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SUMMARY

This paper reviews the capabilities of a plasticity-induced crack-

closure model and life-prediction code to predict fatigue crack growth and

fatigue lives of metallic materials. Crack-tip constraint factors, to

account for three-dimensional effects, were selected to correlate large-

crack growth rate data as a function of the effective-stress-intensity

factor range (_Kef f) under constant-amplitude loading. Some modifications

to the AKeff-rate relations were needed in the near-threshold regime to fit

small-crack growth rate behavior and endurance limits. The model was then

used to calculate small- and large-crack growth rates, and in some cases

total fatigue lives, for several aluminum and titanium alloys under

constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives

were calculated using the crack-growth relations and microstructural

features like those that initiated cracks. Results from the tests and

analyses agreed well.
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LIST OF SYMBOLS

Crack length in thickness (B) direction, mm

Initial defect or crack length in B-direction, mm

Defect or void half-height, mm

Specimen thickness, mm

Crack length in width (w) direction, mm

Initial defect or crack length in w-direction, mm

Boundary correction factor

Maximum stress-intensity factor, MPaJm

Overload stress-intensity factor, MPaJm

Underload stress-intensity factor, MPaJm

Number of cycles



Nf
R

r

S

l

So

Smax

Smf

Smi n
t

_g
_C
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AKef f

Number of cycles to failure

Stress ratio (Smin/Smax)

Notch or hole radius, mm

Applied stress, MPa

Crack-opening stress, MPa

Maximum applied stress, MPa

Mean flight stress, MPa

Minimum applied stress, MPa

Specimen thickness for through or corner crack and half-

thickness for surface crack, mm

Constraint factor

Global constraint factor from finite-element analysis

Crack extension in c-direction, mm

Stress-intensity factor range, MPaJm

Effective stress-intensity factor range, MPaJm

(aKeff)th Small crack _Kef f threshold, MPaJm

AKth

P

a 0

ays

au

Large-crack aK threshold, MPaJm

Plastic-zone size, mm

Flow stress (average of ay s and au), MPa

Yield stress (0.2 percent offset), MPa

Ultimate tensile strength, MPa

Cyclic-plastic-zone size, mm

INTRODUCTION

The use of damage-tolerance and durability design concepts based on

fatigue-crack growth in aircraft structures is well established (Ref I and

2). The safe-life approach, using standard fatigue analyses, is also used

in many designs. In conventional metallic materials, crack-growth anomalies

such as the small-crack effect and the various crack-tip shielding

mechanisms (Ref 3 and 4) have improved our understanding of the crack-growth

process but have complicated life-prediction methods. In the new metallic

materials, such as the aluminum-lithium alloys, crack shielding and failure

mechanisms are more complex than in conventional materials due to crack

growth along tortuous crack paths (Ref 5). Over the past decade, the

intense experimental studies on small or short crack growth behavior in

these metallic materials have led to the realization that fatigue life of

many materials is primarily "crack growth" from microstructural features,
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such as inclusion particles, voids or slip-band formation. Concurrently,

the improved fracture-mechanics analyses of someof the crack-tip shielding
mechanisms, such as plasticity- and roughness-induced crack closure, and

analyses of surface- or corner-crack configurations have led to more

accurate crack growth and fatigue life prediction methods.
On the basis of linear-elastic fracture mechanics (LEFM), studies on

small cracks (10 pm to ] mm)have shownthat small cracks grow much faster

than would be predicted from large crack data (Ref 3 and 4). This behavior

is illustrated in Figure ], where the crack-growth rate, da/dN or dc/dN, is

plotted against the linear-elastic stress-intensity factor range, AK. The

solid (sigmoidal) curve showstypical results for large cracks in a given

material and environment under constant-amplitude loading (R - Smin/Smax-
constant). The solid curve is usually obtained from tests with large

cracks. At low growth rates, the threshold stress-intensity factor range,

AKth, is usually obtained from load-reduction (AK-decreasing) tests. Some
typical results for small cracks in plates and at notches are shownby the
dashed curves. These results showthat small cracks grow at AK levels below

the large-crack threshold and that they also can grow faster than large
cracks at the sameAK level above threshold. Small-crack effects have been

shown to be more prevalent in tests which have compressive loads, such as

negative stress ratios (Refs 6-8).

During the last decade, research on small- or short-crack effects has
concentrated on three possible explanations for the behavior of such cracks.

They are plasticity effects, metallurgical effects and crack closure (Ref 3

and 4). All of these features contribute to an inadequacy of LEFMand the
use of the AK-concept to correlate fatigue crack growth rates.

Someof the earliest small-crack experiments were conducted at high

stress levels which were expected to invalidate LEFMmethods. Nonlinear or

elastic-plastic fracture mechanicsconcepts, such as the J-integral and an

empirical length parameter (Ref g), were developed to explain the observed
small-crack effects. Recent research on the use of AJ as a crack-driving

parameter suggest that plasticity effects are small for manyof the early
and more recent small-crack experiments (Ref 10). But the influence of

plasticity on small-crack growth and the appropriate crack-driving parameter
is still being debated.

