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A REPRESENTATION FOR THE TURBULENT MASS FLUX

CONTRIBUTION TO REYNOLDS-STRESS AND TWO-EQUATION

CLOSURES FOR COMPRESSIBLE TURBULENCE

J.R. Ristorcelli 1

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA, 23681

ABSTRACT

The turbulent mass flux, or equivalently the fluctuating Favre velocity mean, appears in

the first and second moment equations of compressible k - e and Reynolds stress closures.

Mathematically it is the difference between the unweighted and density-weighted averages of

the velocity field and is therefore a measure of the effects of compressibility through variations

in density. It appears to be fundamental to an inhomogeneous compressible turbulence,

in which it characterizes the effects of the mean density gradients, in the same way the

anisotropy tensor characterizes the effects of the mean velocity gradients. An evolution

equation for the turbulent mass flux is derived. A truncation of this equation produces an

algebraic expression for the mass flux. The mass flux is found to be proportional to the mean

density gradients with a tensor eddy-viscosity that depends on both the mean deformation

and the Reynolds stresses. The model is tested in a wall bounded DNS at Mach 4.5 with

notable results.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NASl-19480 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.





1. Introduction

This article presents a derivation of a representation for the non-zero first-moment of

the fluctuating velocity field, the time average of the fluctuating component of the Favre

velocity, < vi >. Mathematically < vi > represents the difference between unweighted and

density weighted averages of the velocity field and is therefore a measure of the effects of

compressibility through variations in density. It plays an important role in parameterizing

the anisotropic effects of compressibility associated with the mean dilatation and gradients in

the mean velocity and density. Experimentally it is an important quantity that allows Favre-

averaged numerical results to be related to time-averaged experimental results. The need to

consider this quantity is motivated by its frequent contributions to the first and second-order

moment equations in two-equation k-¢ type turbulence closures as well as in Reynolds stress

closures. In the mean momentum equations the mass flux makes a contribution to the viscous

terms. In the mean energy equations the mass flux makes a contribution to the viscous, the

pressure work, and the pressure flux terms. In the Reynolds stress equations the viscous

terms appear naturally in Reynolds variables while the problem is posed in Favre variables.

In the process of splitting the viscous terms into the viscous transport terms, carried in Favre

variables, and the dissipation terms, carried in Reynolds variables, important contributions

from the mass flux appear. The accurate accounting of these terms is important for any

consistent near wall modeling and the retention of the mass flux terms is important in

complex compressible turbulent flows. These contributions have been investigated in detail

in Ristorcelli (1993). The mass flux also determines the importance of two production

mechanisms one due to the acceleration of the mean flow and the other due to viscous effects

associated with the Favre fluctuation mean.

Many of these contributions are neglected in turbulence closure models. This is a result of

assuming that the Favre mean velocities are suitable approximations to the Reynolds mean

velocities. This approximation is not appropriate in complex flows of practical interest. The

retention of the mass flux terms will be necessary in complex compressible turbulent flows:

these include flows in which there are mean density gradients due to large Mach number,

combustion, separation or reattachment (inflection points), cold wall boundary conditions,

mean dilatation, shocks, adverse pressure gradients, or strong streamwise accelerations. Even

in this nominally simple compressible flow, such as a supersonic wall bounded boundary layer

which has a four-fold variation of the mean density over the width of the boundary layer, the

mass flux is not negligible. Dinavahi et al. (1993b), in a Mach 4.5 wall bounded DNS, has

found that the cross-stream Favre mean and Reynolds mean velocities have different signs

attesting to the fact that the mass flux is not small with respect to the mean velocities.



Others have recognized the importance of the mass flux and several models have been

proposed. Taulbee and VanOsdol (1991) have derived a modeled equation for the mass

flux. In their equation they keep the correlations with the surface forces which are modeled

assuming a homogeneous turbulence and the validity of Morkovin's hypothesis. In the present

asymptotic derivation these terms scale with the density intensity and are found to be of

higher order; the present asymptotic derivation of the transport equation for the mass flux

keeps only the zeroeth terms to keep the model simple and to avoid the loss of accuracy

associated with the individual approximations made in many models. They also use a

gradient transfer assumption for the turbulent diffusion. Due to the different manipulation

to obtain an equation for the the Favre fluctuation equation, the turbulent diffusion is found

to be proportional to the-difference between the Favre and Reynolds averaged Reynolds

stresses; as this is a higher order term, scaling as the density intensity, there is no need to

model it. The Taulbee and VanOsdol model requires the solution of two modeled differential

equations, one for the mass flux and one for the density variance which appears as a source

term in their modeled mass flux equation. In the present derivation of the evolution equation

for the mass flux only one unknown, the covariance with the fluctuating dilatation, requires

modeling. There is no need for a separate equation for the density variance.

Zeman and Coleman (1991) have also proposed a mass flux model. Their modeled equa-

tion, which has been tested in the turbulence through a shock simulations of Lee (1992) is

very similar to the one derived in this article. They also propose an algebraic expression for

the mass flux to which the present model simplifies to, in the limit of negligible mean defor-

mation. Our work has shown that the inclusion of the mean velocity gradients is essential

to capturing the near wall maxima of the mass flux. After all, the mean velocity gradients

are a major portion of the production terms of the mass flux in its transport equation.

