station is located

in a unique weather cell. For a major portion of the time,
the spacecraft points to only one of these clusters; the
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spacecraft hands over the signal beam to the next cluster

as the spacecraft rises sufficiently above the horizon. Since
the intracluster distance between stations is of the order

of a few hundred kilometers, cloud-cover data with much

finer spatial resolution (a few tens of kilometers) than for

the LDOS configuration are required. In addition, the
requirements for obtaining site-specific cloud-cover data

with sufficient temporal resolution, which were discussed

previously, apply here as well.

An advantage of the COS concept over the LDOS is
that there is no need to predict weather availability several
hours in advance. All stations within a cluster monitor

the user-spacecraft's transmitted beam jointly with little

pointing loss. Additionally, there is no need to designate

a receiving station and, therefore, no need to uplink such

information to the user spacecraft.

a. COS With 3 x 3 Stations. The clustered optical
subnet to be discussed in detail consists of nine stations

located in three clusters of three stations (COS 3 x 3); the

clusters are approximately 120 deg apart in longitude (ap-

proximately 14,000 km). This configuration provides 96

percent weather availability since the stations are located
within a cluster at distances no more than a few hundred

kilometers apart.

Ideal coverage curves to model a COS 3 x 3, with the
clusters located 120 deg apart in longitude, are seen as a
subset of the curves for the LDOS configuration with six

stations, which is shown in Fig. 12. (Consider curves l(a),

3, 5, and l(b) only.) The assumptions about the sites are
the same as those described for the LDOS with six stations

(see above); however, it is assumed that only one site in
the cluster is receiving telemetry. The weather availability

of this configuration is 96 percent, and the telemetry line

is at ( = 60-deg zenith angle, which is where the handing

over to the following cluster takes place.

The geographical cluster locations chosen for the COS

3 x 3 are shown in Fig. 14. Table 5(a) provides a list of

the specific geographical sites and their weather statistics.
Like the sites chosen for the LDOS subnet, each COS 3 x 3

site has cloud-free days at least 66 percent of the time. In

this configuration, each cluster is dedicated to a single user

pass, resulting in a 96 percent probability that at least one

optical station will have a clear LOS to the user.

Figure 15 shows the coverage curves for the COS 3 × 3
stations when data on one of the three actual geographical
sites in each cluster are used for a Pluto mission in 2015.

The actual sites used to obtain the coverage curves are

TMF in California, Siding Spring Mt. in Australia, and

Calar Alto in Spain. The site-specific information used
to obtain these curves includes altitude, longitude, and

latitude, as well as Pluto's trajectory across the sky. Note

that Pluto does not pass through the zenith for any of the
sites.

Like the LDOS configuration discussed above, the char-

acteristic performance of the optical channel at approxi-

mately 70 deg off zenith (hand-over) is the determining fac-
tor for telemetry performance. The telemetry curve for the

Pluto mission is placed at -6.2 dB, compared to -4.7 dB
for the ideal case. However, even with this change, two

gaps exist in the LOS coverage, totaling about 4 hours per

day. The LOS coverage provided by the COS 3 x 3 for a
Pluto mission in 2015 is about 79 percent. As is the case

with the LDOS concept, each optical terminal has about

20 minutes to acquire, track, and lock onto the incom-

ing optical beam. The total network availability has not

changed, since each cluster contains three sites in indepen-
dent weather cells.

Although this configuration provides the same teleme-
try rate as the LDOS network with six stations and better

weather availability, the gaps in coverage and the signifi-

cantly larger number of stations required for the clustered

concept are distinct disadvantages.

b. COS With 3 x _ Stations. A total of 12 optical sta-

tions will be necessary in this subnet configuration (COS

3 x 4). The distance between clusters will be roughly

90 deg in longitude (approximately 10,000 km).

Table 5(b) shows a list of probable geographical sites
for COS 3 x 4. Each cluster (numbered 1 to 4) contains

three optical station sites to satisfy the ground rules for

the COS concept discussed above.