Small cracks tend to initiate in metallic materials at inclusion

particles or voids, in regions of intense slip, or at weak interfaces and



grains. In these cases, metallurgical similitude (see Ref 11) breaks down

for these cracks (which meansthat the growth rate is no longer an average
taken over many grains). Thus, the local crack growth behavior is

controlled by metallurgical f_ures. If the material is markedly
anisotropic (differences in modulus and yield stress in different

crystallographic directions), the local grain orientation will strongly
influence the rate of growth. Crack front irregularities and small

particles or inclusions affect the local stresses and, therefore, the crack

growth response. In the case of large cracks (which have large fronts), all

of these metallurgical effects are averaged over manygrains, except in very

coarse-grained materials. LEFMand nonlinear fracture mechanics concepts
are only beginning to explore the influence of metallurgical features on

stress-intensity factors, strain-energy densities, J-integrals and other

crack-driving parameters.

Very early in small-crack research, the phenomenonof fatigue-crack
closure (Ref 12) was recognized as a possible explanation for rapid small-

crack growth rates (see Ref 13). Fatigue crack closure is caused by

residual plastic deformations left in the wake of an advancing crack. Only
that portion of the load cycle for which the crack is fully open is used in

computing an effective stress-intensity factor range (aKeff) from LEFM
solutions. A small crack initiating at an inclusion particle, a void or a

weak grain does not have the prior plastic history to develop closure.

Thus, a small crack maynot be closed for as muchof the loading cycle as a
larger crack. If a small crack is fully open, the stress-intensity factor

range is fully effective and the crack-growth rate will be greater than

steady-state crack-growth rates. (A steady-state crack is one in which the

residual plastic deformations and crack closure along the crack surfaces are

fully developed and stabilized under steady-state loading.) Small-crack

growth rates are also faster than steady-state behavior because these cracks
may initiate and grow in weak microstructure. In contrast to small-crack

growth behavior, the development of the large-crack threshold, as

illustrated in Figure 1, has also been associated with a rise in crack-

opening load as the applied load is reduced (Ref 14 and 15). Thus, the

steady-state crack-growth behavior may lie between the small-crack and

large-crack threshold behavior, as illustrated by the dash-dot curve.

The purpose of this paper is to review the capabilities of a

plasticity-induced crack-closure model (Ref 16 and 17) to correlate and to



predict small- and large-crack growth rate behavior in several aluminum and
titanium alloys under various load histories. Test results from the

literature on aluminum alloys 2024-T3 (Refs 7, 18 and 19), 7075-T6 (Ref 20),

LCgcs (Ref 20) and 7475-T7351 (Refs 21 and 22) and on titanium alloys Ti-

6AI-4V (Ref 23 and 24), IMI-685 (Refs 23-25) and Ti-]7 (Refs 23 and 24)

under constant-amplitude loading were analyzed with the closure model to

establish an effective stress-intensity factor range against crack growth

rate relation. The effective stress-intensity factor range against crack

growth rate relations were then used in the closure model to predict large-

crack growth under a single spike overload, an overload and underload,

repeated spike overloads every 1000 cycles, TWIST (Ref 26) and Mini-TWIST

(Ref 27) loading. Using the closure model and some microstructural
features, a total fatigue life prediction method is demonstrated on a

titanium alloy under constant-amplitude loading and on several aluminum

alloys under various load histories. The load histories considered were the

FALSTAFF(Ref 28), Gaussian (Ref 29), TWIST(Ref 26) and Mini-TWIST (Ref

27). The crack configurations used in these analyses were through-crack

configurations, such as center-crack and compact specimens, and three-
dimensional crack configurations, such as a corner crack in a bar and a
surface or corner crack at a semi-circular notch.

PLASTICITY-INDUCED CRACK-CLOSURE MODEL

The crack-closure model (Refs 16 and 30) was developed for a central

through-crack in a finite-width specimen subjected to remote applied stress.

The model was later extended to a through-crack emanating from a circular

hole and applied to the growth of small cracks (Ref 15 and 31). The model

was based on the Dugdale model (Ref 32), but modified to leave plastically

deformed material in the wake of the crack. A schematic of the model is

shown in Figure 2. Here a crack is growing from a hole in an elastic body

(Region I). At the maximum applied stress, Sma x, the material in the

plastic zone, p, (Reg!on 2) carries the stress, :a o . The constraint

factor, e, accounts for the influence of stress state on tensile yielding at

the crack front. The flow stress ao is the average between the yield stress

and ultimate tensile strength. For plane-stress conditions, _ is equal to

unity (original Dugdale model); and for simulated plane-strain conditions, a

is equal to 3. Although the strip-yield model does not model the correct

yield-zone pattern for plane-strain conditions, the model with a high
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constraint factor is able to produce crack-surface displacements and crack-