Rubesin (1990) has also proposed a mass flux model. It assumes that 1) the fluctuations

obey a polytropic gas law 2) the specific heats are constant allowing the fluctuating density

to be written in terms of the fluctuating enthalpy and that 3) the fluctuating enthalpy can

be related to the mean enthalpy using a gradient transfer hypothesis. The Rubesin model

requires the polytropic index as an input. Dinavahi et al. (1993) and Ristorcelli et al. (1993)

in a temporal DNS have shown that the polytropic index varies substantially over the width

of the turbulent boundary layer. The Rubesin model also predicts a mass flux only when

there is a heat flux, while the present' model derived from the exact evolution equation,

predicts a mass flux whenever there are mean density gradients.

The present model for the mass flux starts with the exact evolution equation for the mass

flux. An equation for the fluctuating Favre mean is then developed in a power series in the

fluctuating density intensity. To zeroeth order there is only one unknown correlation and



no unknowncorrelations with viscousand pressureterms appear. The evolution equation is

simpleenough to carry as an additional differential equation in turbulence simulations, as

Zemanand Cole (1991)haveproposed.Nonethelessan algebraictruncation of the equation
is derivedasa further simplification of the problem applicableto most compressibleflowsof

engineeringinterest. The algebraictruncation, similar to that usedin algebraicstressmodels,
assumesa structural equilibrium which relates the material derivative in the fluctuating

Favremeanequation to the production and dissipation in the kinetic energyequation. The

truncation producesa set of three coupledalgebraicequations,of the form Aij < vj >= bi.

Application of the Cayley-Hamilton theorem produces an explicit closed form expression

for the < vi >. The < vi > are found to be proportional to the density gradients with

an eddy-viscosity tensor dependent on the Reynolds stress and the mean deformation. The

fluctuating Favre mean is then related back to mass flux using the well known relation

between the two quantities.

This article is organized in the following manner. After motivating the investigation in

section two, section three describes the derivation of an evolution equation for the mass

flux. In the following section an algebraic model for the mass flux is obtained. The general

expression for the < vi > is then specialized to several simple mean flows in order to highlight

the physics. It is found that, in the limit of isotropic turbulence with negligible mean velocity

gradients, the derived expression reduces to the usual scalar eddy-viscosity form derived using

a gradient transfer assumption. The model is tested in the Ma = 4.5 wall bounded DNS of

Dinavahi and Pruett (1992).

2. Preliminary exposition

In general, upper case letters will be used to denote mean quantities except in the case of

the mean density, < p >, since p which has no convenient upper case form. The averaging

operation is indicated using the angle brackets for time means, < vivj >, and the curly

brackets for the density-weighted or Favre mean, {v_vj}, where < p > {vivj} =< p*vivj >

and the asterisk denotes the full field, p* =< p > + p'. The dependent variables are

decomposed according to

u_ = Ui + ui where < ui >= 0

u; = Vii + vi where {vi} = 0

p*= <p>+p_ where <p'>=O

p* = P+p where <p>=O

T* = T + 0 where {0} = 0

As both the Reynolds and the Favre velocities appear naturally in the evolution equations

for a compressible turbulence it is necessary to carry both the Favre and the Reynolds



decompositions of the velocity field. They are related by

U_= V_+ <v;>

ui = vi -- < Vi _> •

The fluctuating Favre mean quantifies the difference between the Favre-mean and the Reynolds-

mean velocities, V_ and U_, as well as the difference between the instantaneous fluctuating

portions of these two fields. Note that because of the definition of the Favre-average of the

Favre-deviation, < p*vi >--< p > {vi} = O,

- <p>< vi >=< pvi >,

the time average of the fluctuating Favre velocity and the mass flux are equivalent quantities

(apart from a scaling by the local mean density). Because of the peculiarities of the density-

weighted averaging operation, a second-order statistic, < pvi >, can be expressed as the

product of two first-order statistics, - < p >< vi >. The two phrases mass flux and Favre

fluctuation mean will be used interchangeably. The primes on the fluctuating density have

been dropped.

As U_ = V_ + < vi >, the < v; > quantify the difference between the unweighted or

Reynolds mean, U_, and the density-weighted mean, V_, and represent the effects of compress-

ibility through variations in density. Data from Ma = 4.5 DNS computations of Dinavahi

and Pruett (1993) in unidirectional developing wall bounded flow indicate that the approx-

imation of U_ __ V, in the wall region is inadequate. In this flow, in which Mt _- 0.3 and

there is a four-fold variation of the mean density over the boundary layer. In data taken

from that simulation, shown in Figure 1, it was unexpectedly found that < v2 > is larger

than either U2 and V2. It is large enough to cause U2 and 1/2 to have different signs. This

is an indication that the net fluid particle transport and the net momentum transport are

in opposite directions. The point is that this is a nominally simple flow, in comparison to

those of practical interest, no inflection points, no change of geometry, no substantial heat

transfer, no cold wall boundary conditions with the concomitant change in sign of the mean

density gradient, in which the approximation U2 --- V2 was expected to be adequate and they

are not even of the same sign.

In comparing experimental data and computational results the mass flux plays a role in

relating the Reynolds stresses in Favre, vi, variables and Reynolds, ui, variables:

< vivj >= <uiuj > + < vi>< vj >.

The moments involving ui are experimentally measured while those involving vi come from

the calculations. As it is a vector it describes the anisotropic effects compressibility has



oil the turbulence. An anisotropy tensor based on the Reynolds variables is defined as

bi_j =< uiuj > / < UpUv > - 1/36ij. A similar anisotropy tensor using the Favre variables

can also be defined: b{j =< vivj > / < vvv p > - 1/36ij. An energy weighted deviation of the

anisotropy tensor from its density-weighted equivalent is given solely in terms of the Favre

fluctuation mean:

< vvvp > b{j- < uvu v > bi_. =< vi >< vj > -1/3 < vq >< vq > 6ij.