3. Network Availability. Weather-related availabil-

ities for the idealized network configurations are shown

in the second column of Table 6. The probabilities have

been calculated using the model described above, with

q = 0.34 for each individual site. Additionally, the ac-

ceptable zenith angle loss, or the telemetry line, used to
calculate availabilities for the ideal LDOS networks is con-

sistent with a 60-deg zenith angle, and the link calculations
shown in Sections IV.E and IV.F below are based on this

assumption. The telemetry line, however, can be made

consistent with a 75-deg zenith angle to increase network

availability to 92, 95, and 96 percent for an LDOS with 6,

7, or 8 stations, respectively. The trade-offs to identify op-

timum position for the telemetry line were not performed.

For an actual LDOS with six stations for tile Pluto

mission, a telemetry line at a 70-deg zenith angle was used
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to calculate the network availability and the data rates

shown in Section IV.F. The weather availability for the
specific Pluto mission for an LDOS with six stations and

for a COS with three clusters of three stations each is
shown in the third column in Table 6.

4. Network Coverage. Table 7 shows that the LOS

coverage for all idealized optical subnet configurations con-
sidered here is 100 percent. The coverage numbers for the
actual geographical sites chosen for an LDOS with six sta-

tions and a COS 3 x 3 for a Pluto mission in 2015 are
shown in the third column of the same table. Note that the

coverage for the COS 3 x 3 for this specific case drops to

79 percent. The LOS coverage for COS 3 x 4 and LDOS
with seven or eight stations with actual sites considered

was not calculated but is expected to be 100 percent.

E. Link Calculations

Link analysis for a 30-AU Pluto mission at night was
performed using OPTI 4.0, a software package developed
in-house at JPL (see Appendix A).

1. Operational Considerations. The operational

parameters used to estimate the telemetry capacity in this

study are shown in Table 8. Details on other parameters

used in the communication link budget are shown in Ap-
pendix A.

The modulation format used with the OPTI software

was PPM. The alphabet size, as shown in Table 8, is 256.

A nominal raw link bit error rate (BER) of 0.013 was

used. This was reduced to 10 -5 by applying 7/8 Reed-
Solomon coding. The 7/8 correction was applied to the
data rate calculated by OPTI.

F. Telemetry

The telemetry return capability was used as the pri-
mary measure of the subnet performance. The benchmark

established in the study for telemetry was 240 kb/sec for

a future 70-m Ka-band (32 GHz) receiver, averaged over
a 24-hour period. The user spacecraft antenna for this
benchmark is 5 m in diameter.

The following assumptions and procedures were fol-

lowed to calculate telemetry return capability for optical
communications:

(1) The user spacecraft employs a transmitter proposed

by TRW for its DSRSS study. T It is based on a 0.75-

TTRW briefing, "Deep Space Relay Satellite System Study," Quar-
terly Progress Review, presented to JPL on February 25, 1993.

m telescope and a 7-W laser operating at 532-nm
wavelength. See Appendix A for a list of transmitter
parameters used.

(2) The optical terminal is based on a 10-m telescope.

See Appendix A for a list of receiver parameters.

(3) Data rates for night and day were calculated sepa-

rately. For the daytime calculation, an average data

rate was computed over a number of daytime sky-
radiance values.

(4) Data rates were computed for an ideal optical subnet
and a realistic network for a 30-AU mission to Pluto
in 2015.

(5) Data rates were computed for a conventional filter

with a spectral bandwidth of 0.1 nm and for an

atomic resonance filter with a spectral bandwidth
of 0.001 am.

(6) Daytime and nighttime data rates were averaged
over a period of 24 hours for both optical filters,
and telemetry improvement over the baseline was
calculated.

1. Telemetry for the 30-AU Pluto Mission. Ta-

ble 9 summarizes the data rates, which have been corrected

for coding as discussed below, expected for an optical com-
munications link between a 0.75-m user spacecraft trans-

mitter at 30 AU and a 10-m ground station. Data rates

using an atomic resonance filter (ARF) as well as a conven-

tional filter were calculated for both an ideal configuration

and a specific mission to Pluto in 2015. The acceptable
zenith angle losses through the atmosphere for the ideal

case and the actual Pluto mission were -4.7 dB (consis-

tent with a 60-deg zenith angle) and -6.2 dB (consistent
with a 70-deg zenith angle) respectively. The daytime data
rate was obtained by averaging data rates calculated for six

representative day-sky radiances between l0 and 180 deg
solar elongation.