opening stresses quite similar to those calculated from an elastic-plastic
finite-element analysis of crack growth and closure for a finite-thickness

plate (see Ref 33). As the crack grows under cyclic loading, residual-

plastic deformed material (Region 3) is left on the crack surfaces. During

unloading, these surfaces contact each other at the minimumapplied stress.
The material in the plastic zone and along the contacting surfaces was

assumed to yield at -ao. (In the original model, the contacting surfaces
were assumed to reduce the effectiveness of the crack and reduce the
constraint around the crack front. On the basis of three-dimensional

finite-element analyses, however, this assumption may need to be studied

further but this is beyond the scope of the present paper.) Using the

contact stresses, the crack-opening stress is calculated. The crack-opening

stress is the applied stress level S at which the crack surfaces are fully
I

open and is denoted as So . The model is able to predict crack-opening

stresses as a function of crack length and load history. The crack-opening

stress is then used to calculate the effective stress-intensity factor

range, aKef f (Ref 12). In turn, the crack-growth rate is calculated using a

aKeff-against-crack-growth-rate relation.

In conducting fatigue-crack growth analyses, the constraint factor a

was used to elevate the flow stress at the crack tip to account for three-

dimensional stress states. At present, the constraint factor is used as a

fitting parameter to correlate crack-growth rate data against AKef f under

constant-amplitude loading for different stress ratios. However, tests

conducted under single-spike overloads seem to be more sensitive to state-

of-stress effects and may be a more appropriate test to determine the

constraint factor.

Effective Stress-lntensity Factor Range

For most damage tolerance and durability analyses, the linear-elastic

analyses have been found to be adequate. However, for high stress-intensity

factors, proof testing, and low-cycle fatigue conditions, the linear-elastic

analyses are inadequate and nonlinear crack-growth parameters are needed

(see Ref 10). Herein, the linear-elastic effective stress-intensity factor

range, developed by Elber (Ref 12), was used and is given by

AKef f = (Smax - S_) Jwc Fj (I)
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where Sma x is the maximum applied stress, So is the crack-opening stress,

and Fj is the usual boundary-correction factor.

Constraint Variations

As a crack grows in a finite-thickness body under cyclic loading

(constant stress range), the plastic-zone size at the crack front increases.

At low stress-intensity factor levels, plane-strain conditions should

prevail but as the plastic-zone size becomes large compared to sheet

thickness, a loss of constraint is expected. This constraint loss has been

associated with the transition from flat-to-slant crack growth, as

illustrated in Figure 3. Schijve (Ref 34) has shown that the transition

occurs at nearly the same crack-growth rate over a wide range in stress

ratios for an aluminum alloy. Later, Schijve (Ref 35), using Elber's crack-

closure concept, proposed that the transition should be controlled by AKef f.

This observation has been used to help select the constraint-loss regime

(see Ref 31).

In a related effort to study constraint variations using a three-

dimensional, elastic-plastic, finite-element analysis, some results are

included here to help resolve the constraint-loss issue (see Ref 36). The

finite-element code, ZIP3D (Ref 37), was used to analyze center-crack-

tension and bend specimens made of a material with an elastic-perfectly-

plastic stress-strain behavior. The analyses were conducted on a 2.5 mm-

thick sheet with various half-widths (w) and a c/w ratio of 0.5. The crack

front was flat and straight-through the thickness. The finite-element model

(one-eighth of the specimen) had six layers through the half-thickness with

the layer on the centerline of the specimen being 0.15B and the layer on the

free surface being 0.025B. The smallest element size around the crack front

was about 0.03 mm. The number of elements was 5706 and the number of nodes

was 7203. The finite-element model of the specimen was subjected to

monotonic loading until the plastic zone extended across the net section.

Because the current mode] uses a constant flow stress in the plastic

zone, a global constraint factor, =g, was defined as the average of the

normal stress to flow stress (ayy/ao) ratio in the plastic zone. Figure 4

shows a comparison of ag as a function of the normalized applied K level for

tension and bend specimens. The symbols show the results from the finite-

element analyses for various specimen sizes. The upper dashed lines show

the results under plane-strain conditions; the lower dashed line shows the



plane-stress condition. The global constraint factor was nearly a unique
function of the applied K level. Someslight differences were observed near
the plane-stress conditions (high K levels). These results show that the

global constraint factor rapidly drops as the K level increases (plastic-
zone size increases) and approaches a value near the plane-stress condition.

The solid line is a simple fit to the finite-element results and shows that

the constraint-loss regime maybe defined by a unique set of K values under

monotonic loading and, possibly, AKeff under cyclic loading. In the current
model, the constraint-loss regime is defined by a set of crack-growth rates

because the transition from flat-to-slant crack growth seems to occur at

unique rates. This assumption also implies that a unique set of AKeff
values define the constraint-loss regime.