Note that there are only three independent quantities < vi >. /.From a heuristic point of

view this is pleasantly consistent: the effect of mean flow gradients, V/,j, is parameterized by

the six components of the anisotropy tensor while the effect of the mean density gradients,

the vector < p >,i, is parameterized by the three components of the mass flux.

There are some interesting properties of the mass flux that can be surmised from the

above relationships. The most striking, and this is a rigorous result, is that in l) an isotropic

turbulence and or in 2) a statistically stationary homogeneous turbulence with mean velocity

gradients and with no mean density gradients, < vi >-= 0 and the Reynolds and Favre

variables are equivalent:
Ui= Vii
U i m 1,'i

< _)il)j >--_. < UiUj >

b{j= b,;
Similar results hold for relationships between the various moments of ui and vi as can be

easily derived. These results come from the following two facts: 1) in an isotropie field all

vector statistics are zero; 2) in a statistically stationary homogeneous field, whose directional

characteristics are solely determined by the mean velocity gradients, which are invariant to

coordinate reflection, all quantities not invariant to coordinate reflection are zero. This

has been recognized, in the context of compressible turbulence, by Blaisdell (1991). In

short, in isotropic or homogeneous turbulence without mean density gradients, there is no

difference between the problem posed in Reynolds or Favre variables. This is an important

and serious issue affecting the validity of conclusions about the performance of compressible

turbulence models which have been developed and tested in homogeneous or isotropic flows.

On the other hand it suggests the appropriateness of the incompressible turbulence modeling

framework in building models for the compressible flow as they are consistent in the isotropic

and homogeneous limit, for arbitrary turbulent Mach number.



The second moment equations for a compressible flow are written, without approximation

and after some manipulation, as

D/Dt (< p > {vivj})= - < p > {vivp}Vj, v - < p > {vjvp}V_,p+IIij+2/3 < pvk,k > g,j

--[< pvi > _pj+ < pvj:> _ip+ < P > {vivjvp}- < vja_p > - < viaj_ >],p

+ < vj > [-P,i + Eik,k + < o'ik >,k]+ < vi > [-P,j+ Ejk,k + < crjk >,k]

- < u.,,pcr'_p > - < ui,vaj_ >

where the mean momentum equations have been used and aq =< # > [vi,j +vj,i -2/3vq,q 6ij],

Eij =< # > [Vi,i +Vj,i-2/3Vq,q _ij] and a ._.'I =< # > [Ui,j +Uj,i -2/3uq,q 6ij]. The form of

the equations above reflects the following manipulations: 1) The deviatoric part of the

pressure-strain correlation is defined as I-Iij =< p(vi,j +vj,i) > -2/3 < pvk,k > _j and 2)

the identity vi = ui + < vi > has been used to rewrite the transport terms in vi vari-

ables while keeping the dissipation terms in ui variables. In the equations for the Favre-

averaged Reynolds stress the'terms arising from surface forces appear naturally in (Ui,ui)

variables while the problem is posed in (Vi, vi) variables. In recasting the Reynolds variables

terms in Favre variables the mass flux, < vi >, makes several different contributions to

the Reynolds stress equations and, of course, to the k = 1/2{vjvj} equation. It multiplies

the mean flow acceleration which is a new turbulence production mechanism important in

flows with strong mean pressure gradients, shocks and expansion fans, and in any flows

that have strong streamwise accelerations. The mass flux also contributes to the viscous

diffusion of the Reynolds stresses a term that is important in the near wall region which is

also where the mass flux terms are important. Note that a_. = aij- < aij > allows the

viscous transport terms to be recast in the Favre variables and that mass flux terms and

their derivatives will appear. The mass flux also contributes to the Reynolds stress equations

through the pressure flux to which it is coupled by the equation of state: for an ideal gas

< pvj >= P[< pvj >< p >-_ + {Ovj} T-_]. In the adiabatic case the pressure flux can

be written, to first order, as < pvj >= P7 < pvj >< p >-a= c2 < pvj >. Results from

some numerical simulations have shown that the pressure and density fluctuations of the

turbulence passing through a weak shock can be related through such a rule, Lee (1992).

This is not found to be true for the wall bounded flow of Dinavahi and Pruett (1993) as

shown in Dinavahi et al. (1993). Lee has also found that the pressure flux (as well as

the pressure-dilatation) is primarily responsible for the rapid evolution of turbulent kinetic

energy downstream of a weak shock.

In the mean momentum and mean energy equations the viscous terms appear in Reynolds

variables, E_j(U) =< # > [U_,j +Uj,_-2/3Uq,q_Sij]. When the problem is recast in Favre

variables, the viscous terms become functions of the Favre mean velocity and the Favre

fluctuation mean. It is typical to approximate Ui _- Vi to close the equation. This involves



neglecting < v_ > as Ui = V/ + < vi >. It is clear that this approximation is only valid

when < vi > and its gradients are negligible. The data of Dinavahi et al. (1993b) indicates

that this approximation is a poor one in the wall bounded flow. In fact, in some portions

of the turbulent boundary layer, the mass fluxes' contribution to the viscous terms is as

high as 25%. Figure 2, taken from Ristorcelli et al. (1993), shows the second cross-stream

derivatives of the U_, V/ and < vi >. The mass flux terms also contribute to the pressure

and viscous work terms in the mean energy equation.