The data rates were first calculated using OPTI 4.0 for
a 0.013 BER without coding. This raw data rate was then

multiplied by 0.877 to obtain a 7/8 Reed-Solomon (R-S)
coded data rate with a 10 -5 BER for PPM modulation

with an alphabet size of M = 256. s The dB gain, shown
in parentheses with each data rate, was calculated over

the agreed baseline telemetry rate of 240 kb/sec. Note
that the data rates shown in Table 9 were not corrected

for weather availability or the LOS coverage.

s W. Marshall, "Using the link analysis program with R-S encoded
links," JPL Interoffice Memorandum 331-86.6-202 (internal docu-
ment), Jet Propulsion Laboratory, Pasadena, California, August 1,
1986.
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Table 9 shows that a ground-based optical subnet can

provide very high data rates. For the Pluto mission at
30 AU, the telemetry rate can be as high as 1716 kb/sec,

about 8.5 dB higher than the baseline rate of 240 kb/sec.

Daytime data rates are lower, as expected, but still provide

improvement over the baseline performance.

The telemetry rate can be further improved by employ-

ing 12- to 15-m receiver apertures. The technology for

photon buckets up to 15 m in size is within reach with low
technical risk. Use of a larger aperture, for a given data

rate, is expected to have a favorable impact on the user-

spacecraft design. It will usually mean a user-spacecraft

optical terminal with smaller mass, size, and power con-

sumption.

V. Conclusion

Several alternative optical subnet configurations were
considered in this article. It is seen that an LDOS with six

stations can provide nearly full LOS coverage of the ecliptic

and 81 percent weather availability. If higher availabilities

are needed, an LDOS with seven or eight stations can be
used.

COS 3 x 3 under realistic conditions fails to provide

full coverage (it provides approximately 79 percent). If
the clustered concept for the optical subnet is desirable,

a COS 3 x 4 with 12 ground stations will be required

to provide full coverage, at least for the Pluto mission in

2015. The availability of both COS configurations is ex-

pected to be 96 percent. The COS configuration imposes

an additional requirement over the LDOS configuration

for locating appropriate specific sites. The clusters must

be about 90 deg apart in longitude for COS 3 x 4, and
intracluster station distances must be at least 150 km to

ensure decorrelation of weather statistics. This may make

it more difficult to find three specific sites within a given

cluster when other requirements such as high altitude and

reasonable accessibility are included.

A linearly dispersed optical subnet with six to eight
stations is recommended, since it accomplishes the task

with fewer ground stations than any other configuration
considered here.
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Table 1. Telescope description.

Parameter VMue

System focal length, m 77.5

System focal ratio 7.75

System scale at Cassesrain focus, _rad/mm 12.9

System bhtr diameter, _rad <I00

System FOV at Cassegrain focus, mrad 2.0

Primary mirror size, m 10

Primary radius of curvature, m -10.0

Primary focal ratio 0.5

Primary aspheric deformation -1.0009

Primary to secondary distance, m -4.5

Secondary mirror size, m 1.0

Secondary radius of curvature, m -1.069

Secondary a.spherlc deformation -1.3062

Secondary to Cassegrain focus distance, m 7.75

Table 2. Pointing, trackJng, and slewing capability.

Parameter Value

Coarse blind pointing, mxad 0.2

Fine pointing, mrad 0.01

Tracking rate, both axes, deg/sec 0.005

Slew rate for both axes, deg/sec 1.0

Acceleration/deceleration for both axes, deg/sec 2 3.0

Table 3. Transmitter parameters.

Transmitter parameter Value

Average power, W 7

Wavelength, nm 532

Aperture size, m 0.75

Obscuration, m 0.0

Optics efficiency 0.8

Pointing bias error, #rad 0.1

RMS pointing jitter, _rad 0.1
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Table4(a). Linearly dispersed optical subnet with six ground opUcai stations.

Location
Altitude, Longitude, Latitude, Time Cloud-free Preexisting facilities

km deg deg zone days/weather and infrastructure

Southwest United States

Table Mountain Facility, Calif. 2.3

Hawaii, United States

Mauna Kea 4.2

Australia

Siding Spring Mountain 1.1

Pakistan

Ziarat 2.0

Spain/Northwest Africa

Calar Alto, Spain 2.2

South America

Cerro Pachan, Chile 2.7

118 W 34 N -8 66%/arid a Yes

155 W 20 N -10 >69%/dry [7] Yes

149 E 31 S +10 67%/dry Yes

68 E 30 N +5 69%/arid Information NA

2 W 37 N -1 67%/arid Yes

71 W 30 S -4 77%/axid [7] Yes

a ISCCP satellite data, obtained from [6].