Constant-Amplitude Loading

In Reference 38, crack-opening stress equations for constant-amplitude
loading were developed from crack-closure model calculations for a center-

crack tension specimen. These equations give crack opening stresses as a

function of stress ratio (R), maximum stress level (Smax/ao) and the
constraint factor (_). To correct the previous crack-opening stress

equations for extremely high crack-growth rates, a modification was

developed in Reference 17. The new equations give crack-opening stresses
that agree fairly well with results from the modified closure model. These

equations are used to develop the baseline AKeff-rate relations that are
used in the life-prediction code FASTRAN-II(Ref 39) to makecrack-growth

and fatigue-life predictions. A typical comparison between the model and

the equations for a crack in a titanium alloy is shownin Figure S. This

figure shows crack-opening stresses as a function of crack length for a

crack in an infinite plate at low R. To severely test the equations with a

rapid change in constraint, e was selected to be 2.4 for rates less than

IE-04 mm/cycle; and e was 1.2 for rates greater than IE-03 mm/cycle. The

solid curve shows the calculations from the model. To use the crack-opening

stress equations, the R ratio, the Smax/Oo ratio and the constraint factor
must be knowna priori. In this example, the constraint factor is unknown

as a function of crack length. Because rates are used to control the

constraint factor in the model, the crack-growth rate must be known to

calculate the crack-openlng stress. The crack-length-against-cycles results
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from the model were therefore used to determine the rate for a given crack

length. Knowing the rate, then the constraint factor is calculated from

= _2 + (_I _2)[log(dc/dN) - log(r2)]/[log(r I) - log(r2)] (2)

for r I < dc/dN < r 2 where el and e2 are the constraint factors, and r I and

r 2 are the rates, at the beginning and end of the constraint-loss regime,
respectively. For rates less than r], e = el and for rates greater than r2,

= e2 " Oncethe constraint factor has been determined, then the crack-
opening stress is calculated from the equations (dashed curve). For

constant e regions, the results from the equations agreed well with the
model. Somedifferences were observed in the transition region between_ =

2.4 to 1.2, but the maximumerror in calculating AKeff was only 4 percent.

The small vertical lines indicate the corresponding life ratio (N/Nf), in
addition to indicating regions of constant constraint.

SpectrumLoading

For variable-amplitude and spectrum loading, the crack-closure model

must be used to compute the crack-opening stress history. Sometypical

crack-opening stresses under the Mini-TWIST load sequence for a small
surface crack in a single-edge-notch-tension (SENT) specimenare shownin

Figure 6. In the small-crack simulation, an initial defect size of ai - 3

pm and ci - 9 _m was used. This size corresponds to inclusion-particle

sizes that initiate cracks in some aluminum alloys (Refs 7 and 8). Variable

constraint was selected for this simulation. The constraint factor (_) was

1.8 for crack-growth rates less than 7E-04 mm/cycle and 1.2 for rates

greater than 7E-03 mm/cycle. The figure shows crack-opening stress

(normalized by the maximum stress in the spectrum) plotted against the ratio

of applied cycles to cycles-to-failure (N/Nf). The predicted cycles to

failure, Nf, was about 800,000 cycles. These results show that the opening

stresses start near the minimum stress in the spectrum and rise as the crack

grows. Crack-opening stresses tended to level off for N/Nf between 0.7 and
!

0.9. The rapid jump in So/Sma x for an N/Nf ratio of about 0.92 was caused

by the change in constraint from 1.8 to 1.2 at the higher crack-growth

rates. The surface crack became a through crack (a/t - 1) at an N/Nf ratio

of about 0.9.
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LARGE-CRACK GROWTHBEHAVIOR

To make life predictions, _Kef f as a function of the crack-growth rate

must be obtained for the material of interest. Fatigue crack-growth rate

data should be obtained over the widest possible range in rates (from

threshold to fracture), especially if spectrum load predictions are

required. Data obtained on the crack configuration of interest would be

helpful but it is not essential. The use of the nonlinear crack-tip

parameters is only necessary if severe loading (such as low cycle fatigue

conditions) are of interest. Most damage-tolerant life calculations can be

performed using the linear elastic stress-intensity factor analysis with

crack-closure modi fications.

Constant-Amplitude Loading

Under constant-amplitude loading, the only unknown in the analysis is

the constraint factor, a. The constraint factor is determined by finding

(by trial-and-error) an a value that will correlate the constant-amplitude

fatigue-crack-growth-rate data over a wide range in stress ratios, as shown

in References 30 and 38. This correlation should produce a unique

relationship between AKef f and crack-growth rate. In the large-crack-growth

threshold regime for some materials, the plasticity-induced closure model

may not be able to collapse the threshold (AK-rate) data onto a unique

AKeff-rate relation because of other forms of closure. Roughness- and

oxide-induced closure (see Ref 40) appear to be more relevant in the

threshold regime than plasticity-induced closure. This may help explain why

the constraint factors needed to correlate crack-growth rate data in the

near threshold regime, that is, plane-strain conditions, are 1.7 to 1.9 for

aluminum alloys, 1.8 to 2 for titanium alloys and 2.5 for steel. However,

further study is needed to assess the interactions between plasticity-,

roughness- and oxide-induced closure in this regime. If the plasticity-

induced closure model is not able to give a unique AKeff-rate relation in

the threshold regime, then high stress ratio (R _ 0.7) data may be used to

establish the AKeff-rate relation.