It is clear, given the number of times it occurs in the moment evolution equations, that an

expression for the mass flux for general compressible turbulent flows of aerodynamic interest.

is necessary. An evolution equation and a model for < vi > are important: 1) to be able to

estimate the importance of < v_ > in different flows, 2) to know what to do about it when

it is important, and 3) to be able to relate experimental values to computational results.

3. An evolution equation for the Favre velocity perturbation

Consider the evolution equations for the total velocity and density fields:

p',, + (p'u;),p

(p'u;),, + (p*u;_;),p+2_,k.nkp'_;

= 0

- -p_ + p fi + a;j,j

_t

where o*j = #*[u_,j +u;,i-2/3Uq,q (_j]. To a very good approximation the viscosity is in-

dependent of density: it will be taken to be equal to its local mean value and correlations

between the viscosity and velocity will be considered as higher order effects and neglected.

The evolution equation for the fluctuations around the Favre-mean momentum are obtained

by subtracting the evolution equation for the mean momentum < p > Vi from the equation

for p*u_ to obtain an equation for p*vi. As < p*vi >= 0, a straightforward time-average of

this equation does not produce any results. The equation is rewritten in its nonconservative

instantaneous form:

p'_,,, + p'(v_ + _)_,,_ + (p'_),_- < p'_,_ >,_ + 2_,k_p'_ =
-Pi + p*fl + O'i_,j -- pi,/Vi + Vi(p*vp),p

where cri_ =< # > [ui,j +ui,i-2/3Uq,q (_ij] and L, fVi = Vi,t +VpV,.,p +2eikpf_kVp -- Fi. The

term pL_,yVi reflects the coupling between the fluctuating density and the mean flow. Divid-

ing by the total density, p*, expanding using the binomial theorem, and averaging pro-

duces an evolution equation for < vi > in which successive terms scale as v/-_, where

a =< p2 > / < p >2 is the normalized density variance.

Keeping only lowest order terms produces

< v_ >,t + Vp < v_ >,p + 2_,pf_: < vp >= - < vp > V,.,p+ {v_vp} < p >,p < p >-_ + < v_vp,_>
+[{vpvi}- <vpvi>l,p- <fi > +O(_/a)

7



an evolutionequation independent of complicating correlations with the pressure and viscous

surface forces. Note that the fact that {vivj}- < vivj >=< pv_vj >< p >-1 and that <

p*viv v >=< p > {vivp} has been used. The inhomogeneous diffusion term [{vivj}- < v_vj >]

is an O (v/a) term, as can be seen by the data presented in Dinavahi et al. (1993), and can

in general be neglected. In a homogeneous turbulence it is zero, of course.

This very simple equation for < vi > results from the fact that, in the Favre setting,

surface forces are carried using the Reynolds decomposition while volume forces appear

naturally in the Favre variables. The first-moment of the fluctuating surface forces (pressure,

viscosity) appearing in the equation for < vi > are zero and no complicating models for these

terms are required. This combined with the peculiarity of the fluctuating Favre mean allows

< pv_>= - < p >< vi > and leads one to work with the first-moment form < vi > of the

second-moment < pv, >. Thus a simple evolution equation for the mass flux that highlights

the zeroeth order effects associated with the volumetric compressibility while relegating the

higher order effects of the surface forces to a higher order equation in the expansion is

obtained.

4. An algebraic expression for the Favre-velocity perturbation

To obtain the mass flux, < pvi >= - < p >< vi >, an equation for the Favre fluctuation

mean, < vi >, with only one unknown term, the correlation with the fluctuating divergence

< vivv, v >, has been derived. The evolution equation obtained for the Favre fluctuation

mean is simple enough to carry in turbulence simulations. However it is still simpler and

less expensive to carry an algebraic expression. This is now derived.

A direct algebraic truncation of the evolution equation will describe the fixed points of the

< vi >. An algebraic truncation following the procedure used in algebraic stress models will

give the fixed points of < vi >/{%%}1/2. This is done by assuming a structural equilibrium

of the form D/Dt [< v_ >/{vvvp} 1/21 = 0 allowing the convective derivatives, D/Dt < v_ >

to be expressed in terms of the right hand side of the evolution equation for the turbulence

energy:
D <v_> D

D--t < vi >= {%vv } Dt {Vqyq} =< ui > (_ - _)/k

which allows the evolution of the < vi > to reflect the changes in the energy of the local

turbulence field. Here P, _, are the production and the dissipation in the turbulent kinetic

energy equation where k = 1/2{vpvv} is the specific kinetic energy.

In the near wall region, where the mass flux is expected to be the most important, the

flow will attain a structural equilibrium rapidly and such an approximation will be adequate.

Note that the equality P = e corresponds to the fixed point D/Dt < vi >= O. The algebraic



form of the evolution equationfor Favrefluctuation meanis now:

< v_> (P - _)/k = - < vp > V_,p+{v_vp} < p >,_ < p >-1 + < v_v_,p>.

The body force terms and the Coriolis terms have not been carried, however the analysis

can be carried quite easily with them as they do not constitute unknown terms that require

closure.