Table 4(b). linearly dispersed optical subnet with seven locations.

Location
Altitude, Longitude, Latitude, Time Cloud-free Preexisting facilities

km deg deg zone days/weather and infrastructure

Southwest United States

Table Mountain Facility, Calif. 2.3

Hawaii, United States

Mauna Kea 4.2

Australia

Siding Spring Mountain 1.1

Nepal/South India NA

Saudi Arabia

Jabal Ibrahlm 2.6

Spain/Northwest Africa

Calar Alto, Spain 2.2

South America

Cerro Pachan, Chile 2.7

118 W 34 N -8 66%/axid a Yes

155 W 20 N -10 >69%/dry [7] Yes

149 E 31 S +10 67%/dry Yes

NA NA +6 NA Information NA

41 E 21 N +3 NA Information NA

2 W 37 N -1 67%/arid Yes

71 W 30 S -4 77%/arid [7] Yes

ISCCP satellite data, obtained from [6].
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Table4(c).Linearlydispersedopticalsubnetwitheightlocations.Eachofthe eight listed locations will

have • ground optical receiving station.

Location Altitude, Longitude, Latitude, Time Cloud-free Preexisting facilities

km deg deg zone days/weather and infrastructure

Southwest United States

Table Mountain Facility, Calif. 2.3 118 W 34 N -8 66%/arid _ yes

Hawaii, United States

Mauna Kea 4.2 155 W 20 N -10 >69%/dry [7] Yes

Australia

Siding Spring Mountain 1.1 149 E 31 S +10 67%/dry Yes

Australia

Mt. Bruce 1.2 118 E 23 S +8 NA/dry Information NA

Pakistan

Ziarat 2.0 68 E 30 N +5 69%/acid Information NA

Saudi Arabia

Jabal Ibrahim 2.6 41 E 21 N +3 NA Information NA

Spain/Northwest Africa

Caiar Alto, Spain 2.2 2 W 37 N -1 67%/arid Yes

South America

Cerro Pachan, Chile 2.7 71 W 30 S -4 77%/arid [7] Yes

* ISCCP satellite data, obtained from [6].

Table 5(•). Clustared optical subnet locations. The network consists of three ground optical

receiving stations in each of the three locations.

Location Altitude, Longitude, Latitude, Time Cloud-free Preexisting facilities

km deg deg zone days/weather and infrastructure

Southwest United States

Table Mountain Facility, CaliL 2.3 118 W 34 N

Mt. Lemmon, Arizona 2.1 111 W 31 N

Sacramento Peak, New Mexico 3.0 106 W 35 N

Australia

Mr. Bruce 1.2 118 E 23 S

Mt. Round 1.6 153 E 30 S

Siding Spring Mountain 1.1 149 E 31 S

Spain/Northwest Africa

Arin Ayachl, Morocco 3.7 5 W 33 N

Tahat, Algeria 2.9 5 W 22 N

Calac Alto, Spain 2.2 2 W 37 N

-8 t_%/dry* Yes

-7 >60%/dry [_] yes
-7 >60%/dry [7] Yes

+8 NA Information NA

+10 NA Information NA

+10 67%/dry yes

0 NA Information NA

- 1 NA Information NA

- 1 67%/dry a Yes

* ISCCP satellite data, obtained from [6].
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Table5(b).Clusteredopticalsubnet locations. The network consists of three ground optical

recelvlng stations in each of the four locations.

Altitude, Longitude, Latitude, Time Cloud-free Preexisting facilities
Location

kin deg deg zone days/weather and infrastructure

Southwest United States

Table Mountain Facility, Calif. 2.3 118 W 34 N -8 66%/dry a Yes

Mt. Lemmon, Arizona 2.1 111 W 31 N -7 >60%/dry [7] Yes

Sacramento Peak, New Mexico 3.0 106 W 35 N -7 >60%/dry [7] Yes

Australia

Mt. Bruce 1.2 118 E 23 S +8 NA Information NA

Mt. Round 1.6 153 E 30 S +10 NA Information NA

Siding Spring Mountain 1.1 149 E 31 S +10 67%/dry _ Yes

Pakistan

Ziarat 2.0 68 E 30 N +5 69%/arid Information NA

Site not determined ......