In the following, the AKeff-rate relations for one aluminum alloy and

two titanium alloys will be presented and discussed. Similar procedures

were used to establish the relationships for all materials used in this

study. The large-crack results for 7075-T6 aluminum alloy are shown in

Figure 7 for data generated at two different laboratories and at three

I0



stress ratios (Ref 20). The data collapsed into a narrow band with several

transitions in slope occurring at about the samerate for all stress ratios.
Some differences were observed in the threshold regime. For these

calculations, a constraint factor e of 1.8 (nearly equivalent to Irwin's

plane-strain condition) was used for rates less than 7E-04 ram/cycle (start

of transition from flat-to-slant crack growth) and e equal to 1.2 was used

for rates greater than 7E-03 mm/cycle (end of transition from flat-to-slant

crack growth). For intermediate rates, e was varied linearly with the

logarithm of crack-growth rate. The values of e were selected by trial-and-

error. The solid symbols (see upper left-hand portion of figure) denote

measured rates at the end of transition from flat-to-slant crack growth

(Refs 20 and 41). It has been proposed in Reference 31 that the flat-to-

slant crack-growth transition region may be used to indicate a change from

nearly plane-strain to plane-stress behavior and, consequently, a change in

constraint. In the low crack-growth rate regime, near and at threshold,

some tests (Ref 14) and analyses (Ref 15) have indicated that the threshold

develops because of a rise in the crack-opening-stress-to-maximum-stress

ratio due to the load-shedding procedure. In the threshold regime then, the

actual AKeff-rate data would lie at lower values of AKef f because the rise

in crack-opening stress was not accounted for in the current analysis. For

the present study, an estimate was made for this behavior and it is shown by

the solid line below rates of about 2.0E-6 mm/cycle. The baseline relation

shown by the solid line will be used later to predict small-crack growth

rates and fatigue lives under constant-amplitude loading.

Figure 8 shows the AKeff-rate data for corner cracks in 10 mm-thick Ti-

6AI-4V titanium alloy (Ref 23). In these tests, the initial defect size was

a 250 pm-quarter-circular electrical-discharged machined notch. The data

correlated quite well with a constant constraint factor of l.g. For thick

materials, the loss of constraint, as shown for the thin 7075-T6 alloy (Fig

?), may occur at higher values of AKef f than those shown for the thinner

material. Consequently, a constant constraint factor was used over the

whole rate range. The solid symbols show the results of 13 mm-thick compact

specimens (Ref 42) tested over a wide range of R ratios and down to much

lower rates than the corner-crack tests. The baseline relation (solid

line), fit to the corner-crack results in the mid-region and the compact

results in the low-rate regime, will be used later to predict crack-growth

rates for tests with spike overloads repeated every 1000 cycles.

11



The AKeff-rate results for IMI-685 titanium alloy compact specimens
(Refs 23 and 25) are shown in Figure 9. This material was selected to be

analyzed because "roughness-induced" closure was expected to be prevalent.

These data also illustrate two difficulties with correlating test data using
the linear-elastic effective stress-intensity factor ranges and the

plasticity-induced closure model. First, the high R ratio results tend to
deviate from the low R ratio results near the end of the tests. These

specimens were cycled to failure and the last few data points were taken

immediately before the specimen failed. The maximum stress level for the

high R ratio test was considerably higher than that used for the low R ratio
test; and plasticity effects would have been greater in the high R test than

the low R, resulting in higher rates for a given value of elastic AKeff.
However, fitting the AKeff relation to the low R ratio results (solid line)
will allow accurate life prediction for both the low and high R ratio

conditions, because the high R ratio tests are predicted to fail at a AKeff
value of 23 MPaJm(fracture toughness Kc = 80 MPaJm). Thus, accurately
modelling the upper tail of the high R ratio test would not have greatly

affected the number of cycles to failure. The second difficulty with the

model occurs in the threshold regime and shows that threshold data (load-
reduction tests) begin to form bands of data as a function of R, especially

for materials where roughness-induced closure mayoccur. The steady-state

crack-opening stress equations do not account for any load-reduction effects

nor roughness-induced closure which is expected to be dominate in the IMI-

685 alloy. Because cracks in the high R ratio tests are expected to be

fully open, these results were used to determine the AKeff relation at the
low rates. The baseline relation will be used later to makecrack growth

predictions under repeated spike overloads.

Spike Overload and Underload

For variable-amplitude or spectrum load crack-growth predictions, the

constraint factor should also be verified by some simple tests, such as

crack growth after a single-spike overload. Constraint factors appear to be
more sensitive to crack-growth delays caused by single-spike overloads than

to crack growth under constant-amplitude loading at different stress ratios.