It remains to close the last term on the right hand side. It is possible, in situations

with large density and velocity gradients, to neglect the correlation with the fluctuating

divergence. This is equivalent to the assumption that the mean flow gradients of density and

velocity are large and set the balance to lowest order. It can, however, be shown that the

correlation with the fluctuating divergence scales with mean flow gradients and is therefore

not negligible in a general flow. Moreover there are times when the difference between the

mean production terms is small which means that the contribution from < vivp,p > will be

important.

The correlation with the divergence will be represented by a linear relaxation model.

This linear relaxation model is chosen on the grounds that < vivp,p > and < vi > have the

same tensorial properties. Both belong to the same symmetry groups, satisfying the same

reflectional and rotational properties, vanishing in isotropic turbulence and in an equilibrium

homogeneous turbulence. From a computational point of view, a linear relaxation form is

desirable as it avoids the possibility of a singularity in the inversion of the velocity gradient

during a computation and is consistent with realizability. A linear relaxation with time scale

rd

< ViVp, p >= -- < V i > /Td

is chosen. Zeman and Coleman (1991) have also used a linear relaxation with acoustic time

scale for this correlation. The time scale, rd, in the model for < vivp,p >= - < vi >/re may

be thought of as a dilatational time scale. The time scale, rd, is the only phenomenological

parameter assumed to obtained the present model for the mass flux. Computations using

the acoustic time scale, rd = Mtk/e, to represent the dilatational time scale have been

successful. The present model will use this approximation for the dilatational time scale.

There are other possibilities though at this time, given the success of the present model,

there is little motivation for further investigation.

Substituting for the unknown correlation with the fluctuating divergence in the algebraic

truncation of the evolution equation for < vi > produces

< v_ > (_ + r_,,) = r{v_v_} < p >,, < p >-a.

where r = (Mtk/e)/(1 + Mt(P/e- 1)) The model is now a set of three coupled linear

algebraic equations of the form Alp < vp >= bi. Inspection of the equations reveals two



significant features: 1) the mass flux in one direction, as might be expected from continuity

considerations, is influenced by the mass flux in another direction and 2) the contraction of

the density gradient on the Reynolds stress allows countergradient transfer. In simple cases

this set of equations is easily solved by hand. Performing the general inversion the model

can be written in symbolic form as

<_ Vi >.._ TTj{VjVp } <_ p _>,p < p _>-1

where Tj = (6ij + vV/,j )-1. This is an anisotropic eddy-viscosity model in which the eddy-

viscosity tensor vjp = Tji{vivp} is a function of the Reynolds stresses and the mean flow

gradients. Though this form suggests the structure of the model it is not in a form most

suitable for computation. Recourse to the Cayley-Hamilton theorem allows _j to be written

in terms of the invariants and the first and second powers of the matrix:

IIIAA -1 = A 2 - IAA + 11.41

Substituting A = 1 + rVV produces an expression for the inverse

IIIA(1 + rVV) -1 = (1 - Ia + IIA)I + (2 -- Ia)TVV + T2(VV) 2

and the final model can be written, in ascending powers of ratios of time scales, as

< >=  [-o ij + vk,j]{vj  } < p < p >-'.

The nondimensional "viscosity" coefficients, u0, ul, u2 are known in terms of the mean

deformation; they are not phenomenological parameters that require calibration to experi-

ments which then limit the application of the model to flows not too different from that for

which the model has been calibrated. Only one phenomenological assumption - to obtain

the relaxation model for the correlation with the fluctuating dilatation - has been made. The

invariants and the viscosity coefficients are given in the Appendix that sununarizes the final

form of the model.

5. Discussion and implementation of the mass flux model in simple flows

Formidable as the algebraic expression for the mass flux may appears there are some

simple expressions for the < vi > possible. Though the representation is valid for arbitrary

three-dimensional flows several cases with two-dimensional mean fields are investigated in

order to understand the effects of different mean deformations. One three dimensional field

is considered in order to anticipate the effects the three-dimensionality of the flow might

have on the mass flux expressions.

10



Case 1: Isotropic turbulence with small velocity gradients, TVV << 1

In this case TVV << 1, 7_ = 0 and the time scale r = (Mtk/e)/(1 + Ms('P/e - 1)). The

eddy-viscosity tensor assumes the form r{v.ivp} ,'., Ms(k/e)2k6jp/(1 - Ms) and the model is

< v, >~ < p >,, < p >-'.

This can be compared to the usual eddy-viscosity model: < vi >= (#T/ < P >2 Prs p) <

p >,j in which #T = C.f. < p > k2/e and thus

< vi >~ (k/e)k < p >. < p >-1.

The usual eddy-viscosity form misses the dependence on M, which is necessary if the

< vi > are to vanish in the absence of compressibility effects. Thus, apart from the Ms

scaling, a scalar viscosity assumption will work, in the limit of an isotropic turbulence with

negligible mean velocity gradients. Note that this form in a boundary layer flow with cross-

stream density gradient cannot predict a streamwise mass flux. It can only predict a mass flux

down the density gradient. In problems of engineering interest there will be countergradient

transport, as has been seen in the Ma = 4.5 data of Dinavahi et al. (1993), and an eddy-

viscosity gradient transport hypothesis is inappropriate. These inadequacies have also been

noted by Taulbee and VanOsdol (1991).