Site not determined ......

Spain/Northwest Africa

Arin Ayacki, Morocco 3.7 5 W 33 N 0 NA Information NA

Tahat, Algeria 2.9 5 W 22 N -1 NA Information NA

Calar Alto, Spain 2.2 2 W 37 N -1 67%/dry _ Yes

ISCCP satellite data, obtained from [6].

Table 6. Network availability.

Availability with Availability with
Network

ideal sites, percent actual sites, percent

COS 3x3 96 96

COS 3x4 96 96

LDOS: six stations 88 81

LDOS: seven stations 91 --

LDOS: eight stations 94 --

Table 7. Network coverage.

Coverage with
Network

ideal sites, percent

Coverage with

actual sites, percent

COS 3x3 100 79

COS 3x4 100 --

LDOS: six stations 100 95

LDOS: seven stations 100 --

LDOS: eight stations 100 --

Table 8. Operational parameters for link

calculations.

Parameter Value

PPM alphabet size 256

Link distance, AU 30

Raw bit-error rate 0.013

Slot width, nsec l0
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Table9.Nighttime,daytimeaverage,endd•y/nlghtever•g•datarates(kb/•ec)fora10-mgroundreceiver,end
•vet•g•g•in(dB)overbaselinetelemetryforthereceiverwithan•tomlcresonancefilter(ARF)andwith•

conventional filter. The user spacecraft transmitter Is at • distance of 30 AU and has • telescope 0.75 m In size.

The date rates were not corrected for weather availability and LOS coverage.

Ideal LDOS with six stations Actual LDOS with six stations for a

Pluto mission in 2015

Period ARF filter a Conventional filter b ARF filter a Conventional filter b

kb/sec dB gain c kb/sec dB gain ¢ kb/sec dB gain ¢ kb/sec dB gain ¢

Nighttime 1716 8.5 1716 8.5 1215 7.0 1215 7.0

Daytime average d 1056 6.4 377 2.0 774 5.1 298 0.94

Day/nlght average 1386 7.6 1047 6.4 994 6.2 757 5.0

8 The ARF f-dter hem a bandwidth of 0.001 nm.

b The conventional filter has a bandwidth of 0.1 nm.

c The dB gain is calculated over a baseline telemetry rate of 240 kb/sec.

d The daytime average is obtained by averaging data rates calculated for six day-sky radiances between

10- and 180-deg solar elongation.
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I. OPTICAL TERMINAL:

A. TELESCOPE AND OPTICS
B. RECEIVER SUBSYSTEM
C. ACQUISITION POINTING AND TRACKING
D. ENVIRONMENTAL HOUSING

II. DATA PROCESSING:
A. TIMING AND FREQUENCY
B. SIGNAL PROCESSING
C. CONTROL AND MONITOR
D. GROUND COMMUNICATIONS
E. ARCHIVAL STORAGE
F. SIMULATION, TEST AND TRAINING

III. FACILITIES:
A. BUILDINGS
B. ROADS/WATER/SEWAGE
C. POWER/GROUND SUBSYSTEM/UNINTERRUPTIBLE POWER

SUPPLY

D. HEAT, VENTILATION, AND AIR CONDITIONING/
FIRE SUPPRESSION/SECURITY

E. WEATHER SUBSYSTEM
F. LEASED TELECOMMUNICATIONS SERVICES

IV. LOGISTICS:

A. ON-SITE EQUIPMENT SPARES
B. DIAGNOSTICS, TOOLING, AND TEST EQUIPMENT
C. TRANSPORTATION

V. OPERATIONS:
A. WORKFORCE
B. ADMINISTRATION/MATERIAL/TRAINING

Flg. 3. Optlcal statlon system breakdown.
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Fig. 4. Conceptual diagram for an optical communications Instrument (not drawn to

scale).
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(a)