Higher values of a will cause less load-interaction effects, such as

retardation or acceleration, than lower values of constraint. Thus, spike-

12



overload tests may be more useful in establishing values of e than constant-

amplitude tests. However, the constraint factors determined by spike-

overload tests should also correlate constant-amplitude data (see Ref 43).

A comparison of measured and predicted rates for large cracks after a

single spike overload and after a single spike overload followed by an

underload are shown in Figure 10. Cracks were grown under constant-

amplitude loading (R = 0.4 with Kma x = 19.7 MPaJm) to a crack length of 12

mm. In one case, a single overload, KOL = 31.4 MPav/m, was applied and then

the test was returned to constant-amplitude loading. The second case was

_identical to the first cas_el'e:xcept:_at:_a_n underioad KUL = -3.9 MPa_/m was

applied immediately after-t_he overload. _Two methods were used to measure

crack length and rates in the 7475 alloy (Ref 22): the direct-current

potential method (solid symbols) and the scanning-electron microscope (open

symbols). The predicted results using the closure model with _ = 1.g

(curves) agreed well with the test results, especially for the overload-

underload case. For the overload case, the experimental rates did not

appear to stabilize at the pre-overload rates as quickly as the predictions.

These results indicate that the constraint factor of 1.9 is appropriate for

these conditions. But overloads at higher KOL values would be expected to

cause some loss of constraint (lower _). Under these conditions, the

analyses using an e =.1.g would be expected to predict higher rates and less

retardation than the tests. Thus, variable constraint may be needed to

predict the behavior.

Repeated Spike Overloads

Figures 11 and 12 show measured and predicted AK-rate results for

repeated spike overloads applied to compact and corner-crack specimens made

of IMI-685 and Ti-17 titanium alloys, respectively. These tests were

conducted under constant-amplitude loading (R = 0.1) with an overload (POL "

1.7 Pmax ) applied every 1,000 cycles (Refs 23 and 24). The overall trends

in the predicted results for the IMI-685 corner-crack configuration agreed

well with the test results at low rates. However, the predicted rates

tended to be somewhat high in the middle and upper ranges. Although the

predicted results for the compact specimen agreed fairly well with the test

data, the test results on each individual specimen were not modelled very

accurately. The measured rates on one of the compact specimens in the

beginning of the test were much lower than predicted. The oscillating
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behavior in the predicted results at high rates was caused by averaging

rates over less than 1000 cycles, thus accelerations and retardations during
and after the spike overload are being shown. The comparison of measured

and predicted rates on the Ti-17 alloy agreed quite well (Fig 12). A

comparison of predicted-to-test lives (Np/Nt) for these titanium alloys and
Ti-6AI-4V, for the two crack configurations, ranged from 0.57 to 2.12 but
most results were within about 20 percent of the test results. These

results are presented and discussed in Reference 24.

Spectrum Loading

Wanhill (Ref 18) conducted spectrum crack-growth tests on center-crack

tension specimens made of 2024-T3 Alclad material in two thicknesses (B =

1.6 and 3.1 mm). Tests were conducted under the TWISTspectrum clipped at

Levels I and Ill with Smf= 70 MPa. The initial crack starter notch half-
length was 3.5 mm. Comparisonsare madebetweenexperimental and calculated
crack length against flights For Level Ill; and experimental and calculated

crack length against crack-growth rate for Levels I and Ill.

Crack-length-against-flight data on the 3.1 mm-thick specimens tested
under the TWIST(Level Ill) loading are shownin Figure 13. The solid curve
is the calculated results from the closure model with the variable-

constraint condition (_ = 2 to I) using the baseline AKeff-rate relation and
constraint-loss regime established in Reference 44. To illustrate why the

variable-constraint conditions are necessary, examplecalculations were made

for constant constraint conditions of either _ = ! or 2 (dashed-dot curves).

The model with a low constraint condition (e = I) predicted much longer

flights to a given crack length than the test data. Conversely, the

predicted results for the higher constraint condition (_ = 2) greatly under

predicted the behavior except in the early stages of growth. Thus, the

placement of the constraint-loss regime is crucial to making accurate crack-

growth predictions under aircraft spectrum loading.

Figure 14 shows a comparison between experimental (Ref 18) and
calculated results of crack length against dc/dF under the TWISTloading

(Levels I and Ill) for the 1.6 mm-thick specimens. The crack-growth rate,
dc/dF, is the change in crack length per flight. For both levels, the
closure model was able to calculate the initial rates quite accurately

(curves). Calculated results under Level Ill agreed with the test results
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over nearly the complete range of crack lengths. The calculated results
under Level I, however, began to deviate from the test results after a crack

length of about 12 mm. The ratio of calculated life to test life from an
initial crack length of 3.5 mmto failure was 0.61 for Level I.