The major shortcoming of the eddy-viscosity assumption is realizability and its impact on

computability in compressible closures. In the Reynolds stress equations for arbitrary mean

flow accelerations, a gradient transport assumption for < vi > can cause the acceleration pro-

duction mechanism to destabilize the computations. For example if {v_v_}, in the Reynolds

stress equations above, vanishes, < v_ > must also vanish in order to keep that eigenvalue

of the Reynolds stress from going negative, as a finite < vi > in < vi >< p > D/Dt Vj

will cause negative energies for arbitrary mean acceleration. This cannot be accomplished

with the eddy-viscosity form of the model. Gatski (1993) has used a scalar eddy-viscosity

representation and found it to be computationally destabilizing. Zeman and Coleman (1991)

have also pointed out that inadequate representations of the mass flux can destabilize com-

putations in flows when the acceleration terms is important. This occurs, for example, in

the passage through a shock or in flows in which the mean strain or mean dilatation are

important.

Case 2: Anisotropic turbulence with small mean velocity gradients, rVV << 1

I11 the case 7VV << 1 and when the turbulence is anisotropic the expression for the mass

flux becomes

< Yi >= r{Vi13p} < p >,p < p >--1

where r = (Mtk/e)/(1 + Mt(7::'/e-1)). Note that this expression for the mass flux allows for

countergradient transfer and is realizable: the mass flux in the direction of the principal axis
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in which the eigenvalue of the Reynolds stress vanishes will also vanish. It is interesting to

compare the expression for the mass flux to Zeman's (1993). In an equilibrium turbulence,

for which T' = _, and in the limit of small velocity gradients the present model simplifies, to

within a constant of proportionality, to Zeman's model. Comparisons of this model with the

DNS data in a wall bounded compressible flow shows that it does not successfully capture the

results known from DNS. The neglected terms involving the velocity gradients are essential.

After all the terms with the mean velocity gradients represent the production terms, which

are typically not negligible, in the mass flux equation. Computations with the neglected

velocity gradient capture the near wall behavior very nicely, as will be seen in the next case.

Case 3: Simple shear, Vi,j = V1,2 _15j2

In problems of engineering interest the turbulence will be anisotropic and there will be

nonnegligible gradients in the mean velocity field and the production terms for the mass flux

need to be included in the algebraic expression. For the simple shear, ld,j = V1,2 6i15j2, a

surprisingly simple expression for the mass flux is possible. The computation is easily carried

out by hand using < vp > (5_p + rV/,_,) = r{v_vp} < p >,p < p >-1. Using the inversion

formula the invariants of A are Ia = 3, IIa = 3, Ilia = 1 and the viscosity coefficients

take on the simple values v0 = 1,vl = -1,v2 = 1 and, as the square of the mean velocity

gradient is zero, the expression for the mass flux becomes

< >= - < p >,. < p >-1

The streamwise and cross-stream components of the Favre fluctuation mean, in a flow with

only a cross-stream density gradient, become

< >= - < p < p >-1
< v2 >= r{v2v2} < p >,2 < P >-1 .

Note that the effects of the production of < vi > by the mean shear, proportional to Va,2,

are included in the expressions for the streamwise mass flux. This is similar to the normal

Reynolds stresses in a unidirectional shear: the production mechanism is in the equations

of the streamwise component of the energy and therefore it is larger than the spanwise and

cross-stream components of the turbulence energy. Computations, shown in Figure 3, with

this model are very successful for the streamwise component < va >. The peak in < vl > is

captured surprisingly well in size and location. This behavior can not be captured without the

inclusion of the 1/1,2 {v2v2} term. The small velocity gradient limit expression, case 2 above,

which is essentially the algebraic form both Zeman and Cole (1991) and Rubesin (1990)

substantially underpredicts the near-wall peak of the mass flux. Note that a streamwise

mass flux is engendered by a cross-stream density gradient. This is a behavior that an
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isotropic eddy-viscositymodelcannot predict; sucha modelpredicts a zerostreamwisemass

flUX.

The predictions of the cross-stream component, < v2 >, are less successful. This is be-

cause there are no large production terms in the < v2 > expression to mask the inaccuracies

of the linear relaxation model assumed for the dilatational correlation in a nonequilibrium

"newly formed" turbulence. The present temporal DNS is started from a laminar profile

and computed through transition. The data shown in the figures represents a flow approxi-

mately three eddy-turnovers past the transition, e,Sx/(kU) -_ 3. The turbulence field is not

fully developed, retaining vestiges of the initial conditions; a linear relaxation model for the

correlation with the fluctuating divergence would not be expected to do well in such, a more

or less, transitional flow.

The poor agreement in the expression for the cross-stream mass flux cannot be explained

by the fact that the data comes from a temporal DNS. The expression for the mass flux model

is from its evolution equation which is independent of the mean flow equation calculation.

Thus, the problem often seen in comparing Reynolds stress model calculations to temporal

DNS simulations, in which there is a forcing term in the equations to compensate for the

boundary layer growth, do not appear here.

Case 4: Plane strain with mean dilatation

For a plane strain with arbitrary non-zero dilatation, Vi,j = VI,1 6i16jl+V_,2 6i2_j2, and the vis-

cosity coefficients take on the following simple values u0 = 1, vl = -(1 + r(V1 ,_ +V2,2 ))/IIIA,

us = 1/IIIA where IIIA= (1 + TV_,_ )(1 + TV2,2 ). The fluxes are given by the simple ex-

pressions
T

< vl >= O+._vl,l){vlvp} < P >,p< P >-1

< v2 >- (l+;_v_,_){v2vp}< p >,p < p >-1.

Clearly the model is fully realizable and the destabilization of more rudimentary models,

noted by Zeman and Coleman (1991), for a flow with large normal strain is not an issue.