(b)
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Fig. 5. Typical protective dome for the receiver telescope: (s) closed and (b) open (not drawn

to scsle).
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Fig. 8. Spectral transmittance data. All tour diagrams assume high cirrus clouds. (a) Spectral transmittance over visible and near-

Infrared wavelengths for three Low'rRAN atmospheric models. (The diagram assumes a 2.3-km altitude, a 17-km meteorological

range [clear], and a zenith path through the atmosphere). (b) Spectral transmittance for selected altitudes over visible and near-

Infrared wavelengths. (The diagram assumes the use of the U.S. Standard Atmosphere 1976 model, a 17-km meteorological range

[clear], and a zenith path through the atmosphere). (c) Spectral transmittance for selected meteorological ranges (visibilities)

over visible and near-infrared wavelengths. (The diagram assumes the U.S. Standard Atmosphere 1976 model, a 2.3-km altitude,

end a zenith path through the atmosphere.) (d) Spectral transmittance for selected zenith angles over visible end near-infrared

wavelengths. (The diagram assumes the U.S. Standard Atmosphere 1976 model, a 2.3-km altitude, a 17-km meteorological range

[clear], and a slant path through the atmosphere).

173



0.6 I I I I I t I I

0.5

0.1 -

0 I I I I I I I I
0 20 40 60 80 100 120 140 160 180

SOLAR ELONGATION, deg

Fig. 9. Daytime sky radiance as s function of solar elongation

(Sun-Earth-probe angle).

0.4

o
z

Q

oc 0.2

Fig. 10. Contour diagram obtained from two years of GOES satellite data;

the diagram shows the probability of clear skies over the United States.
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Fig. 15. Coverage curves for s COS 3 X 3 subnet with nine sis-

lions for s Pluto mission In 2015. Zenith angles st local meddlan

for Pluto In 2015 are shown at the top of each curve. The sites

used to calculate the coverage curves are TMF In California, Sid-

ing Spring Mt. In Australia, and Celsr Alto In Spain (see Table 3).

The coverage curve for the southwestern United States is shown

In two halves: SW U.S. (a) and SW U.S. (b).
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Appendix A

OPTI Sample Output

OPTICAL COMMUNICATIONS LINK ANALYSIS PROGRAM
VERSION 4.02

GBATS, 30 AU, nighttime, 70 ° zenith angle, ARF spectral filter
PPM Direct Detection PMT detector

The transmitter parameters are (user spacecraft):

Transmitter average power (watts) = 7.0000
Wavelength of laser light (micrometers) = 0.53200
Transmitter antenna diameter (meters) = 0.75000
Transmitter obscuration diameter (meters) = 0.00000
Transmitter optics efficiency = 0.80000
Transmitter pointing bias error (microrad.) = 0.10000
Transmitter rms pointing jitter (microrad.) = 0.10000
Modulation extinction ratio = 0.10000E+06

The receiver parameters are (ground station):

Diameter of receiver aperture (meters)
Obscuration diameter of receiver (meters)
Receiver optics efficiency
Detector quantum efficiency
Narrowband filter transmission factor

Filter spectral bandwidth (angstroms)
Detector dia. field of view (microrad.)

= 10.000
= 3.0000
= 0.70000
= 0.21000
= 0.60000
= 0.10000E-01
= 100.00

The operational parameters are:

Alphabet size (M = ?)
Data rate (kb/s)
Link distance (A.U.)
Required link bit error rate
Atmospheric transmission factor
Dead time (microseconds)
Slot width (nanoseconds)

= 256.00
= 1387.8
= 30.000
= 0.13000E-01
= 0.24000
= 3.2046
= 10.000

Noise sources

Pluto RCVR to source distance (AU) = 30.000

Addition',d noise sources

nightsky radiance(W/M**2/S R/A) = .50000E-08
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Laser output power (watts)
Min Req'd peak power (watts) = .40E+04

Transmitter antenna gain
Antenna dia. (meters) = 0.750
Obscuration dia.(meters) = 0.000
Beam width (microrad) = 1.121

Transmitter optics efficiency

Transmitter pointing efficiency
Bias error (microrad) = 0.100

RMS jitter (microrad) = 0.100

Space loss ( 30.00 AU )
Receiver antenna gain

Antenna dia. (meters)
Obscuration dia. (meters)
Field of view (microrad.