SMALL-CRACKGROWTH BEHAVIOR

In the following, comparisons are made between measured and predicted

crack-shape changes and crack-growth rates for small surface cracks at a

notch in 7075-T6 aluminum alloy under constant-amplitude loading.

Comparisons are also presented on measured and predicted rates for small

corner cracks at a notch in LC9cs clad aluminum alloy under both constant-

amplitude and Mini-TWIST spectrum loading. The plastic-replica method was

used to measure the initiation and growth of the small cracks and these

results are presented and discussed in Reference 20.

Figure 15 shows the crack-depth-to-crack-length (a/c) ratio plotted

against the crack-depth-to-sheet-half-thickness (a/t) ratio for the 7075-T6

alloy. Measured a/c and a/t ratios (open symbols) were determined from an

experimental method where specimens were broken at various stages during

their life. Results are shown for three stress ratios and for the Mini-

TWIST spectrum loading. The spectrum has an overall stress ratio (minimum

to maximum stress in the spectrum) of -0.23. The solid symbols show the

sizes and shapes of inclusion-particle clusters or voids which initiated

cracks (average size was ai = 3 _m and ci = 9 _m).

The curves in Figure 15 show the predictions for the different stress

ratios using the average inclusion-particle cluster size. In the analyses,

the crack-growth rate relations for da/dN was different than that for dc/dN

as a function of AKef f (see Ref 20). The tests and analyses show that small

surface cracks tend to rapidly approach an a/c ratio of about unity for a

large part of their growth through the thickness.

Comparisons of experimental and predicted crack-growth rates for small

cracks under R : -1 loading are shown in Figures 16 and 17 for 7075-T6 and

LCgcs alloys, respectively. For the 7075-T6 alloy, small surface cracks

initiated along the notch surface from inclusion-particle clusters or voids.

For the LCgcs alloy, small corner cracks initiated in the cladding layer

from slip-band formation (cladding thickness was 50 to 70 pm). Even though

the range in maximum stress levels used in each test series are indicated on

the figures, no stress-level effect was apparent in the test data and all
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data have been grouped together. However, a range in stress levels was used

in the analyses to show someexpected trends with stress level. The dash-

dot line show the large crack (dc/dN) results and the dashed line show the

aKeff-rate curve used in the analyses for da/dN. The solid curves show the
predicted results using an initial defect size (3 by 9 by 0.5 pm for 7075-

T6; and 77 by 77 by 0.5 _m for LCgcs). All predictions start on the aKeff
curve because cracks at small voids were assumed to be fully open on the

first cycle and aK is equal to AKeff. For the 7075-T6 alloy (Fig 16), the
predictions from the model did not agree very well with the test data for

Smax = 80 to 95 MPain the near threshold regime. In Reference 20, part of
this discrepancy was attributed to an influence of the acetone used in

taking plastic replicas of the notch surface. Fatigue lives for specimens

with replicas were much longer (about a factor of 4) than those without

replicas. However, the predictions did agree with the test data in the mid-
and high-rate range. At 70 MPa, the predictions show that the crack would

be nearly arrested (minimumrate) at a aK-value of about 2 MPaJm. At this

point the aKeff was slightly greater than 0.9 MPaJm,the effective threshold
for small cracks. (Note that the endurance limit for R = -I was about 70

MPa, see Reference 20.)

For the LC9cs alloy (Fig 17), the predictions from the model agreed

well with the test data for Smax = 70 to 90 MPain the early stages of crack
growth. The predicted rates seemto be slightly low in the mid- to high-
rate range. At 50 MPa, the predictions show a large drop in the crack-

growth rates, similar to the 7075-T6 alloy. The crack would have been

predicted to arrest if an applied stress of 40 MPa had been used. Again,

the effective threshold for small cracks was assumedto be o.g MPaJmand the
endurance limit was about 40 MPa.

The measured and predicted small-crack growth rates for the Mini-TWIST

loading are shownin Figures 18 for the LCgcs alloy. Here the "average"
crack-growth rate is plotted against the "maximumrange" stress-intensity

factor. The Eyerage crack-growth rate is the change in crack length per
replica interval (about 30,000 cycles) and the stress-intensity factor range

is computed using the maximumand minimumstress levels in the Mini-TWIST
spectrum. The predicted values were determined in the following way. Crack

length (2a) and cycle results were taken from the analysis at nearly equal

cyclic intervals between the initial crack length and breakthrough (a = t).

From these values of crack length and cycles, the average rate and maximum
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range stress-intensity factor were calculated. The predicted rates (solid

curve) agreed well with the experimental data for both small- and large-
crack behavior.

FATIGUE-LIFEPREDICTIONS

At this point, all of the elements are in place to assess a total

fatigue-life prediction methodology based solely on crack propagation from
microstructural features. In this approach, a crack is assumedto initiate

and grow from a microstructural feature on the first cycle. The crack-

closure model and the baseline AKeff-rate curves are used to predict crack

growth from the initial crack size to failure. Comparisons are made with

fatigue tests conducted on the single- or double-edge-notch tension

specimens. Results are presented for three aluminum alloys and one titanium

alloy under either constant-amplitude or various spectrum loadings.