Note that in very high strains, say the normal passage through a shock, the dependence on

the phenomenological parameter rd, absorbed in r is lost. Here, again, r = (Mtk/e)/(1 +

M,(P/e- 1)).

In mean mean field with a large dilatational component, it is more useful to consider a

mean velocity gradient described of the form V_,j = VI,_ ((1 + D)_n_j_- _i2_j2). The viscosity

coefficients take on the following values v0 = 1, v_ = -1(1 + DrV_,I )/IliA, v2 = 1�IliA.

The streamwise and cross-stream components of the Favre fluctuation mean, in a flow with

arbitrary density gradient, become

< _31 >= I+(I+5),V,,,{/JlVp} < p >'p < p >-1

5"

< v2 >= 1-;-v_,_ {v2vv} < P >'P < p >-1
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Case 5: Arbitrary two-dimensional mean velocity gradients

For an arbitrarily complex two-dimensional flow, such as the developing wall bounded tur-

bulent boundary layer with separation, V_,j = [V_,,, 1/1,2,0], [V2,1, V2,2,0] is a suitable rep-

resentation for the velocity gradient field. The viscosity coefficients are given by u0 = l,

Ul = -(1 + rD)/IIIA, u2 = a/Ilia where D = V1,1 +V2,2. The mass fluxes are given by

< U1 >= //-'_a [(1 + TV2, 2 ){'/)lOp}- {V2Up}TV1,2 ] < p >,p < j0 >-1

< .2 >= [(a+ Tv ,, - {vl,p}Tv2,,] < p >,. < p >-'

where Ilia = 1 + TD + r2(Vl,a V2,2 -V_,2 V2,1 ).

Case 6: Arbitrary three-dimensional strain with simple shear

In a general three-dimensiona;1 flow the expressions for the invariants are somewhat more com-

plicated. The simplest case, a simple shear with arbitrary three dilatation, is chosen. The ve-

locity gradients are represented by V/,j = [VI,,, V_,2,0], [0, V2,2,0], [0, 0, V3,3 ]. The square of

the velocity gradient is given by V/,k Vk,j = [(V_,1 )2, V1,2 (VI,1 +V2,2 ), 0], [0, (V2,2)2, 0][0, 0, (V3,3)2].

The invariants of A are IA = 3 + TD, IIA = 3 + 2TD + T2(V1,1 V2,2 -Jr-V2,2 V3,3 -4-V3,3 V1,1 ),

and Ilia = (l + TVI,1 )(1 + TV2,2)(a + rV3,3). Here, as usual, D = Vj,j is the mean dilata-

tion. The viscosity coefficients are a little more complicated - the three-dimensionality of the

flow now affects the zeroth-order viscosity coefficient. In the two-dimensional flows Uo = 1;

here Uo = (1 + _'D + T2d(V_,I V2,2 +V2,2 I/3,3 +I/3,3 V_,1 ))/Ilia. The higher order viscosity

coefficients are given by va = -(1 + _'D)IIIA, u2 = a/Ilia and the fluxes are written as

< v, >= i/_a[(1 + T(V2,2+V3,3)-3 t- T2g2,2V3,3){UlVp)

-{v2vp}rV1,2 (1 + _'Vz,3 )] < p >,p< p >-i

< v2 >= lha[(l + T(VI,1 +V3,3) -4- f2Vl,l V3,3){IJ2vp}] < p >,p < p >-1

6. Summary and Conclusions

The fluctuating Favre velocity mean, < vi >, is the first-order form of a second-order

moment, the mass flux, < pvi >= - < p >< vi >. The mass fluxes quantify the difference

between Reynolds statistics and the density-weighted Favre statistics, Ui = V_ + < vi > and

u; = v_ - < vi >, and can be thought of as measuring the effects of compressibility due

to variations in density. The effects of .the mean density gradients on the anisotropy of the

turbulence are fully parameterized by the mass flux.

An algebraic representation for the mass flux has been derived from the transport equa-

tion for the Favre fluctuation mean using the structural equilibrium assumption. The mass

flux is found to be proportional to the mean density gradients with an anisotropic eddy-

viscosity that depends on both the Reynolds stresses and the mean velocity gradients. The
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appearanceof the meanvelocity gradientsin the tensoreddy-viscosityreflectstheir presence
in the production terms in the evolution equation for < vi >. The model predicts coun-

tergradient transfer and shows that mean density gradients in one direction can produce a

mass flux in a different direction. It form, valid for a general three-dimensional flow, is

< >= - < p >< >= -r[v0  j + vlrY ,j + 2r2V ,k Vk,j ]{vjv } < p

where r = (Mtk/_)/(1 + Mt(79/¢- 1)). The viscosity coefficients, vo, vl,v2, are known

functions of the mean velocity gradient, given in terms of the invariants of the tensor A =

1 + rVV. They are not adjustable "tuning" coefficients.

The derivation of the expression for < vi > has involved a minimum number of assump-

tions regarding the physics of compressible turbulence. It is useful, however, to keep in mind

some of the approximations to account for possible discrepancies and to anticipate the classes

of flows in which the present form of the model may be inadequate. The assumptions used

are:

1) The derivation of an O (< pp >112 / < p >) set of evolution equations for the < vi >

showed that the unclosed terms involving correlations with the fluctuating pressure and

stress are higher order effects and can therefore be neglected. In the evolution equations

there is only one unclosed term, the fluctuating < vivk,k > covariance.