= 10.000
= 3.000
= 100.000

Receiver optics efficiency

Narrowband filter transmission

Bandwidth (angstroms) = 0.010

Detector Quantum efficiency

Atmospheric transmission factor

Received signal power (watts)
Recv'd background power (watts) = 0.323E-17

Photons/joule

Detected signal PE/second

Symbol time (seconds)

Detected signal PE/symbol

Required signal PE/symbol

Detected background PE/slot = 0.736E-04

Margin

Factor dB

7.00 38.5 dBm

0.160E+14 132.0

0.890E-40 -400.5
0.446E+16 156.5

0.210 -6.8
.........................

0.240 -6.2

0.228E-11 -86.4 dBm

0.268E+19 154.3 dB/mJ
.........................

0.255E+07 64.1 dBHz

0.290E-05 -55.4 dB/Hz
.........................

7.36 8.7

3.69 5.7

2.OO 3.0
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Appendix B

Site-Selection Guidelines and Procedures

I. Selection Guidelines

The following guidelines were used to identify probable

sites for the Earth-based optical communication terminals:

(1) Locations as close to the equator as possible.

(2) High altitudes, preferably mountaintops.

(3) Good astronomical seeing.

(4) A large number of cloud-free days per year.

(5) Accessible locations with existing infrastructure, if
possible.

II. Selection Procedure

To start, large geographical regions with an appropriate
distance in longitude between them for the network con-

figuration under consideration, and as close to the equator

as possible, were identified on a map. A detailed literature

search was then performed to locate sites at high altitudes

in each region, thus generating a large list of likely station

sites. Sites with good astronomical seeing, a large number
of cloud-free days, and a preexisting infrastructure were

favored. Inaccessible sites with wet weather were dropped
from consideration when better alternates were available.

III. List of Additional Possible Sites

Table B-1 provides a list of geographical sites in addi-
tion to those already listed in the main text of this arti-

cle. Each possible site in this table, and in the site tables

shown elsewhere in this article, is followed by its altitude,
longitude, latitude, and the time zone. The next column

provides information on the number of cloud-free days and
the weather of the site. The cloud-cover data on most sites

were obtained from the International Satellite Cloud Cli-

matology Project (ISCCP) as managed by the NASA Cli-

mate Data System (NCDS) and are available on CD-ROM

[6]. The data provide monthly averages over an eight-year

period ending in December 1990, for the entire globe, with

a resolution of 250 km. 1 Data on other sites, like Mauna

Kea in ttawaii, were obtained in situ for astronomical pur-

poses. The last column indicates if there is a preexisting
infrastructure at the site.

The lists of actual sites presented in this article should

be treated as tentative and preliminary.

1K. Shaik and D. Wonica, "Cloud cover data for GBATS," JPL
Interoffice Memorandum 331.6-93-098 (internal docuraent), Jet
Propulsion Laboratory, Pasadena, California, May 6, 1993.
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Table B-1. Additional sites of Interest for an optical communications network.

Location
Altitude, Longitude, Latitude, Time Cloud-free Preexisting facilities

km deg deg zone days/weather and infrastructure

Roque de los Muchachos
Observatory, Canary Islands, Spain NA 16 W 29 N -2 NA/dry Yes

Fuente Nueva, La Palma

Canary Islands, Spain NA 16 W 29 N -2 NA/dry Yes

Jabal Toukal, Morocco 4.1 8 W 31 N 0 NA/dry Information NA

Mudhecen, Spain 3.4 3 W 37 N -1 67%/dry • Information NA

Inafia, Tenerlfe, Canary

Islands, Spain NA 16 W 29 N -2 NA/dry Yes

Cerro Tololo, Chile 2.2 71 W 30 S -4 77%/axid [7] Yes

Llano del Hato, Venezuela 3.6 71 W 9 N -4 NA/dry Yes

Mt. Ziel, Australia 1.5 133 E 23 S 10 NA/dry Information NA

Freeling Heights, Australia 1.1 139 F, 30 S 10 NA/dry b Information NA

• ISCCP satellite data, obtained from [6].

b A. Rogers, personal communication, Australian National University, Mount Stromolo and Siding Spring

Observatories, Canberra, Australia, June 1993.
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