Constant-Amplitude Loading

Fatigue life (S-N) data for 7075-T6 aluminum alloy are shown in Figure

19 for constant-amplitude loading. A symbol indicates a failure and a

symbol with an arrow indicates that a test was terminated before failure.

In the analysis, the initial crack size was ai - 3 pm, ci = 9 _m and b = 0.5

pm (defect or void half-height). This crack size is the average inclusion-

particle or void size that was measured at actual crack-initiation sites.

The effective stress-intensity factor range against rate relation used in

the analysis is given in Reference 20 and (nKeff)th was assumed to be 0.9

MPaJm. Using the life-prediction code (Ref 39), predictions were made for

constant-amplitude loading. The solid curves show the predicted number of

cycles to failure. The predicted lives were in reasonable agreement with

the test lives. In addition to predicting fatigue life, the analysis

methodology was also able to fit the endurance limit as a function of stress

ratio.

Fatigue tests were conducted on Ti-6AI-4V titanium alloy double-edge-

notch tension (DENT) specimens in the AGARD Engine Disc Cooperative Test

Programme (Ref 24). These results (symbols) are shown in Figure 20 for two

fan disc forgings. To make fatigue life calculations, the baseline nKef f-

rate relation, shown in Figure 8, was used to calculate the life of the

titanium specimens. Because no information on crack-initiation behavior was

given in Reference 24, life calculations were made on initial crack sizes
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that would bound the experimental data, like the equivalent-initial-flaw

size (EIFS) concept (Ref 46). The solid curves showthe calculations for an

initial semi-circular surface crack of ai = 5 and 25 pm at the notch root.
The solid symbol on the stress axis denotes where the net-section stress is

equal to the ultimate tensile strength. Becauseof the notch configuration,
notch strengthening is expected and the upper plateau is an estimate for the
maximumnet-section stress based on the results from the finite-element

analyses (see Fig 4 at the high K levels). In a microstructural analysis,
Wanhill and Looije (Ref 45) found that the primary _ grains were about 10 _m

in diameter and the transformed and aged # grains were about 20 pm in
diameter for these fan disc materials. Further study is needed on these

materials to see if cracks of these sizes would be present early in life or
to see if the baseline curve (Fig 8) is appropriate for small cracks. For

low aKef f values, small cracks in the titanium alloys may grow faster than
large cracks, as observed by Lanciotti and Galatolo (Ref 47).

Spectrum Loading

Experimental and predicted results for fatigue tests conducted on 7075-

T6 bare and LCgcs clad alloy specimens under the Mini-TWIST spectrum are

shown in Figure 2]. These tests were conducted on SENTspecimens (Ref 20).

The solid and dashed curves show predictions for each alloy using the
initial defect sizes shown. The defect size for 7075-T6 was the average

inclusion-particle size that initiated cracks, whereas the initial crack

size for the clad alloy LC9cswas somewhatlarger than the cladding-layer

thickness (50 to 70 pm). The predicted lives were in reasonable agreement

with the test results (symbols) but the predicted lives tended to fall on
the lower bound of the test data.

Comparisons of experimental and predicted fatigue lives of notched

2024-T3 aluminum alloy sheet specimens under FALSTAFF,Gaussian and TWIST

load sequences are shownin Figure 22. These tests were conducted on SENT

specimens (Refs 7 and 19) but they were cycled until a crack had grown
across the full sheet thickness instead of failure. The predictions were

made using an initial crack size that was the average inclusion-particle

size that initiated cracks. The predicted lives agreed well with the test
data.
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CONCLUDING REMARKS

The "plasticity-induced" crack-closure model was used to correlate

large-crack data on several aluminum and titanium alloys under constant-

amplitude loading. A constraint factor, which accounts for three-

dimensional state-of-stress effects, was used in determining the effective

stress-intensity factor range against rate relations. These relations were

then used to predict large-crack growth under variable-amplitude and

spectrum loading. Comparisons made between measured and predicted small-

crack growth rates in two aluminum alloys showed that the closure model

could predict the trends that were observed in the tests. Using the closure

model and some microstructural features, such as inclusion-particle sizes

and cladding-layer thickness, a total fatigue-life prediction method was

demonstrated. Fatigue life of notched specimens made of three aluminum

alloys were compared with predicted lives under either constant-amplitude or

spectrum loading. The predicted results were well within a factor of two of

the test data. Fatigue lives for Ti-6AI-4V titanium alloy could also be

bounded by using initial crack sizes of 5 and 25 pm in the life-prediction

method.

Further study is needed to determine constraint variations along

fatigue crack fronts in various materials and thicknesses. These constraint

variations are needed to improve life predictions under aircraft spectrum

loading, especially for thin-sheet materials. At low rates, the development

of the large-crack threshold and its significance for design life

calculations also needs further study.
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