2) The form of turbulent diffusion terms appearing in the < v_ > equation, are found

to scale with the density intensity, < pp >1/2 / < p >, for arbitrary inhomogeneity and

can therefore be neglected. This is consistent with the truncation of the equation as (<

pvivp >< p >-l),v= ({vivv}- < vivp >),p is an O (< pp >1/2 / < p >) quantity. The

difference between {vivp} and < vivp > has been seen to be small in the wall bounded flow

at Ma = 4.5 of Dinavahi and Pruett (1993), as seen in Ristorcelli et al. (1993).

3) The structural equilibrium assumption, D/Ot [< v_ >< vj > /{vp%}] = 0, is used

to produce an algebraic expression for the mass flux equation. This allows the material

derivative to be expressed in terms the production and dissipation of the turbulence energy.

For more rapidly varying flows in which the structural equilibrium is not expected to yield

results of adequate accuracy it is possible to carry the full differential equation for the mass

flux. Near solid boundaries, were the mass flux is most important, a structural equilibrium

is expected to be achieved rapidly and the algebraic form is adequate. It is this fact, coupled

with the density intensity truncation of the evolution equation, that enables the mass flux

expression to be used all the way to the wall without any ad hoc wall function corrections.

4) The algebraic truncation of the evolution equation for < vi > involves one unclosed

term,< vivk,k >. It has been assumed that it can be represented as a linear relaxation term,

< vivk,k >= -- < vi > /rd where rd = Mtk/¢. This model for the covariance with the fluc-

tuating dilatation is expected to be adequate for most quasi-equilibrium quasi-homogeneous
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turbulence fields in which the production terms play a major role. For flows in which tlle

pressure dilatation covariance plays a major role in transferring energy from its kinetic to

potential modes it may be necessary to reevaluate the adequacy of the linear relaxation
model.

The form of the mass flux model presented does not include effects associated with

rotation or body forces. Both of these effects can be easily incorporated as they do not

require any additional modeling; it is simply a matter of retaining the extra terms in the

algebraic truncation of the evolution equations. There is an exception; at rapid rotation rates

the neglected pressure covariance becomes important and the truncation of the evolution

equation used to obtain the model is no longer valid.

The. model is realizable for most simple flows though a general proof of its realizability

has not been found. These realizability aspects, and the fact that the destabilizing properties

associated with isotropic eddy-viscosity models do not appear in this mass flux model, are

expected to make it computationally robust.

In the moment evolution equations for a compressible turbulence the mass fluxes appear

in several places. In the mean momentum and energy equations the mass flux appears in

five different locations, Ristorcelli (1993), and modeling U_ __ V,. ignoring the contribution of

the mass flux has been shown to be inadequate. In the Reynolds stress equations the mass

flux determines the relative importance of the production by the mean flow acceleration, it

contributes to the pressure fluxes and the viscous fluxes. It is clear, given the number of

times it occurs in the moment evolution equations, that an accurate model for the mass flux

is necessary for complex compressible turbulent flows of aerodynamic interest. This is to

assess the magnitude of the mass flux in various flows and to include it in a computational

model when it is important. There are classes of compressible flows in which the contribution

from the mass flux are expected to be small and its inclusion in a computational model is

unnecessary.

It is expected that the mass flux will not make much of a contribution to usual uni-

directional shear flows such as the flat plate boundary layer and diverse free shear layers,

unless there are large density gradients. The mass flux terms are expected to be important

in more complex flows: these include flows in which there are mean density gradients due

to large Mach number or combustion, separation or reattachment (inflection points), cold

wall boundary conditions, mean dilatation, shocks, adverse pressure gradients, or strong

streamwise accelerations such as those occurring in ramp type flows.
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Appendix: Final form of the algebraic mass flux model

The pertinent facts concerning the computational implementation of the mass flux rep-

resentation are presented here. The general form of the model, valid for a three-dimensional

flow in an inertial system without body forces, is

< 73i >: T[120_ij -_- I]ITVi,j "4-V2T2V/,k Vk,j ]{Uj'Up} < p >,p < p >-1

where the viscosity coefficients are functions of the invariants of, A = 1 + rVV, and are

given by v0 = (1 - IA + IIA)/IIIA, vl = (2 -- IA)/IIIA, and v2 = i/IliA. The invariants

for the tensor are given by

IA--: <A>

IIA= 1/2(<A>2 <A 2>)

IliA= .1/6(<A>a-3<A><A 2>+2<A a >)

for which <> indicates the trace of the enclosed matrix. The time scale is defined as

r = (Mtk/c)/(1 + Mt(7_/e - 1)) The various traces are straightforward to compute using

their definition. Their significance can be understood when they are recast in terms of the

mean dilatation, rotation and strain:

<A>=

< A 2 >=

< A 3 >=

3+rD

3+2rD+r2[<5 '2>+<W _>]

3+3rD+3r2[<S 2>+<W 2>]+r3[<S 3>+2<SW 2>+<W 3>]

D = Sjj is the mean dilatation and the strain and rotation tensors are defined: Sij =

1/2[V_,j+Vj,,] and W,j = 1/2[V,-,j-V3-,i ]. The term rD can be thought of as a ratio of

fluctuating to mean dilatation time scales. It is understood to be order one or smaller,

rD<l.
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tion mean velocity profiles in the Ma = 4.5 wall bounded DNS

of Dinavahi and Pruett (1993).
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